1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
12 //
13 //            Practical Dependence Testing
14 //            Goff, Kennedy, Tseng
15 //            PLDI 1991
16 //
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
20 //
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
25 //
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
30 //
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
34 //
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
38 //
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
42 //
43 // Please note that this is work in progress and the interface is subject to
44 // change.
45 //
46 //===----------------------------------------------------------------------===//
47 //                                                                            //
48 //                   In memory of Ken Kennedy, 1945 - 2007                    //
49 //                                                                            //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Config/llvm-config.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "da"
73 
74 //===----------------------------------------------------------------------===//
75 // statistics
76 
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109 
110 static cl::opt<bool>
111     Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
112                 cl::desc("Try to delinearize array references."));
113 static cl::opt<bool> DisableDelinearizationChecks(
114     "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
115     cl::ZeroOrMore,
116     cl::desc(
117         "Disable checks that try to statically verify validity of "
118         "delinearized subscripts. Enabling this option may result in incorrect "
119         "dependence vectors for languages that allow the subscript of one "
120         "dimension to underflow or overflow into another dimension."));
121 
122 //===----------------------------------------------------------------------===//
123 // basics
124 
125 DependenceAnalysis::Result
126 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
127   auto &AA = FAM.getResult<AAManager>(F);
128   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
129   auto &LI = FAM.getResult<LoopAnalysis>(F);
130   return DependenceInfo(&F, &AA, &SE, &LI);
131 }
132 
133 AnalysisKey DependenceAnalysis::Key;
134 
135 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
136                       "Dependence Analysis", true, true)
137 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
138 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
141                     true, true)
142 
143 char DependenceAnalysisWrapperPass::ID = 0;
144 
145 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
146     : FunctionPass(ID) {
147   initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
148 }
149 
150 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
151   return new DependenceAnalysisWrapperPass();
152 }
153 
154 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
155   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
156   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
157   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
158   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
159   return false;
160 }
161 
162 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
163 
164 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
165 
166 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
167   AU.setPreservesAll();
168   AU.addRequiredTransitive<AAResultsWrapperPass>();
169   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
170   AU.addRequiredTransitive<LoopInfoWrapperPass>();
171 }
172 
173 // Used to test the dependence analyzer.
174 // Looks through the function, noting instructions that may access memory.
175 // Calls depends() on every possible pair and prints out the result.
176 // Ignores all other instructions.
177 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
178   auto *F = DA->getFunction();
179   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
180        ++SrcI) {
181     if (SrcI->mayReadOrWriteMemory()) {
182       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
183            DstI != DstE; ++DstI) {
184         if (DstI->mayReadOrWriteMemory()) {
185           OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
186           OS << "  da analyze - ";
187           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
188             D->dump(OS);
189             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
190               if (D->isSplitable(Level)) {
191                 OS << "  da analyze - split level = " << Level;
192                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
193                 OS << "!\n";
194               }
195             }
196           }
197           else
198             OS << "none!\n";
199         }
200       }
201     }
202   }
203 }
204 
205 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
206                                           const Module *) const {
207   dumpExampleDependence(OS, info.get());
208 }
209 
210 PreservedAnalyses
211 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
212   OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
213   dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
214   return PreservedAnalyses::all();
215 }
216 
217 //===----------------------------------------------------------------------===//
218 // Dependence methods
219 
220 // Returns true if this is an input dependence.
221 bool Dependence::isInput() const {
222   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
223 }
224 
225 
226 // Returns true if this is an output dependence.
227 bool Dependence::isOutput() const {
228   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
229 }
230 
231 
232 // Returns true if this is an flow (aka true)  dependence.
233 bool Dependence::isFlow() const {
234   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
235 }
236 
237 
238 // Returns true if this is an anti dependence.
239 bool Dependence::isAnti() const {
240   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
241 }
242 
243 
244 // Returns true if a particular level is scalar; that is,
245 // if no subscript in the source or destination mention the induction
246 // variable associated with the loop at this level.
247 // Leave this out of line, so it will serve as a virtual method anchor
248 bool Dependence::isScalar(unsigned level) const {
249   return false;
250 }
251 
252 
253 //===----------------------------------------------------------------------===//
254 // FullDependence methods
255 
256 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
257                                bool PossiblyLoopIndependent,
258                                unsigned CommonLevels)
259     : Dependence(Source, Destination), Levels(CommonLevels),
260       LoopIndependent(PossiblyLoopIndependent) {
261   Consistent = true;
262   if (CommonLevels)
263     DV = std::make_unique<DVEntry[]>(CommonLevels);
264 }
265 
266 // The rest are simple getters that hide the implementation.
267 
268 // getDirection - Returns the direction associated with a particular level.
269 unsigned FullDependence::getDirection(unsigned Level) const {
270   assert(0 < Level && Level <= Levels && "Level out of range");
271   return DV[Level - 1].Direction;
272 }
273 
274 
275 // Returns the distance (or NULL) associated with a particular level.
276 const SCEV *FullDependence::getDistance(unsigned Level) const {
277   assert(0 < Level && Level <= Levels && "Level out of range");
278   return DV[Level - 1].Distance;
279 }
280 
281 
282 // Returns true if a particular level is scalar; that is,
283 // if no subscript in the source or destination mention the induction
284 // variable associated with the loop at this level.
285 bool FullDependence::isScalar(unsigned Level) const {
286   assert(0 < Level && Level <= Levels && "Level out of range");
287   return DV[Level - 1].Scalar;
288 }
289 
290 
291 // Returns true if peeling the first iteration from this loop
292 // will break this dependence.
293 bool FullDependence::isPeelFirst(unsigned Level) const {
294   assert(0 < Level && Level <= Levels && "Level out of range");
295   return DV[Level - 1].PeelFirst;
296 }
297 
298 
299 // Returns true if peeling the last iteration from this loop
300 // will break this dependence.
301 bool FullDependence::isPeelLast(unsigned Level) const {
302   assert(0 < Level && Level <= Levels && "Level out of range");
303   return DV[Level - 1].PeelLast;
304 }
305 
306 
307 // Returns true if splitting this loop will break the dependence.
308 bool FullDependence::isSplitable(unsigned Level) const {
309   assert(0 < Level && Level <= Levels && "Level out of range");
310   return DV[Level - 1].Splitable;
311 }
312 
313 
314 //===----------------------------------------------------------------------===//
315 // DependenceInfo::Constraint methods
316 
317 // If constraint is a point <X, Y>, returns X.
318 // Otherwise assert.
319 const SCEV *DependenceInfo::Constraint::getX() const {
320   assert(Kind == Point && "Kind should be Point");
321   return A;
322 }
323 
324 
325 // If constraint is a point <X, Y>, returns Y.
326 // Otherwise assert.
327 const SCEV *DependenceInfo::Constraint::getY() const {
328   assert(Kind == Point && "Kind should be Point");
329   return B;
330 }
331 
332 
333 // If constraint is a line AX + BY = C, returns A.
334 // Otherwise assert.
335 const SCEV *DependenceInfo::Constraint::getA() const {
336   assert((Kind == Line || Kind == Distance) &&
337          "Kind should be Line (or Distance)");
338   return A;
339 }
340 
341 
342 // If constraint is a line AX + BY = C, returns B.
343 // Otherwise assert.
344 const SCEV *DependenceInfo::Constraint::getB() const {
345   assert((Kind == Line || Kind == Distance) &&
346          "Kind should be Line (or Distance)");
347   return B;
348 }
349 
350 
351 // If constraint is a line AX + BY = C, returns C.
352 // Otherwise assert.
353 const SCEV *DependenceInfo::Constraint::getC() const {
354   assert((Kind == Line || Kind == Distance) &&
355          "Kind should be Line (or Distance)");
356   return C;
357 }
358 
359 
360 // If constraint is a distance, returns D.
361 // Otherwise assert.
362 const SCEV *DependenceInfo::Constraint::getD() const {
363   assert(Kind == Distance && "Kind should be Distance");
364   return SE->getNegativeSCEV(C);
365 }
366 
367 
368 // Returns the loop associated with this constraint.
369 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
370   assert((Kind == Distance || Kind == Line || Kind == Point) &&
371          "Kind should be Distance, Line, or Point");
372   return AssociatedLoop;
373 }
374 
375 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
376                                           const Loop *CurLoop) {
377   Kind = Point;
378   A = X;
379   B = Y;
380   AssociatedLoop = CurLoop;
381 }
382 
383 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
384                                          const SCEV *CC, const Loop *CurLoop) {
385   Kind = Line;
386   A = AA;
387   B = BB;
388   C = CC;
389   AssociatedLoop = CurLoop;
390 }
391 
392 void DependenceInfo::Constraint::setDistance(const SCEV *D,
393                                              const Loop *CurLoop) {
394   Kind = Distance;
395   A = SE->getOne(D->getType());
396   B = SE->getNegativeSCEV(A);
397   C = SE->getNegativeSCEV(D);
398   AssociatedLoop = CurLoop;
399 }
400 
401 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
402 
403 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
404   SE = NewSE;
405   Kind = Any;
406 }
407 
408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
409 // For debugging purposes. Dumps the constraint out to OS.
410 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
411   if (isEmpty())
412     OS << " Empty\n";
413   else if (isAny())
414     OS << " Any\n";
415   else if (isPoint())
416     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
417   else if (isDistance())
418     OS << " Distance is " << *getD() <<
419       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
420   else if (isLine())
421     OS << " Line is " << *getA() << "*X + " <<
422       *getB() << "*Y = " << *getC() << "\n";
423   else
424     llvm_unreachable("unknown constraint type in Constraint::dump");
425 }
426 #endif
427 
428 
429 // Updates X with the intersection
430 // of the Constraints X and Y. Returns true if X has changed.
431 // Corresponds to Figure 4 from the paper
432 //
433 //            Practical Dependence Testing
434 //            Goff, Kennedy, Tseng
435 //            PLDI 1991
436 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
437   ++DeltaApplications;
438   LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
439   LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
440   LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
441   assert(!Y->isPoint() && "Y must not be a Point");
442   if (X->isAny()) {
443     if (Y->isAny())
444       return false;
445     *X = *Y;
446     return true;
447   }
448   if (X->isEmpty())
449     return false;
450   if (Y->isEmpty()) {
451     X->setEmpty();
452     return true;
453   }
454 
455   if (X->isDistance() && Y->isDistance()) {
456     LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
457     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
458       return false;
459     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
460       X->setEmpty();
461       ++DeltaSuccesses;
462       return true;
463     }
464     // Hmmm, interesting situation.
465     // I guess if either is constant, keep it and ignore the other.
466     if (isa<SCEVConstant>(Y->getD())) {
467       *X = *Y;
468       return true;
469     }
470     return false;
471   }
472 
473   // At this point, the pseudo-code in Figure 4 of the paper
474   // checks if (X->isPoint() && Y->isPoint()).
475   // This case can't occur in our implementation,
476   // since a Point can only arise as the result of intersecting
477   // two Line constraints, and the right-hand value, Y, is never
478   // the result of an intersection.
479   assert(!(X->isPoint() && Y->isPoint()) &&
480          "We shouldn't ever see X->isPoint() && Y->isPoint()");
481 
482   if (X->isLine() && Y->isLine()) {
483     LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
484     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
485     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
486     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
487       // slopes are equal, so lines are parallel
488       LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
489       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
490       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
491       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
492         return false;
493       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
494         X->setEmpty();
495         ++DeltaSuccesses;
496         return true;
497       }
498       return false;
499     }
500     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
501       // slopes differ, so lines intersect
502       LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
503       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
504       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
505       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
506       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
507       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
508       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
509       const SCEVConstant *C1A2_C2A1 =
510         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
511       const SCEVConstant *C1B2_C2B1 =
512         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
513       const SCEVConstant *A1B2_A2B1 =
514         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
515       const SCEVConstant *A2B1_A1B2 =
516         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
517       if (!C1B2_C2B1 || !C1A2_C2A1 ||
518           !A1B2_A2B1 || !A2B1_A1B2)
519         return false;
520       APInt Xtop = C1B2_C2B1->getAPInt();
521       APInt Xbot = A1B2_A2B1->getAPInt();
522       APInt Ytop = C1A2_C2A1->getAPInt();
523       APInt Ybot = A2B1_A1B2->getAPInt();
524       LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
525       LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
526       LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
527       LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
528       APInt Xq = Xtop; // these need to be initialized, even
529       APInt Xr = Xtop; // though they're just going to be overwritten
530       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
531       APInt Yq = Ytop;
532       APInt Yr = Ytop;
533       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
534       if (Xr != 0 || Yr != 0) {
535         X->setEmpty();
536         ++DeltaSuccesses;
537         return true;
538       }
539       LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
540       if (Xq.slt(0) || Yq.slt(0)) {
541         X->setEmpty();
542         ++DeltaSuccesses;
543         return true;
544       }
545       if (const SCEVConstant *CUB =
546           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
547         const APInt &UpperBound = CUB->getAPInt();
548         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
549         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
550           X->setEmpty();
551           ++DeltaSuccesses;
552           return true;
553         }
554       }
555       X->setPoint(SE->getConstant(Xq),
556                   SE->getConstant(Yq),
557                   X->getAssociatedLoop());
558       ++DeltaSuccesses;
559       return true;
560     }
561     return false;
562   }
563 
564   // if (X->isLine() && Y->isPoint()) This case can't occur.
565   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
566 
567   if (X->isPoint() && Y->isLine()) {
568     LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
569     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
570     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
571     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
572     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
573       return false;
574     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
575       X->setEmpty();
576       ++DeltaSuccesses;
577       return true;
578     }
579     return false;
580   }
581 
582   llvm_unreachable("shouldn't reach the end of Constraint intersection");
583   return false;
584 }
585 
586 
587 //===----------------------------------------------------------------------===//
588 // DependenceInfo methods
589 
590 // For debugging purposes. Dumps a dependence to OS.
591 void Dependence::dump(raw_ostream &OS) const {
592   bool Splitable = false;
593   if (isConfused())
594     OS << "confused";
595   else {
596     if (isConsistent())
597       OS << "consistent ";
598     if (isFlow())
599       OS << "flow";
600     else if (isOutput())
601       OS << "output";
602     else if (isAnti())
603       OS << "anti";
604     else if (isInput())
605       OS << "input";
606     unsigned Levels = getLevels();
607     OS << " [";
608     for (unsigned II = 1; II <= Levels; ++II) {
609       if (isSplitable(II))
610         Splitable = true;
611       if (isPeelFirst(II))
612         OS << 'p';
613       const SCEV *Distance = getDistance(II);
614       if (Distance)
615         OS << *Distance;
616       else if (isScalar(II))
617         OS << "S";
618       else {
619         unsigned Direction = getDirection(II);
620         if (Direction == DVEntry::ALL)
621           OS << "*";
622         else {
623           if (Direction & DVEntry::LT)
624             OS << "<";
625           if (Direction & DVEntry::EQ)
626             OS << "=";
627           if (Direction & DVEntry::GT)
628             OS << ">";
629         }
630       }
631       if (isPeelLast(II))
632         OS << 'p';
633       if (II < Levels)
634         OS << " ";
635     }
636     if (isLoopIndependent())
637       OS << "|<";
638     OS << "]";
639     if (Splitable)
640       OS << " splitable";
641   }
642   OS << "!\n";
643 }
644 
645 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
646 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
647 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
648 // Otherwise the underlying objects are checked to see if they point to
649 // different identifiable objects.
650 static AliasResult underlyingObjectsAlias(AAResults *AA,
651                                           const DataLayout &DL,
652                                           const MemoryLocation &LocA,
653                                           const MemoryLocation &LocB) {
654   // Check the original locations (minus size) for noalias, which can happen for
655   // tbaa, incompatible underlying object locations, etc.
656   MemoryLocation LocAS =
657       MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
658   MemoryLocation LocBS =
659       MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
660   if (AA->alias(LocAS, LocBS) == NoAlias)
661     return NoAlias;
662 
663   // Check the underlying objects are the same
664   const Value *AObj = getUnderlyingObject(LocA.Ptr);
665   const Value *BObj = getUnderlyingObject(LocB.Ptr);
666 
667   // If the underlying objects are the same, they must alias
668   if (AObj == BObj)
669     return MustAlias;
670 
671   // We may have hit the recursion limit for underlying objects, or have
672   // underlying objects where we don't know they will alias.
