1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/Analysis/LoopIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/IteratedDominanceFrontier.h"
18 #include "llvm/Analysis/MemorySSA.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/FormattedStream.h"
29 #include <algorithm>
30 
31 #define DEBUG_TYPE "memoryssa"
32 using namespace llvm;
33 
34 // This is the marker algorithm from "Simple and Efficient Construction of
35 // Static Single Assignment Form"
36 // The simple, non-marker algorithm places phi nodes at any join
37 // Here, we place markers, and only place phi nodes if they end up necessary.
38 // They are only necessary if they break a cycle (IE we recursively visit
39 // ourselves again), or we discover, while getting the value of the operands,
40 // that there are two or more definitions needing to be merged.
41 // This still will leave non-minimal form in the case of irreducible control
42 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
44     BasicBlock *BB,
45     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
46   // First, do a cache lookup. Without this cache, certain CFG structures
47   // (like a series of if statements) take exponential time to visit.
48   auto Cached = CachedPreviousDef.find(BB);
49   if (Cached != CachedPreviousDef.end())
50     return Cached->second;
51 
52   // If this method is called from an unreachable block, return LoE.
53   if (!MSSA->DT->isReachableFromEntry(BB))
54     return MSSA->getLiveOnEntryDef();
55 
56   if (BasicBlock *Pred = BB->getUniquePredecessor()) {
57     VisitedBlocks.insert(BB);
58     // Single predecessor case, just recurse, we can only have one definition.
59     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
60     CachedPreviousDef.insert({BB, Result});
61     return Result;
62   }
63 
64   if (VisitedBlocks.count(BB)) {
65     // We hit our node again, meaning we had a cycle, we must insert a phi
66     // node to break it so we have an operand. The only case this will
67     // insert useless phis is if we have irreducible control flow.
68     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
69     CachedPreviousDef.insert({BB, Result});
70     return Result;
71   }
72 
73   if (VisitedBlocks.insert(BB).second) {
74     // Mark us visited so we can detect a cycle
75     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
76 
77     // Recurse to get the values in our predecessors for placement of a
78     // potential phi node. This will insert phi nodes if we cycle in order to
79     // break the cycle and have an operand.
80     bool UniqueIncomingAccess = true;
81     MemoryAccess *SingleAccess = nullptr;
82     for (auto *Pred : predecessors(BB)) {
83       if (MSSA->DT->isReachableFromEntry(Pred)) {
84         auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
85         if (!SingleAccess)
86           SingleAccess = IncomingAccess;
87         else if (IncomingAccess != SingleAccess)
88           UniqueIncomingAccess = false;
89         PhiOps.push_back(IncomingAccess);
90       } else
91         PhiOps.push_back(MSSA->getLiveOnEntryDef());
92     }
93 
94     // Now try to simplify the ops to avoid placing a phi.
95     // This may return null if we never created a phi yet, that's okay
96     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
97 
98     // See if we can avoid the phi by simplifying it.
99     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
100     // If we couldn't simplify, we may have to create a phi
101     if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
102       // A concrete Phi only exists if we created an empty one to break a cycle.
103       if (Phi) {
104         assert(Phi->operands().empty() && "Expected empty Phi");
105         Phi->replaceAllUsesWith(SingleAccess);
106         removeMemoryAccess(Phi);
107       }
108       Result = SingleAccess;
109     } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
110       if (!Phi)
111         Phi = MSSA->createMemoryPhi(BB);
112 
113       // See if the existing phi operands match what we need.
114       // Unlike normal SSA, we only allow one phi node per block, so we can't just
115       // create a new one.
116       if (Phi->getNumOperands() != 0) {
117         // FIXME: Figure out whether this is dead code and if so remove it.
118         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
119           // These will have been filled in by the recursive read we did above.
120           llvm::copy(PhiOps, Phi->op_begin());
121           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
122         }
123       } else {
124         unsigned i = 0;
125         for (auto *Pred : predecessors(BB))
126           Phi->addIncoming(&*PhiOps[i++], Pred);
127         InsertedPHIs.push_back(Phi);
128       }
129       Result = Phi;
130     }
131 
132     // Set ourselves up for the next variable by resetting visited state.
133     VisitedBlocks.erase(BB);
134     CachedPreviousDef.insert({BB, Result});
135     return Result;
136   }
137   llvm_unreachable("Should have hit one of the three cases above");
138 }
139 
140 // This starts at the memory access, and goes backwards in the block to find the
141 // previous definition. If a definition is not found the block of the access,
142 // it continues globally, creating phi nodes to ensure we have a single
143 // definition.
144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
145   if (auto *LocalResult = getPreviousDefInBlock(MA))
146     return LocalResult;
147   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
148   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
149 }
150 
151 // This starts at the memory access, and goes backwards in the block to the find
152 // the previous definition. If the definition is not found in the block of the
153 // access, it returns nullptr.
154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
155   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
156 
157   // It's possible there are no defs, or we got handed the first def to start.
158   if (Defs) {
159     // If this is a def, we can just use the def iterators.
160     if (!isa<MemoryUse>(MA)) {
161       auto Iter = MA->getReverseDefsIterator();
162       ++Iter;
163       if (Iter != Defs->rend())
164         return &*Iter;
165     } else {
166       // Otherwise, have to walk the all access iterator.
167       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
168       for (auto &U : make_range(++MA->getReverseIterator(), End))
169         if (!isa<MemoryUse>(U))
170           return cast<MemoryAccess>(&U);
171       // Note that if MA comes before Defs->begin(), we won't hit a def.
172       return nullptr;
173     }
174   }
175   return nullptr;
176 }
177 
178 // This starts at the end of block
179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
180     BasicBlock *BB,
181     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
182   auto *Defs = MSSA->getWritableBlockDefs(BB);
183 
184   if (Defs) {
185     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
186     return &*Defs->rbegin();
187   }
188 
189   return getPreviousDefRecursive(BB, CachedPreviousDef);
190 }
191 // Recurse over a set of phi uses to eliminate the trivial ones
192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
193   if (!Phi)
194     return nullptr;
195   TrackingVH<MemoryAccess> Res(Phi);
196   SmallVector<TrackingVH<Value>, 8> Uses;
197   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
198   for (auto &U : Uses)
199     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
200       tryRemoveTrivialPhi(UsePhi);
201   return Res;
202 }
203 
204 // Eliminate trivial phis
205 // Phis are trivial if they are defined either by themselves, or all the same
206 // argument.
