1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Error E = Stream.advance().moveInto(Entry))
183       return std::move(E);
184 
185     switch (Entry.Kind) {
186     default:
187     case BitstreamEntry::Error:
188       return error("Malformed block");
189     case BitstreamEntry::EndBlock:
190       return ProducerIdentification;
191     case BitstreamEntry::Record:
192       // The interesting case.
193       break;
194     }
195 
196     // Read a record.
197     Record.clear();
198     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
199     if (!MaybeBitCode)
200       return MaybeBitCode.takeError();
201     switch (MaybeBitCode.get()) {
202     default: // Default behavior: reject
203       return error("Invalid value");
204     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
205       convertToString(Record, 0, ProducerIdentification);
206       break;
207     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
208       unsigned epoch = (unsigned)Record[0];
209       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
210         return error(
211           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
212           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
213       }
214     }
215     }
216   }
217 }
218 
219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
220   // We expect a number of well-defined blocks, though we don't necessarily
221   // need to understand them all.
222   while (true) {
223     if (Stream.AtEndOfStream())
224       return "";
225 
226     BitstreamEntry Entry;
227     if (Error E = Stream.advance().moveInto(Entry))
228       return std::move(E);
229 
230     switch (Entry.Kind) {
231     case BitstreamEntry::EndBlock:
232     case BitstreamEntry::Error:
233       return error("Malformed block");
234 
235     case BitstreamEntry::SubBlock:
236       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
237         return readIdentificationBlock(Stream);
238 
239       // Ignore other sub-blocks.
240       if (Error Err = Stream.SkipBlock())
241         return std::move(Err);
242       continue;
243     case BitstreamEntry::Record:
244       if (Error E = Stream.skipRecord(Entry.ID).takeError())
245         return std::move(E);
246       continue;
247     }
248   }
249 }
250 
251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
252   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
253     return std::move(Err);
254 
255   SmallVector<uint64_t, 64> Record;
256   // Read all the records for this module.
257 
258   while (true) {
259     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
260     if (!MaybeEntry)
261       return MaybeEntry.takeError();
262     BitstreamEntry Entry = MaybeEntry.get();
263 
264     switch (Entry.Kind) {
265     case BitstreamEntry::SubBlock: // Handled for us already.
266     case BitstreamEntry::Error:
267       return error("Malformed block");
268     case BitstreamEntry::EndBlock:
269       return false;
270     case BitstreamEntry::Record:
271       // The interesting case.
272       break;
273     }
274 
275     // Read a record.
276     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
277     if (!MaybeRecord)
278       return MaybeRecord.takeError();
279     switch (MaybeRecord.get()) {
280     default:
281       break; // Default behavior, ignore unknown content.
282     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
283       std::string S;
284       if (convertToString(Record, 0, S))
285         return error("Invalid record");
286       // Check for the i386 and other (x86_64, ARM) conventions
287       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
288           S.find("__OBJC,__category") != std::string::npos)
289         return true;
290       break;
291     }
292     }
293     Record.clear();
294   }
295   llvm_unreachable("Exit infinite loop");
296 }
297 
298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
299   // We expect a number of well-defined blocks, though we don't necessarily
300   // need to understand them all.
301   while (true) {
302     BitstreamEntry Entry;
303     if (Error E = Stream.advance().moveInto(Entry))
304       return std::move(E);
305 
306     switch (Entry.Kind) {
307     case BitstreamEntry::Error:
308       return error("Malformed block");
309     case BitstreamEntry::EndBlock:
310       return false;
311 
312     case BitstreamEntry::SubBlock:
313       if (Entry.ID == bitc::MODULE_BLOCK_ID)
314         return hasObjCCategoryInModule(Stream);
315 
316       // Ignore other sub-blocks.
317       if (Error Err = Stream.SkipBlock())
318         return std::move(Err);
319       continue;
320 
321     case BitstreamEntry::Record:
322       if (Error E = Stream.skipRecord(Entry.ID).takeError())
323         return std::move(E);
324       continue;
325     }
326   }
327 }
328 
329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
330   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
331     return std::move(Err);
332 
333   SmallVector<uint64_t, 64> Record;
334 
335   std::string Triple;
336 
337   // Read all the records for this module.
338   while (true) {
339     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
340     if (!MaybeEntry)
341       return MaybeEntry.takeError();
342     BitstreamEntry Entry = MaybeEntry.get();
343 
344     switch (Entry.Kind) {
345     case BitstreamEntry::SubBlock: // Handled for us already.
346     case BitstreamEntry::Error:
347       return error("Malformed block");
348     case BitstreamEntry::EndBlock:
349       return Triple;
350     case BitstreamEntry::Record:
351       // The interesting case.
352       break;
353     }
354 
355     // Read a record.
356     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
357     if (!MaybeRecord)
358       return MaybeRecord.takeError();
359     switch (MaybeRecord.get()) {
360     default: break;  // Default behavior, ignore unknown content.
361     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
362       std::string S;
363       if (convertToString(Record, 0, S))
364         return error("Invalid record");
365       Triple = S;
366       break;
367     }
368     }
369     Record.clear();
370   }
371   llvm_unreachable("Exit infinite loop");
372 }
373 
374 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
375   // We expect a number of well-defined blocks, though we don't necessarily
376   // need to understand them all.
377   while (true) {
378     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
379     if (!MaybeEntry)
380       return MaybeEntry.takeError();
381     BitstreamEntry Entry = MaybeEntry.get();
382 
383     switch (Entry.Kind) {
384     case BitstreamEntry::Error:
385       return error("Malformed block");
386     case BitstreamEntry::EndBlock:
387       return "";
388 
389     case BitstreamEntry::SubBlock:
390       if (Entry.ID == bitc::MODULE_BLOCK_ID)
391         return readModuleTriple(Stream);
392 
393       // Ignore other sub-blocks.
394       if (Error Err = Stream.SkipBlock())
395         return std::move(Err);
396       continue;
397 
398     case BitstreamEntry::Record:
399       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
400         continue;
401       else
402         return Skipped.takeError();
403     }
404   }
405 }
406 
407 namespace {
408 
409 class BitcodeReaderBase {
410 protected:
411   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
412       : Stream(std::move(Stream)), Strtab(Strtab) {
413     this->Stream.setBlockInfo(&BlockInfo);
414   }
415 
416   BitstreamBlockInfo BlockInfo;
417   BitstreamCursor Stream;
418   StringRef Strtab;
419 
420   /// In version 2 of the bitcode we store names of global values and comdats in
421   /// a string table rather than in the VST.
422   bool UseStrtab = false;
423 
424   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
425 
426   /// If this module uses a string table, pop the reference to the string table
427   /// and return the referenced string and the rest of the record. Otherwise
428   /// just return the record itself.
429   std::pair<StringRef, ArrayRef<uint64_t>>
430   readNameFromStrtab(ArrayRef<uint64_t> Record);
431 
432   bool readBlockInfo();
433 
434   // Contains an arbitrary and optional string identifying the bitcode producer
435   std::string ProducerIdentification;
436 
437   Error error(const Twine &Message);
438 };
439 
440 } // end anonymous namespace
441 
442 Error BitcodeReaderBase::error(const Twine &Message) {
443   std::string FullMsg = Message.str();
444   if (!ProducerIdentification.empty())
445     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
446                LLVM_VERSION_STRING "')";
447   return ::error(FullMsg);
448 }
449 
450 Expected<unsigned>
451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
452   if (Record.empty())
453     return error("Invalid record");
454   unsigned ModuleVersion = Record[0];
455   if (ModuleVersion > 2)
456     return error("Invalid value");
457   UseStrtab = ModuleVersion >= 2;
458   return ModuleVersion;
459 }
460 
461 std::pair<StringRef, ArrayRef<uint64_t>>
462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
463   if (!UseStrtab)
464     return {"", Record};
465   // Invalid reference. Let the caller complain about the record being empty.
466   if (Record[0] + Record[1] > Strtab.size())
467     return {"", {}};
468   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
469 }
470 
471 namespace {
472 
473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
474   LLVMContext &Context;
475   Module *TheModule = nullptr;
476   // Next offset to start scanning for lazy parsing of function bodies.
477   uint64_t NextUnreadBit = 0;
478   // Last function offset found in the VST.
479   uint64_t LastFunctionBlockBit = 0;
480   bool SeenValueSymbolTable = false;
481   uint64_t VSTOffset = 0;
482 
483   std::vector<std::string> SectionTable;
484   std::vector<std::string> GCTable;
485 
486   std::vector<Type*> TypeList;
487   DenseMap<Function *, FunctionType *> FunctionTypes;
488   BitcodeReaderValueList ValueList;
489   Optional<MetadataLoader> MDLoader;
490   std::vector<Comdat *> ComdatList;
491   DenseSet<GlobalObject *> ImplicitComdatObjects;
492   SmallVector<Instruction *, 64> InstructionList;
493 
494   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
495   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
496 
497   struct FunctionOperandInfo {
498     Function *F;
499     unsigned PersonalityFn;
500     unsigned Prefix;
501     unsigned Prologue;
502   };
503   std::vector<FunctionOperandInfo> FunctionOperands;
504 
505   /// The set of attributes by index.  Index zero in the file is for null, and
506   /// is thus not represented here.  As such all indices are off by one.
507   std::vector<AttributeList> MAttributes;
508 
509   /// The set of attribute groups.
510   std::map<unsigned, AttributeList> MAttributeGroups;
511 
512   /// While parsing a function body, this is a list of the basic blocks for the
513   /// function.
514   std::vector<BasicBlock*> FunctionBBs;
515 
516   // When reading the module header, this list is populated with functions that
517   // have bodies later in the file.
518   std::vector<Function*> FunctionsWithBodies;
519 
520   // When intrinsic functions are encountered which require upgrading they are
521   // stored here with their replacement function.
522   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
523   UpdatedIntrinsicMap UpgradedIntrinsics;
524   // Intrinsics which were remangled because of types rename
525   UpdatedIntrinsicMap RemangledIntrinsics;
526 
527   // Several operations happen after the module header has been read, but
528   // before function bodies are processed. This keeps track of whether
529   // we've done this yet.
530   bool SeenFirstFunctionBody = false;
531 
532   /// When function bodies are initially scanned, this map contains info about
533   /// where to find deferred function body in the stream.
534   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
535 
536   /// When Metadata block is initially scanned when parsing the module, we may
537   /// choose to defer parsing of the metadata. This vector contains info about
538   /// which Metadata blocks are deferred.
539   std::vector<uint64_t> DeferredMetadataInfo;
540 
541   /// These are basic blocks forward-referenced by block addresses.  They are
542   /// inserted lazily into functions when they're loaded.  The basic block ID is
543   /// its index into the vector.
544   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
545   std::deque<Function *> BasicBlockFwdRefQueue;
546 
547   /// Indicates that we are using a new encoding for instruction operands where
548   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
549   /// instruction number, for a more compact encoding.  Some instruction
550   /// operands are not relative to the instruction ID: basic block numbers, and
551   /// types. Once the old style function blocks have been phased out, we would
552   /// not need this flag.
553   bool UseRelativeIDs = false;
554 
555   /// True if all functions will be materialized, negating the need to process
556   /// (e.g.) blockaddress forward references.
557   bool WillMaterializeAllForwardRefs = false;
558 
559   bool StripDebugInfo = false;
560   TBAAVerifier TBAAVerifyHelper;
561 
562   std::vector<std::string> BundleTags;
563   SmallVector<SyncScope::ID, 8> SSIDs;
564 
565 public:
566   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
567                 StringRef ProducerIdentification, LLVMContext &Context);
568 
569   Error materializeForwardReferencedFunctions();
570 
571   Error materialize(GlobalValue *GV) override;
572   Error materializeModule() override;
573   std::vector<StructType *> getIdentifiedStructTypes() const override;
574 
575   /// Main interface to parsing a bitcode buffer.
576   /// \returns true if an error occurred.
577   Error parseBitcodeInto(
578       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
579       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
580 
581   static uint64_t decodeSignRotatedValue(uint64_t V);
582 
583   /// Materialize any deferred Metadata block.
584   Error materializeMetadata() override;
585 
586   void setStripDebugInfo() override;
587 
588 private:
589   std::vector<StructType *> IdentifiedStructTypes;
590   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
591   StructType *createIdentifiedStructType(LLVMContext &Context);
592 
593   Type *getTypeByID(unsigned ID);
594 
595   Value *getFnValueByID(unsigned ID, Type *Ty) {
596     if (Ty && Ty->isMetadataTy())
597       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
598     return ValueList.getValueFwdRef(ID, Ty);
599   }
600 
601   Metadata *getFnMetadataByID(unsigned ID) {
602     return MDLoader->getMetadataFwdRefOrLoad(ID);
603   }
604 
605   BasicBlock *getBasicBlock(unsigned ID) const {
606     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
607     return FunctionBBs[ID];
608   }
609 
610   AttributeList getAttributes(unsigned i) const {
611     if (i-1 < MAttributes.size())
612       return MAttributes[i-1];
613     return AttributeList();
614   }
615 
616   /// Read a value/type pair out of the specified record from slot 'Slot'.
617   /// Increment Slot past the number of slots used in the record. Return true on
618   /// failure.
619   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
620                         unsigned InstNum, Value *&ResVal) {
621     if (Slot == Record.size()) return true;
622     unsigned ValNo = (unsigned)Record[Slot++];
623     // Adjust the ValNo, if it was encoded relative to the InstNum.
624     if (UseRelativeIDs)
625       ValNo = InstNum - ValNo;
626     if (ValNo < InstNum) {
627       // If this is not a forward reference, just return the value we already
628       // have.
629       ResVal = getFnValueByID(ValNo, nullptr);
630       return ResVal == nullptr;
631     }
632     if (Slot == Record.size())
633       return true;
634 
635     unsigned TypeNo = (unsigned)Record[Slot++];
636     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
637     return ResVal == nullptr;
638   }
639 
640   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
641   /// past the number of slots used by the value in the record. Return true if
642   /// there is an error.
643   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
644                 unsigned InstNum, Type *Ty, Value *&ResVal) {
645     if (getValue(Record, Slot, InstNum, Ty, ResVal))
646       return true;
647     // All values currently take a single record slot.
648     ++Slot;
649     return false;
650   }
651 
652   /// Like popValue, but does not increment the Slot number.
653   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
654                 unsigned InstNum, Type *Ty, Value *&ResVal) {
655     ResVal = getValue(Record, Slot, InstNum, Ty);
656     return ResVal == nullptr;
657   }
658 
659   /// Version of getValue that returns ResVal directly, or 0 if there is an
660   /// error.
661   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
662                   unsigned InstNum, Type *Ty) {
663     if (Slot == Record.size()) return nullptr;
664     unsigned ValNo = (unsigned)Record[Slot];
665     // Adjust the ValNo, if it was encoded relative to the InstNum.