673   if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
674     return MayAlias;
675 
676   // Otherwise we know the objects are different and both identified objects so
677   // must not alias.
678   return NoAlias;
679 }
680 
681 
682 // Returns true if the load or store can be analyzed. Atomic and volatile
683 // operations have properties which this analysis does not understand.
684 static
685 bool isLoadOrStore(const Instruction *I) {
686   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
687     return LI->isUnordered();
688   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
689     return SI->isUnordered();
690   return false;
691 }
692 
693 
694 // Examines the loop nesting of the Src and Dst
695 // instructions and establishes their shared loops. Sets the variables
696 // CommonLevels, SrcLevels, and MaxLevels.
697 // The source and destination instructions needn't be contained in the same
698 // loop. The routine establishNestingLevels finds the level of most deeply
699 // nested loop that contains them both, CommonLevels. An instruction that's
700 // not contained in a loop is at level = 0. MaxLevels is equal to the level
701 // of the source plus the level of the destination, minus CommonLevels.
702 // This lets us allocate vectors MaxLevels in length, with room for every
703 // distinct loop referenced in both the source and destination subscripts.
704 // The variable SrcLevels is the nesting depth of the source instruction.
705 // It's used to help calculate distinct loops referenced by the destination.
706 // Here's the map from loops to levels:
707 //            0 - unused
708 //            1 - outermost common loop
709 //          ... - other common loops
710 // CommonLevels - innermost common loop
711 //          ... - loops containing Src but not Dst
712 //    SrcLevels - innermost loop containing Src but not Dst
713 //          ... - loops containing Dst but not Src
714 //    MaxLevels - innermost loops containing Dst but not Src
715 // Consider the follow code fragment:
716 //   for (a = ...) {
717 //     for (b = ...) {
718 //       for (c = ...) {
719 //         for (d = ...) {
720 //           A[] = ...;
721 //         }
722 //       }
723 //       for (e = ...) {
724 //         for (f = ...) {
725 //           for (g = ...) {
726 //             ... = A[];
727 //           }
728 //         }
729 //       }
730 //     }
731 //   }
732 // If we're looking at the possibility of a dependence between the store
733 // to A (the Src) and the load from A (the Dst), we'll note that they
734 // have 2 loops in common, so CommonLevels will equal 2 and the direction
735 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
736 // A map from loop names to loop numbers would look like
737 //     a - 1
738 //     b - 2 = CommonLevels
739 //     c - 3
740 //     d - 4 = SrcLevels
741 //     e - 5
742 //     f - 6
743 //     g - 7 = MaxLevels
744 void DependenceInfo::establishNestingLevels(const Instruction *Src,
745                                             const Instruction *Dst) {
746   const BasicBlock *SrcBlock = Src->getParent();
747   const BasicBlock *DstBlock = Dst->getParent();
748   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
749   unsigned DstLevel = LI->getLoopDepth(DstBlock);
750   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
751   const Loop *DstLoop = LI->getLoopFor(DstBlock);
752   SrcLevels = SrcLevel;
753   MaxLevels = SrcLevel + DstLevel;
754   while (SrcLevel > DstLevel) {
755     SrcLoop = SrcLoop->getParentLoop();
756     SrcLevel--;
757   }
758   while (DstLevel > SrcLevel) {
759     DstLoop = DstLoop->getParentLoop();
760     DstLevel--;
761   }
762   while (SrcLoop != DstLoop) {
763     SrcLoop = SrcLoop->getParentLoop();
764     DstLoop = DstLoop->getParentLoop();
765     SrcLevel--;
766   }
767   CommonLevels = SrcLevel;
768   MaxLevels -= CommonLevels;
769 }
770 
771 
772 // Given one of the loops containing the source, return
773 // its level index in our numbering scheme.
774 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
775   return SrcLoop->getLoopDepth();
776 }
777 
778 
779 // Given one of the loops containing the destination,
780 // return its level index in our numbering scheme.
781 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
782   unsigned D = DstLoop->getLoopDepth();
783   if (D > CommonLevels)
784     return D - CommonLevels + SrcLevels;
785   else
786     return D;
787 }
788 
789 
790 // Returns true if Expression is loop invariant in LoopNest.
791 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
792                                      const Loop *LoopNest) const {
793   if (!LoopNest)
794     return true;
795   return SE->isLoopInvariant(Expression, LoopNest) &&
796     isLoopInvariant(Expression, LoopNest->getParentLoop());
797 }
798 
799 
800 
801 // Finds the set of loops from the LoopNest that
802 // have a level <= CommonLevels and are referred to by the SCEV Expression.
803 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
804                                         const Loop *LoopNest,
805                                         SmallBitVector &Loops) const {
806   while (LoopNest) {
807     unsigned Level = LoopNest->getLoopDepth();
808     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
809       Loops.set(Level);
810     LoopNest = LoopNest->getParentLoop();
811   }
812 }
813 
814 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
815 
816   unsigned widestWidthSeen = 0;
817   Type *widestType;
818 
819   // Go through each pair and find the widest bit to which we need
820   // to extend all of them.
821   for (Subscript *Pair : Pairs) {
822     const SCEV *Src = Pair->Src;
823     const SCEV *Dst = Pair->Dst;
824     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
825     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
826     if (SrcTy == nullptr || DstTy == nullptr) {
827       assert(SrcTy == DstTy && "This function only unify integer types and "
828              "expect Src and Dst share the same type "
829              "otherwise.");
830       continue;
831     }
832     if (SrcTy->getBitWidth() > widestWidthSeen) {
833       widestWidthSeen = SrcTy->getBitWidth();
834       widestType = SrcTy;
835     }
836     if (DstTy->getBitWidth() > widestWidthSeen) {
837       widestWidthSeen = DstTy->getBitWidth();
838       widestType = DstTy;
839     }
840   }
841 
842 
843   assert(widestWidthSeen > 0);
844 
845   // Now extend each pair to the widest seen.
846   for (Subscript *Pair : Pairs) {
847     const SCEV *Src = Pair->Src;
848     const SCEV *Dst = Pair->Dst;
849     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
850     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
851     if (SrcTy == nullptr || DstTy == nullptr) {
852       assert(SrcTy == DstTy && "This function only unify integer types and "
853              "expect Src and Dst share the same type "
854              "otherwise.");
855       continue;
856     }
857     if (SrcTy->getBitWidth() < widestWidthSeen)
858       // Sign-extend Src to widestType
859       Pair->Src = SE->getSignExtendExpr(Src, widestType);
860     if (DstTy->getBitWidth() < widestWidthSeen) {
861       // Sign-extend Dst to widestType
862       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
863     }
864   }
865 }
866 
867 // removeMatchingExtensions - Examines a subscript pair.
868 // If the source and destination are identically sign (or zero)
869 // extended, it strips off the extension in an effect to simplify
870 // the actual analysis.
871 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
872   const SCEV *Src = Pair->Src;
873   const SCEV *Dst = Pair->Dst;
874   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
875       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
876     const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
877     const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
878     const SCEV *SrcCastOp = SrcCast->getOperand();
879     const SCEV *DstCastOp = DstCast->getOperand();
880     if (SrcCastOp->getType() == DstCastOp->getType()) {
881       Pair->Src = SrcCastOp;
882       Pair->Dst = DstCastOp;
883     }
884   }
885 }
886 
887 // Examine the scev and return true iff it's linear.
888 // Collect any loops mentioned in the set of "Loops".
889 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
890                                     SmallBitVector &Loops, bool IsSrc) {
891   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
892   if (!AddRec)
893     return isLoopInvariant(Expr, LoopNest);
894   const SCEV *Start = AddRec->getStart();
895   const SCEV *Step = AddRec->getStepRecurrence(*SE);
896   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
897   if (!isa<SCEVCouldNotCompute>(UB)) {
898     if (SE->getTypeSizeInBits(Start->getType()) <
899         SE->getTypeSizeInBits(UB->getType())) {
900       if (!AddRec->getNoWrapFlags())
901         return false;
902     }
903   }
904   if (!isLoopInvariant(Step, LoopNest))
905     return false;
906   if (IsSrc)
907     Loops.set(mapSrcLoop(AddRec->getLoop()));
908   else
909     Loops.set(mapDstLoop(AddRec->getLoop()));
910   return checkSubscript(Start, LoopNest, Loops, IsSrc);
911 }
912 
913 // Examine the scev and return true iff it's linear.
914 // Collect any loops mentioned in the set of "Loops".
915 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
916                                        SmallBitVector &Loops) {
917   return checkSubscript(Src, LoopNest, Loops, true);
918 }
919 
920 // Examine the scev and return true iff it's linear.
921 // Collect any loops mentioned in the set of "Loops".
922 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
923                                        SmallBitVector &Loops) {
924   return checkSubscript(Dst, LoopNest, Loops, false);
925 }
926 
927 
928 // Examines the subscript pair (the Src and Dst SCEVs)
929 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
930 // Collects the associated loops in a set.
931 DependenceInfo::Subscript::ClassificationKind
932 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
933                              const SCEV *Dst, const Loop *DstLoopNest,
934                              SmallBitVector &Loops) {
935   SmallBitVector SrcLoops(MaxLevels + 1);
936   SmallBitVector DstLoops(MaxLevels + 1);
937   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
938     return Subscript::NonLinear;
939   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
940     return Subscript::NonLinear;
941   Loops = SrcLoops;
942   Loops |= DstLoops;
943   unsigned N = Loops.count();
944   if (N == 0)
945     return Subscript::ZIV;
946   if (N == 1)
947     return Subscript::SIV;
948   if (N == 2 && (SrcLoops.count() == 0 ||
949                  DstLoops.count() == 0 ||
950                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
951     return Subscript::RDIV;
952   return Subscript::MIV;
953 }
954 
955 
956 // A wrapper around SCEV::isKnownPredicate.
957 // Looks for cases where we're interested in comparing for equality.
958 // If both X and Y have been identically sign or zero extended,
959 // it strips off the (confusing) extensions before invoking
960 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
961 // will be similarly updated.
962 //
963 // If SCEV::isKnownPredicate can't prove the predicate,
964 // we try simple subtraction, which seems to help in some cases
965 // involving symbolics.
966 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
967                                       const SCEV *Y) const {
968   if (Pred == CmpInst::ICMP_EQ ||
969       Pred == CmpInst::ICMP_NE) {
970     if ((isa<SCEVSignExtendExpr>(X) &&
971          isa<SCEVSignExtendExpr>(Y)) ||
972         (isa<SCEVZeroExtendExpr>(X) &&
973          isa<SCEVZeroExtendExpr>(Y))) {
974       const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
975       const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
976       const SCEV *Xop = CX->getOperand();
977       const SCEV *Yop = CY->getOperand();
978       if (Xop->getType() == Yop->getType()) {
979         X = Xop;
980         Y = Yop;
981       }
982     }
983   }
984   if (SE->isKnownPredicate(Pred, X, Y))
985     return true;
986   // If SE->isKnownPredicate can't prove the condition,
987   // we try the brute-force approach of subtracting
988   // and testing the difference.
989   // By testing with SE->isKnownPredicate first, we avoid
990   // the possibility of overflow when the arguments are constants.
991   const SCEV *Delta = SE->getMinusSCEV(X, Y);
992   switch (Pred) {
993   case CmpInst::ICMP_EQ:
994     return Delta->isZero();
995   case CmpInst::ICMP_NE:
996     return SE->isKnownNonZero(Delta);
997   case CmpInst::ICMP_SGE:
998     return SE->isKnownNonNegative(Delta);
999   case CmpInst::ICMP_SLE:
1000     return SE->isKnownNonPositive(Delta);
1001   case CmpInst::ICMP_SGT:
1002     return SE->isKnownPositive(Delta);
1003   case CmpInst::ICMP_SLT:
1004     return SE->isKnownNegative(Delta);
1005   default:
1006     llvm_unreachable("unexpected predicate in isKnownPredicate");
1007   }
1008 }
1009 
1010 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1011 /// with some extra checking if S is an AddRec and we can prove less-than using
1012 /// the loop bounds.
1013 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1014   // First unify to the same type
1015   auto *SType = dyn_cast<IntegerType>(S->getType());
1016   auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1017   if (!SType || !SizeType)
1018     return false;
1019   Type *MaxType =
1020       (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1021   S = SE->getTruncateOrZeroExtend(S, MaxType);
1022   Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1023 
1024   // Special check for addrecs using BE taken count
1025   const SCEV *Bound = SE->getMinusSCEV(S, Size);
1026   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1027     if (AddRec->isAffine()) {
1028       const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1029       if (!isa<SCEVCouldNotCompute>(BECount)) {
1030         const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1031         if (SE->isKnownNegative(Limit))
1032           return true;
1033       }
1034     }
1035   }
1036 
1037   // Check using normal isKnownNegative
1038   const SCEV *LimitedBound =
1039       SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1040   return SE->isKnownNegative(LimitedBound);
1041 }
1042 
1043 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1044   bool Inbounds = false;
1045   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1046     Inbounds = SrcGEP->isInBounds();
1047   if (Inbounds) {
1048     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1049       if (AddRec->isAffine()) {
1050         // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1051         // If both parts are NonNegative, the end result will be NonNegative
1052         if (SE->isKnownNonNegative(AddRec->getStart()) &&
1053             SE->isKnownNonNegative(AddRec->getOperand(1)))
1054           return true;
1055       }
1056     }
1057   }
1058 
1059   return SE->isKnownNonNegative(S);
1060 }
1061 
1062 // All subscripts are all the same type.
1063 // Loop bound may be smaller (e.g., a char).
1064 // Should zero extend loop bound, since it's always >= 0.
1065 // This routine collects upper bound and extends or truncates if needed.
1066 // Truncating is safe when subscripts are known not to wrap. Cases without
1067 // nowrap flags should have been rejected earlier.
1068 // Return null if no bound available.
1069 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1070   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1071     const SCEV *UB = SE->getBackedgeTakenCount(L);
1072     return SE->getTruncateOrZeroExtend(UB, T);
1073   }
1074   return nullptr;
1075 }
1076 
1077 
1078 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1079 // If the cast fails, returns NULL.
1080 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1081                                                               Type *T) const {
1082   if (const SCEV *UB = collectUpperBound(L, T))
1083     return dyn_cast<SCEVConstant>(UB);
1084   return nullptr;
1085 }
1086 
1087 
1088 // testZIV -
1089 // When we have a pair of subscripts of the form [c1] and [c2],
1090 // where c1 and c2 are both loop invariant, we attack it using
1091 // the ZIV test. Basically, we test by comparing the two values,
1092 // but there are actually three possible results:
1093 // 1) the values are equal, so there's a dependence
1094 // 2) the values are different, so there's no dependence
1095 // 3) the values might be equal, so we have to assume a dependence.
1096 //
1097 // Return true if dependence disproved.
1098 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1099                              FullDependence &Result) const {
1100   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
1101   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
1102   ++ZIVapplications;
1103   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1104     LLVM_DEBUG(dbgs() << "    provably dependent\n");
1105     return false; // provably dependent
1106   }
1107   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1108     LLVM_DEBUG(dbgs() << "    provably independent\n");
1109     ++ZIVindependence;
1110     return true; // provably independent
1111   }
1112   LLVM_DEBUG(dbgs() << "    possibly dependent\n");
1113   Result.Consistent = false;
1114   return false; // possibly dependent
1115 }
1116 
1117 
1118 // strongSIVtest -
1119 // From the paper, Practical Dependence Testing, Section 4.2.1
1120 //
1121 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1122 // where i is an induction variable, c1 and c2 are loop invariant,
1123 //  and a is a constant, we can solve it exactly using the Strong SIV test.
1124 //
1125 // Can prove independence. Failing that, can compute distance (and direction).
1126 // In the presence of symbolic terms, we can sometimes make progress.
1127 //
1128 // If there's a dependence,
1129 //
1130 //    c1 + a*i = c2 + a*i'
1131 //
1132 // The dependence distance is
1133 //
1134 //    d = i' - i = (c1 - c2)/a
1135 //
1136 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1137 // loop's upper bound. If a dependence exists, the dependence direction is
1138 // defined as
1139 //
1140 //                { < if d > 0
1141 //    direction = { = if d = 0
1142 //                { > if d < 0
1143 //
1144 // Return true if dependence disproved.