207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
208 // We recursively try to remove them.
209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
210   assert(Phi && "Can only remove concrete Phi.");
211   auto OperRange = Phi->operands();
212   return tryRemoveTrivialPhi(Phi, OperRange);
213 }
214 template <class RangeType>
215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
216                                                     RangeType &Operands) {
217   // Bail out on non-opt Phis.
218   if (NonOptPhis.count(Phi))
219     return Phi;
220 
221   // Detect equal or self arguments
222   MemoryAccess *Same = nullptr;
223   for (auto &Op : Operands) {
224     // If the same or self, good so far
225     if (Op == Phi || Op == Same)
226       continue;
227     // not the same, return the phi since it's not eliminatable by us
228     if (Same)
229       return Phi;
230     Same = cast<MemoryAccess>(&*Op);
231   }
232   // Never found a non-self reference, the phi is undef
233   if (Same == nullptr)
234     return MSSA->getLiveOnEntryDef();
235   if (Phi) {
236     Phi->replaceAllUsesWith(Same);
237     removeMemoryAccess(Phi);
238   }
239 
240   // We should only end up recursing in case we replaced something, in which
241   // case, we may have made other Phis trivial.
242   return recursePhi(Same);
243 }
244 
245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
246   InsertedPHIs.clear();
247   MU->setDefiningAccess(getPreviousDef(MU));
248 
249   // In cases without unreachable blocks, because uses do not create new
250   // may-defs, there are only two cases:
251   // 1. There was a def already below us, and therefore, we should not have
252   // created a phi node because it was already needed for the def.
253   //
254   // 2. There is no def below us, and therefore, there is no extra renaming work
255   // to do.
256 
257   // In cases with unreachable blocks, where the unnecessary Phis were
258   // optimized out, adding the Use may re-insert those Phis. Hence, when
259   // inserting Uses outside of the MSSA creation process, and new Phis were
260   // added, rename all uses if we are asked.
261 
262   if (!RenameUses && !InsertedPHIs.empty()) {
263     auto *Defs = MSSA->getBlockDefs(MU->getBlock());
264     (void)Defs;
265     assert((!Defs || (++Defs->begin() == Defs->end())) &&
266            "Block may have only a Phi or no defs");
267   }
268 
269   if (RenameUses && InsertedPHIs.size()) {
270     SmallPtrSet<BasicBlock *, 16> Visited;
271     BasicBlock *StartBlock = MU->getBlock();
272 
273     if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
274       MemoryAccess *FirstDef = &*Defs->begin();
275       // Convert to incoming value if it's a memorydef. A phi *is* already an
276       // incoming value.
277       if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
278         FirstDef = MD->getDefiningAccess();
279 
280       MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
281     }
282     // We just inserted a phi into this block, so the incoming value will
283     // become the phi anyway, so it does not matter what we pass.
284     for (auto &MP : InsertedPHIs)
285       if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
286         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
287   }
288 }
289 
290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
291 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
292                                       MemoryAccess *NewDef) {
293   // Replace any operand with us an incoming block with the new defining
294   // access.
295   int i = MP->getBasicBlockIndex(BB);
296   assert(i != -1 && "Should have found the basic block in the phi");
297   // We can't just compare i against getNumOperands since one is signed and the
298   // other not. So use it to index into the block iterator.
299   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
300        ++BBIter) {
301     if (*BBIter != BB)
302       break;
303     MP->setIncomingValue(i, NewDef);
304     ++i;
305   }
306 }
307 
308 // A brief description of the algorithm:
309 // First, we compute what should define the new def, using the SSA
310 // construction algorithm.
311 // Then, we update the defs below us (and any new phi nodes) in the graph to
312 // point to the correct new defs, to ensure we only have one variable, and no
313 // disconnected stores.
314 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
315   InsertedPHIs.clear();
316 
317   // See if we had a local def, and if not, go hunting.
318   MemoryAccess *DefBefore = getPreviousDef(MD);
319   bool DefBeforeSameBlock = false;
320   if (DefBefore->getBlock() == MD->getBlock() &&
321       !(isa<MemoryPhi>(DefBefore) &&
322         llvm::is_contained(InsertedPHIs, DefBefore)))
323     DefBeforeSameBlock = true;
324 
325   // There is a def before us, which means we can replace any store/phi uses
326   // of that thing with us, since we are in the way of whatever was there
327   // before.
328   // We now define that def's memorydefs and memoryphis
329   if (DefBeforeSameBlock) {
330     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
331       // Leave the MemoryUses alone.
332       // Also make sure we skip ourselves to avoid self references.
333       User *Usr = U.getUser();
334       return !isa<MemoryUse>(Usr) && Usr != MD;
335       // Defs are automatically unoptimized when the user is set to MD below,
336       // because the isOptimized() call will fail to find the same ID.
337     });
338   }
339 
340   // and that def is now our defining access.
341   MD->setDefiningAccess(DefBefore);
342 
343   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
344 
345   SmallSet<WeakVH, 8> ExistingPhis;
346 
347   // Remember the index where we may insert new phis.
348   unsigned NewPhiIndex = InsertedPHIs.size();
349   if (!DefBeforeSameBlock) {
350     // If there was a local def before us, we must have the same effect it
351     // did. Because every may-def is the same, any phis/etc we would create, it
352     // would also have created.  If there was no local def before us, we
353     // performed a global update, and have to search all successors and make
354     // sure we update the first def in each of them (following all paths until
355     // we hit the first def along each path). This may also insert phi nodes.
356     // TODO: There are other cases we can skip this work, such as when we have a
357     // single successor, and only used a straight line of single pred blocks
358     // backwards to find the def.  To make that work, we'd have to track whether
359     // getDefRecursive only ever used the single predecessor case.  These types
360     // of paths also only exist in between CFG simplifications.
361 
362     // If this is the first def in the block and this insert is in an arbitrary
363     // place, compute IDF and place phis.
364     SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
365 
366     // If this is the last Def in the block, also compute IDF based on MD, since
367     // this may a new Def added, and we may need additional Phis.