666     if (UseRelativeIDs)
667       ValNo = InstNum - ValNo;
668     return getFnValueByID(ValNo, Ty);
669   }
670 
671   /// Like getValue, but decodes signed VBRs.
672   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
673                         unsigned InstNum, Type *Ty) {
674     if (Slot == Record.size()) return nullptr;
675     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
676     // Adjust the ValNo, if it was encoded relative to the InstNum.
677     if (UseRelativeIDs)
678       ValNo = InstNum - ValNo;
679     return getFnValueByID(ValNo, Ty);
680   }
681 
682   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
683   /// corresponding argument's pointee type. Also upgrades intrinsics that now
684   /// require an elementtype attribute.
685   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
686 
687   /// Converts alignment exponent (i.e. power of two (or zero)) to the
688   /// corresponding alignment to use. If alignment is too large, returns
689   /// a corresponding error code.
690   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
691   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
692   Error parseModule(
693       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
694       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
695 
696   Error parseComdatRecord(ArrayRef<uint64_t> Record);
697   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
698   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
699   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
700                                         ArrayRef<uint64_t> Record);
701 
702   Error parseAttributeBlock();
703   Error parseAttributeGroupBlock();
704   Error parseTypeTable();
705   Error parseTypeTableBody();
706   Error parseOperandBundleTags();
707   Error parseSyncScopeNames();
708 
709   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
710                                 unsigned NameIndex, Triple &TT);
711   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
712                                ArrayRef<uint64_t> Record);
713   Error parseValueSymbolTable(uint64_t Offset = 0);
714   Error parseGlobalValueSymbolTable();
715   Error parseConstants();
716   Error rememberAndSkipFunctionBodies();
717   Error rememberAndSkipFunctionBody();
718   /// Save the positions of the Metadata blocks and skip parsing the blocks.
719   Error rememberAndSkipMetadata();
720   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
721   Error parseFunctionBody(Function *F);
722   Error globalCleanup();
723   Error resolveGlobalAndIndirectSymbolInits();
724   Error parseUseLists();
725   Error findFunctionInStream(
726       Function *F,
727       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
728 
729   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
730 };
731 
732 /// Class to manage reading and parsing function summary index bitcode
733 /// files/sections.
734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
735   /// The module index built during parsing.
736   ModuleSummaryIndex &TheIndex;
737 
738   /// Indicates whether we have encountered a global value summary section
739   /// yet during parsing.
740   bool SeenGlobalValSummary = false;
741 
742   /// Indicates whether we have already parsed the VST, used for error checking.
743   bool SeenValueSymbolTable = false;
744 
745   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
746   /// Used to enable on-demand parsing of the VST.
747   uint64_t VSTOffset = 0;
748 
749   // Map to save ValueId to ValueInfo association that was recorded in the
750   // ValueSymbolTable. It is used after the VST is parsed to convert
751   // call graph edges read from the function summary from referencing
752   // callees by their ValueId to using the ValueInfo instead, which is how
753   // they are recorded in the summary index being built.
754   // We save a GUID which refers to the same global as the ValueInfo, but
755   // ignoring the linkage, i.e. for values other than local linkage they are
756   // identical.
757   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
758       ValueIdToValueInfoMap;
759 
760   /// Map populated during module path string table parsing, from the
761   /// module ID to a string reference owned by the index's module
762   /// path string table, used to correlate with combined index
763   /// summary records.
764   DenseMap<uint64_t, StringRef> ModuleIdMap;
765 
766   /// Original source file name recorded in a bitcode record.
767   std::string SourceFileName;
768 
769   /// The string identifier given to this module by the client, normally the
770   /// path to the bitcode file.
771   StringRef ModulePath;
772 
773   /// For per-module summary indexes, the unique numerical identifier given to
774   /// this module by the client.
775   unsigned ModuleId;
776 
777 public:
778   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
779                                   ModuleSummaryIndex &TheIndex,
780                                   StringRef ModulePath, unsigned ModuleId);
781 
782   Error parseModule();
783 
784 private:
785   void setValueGUID(uint64_t ValueID, StringRef ValueName,
786                     GlobalValue::LinkageTypes Linkage,
787                     StringRef SourceFileName);
788   Error parseValueSymbolTable(
789       uint64_t Offset,
790       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
791   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
792   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
793                                                     bool IsOldProfileFormat,
794                                                     bool HasProfile,
795                                                     bool HasRelBF);
796   Error parseEntireSummary(unsigned ID);
797   Error parseModuleStringTable();
798   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
799   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
800                                        TypeIdCompatibleVtableInfo &TypeId);
801   std::vector<FunctionSummary::ParamAccess>
802   parseParamAccesses(ArrayRef<uint64_t> Record);
803 
804   std::pair<ValueInfo, GlobalValue::GUID>
805   getValueInfoFromValueId(unsigned ValueId);
806 
807   void addThisModule();
808   ModuleSummaryIndex::ModuleInfo *getThisModule();
809 };
810 
811 } // end anonymous namespace
812 
813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
814                                                     Error Err) {
815   if (Err) {
816     std::error_code EC;
817     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
818       EC = EIB.convertToErrorCode();
819       Ctx.emitError(EIB.message());
820     });
821     return EC;
822   }
823   return std::error_code();
824 }
825 
826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
827                              StringRef ProducerIdentification,
828                              LLVMContext &Context)
829     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
830       ValueList(Context, Stream.SizeInBytes()) {
831   this->ProducerIdentification = std::string(ProducerIdentification);
832 }
833 
834 Error BitcodeReader::materializeForwardReferencedFunctions() {
835   if (WillMaterializeAllForwardRefs)
836     return Error::success();
837 
838   // Prevent recursion.
839   WillMaterializeAllForwardRefs = true;
840 
841   while (!BasicBlockFwdRefQueue.empty()) {
842     Function *F = BasicBlockFwdRefQueue.front();
843     BasicBlockFwdRefQueue.pop_front();
844     assert(F && "Expected valid function");
845     if (!BasicBlockFwdRefs.count(F))
846       // Already materialized.
847       continue;
848 
849     // Check for a function that isn't materializable to prevent an infinite
850     // loop.  When parsing a blockaddress stored in a global variable, there
851     // isn't a trivial way to check if a function will have a body without a
852     // linear search through FunctionsWithBodies, so just check it here.
853     if (!F->isMaterializable())
854       return error("Never resolved function from blockaddress");
855 
856     // Try to materialize F.
857     if (Error Err = materialize(F))
858       return Err;
859   }
860   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
861 
862   // Reset state.
863   WillMaterializeAllForwardRefs = false;
864   return Error::success();
865 }
866 
867 //===----------------------------------------------------------------------===//
868 //  Helper functions to implement forward reference resolution, etc.
869 //===----------------------------------------------------------------------===//
870 
871 static bool hasImplicitComdat(size_t Val) {
872   switch (Val) {
873   default:
874     return false;
875   case 1:  // Old WeakAnyLinkage
876   case 4:  // Old LinkOnceAnyLinkage
877   case 10: // Old WeakODRLinkage
878   case 11: // Old LinkOnceODRLinkage
879     return true;
880   }
881 }
882 
883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
884   switch (Val) {
885   default: // Map unknown/new linkages to external
886   case 0:
887     return GlobalValue::ExternalLinkage;
888   case 2:
889     return GlobalValue::AppendingLinkage;
890   case 3:
891     return GlobalValue::InternalLinkage;
892   case 5:
893     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
894   case 6:
895     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
896   case 7:
897     return GlobalValue::ExternalWeakLinkage;
898   case 8:
899     return GlobalValue::CommonLinkage;
900   case 9:
901     return GlobalValue::PrivateLinkage;
902   case 12:
903     return GlobalValue::AvailableExternallyLinkage;
904   case 13:
905     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
906   case 14:
907     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
908   case 15:
909     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
910   case 1: // Old value with implicit comdat.
911   case 16:
912     return GlobalValue::WeakAnyLinkage;
913   case 10: // Old value with implicit comdat.
914   case 17:
915     return GlobalValue::WeakODRLinkage;
916   case 4: // Old value with implicit comdat.
917   case 18:
918     return GlobalValue::LinkOnceAnyLinkage;
919   case 11: // Old value with implicit comdat.
920   case 19:
921     return GlobalValue::LinkOnceODRLinkage;
922   }
923 }
924 
925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
926   FunctionSummary::FFlags Flags;
927   Flags.ReadNone = RawFlags & 0x1;
928   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
929   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
930   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
931   Flags.NoInline = (RawFlags >> 4) & 0x1;
932   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
933   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
934   Flags.MayThrow = (RawFlags >> 7) & 0x1;
935   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
936   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
937   return Flags;
938 }
939 
940 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
941 //
942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
943 // visibility: [8, 10).
944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
945                                                             uint64_t Version) {
946   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
947   // like getDecodedLinkage() above. Any future change to the linkage enum and
948   // to getDecodedLinkage() will need to be taken into account here as above.
949   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
950   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
951   RawFlags = RawFlags >> 4;
952   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
953   // The Live flag wasn't introduced until version 3. For dead stripping
954   // to work correctly on earlier versions, we must conservatively treat all
955   // values as live.
956   bool Live = (RawFlags & 0x2) || Version < 3;
957   bool Local = (RawFlags & 0x4);
958   bool AutoHide = (RawFlags & 0x8);
959 
960   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
961                                      Live, Local, AutoHide);
962 }
963 
964 // Decode the flags for GlobalVariable in the summary
965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
966   return GlobalVarSummary::GVarFlags(
967       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
968       (RawFlags & 0x4) ? true : false,
969       (GlobalObject::VCallVisibility)(RawFlags >> 3));
970 }
971 
972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
973   switch (Val) {
974   default: // Map unknown visibilities to default.
975   case 0: return GlobalValue::DefaultVisibility;
976   case 1: return GlobalValue::HiddenVisibility;
977   case 2: return GlobalValue::ProtectedVisibility;
978   }
979 }
980 
981 static GlobalValue::DLLStorageClassTypes
982 getDecodedDLLStorageClass(unsigned Val) {
983   switch (Val) {
984   default: // Map unknown values to default.
985   case 0: return GlobalValue::DefaultStorageClass;
986   case 1: return GlobalValue::DLLImportStorageClass;
987   case 2: return GlobalValue::DLLExportStorageClass;
988   }
989 }
990 
991 static bool getDecodedDSOLocal(unsigned Val) {
992   switch(Val) {
993   default: // Map unknown values to preemptable.
994   case 0:  return false;
995   case 1:  return true;
996   }
997 }
998 
999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1000   switch (Val) {
1001     case 0: return GlobalVariable::NotThreadLocal;
1002     default: // Map unknown non-zero value to general dynamic.
1003     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1004     case 2: return GlobalVariable::LocalDynamicTLSModel;
1005     case 3: return GlobalVariable::InitialExecTLSModel;
1006     case 4: return GlobalVariable::LocalExecTLSModel;
1007   }
1008 }
1009 
1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1011   switch (Val) {
1012     default: // Map unknown to UnnamedAddr::None.
1013     case 0: return GlobalVariable::UnnamedAddr::None;
1014     case 1: return GlobalVariable::UnnamedAddr::Global;
1015     case 2: return GlobalVariable::UnnamedAddr::Local;
1016   }
1017 }
1018 
1019 static int getDecodedCastOpcode(unsigned Val) {
1020   switch (Val) {
1021   default: return -1;
1022   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1023   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1024   case bitc::CAST_SEXT    : return Instruction::SExt;
1025   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1026   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1027   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1028   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1029   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1030   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1031   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1032   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1033   case bitc::CAST_BITCAST : return Instruction::BitCast;
1034   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1035   }
1036 }
1037 
1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1039   bool IsFP = Ty->isFPOrFPVectorTy();
1040   // UnOps are only valid for int/fp or vector of int/fp types
1041   if (!IsFP && !Ty->isIntOrIntVectorTy())
1042     return -1;
1043 
1044   switch (Val) {
1045   default:
1046     return -1;
1047   case bitc::UNOP_FNEG:
1048     return IsFP ? Instruction::FNeg : -1;
1049   }
1050 }
1051 
1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1053   bool IsFP = Ty->isFPOrFPVectorTy();
1054   // BinOps are only valid for int/fp or vector of int/fp types
1055   if (!IsFP && !Ty->isIntOrIntVectorTy())
1056     return -1;
1057 
1058   switch (Val) {
1059   default:
1060     return -1;
1061   case bitc::BINOP_ADD:
1062     return IsFP ? Instruction::FAdd : Instruction::Add;
1063   case bitc::BINOP_SUB:
1064     return IsFP ? Instruction::FSub : Instruction::Sub;
1065   case bitc::BINOP_MUL:
1066     return IsFP ? Instruction::FMul : Instruction::Mul;
1067   case bitc::BINOP_UDIV:
1068     return IsFP ? -1 : Instruction::UDiv;
1069   case bitc::BINOP_SDIV:
1070     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1071   case bitc::BINOP_UREM:
1072     return IsFP ? -1 : Instruction::URem;
1073   case bitc::BINOP_SREM:
1074     return IsFP ? Instruction::FRem : Instruction::SRem;
1075   case bitc::BINOP_SHL:
1076     return IsFP ? -1 : Instruction::Shl;
1077   case bitc::BINOP_LSHR:
1078     return IsFP ? -1 : Instruction::LShr;
1079   case bitc::BINOP_ASHR:
1080     return IsFP ? -1 : Instruction::AShr;
1081   case bitc::BINOP_AND:
1082     return IsFP ? -1 : Instruction::And;
1083   case bitc::BINOP_OR:
1084     return IsFP ? -1 : Instruction::Or;
1085   case bitc::BINOP_XOR:
1086     return IsFP ? -1 : Instruction::Xor;
1087   }
1088 }
1089 
1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1091   switch (Val) {
1092   default: return AtomicRMWInst::BAD_BINOP;
1093   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1094   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1095   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1096   case bitc::RMW_AND: return AtomicRMWInst::And;
1097   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1098   case bitc::RMW_OR: return AtomicRMWInst::Or;
1099   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1100   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1101   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1102   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1103   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1104   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1105   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1106   }
1107 }
1108 
1109 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1110   switch (Val) {
1111   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1112   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1113   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1114   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1115   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1116   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1117   default: // Map unknown orderings to sequentially-consistent.
1118   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1119   }
1120 }
1121 
1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1123   switch (Val) {
1124   default: // Map unknown selection kinds to any.