1145 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1146                                    const SCEV *DstConst, const Loop *CurLoop,
1147                                    unsigned Level, FullDependence &Result,
1148                                    Constraint &NewConstraint) const {
1149   LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1150   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1151   LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1152   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1153   LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1154   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1155   LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1156   ++StrongSIVapplications;
1157   assert(0 < Level && Level <= CommonLevels && "level out of range");
1158   Level--;
1159 
1160   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1161   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
1162   LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1163 
1164   // check that |Delta| < iteration count
1165   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1166     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1167     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1168     const SCEV *AbsDelta =
1169       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1170     const SCEV *AbsCoeff =
1171       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1172     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1173     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1174       // Distance greater than trip count - no dependence
1175       ++StrongSIVindependence;
1176       ++StrongSIVsuccesses;
1177       return true;
1178     }
1179   }
1180 
1181   // Can we compute distance?
1182   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1183     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1184     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1185     APInt Distance  = ConstDelta; // these need to be initialized
1186     APInt Remainder = ConstDelta;
1187     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1188     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1189     LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1190     // Make sure Coeff divides Delta exactly
1191     if (Remainder != 0) {
1192       // Coeff doesn't divide Distance, no dependence
1193       ++StrongSIVindependence;
1194       ++StrongSIVsuccesses;
1195       return true;
1196     }
1197     Result.DV[Level].Distance = SE->getConstant(Distance);
1198     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1199     if (Distance.sgt(0))
1200       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1201     else if (Distance.slt(0))
1202       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1203     else
1204       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1205     ++StrongSIVsuccesses;
1206   }
1207   else if (Delta->isZero()) {
1208     // since 0/X == 0
1209     Result.DV[Level].Distance = Delta;
1210     NewConstraint.setDistance(Delta, CurLoop);
1211     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1212     ++StrongSIVsuccesses;
1213   }
1214   else {
1215     if (Coeff->isOne()) {
1216       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1217       Result.DV[Level].Distance = Delta; // since X/1 == X
1218       NewConstraint.setDistance(Delta, CurLoop);
1219     }
1220     else {
1221       Result.Consistent = false;
1222       NewConstraint.setLine(Coeff,
1223                             SE->getNegativeSCEV(Coeff),
1224                             SE->getNegativeSCEV(Delta), CurLoop);
1225     }
1226 
1227     // maybe we can get a useful direction
1228     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1229     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1230     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1231     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1232     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1233     // The double negatives above are confusing.
1234     // It helps to read !SE->isKnownNonZero(Delta)
1235     // as "Delta might be Zero"
1236     unsigned NewDirection = Dependence::DVEntry::NONE;
1237     if ((DeltaMaybePositive && CoeffMaybePositive) ||
1238         (DeltaMaybeNegative && CoeffMaybeNegative))
1239       NewDirection = Dependence::DVEntry::LT;
1240     if (DeltaMaybeZero)
1241       NewDirection |= Dependence::DVEntry::EQ;
1242     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1243         (DeltaMaybePositive && CoeffMaybeNegative))
1244       NewDirection |= Dependence::DVEntry::GT;
1245     if (NewDirection < Result.DV[Level].Direction)
1246       ++StrongSIVsuccesses;
1247     Result.DV[Level].Direction &= NewDirection;
1248   }
1249   return false;
1250 }
1251 
1252 
1253 // weakCrossingSIVtest -
1254 // From the paper, Practical Dependence Testing, Section 4.2.2
1255 //
1256 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1257 // where i is an induction variable, c1 and c2 are loop invariant,
1258 // and a is a constant, we can solve it exactly using the
1259 // Weak-Crossing SIV test.
1260 //
1261 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1262 // the two lines, where i = i', yielding
1263 //
1264 //    c1 + a*i = c2 - a*i
1265 //    2a*i = c2 - c1
1266 //    i = (c2 - c1)/2a
1267 //
1268 // If i < 0, there is no dependence.
1269 // If i > upperbound, there is no dependence.
1270 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1271 // If i = upperbound, there's a dependence with distance = 0.
1272 // If i is integral, there's a dependence (all directions).
1273 // If the non-integer part = 1/2, there's a dependence (<> directions).
1274 // Otherwise, there's no dependence.
1275 //
1276 // Can prove independence. Failing that,
1277 // can sometimes refine the directions.
1278 // Can determine iteration for splitting.
1279 //
1280 // Return true if dependence disproved.
1281 bool DependenceInfo::weakCrossingSIVtest(
1282     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1283     const Loop *CurLoop, unsigned Level, FullDependence &Result,
1284     Constraint &NewConstraint, const SCEV *&SplitIter) const {
1285   LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1286   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1287   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1288   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1289   ++WeakCrossingSIVapplications;
1290   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1291   Level--;
1292   Result.Consistent = false;
1293   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1294   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1295   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1296   if (Delta->isZero()) {
1297     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1298     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1299     ++WeakCrossingSIVsuccesses;
1300     if (!Result.DV[Level].Direction) {
1301       ++WeakCrossingSIVindependence;
1302       return true;
1303     }
1304     Result.DV[Level].Distance = Delta; // = 0
1305     return false;
1306   }
1307   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1308   if (!ConstCoeff)
1309     return false;
1310 
1311   Result.DV[Level].Splitable = true;
1312   if (SE->isKnownNegative(ConstCoeff)) {
1313     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1314     assert(ConstCoeff &&
1315            "dynamic cast of negative of ConstCoeff should yield constant");
1316     Delta = SE->getNegativeSCEV(Delta);
1317   }
1318   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1319 
1320   // compute SplitIter for use by DependenceInfo::getSplitIteration()
1321   SplitIter = SE->getUDivExpr(
1322       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1323       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1324   LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1325 
1326   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1327   if (!ConstDelta)
1328     return false;
1329 
1330   // We're certain that ConstCoeff > 0; therefore,
1331   // if Delta < 0, then no dependence.
1332   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1333   LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1334   if (SE->isKnownNegative(Delta)) {
1335     // No dependence, Delta < 0
1336     ++WeakCrossingSIVindependence;
1337     ++WeakCrossingSIVsuccesses;
1338     return true;
1339   }
1340 
1341   // We're certain that Delta > 0 and ConstCoeff > 0.
1342   // Check Delta/(2*ConstCoeff) against upper loop bound
1343   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1344     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1345     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1346     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1347                                     ConstantTwo);
1348     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1349     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1350       // Delta too big, no dependence
1351       ++WeakCrossingSIVindependence;
1352       ++WeakCrossingSIVsuccesses;
1353       return true;
1354     }
1355     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1356       // i = i' = UB
1357       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1358       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1359       ++WeakCrossingSIVsuccesses;
1360       if (!Result.DV[Level].Direction) {
1361         ++WeakCrossingSIVindependence;
1362         return true;
1363       }
1364       Result.DV[Level].Splitable = false;
1365       Result.DV[Level].Distance = SE->getZero(Delta->getType());
1366       return false;
1367     }
1368   }
1369 
1370   // check that Coeff divides Delta
1371   APInt APDelta = ConstDelta->getAPInt();
1372   APInt APCoeff = ConstCoeff->getAPInt();
1373   APInt Distance = APDelta; // these need to be initialzed
1374   APInt Remainder = APDelta;
1375   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1376   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1377   if (Remainder != 0) {
1378     // Coeff doesn't divide Delta, no dependence
1379     ++WeakCrossingSIVindependence;
1380     ++WeakCrossingSIVsuccesses;
1381     return true;
1382   }
1383   LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1384 
1385   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1386   APInt Two = APInt(Distance.getBitWidth(), 2, true);
1387   Remainder = Distance.srem(Two);
1388   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1389   if (Remainder != 0) {
1390     // Equal direction isn't possible
1391     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1392     ++WeakCrossingSIVsuccesses;
1393   }
1394   return false;
1395 }
1396 
1397 
1398 // Kirch's algorithm, from
1399 //
1400 //        Optimizing Supercompilers for Supercomputers
1401 //        Michael Wolfe
1402 //        MIT Press, 1989
1403 //
1404 // Program 2.1, page 29.
1405 // Computes the GCD of AM and BM.
1406 // Also finds a solution to the equation ax - by = gcd(a, b).
1407 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1408 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1409                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1410   APInt A0(Bits, 1, true), A1(Bits, 0, true);
1411   APInt B0(Bits, 0, true), B1(Bits, 1, true);
1412   APInt G0 = AM.abs();
1413   APInt G1 = BM.abs();
1414   APInt Q = G0; // these need to be initialized
1415   APInt R = G0;
1416   APInt::sdivrem(G0, G1, Q, R);
1417   while (R != 0) {
1418     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1419     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1420     G0 = G1; G1 = R;
1421     APInt::sdivrem(G0, G1, Q, R);
1422   }
1423   G = G1;
1424   LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1425   X = AM.slt(0) ? -A1 : A1;
1426   Y = BM.slt(0) ? B1 : -B1;
1427 
1428   // make sure gcd divides Delta
1429   R = Delta.srem(G);
1430   if (R != 0)
1431     return true; // gcd doesn't divide Delta, no dependence
1432   Q = Delta.sdiv(G);
1433   X *= Q;
1434   Y *= Q;
1435   return false;
1436 }
1437 
1438 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1439   APInt Q = A; // these need to be initialized
1440   APInt R = A;
1441   APInt::sdivrem(A, B, Q, R);
1442   if (R == 0)
1443     return Q;
1444   if ((A.sgt(0) && B.sgt(0)) ||
1445       (A.slt(0) && B.slt(0)))
1446     return Q;
1447   else
1448     return Q - 1;
1449 }
1450 
1451 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1452   APInt Q = A; // these need to be initialized
1453   APInt R = A;
1454   APInt::sdivrem(A, B, Q, R);
1455   if (R == 0)
1456     return Q;
1457   if ((A.sgt(0) && B.sgt(0)) ||
1458       (A.slt(0) && B.slt(0)))
1459     return Q + 1;
1460   else
1461     return Q;
1462 }
1463 
1464 // exactSIVtest -
1465 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1466 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1467 // and a2 are constant, we can solve it exactly using an algorithm developed
1468 // by Banerjee and Wolfe. See Section 2.5.3 in
1469 //
1470 //        Optimizing Supercompilers for Supercomputers
1471 //        Michael Wolfe
1472 //        MIT Press, 1989
1473 //
1474 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1475 // so use them if possible. They're also a bit better with symbolics and,
1476 // in the case of the strong SIV test, can compute Distances.
1477 //
1478 // Return true if dependence disproved.
1479 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1480                                   const SCEV *SrcConst, const SCEV *DstConst,
1481                                   const Loop *CurLoop, unsigned Level,
1482                                   FullDependence &Result,
1483                                   Constraint &NewConstraint) const {
1484   LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1485   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1486   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1487   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1488   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1489   ++ExactSIVapplications;
1490   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1491   Level--;
1492   Result.Consistent = false;
1493   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1494   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1495   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1496                         Delta, CurLoop);
1497   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1498   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1499   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1500   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1501     return false;
1502 
1503   // find gcd
1504   APInt G, X, Y;
1505   APInt AM = ConstSrcCoeff->getAPInt();
1506   APInt BM = ConstDstCoeff->getAPInt();
1507   unsigned Bits = AM.getBitWidth();
1508   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1509     // gcd doesn't divide Delta, no dependence
1510     ++ExactSIVindependence;
1511     ++ExactSIVsuccesses;
1512     return true;
1513   }
1514 
1515   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1516 
1517   // since SCEV construction normalizes, LM = 0
1518   APInt UM(Bits, 1, true);
1519   bool UMvalid = false;
1520   // UM is perhaps unavailable, let's check
1521   if (const SCEVConstant *CUB =
1522       collectConstantUpperBound(CurLoop, Delta->getType())) {
1523     UM = CUB->getAPInt();
1524     LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1525     UMvalid = true;
1526   }
1527 
1528   APInt TU(APInt::getSignedMaxValue(Bits));
1529   APInt TL(APInt::getSignedMinValue(Bits));
1530 
1531   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1532   APInt TMUL = BM.sdiv(G);
1533   if (TMUL.sgt(0)) {
1534     TL = APIntOps::smax(TL, ceilingOfQuotient(-X, TMUL));
1535     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1536     if (UMvalid) {
1537       TU = APIntOps::smin(TU, floorOfQuotient(UM - X, TMUL));
1538       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1539     }
1540   }
1541   else {
1542     TU = APIntOps::smin(TU, floorOfQuotient(-X, TMUL));
1543     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1544     if (UMvalid) {
1545       TL = APIntOps::smax(TL, ceilingOfQuotient(UM - X, TMUL));
1546       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1547     }
1548   }
1549 
1550   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1551   TMUL = AM.sdiv(G);
1552   if (TMUL.sgt(0)) {
1553     TL = APIntOps::smax(TL, ceilingOfQuotient(-Y, TMUL));
1554     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1555     if (UMvalid) {
1556       TU = APIntOps::smin(TU, floorOfQuotient(UM - Y, TMUL));
1557       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1558     }
1559   }
1560   else {
1561     TU = APIntOps::smin(TU, floorOfQuotient(-Y, TMUL));
1562     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1563     if (UMvalid) {
1564       TL = APIntOps::smax(TL, ceilingOfQuotient(UM - Y, TMUL));
1565       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1566     }
1567   }
1568   if (TL.sgt(TU)) {
1569     ++ExactSIVindependence;
1570     ++ExactSIVsuccesses;
1571     return true;
1572   }
1573 
1574   // explore directions
1575   unsigned NewDirection = Dependence::DVEntry::NONE;
1576 
1577   // less than
1578   APInt SaveTU(TU); // save these
1579   APInt SaveTL(TL);
1580   LLVM_DEBUG(dbgs() << "\t    exploring LT direction\n");
1581   TMUL = AM - BM;
1582   if (TMUL.sgt(0)) {
1583     TL = APIntOps::smax(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1584     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1585   }
1586   else {
1587     TU = APIntOps::smin(TU, floorOfQuotient(X - Y + 1, TMUL));
1588     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1589   }
1590   if (TL.sle(TU)) {
1591     NewDirection |= Dependence::DVEntry::LT;
1592     ++ExactSIVsuccesses;
1593   }
1594 
1595   // equal
1596   TU = SaveTU; // restore
1597   TL = SaveTL;
1598   LLVM_DEBUG(dbgs() << "\t    exploring EQ direction\n");
1599   if (TMUL.sgt(0)) {
1600     TL = APIntOps::smax(TL, ceilingOfQuotient(X - Y, TMUL));
1601     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1602   }
1603   else {
1604     TU = APIntOps::smin(TU, floorOfQuotient(X - Y, TMUL));
1605     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1606   }
1607   TMUL = BM - AM;
1608   if (TMUL.sgt(0)) {
1609     TL = APIntOps::smax(TL, ceilingOfQuotient(Y - X, TMUL));
1610     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1611   }
1612   else {
1613     TU = APIntOps::smin(TU, floorOfQuotient(Y - X, TMUL));
1614     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1615   }
1616   if (TL.sle(TU)) {
1617     NewDirection |= Dependence::DVEntry::EQ;
1618     ++ExactSIVsuccesses;
1619   }
1620 
1621   // greater than
1622   TU = SaveTU; // restore
1623   TL = SaveTL;
1624   LLVM_DEBUG(dbgs() << "\t    exploring GT direction\n");
1625   if (TMUL.sgt(0)) {
1626     TL = APIntOps::smax(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1627     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1628   }
1629   else {
1630     TU = APIntOps::smin(TU, floorOfQuotient(Y - X + 1, TMUL));
1631     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1632   }
1633   if (TL.sle(TU)) {
1634     NewDirection |= Dependence::DVEntry::GT;
1635     ++ExactSIVsuccesses;
1636   }
1637 
1638   // finished
1639   Result.DV[Level].Direction &= NewDirection;
1640   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1641     ++ExactSIVindependence;
1642   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1643 }
1644 
1645 
1646 
1647 // Return true if the divisor evenly divides the dividend.