368     auto Iter = MD->getDefsIterator();
369     ++Iter;
370     auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
371     if (Iter == IterEnd)
372       DefiningBlocks.insert(MD->getBlock());
373 
374     for (const auto &VH : InsertedPHIs)
375       if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
376         DefiningBlocks.insert(RealPHI->getBlock());
377     ForwardIDFCalculator IDFs(*MSSA->DT);
378     SmallVector<BasicBlock *, 32> IDFBlocks;
379     IDFs.setDefiningBlocks(DefiningBlocks);
380     IDFs.calculate(IDFBlocks);
381     SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
382     for (auto *BBIDF : IDFBlocks) {
383       auto *MPhi = MSSA->getMemoryAccess(BBIDF);
384       if (!MPhi) {
385         MPhi = MSSA->createMemoryPhi(BBIDF);
386         NewInsertedPHIs.push_back(MPhi);
387       } else {
388         ExistingPhis.insert(MPhi);
389       }
390       // Add the phis created into the IDF blocks to NonOptPhis, so they are not
391       // optimized out as trivial by the call to getPreviousDefFromEnd below.
392       // Once they are complete, all these Phis are added to the FixupList, and
393       // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
394       // need fixing as well, and potentially be trivial before this insertion,
395       // hence add all IDF Phis. See PR43044.
396       NonOptPhis.insert(MPhi);
397     }
398     for (auto &MPhi : NewInsertedPHIs) {
399       auto *BBIDF = MPhi->getBlock();
400       for (auto *Pred : predecessors(BBIDF)) {
401         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
402         MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
403       }
404     }
405 
406     // Re-take the index where we're adding the new phis, because the above call
407     // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
408     NewPhiIndex = InsertedPHIs.size();
409     for (auto &MPhi : NewInsertedPHIs) {
410       InsertedPHIs.push_back(&*MPhi);
411       FixupList.push_back(&*MPhi);
412     }
413 
414     FixupList.push_back(MD);
415   }
416 
417   // Remember the index where we stopped inserting new phis above, since the
418   // fixupDefs call in the loop below may insert more, that are already minimal.
419   unsigned NewPhiIndexEnd = InsertedPHIs.size();
420 
421   while (!FixupList.empty()) {
422     unsigned StartingPHISize = InsertedPHIs.size();
423     fixupDefs(FixupList);
424     FixupList.clear();
425     // Put any new phis on the fixup list, and process them
426     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
427   }
428 
429   // Optimize potentially non-minimal phis added in this method.
430   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
431   if (NewPhiSize)
432     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
433 
434   // Now that all fixups are done, rename all uses if we are asked. Skip
435   // renaming for defs in unreachable blocks.
436   BasicBlock *StartBlock = MD->getBlock();
437   if (RenameUses && MSSA->getDomTree().getNode(StartBlock)) {
438     SmallPtrSet<BasicBlock *, 16> Visited;
439     // We are guaranteed there is a def in the block, because we just got it
440     // handed to us in this function.
441     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
442     // Convert to incoming value if it's a memorydef. A phi *is* already an
443     // incoming value.
444     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
445       FirstDef = MD->getDefiningAccess();
446 
447     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
448     // We just inserted a phi into this block, so the incoming value will become
449     // the phi anyway, so it does not matter what we pass.
450     for (auto &MP : InsertedPHIs) {
451       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
452       if (Phi)
453         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
454     }
455     // Existing Phi blocks may need renaming too, if an access was previously
456     // optimized and the inserted Defs "covers" the Optimized value.
457     for (auto &MP : ExistingPhis) {
458       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
459       if (Phi)
460         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
461     }
462   }
463 }
464 
465 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
466   SmallPtrSet<const BasicBlock *, 8> Seen;
467   SmallVector<const BasicBlock *, 16> Worklist;
468   for (auto &Var : Vars) {
469     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
470     if (!NewDef)
471       continue;
472     // First, see if there is a local def after the operand.
473     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
474     auto DefIter = NewDef->getDefsIterator();
475 
476     // The temporary Phi is being fixed, unmark it for not to optimize.
477     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
478       NonOptPhis.erase(Phi);
479 
480     // If there is a local def after us, we only have to rename that.
481     if (++DefIter != Defs->end()) {
482       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
483       continue;
484     }
485 
486     // Otherwise, we need to search down through the CFG.
487     // For each of our successors, handle it directly if their is a phi, or
488     // place on the fixup worklist.
489     for (const auto *S : successors(NewDef->getBlock())) {
490       if (auto *MP = MSSA->getMemoryAccess(S))
491         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
492       else
493         Worklist.push_back(S);
494     }
495 
496     while (!Worklist.empty()) {
497       const BasicBlock *FixupBlock = Worklist.back();
498       Worklist.pop_back();
499 
500       // Get the first def in the block that isn't a phi node.
501       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
502         auto *FirstDef = &*Defs->begin();
503         // The loop above and below should have taken care of phi nodes
504         assert(!isa<MemoryPhi>(FirstDef) &&
505                "Should have already handled phi nodes!");
506         // We are now this def's defining access, make sure we actually dominate
507         // it
508         assert(MSSA->dominates(NewDef, FirstDef) &&
509                "Should have dominated the new access");
510 
511         // This may insert new phi nodes, because we are not guaranteed the
512         // block we are processing has a single pred, and depending where the
513         // store was inserted, it may require phi nodes below it.
514         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
515         return;
516       }
517       // We didn't find a def, so we must continue.
518       for (const auto *S : successors(FixupBlock)) {
519         // If there is a phi node, handle it.
520         // Otherwise, put the block on the worklist
521         if (auto *MP = MSSA->getMemoryAccess(S))
522           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
523         else {
524           // If we cycle, we should have ended up at a phi node that we already
525           // processed.  FIXME: Double check this
526           if (!Seen.insert(S).second)
527             continue;
528           Worklist.push_back(S);
529         }
530       }
531     }
532   }
533 }
534 
535 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
536   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
537     MPhi->unorderedDeleteIncomingBlock(From);
538     tryRemoveTrivialPhi(MPhi);
539   }
540 }
541 
542 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
543                                                       const BasicBlock *To) {
544   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
545     bool Found = false;
546     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
547       if (From != B)
548         return false;
549       if (Found)
550         return true;
551       Found = true;
552       return false;
553     });
554     tryRemoveTrivialPhi(MPhi);
555   }
556 }
557 
558 /// If all arguments of a MemoryPHI are defined by the same incoming
559 /// argument, return that argument.