1125   case bitc::COMDAT_SELECTION_KIND_ANY:
1126     return Comdat::Any;
1127   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1128     return Comdat::ExactMatch;
1129   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1130     return Comdat::Largest;
1131   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1132     return Comdat::NoDeduplicate;
1133   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1134     return Comdat::SameSize;
1135   }
1136 }
1137 
1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1139   FastMathFlags FMF;
1140   if (0 != (Val & bitc::UnsafeAlgebra))
1141     FMF.setFast();
1142   if (0 != (Val & bitc::AllowReassoc))
1143     FMF.setAllowReassoc();
1144   if (0 != (Val & bitc::NoNaNs))
1145     FMF.setNoNaNs();
1146   if (0 != (Val & bitc::NoInfs))
1147     FMF.setNoInfs();
1148   if (0 != (Val & bitc::NoSignedZeros))
1149     FMF.setNoSignedZeros();
1150   if (0 != (Val & bitc::AllowReciprocal))
1151     FMF.setAllowReciprocal();
1152   if (0 != (Val & bitc::AllowContract))
1153     FMF.setAllowContract(true);
1154   if (0 != (Val & bitc::ApproxFunc))
1155     FMF.setApproxFunc();
1156   return FMF;
1157 }
1158 
1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1160   switch (Val) {
1161   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1162   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1163   }
1164 }
1165 
1166 Type *BitcodeReader::getTypeByID(unsigned ID) {
1167   // The type table size is always specified correctly.
1168   if (ID >= TypeList.size())
1169     return nullptr;
1170 
1171   if (Type *Ty = TypeList[ID])
1172     return Ty;
1173 
1174   // If we have a forward reference, the only possible case is when it is to a
1175   // named struct.  Just create a placeholder for now.
1176   return TypeList[ID] = createIdentifiedStructType(Context);
1177 }
1178 
1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1180                                                       StringRef Name) {
1181   auto *Ret = StructType::create(Context, Name);
1182   IdentifiedStructTypes.push_back(Ret);
1183   return Ret;
1184 }
1185 
1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1187   auto *Ret = StructType::create(Context);
1188   IdentifiedStructTypes.push_back(Ret);
1189   return Ret;
1190 }
1191 
1192 //===----------------------------------------------------------------------===//
1193 //  Functions for parsing blocks from the bitcode file
1194 //===----------------------------------------------------------------------===//
1195 
1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1197   switch (Val) {
1198   case Attribute::EndAttrKinds:
1199   case Attribute::EmptyKey:
1200   case Attribute::TombstoneKey:
1201     llvm_unreachable("Synthetic enumerators which should never get here");
1202 
1203   case Attribute::None:            return 0;
1204   case Attribute::ZExt:            return 1 << 0;
1205   case Attribute::SExt:            return 1 << 1;
1206   case Attribute::NoReturn:        return 1 << 2;
1207   case Attribute::InReg:           return 1 << 3;
1208   case Attribute::StructRet:       return 1 << 4;
1209   case Attribute::NoUnwind:        return 1 << 5;
1210   case Attribute::NoAlias:         return 1 << 6;
1211   case Attribute::ByVal:           return 1 << 7;
1212   case Attribute::Nest:            return 1 << 8;
1213   case Attribute::ReadNone:        return 1 << 9;
1214   case Attribute::ReadOnly:        return 1 << 10;
1215   case Attribute::NoInline:        return 1 << 11;
1216   case Attribute::AlwaysInline:    return 1 << 12;
1217   case Attribute::OptimizeForSize: return 1 << 13;
1218   case Attribute::StackProtect:    return 1 << 14;
1219   case Attribute::StackProtectReq: return 1 << 15;
1220   case Attribute::Alignment:       return 31 << 16;
1221   case Attribute::NoCapture:       return 1 << 21;
1222   case Attribute::NoRedZone:       return 1 << 22;
1223   case Attribute::NoImplicitFloat: return 1 << 23;
1224   case Attribute::Naked:           return 1 << 24;
1225   case Attribute::InlineHint:      return 1 << 25;
1226   case Attribute::StackAlignment:  return 7 << 26;
1227   case Attribute::ReturnsTwice:    return 1 << 29;
1228   case Attribute::UWTable:         return 1 << 30;
1229   case Attribute::NonLazyBind:     return 1U << 31;
1230   case Attribute::SanitizeAddress: return 1ULL << 32;
1231   case Attribute::MinSize:         return 1ULL << 33;
1232   case Attribute::NoDuplicate:     return 1ULL << 34;
1233   case Attribute::StackProtectStrong: return 1ULL << 35;
1234   case Attribute::SanitizeThread:  return 1ULL << 36;
1235   case Attribute::SanitizeMemory:  return 1ULL << 37;
1236   case Attribute::NoBuiltin:       return 1ULL << 38;
1237   case Attribute::Returned:        return 1ULL << 39;
1238   case Attribute::Cold:            return 1ULL << 40;
1239   case Attribute::Builtin:         return 1ULL << 41;
1240   case Attribute::OptimizeNone:    return 1ULL << 42;
1241   case Attribute::InAlloca:        return 1ULL << 43;
1242   case Attribute::NonNull:         return 1ULL << 44;
1243   case Attribute::JumpTable:       return 1ULL << 45;
1244   case Attribute::Convergent:      return 1ULL << 46;
1245   case Attribute::SafeStack:       return 1ULL << 47;
1246   case Attribute::NoRecurse:       return 1ULL << 48;
1247   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1248   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1249   case Attribute::SwiftSelf:       return 1ULL << 51;
1250   case Attribute::SwiftError:      return 1ULL << 52;
1251   case Attribute::WriteOnly:       return 1ULL << 53;
1252   case Attribute::Speculatable:    return 1ULL << 54;
1253   case Attribute::StrictFP:        return 1ULL << 55;
1254   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1255   case Attribute::NoCfCheck:       return 1ULL << 57;
1256   case Attribute::OptForFuzzing:   return 1ULL << 58;
1257   case Attribute::ShadowCallStack: return 1ULL << 59;
1258   case Attribute::SpeculativeLoadHardening:
1259     return 1ULL << 60;
1260   case Attribute::ImmArg:
1261     return 1ULL << 61;
1262   case Attribute::WillReturn:
1263     return 1ULL << 62;
1264   case Attribute::NoFree:
1265     return 1ULL << 63;
1266   default:
1267     // Other attributes are not supported in the raw format,
1268     // as we ran out of space.
1269     return 0;
1270   }
1271   llvm_unreachable("Unsupported attribute type");
1272 }
1273 
1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1275   if (!Val) return;
1276 
1277   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1278        I = Attribute::AttrKind(I + 1)) {
1279     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1280       if (I == Attribute::Alignment)
1281         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1282       else if (I == Attribute::StackAlignment)
1283         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1284       else if (Attribute::isTypeAttrKind(I))
1285         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1286       else
1287         B.addAttribute(I);
1288     }
1289   }
1290 }
1291 
1292 /// This fills an AttrBuilder object with the LLVM attributes that have
1293 /// been decoded from the given integer. This function must stay in sync with
1294 /// 'encodeLLVMAttributesForBitcode'.
1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1296                                            uint64_t EncodedAttrs) {
1297   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1298   // the bits above 31 down by 11 bits.
1299   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1300   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1301          "Alignment must be a power of two.");
1302 
1303   if (Alignment)
1304     B.addAlignmentAttr(Alignment);
1305   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1306                           (EncodedAttrs & 0xffff));
1307 }
1308 
1309 Error BitcodeReader::parseAttributeBlock() {
1310   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1311     return Err;
1312 
1313   if (!MAttributes.empty())
1314     return error("Invalid multiple blocks");
1315 
1316   SmallVector<uint64_t, 64> Record;
1317 
1318   SmallVector<AttributeList, 8> Attrs;
1319 
1320   // Read all the records.
1321   while (true) {
1322     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1323     if (!MaybeEntry)
1324       return MaybeEntry.takeError();
1325     BitstreamEntry Entry = MaybeEntry.get();
1326 
1327     switch (Entry.Kind) {
1328     case BitstreamEntry::SubBlock: // Handled for us already.
1329     case BitstreamEntry::Error:
1330       return error("Malformed block");
1331     case BitstreamEntry::EndBlock:
1332       return Error::success();
1333     case BitstreamEntry::Record:
1334       // The interesting case.
1335       break;
1336     }
1337 
1338     // Read a record.
1339     Record.clear();
1340     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1341     if (!MaybeRecord)
1342       return MaybeRecord.takeError();
1343     switch (MaybeRecord.get()) {
1344     default:  // Default behavior: ignore.
1345       break;
1346     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1347       // Deprecated, but still needed to read old bitcode files.
1348       if (Record.size() & 1)
1349         return error("Invalid record");
1350 
1351       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1352         AttrBuilder B(Context);
1353         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1354         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1355       }
1356 
1357       MAttributes.push_back(AttributeList::get(Context, Attrs));
1358       Attrs.clear();
1359       break;
1360     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1361       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1362         Attrs.push_back(MAttributeGroups[Record[i]]);
1363 
1364       MAttributes.push_back(AttributeList::get(Context, Attrs));
1365       Attrs.clear();
1366       break;
1367     }
1368   }
1369 }
1370 
1371 // Returns Attribute::None on unrecognized codes.
1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1373   switch (Code) {
1374   default:
1375     return Attribute::None;
1376   case bitc::ATTR_KIND_ALIGNMENT:
1377     return Attribute::Alignment;
1378   case bitc::ATTR_KIND_ALWAYS_INLINE:
1379     return Attribute::AlwaysInline;
1380   case bitc::ATTR_KIND_ARGMEMONLY:
1381     return Attribute::ArgMemOnly;
1382   case bitc::ATTR_KIND_BUILTIN:
1383     return Attribute::Builtin;
1384   case bitc::ATTR_KIND_BY_VAL:
1385     return Attribute::ByVal;
1386   case bitc::ATTR_KIND_IN_ALLOCA:
1387     return Attribute::InAlloca;
1388   case bitc::ATTR_KIND_COLD:
1389     return Attribute::Cold;
1390   case bitc::ATTR_KIND_CONVERGENT:
1391     return Attribute::Convergent;
1392   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1393     return Attribute::DisableSanitizerInstrumentation;
1394   case bitc::ATTR_KIND_ELEMENTTYPE:
1395     return Attribute::ElementType;
1396   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1397     return Attribute::InaccessibleMemOnly;
1398   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1399     return Attribute::InaccessibleMemOrArgMemOnly;
1400   case bitc::ATTR_KIND_INLINE_HINT:
1401     return Attribute::InlineHint;
1402   case bitc::ATTR_KIND_IN_REG:
1403     return Attribute::InReg;
1404   case bitc::ATTR_KIND_JUMP_TABLE:
1405     return Attribute::JumpTable;
1406   case bitc::ATTR_KIND_MIN_SIZE:
1407     return Attribute::MinSize;
1408   case bitc::ATTR_KIND_NAKED:
1409     return Attribute::Naked;
1410   case bitc::ATTR_KIND_NEST:
1411     return Attribute::Nest;
1412   case bitc::ATTR_KIND_NO_ALIAS:
1413     return Attribute::NoAlias;
1414   case bitc::ATTR_KIND_NO_BUILTIN:
1415     return Attribute::NoBuiltin;
1416   case bitc::ATTR_KIND_NO_CALLBACK:
1417     return Attribute::NoCallback;
1418   case bitc::ATTR_KIND_NO_CAPTURE:
1419     return Attribute::NoCapture;
1420   case bitc::ATTR_KIND_NO_DUPLICATE:
1421     return Attribute::NoDuplicate;
1422   case bitc::ATTR_KIND_NOFREE:
1423     return Attribute::NoFree;
1424   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1425     return Attribute::NoImplicitFloat;
1426   case bitc::ATTR_KIND_NO_INLINE:
1427     return Attribute::NoInline;
1428   case bitc::ATTR_KIND_NO_RECURSE:
1429     return Attribute::NoRecurse;
1430   case bitc::ATTR_KIND_NO_MERGE:
1431     return Attribute::NoMerge;
1432   case bitc::ATTR_KIND_NON_LAZY_BIND:
1433     return Attribute::NonLazyBind;
1434   case bitc::ATTR_KIND_NON_NULL:
1435     return Attribute::NonNull;
1436   case bitc::ATTR_KIND_DEREFERENCEABLE:
1437     return Attribute::Dereferenceable;
1438   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1439     return Attribute::DereferenceableOrNull;
1440   case bitc::ATTR_KIND_ALLOC_SIZE:
1441     return Attribute::AllocSize;
1442   case bitc::ATTR_KIND_NO_RED_ZONE:
1443     return Attribute::NoRedZone;
1444   case bitc::ATTR_KIND_NO_RETURN:
1445     return Attribute::NoReturn;
1446   case bitc::ATTR_KIND_NOSYNC:
1447     return Attribute::NoSync;
1448   case bitc::ATTR_KIND_NOCF_CHECK:
1449     return Attribute::NoCfCheck;
1450   case bitc::ATTR_KIND_NO_PROFILE:
1451     return Attribute::NoProfile;
1452   case bitc::ATTR_KIND_NO_UNWIND:
1453     return Attribute::NoUnwind;
1454   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1455     return Attribute::NoSanitizeCoverage;
1456   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1457     return Attribute::NullPointerIsValid;
1458   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1459     return Attribute::OptForFuzzing;
1460   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1461     return Attribute::OptimizeForSize;
1462   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1463     return Attribute::OptimizeNone;
1464   case bitc::ATTR_KIND_READ_NONE:
1465     return Attribute::ReadNone;
1466   case bitc::ATTR_KIND_READ_ONLY:
1467     return Attribute::ReadOnly;
1468   case bitc::ATTR_KIND_RETURNED:
1469     return Attribute::Returned;
1470   case bitc::ATTR_KIND_RETURNS_TWICE:
1471     return Attribute::ReturnsTwice;
1472   case bitc::ATTR_KIND_S_EXT:
1473     return Attribute::SExt;
1474   case bitc::ATTR_KIND_SPECULATABLE:
1475     return Attribute::Speculatable;
1476   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1477     return Attribute::StackAlignment;
1478   case bitc::ATTR_KIND_STACK_PROTECT:
1479     return Attribute::StackProtect;
1480   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1481     return Attribute::StackProtectReq;
1482   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1483     return Attribute::StackProtectStrong;
1484   case bitc::ATTR_KIND_SAFESTACK:
1485     return Attribute::SafeStack;
1486   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1487     return Attribute::ShadowCallStack;
1488   case bitc::ATTR_KIND_STRICT_FP:
1489     return Attribute::StrictFP;
1490   case bitc::ATTR_KIND_STRUCT_RET:
1491     return Attribute::StructRet;
1492   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1493     return Attribute::SanitizeAddress;
1494   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1495     return Attribute::SanitizeHWAddress;
1496   case bitc::ATTR_KIND_SANITIZE_THREAD:
1497     return Attribute::SanitizeThread;
1498   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1499     return Attribute::SanitizeMemory;
1500   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1501     return Attribute::SpeculativeLoadHardening;
1502   case bitc::ATTR_KIND_SWIFT_ERROR:
1503     return Attribute::SwiftError;
1504   case bitc::ATTR_KIND_SWIFT_SELF:
1505     return Attribute::SwiftSelf;
1506   case bitc::ATTR_KIND_SWIFT_ASYNC:
1507     return Attribute::SwiftAsync;
1508   case bitc::ATTR_KIND_UW_TABLE:
1509     return Attribute::UWTable;
1510   case bitc::ATTR_KIND_VSCALE_RANGE:
1511     return Attribute::VScaleRange;
1512   case bitc::ATTR_KIND_WILLRETURN:
1513     return Attribute::WillReturn;
1514   case bitc::ATTR_KIND_WRITEONLY:
1515     return Attribute::WriteOnly;
1516   case bitc::ATTR_KIND_Z_EXT:
1517     return Attribute::ZExt;
1518   case bitc::ATTR_KIND_IMMARG:
1519     return Attribute::ImmArg;
1520   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1521     return Attribute::SanitizeMemTag;
1522   case bitc::ATTR_KIND_PREALLOCATED:
1523     return Attribute::Preallocated;
1524   case bitc::ATTR_KIND_NOUNDEF:
1525     return Attribute::NoUndef;
1526   case bitc::ATTR_KIND_BYREF:
1527     return Attribute::ByRef;
1528   case bitc::ATTR_KIND_MUSTPROGRESS:
1529     return Attribute::MustProgress;
1530   case bitc::ATTR_KIND_HOT:
1531     return Attribute::Hot;
1532   }
1533 }
1534 
1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1536                                          MaybeAlign &Alignment) {
1537   // Note: Alignment in bitcode files is incremented by 1, so that zero
1538   // can be used for default alignment.