1648 static
1649 bool isRemainderZero(const SCEVConstant *Dividend,
1650                      const SCEVConstant *Divisor) {
1651   const APInt &ConstDividend = Dividend->getAPInt();
1652   const APInt &ConstDivisor = Divisor->getAPInt();
1653   return ConstDividend.srem(ConstDivisor) == 0;
1654 }
1655 
1656 
1657 // weakZeroSrcSIVtest -
1658 // From the paper, Practical Dependence Testing, Section 4.2.2
1659 //
1660 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1661 // where i is an induction variable, c1 and c2 are loop invariant,
1662 // and a is a constant, we can solve it exactly using the
1663 // Weak-Zero SIV test.
1664 //
1665 // Given
1666 //
1667 //    c1 = c2 + a*i
1668 //
1669 // we get
1670 //
1671 //    (c1 - c2)/a = i
1672 //
1673 // If i is not an integer, there's no dependence.
1674 // If i < 0 or > UB, there's no dependence.
1675 // If i = 0, the direction is >= and peeling the
1676 // 1st iteration will break the dependence.
1677 // If i = UB, the direction is <= and peeling the
1678 // last iteration will break the dependence.
1679 // Otherwise, the direction is *.
1680 //
1681 // Can prove independence. Failing that, we can sometimes refine
1682 // the directions. Can sometimes show that first or last
1683 // iteration carries all the dependences (so worth peeling).
1684 //
1685 // (see also weakZeroDstSIVtest)
1686 //
1687 // Return true if dependence disproved.
1688 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1689                                         const SCEV *SrcConst,
1690                                         const SCEV *DstConst,
1691                                         const Loop *CurLoop, unsigned Level,
1692                                         FullDependence &Result,
1693                                         Constraint &NewConstraint) const {
1694   // For the WeakSIV test, it's possible the loop isn't common to
1695   // the Src and Dst loops. If it isn't, then there's no need to
1696   // record a direction.
1697   LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1698   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1699   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1700   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1701   ++WeakZeroSIVapplications;
1702   assert(0 < Level && Level <= MaxLevels && "Level out of range");
1703   Level--;
1704   Result.Consistent = false;
1705   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1706   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1707                         CurLoop);
1708   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1709   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1710     if (Level < CommonLevels) {
1711       Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1712       Result.DV[Level].PeelFirst = true;
1713       ++WeakZeroSIVsuccesses;
1714     }
1715     return false; // dependences caused by first iteration
1716   }
1717   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1718   if (!ConstCoeff)
1719     return false;
1720   const SCEV *AbsCoeff =
1721     SE->isKnownNegative(ConstCoeff) ?
1722     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1723   const SCEV *NewDelta =
1724     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1725 
1726   // check that Delta/SrcCoeff < iteration count
1727   // really check NewDelta < count*AbsCoeff
1728   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1729     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1730     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1731     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1732       ++WeakZeroSIVindependence;
1733       ++WeakZeroSIVsuccesses;
1734       return true;
1735     }
1736     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1737       // dependences caused by last iteration
1738       if (Level < CommonLevels) {
1739         Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1740         Result.DV[Level].PeelLast = true;
1741         ++WeakZeroSIVsuccesses;
1742       }
1743       return false;
1744     }
1745   }
1746 
1747   // check that Delta/SrcCoeff >= 0
1748   // really check that NewDelta >= 0
1749   if (SE->isKnownNegative(NewDelta)) {
1750     // No dependence, newDelta < 0
1751     ++WeakZeroSIVindependence;
1752     ++WeakZeroSIVsuccesses;
1753     return true;
1754   }
1755 
1756   // if SrcCoeff doesn't divide Delta, then no dependence
1757   if (isa<SCEVConstant>(Delta) &&
1758       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1759     ++WeakZeroSIVindependence;
1760     ++WeakZeroSIVsuccesses;
1761     return true;
1762   }
1763   return false;
1764 }
1765 
1766 
1767 // weakZeroDstSIVtest -
1768 // From the paper, Practical Dependence Testing, Section 4.2.2
1769 //
1770 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1771 // where i is an induction variable, c1 and c2 are loop invariant,
1772 // and a is a constant, we can solve it exactly using the
1773 // Weak-Zero SIV test.
1774 //
1775 // Given
1776 //
1777 //    c1 + a*i = c2
1778 //
1779 // we get
1780 //
1781 //    i = (c2 - c1)/a
1782 //
1783 // If i is not an integer, there's no dependence.
1784 // If i < 0 or > UB, there's no dependence.
1785 // If i = 0, the direction is <= and peeling the
1786 // 1st iteration will break the dependence.
1787 // If i = UB, the direction is >= and peeling the
1788 // last iteration will break the dependence.
1789 // Otherwise, the direction is *.
1790 //
1791 // Can prove independence. Failing that, we can sometimes refine
1792 // the directions. Can sometimes show that first or last
1793 // iteration carries all the dependences (so worth peeling).
1794 //
1795 // (see also weakZeroSrcSIVtest)
1796 //
1797 // Return true if dependence disproved.
1798 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1799                                         const SCEV *SrcConst,
1800                                         const SCEV *DstConst,
1801                                         const Loop *CurLoop, unsigned Level,
1802                                         FullDependence &Result,
1803                                         Constraint &NewConstraint) const {
1804   // For the WeakSIV test, it's possible the loop isn't common to the
1805   // Src and Dst loops. If it isn't, then there's no need to record a direction.
1806   LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1807   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1808   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1809   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1810   ++WeakZeroSIVapplications;
1811   assert(0 < Level && Level <= SrcLevels && "Level out of range");
1812   Level--;
1813   Result.Consistent = false;
1814   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1815   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1816                         CurLoop);
1817   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1818   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1819     if (Level < CommonLevels) {
1820       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1821       Result.DV[Level].PeelFirst = true;
1822       ++WeakZeroSIVsuccesses;
1823     }
1824     return false; // dependences caused by first iteration
1825   }
1826   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1827   if (!ConstCoeff)
1828     return false;
1829   const SCEV *AbsCoeff =
1830     SE->isKnownNegative(ConstCoeff) ?
1831     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1832   const SCEV *NewDelta =
1833     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1834 
1835   // check that Delta/SrcCoeff < iteration count
1836   // really check NewDelta < count*AbsCoeff
1837   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1838     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1839     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1840     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1841       ++WeakZeroSIVindependence;
1842       ++WeakZeroSIVsuccesses;
1843       return true;
1844     }
1845     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1846       // dependences caused by last iteration
1847       if (Level < CommonLevels) {
1848         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1849         Result.DV[Level].PeelLast = true;
1850         ++WeakZeroSIVsuccesses;
1851       }
1852       return false;
1853     }
1854   }
1855 
1856   // check that Delta/SrcCoeff >= 0
1857   // really check that NewDelta >= 0
1858   if (SE->isKnownNegative(NewDelta)) {
1859     // No dependence, newDelta < 0
1860     ++WeakZeroSIVindependence;
1861     ++WeakZeroSIVsuccesses;
1862     return true;
1863   }
1864 
1865   // if SrcCoeff doesn't divide Delta, then no dependence
1866   if (isa<SCEVConstant>(Delta) &&
1867       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1868     ++WeakZeroSIVindependence;
1869     ++WeakZeroSIVsuccesses;
1870     return true;
1871   }
1872   return false;
1873 }
1874 
1875 
1876 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1877 // Things of the form [c1 + a*i] and [c2 + b*j],
1878 // where i and j are induction variable, c1 and c2 are loop invariant,
1879 // and a and b are constants.
1880 // Returns true if any possible dependence is disproved.
1881 // Marks the result as inconsistent.
1882 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1883 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1884                                    const SCEV *SrcConst, const SCEV *DstConst,
1885                                    const Loop *SrcLoop, const Loop *DstLoop,
1886                                    FullDependence &Result) const {
1887   LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1888   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1889   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1890   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1891   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1892   ++ExactRDIVapplications;
1893   Result.Consistent = false;
1894   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1895   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1896   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1897   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1898   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1899   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1900     return false;
1901 
1902   // find gcd
1903   APInt G, X, Y;
1904   APInt AM = ConstSrcCoeff->getAPInt();
1905   APInt BM = ConstDstCoeff->getAPInt();
1906   unsigned Bits = AM.getBitWidth();
1907   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1908     // gcd doesn't divide Delta, no dependence
1909     ++ExactRDIVindependence;
1910     return true;
1911   }
1912 
1913   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1914 
1915   // since SCEV construction seems to normalize, LM = 0
1916   APInt SrcUM(Bits, 1, true);
1917   bool SrcUMvalid = false;
1918   // SrcUM is perhaps unavailable, let's check
1919   if (const SCEVConstant *UpperBound =
1920       collectConstantUpperBound(SrcLoop, Delta->getType())) {
1921     SrcUM = UpperBound->getAPInt();
1922     LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1923     SrcUMvalid = true;
1924   }
1925 
1926   APInt DstUM(Bits, 1, true);
1927   bool DstUMvalid = false;
1928   // UM is perhaps unavailable, let's check
1929   if (const SCEVConstant *UpperBound =
1930       collectConstantUpperBound(DstLoop, Delta->getType())) {
1931     DstUM = UpperBound->getAPInt();
1932     LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
1933     DstUMvalid = true;
1934   }
1935 
1936   APInt TU(APInt::getSignedMaxValue(Bits));
1937   APInt TL(APInt::getSignedMinValue(Bits));
1938 
1939   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1940   APInt TMUL = BM.sdiv(G);
1941   if (TMUL.sgt(0)) {
1942     TL = APIntOps::smax(TL, ceilingOfQuotient(-X, TMUL));
1943     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1944     if (SrcUMvalid) {
1945       TU = APIntOps::smin(TU, floorOfQuotient(SrcUM - X, TMUL));
1946       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1947     }
1948   }
1949   else {
1950     TU = APIntOps::smin(TU, floorOfQuotient(-X, TMUL));
1951     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1952     if (SrcUMvalid) {
1953       TL = APIntOps::smax(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1954       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1955     }
1956   }
1957 
1958   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1959   TMUL = AM.sdiv(G);
1960   if (TMUL.sgt(0)) {
1961     TL = APIntOps::smax(TL, ceilingOfQuotient(-Y, TMUL));
1962     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1963     if (DstUMvalid) {
1964       TU = APIntOps::smin(TU, floorOfQuotient(DstUM - Y, TMUL));
1965       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1966     }
1967   }
1968   else {
1969     TU = APIntOps::smin(TU, floorOfQuotient(-Y, TMUL));
1970     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1971     if (DstUMvalid) {
1972       TL = APIntOps::smax(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1973       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1974     }
1975   }
1976   if (TL.sgt(TU))
1977     ++ExactRDIVindependence;
1978   return TL.sgt(TU);
1979 }
1980 
1981 
1982 // symbolicRDIVtest -
1983 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1984 // introduce a special case of Banerjee's Inequalities (also called the
1985 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1986 // particularly cases with symbolics. Since it's only able to disprove
1987 // dependence (not compute distances or directions), we'll use it as a
1988 // fall back for the other tests.
1989 //
1990 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1991 // where i and j are induction variables and c1 and c2 are loop invariants,
1992 // we can use the symbolic tests to disprove some dependences, serving as a
1993 // backup for the RDIV test. Note that i and j can be the same variable,
1994 // letting this test serve as a backup for the various SIV tests.
1995 //
1996 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1997 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1998 // loop bounds for the i and j loops, respectively. So, ...
1999 //
2000 // c1 + a1*i = c2 + a2*j
2001 // a1*i - a2*j = c2 - c1
2002 //
2003 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2004 // range of the maximum and minimum possible values of a1*i - a2*j.
2005 // Considering the signs of a1 and a2, we have 4 possible cases:
2006 //
2007 // 1) If a1 >= 0 and a2 >= 0, then
2008 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2009 //              -a2*N2 <= c2 - c1 <= a1*N1
2010 //
2011 // 2) If a1 >= 0 and a2 <= 0, then
2012 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2013 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
2014 //
2015 // 3) If a1 <= 0 and a2 >= 0, then
2016 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2017 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
2018 //
2019 // 4) If a1 <= 0 and a2 <= 0, then
2020 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
2021 //        a1*N1         <= c2 - c1 <=       -a2*N2
2022 //
2023 // return true if dependence disproved
2024 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2025                                       const SCEV *C1, const SCEV *C2,
2026                                       const Loop *Loop1,
2027                                       const Loop *Loop2) const {
2028   ++SymbolicRDIVapplications;
2029   LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2030   LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
2031   LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2032   LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
2033   LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
2034   LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
2035   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2036   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2037   LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
2038   LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
2039   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2040   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2041   LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
2042   LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
2043   if (SE->isKnownNonNegative(A1)) {
2044     if (SE->isKnownNonNegative(A2)) {
2045       // A1 >= 0 && A2 >= 0
2046       if (N1) {
2047         // make sure that c2 - c1 <= a1*N1
2048         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2049         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2050         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2051           ++SymbolicRDIVindependence;
2052           return true;
2053         }
2054       }
2055       if (N2) {
2056         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2057         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2058         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2059         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2060           ++SymbolicRDIVindependence;
2061           return true;
2062         }
2063       }
2064     }
2065     else if (SE->isKnownNonPositive(A2)) {
2066       // a1 >= 0 && a2 <= 0
2067       if (N1 && N2) {
2068         // make sure that c2 - c1 <= a1*N1 - a2*N2
2069         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2070         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2071         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2072         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2073         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2074           ++SymbolicRDIVindependence;
2075           return true;
2076         }
2077       }
2078       // make sure that 0 <= c2 - c1
2079       if (SE->isKnownNegative(C2_C1)) {
2080         ++SymbolicRDIVindependence;
2081         return true;
2082       }
2083     }
2084   }
2085   else if (SE->isKnownNonPositive(A1)) {
2086     if (SE->isKnownNonNegative(A2)) {
2087       // a1 <= 0 && a2 >= 0
2088       if (N1 && N2) {
2089         // make sure that a1*N1 - a2*N2 <= c2 - c1
2090         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2091         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2092         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2093         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2094         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2095           ++SymbolicRDIVindependence;
2096           return true;
2097         }
2098       }
2099       // make sure that c2 - c1 <= 0
2100       if (SE->isKnownPositive(C2_C1)) {
2101         ++SymbolicRDIVindependence;
2102         return true;
2103       }
2104     }
2105     else if (SE->isKnownNonPositive(A2)) {
2106       // a1 <= 0 && a2 <= 0
2107       if (N1) {
2108         // make sure that a1*N1 <= c2 - c1
2109         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2110         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2111         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2112           ++SymbolicRDIVindependence;
2113           return true;
2114         }
2115       }
2116       if (N2) {
2117         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2118         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2119         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2120         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2121           ++SymbolicRDIVindependence;
2122           return true;
2123         }
2124       }
2125     }
2126   }
2127   return false;
2128 }
2129 
2130 
2131 // testSIV -
2132 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2133 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2134 // a2 are constant, we attack it with an SIV test. While they can all be
2135 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2136 // they apply; they're cheaper and sometimes more precise.
2137 //
2138 // Return true if dependence disproved.
2139 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2140                              FullDependence &Result, Constraint &NewConstraint,
2141                              const SCEV *&SplitIter) const {
2142   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2143   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2144   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2145   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2146   if (SrcAddRec && DstAddRec) {
2147     const SCEV *SrcConst = SrcAddRec->getStart();
2148     const SCEV *DstConst = DstAddRec->getStart();
2149     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2150     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2151     const Loop *CurLoop = SrcAddRec->getLoop();
2152     assert(CurLoop == DstAddRec->getLoop() &&
2153            "both loops in SIV should be same");
2154     Level = mapSrcLoop(CurLoop);
2155     bool disproven;
2156     if (SrcCoeff == DstCoeff)
2157       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2158                                 Level, Result, NewConstraint);
2159     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2160       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2161                                       Level, Result, NewConstraint, SplitIter);
2162     else
2163       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2164                                Level, Result, NewConstraint);
2165     return disproven ||
2166       gcdMIVtest(Src, Dst, Result) ||
2167       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2168   }
2169   if (SrcAddRec) {
2170     const SCEV *SrcConst = SrcAddRec->getStart();
2171     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2172     const SCEV *DstConst = Dst;
2173     const Loop *CurLoop = SrcAddRec->getLoop();
2174     Level = mapSrcLoop(CurLoop);
2175     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2176                               Level, Result, NewConstraint) ||
2177       gcdMIVtest(Src, Dst, Result);
2178   }
2179   if (DstAddRec) {
2180     const SCEV *DstConst = DstAddRec->getStart();
2181     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2182     const SCEV *SrcConst = Src;
2183     const Loop *CurLoop = DstAddRec->getLoop();
2184     Level = mapDstLoop(CurLoop);
2185     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2186                               CurLoop, Level, Result, NewConstraint) ||
2187       gcdMIVtest(Src, Dst, Result);
2188   }
2189   llvm_unreachable("SIV test expected at least one AddRec");
2190   return false;
2191 }
2192 
2193 
2194 // testRDIV -
2195 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2196 // where i and j are induction variables, c1 and c2 are loop invariant,
2197 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2198 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2199 // It doesn't make sense to talk about distance or direction in this case,
2200 // so there's no point in making special versions of the Strong SIV test or
2201 // the Weak-crossing SIV test.