560 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
561   MemoryAccess *MA = nullptr;
562 
563   for (auto &Arg : MP->operands()) {
564     if (!MA)
565       MA = cast<MemoryAccess>(Arg);
566     else if (MA != Arg)
567       return nullptr;
568   }
569   return MA;
570 }
571 
572 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
573                                                   const ValueToValueMapTy &VMap,
574                                                   PhiToDefMap &MPhiMap,
575                                                   bool CloneWasSimplified,
576                                                   MemorySSA *MSSA) {
577   MemoryAccess *InsnDefining = MA;
578   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
579     if (!MSSA->isLiveOnEntryDef(DefMUD)) {
580       Instruction *DefMUDI = DefMUD->getMemoryInst();
581       assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
582       if (Instruction *NewDefMUDI =
583               cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
584         InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
585         if (!CloneWasSimplified)
586           assert(InsnDefining && "Defining instruction cannot be nullptr.");
587         else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
588           // The clone was simplified, it's no longer a MemoryDef, look up.
589           auto DefIt = DefMUD->getDefsIterator();
590           // Since simplified clones only occur in single block cloning, a
591           // previous definition must exist, otherwise NewDefMUDI would not
592           // have been found in VMap.
593           assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
594                  "Previous def must exist");
595           InsnDefining = getNewDefiningAccessForClone(
596               &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
597         }
598       }
599     }
600   } else {
601     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
602     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
603       InsnDefining = NewDefPhi;
604   }
605   assert(InsnDefining && "Defining instruction cannot be nullptr.");
606   return InsnDefining;
607 }
608 
609 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
610                                         const ValueToValueMapTy &VMap,
611                                         PhiToDefMap &MPhiMap,
612                                         bool CloneWasSimplified) {
613   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
614   if (!Acc)
615     return;
616   for (const MemoryAccess &MA : *Acc) {
617     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
618       Instruction *Insn = MUD->getMemoryInst();
619       // Entry does not exist if the clone of the block did not clone all
620       // instructions. This occurs in LoopRotate when cloning instructions
621       // from the old header to the old preheader. The cloned instruction may
622       // also be a simplified Value, not an Instruction (see LoopRotate).
623       // Also in LoopRotate, even when it's an instruction, due to it being
624       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
625       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
626       if (Instruction *NewInsn =
627               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
628         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
629             NewInsn,
630             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
631                                          MPhiMap, CloneWasSimplified, MSSA),
632             /*Template=*/CloneWasSimplified ? nullptr : MUD,
633             /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
634         if (NewUseOrDef)
635           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
636       }
637     }
638   }
639 }
640 
641 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
642     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
643   auto *MPhi = MSSA->getMemoryAccess(Header);
644   if (!MPhi)
645     return;
646 
647   // Create phi node in the backedge block and populate it with the same
648   // incoming values as MPhi. Skip incoming values coming from Preheader.
649   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
650   bool HasUniqueIncomingValue = true;
651   MemoryAccess *UniqueValue = nullptr;
652   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
653     BasicBlock *IBB = MPhi->getIncomingBlock(I);
654     MemoryAccess *IV = MPhi->getIncomingValue(I);
655     if (IBB != Preheader) {
656       NewMPhi->addIncoming(IV, IBB);
657       if (HasUniqueIncomingValue) {
658         if (!UniqueValue)
659           UniqueValue = IV;
660         else if (UniqueValue != IV)
661           HasUniqueIncomingValue = false;
662       }
663     }
664   }
665 
666   // Update incoming edges into MPhi. Remove all but the incoming edge from
667   // Preheader. Add an edge from NewMPhi
668   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
669   MPhi->setIncomingValue(0, AccFromPreheader);
670   MPhi->setIncomingBlock(0, Preheader);
671   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
672     MPhi->unorderedDeleteIncoming(I);
673   MPhi->addIncoming(NewMPhi, BEBlock);
674 
675   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
676   // replaced with the unique value.
677   tryRemoveTrivialPhi(NewMPhi);
678 }
679 
680 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
681                                            ArrayRef<BasicBlock *> ExitBlocks,
682                                            const ValueToValueMapTy &VMap,
683                                            bool IgnoreIncomingWithNoClones) {
684   PhiToDefMap MPhiMap;
685 
686   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
687     assert(Phi && NewPhi && "Invalid Phi nodes.");
688     BasicBlock *NewPhiBB = NewPhi->getBlock();
689     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
690                                                pred_end(NewPhiBB));
691     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
692       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
693       BasicBlock *IncBB = Phi->getIncomingBlock(It);
694 
695       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
696         IncBB = NewIncBB;
697       else if (IgnoreIncomingWithNoClones)
698         continue;
699 
700       // Now we have IncBB, and will need to add incoming from it to NewPhi.
701 
702       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
703       // NewPhiBB was cloned without that edge.
704       if (!NewPhiBBPreds.count(IncBB))
705         continue;
706 
707       // Determine incoming value and add it as incoming from IncBB.
708       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
709         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
710           Instruction *IncI = IncMUD->getMemoryInst();
711           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
712           if (Instruction *NewIncI =
713                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
714             IncMUD = MSSA->getMemoryAccess(NewIncI);
715             assert(IncMUD &&
716                    "MemoryUseOrDef cannot be null, all preds processed.");
717           }
718         }
719         NewPhi->addIncoming(IncMUD, IncBB);
720       } else {
721         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
722         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
723           NewPhi->addIncoming(NewDefPhi, IncBB);
724         else
725           NewPhi->addIncoming(IncPhi, IncBB);
726       }
727     }
728     if (auto *SingleAccess = onlySingleValue(NewPhi)) {
729       MPhiMap[Phi] = SingleAccess;
730       removeMemoryAccess(NewPhi);
731     }
732   };
733 
734   auto ProcessBlock = [&](BasicBlock *BB) {
735     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
736     if (!NewBlock)
737       return;
738 
739     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
740            "Cloned block should have no accesses");
741 
742     // Add MemoryPhi.
743     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
744       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
745       MPhiMap[MPhi] = NewPhi;
746     }
747     // Update Uses and Defs.
748     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
749   };
750 
751   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
752     ProcessBlock(BB);
753 
754   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
755     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
756       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
757         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
758 }
759 
760 void MemorySSAUpdater::updateForClonedBlockIntoPred(
761     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
762   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
763   // Since those defs/phis must have dominated BB, and also dominate P1.