1539   if (Exponent > Value::MaxAlignmentExponent + 1)
1540     return error("Invalid alignment value");
1541   Alignment = decodeMaybeAlign(Exponent);
1542   return Error::success();
1543 }
1544 
1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1546   *Kind = getAttrFromCode(Code);
1547   if (*Kind == Attribute::None)
1548     return error("Unknown attribute kind (" + Twine(Code) + ")");
1549   return Error::success();
1550 }
1551 
1552 Error BitcodeReader::parseAttributeGroupBlock() {
1553   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1554     return Err;
1555 
1556   if (!MAttributeGroups.empty())
1557     return error("Invalid multiple blocks");
1558 
1559   SmallVector<uint64_t, 64> Record;
1560 
1561   // Read all the records.
1562   while (true) {
1563     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1564     if (!MaybeEntry)
1565       return MaybeEntry.takeError();
1566     BitstreamEntry Entry = MaybeEntry.get();
1567 
1568     switch (Entry.Kind) {
1569     case BitstreamEntry::SubBlock: // Handled for us already.
1570     case BitstreamEntry::Error:
1571       return error("Malformed block");
1572     case BitstreamEntry::EndBlock:
1573       return Error::success();
1574     case BitstreamEntry::Record:
1575       // The interesting case.
1576       break;
1577     }
1578 
1579     // Read a record.
1580     Record.clear();
1581     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1582     if (!MaybeRecord)
1583       return MaybeRecord.takeError();
1584     switch (MaybeRecord.get()) {
1585     default:  // Default behavior: ignore.
1586       break;
1587     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1588       if (Record.size() < 3)
1589         return error("Invalid record");
1590 
1591       uint64_t GrpID = Record[0];
1592       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1593 
1594       AttrBuilder B(Context);
1595       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1596         if (Record[i] == 0) {        // Enum attribute
1597           Attribute::AttrKind Kind;
1598           if (Error Err = parseAttrKind(Record[++i], &Kind))
1599             return Err;
1600 
1601           // Upgrade old-style byval attribute to one with a type, even if it's
1602           // nullptr. We will have to insert the real type when we associate
1603           // this AttributeList with a function.
1604           if (Kind == Attribute::ByVal)
1605             B.addByValAttr(nullptr);
1606           else if (Kind == Attribute::StructRet)
1607             B.addStructRetAttr(nullptr);
1608           else if (Kind == Attribute::InAlloca)
1609             B.addInAllocaAttr(nullptr);
1610           else if (Attribute::isEnumAttrKind(Kind))
1611             B.addAttribute(Kind);
1612           else
1613             return error("Not an enum attribute");
1614         } else if (Record[i] == 1) { // Integer attribute
1615           Attribute::AttrKind Kind;
1616           if (Error Err = parseAttrKind(Record[++i], &Kind))
1617             return Err;
1618           if (!Attribute::isIntAttrKind(Kind))
1619             return error("Not an int attribute");
1620           if (Kind == Attribute::Alignment)
1621             B.addAlignmentAttr(Record[++i]);
1622           else if (Kind == Attribute::StackAlignment)
1623             B.addStackAlignmentAttr(Record[++i]);
1624           else if (Kind == Attribute::Dereferenceable)
1625             B.addDereferenceableAttr(Record[++i]);
1626           else if (Kind == Attribute::DereferenceableOrNull)
1627             B.addDereferenceableOrNullAttr(Record[++i]);
1628           else if (Kind == Attribute::AllocSize)
1629             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1630           else if (Kind == Attribute::VScaleRange)
1631             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1632         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1633           bool HasValue = (Record[i++] == 4);
1634           SmallString<64> KindStr;
1635           SmallString<64> ValStr;
1636 
1637           while (Record[i] != 0 && i != e)
1638             KindStr += Record[i++];
1639           assert(Record[i] == 0 && "Kind string not null terminated");
1640 
1641           if (HasValue) {
1642             // Has a value associated with it.
1643             ++i; // Skip the '0' that terminates the "kind" string.
1644             while (Record[i] != 0 && i != e)
1645               ValStr += Record[i++];
1646             assert(Record[i] == 0 && "Value string not null terminated");
1647           }
1648 
1649           B.addAttribute(KindStr.str(), ValStr.str());
1650         } else {
1651           assert((Record[i] == 5 || Record[i] == 6) &&
1652                  "Invalid attribute group entry");
1653           bool HasType = Record[i] == 6;
1654           Attribute::AttrKind Kind;
1655           if (Error Err = parseAttrKind(Record[++i], &Kind))
1656             return Err;
1657           if (!Attribute::isTypeAttrKind(Kind))
1658             return error("Not a type attribute");
1659 
1660           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1661         }
1662       }
1663 
1664       UpgradeAttributes(B);
1665       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1666       break;
1667     }
1668     }
1669   }
1670 }
1671 
1672 Error BitcodeReader::parseTypeTable() {
1673   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1674     return Err;
1675 
1676   return parseTypeTableBody();
1677 }
1678 
1679 Error BitcodeReader::parseTypeTableBody() {
1680   if (!TypeList.empty())
1681     return error("Invalid multiple blocks");
1682 
1683   SmallVector<uint64_t, 64> Record;
1684   unsigned NumRecords = 0;
1685 
1686   SmallString<64> TypeName;
1687 
1688   // Read all the records for this type table.
1689   while (true) {
1690     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1691     if (!MaybeEntry)
1692       return MaybeEntry.takeError();
1693     BitstreamEntry Entry = MaybeEntry.get();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       if (NumRecords != TypeList.size())
1701         return error("Malformed block");
1702       return Error::success();
1703     case BitstreamEntry::Record:
1704       // The interesting case.
1705       break;
1706     }
1707 
1708     // Read a record.
1709     Record.clear();
1710     Type *ResultTy = nullptr;
1711     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1712     if (!MaybeRecord)
1713       return MaybeRecord.takeError();
1714     switch (MaybeRecord.get()) {
1715     default:
1716       return error("Invalid value");
1717     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1718       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1719       // type list.  This allows us to reserve space.
1720       if (Record.empty())
1721         return error("Invalid record");
1722       TypeList.resize(Record[0]);
1723       continue;
1724     case bitc::TYPE_CODE_VOID:      // VOID
1725       ResultTy = Type::getVoidTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_HALF:     // HALF
1728       ResultTy = Type::getHalfTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1731       ResultTy = Type::getBFloatTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1734       ResultTy = Type::getFloatTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1737       ResultTy = Type::getDoubleTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1740       ResultTy = Type::getX86_FP80Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_FP128:     // FP128
1743       ResultTy = Type::getFP128Ty(Context);
1744       break;
1745     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1746       ResultTy = Type::getPPC_FP128Ty(Context);
1747       break;
1748     case bitc::TYPE_CODE_LABEL:     // LABEL
1749       ResultTy = Type::getLabelTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_METADATA:  // METADATA
1752       ResultTy = Type::getMetadataTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1755       ResultTy = Type::getX86_MMXTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1758       ResultTy = Type::getX86_AMXTy(Context);
1759       break;
1760     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1761       ResultTy = Type::getTokenTy(Context);
1762       break;
1763     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1764       if (Record.empty())
1765         return error("Invalid record");
1766 
1767       uint64_t NumBits = Record[0];
1768       if (NumBits < IntegerType::MIN_INT_BITS ||
1769           NumBits > IntegerType::MAX_INT_BITS)
1770         return error("Bitwidth for integer type out of range");
1771       ResultTy = IntegerType::get(Context, NumBits);
1772       break;
1773     }
1774     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1775                                     //          [pointee type, address space]
1776       if (Record.empty())
1777         return error("Invalid record");
1778       unsigned AddressSpace = 0;
1779       if (Record.size() == 2)
1780         AddressSpace = Record[1];
1781       ResultTy = getTypeByID(Record[0]);
1782       if (!ResultTy ||
1783           !PointerType::isValidElementType(ResultTy))
1784         return error("Invalid type");
1785       ResultTy = PointerType::get(ResultTy, AddressSpace);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1789       if (Record.size() != 1)
1790         return error("Invalid record");
1791       if (Context.supportsTypedPointers())
1792         return error(
1793             "Opaque pointers are only supported in -opaque-pointers mode");
1794       unsigned AddressSpace = Record[0];
1795       ResultTy = PointerType::get(Context, AddressSpace);
1796       break;
1797     }
1798     case bitc::TYPE_CODE_FUNCTION_OLD: {
1799       // Deprecated, but still needed to read old bitcode files.
1800       // FUNCTION: [vararg, attrid, retty, paramty x N]
1801       if (Record.size() < 3)
1802         return error("Invalid record");
1803       SmallVector<Type*, 8> ArgTys;
1804       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1805         if (Type *T = getTypeByID(Record[i]))
1806           ArgTys.push_back(T);
1807         else
1808           break;
1809       }
1810 
1811       ResultTy = getTypeByID(Record[2]);
1812       if (!ResultTy || ArgTys.size() < Record.size()-3)
1813         return error("Invalid type");
1814 
1815       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1816       break;
1817     }
1818     case bitc::TYPE_CODE_FUNCTION: {
1819       // FUNCTION: [vararg, retty, paramty x N]
1820       if (Record.size() < 2)
1821         return error("Invalid record");
1822       SmallVector<Type*, 8> ArgTys;
1823       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1824         if (Type *T = getTypeByID(Record[i])) {
1825           if (!FunctionType::isValidArgumentType(T))
1826             return error("Invalid function argument type");
1827           ArgTys.push_back(T);
1828         }
1829         else
1830           break;
1831       }
1832 
1833       ResultTy = getTypeByID(Record[1]);
1834       if (!ResultTy || ArgTys.size() < Record.size()-2)
1835         return error("Invalid type");
1836 
1837       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1838       break;
1839     }
1840     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1841       if (Record.empty())
1842         return error("Invalid record");
1843       SmallVector<Type*, 8> EltTys;
1844       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1845         if (Type *T = getTypeByID(Record[i]))
1846           EltTys.push_back(T);
1847         else
1848           break;
1849       }
1850       if (EltTys.size() != Record.size()-1)
1851         return error("Invalid type");
1852       ResultTy = StructType::get(Context, EltTys, Record[0]);
1853       break;
1854     }
1855     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1856       if (convertToString(Record, 0, TypeName))
1857         return error("Invalid record");
1858       continue;
1859 
1860     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1861       if (Record.empty())
1862         return error("Invalid record");
1863 
1864       if (NumRecords >= TypeList.size())
1865         return error("Invalid TYPE table");
1866 
1867       // Check to see if this was forward referenced, if so fill in the temp.
1868       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1869       if (Res) {
1870         Res->setName(TypeName);
1871         TypeList[NumRecords] = nullptr;
1872       } else  // Otherwise, create a new struct.
1873         Res = createIdentifiedStructType(Context, TypeName);
1874       TypeName.clear();
1875 
1876       SmallVector<Type*, 8> EltTys;
1877       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1878         if (Type *T = getTypeByID(Record[i]))
1879           EltTys.push_back(T);
1880         else
1881           break;
1882       }
1883       if (EltTys.size() != Record.size()-1)
1884         return error("Invalid record");
1885       Res->setBody(EltTys, Record[0]);
1886       ResultTy = Res;
1887       break;
1888     }
1889     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1890       if (Record.size() != 1)
1891         return error("Invalid record");
1892 
1893       if (NumRecords >= TypeList.size())
1894         return error("Invalid TYPE table");
1895 
1896       // Check to see if this was forward referenced, if so fill in the temp.
1897       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1898       if (Res) {
1899         Res->setName(TypeName);
1900         TypeList[NumRecords] = nullptr;
1901       } else  // Otherwise, create a new struct with no body.
1902         Res = createIdentifiedStructType(Context, TypeName);
1903       TypeName.clear();
1904       ResultTy = Res;
1905       break;
1906     }
1907     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1908       if (Record.size() < 2)
1909         return error("Invalid record");
1910       ResultTy = getTypeByID(Record[1]);
1911       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1912         return error("Invalid type");
1913       ResultTy = ArrayType::get(ResultTy, Record[0]);
1914       break;
1915     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1916                                     //         [numelts, eltty, scalable]
1917       if (Record.size() < 2)
1918         return error("Invalid record");
1919       if (Record[0] == 0)
1920         return error("Invalid vector length");
1921       ResultTy = getTypeByID(Record[1]);
1922       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
1923         return error("Invalid type");
1924       bool Scalable = Record.size() > 2 ? Record[2] : false;
1925       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1926       break;
1927     }
1928 
1929     if (NumRecords >= TypeList.size())
1930       return error("Invalid TYPE table");
1931     if (TypeList[NumRecords])
1932       return error(
1933           "Invalid TYPE table: Only named structs can be forward referenced");
1934     assert(ResultTy && "Didn't read a type?");
1935     TypeList[NumRecords++] = ResultTy;
1936   }
1937 }
1938 
1939 Error BitcodeReader::parseOperandBundleTags() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1941     return Err;
1942 
1943   if (!BundleTags.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   while (true) {
1949     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1950     if (!MaybeEntry)
1951       return MaybeEntry.takeError();
1952     BitstreamEntry Entry = MaybeEntry.get();
1953 
1954     switch (Entry.Kind) {
1955     case BitstreamEntry::SubBlock: // Handled for us already.