2202 //
2203 // With minor algebra, this test can also be used for things like
2204 // [c1 + a1*i + a2*j][c2].
2205 //
2206 // Return true if dependence disproved.
2207 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2208                               FullDependence &Result) const {
2209   // we have 3 possible situations here:
2210   //   1) [a*i + b] and [c*j + d]
2211   //   2) [a*i + c*j + b] and [d]
2212   //   3) [b] and [a*i + c*j + d]
2213   // We need to find what we've got and get organized
2214 
2215   const SCEV *SrcConst, *DstConst;
2216   const SCEV *SrcCoeff, *DstCoeff;
2217   const Loop *SrcLoop, *DstLoop;
2218 
2219   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2220   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2221   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2222   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2223   if (SrcAddRec && DstAddRec) {
2224     SrcConst = SrcAddRec->getStart();
2225     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2226     SrcLoop = SrcAddRec->getLoop();
2227     DstConst = DstAddRec->getStart();
2228     DstCoeff = DstAddRec->getStepRecurrence(*SE);
2229     DstLoop = DstAddRec->getLoop();
2230   }
2231   else if (SrcAddRec) {
2232     if (const SCEVAddRecExpr *tmpAddRec =
2233         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2234       SrcConst = tmpAddRec->getStart();
2235       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2236       SrcLoop = tmpAddRec->getLoop();
2237       DstConst = Dst;
2238       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2239       DstLoop = SrcAddRec->getLoop();
2240     }
2241     else
2242       llvm_unreachable("RDIV reached by surprising SCEVs");
2243   }
2244   else if (DstAddRec) {
2245     if (const SCEVAddRecExpr *tmpAddRec =
2246         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2247       DstConst = tmpAddRec->getStart();
2248       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2249       DstLoop = tmpAddRec->getLoop();
2250       SrcConst = Src;
2251       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2252       SrcLoop = DstAddRec->getLoop();
2253     }
2254     else
2255       llvm_unreachable("RDIV reached by surprising SCEVs");
2256   }
2257   else
2258     llvm_unreachable("RDIV expected at least one AddRec");
2259   return exactRDIVtest(SrcCoeff, DstCoeff,
2260                        SrcConst, DstConst,
2261                        SrcLoop, DstLoop,
2262                        Result) ||
2263     gcdMIVtest(Src, Dst, Result) ||
2264     symbolicRDIVtest(SrcCoeff, DstCoeff,
2265                      SrcConst, DstConst,
2266                      SrcLoop, DstLoop);
2267 }
2268 
2269 
2270 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2271 // Return true if dependence disproved.
2272 // Can sometimes refine direction vectors.
2273 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2274                              const SmallBitVector &Loops,
2275                              FullDependence &Result) const {
2276   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2277   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2278   Result.Consistent = false;
2279   return gcdMIVtest(Src, Dst, Result) ||
2280     banerjeeMIVtest(Src, Dst, Loops, Result);
2281 }
2282 
2283 
2284 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2285 // in this case 10. If there is no constant part, returns NULL.
2286 static
2287 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2288   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2289     return Constant;
2290   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2291     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2292       return Constant;
2293   return nullptr;
2294 }
2295 
2296 
2297 //===----------------------------------------------------------------------===//
2298 // gcdMIVtest -
2299 // Tests an MIV subscript pair for dependence.
2300 // Returns true if any possible dependence is disproved.
2301 // Marks the result as inconsistent.
2302 // Can sometimes disprove the equal direction for 1 or more loops,
2303 // as discussed in Michael Wolfe's book,
2304 // High Performance Compilers for Parallel Computing, page 235.
2305 //
2306 // We spend some effort (code!) to handle cases like
2307 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2308 // but M and N are just loop-invariant variables.
2309 // This should help us handle linearized subscripts;
2310 // also makes this test a useful backup to the various SIV tests.
2311 //
2312 // It occurs to me that the presence of loop-invariant variables
2313 // changes the nature of the test from "greatest common divisor"
2314 // to "a common divisor".
2315 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2316                                 FullDependence &Result) const {
2317   LLVM_DEBUG(dbgs() << "starting gcd\n");
2318   ++GCDapplications;
2319   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2320   APInt RunningGCD = APInt::getNullValue(BitWidth);
2321 
2322   // Examine Src coefficients.
2323   // Compute running GCD and record source constant.
2324   // Because we're looking for the constant at the end of the chain,
2325   // we can't quit the loop just because the GCD == 1.
2326   const SCEV *Coefficients = Src;
2327   while (const SCEVAddRecExpr *AddRec =
2328          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2329     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2330     // If the coefficient is the product of a constant and other stuff,
2331     // we can use the constant in the GCD computation.
2332     const auto *Constant = getConstantPart(Coeff);
2333     if (!Constant)
2334       return false;
2335     APInt ConstCoeff = Constant->getAPInt();
2336     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2337     Coefficients = AddRec->getStart();
2338   }
2339   const SCEV *SrcConst = Coefficients;
2340 
2341   // Examine Dst coefficients.
2342   // Compute running GCD and record destination constant.
2343   // Because we're looking for the constant at the end of the chain,
2344   // we can't quit the loop just because the GCD == 1.
2345   Coefficients = Dst;
2346   while (const SCEVAddRecExpr *AddRec =
2347          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2348     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2349     // If the coefficient is the product of a constant and other stuff,
2350     // we can use the constant in the GCD computation.
2351     const auto *Constant = getConstantPart(Coeff);
2352     if (!Constant)
2353       return false;
2354     APInt ConstCoeff = Constant->getAPInt();
2355     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2356     Coefficients = AddRec->getStart();
2357   }
2358   const SCEV *DstConst = Coefficients;
2359 
2360   APInt ExtraGCD = APInt::getNullValue(BitWidth);
2361   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2362   LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2363   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2364   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2365     // If Delta is a sum of products, we may be able to make further progress.
2366     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2367       const SCEV *Operand = Sum->getOperand(Op);
2368       if (isa<SCEVConstant>(Operand)) {
2369         assert(!Constant && "Surprised to find multiple constants");
2370         Constant = cast<SCEVConstant>(Operand);
2371       }
2372       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2373         // Search for constant operand to participate in GCD;
2374         // If none found; return false.
2375         const SCEVConstant *ConstOp = getConstantPart(Product);
2376         if (!ConstOp)
2377           return false;
2378         APInt ConstOpValue = ConstOp->getAPInt();
2379         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2380                                                    ConstOpValue.abs());
2381       }
2382       else
2383         return false;
2384     }
2385   }
2386   if (!Constant)
2387     return false;
2388   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2389   LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2390   if (ConstDelta == 0)
2391     return false;
2392   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2393   LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2394   APInt Remainder = ConstDelta.srem(RunningGCD);
2395   if (Remainder != 0) {
2396     ++GCDindependence;
2397     return true;
2398   }
2399 
2400   // Try to disprove equal directions.
2401   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2402   // the code above can't disprove the dependence because the GCD = 1.
2403   // So we consider what happen if i = i' and what happens if j = j'.
2404   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2405   // which is infeasible, so we can disallow the = direction for the i level.
2406   // Setting j = j' doesn't help matters, so we end up with a direction vector
2407   // of [<>, *]
2408   //
2409   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2410   // we need to remember that the constant part is 5 and the RunningGCD should
2411   // be initialized to ExtraGCD = 30.
2412   LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2413 
2414   bool Improved = false;
2415   Coefficients = Src;
2416   while (const SCEVAddRecExpr *AddRec =
2417          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2418     Coefficients = AddRec->getStart();
2419     const Loop *CurLoop = AddRec->getLoop();
2420     RunningGCD = ExtraGCD;
2421     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2422     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2423     const SCEV *Inner = Src;
2424     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2425       AddRec = cast<SCEVAddRecExpr>(Inner);
2426       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2427       if (CurLoop == AddRec->getLoop())
2428         ; // SrcCoeff == Coeff
2429       else {
2430         // If the coefficient is the product of a constant and other stuff,
2431         // we can use the constant in the GCD computation.
2432         Constant = getConstantPart(Coeff);
2433         if (!Constant)
2434           return false;
2435         APInt ConstCoeff = Constant->getAPInt();
2436         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2437       }
2438       Inner = AddRec->getStart();
2439     }
2440     Inner = Dst;
2441     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2442       AddRec = cast<SCEVAddRecExpr>(Inner);
2443       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2444       if (CurLoop == AddRec->getLoop())
2445         DstCoeff = Coeff;
2446       else {
2447         // If the coefficient is the product of a constant and other stuff,
2448         // we can use the constant in the GCD computation.
2449         Constant = getConstantPart(Coeff);
2450         if (!Constant)
2451           return false;
2452         APInt ConstCoeff = Constant->getAPInt();
2453         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2454       }
2455       Inner = AddRec->getStart();
2456     }
2457     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2458     // If the coefficient is the product of a constant and other stuff,
2459     // we can use the constant in the GCD computation.
2460     Constant = getConstantPart(Delta);
2461     if (!Constant)
2462       // The difference of the two coefficients might not be a product
2463       // or constant, in which case we give up on this direction.
2464       continue;
2465     APInt ConstCoeff = Constant->getAPInt();
2466     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2467     LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2468     if (RunningGCD != 0) {
2469       Remainder = ConstDelta.srem(RunningGCD);
2470       LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2471       if (Remainder != 0) {
2472         unsigned Level = mapSrcLoop(CurLoop);
2473         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2474         Improved = true;
2475       }
2476     }
2477   }
2478   if (Improved)
2479     ++GCDsuccesses;
2480   LLVM_DEBUG(dbgs() << "all done\n");
2481   return false;
2482 }
2483 
2484 
2485 //===----------------------------------------------------------------------===//
2486 // banerjeeMIVtest -
2487 // Use Banerjee's Inequalities to test an MIV subscript pair.
2488 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2489 // Generally follows the discussion in Section 2.5.2 of
2490 //
2491 //    Optimizing Supercompilers for Supercomputers
2492 //    Michael Wolfe
2493 //
2494 // The inequalities given on page 25 are simplified in that loops are
2495 // normalized so that the lower bound is always 0 and the stride is always 1.
2496 // For example, Wolfe gives
2497 //
2498 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2499 //
2500 // where A_k is the coefficient of the kth index in the source subscript,
2501 // B_k is the coefficient of the kth index in the destination subscript,
2502 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2503 // index, and N_k is the stride of the kth index. Since all loops are normalized
2504 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2505 // equation to
2506 //
2507 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2508 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2509 //
2510 // Similar simplifications are possible for the other equations.
2511 //
2512 // When we can't determine the number of iterations for a loop,
2513 // we use NULL as an indicator for the worst case, infinity.
2514 // When computing the upper bound, NULL denotes +inf;
2515 // for the lower bound, NULL denotes -inf.
2516 //
2517 // Return true if dependence disproved.
2518 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2519                                      const SmallBitVector &Loops,
2520                                      FullDependence &Result) const {
2521   LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2522   ++BanerjeeApplications;
2523   LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
2524   const SCEV *A0;
2525   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2526   LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2527   const SCEV *B0;
2528   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2529   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2530   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2531   LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2532 
2533   // Compute bounds for all the * directions.
2534   LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2535   for (unsigned K = 1; K <= MaxLevels; ++K) {
2536     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2537     Bound[K].Direction = Dependence::DVEntry::ALL;
2538     Bound[K].DirSet = Dependence::DVEntry::NONE;
2539     findBoundsALL(A, B, Bound, K);
2540 #ifndef NDEBUG
2541     LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
2542     if (Bound[K].Lower[Dependence::DVEntry::ALL])
2543       LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2544     else
2545       LLVM_DEBUG(dbgs() << "-inf\t");
2546     if (Bound[K].Upper[Dependence::DVEntry::ALL])
2547       LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2548     else
2549       LLVM_DEBUG(dbgs() << "+inf\n");
2550 #endif
2551   }
2552 
2553   // Test the *, *, *, ... case.
2554   bool Disproved = false;
2555   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2556     // Explore the direction vector hierarchy.
2557     unsigned DepthExpanded = 0;
2558     unsigned NewDeps = exploreDirections(1, A, B, Bound,
2559                                          Loops, DepthExpanded, Delta);
2560     if (NewDeps > 0) {
2561       bool Improved = false;
2562       for (unsigned K = 1; K <= CommonLevels; ++K) {
2563         if (Loops[K]) {
2564           unsigned Old = Result.DV[K - 1].Direction;
2565           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2566           Improved |= Old != Result.DV[K - 1].Direction;
2567           if (!Result.DV[K - 1].Direction) {
2568             Improved = false;
2569             Disproved = true;
2570             break;
2571           }
2572         }
2573       }
2574       if (Improved)
2575         ++BanerjeeSuccesses;
2576     }
2577     else {
2578       ++BanerjeeIndependence;
2579       Disproved = true;
2580     }
2581   }
2582   else {
2583     ++BanerjeeIndependence;
2584     Disproved = true;
2585   }
2586   delete [] Bound;
2587   delete [] A;
2588   delete [] B;
2589   return Disproved;
2590 }
2591 
2592 
2593 // Hierarchically expands the direction vector
2594 // search space, combining the directions of discovered dependences
2595 // in the DirSet field of Bound. Returns the number of distinct
2596 // dependences discovered. If the dependence is disproved,
2597 // it will return 0.
2598 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2599                                            CoefficientInfo *B, BoundInfo *Bound,
2600                                            const SmallBitVector &Loops,
2601                                            unsigned &DepthExpanded,
2602                                            const SCEV *Delta) const {
2603   if (Level > CommonLevels) {
2604     // record result
2605     LLVM_DEBUG(dbgs() << "\t[");
2606     for (unsigned K = 1; K <= CommonLevels; ++K) {
2607       if (Loops[K]) {
2608         Bound[K].DirSet |= Bound[K].Direction;
2609 #ifndef NDEBUG
2610         switch (Bound[K].Direction) {
2611         case Dependence::DVEntry::LT:
2612           LLVM_DEBUG(dbgs() << " <");
2613           break;
2614         case Dependence::DVEntry::EQ:
2615           LLVM_DEBUG(dbgs() << " =");
2616           break;
2617         case Dependence::DVEntry::GT:
2618           LLVM_DEBUG(dbgs() << " >");
2619           break;
2620         case Dependence::DVEntry::ALL:
2621           LLVM_DEBUG(dbgs() << " *");
2622           break;
2623         default:
2624           llvm_unreachable("unexpected Bound[K].Direction");
2625         }
2626 #endif
2627       }
2628     }
2629     LLVM_DEBUG(dbgs() << " ]\n");
2630     return 1;
2631   }
2632   if (Loops[Level]) {
2633     if (Level > DepthExpanded) {
2634       DepthExpanded = Level;
2635       // compute bounds for <, =, > at current level
2636       findBoundsLT(A, B, Bound, Level);
2637       findBoundsGT(A, B, Bound, Level);
2638       findBoundsEQ(A, B, Bound, Level);
2639 #ifndef NDEBUG
2640       LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2641       LLVM_DEBUG(dbgs() << "\t    <\t");
2642       if (Bound[Level].Lower[Dependence::DVEntry::LT])
2643         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2644                           << '\t');
2645       else
2646         LLVM_DEBUG(dbgs() << "-inf\t");
2647       if (Bound[Level].Upper[Dependence::DVEntry::LT])
2648         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2649                           << '\n');
2650       else
2651         LLVM_DEBUG(dbgs() << "+inf\n");
2652       LLVM_DEBUG(dbgs() << "\t    =\t");
2653       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2654         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2655                           << '\t');
2656       else
2657         LLVM_DEBUG(dbgs() << "-inf\t");
2658       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2659         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2660                           << '\n');
2661       else
2662         LLVM_DEBUG(dbgs() << "+inf\n");
2663       LLVM_DEBUG(dbgs() << "\t    >\t");
2664       if (Bound[Level].Lower[Dependence::DVEntry::GT])
2665         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2666                           << '\t');
2667       else
2668         LLVM_DEBUG(dbgs() << "-inf\t");
2669       if (Bound[Level].Upper[Dependence::DVEntry::GT])
2670         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2671                           << '\n');
2672       else
2673         LLVM_DEBUG(dbgs() << "+inf\n");
2674 #endif
2675     }
2676 
2677     unsigned NewDeps = 0;
2678 
2679     // test bounds for <, *, *, ...