764   // Defs from BB being used in BB will be replaced with the cloned defs from
765   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
766   // incoming def into the Phi from P1.
767   // Instructions cloned into the predecessor are in practice sometimes
768   // simplified, so disable the use of the template, and create an access from
769   // scratch.
770   PhiToDefMap MPhiMap;
771   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
772     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
773   cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
774 }
775 
776 template <typename Iter>
777 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
778     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
779     DominatorTree &DT) {
780   SmallVector<CFGUpdate, 4> Updates;
781   // Update/insert phis in all successors of exit blocks.
782   for (auto *Exit : ExitBlocks)
783     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
784       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
785         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
786         Updates.push_back({DT.Insert, NewExit, ExitSucc});
787       }
788   applyInsertUpdates(Updates, DT);
789 }
790 
791 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
792     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
793     DominatorTree &DT) {
794   const ValueToValueMapTy *const Arr[] = {&VMap};
795   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
796                                        std::end(Arr), DT);
797 }
798 
799 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
800     ArrayRef<BasicBlock *> ExitBlocks,
801     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
802   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
803     return I.get();
804   };
805   using MappedIteratorType =
806       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
807                       decltype(GetPtr)>;
808   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
809   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
810   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
811 }
812 
813 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
814                                     DominatorTree &DT, bool UpdateDT) {
815   SmallVector<CFGUpdate, 4> DeleteUpdates;
816   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
817   SmallVector<CFGUpdate, 4> InsertUpdates;
818   for (auto &Update : Updates) {
819     if (Update.getKind() == DT.Insert)
820       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
821     else {
822       DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
823       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
824     }
825   }
826 
827   if (!DeleteUpdates.empty()) {
828     if (!UpdateDT) {
829       SmallVector<CFGUpdate, 0> Empty;
830       // Deletes are reversed applied, because this CFGView is pretending the
831       // deletes did not happen yet, hence the edges still exist.
832       DT.applyUpdates(Empty, RevDeleteUpdates);
833     } else {
834       // Apply all updates, with the RevDeleteUpdates as PostCFGView.
835       DT.applyUpdates(Updates, RevDeleteUpdates);
836     }
837 
838     // Note: the MSSA update below doesn't distinguish between a GD with
839     // (RevDelete,false) and (Delete, true), but this matters for the DT
840     // updates above; for "children" purposes they are equivalent; but the
841     // updates themselves convey the desired update, used inside DT only.
842     GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
843     applyInsertUpdates(InsertUpdates, DT, &GD);
844     // Update DT to redelete edges; this matches the real CFG so we can perform
845     // the standard update without a postview of the CFG.
846     DT.applyUpdates(DeleteUpdates);
847   } else {
848     if (UpdateDT)
849       DT.applyUpdates(Updates);
850     GraphDiff<BasicBlock *> GD;
851     applyInsertUpdates(InsertUpdates, DT, &GD);
852   }
853 
854   // Update for deleted edges
855   for (auto &Update : DeleteUpdates)
856     removeEdge(Update.getFrom(), Update.getTo());
857 }
858 
859 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
860                                           DominatorTree &DT) {
861   GraphDiff<BasicBlock *> GD;
862   applyInsertUpdates(Updates, DT, &GD);
863 }
864 
865 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
866                                           DominatorTree &DT,
867                                           const GraphDiff<BasicBlock *> *GD) {
868   // Get recursive last Def, assuming well formed MSSA and updated DT.
869   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
870     while (true) {
871       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
872       // Return last Def or Phi in BB, if it exists.
873       if (Defs)
874         return &*(--Defs->end());
875 
876       // Check number of predecessors, we only care if there's more than one.
877       unsigned Count = 0;
878       BasicBlock *Pred = nullptr;
879       for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
880         Pred = Pi;
881         Count++;
882         if (Count == 2)
883           break;
884       }
885 
886       // If BB has multiple predecessors, get last definition from IDom.
887       if (Count != 1) {
888         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
889         // DT is invalidated. Return LoE as its last def. This will be added to
890         // MemoryPhi node, and later deleted when the block is deleted.
891         if (!DT.getNode(BB))
892           return MSSA->getLiveOnEntryDef();
893         if (auto *IDom = DT.getNode(BB)->getIDom())
894           if (IDom->getBlock() != BB) {
895             BB = IDom->getBlock();
896             continue;
897           }
898         return MSSA->getLiveOnEntryDef();
899       } else {
900         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
901         assert(Count == 1 && Pred && "Single predecessor expected.");
902         // BB can be unreachable though, return LoE if that is the case.
903         if (!DT.getNode(BB))
904           return MSSA->getLiveOnEntryDef();
905         BB = Pred;
906       }
907     };
908     llvm_unreachable("Unable to get last definition.");
909   };
910 
911   // Get nearest IDom given a set of blocks.
912   // TODO: this can be optimized by starting the search at the node with the
913   // lowest level (highest in the tree).
914   auto FindNearestCommonDominator =
915       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
916     BasicBlock *PrevIDom = *BBSet.begin();
917     for (auto *BB : BBSet)
918       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
919     return PrevIDom;
920   };
921 
922   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
923   // include CurrIDom.
924   auto GetNoLongerDomBlocks =
925       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
926           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
927         if (PrevIDom == CurrIDom)
928           return;
929         BlocksPrevDom.push_back(PrevIDom);
930         BasicBlock *NextIDom = PrevIDom;
931         while (BasicBlock *UpIDom =
932                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
933           if (UpIDom == CurrIDom)
934             break;
935           BlocksPrevDom.push_back(UpIDom);
936           NextIDom = UpIDom;
937         }
938       };
939 
940   // Map a BB to its predecessors: added + previously existing. To get a
941   // deterministic order, store predecessors as SetVectors. The order in each
942   // will be defined by the order in Updates (fixed) and the order given by
943   // children<> (also fixed). Since we further iterate over these ordered sets,
944   // we lose the information of multiple edges possibly existing between two
945   // blocks, so we'll keep and EdgeCount map for that.
946   // An alternate implementation could keep unordered set for the predecessors,
947   // traverse either Updates or children<> each time to get  the deterministic
948   // order, and drop the usage of EdgeCount. This alternate approach would still
949   // require querying the maps for each predecessor, and children<> call has
950   // additional computation inside for creating the snapshot-graph predecessors.