1956     case BitstreamEntry::Error:
1957       return error("Malformed block");
1958     case BitstreamEntry::EndBlock:
1959       return Error::success();
1960     case BitstreamEntry::Record:
1961       // The interesting case.
1962       break;
1963     }
1964 
1965     // Tags are implicitly mapped to integers by their order.
1966 
1967     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1968     if (!MaybeRecord)
1969       return MaybeRecord.takeError();
1970     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1971       return error("Invalid record");
1972 
1973     // OPERAND_BUNDLE_TAG: [strchr x N]
1974     BundleTags.emplace_back();
1975     if (convertToString(Record, 0, BundleTags.back()))
1976       return error("Invalid record");
1977     Record.clear();
1978   }
1979 }
1980 
1981 Error BitcodeReader::parseSyncScopeNames() {
1982   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1983     return Err;
1984 
1985   if (!SSIDs.empty())
1986     return error("Invalid multiple synchronization scope names blocks");
1987 
1988   SmallVector<uint64_t, 64> Record;
1989   while (true) {
1990     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1991     if (!MaybeEntry)
1992       return MaybeEntry.takeError();
1993     BitstreamEntry Entry = MaybeEntry.get();
1994 
1995     switch (Entry.Kind) {
1996     case BitstreamEntry::SubBlock: // Handled for us already.
1997     case BitstreamEntry::Error:
1998       return error("Malformed block");
1999     case BitstreamEntry::EndBlock:
2000       if (SSIDs.empty())
2001         return error("Invalid empty synchronization scope names block");
2002       return Error::success();
2003     case BitstreamEntry::Record:
2004       // The interesting case.
2005       break;
2006     }
2007 
2008     // Synchronization scope names are implicitly mapped to synchronization
2009     // scope IDs by their order.
2010 
2011     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2012     if (!MaybeRecord)
2013       return MaybeRecord.takeError();
2014     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2015       return error("Invalid record");
2016 
2017     SmallString<16> SSN;
2018     if (convertToString(Record, 0, SSN))
2019       return error("Invalid record");
2020 
2021     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2022     Record.clear();
2023   }
2024 }
2025 
2026 /// Associate a value with its name from the given index in the provided record.
2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2028                                              unsigned NameIndex, Triple &TT) {
2029   SmallString<128> ValueName;
2030   if (convertToString(Record, NameIndex, ValueName))
2031     return error("Invalid record");
2032   unsigned ValueID = Record[0];
2033   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2034     return error("Invalid record");
2035   Value *V = ValueList[ValueID];
2036 
2037   StringRef NameStr(ValueName.data(), ValueName.size());
2038   if (NameStr.find_first_of(0) != StringRef::npos)
2039     return error("Invalid value name");
2040   V->setName(NameStr);
2041   auto *GO = dyn_cast<GlobalObject>(V);
2042   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2043     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2044   return V;
2045 }
2046 
2047 /// Helper to note and return the current location, and jump to the given
2048 /// offset.
2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2050                                                  BitstreamCursor &Stream) {
2051   // Save the current parsing location so we can jump back at the end
2052   // of the VST read.
2053   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055     return std::move(JumpFailed);
2056   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057   if (!MaybeEntry)
2058     return MaybeEntry.takeError();
2059   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2060   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2061   return CurrentBit;
2062 }
2063 
2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2065                                             Function *F,
2066                                             ArrayRef<uint64_t> Record) {
2067   // Note that we subtract 1 here because the offset is relative to one word
2068   // before the start of the identification or module block, which was
2069   // historically always the start of the regular bitcode header.
2070   uint64_t FuncWordOffset = Record[1] - 1;
2071   uint64_t FuncBitOffset = FuncWordOffset * 32;
2072   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2073   // Set the LastFunctionBlockBit to point to the last function block.
2074   // Later when parsing is resumed after function materialization,
2075   // we can simply skip that last function block.
2076   if (FuncBitOffset > LastFunctionBlockBit)
2077     LastFunctionBlockBit = FuncBitOffset;
2078 }
2079 
2080 /// Read a new-style GlobalValue symbol table.
2081 Error BitcodeReader::parseGlobalValueSymbolTable() {
2082   unsigned FuncBitcodeOffsetDelta =
2083       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2084 
2085   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2086     return Err;
2087 
2088   SmallVector<uint64_t, 64> Record;
2089   while (true) {
2090     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2091     if (!MaybeEntry)
2092       return MaybeEntry.takeError();
2093     BitstreamEntry Entry = MaybeEntry.get();
2094 
2095     switch (Entry.Kind) {
2096     case BitstreamEntry::SubBlock:
2097     case BitstreamEntry::Error:
2098       return error("Malformed block");
2099     case BitstreamEntry::EndBlock:
2100       return Error::success();
2101     case BitstreamEntry::Record:
2102       break;
2103     }
2104 
2105     Record.clear();
2106     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2107     if (!MaybeRecord)
2108       return MaybeRecord.takeError();
2109     switch (MaybeRecord.get()) {
2110     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2111       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2112                               cast<Function>(ValueList[Record[0]]), Record);
2113       break;
2114     }
2115   }
2116 }
2117 
2118 /// Parse the value symbol table at either the current parsing location or
2119 /// at the given bit offset if provided.
2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2121   uint64_t CurrentBit;
2122   // Pass in the Offset to distinguish between calling for the module-level
2123   // VST (where we want to jump to the VST offset) and the function-level
2124   // VST (where we don't).
2125   if (Offset > 0) {
2126     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2127     if (!MaybeCurrentBit)
2128       return MaybeCurrentBit.takeError();
2129     CurrentBit = MaybeCurrentBit.get();
2130     // If this module uses a string table, read this as a module-level VST.
2131     if (UseStrtab) {
2132       if (Error Err = parseGlobalValueSymbolTable())
2133         return Err;
2134       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2135         return JumpFailed;
2136       return Error::success();
2137     }
2138     // Otherwise, the VST will be in a similar format to a function-level VST,
2139     // and will contain symbol names.
2140   }
2141 
2142   // Compute the delta between the bitcode indices in the VST (the word offset
2143   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2144   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2145   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2146   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2147   // just before entering the VST subblock because: 1) the EnterSubBlock
2148   // changes the AbbrevID width; 2) the VST block is nested within the same
2149   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2150   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2151   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2152   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2153   unsigned FuncBitcodeOffsetDelta =
2154       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2155 
2156   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2157     return Err;
2158 
2159   SmallVector<uint64_t, 64> Record;
2160 
2161   Triple TT(TheModule->getTargetTriple());
2162 
2163   // Read all the records for this value table.
2164   SmallString<128> ValueName;
2165 
2166   while (true) {
2167     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2168     if (!MaybeEntry)
2169       return MaybeEntry.takeError();
2170     BitstreamEntry Entry = MaybeEntry.get();
2171 
2172     switch (Entry.Kind) {
2173     case BitstreamEntry::SubBlock: // Handled for us already.
2174     case BitstreamEntry::Error:
2175       return error("Malformed block");
2176     case BitstreamEntry::EndBlock:
2177       if (Offset > 0)
2178         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2179           return JumpFailed;
2180       return Error::success();
2181     case BitstreamEntry::Record:
2182       // The interesting case.
2183       break;
2184     }
2185 
2186     // Read a record.
2187     Record.clear();
2188     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2189     if (!MaybeRecord)
2190       return MaybeRecord.takeError();
2191     switch (MaybeRecord.get()) {
2192     default:  // Default behavior: unknown type.
2193       break;
2194     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2195       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2196       if (Error Err = ValOrErr.takeError())
2197         return Err;
2198       ValOrErr.get();
2199       break;
2200     }
2201     case bitc::VST_CODE_FNENTRY: {
2202       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2203       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2204       if (Error Err = ValOrErr.takeError())
2205         return Err;
2206       Value *V = ValOrErr.get();
2207 
2208       // Ignore function offsets emitted for aliases of functions in older
2209       // versions of LLVM.
2210       if (auto *F = dyn_cast<Function>(V))
2211         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2212       break;
2213     }
2214     case bitc::VST_CODE_BBENTRY: {
2215       if (convertToString(Record, 1, ValueName))
2216         return error("Invalid record");
2217       BasicBlock *BB = getBasicBlock(Record[0]);
2218       if (!BB)
2219         return error("Invalid record");
2220 
2221       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2222       ValueName.clear();
2223       break;
2224     }
2225     }
2226   }
2227 }
2228 
2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2230 /// encoding.
2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2232   if ((V & 1) == 0)
2233     return V >> 1;
2234   if (V != 1)
2235     return -(V >> 1);
2236   // There is no such thing as -0 with integers.  "-0" really means MININT.
2237   return 1ULL << 63;
2238 }
2239 
2240 /// Resolve all of the initializers for global values and aliases that we can.
2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2242   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2243   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2244   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2245 
2246   GlobalInitWorklist.swap(GlobalInits);
2247   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2248   FunctionOperandWorklist.swap(FunctionOperands);
2249 
2250   while (!GlobalInitWorklist.empty()) {
2251     unsigned ValID = GlobalInitWorklist.back().second;
2252     if (ValID >= ValueList.size()) {
2253       // Not ready to resolve this yet, it requires something later in the file.
2254       GlobalInits.push_back(GlobalInitWorklist.back());
2255     } else {
2256       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2257         GlobalInitWorklist.back().first->setInitializer(C);
2258       else
2259         return error("Expected a constant");
2260     }
2261     GlobalInitWorklist.pop_back();
2262   }
2263 
2264   while (!IndirectSymbolInitWorklist.empty()) {
2265     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2266     if (ValID >= ValueList.size()) {
2267       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2268     } else {
2269       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2270       if (!C)
2271         return error("Expected a constant");
2272       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2273       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2274         if (C->getType() != GV->getType())
2275           return error("Alias and aliasee types don't match");
2276         GA->setAliasee(C);
2277       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2278         Type *ResolverFTy =
2279             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2280         // Transparently fix up the type for compatiblity with older bitcode
2281         GI->setResolver(
2282             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2283       } else {
2284         return error("Expected an alias or an ifunc");
2285       }
2286     }
2287     IndirectSymbolInitWorklist.pop_back();
2288   }
2289 
2290   while (!FunctionOperandWorklist.empty()) {
2291     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2292     if (Info.PersonalityFn) {
2293       unsigned ValID = Info.PersonalityFn - 1;
2294       if (ValID < ValueList.size()) {
2295         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2296           Info.F->setPersonalityFn(C);
2297         else
2298           return error("Expected a constant");
2299         Info.PersonalityFn = 0;
2300       }
2301     }
2302     if (Info.Prefix) {
2303       unsigned ValID = Info.Prefix - 1;
2304       if (ValID < ValueList.size()) {
2305         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2306           Info.F->setPrefixData(C);
2307         else
2308           return error("Expected a constant");
2309         Info.Prefix = 0;
2310       }
2311     }
2312     if (Info.Prologue) {
2313       unsigned ValID = Info.Prologue - 1;
2314       if (ValID < ValueList.size()) {
2315         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2316           Info.F->setPrologueData(C);
2317         else
2318           return error("Expected a constant");
2319         Info.Prologue = 0;
2320       }
2321     }
2322     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2323       FunctionOperands.push_back(Info);
2324     FunctionOperandWorklist.pop_back();
2325   }
2326 
2327   return Error::success();
2328 }
2329 
2330 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2331   SmallVector<uint64_t, 8> Words(Vals.size());
2332   transform(Vals, Words.begin(),
2333                  BitcodeReader::decodeSignRotatedValue);
2334 
2335   return APInt(TypeBits, Words);
2336 }
2337 
2338 Error BitcodeReader::parseConstants() {
2339   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2340     return Err;
2341 
2342   SmallVector<uint64_t, 64> Record;
2343 
2344   // Read all the records for this value table.
2345   Type *CurTy = Type::getInt32Ty(Context);
2346   unsigned NextCstNo = ValueList.size();
2347 
2348   struct DelayedShufTy {
2349     VectorType *OpTy;
2350     VectorType *RTy;
2351     uint64_t Op0Idx;
2352     uint64_t Op1Idx;
2353     uint64_t Op2Idx;
2354     unsigned CstNo;
2355   };
2356   std::vector<DelayedShufTy> DelayedShuffles;
2357   struct DelayedSelTy {
2358     Type *OpTy;
2359     uint64_t Op0Idx;
2360     uint64_t Op1Idx;
2361     uint64_t Op2Idx;
2362     unsigned CstNo;
2363   };
2364   std::vector<DelayedSelTy> DelayedSelectors;
2365 
2366   while (true) {
2367     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2368     if (!MaybeEntry)
2369       return MaybeEntry.takeError();
2370     BitstreamEntry Entry = MaybeEntry.get();
2371 
2372     switch (Entry.Kind) {
2373     case BitstreamEntry::SubBlock: // Handled for us already.
2374     case BitstreamEntry::Error:
2375       return error("Malformed block");
2376     case BitstreamEntry::EndBlock:
2377       // Once all the constants have been read, go through and resolve forward
2378       // references.
2379       //
2380       // We have to treat shuffles specially because they don't have three
2381       // operands anymore.  We need to convert the shuffle mask into an array,
2382       // and we can't convert a forward reference.
2383       for (auto &DelayedShuffle : DelayedShuffles) {
2384         VectorType *OpTy = DelayedShuffle.OpTy;
2385         VectorType *RTy = DelayedShuffle.RTy;
2386         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2387         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2388         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2389         uint64_t CstNo = DelayedShuffle.CstNo;
2390         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2391         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2392         Type *ShufTy =
2393             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2394         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2395         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2396           return error("Invalid shufflevector operands");
2397         SmallVector<int, 16> Mask;
2398         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2399         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2400         ValueList.assignValue(V, CstNo);
2401       }
2402       for (auto &DelayedSelector : DelayedSelectors) {
2403         Type *OpTy = DelayedSelector.OpTy;
2404         Type *SelectorTy = Type::getInt1Ty(Context);
2405         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2406         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2407         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2408         uint64_t CstNo = DelayedSelector.CstNo;
2409         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2410         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2411         // The selector might be an i1 or an <n x i1>
2412         // Get the type from the ValueList before getting a forward ref.
2413         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2414           Value *V = ValueList[Op0Idx];
2415           assert(V);
2416           if (SelectorTy != V->getType())
2417             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2418         }
2419         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2420         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2421         ValueList.assignValue(V, CstNo);
2422       }
2423 
2424       if (NextCstNo != ValueList.size())
2425         return error("Invalid constant reference");
2426 
2427       ValueList.resolveConstantForwardRefs();
2428       return Error::success();
2429     case BitstreamEntry::Record:
2430       // The interesting case.