2680     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2681       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2682                                    Loops, DepthExpanded, Delta);
2683 
2684     // Test bounds for =, *, *, ...
2685     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2686       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2687                                    Loops, DepthExpanded, Delta);
2688 
2689     // test bounds for >, *, *, ...
2690     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2691       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2692                                    Loops, DepthExpanded, Delta);
2693 
2694     Bound[Level].Direction = Dependence::DVEntry::ALL;
2695     return NewDeps;
2696   }
2697   else
2698     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2699 }
2700 
2701 
2702 // Returns true iff the current bounds are plausible.
2703 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2704                                 BoundInfo *Bound, const SCEV *Delta) const {
2705   Bound[Level].Direction = DirKind;
2706   if (const SCEV *LowerBound = getLowerBound(Bound))
2707     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2708       return false;
2709   if (const SCEV *UpperBound = getUpperBound(Bound))
2710     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2711       return false;
2712   return true;
2713 }
2714 
2715 
2716 // Computes the upper and lower bounds for level K
2717 // using the * direction. Records them in Bound.
2718 // Wolfe gives the equations
2719 //
2720 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2721 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2722 //
2723 // Since we normalize loops, we can simplify these equations to
2724 //
2725 //    LB^*_k = (A^-_k - B^+_k)U_k
2726 //    UB^*_k = (A^+_k - B^-_k)U_k
2727 //
2728 // We must be careful to handle the case where the upper bound is unknown.
2729 // Note that the lower bound is always <= 0
2730 // and the upper bound is always >= 0.
2731 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2732                                    BoundInfo *Bound, unsigned K) const {
2733   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2734   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2735   if (Bound[K].Iterations) {
2736     Bound[K].Lower[Dependence::DVEntry::ALL] =
2737       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2738                      Bound[K].Iterations);
2739     Bound[K].Upper[Dependence::DVEntry::ALL] =
2740       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2741                      Bound[K].Iterations);
2742   }
2743   else {
2744     // If the difference is 0, we won't need to know the number of iterations.
2745     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2746       Bound[K].Lower[Dependence::DVEntry::ALL] =
2747           SE->getZero(A[K].Coeff->getType());
2748     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2749       Bound[K].Upper[Dependence::DVEntry::ALL] =
2750           SE->getZero(A[K].Coeff->getType());
2751   }
2752 }
2753 
2754 
2755 // Computes the upper and lower bounds for level K
2756 // using the = direction. Records them in Bound.
2757 // Wolfe gives the equations
2758 //
2759 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2760 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2761 //
2762 // Since we normalize loops, we can simplify these equations to
2763 //
2764 //    LB^=_k = (A_k - B_k)^- U_k
2765 //    UB^=_k = (A_k - B_k)^+ U_k
2766 //
2767 // We must be careful to handle the case where the upper bound is unknown.
2768 // Note that the lower bound is always <= 0
2769 // and the upper bound is always >= 0.
2770 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2771                                   BoundInfo *Bound, unsigned K) const {
2772   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2773   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2774   if (Bound[K].Iterations) {
2775     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2776     const SCEV *NegativePart = getNegativePart(Delta);
2777     Bound[K].Lower[Dependence::DVEntry::EQ] =
2778       SE->getMulExpr(NegativePart, Bound[K].Iterations);
2779     const SCEV *PositivePart = getPositivePart(Delta);
2780     Bound[K].Upper[Dependence::DVEntry::EQ] =
2781       SE->getMulExpr(PositivePart, Bound[K].Iterations);
2782   }
2783   else {
2784     // If the positive/negative part of the difference is 0,
2785     // we won't need to know the number of iterations.
2786     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2787     const SCEV *NegativePart = getNegativePart(Delta);
2788     if (NegativePart->isZero())
2789       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2790     const SCEV *PositivePart = getPositivePart(Delta);
2791     if (PositivePart->isZero())
2792       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2793   }
2794 }
2795 
2796 
2797 // Computes the upper and lower bounds for level K
2798 // using the < direction. Records them in Bound.
2799 // Wolfe gives the equations
2800 //
2801 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2802 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2803 //
2804 // Since we normalize loops, we can simplify these equations to
2805 //
2806 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2807 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2808 //
2809 // We must be careful to handle the case where the upper bound is unknown.
2810 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2811                                   BoundInfo *Bound, unsigned K) const {
2812   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2813   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2814   if (Bound[K].Iterations) {
2815     const SCEV *Iter_1 = SE->getMinusSCEV(
2816         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2817     const SCEV *NegPart =
2818       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2819     Bound[K].Lower[Dependence::DVEntry::LT] =
2820       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2821     const SCEV *PosPart =
2822       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2823     Bound[K].Upper[Dependence::DVEntry::LT] =
2824       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2825   }
2826   else {
2827     // If the positive/negative part of the difference is 0,
2828     // we won't need to know the number of iterations.
2829     const SCEV *NegPart =
2830       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2831     if (NegPart->isZero())
2832       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2833     const SCEV *PosPart =
2834       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2835     if (PosPart->isZero())
2836       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2837   }
2838 }
2839 
2840 
2841 // Computes the upper and lower bounds for level K
2842 // using the > direction. Records them in Bound.
2843 // Wolfe gives the equations
2844 //
2845 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2846 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2847 //
2848 // Since we normalize loops, we can simplify these equations to
2849 //
2850 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2851 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2852 //
2853 // We must be careful to handle the case where the upper bound is unknown.
2854 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2855                                   BoundInfo *Bound, unsigned K) const {
2856   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2857   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2858   if (Bound[K].Iterations) {
2859     const SCEV *Iter_1 = SE->getMinusSCEV(
2860         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2861     const SCEV *NegPart =
2862       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2863     Bound[K].Lower[Dependence::DVEntry::GT] =
2864       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2865     const SCEV *PosPart =
2866       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2867     Bound[K].Upper[Dependence::DVEntry::GT] =
2868       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2869   }
2870   else {
2871     // If the positive/negative part of the difference is 0,
2872     // we won't need to know the number of iterations.
2873     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2874     if (NegPart->isZero())
2875       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2876     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2877     if (PosPart->isZero())
2878       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2879   }
2880 }
2881 
2882 
2883 // X^+ = max(X, 0)
2884 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2885   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2886 }
2887 
2888 
2889 // X^- = min(X, 0)
2890 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2891   return SE->getSMinExpr(X, SE->getZero(X->getType()));
2892 }
2893 
2894 
2895 // Walks through the subscript,
2896 // collecting each coefficient, the associated loop bounds,
2897 // and recording its positive and negative parts for later use.
2898 DependenceInfo::CoefficientInfo *
2899 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2900                                  const SCEV *&Constant) const {
2901   const SCEV *Zero = SE->getZero(Subscript->getType());
2902   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2903   for (unsigned K = 1; K <= MaxLevels; ++K) {
2904     CI[K].Coeff = Zero;
2905     CI[K].PosPart = Zero;
2906     CI[K].NegPart = Zero;
2907     CI[K].Iterations = nullptr;
2908   }
2909   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2910     const Loop *L = AddRec->getLoop();
2911     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2912     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2913     CI[K].PosPart = getPositivePart(CI[K].Coeff);
2914     CI[K].NegPart = getNegativePart(CI[K].Coeff);
2915     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2916     Subscript = AddRec->getStart();
2917   }
2918   Constant = Subscript;
2919 #ifndef NDEBUG
2920   LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2921   for (unsigned K = 1; K <= MaxLevels; ++K) {
2922     LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
2923     LLVM_DEBUG(dbgs() << "\tPos Part = ");
2924     LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2925     LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2926     LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2927     LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2928     if (CI[K].Iterations)
2929       LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2930     else
2931       LLVM_DEBUG(dbgs() << "+inf");
2932     LLVM_DEBUG(dbgs() << '\n');
2933   }
2934   LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
2935 #endif
2936   return CI;
2937 }
2938 
2939 
2940 // Looks through all the bounds info and
2941 // computes the lower bound given the current direction settings
2942 // at each level. If the lower bound for any level is -inf,
2943 // the result is -inf.
2944 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2945   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2946   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2947     if (Bound[K].Lower[Bound[K].Direction])
2948       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2949     else
2950       Sum = nullptr;
2951   }
2952   return Sum;
2953 }
2954 
2955 
2956 // Looks through all the bounds info and
2957 // computes the upper bound given the current direction settings
2958 // at each level. If the upper bound at any level is +inf,
2959 // the result is +inf.
2960 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2961   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2962   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2963     if (Bound[K].Upper[Bound[K].Direction])
2964       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2965     else
2966       Sum = nullptr;
2967   }
2968   return Sum;
2969 }
2970 
2971 
2972 //===----------------------------------------------------------------------===//
2973 // Constraint manipulation for Delta test.
2974 
2975 // Given a linear SCEV,
2976 // return the coefficient (the step)
2977 // corresponding to the specified loop.
2978 // If there isn't one, return 0.
2979 // For example, given a*i + b*j + c*k, finding the coefficient
2980 // corresponding to the j loop would yield b.
2981 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2982                                             const Loop *TargetLoop) const {
2983   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2984   if (!AddRec)
2985     return SE->getZero(Expr->getType());
2986   if (AddRec->getLoop() == TargetLoop)
2987     return AddRec->getStepRecurrence(*SE);
2988   return findCoefficient(AddRec->getStart(), TargetLoop);
2989 }
2990 
2991 
2992 // Given a linear SCEV,
2993 // return the SCEV given by zeroing out the coefficient
2994 // corresponding to the specified loop.
2995 // For example, given a*i + b*j + c*k, zeroing the coefficient
2996 // corresponding to the j loop would yield a*i + c*k.
2997 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
2998                                             const Loop *TargetLoop) const {
2999   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3000   if (!AddRec)
3001     return Expr; // ignore
3002   if (AddRec->getLoop() == TargetLoop)
3003     return AddRec->getStart();
3004   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3005                            AddRec->getStepRecurrence(*SE),
3006                            AddRec->getLoop(),
3007                            AddRec->getNoWrapFlags());
3008 }
3009 
3010 
3011 // Given a linear SCEV Expr,
3012 // return the SCEV given by adding some Value to the
3013 // coefficient corresponding to the specified TargetLoop.
3014 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3015 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3016 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3017                                              const Loop *TargetLoop,
3018                                              const SCEV *Value) const {
3019   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3020   if (!AddRec) // create a new addRec
3021     return SE->getAddRecExpr(Expr,
3022                              Value,
3023                              TargetLoop,
3024                              SCEV::FlagAnyWrap); // Worst case, with no info.
3025   if (AddRec->getLoop() == TargetLoop) {
3026     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3027     if (Sum->isZero())
3028       return AddRec->getStart();
3029     return SE->getAddRecExpr(AddRec->getStart(),
3030                              Sum,
3031                              AddRec->getLoop(),
3032                              AddRec->getNoWrapFlags());
3033   }
3034   if (SE->isLoopInvariant(AddRec, TargetLoop))
3035     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3036   return SE->getAddRecExpr(
3037       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3038       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3039       AddRec->getNoWrapFlags());
3040 }
3041 
3042 
3043 // Review the constraints, looking for opportunities
3044 // to simplify a subscript pair (Src and Dst).
3045 // Return true if some simplification occurs.
3046 // If the simplification isn't exact (that is, if it is conservative
3047 // in terms of dependence), set consistent to false.
3048 // Corresponds to Figure 5 from the paper
3049 //
3050 //            Practical Dependence Testing
3051 //            Goff, Kennedy, Tseng
3052 //            PLDI 1991
3053 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3054                                SmallBitVector &Loops,
3055                                SmallVectorImpl<Constraint> &Constraints,
3056                                bool &Consistent) {
3057   bool Result = false;
3058   for (unsigned LI : Loops.set_bits()) {
3059     LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
3060     LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3061     if (Constraints[LI].isDistance())
3062       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3063     else if (Constraints[LI].isLine())
3064       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3065     else if (Constraints[LI].isPoint())
3066       Result |= propagatePoint(Src, Dst, Constraints[LI]);
3067   }
3068   return Result;
3069 }
3070 
3071 
3072 // Attempt to propagate a distance
3073 // constraint into a subscript pair (Src and Dst).
3074 // Return true if some simplification occurs.
3075 // If the simplification isn't exact (that is, if it is conservative
3076 // in terms of dependence), set consistent to false.
3077 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3078                                        Constraint &CurConstraint,
3079                                        bool &Consistent) {
3080   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3081   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3082   const SCEV *A_K = findCoefficient(Src, CurLoop);
3083   if (A_K->isZero())
3084     return false;
3085   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3086   Src = SE->getMinusSCEV(Src, DA_K);
3087   Src = zeroCoefficient(Src, CurLoop);
3088   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3089   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3090   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3091   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3092   if (!findCoefficient(Dst, CurLoop)->isZero())
3093     Consistent = false;
3094   return true;
3095 }
3096 
3097 
3098 // Attempt to propagate a line
3099 // constraint into a subscript pair (Src and Dst).
3100 // Return true if some simplification occurs.
3101 // If the simplification isn't exact (that is, if it is conservative
3102 // in terms of dependence), set consistent to false.
3103 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3104                                    Constraint &CurConstraint,
3105                                    bool &Consistent) {
3106   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3107   const SCEV *A = CurConstraint.getA();
3108   const SCEV *B = CurConstraint.getB();
3109   const SCEV *C = CurConstraint.getC();
3110   LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3111                     << "\n");
3112   LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3113   LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3114   if (A->isZero()) {
3115     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3116     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3117     if (!Bconst || !Cconst) return false;
3118     APInt Beta = Bconst->getAPInt();
3119     APInt Charlie = Cconst->getAPInt();
3120     APInt CdivB = Charlie.sdiv(Beta);
3121     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3122     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3123     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3124     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3125     Dst = zeroCoefficient(Dst, CurLoop);
3126     if (!findCoefficient(Src, CurLoop)->isZero())
3127       Consistent = false;
3128   }
3129   else if (B->isZero()) {
3130     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3131     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3132     if (!Aconst || !Cconst) return false;
3133     APInt Alpha = Aconst->getAPInt();
3134     APInt Charlie = Cconst->getAPInt();
3135     APInt CdivA = Charlie.sdiv(Alpha);
3136     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3137     const SCEV *A_K = findCoefficient(Src, CurLoop);
3138     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3139     Src = zeroCoefficient(Src, CurLoop);
3140     if (!findCoefficient(Dst, CurLoop)->isZero())
3141       Consistent = false;
3142   }
3143   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3144     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3145     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3146     if (!Aconst || !Cconst) return false;
3147     APInt Alpha = Aconst->getAPInt();
3148     APInt Charlie = Cconst->getAPInt();
3149     APInt CdivA = Charlie.sdiv(Alpha);
3150     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3151     const SCEV *A_K = findCoefficient(Src, CurLoop);
3152     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3153     Src = zeroCoefficient(Src, CurLoop);
3154     Dst = addToCoefficient(Dst, CurLoop, A_K);
3155     if (!findCoefficient(Dst, CurLoop)->isZero())
3156       Consistent = false;
3157   }
3158   else {
3159     // paper is incorrect here, or perhaps just misleading
3160     const SCEV *A_K = findCoefficient(Src, CurLoop);
3161     Src = SE->getMulExpr(Src, A);
3162     Dst = SE->getMulExpr(Dst, A);
3163     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3164     Src = zeroCoefficient(Src, CurLoop);
3165     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3166     if (!findCoefficient(Dst, CurLoop)->isZero())
3167       Consistent = false;
3168   }
3169   LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3170   LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3171   return true;
3172 }
3173 
3174 
3175 // Attempt to propagate a point
3176 // constraint into a subscript pair (Src and Dst).