951   // As such, we favor using a little additional storage and less compute time.
952   // This decision can be revisited if we find the alternative more favorable.
953 
954   struct PredInfo {
955     SmallSetVector<BasicBlock *, 2> Added;
956     SmallSetVector<BasicBlock *, 2> Prev;
957   };
958   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
959 
960   for (auto &Edge : Updates) {
961     BasicBlock *BB = Edge.getTo();
962     auto &AddedBlockSet = PredMap[BB].Added;
963     AddedBlockSet.insert(Edge.getFrom());
964   }
965 
966   // Store all existing predecessor for each BB, at least one must exist.
967   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
968   SmallPtrSet<BasicBlock *, 2> NewBlocks;
969   for (auto &BBPredPair : PredMap) {
970     auto *BB = BBPredPair.first;
971     const auto &AddedBlockSet = BBPredPair.second.Added;
972     auto &PrevBlockSet = BBPredPair.second.Prev;
973     for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
974       if (!AddedBlockSet.count(Pi))
975         PrevBlockSet.insert(Pi);
976       EdgeCountMap[{Pi, BB}]++;
977     }
978 
979     if (PrevBlockSet.empty()) {
980       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
981       LLVM_DEBUG(
982           dbgs()
983           << "Adding a predecessor to a block with no predecessors. "
984              "This must be an edge added to a new, likely cloned, block. "
985              "Its memory accesses must be already correct, assuming completed "
986              "via the updateExitBlocksForClonedLoop API. "
987              "Assert a single such edge is added so no phi addition or "
988              "additional processing is required.\n");
989       assert(AddedBlockSet.size() == 1 &&
990              "Can only handle adding one predecessor to a new block.");
991       // Need to remove new blocks from PredMap. Remove below to not invalidate
992       // iterator here.
993       NewBlocks.insert(BB);
994     }
995   }
996   // Nothing to process for new/cloned blocks.
997   for (auto *BB : NewBlocks)
998     PredMap.erase(BB);
999 
1000   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
1001   SmallVector<WeakVH, 8> InsertedPhis;
1002 
1003   // First create MemoryPhis in all blocks that don't have one. Create in the
1004   // order found in Updates, not in PredMap, to get deterministic numbering.
1005   for (auto &Edge : Updates) {
1006     BasicBlock *BB = Edge.getTo();
1007     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
1008       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
1009   }
1010 
1011   // Now we'll fill in the MemoryPhis with the right incoming values.
1012   for (auto &BBPredPair : PredMap) {
1013     auto *BB = BBPredPair.first;
1014     const auto &PrevBlockSet = BBPredPair.second.Prev;
1015     const auto &AddedBlockSet = BBPredPair.second.Added;
1016     assert(!PrevBlockSet.empty() &&
1017            "At least one previous predecessor must exist.");
1018 
1019     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
1020     // keeping this map before the loop. We can reuse already populated entries
1021     // if an edge is added from the same predecessor to two different blocks,
1022     // and this does happen in rotate. Note that the map needs to be updated
1023     // when deleting non-necessary phis below, if the phi is in the map by
1024     // replacing the value with DefP1.
1025     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
1026     for (auto *AddedPred : AddedBlockSet) {
1027       auto *DefPn = GetLastDef(AddedPred);
1028       assert(DefPn != nullptr && "Unable to find last definition.");
1029       LastDefAddedPred[AddedPred] = DefPn;
1030     }
1031 
1032     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
1033     // If Phi is not empty, add an incoming edge from each added pred. Must
1034     // still compute blocks with defs to replace for this block below.
1035     if (NewPhi->getNumOperands()) {
1036       for (auto *Pred : AddedBlockSet) {
1037         auto *LastDefForPred = LastDefAddedPred[Pred];
1038         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1039           NewPhi->addIncoming(LastDefForPred, Pred);
1040       }
1041     } else {
1042       // Pick any existing predecessor and get its definition. All other
1043       // existing predecessors should have the same one, since no phi existed.
1044       auto *P1 = *PrevBlockSet.begin();
1045       MemoryAccess *DefP1 = GetLastDef(P1);
1046 
1047       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1048       // nothing to add.
1049       bool InsertPhi = false;
1050       for (auto LastDefPredPair : LastDefAddedPred)
1051         if (DefP1 != LastDefPredPair.second) {
1052           InsertPhi = true;
1053           break;
1054         }
1055       if (!InsertPhi) {
1056         // Since NewPhi may be used in other newly added Phis, replace all uses
1057         // of NewPhi with the definition coming from all predecessors (DefP1),
1058         // before deleting it.
1059         NewPhi->replaceAllUsesWith(DefP1);
1060         removeMemoryAccess(NewPhi);
1061         continue;
1062       }
1063 
1064       // Update Phi with new values for new predecessors and old value for all
1065       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1066       // sets, the order of entries in NewPhi is deterministic.
1067       for (auto *Pred : AddedBlockSet) {
1068         auto *LastDefForPred = LastDefAddedPred[Pred];
1069         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1070           NewPhi->addIncoming(LastDefForPred, Pred);
1071       }
1072       for (auto *Pred : PrevBlockSet)
1073         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1074           NewPhi->addIncoming(DefP1, Pred);
1075     }
1076 
1077     // Get all blocks that used to dominate BB and no longer do after adding
1078     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1079     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1080     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1081     assert(PrevIDom && "Previous IDom should exists");
1082     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1083     assert(NewIDom && "BB should have a new valid idom");
1084     assert(DT.dominates(NewIDom, PrevIDom) &&
1085            "New idom should dominate old idom");
1086     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1087   }
1088 
1089   tryRemoveTrivialPhis(InsertedPhis);
1090   // Create the set of blocks that now have a definition. We'll use this to
1091   // compute IDF and add Phis there next.
1092   SmallVector<BasicBlock *, 8> BlocksToProcess;
1093   for (auto &VH : InsertedPhis)
1094     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1095       BlocksToProcess.push_back(MPhi->getBlock());
1096 
1097   // Compute IDF and add Phis in all IDF blocks that do not have one.