2431       break;
2432     }
2433 
2434     // Read a record.
2435     Record.clear();
2436     Type *VoidType = Type::getVoidTy(Context);
2437     Value *V = nullptr;
2438     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2439     if (!MaybeBitCode)
2440       return MaybeBitCode.takeError();
2441     switch (unsigned BitCode = MaybeBitCode.get()) {
2442     default:  // Default behavior: unknown constant
2443     case bitc::CST_CODE_UNDEF:     // UNDEF
2444       V = UndefValue::get(CurTy);
2445       break;
2446     case bitc::CST_CODE_POISON:    // POISON
2447       V = PoisonValue::get(CurTy);
2448       break;
2449     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2450       if (Record.empty())
2451         return error("Invalid record");
2452       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2453         return error("Invalid record");
2454       if (TypeList[Record[0]] == VoidType)
2455         return error("Invalid constant type");
2456       CurTy = TypeList[Record[0]];
2457       continue;  // Skip the ValueList manipulation.
2458     case bitc::CST_CODE_NULL:      // NULL
2459       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2460         return error("Invalid type for a constant null value");
2461       V = Constant::getNullValue(CurTy);
2462       break;
2463     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2464       if (!CurTy->isIntegerTy() || Record.empty())
2465         return error("Invalid record");
2466       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2467       break;
2468     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2469       if (!CurTy->isIntegerTy() || Record.empty())
2470         return error("Invalid record");
2471 
2472       APInt VInt =
2473           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2474       V = ConstantInt::get(Context, VInt);
2475 
2476       break;
2477     }
2478     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2479       if (Record.empty())
2480         return error("Invalid record");
2481       if (CurTy->isHalfTy())
2482         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2483                                              APInt(16, (uint16_t)Record[0])));
2484       else if (CurTy->isBFloatTy())
2485         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2486                                              APInt(16, (uint32_t)Record[0])));
2487       else if (CurTy->isFloatTy())
2488         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2489                                              APInt(32, (uint32_t)Record[0])));
2490       else if (CurTy->isDoubleTy())
2491         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2492                                              APInt(64, Record[0])));
2493       else if (CurTy->isX86_FP80Ty()) {
2494         // Bits are not stored the same way as a normal i80 APInt, compensate.
2495         uint64_t Rearrange[2];
2496         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2497         Rearrange[1] = Record[0] >> 48;
2498         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2499                                              APInt(80, Rearrange)));
2500       } else if (CurTy->isFP128Ty())
2501         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2502                                              APInt(128, Record)));
2503       else if (CurTy->isPPC_FP128Ty())
2504         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2505                                              APInt(128, Record)));
2506       else
2507         V = UndefValue::get(CurTy);
2508       break;
2509     }
2510 
2511     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2512       if (Record.empty())
2513         return error("Invalid record");
2514 
2515       unsigned Size = Record.size();
2516       SmallVector<Constant*, 16> Elts;
2517 
2518       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2519         for (unsigned i = 0; i != Size; ++i)
2520           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2521                                                      STy->getElementType(i)));
2522         V = ConstantStruct::get(STy, Elts);
2523       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2524         Type *EltTy = ATy->getElementType();
2525         for (unsigned i = 0; i != Size; ++i)
2526           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2527         V = ConstantArray::get(ATy, Elts);
2528       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2529         Type *EltTy = VTy->getElementType();
2530         for (unsigned i = 0; i != Size; ++i)
2531           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2532         V = ConstantVector::get(Elts);
2533       } else {
2534         V = UndefValue::get(CurTy);
2535       }
2536       break;
2537     }
2538     case bitc::CST_CODE_STRING:    // STRING: [values]
2539     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2540       if (Record.empty())
2541         return error("Invalid record");
2542 
2543       SmallString<16> Elts(Record.begin(), Record.end());
2544       V = ConstantDataArray::getString(Context, Elts,
2545                                        BitCode == bitc::CST_CODE_CSTRING);
2546       break;
2547     }
2548     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2549       if (Record.empty())
2550         return error("Invalid record");
2551 
2552       Type *EltTy;
2553       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2554         EltTy = Array->getElementType();
2555       else
2556         EltTy = cast<VectorType>(CurTy)->getElementType();
2557       if (EltTy->isIntegerTy(8)) {
2558         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2559         if (isa<VectorType>(CurTy))
2560           V = ConstantDataVector::get(Context, Elts);
2561         else
2562           V = ConstantDataArray::get(Context, Elts);
2563       } else if (EltTy->isIntegerTy(16)) {
2564         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2565         if (isa<VectorType>(CurTy))
2566           V = ConstantDataVector::get(Context, Elts);
2567         else
2568           V = ConstantDataArray::get(Context, Elts);
2569       } else if (EltTy->isIntegerTy(32)) {
2570         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2571         if (isa<VectorType>(CurTy))
2572           V = ConstantDataVector::get(Context, Elts);
2573         else
2574           V = ConstantDataArray::get(Context, Elts);
2575       } else if (EltTy->isIntegerTy(64)) {
2576         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2577         if (isa<VectorType>(CurTy))
2578           V = ConstantDataVector::get(Context, Elts);
2579         else
2580           V = ConstantDataArray::get(Context, Elts);
2581       } else if (EltTy->isHalfTy()) {
2582         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2583         if (isa<VectorType>(CurTy))
2584           V = ConstantDataVector::getFP(EltTy, Elts);
2585         else
2586           V = ConstantDataArray::getFP(EltTy, Elts);
2587       } else if (EltTy->isBFloatTy()) {
2588         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2589         if (isa<VectorType>(CurTy))
2590           V = ConstantDataVector::getFP(EltTy, Elts);
2591         else
2592           V = ConstantDataArray::getFP(EltTy, Elts);
2593       } else if (EltTy->isFloatTy()) {
2594         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2595         if (isa<VectorType>(CurTy))
2596           V = ConstantDataVector::getFP(EltTy, Elts);
2597         else
2598           V = ConstantDataArray::getFP(EltTy, Elts);
2599       } else if (EltTy->isDoubleTy()) {
2600         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2601         if (isa<VectorType>(CurTy))
2602           V = ConstantDataVector::getFP(EltTy, Elts);
2603         else
2604           V = ConstantDataArray::getFP(EltTy, Elts);
2605       } else {
2606         return error("Invalid type for value");
2607       }
2608       break;
2609     }
2610     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2611       if (Record.size() < 2)
2612         return error("Invalid record");
2613       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2614       if (Opc < 0) {
2615         V = UndefValue::get(CurTy);  // Unknown unop.
2616       } else {
2617         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2618         unsigned Flags = 0;
2619         V = ConstantExpr::get(Opc, LHS, Flags);
2620       }
2621       break;
2622     }
2623     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2624       if (Record.size() < 3)
2625         return error("Invalid record");
2626       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2627       if (Opc < 0) {
2628         V = UndefValue::get(CurTy);  // Unknown binop.
2629       } else {
2630         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2631         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2632         unsigned Flags = 0;
2633         if (Record.size() >= 4) {
2634           if (Opc == Instruction::Add ||
2635               Opc == Instruction::Sub ||
2636               Opc == Instruction::Mul ||
2637               Opc == Instruction::Shl) {
2638             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2639               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2640             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2641               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2642           } else if (Opc == Instruction::SDiv ||
2643                      Opc == Instruction::UDiv ||
2644                      Opc == Instruction::LShr ||
2645                      Opc == Instruction::AShr) {
2646             if (Record[3] & (1 << bitc::PEO_EXACT))
2647               Flags |= SDivOperator::IsExact;
2648           }
2649         }
2650         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2651       }
2652       break;
2653     }
2654     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2655       if (Record.size() < 3)
2656         return error("Invalid record");
2657       int Opc = getDecodedCastOpcode(Record[0]);
2658       if (Opc < 0) {
2659         V = UndefValue::get(CurTy);  // Unknown cast.
2660       } else {
2661         Type *OpTy = getTypeByID(Record[1]);
2662         if (!OpTy)
2663           return error("Invalid record");
2664         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2665         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2666         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2667       }
2668       break;
2669     }
2670     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2671     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2672     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2673                                                      // operands]
2674       unsigned OpNum = 0;
2675       Type *PointeeType = nullptr;
2676       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2677           Record.size() % 2)
2678         PointeeType = getTypeByID(Record[OpNum++]);
2679 
2680       bool InBounds = false;
2681       Optional<unsigned> InRangeIndex;
2682       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2683         uint64_t Op = Record[OpNum++];
2684         InBounds = Op & 1;
2685         InRangeIndex = Op >> 1;
2686       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2687         InBounds = true;
2688 
2689       SmallVector<Constant*, 16> Elts;
2690       Type *Elt0FullTy = nullptr;
2691       while (OpNum != Record.size()) {
2692         if (!Elt0FullTy)
2693           Elt0FullTy = getTypeByID(Record[OpNum]);
2694         Type *ElTy = getTypeByID(Record[OpNum++]);
2695         if (!ElTy)
2696           return error("Invalid record");
2697         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2698       }
2699 
2700       if (Elts.size() < 1)
2701         return error("Invalid gep with no operands");
2702 
2703       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2704       if (!PointeeType)
2705         PointeeType = OrigPtrTy->getPointerElementType();
2706       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2707         return error("Explicit gep operator type does not match pointee type "
2708                      "of pointer operand");
2709 
2710       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2711       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2712                                          InBounds, InRangeIndex);
2713       break;
2714     }
2715     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2716       if (Record.size() < 3)
2717         return error("Invalid record");
2718 
2719       DelayedSelectors.push_back(
2720           {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2721       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2722       ++NextCstNo;
2723       continue;
2724     }
2725     case bitc::CST_CODE_CE_EXTRACTELT
2726         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2727       if (Record.size() < 3)
2728         return error("Invalid record");
2729       VectorType *OpTy =
2730         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2731       if (!OpTy)
2732         return error("Invalid record");
2733       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2734       Constant *Op1 = nullptr;
2735       if (Record.size() == 4) {
2736         Type *IdxTy = getTypeByID(Record[2]);
2737         if (!IdxTy)
2738           return error("Invalid record");
2739         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2740       } else {
2741         // Deprecated, but still needed to read old bitcode files.
2742         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2743       }
2744       if (!Op1)
2745         return error("Invalid record");
2746       V = ConstantExpr::getExtractElement(Op0, Op1);
2747       break;
2748     }
2749     case bitc::CST_CODE_CE_INSERTELT
2750         : { // CE_INSERTELT: [opval, opval, opty, opval]
2751       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2752       if (Record.size() < 3 || !OpTy)
2753         return error("Invalid record");
2754       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2755       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2756                                                   OpTy->getElementType());
2757       Constant *Op2 = nullptr;
2758       if (Record.size() == 4) {
2759         Type *IdxTy = getTypeByID(Record[2]);
2760         if (!IdxTy)
2761           return error("Invalid record");
2762         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2763       } else {
2764         // Deprecated, but still needed to read old bitcode files.
2765         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2766       }
2767       if (!Op2)
2768         return error("Invalid record");
2769       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2770       break;
2771     }
2772     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2773       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2774       if (Record.size() < 3 || !OpTy)
2775         return error("Invalid record");
2776       DelayedShuffles.push_back(
2777           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2778       ++NextCstNo;
2779       continue;
2780     }
2781     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2782       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2783       VectorType *OpTy =
2784         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2785       if (Record.size() < 4 || !RTy || !OpTy)
2786         return error("Invalid record");
2787       DelayedShuffles.push_back(
2788           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2789       ++NextCstNo;
2790       continue;
2791     }
2792     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2793       if (Record.size() < 4)
2794         return error("Invalid record");
2795       Type *OpTy = getTypeByID(Record[0]);
2796       if (!OpTy)
2797         return error("Invalid record");
2798       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2799       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2800 
2801       if (OpTy->isFPOrFPVectorTy())
2802         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2803       else
2804         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2805       break;
2806     }
2807     // This maintains backward compatibility, pre-asm dialect keywords.
2808     // Deprecated, but still needed to read old bitcode files.
2809     case bitc::CST_CODE_INLINEASM_OLD: {
2810       if (Record.size() < 2)
2811         return error("Invalid record");
2812       std::string AsmStr, ConstrStr;
2813       bool HasSideEffects = Record[0] & 1;
2814       bool IsAlignStack = Record[0] >> 1;
2815       unsigned AsmStrSize = Record[1];
2816       if (2+AsmStrSize >= Record.size())
2817         return error("Invalid record");
2818       unsigned ConstStrSize = Record[2+AsmStrSize];
2819       if (3+AsmStrSize+ConstStrSize > Record.size())
2820         return error("Invalid record");
2821 
2822       for (unsigned i = 0; i != AsmStrSize; ++i)
2823         AsmStr += (char)Record[2+i];
2824       for (unsigned i = 0; i != ConstStrSize; ++i)
2825         ConstrStr += (char)Record[3+AsmStrSize+i];
2826       UpgradeInlineAsmString(&AsmStr);
2827       // FIXME: support upgrading in opaque pointers mode.
2828       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2829                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2830       break;
2831     }
2832     // This version adds support for the asm dialect keywords (e.g.,
2833     // inteldialect).
2834     case bitc::CST_CODE_INLINEASM_OLD2: {
2835       if (Record.size() < 2)
2836         return error("Invalid record");
2837       std::string AsmStr, ConstrStr;
2838       bool HasSideEffects = Record[0] & 1;
2839       bool IsAlignStack = (Record[0] >> 1) & 1;
2840       unsigned AsmDialect = Record[0] >> 2;
2841       unsigned AsmStrSize = Record[1];
2842       if (2+AsmStrSize >= Record.size())
2843         return error("Invalid record");
2844       unsigned ConstStrSize = Record[2+AsmStrSize];
2845       if (3+AsmStrSize+ConstStrSize > Record.size())
2846         return error("Invalid record");
2847 
2848       for (unsigned i = 0; i != AsmStrSize; ++i)
2849         AsmStr += (char)Record[2+i];
2850       for (unsigned i = 0; i != ConstStrSize; ++i)
2851         ConstrStr += (char)Record[3+AsmStrSize+i];
2852       UpgradeInlineAsmString(&AsmStr);
2853       // FIXME: support upgrading in opaque pointers mode.
2854       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2855                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2856                          InlineAsm::AsmDialect(AsmDialect));
2857       break;
2858     }
2859     // This version adds support for the unwind keyword.