3177 // Return true if some simplification occurs.
3178 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3179                                     Constraint &CurConstraint) {
3180   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3181   const SCEV *A_K = findCoefficient(Src, CurLoop);
3182   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3183   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3184   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3185   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3186   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3187   Src = zeroCoefficient(Src, CurLoop);
3188   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3189   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3190   Dst = zeroCoefficient(Dst, CurLoop);
3191   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3192   return true;
3193 }
3194 
3195 
3196 // Update direction vector entry based on the current constraint.
3197 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3198                                      const Constraint &CurConstraint) const {
3199   LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3200   LLVM_DEBUG(CurConstraint.dump(dbgs()));
3201   if (CurConstraint.isAny())
3202     ; // use defaults
3203   else if (CurConstraint.isDistance()) {
3204     // this one is consistent, the others aren't
3205     Level.Scalar = false;
3206     Level.Distance = CurConstraint.getD();
3207     unsigned NewDirection = Dependence::DVEntry::NONE;
3208     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3209       NewDirection = Dependence::DVEntry::EQ;
3210     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3211       NewDirection |= Dependence::DVEntry::LT;
3212     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3213       NewDirection |= Dependence::DVEntry::GT;
3214     Level.Direction &= NewDirection;
3215   }
3216   else if (CurConstraint.isLine()) {
3217     Level.Scalar = false;
3218     Level.Distance = nullptr;
3219     // direction should be accurate
3220   }
3221   else if (CurConstraint.isPoint()) {
3222     Level.Scalar = false;
3223     Level.Distance = nullptr;
3224     unsigned NewDirection = Dependence::DVEntry::NONE;
3225     if (!isKnownPredicate(CmpInst::ICMP_NE,
3226                           CurConstraint.getY(),
3227                           CurConstraint.getX()))
3228       // if X may be = Y
3229       NewDirection |= Dependence::DVEntry::EQ;
3230     if (!isKnownPredicate(CmpInst::ICMP_SLE,
3231                           CurConstraint.getY(),
3232                           CurConstraint.getX()))
3233       // if Y may be > X
3234       NewDirection |= Dependence::DVEntry::LT;
3235     if (!isKnownPredicate(CmpInst::ICMP_SGE,
3236                           CurConstraint.getY(),
3237                           CurConstraint.getX()))
3238       // if Y may be < X
3239       NewDirection |= Dependence::DVEntry::GT;
3240     Level.Direction &= NewDirection;
3241   }
3242   else
3243     llvm_unreachable("constraint has unexpected kind");
3244 }
3245 
3246 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3247 /// source and destination array references are recurrences on a nested loop,
3248 /// this function flattens the nested recurrences into separate recurrences
3249 /// for each loop level.
3250 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3251                                     SmallVectorImpl<Subscript> &Pair) {
3252   assert(isLoadOrStore(Src) && "instruction is not load or store");
3253   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3254   Value *SrcPtr = getLoadStorePointerOperand(Src);
3255   Value *DstPtr = getLoadStorePointerOperand(Dst);
3256   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3257   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3258   const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3259   const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3260   const SCEVUnknown *SrcBase =
3261       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3262   const SCEVUnknown *DstBase =
3263       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3264 
3265   if (!SrcBase || !DstBase || SrcBase != DstBase)
3266     return false;
3267 
3268   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3269 
3270   if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3271                                SrcSubscripts, DstSubscripts) &&
3272       !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3273                                     SrcSubscripts, DstSubscripts))
3274     return false;
3275 
3276   int Size = SrcSubscripts.size();
3277   LLVM_DEBUG({
3278     dbgs() << "\nSrcSubscripts: ";
3279     for (int I = 0; I < Size; I++)
3280       dbgs() << *SrcSubscripts[I];
3281     dbgs() << "\nDstSubscripts: ";
3282     for (int I = 0; I < Size; I++)
3283       dbgs() << *DstSubscripts[I];
3284   });
3285 
3286   // The delinearization transforms a single-subscript MIV dependence test into
3287   // a multi-subscript SIV dependence test that is easier to compute. So we
3288   // resize Pair to contain as many pairs of subscripts as the delinearization
3289   // has found, and then initialize the pairs following the delinearization.
3290   Pair.resize(Size);
3291   for (int I = 0; I < Size; ++I) {
3292     Pair[I].Src = SrcSubscripts[I];
3293     Pair[I].Dst = DstSubscripts[I];
3294     unifySubscriptType(&Pair[I]);
3295   }
3296 
3297   return true;
3298 }
3299 
3300 bool DependenceInfo::tryDelinearizeFixedSize(
3301     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3302     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3303     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3304 
3305   // In general we cannot safely assume that the subscripts recovered from GEPs
3306   // are in the range of values defined for their corresponding array
3307   // dimensions. For example some C language usage/interpretation make it
3308   // impossible to verify this at compile-time. As such we give up here unless
3309   // we can assume that the subscripts do not overlap into neighboring
3310   // dimensions and that the number of dimensions matches the number of
3311   // subscripts being recovered.
3312   if (!DisableDelinearizationChecks)
3313     return false;
3314 
3315   Value *SrcPtr = getLoadStorePointerOperand(Src);
3316   Value *DstPtr = getLoadStorePointerOperand(Dst);
3317   const SCEVUnknown *SrcBase =
3318       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3319   const SCEVUnknown *DstBase =
3320       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3321   assert(SrcBase && DstBase && SrcBase == DstBase &&
3322          "expected src and dst scev unknowns to be equal");
3323 
3324   // Check the simple case where the array dimensions are fixed size.
3325   auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
3326   auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr);
3327   if (!SrcGEP || !DstGEP)
3328     return false;
3329 
3330   SmallVector<int, 4> SrcSizes, DstSizes;
3331   SE->getIndexExpressionsFromGEP(SrcGEP, SrcSubscripts, SrcSizes);
3332   SE->getIndexExpressionsFromGEP(DstGEP, DstSubscripts, DstSizes);
3333 
3334   // Check that the two size arrays are non-empty and equal in length and
3335   // value.
3336   if (SrcSizes.empty() || SrcSubscripts.size() <= 1 ||
3337       SrcSizes.size() != DstSizes.size() ||
3338       !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3339     SrcSubscripts.clear();
3340     DstSubscripts.clear();
3341     return false;
3342   }
3343 
3344   Value *SrcBasePtr = SrcGEP->getOperand(0);
3345   Value *DstBasePtr = DstGEP->getOperand(0);
3346   while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr))
3347     SrcBasePtr = PCast->getOperand(0);
3348   while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr))
3349     DstBasePtr = PCast->getOperand(0);
3350 
3351   // Check that for identical base pointers we do not miss index offsets
3352   // that have been added before this GEP is applied.
3353   if (SrcBasePtr == SrcBase->getValue() && DstBasePtr == DstBase->getValue()) {
3354     assert(SrcSubscripts.size() == DstSubscripts.size() &&
3355            SrcSubscripts.size() == SrcSizes.size() + 1 &&
3356            "Expected equal number of entries in the list of sizes and "
3357            "subscripts.");
3358     LLVM_DEBUG({
3359       dbgs() << "Delinearized subscripts of fixed-size array\n"
3360              << "SrcGEP:" << *SrcGEP << "\n"
3361              << "DstGEP:" << *DstGEP << "\n";
3362     });
3363     return true;
3364   }
3365 
3366   SrcSubscripts.clear();
3367   DstSubscripts.clear();
3368   return false;
3369 }
3370 
3371 bool DependenceInfo::tryDelinearizeParametricSize(
3372     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3373     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3374     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3375 
3376   Value *SrcPtr = getLoadStorePointerOperand(Src);
3377   Value *DstPtr = getLoadStorePointerOperand(Dst);
3378   const SCEVUnknown *SrcBase =
3379       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3380   const SCEVUnknown *DstBase =
3381       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3382   assert(SrcBase && DstBase && SrcBase == DstBase &&
3383          "expected src and dst scev unknowns to be equal");
3384 
3385   const SCEV *ElementSize = SE->getElementSize(Src);
3386   if (ElementSize != SE->getElementSize(Dst))
3387     return false;
3388 
3389   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3390   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3391 
3392   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3393   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3394   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3395     return false;
3396 
3397   // First step: collect parametric terms in both array references.
3398   SmallVector<const SCEV *, 4> Terms;
3399   SE->collectParametricTerms(SrcAR, Terms);
3400   SE->collectParametricTerms(DstAR, Terms);
3401 
3402   // Second step: find subscript sizes.
3403   SmallVector<const SCEV *, 4> Sizes;
3404   SE->findArrayDimensions(Terms, Sizes, ElementSize);
3405 
3406   // Third step: compute the access functions for each subscript.
3407   SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3408   SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3409 
3410   // Fail when there is only a subscript: that's a linearized access function.
3411   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3412       SrcSubscripts.size() != DstSubscripts.size())
3413     return false;
3414 
3415   size_t Size = SrcSubscripts.size();
3416 
3417   // Statically check that the array bounds are in-range. The first subscript we
3418   // don't have a size for and it cannot overflow into another subscript, so is
3419   // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3420   // and dst.
3421   // FIXME: It may be better to record these sizes and add them as constraints
3422   // to the dependency checks.
3423   if (!DisableDelinearizationChecks)
3424     for (size_t I = 1; I < Size; ++I) {
3425       if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3426         return false;
3427 
3428       if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3429         return false;
3430 
3431       if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3432         return false;
3433 
3434       if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3435         return false;
3436     }
3437 
3438   return true;
3439 }
3440 
3441 //===----------------------------------------------------------------------===//
3442 
3443 #ifndef NDEBUG
3444 // For debugging purposes, dump a small bit vector to dbgs().
3445 static void dumpSmallBitVector(SmallBitVector &BV) {
3446   dbgs() << "{";
3447   for (unsigned VI : BV.set_bits()) {
3448     dbgs() << VI;
3449     if (BV.find_next(VI) >= 0)
3450       dbgs() << ' ';
3451   }
3452   dbgs() << "}\n";
3453 }
3454 #endif
3455 
3456 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3457                                 FunctionAnalysisManager::Invalidator &Inv) {
3458   // Check if the analysis itself has been invalidated.
3459   auto PAC = PA.getChecker<DependenceAnalysis>();
3460   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3461     return true;
3462 
3463   // Check transitive dependencies.
3464   return Inv.invalidate<AAManager>(F, PA) ||
3465          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3466          Inv.invalidate<LoopAnalysis>(F, PA);
3467 }
3468 
3469 // depends -
3470 // Returns NULL if there is no dependence.
3471 // Otherwise, return a Dependence with as many details as possible.
3472 // Corresponds to Section 3.1 in the paper
3473 //
3474 //            Practical Dependence Testing
3475 //            Goff, Kennedy, Tseng
3476 //            PLDI 1991
3477 //
3478 // Care is required to keep the routine below, getSplitIteration(),
3479 // up to date with respect to this routine.
3480 std::unique_ptr<Dependence>
3481 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3482                         bool PossiblyLoopIndependent) {
3483   if (Src == Dst)
3484     PossiblyLoopIndependent = false;
3485 
3486   if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3487     // if both instructions don't reference memory, there's no dependence
3488     return nullptr;
3489 
3490   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3491     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3492     LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3493     return std::make_unique<Dependence>(Src, Dst);
3494   }
3495 
3496   assert(isLoadOrStore(Src) && "instruction is not load or store");
3497   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3498   Value *SrcPtr = getLoadStorePointerOperand(Src);
3499   Value *DstPtr = getLoadStorePointerOperand(Dst);
3500 
3501   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3502                                  MemoryLocation::get(Dst),
3503                                  MemoryLocation::get(Src))) {
3504   case MayAlias:
3505   case PartialAlias:
3506     // cannot analyse objects if we don't understand their aliasing.
3507     LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3508     return std::make_unique<Dependence>(Src, Dst);
3509   case NoAlias:
3510     // If the objects noalias, they are distinct, accesses are independent.
3511     LLVM_DEBUG(dbgs() << "no alias\n");
3512     return nullptr;
3513   case MustAlias:
3514     break; // The underlying objects alias; test accesses for dependence.
3515   }
3516 
3517   // establish loop nesting levels
3518   establishNestingLevels(Src, Dst);
3519   LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3520   LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3521 
3522   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3523   ++TotalArrayPairs;
3524 
3525   unsigned Pairs = 1;
3526   SmallVector<Subscript, 2> Pair(Pairs);
3527   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3528   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3529   LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3530   LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3531   Pair[0].Src = SrcSCEV;
3532   Pair[0].Dst = DstSCEV;
3533 
3534   if (Delinearize) {
3535     if (tryDelinearize(Src, Dst, Pair)) {
3536       LLVM_DEBUG(dbgs() << "    delinearized\n");
3537       Pairs = Pair.size();
3538     }
3539   }
3540 
3541   for (unsigned P = 0; P < Pairs; ++P) {
3542     Pair[P].Loops.resize(MaxLevels + 1);
3543     Pair[P].GroupLoops.resize(MaxLevels + 1);
3544     Pair[P].Group.resize(Pairs);
3545     removeMatchingExtensions(&Pair[P]);
3546     Pair[P].Classification =
3547       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3548                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3549                    Pair[P].Loops);
3550     Pair[P].GroupLoops = Pair[P].Loops;
3551     Pair[P].Group.set(P);
3552     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
3553     LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3554     LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3555     LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3556     LLVM_DEBUG(dbgs() << "\tloops = ");
3557     LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3558   }
3559 
3560   SmallBitVector Separable(Pairs);
3561   SmallBitVector Coupled(Pairs);
3562 
3563   // Partition subscripts into separable and minimally-coupled groups
3564   // Algorithm in paper is algorithmically better;
3565   // this may be faster in practice. Check someday.
3566   //
3567   // Here's an example of how it works. Consider this code:
3568   //
3569   //   for (i = ...) {
3570   //     for (j = ...) {
3571   //       for (k = ...) {
3572   //         for (l = ...) {
3573   //           for (m = ...) {
3574   //             A[i][j][k][m] = ...;
3575   //             ... = A[0][j][l][i + j];
3576   //           }
3577   //         }
3578   //       }
3579   //     }
3580   //   }
3581   //
3582   // There are 4 subscripts here:
3583   //    0 [i] and [0]
3584   //    1 [j] and [j]
3585   //    2 [k] and [l]
3586   //    3 [m] and [i + j]
3587   //
3588   // We've already classified each subscript pair as ZIV, SIV, etc.,
3589   // and collected all the loops mentioned by pair P in Pair[P].Loops.
3590   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3591   // and set Pair[P].Group = {P}.
3592   //
3593   //      Src Dst    Classification Loops  GroupLoops Group
3594   //    0 [i] [0]         SIV       {1}      {1}        {0}
3595   //    1 [j] [j]         SIV       {2}      {2}        {1}
3596   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3597   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3598   //
3599   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3600   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3601   //
3602   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3603   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3604   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3605   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3606   // to either Separable or Coupled).
3607   //
3608   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3609   // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3610   // so Pair[3].Group = {0, 1, 3} and Done = false.
3611   //
3612   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3613   // Since Done remains true, we add 2 to the set of Separable pairs.
3614   //
3615   // Finally, we consider 3. There's nothing to compare it with,
3616   // so Done remains true and we add it to the Coupled set.
3617   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3618   //
3619   // In the end, we've got 1 separable subscript and 1 coupled group.