1098   SmallVector<BasicBlock *, 32> IDFBlocks;
1099   if (!BlocksToProcess.empty()) {
1100     ForwardIDFCalculator IDFs(DT, GD);
1101     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1102                                                  BlocksToProcess.end());
1103     IDFs.setDefiningBlocks(DefiningBlocks);
1104     IDFs.calculate(IDFBlocks);
1105 
1106     SmallSetVector<MemoryPhi *, 4> PhisToFill;
1107     // First create all needed Phis.
1108     for (auto *BBIDF : IDFBlocks)
1109       if (!MSSA->getMemoryAccess(BBIDF)) {
1110         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1111         InsertedPhis.push_back(IDFPhi);
1112         PhisToFill.insert(IDFPhi);
1113       }
1114     // Then update or insert their correct incoming values.
1115     for (auto *BBIDF : IDFBlocks) {
1116       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1117       assert(IDFPhi && "Phi must exist");
1118       if (!PhisToFill.count(IDFPhi)) {
1119         // Update existing Phi.
1120         // FIXME: some updates may be redundant, try to optimize and skip some.
1121         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1122           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1123       } else {
1124         for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF))
1125           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1126       }
1127     }
1128   }
1129 
1130   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1131   // longer dominate, replace those with the closest dominating def.
1132   // This will also update optimized accesses, as they're also uses.
1133   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1134     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1135       for (auto &DefToReplaceUses : *DefsList) {
1136         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1137         Value::use_iterator UI = DefToReplaceUses.use_begin(),
1138                             E = DefToReplaceUses.use_end();
1139         for (; UI != E;) {
1140           Use &U = *UI;
1141           ++UI;
1142           MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1143           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1144             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1145             if (!DT.dominates(DominatingBlock, DominatedBlock))
1146               U.set(GetLastDef(DominatedBlock));
1147           } else {
1148             BasicBlock *DominatedBlock = Usr->getBlock();
1149             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1150               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1151                 U.set(DomBlPhi);
1152               else {
1153                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1154                 assert(IDom && "Block must have a valid IDom.");
1155                 U.set(GetLastDef(IDom->getBlock()));
1156               }
1157               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1158             }
1159           }
1160         }
1161       }
1162     }
1163   }
1164   tryRemoveTrivialPhis(InsertedPhis);
1165 }
1166 
1167 // Move What before Where in the MemorySSA IR.
1168 template <class WhereType>
1169 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1170                               WhereType Where) {
1171   // Mark MemoryPhi users of What not to be optimized.
1172   for (auto *U : What->users())
1173     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1174       NonOptPhis.insert(PhiUser);
1175 
1176   // Replace all our users with our defining access.
1177   What->replaceAllUsesWith(What->getDefiningAccess());
1178 
1179   // Let MemorySSA take care of moving it around in the lists.
1180   MSSA->moveTo(What, BB, Where);
1181 
1182   // Now reinsert it into the IR and do whatever fixups needed.
1183   if (auto *MD = dyn_cast<MemoryDef>(What))
1184     insertDef(MD, /*RenameUses=*/true);
1185   else
1186     insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1187 
1188   // Clear dangling pointers. We added all MemoryPhi users, but not all
1189   // of them are removed by fixupDefs().
1190   NonOptPhis.clear();
1191 }
1192 
1193 // Move What before Where in the MemorySSA IR.
1194 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1195   moveTo(What, Where->getBlock(), Where->getIterator());
1196 }
1197 
1198 // Move What after Where in the MemorySSA IR.
1199 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1200   moveTo(What, Where->getBlock(), ++Where->getIterator());
1201 }
1202 
1203 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1204                                    MemorySSA::InsertionPlace Where) {
1205   if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1206     return moveTo(What, BB, Where);
1207 
1208   if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1209     return moveBefore(What, Where);
1210   else
1211     return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1212 }
1213 
1214 // All accesses in To used to be in From. Move to end and update access lists.
1215 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1216                                        Instruction *Start) {
1217 
1218   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1219   if (!Accs)
1220     return;
1221 
1222   assert(Start->getParent() == To && "Incorrect Start instruction");
1223   MemoryAccess *FirstInNew = nullptr;
1224   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1225     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1226       break;
1227   if (FirstInNew) {
1228     auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1229     do {
1230       auto NextIt = ++MUD->getIterator();
1231       MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1232                                     ? nullptr
1233                                     : cast<MemoryUseOrDef>(&*NextIt);
1234       MSSA->moveTo(MUD, To, MemorySSA::End);
1235       // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1236       // to retrieve it again.
1237       Accs = MSSA->getWritableBlockAccesses(From);
1238       MUD = NextMUD;
1239     } while (MUD);
1240   }
1241 
1242   // If all accesses were moved and only a trivial Phi remains, we try to remove
1243   // that Phi. This is needed when From is going to be deleted.
1244   auto *Defs = MSSA->getWritableBlockDefs(From);
1245   if (Defs && !Defs->empty())
1246     if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1247       tryRemoveTrivialPhi(Phi);
1248 }
1249 
1250 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1251                                                 BasicBlock *To,
1252                                                 Instruction *Start) {
1253   assert(MSSA->getBlockAccesses(To) == nullptr &&
1254          "To block is expected to be free of MemoryAccesses.");
1255   moveAllAccesses(From, To, Start);
1256   for (BasicBlock *Succ : successors(To))
1257     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1258       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1259 }
1260 
1261 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1262                                                Instruction *Start) {
1263   assert(From->getUniquePredecessor() == To &&
1264          "From block is expected to have a single predecessor (To).");
1265   moveAllAccesses(From, To, Start);
1266   for (BasicBlock *Succ : successors(From))
1267     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1268       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1269 }
1270 
1271 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1272     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1273     bool IdenticalEdgesWereMerged) {
1274   assert(!MSSA->getWritableBlockAccesses(New) &&
1275          "Access list should be null for a new block.");
1276   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1277   if (!Phi)
1278     return;
1279   if (Old->hasNPredecessors(1)) {
1280     assert(pred_size(New) == Preds.size() &&
1281            "Should have moved all predecessors.");
1282     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1283   } else {
1284     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1285                              "new immediate predecessor.");
1286     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1287     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1288     // Currently only support the case of removing a single incoming edge when
1289     // identical edges were not merged.