2860     case bitc::CST_CODE_INLINEASM_OLD3: {
2861       if (Record.size() < 2)
2862         return error("Invalid record");
2863       unsigned OpNum = 0;
2864       std::string AsmStr, ConstrStr;
2865       bool HasSideEffects = Record[OpNum] & 1;
2866       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2867       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2868       bool CanThrow = (Record[OpNum] >> 3) & 1;
2869       ++OpNum;
2870       unsigned AsmStrSize = Record[OpNum];
2871       ++OpNum;
2872       if (OpNum + AsmStrSize >= Record.size())
2873         return error("Invalid record");
2874       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2875       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2876         return error("Invalid record");
2877 
2878       for (unsigned i = 0; i != AsmStrSize; ++i)
2879         AsmStr += (char)Record[OpNum + i];
2880       ++OpNum;
2881       for (unsigned i = 0; i != ConstStrSize; ++i)
2882         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2883       UpgradeInlineAsmString(&AsmStr);
2884       // FIXME: support upgrading in opaque pointers mode.
2885       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2886                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2887                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
2888       break;
2889     }
2890     // This version adds explicit function type.
2891     case bitc::CST_CODE_INLINEASM: {
2892       if (Record.size() < 3)
2893         return error("Invalid record");
2894       unsigned OpNum = 0;
2895       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
2896       ++OpNum;
2897       if (!FnTy)
2898         return error("Invalid record");
2899       std::string AsmStr, ConstrStr;
2900       bool HasSideEffects = Record[OpNum] & 1;
2901       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2902       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2903       bool CanThrow = (Record[OpNum] >> 3) & 1;
2904       ++OpNum;
2905       unsigned AsmStrSize = Record[OpNum];
2906       ++OpNum;
2907       if (OpNum + AsmStrSize >= Record.size())
2908         return error("Invalid record");
2909       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2910       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2911         return error("Invalid record");
2912 
2913       for (unsigned i = 0; i != AsmStrSize; ++i)
2914         AsmStr += (char)Record[OpNum + i];
2915       ++OpNum;
2916       for (unsigned i = 0; i != ConstStrSize; ++i)
2917         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2918       UpgradeInlineAsmString(&AsmStr);
2919       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2920                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
2921       break;
2922     }
2923     case bitc::CST_CODE_BLOCKADDRESS:{
2924       if (Record.size() < 3)
2925         return error("Invalid record");
2926       Type *FnTy = getTypeByID(Record[0]);
2927       if (!FnTy)
2928         return error("Invalid record");
2929       Function *Fn =
2930         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2931       if (!Fn)
2932         return error("Invalid record");
2933 
2934       // If the function is already parsed we can insert the block address right
2935       // away.
2936       BasicBlock *BB;
2937       unsigned BBID = Record[2];
2938       if (!BBID)
2939         // Invalid reference to entry block.
2940         return error("Invalid ID");
2941       if (!Fn->empty()) {
2942         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2943         for (size_t I = 0, E = BBID; I != E; ++I) {
2944           if (BBI == BBE)
2945             return error("Invalid ID");
2946           ++BBI;
2947         }
2948         BB = &*BBI;
2949       } else {
2950         // Otherwise insert a placeholder and remember it so it can be inserted
2951         // when the function is parsed.
2952         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2953         if (FwdBBs.empty())
2954           BasicBlockFwdRefQueue.push_back(Fn);
2955         if (FwdBBs.size() < BBID + 1)
2956           FwdBBs.resize(BBID + 1);
2957         if (!FwdBBs[BBID])
2958           FwdBBs[BBID] = BasicBlock::Create(Context);
2959         BB = FwdBBs[BBID];
2960       }
2961       V = BlockAddress::get(Fn, BB);
2962       break;
2963     }
2964     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2965       if (Record.size() < 2)
2966         return error("Invalid record");
2967       Type *GVTy = getTypeByID(Record[0]);
2968       if (!GVTy)
2969         return error("Invalid record");
2970       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2971           ValueList.getConstantFwdRef(Record[1], GVTy));
2972       if (!GV)
2973         return error("Invalid record");
2974 
2975       V = DSOLocalEquivalent::get(GV);
2976       break;
2977     }
2978     case bitc::CST_CODE_NO_CFI_VALUE: {
2979       if (Record.size() < 2)
2980         return error("Invalid record");
2981       Type *GVTy = getTypeByID(Record[0]);
2982       if (!GVTy)
2983         return error("Invalid record");
2984       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2985           ValueList.getConstantFwdRef(Record[1], GVTy));
2986       if (!GV)
2987         return error("Invalid record");
2988       V = NoCFIValue::get(GV);
2989       break;
2990     }
2991     }
2992 
2993     ValueList.assignValue(V, NextCstNo);
2994     ++NextCstNo;
2995   }
2996 }
2997 
2998 Error BitcodeReader::parseUseLists() {
2999   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3000     return Err;
3001 
3002   // Read all the records.
3003   SmallVector<uint64_t, 64> Record;
3004 
3005   while (true) {
3006     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3007     if (!MaybeEntry)
3008       return MaybeEntry.takeError();
3009     BitstreamEntry Entry = MaybeEntry.get();
3010 
3011     switch (Entry.Kind) {
3012     case BitstreamEntry::SubBlock: // Handled for us already.
3013     case BitstreamEntry::Error:
3014       return error("Malformed block");
3015     case BitstreamEntry::EndBlock:
3016       return Error::success();
3017     case BitstreamEntry::Record:
3018       // The interesting case.
3019       break;
3020     }
3021 
3022     // Read a use list record.
3023     Record.clear();
3024     bool IsBB = false;
3025     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3026     if (!MaybeRecord)
3027       return MaybeRecord.takeError();
3028     switch (MaybeRecord.get()) {
3029     default:  // Default behavior: unknown type.
3030       break;
3031     case bitc::USELIST_CODE_BB:
3032       IsBB = true;
3033       LLVM_FALLTHROUGH;
3034     case bitc::USELIST_CODE_DEFAULT: {
3035       unsigned RecordLength = Record.size();
3036       if (RecordLength < 3)
3037         // Records should have at least an ID and two indexes.
3038         return error("Invalid record");
3039       unsigned ID = Record.pop_back_val();
3040 
3041       Value *V;
3042       if (IsBB) {
3043         assert(ID < FunctionBBs.size() && "Basic block not found");
3044         V = FunctionBBs[ID];
3045       } else
3046         V = ValueList[ID];
3047       unsigned NumUses = 0;
3048       SmallDenseMap<const Use *, unsigned, 16> Order;
3049       for (const Use &U : V->materialized_uses()) {
3050         if (++NumUses > Record.size())
3051           break;
3052         Order[&U] = Record[NumUses - 1];
3053       }
3054       if (Order.size() != Record.size() || NumUses > Record.size())
3055         // Mismatches can happen if the functions are being materialized lazily
3056         // (out-of-order), or a value has been upgraded.
3057         break;
3058 
3059       V->sortUseList([&](const Use &L, const Use &R) {
3060         return Order.lookup(&L) < Order.lookup(&R);
3061       });
3062       break;
3063     }
3064     }
3065   }
3066 }
3067 
3068 /// When we see the block for metadata, remember where it is and then skip it.
3069 /// This lets us lazily deserialize the metadata.
3070 Error BitcodeReader::rememberAndSkipMetadata() {
3071   // Save the current stream state.
3072   uint64_t CurBit = Stream.GetCurrentBitNo();
3073   DeferredMetadataInfo.push_back(CurBit);
3074 
3075   // Skip over the block for now.
3076   if (Error Err = Stream.SkipBlock())
3077     return Err;
3078   return Error::success();
3079 }
3080 
3081 Error BitcodeReader::materializeMetadata() {
3082   for (uint64_t BitPos : DeferredMetadataInfo) {
3083     // Move the bit stream to the saved position.
3084     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3085       return JumpFailed;
3086     if (Error Err = MDLoader->parseModuleMetadata())
3087       return Err;
3088   }
3089 
3090   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3091   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3092   // multiple times.
3093   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3094     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3095       NamedMDNode *LinkerOpts =
3096           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3097       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3098         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3099     }
3100   }
3101 
3102   DeferredMetadataInfo.clear();
3103   return Error::success();
3104 }
3105 
3106 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3107 
3108 /// When we see the block for a function body, remember where it is and then
3109 /// skip it.  This lets us lazily deserialize the functions.
3110 Error BitcodeReader::rememberAndSkipFunctionBody() {
3111   // Get the function we are talking about.
3112   if (FunctionsWithBodies.empty())
3113     return error("Insufficient function protos");
3114 
3115   Function *Fn = FunctionsWithBodies.back();
3116   FunctionsWithBodies.pop_back();
3117 
3118   // Save the current stream state.
3119   uint64_t CurBit = Stream.GetCurrentBitNo();
3120   assert(
3121       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3122       "Mismatch between VST and scanned function offsets");
3123   DeferredFunctionInfo[Fn] = CurBit;
3124 
3125   // Skip over the function block for now.
3126   if (Error Err = Stream.SkipBlock())
3127     return Err;
3128   return Error::success();
3129 }
3130 
3131 Error BitcodeReader::globalCleanup() {
3132   // Patch the initializers for globals and aliases up.
3133   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3134     return Err;
3135   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3136     return error("Malformed global initializer set");
3137 
3138   // Look for intrinsic functions which need to be upgraded at some point
3139   // and functions that need to have their function attributes upgraded.
3140   for (Function &F : *TheModule) {
3141     MDLoader->upgradeDebugIntrinsics(F);
3142     Function *NewFn;
3143     if (UpgradeIntrinsicFunction(&F, NewFn))
3144       UpgradedIntrinsics[&F] = NewFn;
3145     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3146       // Some types could be renamed during loading if several modules are
3147       // loaded in the same LLVMContext (LTO scenario). In this case we should
3148       // remangle intrinsics names as well.
3149       RemangledIntrinsics[&F] = Remangled.getValue();
3150     // Look for functions that rely on old function attribute behavior.
3151     UpgradeFunctionAttributes(F);
3152   }
3153 
3154   // Look for global variables which need to be renamed.
3155   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3156   for (GlobalVariable &GV : TheModule->globals())
3157     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3158       UpgradedVariables.emplace_back(&GV, Upgraded);
3159   for (auto &Pair : UpgradedVariables) {
3160     Pair.first->eraseFromParent();
3161     TheModule->getGlobalList().push_back(Pair.second);
3162   }
3163 
3164   // Force deallocation of memory for these vectors to favor the client that
3165   // want lazy deserialization.
3166   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3167   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3168   return Error::success();
3169 }
3170 
3171 /// Support for lazy parsing of function bodies. This is required if we
3172 /// either have an old bitcode file without a VST forward declaration record,
3173 /// or if we have an anonymous function being materialized, since anonymous
3174 /// functions do not have a name and are therefore not in the VST.
3175 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3176   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3177     return JumpFailed;
3178 
3179   if (Stream.AtEndOfStream())
3180     return error("Could not find function in stream");
3181 
3182   if (!SeenFirstFunctionBody)
3183     return error("Trying to materialize functions before seeing function blocks");
3184 
3185   // An old bitcode file with the symbol table at the end would have
3186   // finished the parse greedily.
3187   assert(SeenValueSymbolTable);
3188 
3189   SmallVector<uint64_t, 64> Record;
3190 
3191   while (true) {
3192     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3193     if (!MaybeEntry)
3194       return MaybeEntry.takeError();
3195     llvm::BitstreamEntry Entry = MaybeEntry.get();
3196 
3197     switch (Entry.Kind) {
3198     default:
3199       return error("Expect SubBlock");
3200     case BitstreamEntry::SubBlock:
3201       switch (Entry.ID) {
3202       default:
3203         return error("Expect function block");
3204       case bitc::FUNCTION_BLOCK_ID:
3205         if (Error Err = rememberAndSkipFunctionBody())
3206           return Err;
3207         NextUnreadBit = Stream.GetCurrentBitNo();
3208         return Error::success();
3209       }
3210     }
3211   }
3212 }
3213 
3214 bool BitcodeReaderBase::readBlockInfo() {
3215   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3216       Stream.ReadBlockInfoBlock();
3217   if (!MaybeNewBlockInfo)
3218     return true; // FIXME Handle the error.
3219   Optional<BitstreamBlockInfo> NewBlockInfo =
3220       std::move(MaybeNewBlockInfo.get());
3221   if (!NewBlockInfo)
3222     return true;
3223   BlockInfo = std::move(*NewBlockInfo);
3224   return false;
3225 }
3226 
3227 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3228   // v1: [selection_kind, name]
3229   // v2: [strtab_offset, strtab_size, selection_kind]
3230   StringRef Name;
3231   std::tie(Name, Record) = readNameFromStrtab(Record);
3232 
3233   if (Record.empty())
3234     return error("Invalid record");
3235   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3236   std::string OldFormatName;
3237   if (!UseStrtab) {
3238     if (Record.size() < 2)
3239       return error("Invalid record");
3240     unsigned ComdatNameSize = Record[1];
3241     OldFormatName.reserve(ComdatNameSize);
3242     for (unsigned i = 0; i != ComdatNameSize; ++i)
3243       OldFormatName += (char)Record[2 + i];
3244     Name = OldFormatName;
3245   }
3246   Comdat *C = TheModule->getOrInsertComdat(Name);
3247   C->setSelectionKind(SK);
3248   ComdatList.push_back(C);
3249   return Error::success();
3250 }
3251 
3252 static void inferDSOLocal(GlobalValue *GV) {
3253   // infer dso_local from linkage and visibility if it is not encoded.
3254   if (GV->hasLocalLinkage() ||
3255       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3256     GV->setDSOLocal(true);
3257 }
3258 
3259 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3260   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3261   // visibility, threadlocal, unnamed_addr, externally_initialized,
3262   // dllstorageclass, comdat, attributes, preemption specifier,
3263   // partition strtab offset, partition strtab size] (name in VST)
3264   // v2: [strtab_offset, strtab_size, v1]
3265   StringRef Name;
3266   std::tie(Name, Record) = readNameFromStrtab(Record);
3267 
3268   if (Record.size() < 6)
3269     return error("Invalid record");
3270   Type *Ty = getTypeByID(Record[0]);
3271   if (!Ty)
3272     return error("Invalid record");
3273   bool isConstant = Record[1] & 1;
3274   bool explicitType = Record[1] & 2;
3275   unsigned AddressSpace;
3276   if (explicitType) {
3277     AddressSpace = Record[1] >> 2;
3278   } else {
3279     if (!Ty->isPointerTy())
3280       return error("Invalid type for value");
3281     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3282     Ty = Ty->getPointerElementType();
3283   }
3284 
3285   uint64_t RawLinkage = Record[3];
3286   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3287   MaybeAlign Alignment;
3288   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3289     return Err;
3290   std::string Section;
3291   if (Record[5]) {
3292     if (Record[5] - 1 >= SectionTable.size())
3293       return error("Invalid ID");
3294     Section = SectionTable[Record[5] - 1];
3295   }
3296   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3297   // Local linkage must have default visibility.