3620   for (unsigned SI = 0; SI < Pairs; ++SI) {
3621     if (Pair[SI].Classification == Subscript::NonLinear) {
3622       // ignore these, but collect loops for later
3623       ++NonlinearSubscriptPairs;
3624       collectCommonLoops(Pair[SI].Src,
3625                          LI->getLoopFor(Src->getParent()),
3626                          Pair[SI].Loops);
3627       collectCommonLoops(Pair[SI].Dst,
3628                          LI->getLoopFor(Dst->getParent()),
3629                          Pair[SI].Loops);
3630       Result.Consistent = false;
3631     } else if (Pair[SI].Classification == Subscript::ZIV) {
3632       // always separable
3633       Separable.set(SI);
3634     }
3635     else {
3636       // SIV, RDIV, or MIV, so check for coupled group
3637       bool Done = true;
3638       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3639         SmallBitVector Intersection = Pair[SI].GroupLoops;
3640         Intersection &= Pair[SJ].GroupLoops;
3641         if (Intersection.any()) {
3642           // accumulate set of all the loops in group
3643           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3644           // accumulate set of all subscripts in group
3645           Pair[SJ].Group |= Pair[SI].Group;
3646           Done = false;
3647         }
3648       }
3649       if (Done) {
3650         if (Pair[SI].Group.count() == 1) {
3651           Separable.set(SI);
3652           ++SeparableSubscriptPairs;
3653         }
3654         else {
3655           Coupled.set(SI);
3656           ++CoupledSubscriptPairs;
3657         }
3658       }
3659     }
3660   }
3661 
3662   LLVM_DEBUG(dbgs() << "    Separable = ");
3663   LLVM_DEBUG(dumpSmallBitVector(Separable));
3664   LLVM_DEBUG(dbgs() << "    Coupled = ");
3665   LLVM_DEBUG(dumpSmallBitVector(Coupled));
3666 
3667   Constraint NewConstraint;
3668   NewConstraint.setAny(SE);
3669 
3670   // test separable subscripts
3671   for (unsigned SI : Separable.set_bits()) {
3672     LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3673     switch (Pair[SI].Classification) {
3674     case Subscript::ZIV:
3675       LLVM_DEBUG(dbgs() << ", ZIV\n");
3676       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3677         return nullptr;
3678       break;
3679     case Subscript::SIV: {
3680       LLVM_DEBUG(dbgs() << ", SIV\n");
3681       unsigned Level;
3682       const SCEV *SplitIter = nullptr;
3683       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3684                   SplitIter))
3685         return nullptr;
3686       break;
3687     }
3688     case Subscript::RDIV:
3689       LLVM_DEBUG(dbgs() << ", RDIV\n");
3690       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3691         return nullptr;
3692       break;
3693     case Subscript::MIV:
3694       LLVM_DEBUG(dbgs() << ", MIV\n");
3695       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3696         return nullptr;
3697       break;
3698     default:
3699       llvm_unreachable("subscript has unexpected classification");
3700     }
3701   }
3702 
3703   if (Coupled.count()) {
3704     // test coupled subscript groups
3705     LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3706     LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3707     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3708     for (unsigned II = 0; II <= MaxLevels; ++II)
3709       Constraints[II].setAny(SE);
3710     for (unsigned SI : Coupled.set_bits()) {
3711       LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3712       SmallBitVector Group(Pair[SI].Group);
3713       SmallBitVector Sivs(Pairs);
3714       SmallBitVector Mivs(Pairs);
3715       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3716       SmallVector<Subscript *, 4> PairsInGroup;
3717       for (unsigned SJ : Group.set_bits()) {
3718         LLVM_DEBUG(dbgs() << SJ << " ");
3719         if (Pair[SJ].Classification == Subscript::SIV)
3720           Sivs.set(SJ);
3721         else
3722           Mivs.set(SJ);
3723         PairsInGroup.push_back(&Pair[SJ]);
3724       }
3725       unifySubscriptType(PairsInGroup);
3726       LLVM_DEBUG(dbgs() << "}\n");
3727       while (Sivs.any()) {
3728         bool Changed = false;
3729         for (unsigned SJ : Sivs.set_bits()) {
3730           LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3731           // SJ is an SIV subscript that's part of the current coupled group
3732           unsigned Level;
3733           const SCEV *SplitIter = nullptr;
3734           LLVM_DEBUG(dbgs() << "SIV\n");
3735           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3736                       SplitIter))
3737             return nullptr;
3738           ConstrainedLevels.set(Level);
3739           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3740             if (Constraints[Level].isEmpty()) {
3741               ++DeltaIndependence;
3742               return nullptr;
3743             }
3744             Changed = true;
3745           }
3746           Sivs.reset(SJ);
3747         }
3748         if (Changed) {
3749           // propagate, possibly creating new SIVs and ZIVs
3750           LLVM_DEBUG(dbgs() << "    propagating\n");
3751           LLVM_DEBUG(dbgs() << "\tMivs = ");
3752           LLVM_DEBUG(dumpSmallBitVector(Mivs));
3753           for (unsigned SJ : Mivs.set_bits()) {
3754             // SJ is an MIV subscript that's part of the current coupled group
3755             LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3756             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3757                           Constraints, Result.Consistent)) {
3758               LLVM_DEBUG(dbgs() << "\t    Changed\n");
3759               ++DeltaPropagations;
3760               Pair[SJ].Classification =
3761                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3762                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3763                              Pair[SJ].Loops);
3764               switch (Pair[SJ].Classification) {
3765               case Subscript::ZIV:
3766                 LLVM_DEBUG(dbgs() << "ZIV\n");
3767                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3768                   return nullptr;
3769                 Mivs.reset(SJ);
3770                 break;
3771               case Subscript::SIV:
3772                 Sivs.set(SJ);
3773                 Mivs.reset(SJ);
3774                 break;
3775               case Subscript::RDIV:
3776               case Subscript::MIV:
3777                 break;
3778               default:
3779                 llvm_unreachable("bad subscript classification");
3780               }
3781             }
3782           }
3783         }
3784       }
3785 
3786       // test & propagate remaining RDIVs
3787       for (unsigned SJ : Mivs.set_bits()) {
3788         if (Pair[SJ].Classification == Subscript::RDIV) {
3789           LLVM_DEBUG(dbgs() << "RDIV test\n");
3790           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3791             return nullptr;
3792           // I don't yet understand how to propagate RDIV results
3793           Mivs.reset(SJ);
3794         }
3795       }
3796 
3797       // test remaining MIVs
3798       // This code is temporary.
3799       // Better to somehow test all remaining subscripts simultaneously.
3800       for (unsigned SJ : Mivs.set_bits()) {
3801         if (Pair[SJ].Classification == Subscript::MIV) {
3802           LLVM_DEBUG(dbgs() << "MIV test\n");
3803           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3804             return nullptr;
3805         }
3806         else
3807           llvm_unreachable("expected only MIV subscripts at this point");
3808       }
3809 
3810       // update Result.DV from constraint vector
3811       LLVM_DEBUG(dbgs() << "    updating\n");
3812       for (unsigned SJ : ConstrainedLevels.set_bits()) {
3813         if (SJ > CommonLevels)
3814           break;
3815         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3816         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3817           return nullptr;
3818       }
3819     }
3820   }
3821 
3822   // Make sure the Scalar flags are set correctly.
3823   SmallBitVector CompleteLoops(MaxLevels + 1);
3824   for (unsigned SI = 0; SI < Pairs; ++SI)
3825     CompleteLoops |= Pair[SI].Loops;
3826   for (unsigned II = 1; II <= CommonLevels; ++II)
3827     if (CompleteLoops[II])
3828       Result.DV[II - 1].Scalar = false;
3829 
3830   if (PossiblyLoopIndependent) {
3831     // Make sure the LoopIndependent flag is set correctly.
3832     // All directions must include equal, otherwise no
3833     // loop-independent dependence is possible.
3834     for (unsigned II = 1; II <= CommonLevels; ++II) {
3835       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3836         Result.LoopIndependent = false;
3837         break;
3838       }
3839     }
3840   }
3841   else {
3842     // On the other hand, if all directions are equal and there's no
3843     // loop-independent dependence possible, then no dependence exists.
3844     bool AllEqual = true;
3845     for (unsigned II = 1; II <= CommonLevels; ++II) {
3846       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3847         AllEqual = false;
3848         break;
3849       }
3850     }
3851     if (AllEqual)
3852       return nullptr;
3853   }
3854 
3855   return std::make_unique<FullDependence>(std::move(Result));
3856 }
3857 
3858 //===----------------------------------------------------------------------===//
3859 // getSplitIteration -
3860 // Rather than spend rarely-used space recording the splitting iteration
3861 // during the Weak-Crossing SIV test, we re-compute it on demand.
3862 // The re-computation is basically a repeat of the entire dependence test,
3863 // though simplified since we know that the dependence exists.
3864 // It's tedious, since we must go through all propagations, etc.
3865 //
3866 // Care is required to keep this code up to date with respect to the routine
3867 // above, depends().
3868 //
3869 // Generally, the dependence analyzer will be used to build
3870 // a dependence graph for a function (basically a map from instructions
3871 // to dependences). Looking for cycles in the graph shows us loops
3872 // that cannot be trivially vectorized/parallelized.
3873 //
3874 // We can try to improve the situation by examining all the dependences
3875 // that make up the cycle, looking for ones we can break.
3876 // Sometimes, peeling the first or last iteration of a loop will break
3877 // dependences, and we've got flags for those possibilities.
3878 // Sometimes, splitting a loop at some other iteration will do the trick,
3879 // and we've got a flag for that case. Rather than waste the space to
3880 // record the exact iteration (since we rarely know), we provide
3881 // a method that calculates the iteration. It's a drag that it must work
3882 // from scratch, but wonderful in that it's possible.
3883 //
3884 // Here's an example:
3885 //
3886 //    for (i = 0; i < 10; i++)
3887 //        A[i] = ...
3888 //        ... = A[11 - i]
3889 //
3890 // There's a loop-carried flow dependence from the store to the load,
3891 // found by the weak-crossing SIV test. The dependence will have a flag,
3892 // indicating that the dependence can be broken by splitting the loop.
3893 // Calling getSplitIteration will return 5.
3894 // Splitting the loop breaks the dependence, like so:
3895 //
3896 //    for (i = 0; i <= 5; i++)
3897 //        A[i] = ...
3898 //        ... = A[11 - i]
3899 //    for (i = 6; i < 10; i++)
3900 //        A[i] = ...
3901 //        ... = A[11 - i]
3902 //
3903 // breaks the dependence and allows us to vectorize/parallelize
3904 // both loops.
3905 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3906                                               unsigned SplitLevel) {
3907   assert(Dep.isSplitable(SplitLevel) &&
3908          "Dep should be splitable at SplitLevel");
3909   Instruction *Src = Dep.getSrc();
3910   Instruction *Dst = Dep.getDst();
3911   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3912   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3913   assert(isLoadOrStore(Src));
3914   assert(isLoadOrStore(Dst));
3915   Value *SrcPtr = getLoadStorePointerOperand(Src);
3916   Value *DstPtr = getLoadStorePointerOperand(Dst);
3917   assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3918                                 MemoryLocation::get(Dst),
3919                                 MemoryLocation::get(Src)) == MustAlias);
3920 
3921   // establish loop nesting levels
3922   establishNestingLevels(Src, Dst);
3923 
3924   FullDependence Result(Src, Dst, false, CommonLevels);
3925 
3926   unsigned Pairs = 1;
3927   SmallVector<Subscript, 2> Pair(Pairs);
3928   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3929   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3930   Pair[0].Src = SrcSCEV;
3931   Pair[0].Dst = DstSCEV;
3932 
3933   if (Delinearize) {
3934     if (tryDelinearize(Src, Dst, Pair)) {
3935       LLVM_DEBUG(dbgs() << "    delinearized\n");
3936       Pairs = Pair.size();
3937     }
3938   }
3939 
3940   for (unsigned P = 0; P < Pairs; ++P) {
3941     Pair[P].Loops.resize(MaxLevels + 1);
3942     Pair[P].GroupLoops.resize(MaxLevels + 1);
3943     Pair[P].Group.resize(Pairs);
3944     removeMatchingExtensions(&Pair[P]);
3945     Pair[P].Classification =
3946       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3947                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3948                    Pair[P].Loops);
3949     Pair[P].GroupLoops = Pair[P].Loops;
3950     Pair[P].Group.set(P);
3951   }
3952 
3953   SmallBitVector Separable(Pairs);
3954   SmallBitVector Coupled(Pairs);
3955 
3956   // partition subscripts into separable and minimally-coupled groups
3957   for (unsigned SI = 0; SI < Pairs; ++SI) {
3958     if (Pair[SI].Classification == Subscript::NonLinear) {
3959       // ignore these, but collect loops for later
3960       collectCommonLoops(Pair[SI].Src,
3961                          LI->getLoopFor(Src->getParent()),
3962                          Pair[SI].Loops);
3963       collectCommonLoops(Pair[SI].Dst,
3964                          LI->getLoopFor(Dst->getParent()),
3965                          Pair[SI].Loops);
3966       Result.Consistent = false;
3967     }
3968     else if (Pair[SI].Classification == Subscript::ZIV)
3969       Separable.set(SI);
3970     else {
3971       // SIV, RDIV, or MIV, so check for coupled group
3972       bool Done = true;
3973       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3974         SmallBitVector Intersection = Pair[SI].GroupLoops;
3975         Intersection &= Pair[SJ].GroupLoops;
3976         if (Intersection.any()) {
3977           // accumulate set of all the loops in group
3978           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3979           // accumulate set of all subscripts in group
3980           Pair[SJ].Group |= Pair[SI].Group;
3981           Done = false;
3982         }
3983       }
3984       if (Done) {
3985         if (Pair[SI].Group.count() == 1)
3986           Separable.set(SI);
3987         else
3988           Coupled.set(SI);
3989       }
3990     }
3991   }
3992 
3993   Constraint NewConstraint;
3994   NewConstraint.setAny(SE);
3995 
3996   // test separable subscripts
3997   for (unsigned SI : Separable.set_bits()) {
3998     switch (Pair[SI].Classification) {
3999     case Subscript::SIV: {
4000       unsigned Level;
4001       const SCEV *SplitIter = nullptr;
4002       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4003                      Result, NewConstraint, SplitIter);
4004       if (Level == SplitLevel) {
4005         assert(SplitIter != nullptr);
4006         return SplitIter;
4007       }
4008       break;
4009     }
4010     case Subscript::ZIV:
4011     case Subscript::RDIV:
4012     case Subscript::MIV:
4013       break;
4014     default:
4015       llvm_unreachable("subscript has unexpected classification");
4016     }
4017   }
4018 
4019   if (Coupled.count()) {
4020     // test coupled subscript groups
4021     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4022     for (unsigned II = 0; II <= MaxLevels; ++II)
4023       Constraints[II].setAny(SE);
4024     for (unsigned SI : Coupled.set_bits()) {
4025       SmallBitVector Group(Pair[SI].Group);
4026       SmallBitVector Sivs(Pairs);
4027       SmallBitVector Mivs(Pairs);
4028       SmallBitVector ConstrainedLevels(MaxLevels + 1);
4029       for (unsigned SJ : Group.set_bits()) {
4030         if (Pair[SJ].Classification == Subscript::SIV)
4031           Sivs.set(SJ);
4032         else
4033           Mivs.set(SJ);
4034       }
4035       while (Sivs.any()) {
4036         bool Changed = false;
4037         for (unsigned SJ : Sivs.set_bits()) {
4038           // SJ is an SIV subscript that's part of the current coupled group
4039           unsigned Level;
4040           const SCEV *SplitIter = nullptr;
4041           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4042                          Result, NewConstraint, SplitIter);
4043           if (Level == SplitLevel && SplitIter)
4044             return SplitIter;
4045           ConstrainedLevels.set(Level);
4046           if (intersectConstraints(&Constraints[Level], &NewConstraint))
4047             Changed = true;
4048           Sivs.reset(SJ);
4049         }
4050         if (Changed) {
4051           // propagate, possibly creating new SIVs and ZIVs
4052           for (unsigned SJ : Mivs.set_bits()) {
4053             // SJ is an MIV subscript that's part of the current coupled group
4054             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4055                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
4056               Pair[SJ].Classification =
4057                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4058                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4059                              Pair[SJ].Loops);
4060               switch (Pair[SJ].Classification) {
4061               case Subscript::ZIV:
4062                 Mivs.reset(SJ);
4063                 break;
4064               case Subscript::SIV:
4065                 Sivs.set(SJ);
4066                 Mivs.reset(SJ);
4067                 break;
4068               case Subscript::RDIV:
4069               case Subscript::MIV:
4070                 break;
4071               default:
4072                 llvm_unreachable("bad subscript classification");
4073               }
4074             }
4075           }
4076         }
4077       }
4078     }
4079   }
4080   llvm_unreachable("somehow reached end of routine");
4081   return nullptr;
4082 }
4083