1290     if (!IdenticalEdgesWereMerged)
1291       assert(PredsSet.size() == Preds.size() &&
1292              "If identical edges were not merged, we cannot have duplicate "
1293              "blocks in the predecessors");
1294     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1295       if (PredsSet.count(B)) {
1296         NewPhi->addIncoming(MA, B);
1297         if (!IdenticalEdgesWereMerged)
1298           PredsSet.erase(B);
1299         return true;
1300       }
1301       return false;
1302     });
1303     Phi->addIncoming(NewPhi, New);
1304     tryRemoveTrivialPhi(NewPhi);
1305   }
1306 }
1307 
1308 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1309   assert(!MSSA->isLiveOnEntryDef(MA) &&
1310          "Trying to remove the live on entry def");
1311   // We can only delete phi nodes if they have no uses, or we can replace all
1312   // uses with a single definition.
1313   MemoryAccess *NewDefTarget = nullptr;
1314   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1315     // Note that it is sufficient to know that all edges of the phi node have
1316     // the same argument.  If they do, by the definition of dominance frontiers
1317     // (which we used to place this phi), that argument must dominate this phi,
1318     // and thus, must dominate the phi's uses, and so we will not hit the assert
1319     // below.
1320     NewDefTarget = onlySingleValue(MP);
1321     assert((NewDefTarget || MP->use_empty()) &&
1322            "We can't delete this memory phi");
1323   } else {
1324     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1325   }
1326 
1327   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1328 
1329   // Re-point the uses at our defining access
1330   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1331     // Reset optimized on users of this store, and reset the uses.
1332     // A few notes:
1333     // 1. This is a slightly modified version of RAUW to avoid walking the
1334     // uses twice here.
1335     // 2. If we wanted to be complete, we would have to reset the optimized
1336     // flags on users of phi nodes if doing the below makes a phi node have all
1337     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1338     // phi nodes, because doing it here would be N^3.
1339     if (MA->hasValueHandle())
1340       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1341     // Note: We assume MemorySSA is not used in metadata since it's not really
1342     // part of the IR.
1343 
1344     assert(NewDefTarget != MA && "Going into an infinite loop");
1345     while (!MA->use_empty()) {
1346       Use &U = *MA->use_begin();
1347       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1348         MUD->resetOptimized();
1349       if (OptimizePhis)
1350         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1351           PhisToCheck.insert(MP);
1352       U.set(NewDefTarget);
1353     }
1354   }
1355 
1356   // The call below to erase will destroy MA, so we can't change the order we
1357   // are doing things here
1358   MSSA->removeFromLookups(MA);
1359   MSSA->removeFromLists(MA);
1360 
1361   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1362   if (!PhisToCheck.empty()) {
1363     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1364                                            PhisToCheck.end()};
1365     PhisToCheck.clear();
1366 
1367     unsigned PhisSize = PhisToOptimize.size();
1368     while (PhisSize-- > 0)
1369       if (MemoryPhi *MP =
1370               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1371         tryRemoveTrivialPhi(MP);
1372   }
1373 }
1374 
1375 void MemorySSAUpdater::removeBlocks(
1376     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1377   // First delete all uses of BB in MemoryPhis.
1378   for (BasicBlock *BB : DeadBlocks) {
1379     Instruction *TI = BB->getTerminator();
1380     assert(TI && "Basic block expected to have a terminator instruction");
1381     for (BasicBlock *Succ : successors(TI))
1382       if (!DeadBlocks.count(Succ))
1383         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1384           MP->unorderedDeleteIncomingBlock(BB);
1385           tryRemoveTrivialPhi(MP);
1386         }
1387     // Drop all references of all accesses in BB
1388     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1389       for (MemoryAccess &MA : *Acc)
1390         MA.dropAllReferences();
1391   }
1392 
1393   // Next, delete all memory accesses in each block
1394   for (BasicBlock *BB : DeadBlocks) {
1395     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1396     if (!Acc)
1397       continue;
1398     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1399       MemoryAccess *MA = &*AB;
1400       ++AB;
1401       MSSA->removeFromLookups(MA);
1402       MSSA->removeFromLists(MA);
1403     }
1404   }
1405 }
1406 
1407 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1408   for (auto &VH : UpdatedPHIs)
1409     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1410       tryRemoveTrivialPhi(MPhi);
1411 }
1412 
1413 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1414   const BasicBlock *BB = I->getParent();
1415   // Remove memory accesses in BB for I and all following instructions.
1416   auto BBI = I->getIterator(), BBE = BB->end();
1417   // FIXME: If this becomes too expensive, iterate until the first instruction
1418   // with a memory access, then iterate over MemoryAccesses.
1419   while (BBI != BBE)
1420     removeMemoryAccess(&*(BBI++));
1421   // Update phis in BB's successors to remove BB.
1422   SmallVector<WeakVH, 16> UpdatedPHIs;
1423   for (const BasicBlock *Successor : successors(BB)) {
1424     removeDuplicatePhiEdgesBetween(BB, Successor);
1425     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1426       MPhi->unorderedDeleteIncomingBlock(BB);
1427       UpdatedPHIs.push_back(MPhi);
1428     }
1429   }
1430   // Optimize trivial phis.
1431   tryRemoveTrivialPhis(UpdatedPHIs);
1432 }
1433 
1434 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1435                                                          const BasicBlock *To) {
1436   const BasicBlock *BB = BI->getParent();
1437   SmallVector<WeakVH, 16> UpdatedPHIs;
1438   for (const BasicBlock *Succ : successors(BB)) {
1439     removeDuplicatePhiEdgesBetween(BB, Succ);
1440     if (Succ != To)
1441       if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1442         MPhi->unorderedDeleteIncomingBlock(BB);
1443         UpdatedPHIs.push_back(MPhi);
1444       }
1445   }
1446   // Optimize trivial phis.
1447   tryRemoveTrivialPhis(UpdatedPHIs);
1448 }
1449 
1450 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1451     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1452     MemorySSA::InsertionPlace Point) {
1453   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1454   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1455   return NewAccess;
1456 }
1457 
1458 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1459     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1460   assert(I->getParent() == InsertPt->getBlock() &&
1461          "New and old access must be in the same block");
1462   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1463   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1464                               InsertPt->getIterator());
1465   return NewAccess;
1466 }
1467 
1468 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1469     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1470   assert(I->getParent() == InsertPt->getBlock() &&
1471          "New and old access must be in the same block");
1472   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1473   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1474                               ++InsertPt->getIterator());
1475   return NewAccess;
1476 }
1477