3298   // auto-upgrade `hidden` and `protected` for old bitcode.
3299   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3300     Visibility = getDecodedVisibility(Record[6]);
3301 
3302   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3303   if (Record.size() > 7)
3304     TLM = getDecodedThreadLocalMode(Record[7]);
3305 
3306   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3307   if (Record.size() > 8)
3308     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3309 
3310   bool ExternallyInitialized = false;
3311   if (Record.size() > 9)
3312     ExternallyInitialized = Record[9];
3313 
3314   GlobalVariable *NewGV =
3315       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3316                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3317   NewGV->setAlignment(Alignment);
3318   if (!Section.empty())
3319     NewGV->setSection(Section);
3320   NewGV->setVisibility(Visibility);
3321   NewGV->setUnnamedAddr(UnnamedAddr);
3322 
3323   if (Record.size() > 10)
3324     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3325   else
3326     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3327 
3328   ValueList.push_back(NewGV);
3329 
3330   // Remember which value to use for the global initializer.
3331   if (unsigned InitID = Record[2])
3332     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3333 
3334   if (Record.size() > 11) {
3335     if (unsigned ComdatID = Record[11]) {
3336       if (ComdatID > ComdatList.size())
3337         return error("Invalid global variable comdat ID");
3338       NewGV->setComdat(ComdatList[ComdatID - 1]);
3339     }
3340   } else if (hasImplicitComdat(RawLinkage)) {
3341     ImplicitComdatObjects.insert(NewGV);
3342   }
3343 
3344   if (Record.size() > 12) {
3345     auto AS = getAttributes(Record[12]).getFnAttrs();
3346     NewGV->setAttributes(AS);
3347   }
3348 
3349   if (Record.size() > 13) {
3350     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3351   }
3352   inferDSOLocal(NewGV);
3353 
3354   // Check whether we have enough values to read a partition name.
3355   if (Record.size() > 15)
3356     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3357 
3358   return Error::success();
3359 }
3360 
3361 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3362   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3363   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3364   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3365   // v2: [strtab_offset, strtab_size, v1]
3366   StringRef Name;
3367   std::tie(Name, Record) = readNameFromStrtab(Record);
3368 
3369   if (Record.size() < 8)
3370     return error("Invalid record");
3371   Type *FTy = getTypeByID(Record[0]);
3372   if (!FTy)
3373     return error("Invalid record");
3374   if (auto *PTy = dyn_cast<PointerType>(FTy))
3375     FTy = PTy->getPointerElementType();
3376 
3377   if (!isa<FunctionType>(FTy))
3378     return error("Invalid type for value");
3379   auto CC = static_cast<CallingConv::ID>(Record[1]);
3380   if (CC & ~CallingConv::MaxID)
3381     return error("Invalid calling convention ID");
3382 
3383   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3384   if (Record.size() > 16)
3385     AddrSpace = Record[16];
3386 
3387   Function *Func =
3388       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3389                        AddrSpace, Name, TheModule);
3390 
3391   assert(Func->getFunctionType() == FTy &&
3392          "Incorrect fully specified type provided for function");
3393   FunctionTypes[Func] = cast<FunctionType>(FTy);
3394 
3395   Func->setCallingConv(CC);
3396   bool isProto = Record[2];
3397   uint64_t RawLinkage = Record[3];
3398   Func->setLinkage(getDecodedLinkage(RawLinkage));
3399   Func->setAttributes(getAttributes(Record[4]));
3400 
3401   // Upgrade any old-style byval or sret without a type by propagating the
3402   // argument's pointee type. There should be no opaque pointers where the byval
3403   // type is implicit.
3404   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3405     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3406                                      Attribute::InAlloca}) {
3407       if (!Func->hasParamAttribute(i, Kind))
3408         continue;
3409 
3410       if (Func->getParamAttribute(i, Kind).getValueAsType())
3411         continue;
3412 
3413       Func->removeParamAttr(i, Kind);
3414 
3415       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3416       Type *PtrEltTy = PTy->getPointerElementType();
3417       Attribute NewAttr;
3418       switch (Kind) {
3419       case Attribute::ByVal:
3420         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3421         break;
3422       case Attribute::StructRet:
3423         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3424         break;
3425       case Attribute::InAlloca:
3426         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3427         break;
3428       default:
3429         llvm_unreachable("not an upgraded type attribute");
3430       }
3431 
3432       Func->addParamAttr(i, NewAttr);
3433     }
3434   }
3435 
3436   MaybeAlign Alignment;
3437   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3438     return Err;
3439   Func->setAlignment(Alignment);
3440   if (Record[6]) {
3441     if (Record[6] - 1 >= SectionTable.size())
3442       return error("Invalid ID");
3443     Func->setSection(SectionTable[Record[6] - 1]);
3444   }
3445   // Local linkage must have default visibility.
3446   // auto-upgrade `hidden` and `protected` for old bitcode.
3447   if (!Func->hasLocalLinkage())
3448     Func->setVisibility(getDecodedVisibility(Record[7]));
3449   if (Record.size() > 8 && Record[8]) {
3450     if (Record[8] - 1 >= GCTable.size())
3451       return error("Invalid ID");
3452     Func->setGC(GCTable[Record[8] - 1]);
3453   }
3454   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3455   if (Record.size() > 9)
3456     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3457   Func->setUnnamedAddr(UnnamedAddr);
3458 
3459   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3460   if (Record.size() > 10)
3461     OperandInfo.Prologue = Record[10];
3462 
3463   if (Record.size() > 11)
3464     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3465   else
3466     upgradeDLLImportExportLinkage(Func, RawLinkage);
3467 
3468   if (Record.size() > 12) {
3469     if (unsigned ComdatID = Record[12]) {
3470       if (ComdatID > ComdatList.size())
3471         return error("Invalid function comdat ID");
3472       Func->setComdat(ComdatList[ComdatID - 1]);
3473     }
3474   } else if (hasImplicitComdat(RawLinkage)) {
3475     ImplicitComdatObjects.insert(Func);
3476   }
3477 
3478   if (Record.size() > 13)
3479     OperandInfo.Prefix = Record[13];
3480 
3481   if (Record.size() > 14)
3482     OperandInfo.PersonalityFn = Record[14];
3483 
3484   if (Record.size() > 15) {
3485     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3486   }
3487   inferDSOLocal(Func);
3488 
3489   // Record[16] is the address space number.
3490 
3491   // Check whether we have enough values to read a partition name. Also make
3492   // sure Strtab has enough values.
3493   if (Record.size() > 18 && Strtab.data() &&
3494       Record[17] + Record[18] <= Strtab.size()) {
3495     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3496   }
3497 
3498   ValueList.push_back(Func);
3499 
3500   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3501     FunctionOperands.push_back(OperandInfo);
3502 
3503   // If this is a function with a body, remember the prototype we are
3504   // creating now, so that we can match up the body with them later.
3505   if (!isProto) {
3506     Func->setIsMaterializable(true);
3507     FunctionsWithBodies.push_back(Func);
3508     DeferredFunctionInfo[Func] = 0;
3509   }
3510   return Error::success();
3511 }
3512 
3513 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3514     unsigned BitCode, ArrayRef<uint64_t> Record) {
3515   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3516   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3517   // dllstorageclass, threadlocal, unnamed_addr,
3518   // preemption specifier] (name in VST)
3519   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3520   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3521   // preemption specifier] (name in VST)
3522   // v2: [strtab_offset, strtab_size, v1]
3523   StringRef Name;
3524   std::tie(Name, Record) = readNameFromStrtab(Record);
3525 
3526   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3527   if (Record.size() < (3 + (unsigned)NewRecord))
3528     return error("Invalid record");
3529   unsigned OpNum = 0;
3530   Type *Ty = getTypeByID(Record[OpNum++]);
3531   if (!Ty)
3532     return error("Invalid record");
3533 
3534   unsigned AddrSpace;
3535   if (!NewRecord) {
3536     auto *PTy = dyn_cast<PointerType>(Ty);
3537     if (!PTy)
3538       return error("Invalid type for value");
3539     Ty = PTy->getPointerElementType();
3540     AddrSpace = PTy->getAddressSpace();
3541   } else {
3542     AddrSpace = Record[OpNum++];
3543   }
3544 
3545   auto Val = Record[OpNum++];
3546   auto Linkage = Record[OpNum++];
3547   GlobalValue *NewGA;
3548   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3549       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3550     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3551                                 TheModule);
3552   else
3553     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3554                                 nullptr, TheModule);
3555 
3556   // Local linkage must have default visibility.
3557   // auto-upgrade `hidden` and `protected` for old bitcode.
3558   if (OpNum != Record.size()) {
3559     auto VisInd = OpNum++;
3560     if (!NewGA->hasLocalLinkage())
3561       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3562   }
3563   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3564       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3565     if (OpNum != Record.size())
3566       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3567     else
3568       upgradeDLLImportExportLinkage(NewGA, Linkage);
3569     if (OpNum != Record.size())
3570       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3571     if (OpNum != Record.size())
3572       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3573   }
3574   if (OpNum != Record.size())
3575     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3576   inferDSOLocal(NewGA);
3577 
3578   // Check whether we have enough values to read a partition name.
3579   if (OpNum + 1 < Record.size()) {
3580     NewGA->setPartition(
3581         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3582     OpNum += 2;
3583   }
3584 
3585   ValueList.push_back(NewGA);
3586   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3587   return Error::success();
3588 }
3589 
3590 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3591                                  bool ShouldLazyLoadMetadata,
3592                                  DataLayoutCallbackTy DataLayoutCallback) {
3593   if (ResumeBit) {
3594     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3595       return JumpFailed;
3596   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3597     return Err;
3598 
3599   SmallVector<uint64_t, 64> Record;
3600 
3601   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3602   // finalize the datalayout before we run any of that code.
3603   bool ResolvedDataLayout = false;
3604   auto ResolveDataLayout = [&] {
3605     if (ResolvedDataLayout)
3606       return;
3607 
3608     // datalayout and triple can't be parsed after this point.
3609     ResolvedDataLayout = true;
3610 
3611     // Upgrade data layout string.
3612     std::string DL = llvm::UpgradeDataLayoutString(
3613         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3614     TheModule->setDataLayout(DL);
3615 
3616     if (auto LayoutOverride =
3617             DataLayoutCallback(TheModule->getTargetTriple()))
3618       TheModule->setDataLayout(*LayoutOverride);
3619   };
3620 
3621   // Read all the records for this module.
3622   while (true) {
3623     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3624     if (!MaybeEntry)
3625       return MaybeEntry.takeError();
3626     llvm::BitstreamEntry Entry = MaybeEntry.get();
3627 
3628     switch (Entry.Kind) {
3629     case BitstreamEntry::Error:
3630       return error("Malformed block");
3631     case BitstreamEntry::EndBlock:
3632       ResolveDataLayout();
3633       return globalCleanup();
3634 
3635     case BitstreamEntry::SubBlock:
3636       switch (Entry.ID) {
3637       default:  // Skip unknown content.
3638         if (Error Err = Stream.SkipBlock())
3639           return Err;
3640         break;
3641       case bitc::BLOCKINFO_BLOCK_ID:
3642         if (readBlockInfo())
3643           return error("Malformed block");
3644         break;
3645       case bitc::PARAMATTR_BLOCK_ID:
3646         if (Error Err = parseAttributeBlock())
3647           return Err;
3648         break;
3649       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3650         if (Error Err = parseAttributeGroupBlock())
3651           return Err;
3652         break;
3653       case bitc::TYPE_BLOCK_ID_NEW:
3654         if (Error Err = parseTypeTable())
3655           return Err;
3656         break;
3657       case bitc::VALUE_SYMTAB_BLOCK_ID:
3658         if (!SeenValueSymbolTable) {
3659           // Either this is an old form VST without function index and an
3660           // associated VST forward declaration record (which would have caused
3661           // the VST to be jumped to and parsed before it was encountered
3662           // normally in the stream), or there were no function blocks to
3663           // trigger an earlier parsing of the VST.
3664           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3665           if (Error Err = parseValueSymbolTable())
3666             return Err;
3667           SeenValueSymbolTable = true;
3668         } else {
3669           // We must have had a VST forward declaration record, which caused
3670           // the parser to jump to and parse the VST earlier.
3671           assert(VSTOffset > 0);
3672           if (Error Err = Stream.SkipBlock())
3673             return Err;
3674         }
3675         break;
3676       case bitc::CONSTANTS_BLOCK_ID:
3677         if (Error Err = parseConstants())
3678           return Err;
3679         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3680           return Err;
3681         break;
3682       case bitc::METADATA_BLOCK_ID:
3683         if (ShouldLazyLoadMetadata) {
3684           if (Error Err = rememberAndSkipMetadata())
3685             return Err;
3686           break;
3687         }
3688         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3689         if (Error Err = MDLoader->parseModuleMetadata())
3690           return Err;
3691         break;
3692       case bitc::METADATA_KIND_BLOCK_ID:
3693         if (Error Err = MDLoader->parseMetadataKinds())
3694           return Err;
3695         break;
3696       case bitc::FUNCTION_BLOCK_ID:
3697         ResolveDataLayout();
3698 
3699         // If this is the first function body we've seen, reverse the
3700         // FunctionsWithBodies list.
3701         if (!SeenFirstFunctionBody) {
3702           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3703           if (Error Err = globalCleanup())
3704             return Err;
3705           SeenFirstFunctionBody = true;
3706         }
3707 
3708         if (VSTOffset > 0) {
3709           // If we have a VST forward declaration record, make sure we
3710           // parse the VST now if we haven't already. It is needed to
3711           // set up the DeferredFunctionInfo vector for lazy reading.
3712           if (!SeenValueSymbolTable) {
3713             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3714               return Err;
3715             SeenValueSymbolTable = true;
3716             // Fall through so that we record the NextUnreadBit below.
3717             // This is necessary in case we have an anonymous function that
3718             // is later materialized. Since it will not have a VST entry we
3719             // need to fall back to the lazy parse to find its offset.
3720           } else {
3721             // If we have a VST forward declaration record, but have already
3722             // parsed the VST (just above, when the first function body was
3723             // encountered here), then we are resuming the parse after
3724             // materializing functions. The ResumeBit points to the
3725             // start of the last function block recorded in the
3726             // DeferredFunctionInfo map. Skip it.
3727             if (Error Err = Stream.SkipBlock())
3728               return Err;
3729             continue;
3730           }
3731         }
3732 
3733         // Support older bitcode files that did not have the function
3734         // index in the VST, nor a VST forward declaration record, as
3735         // well as anonymous functions that do not have VST entries.
3736         // Build the DeferredFunctionInfo vector on the fly.
3737         if (Error Err = rememberAndSkipFunctionBody())
3738           return Err;
3739 
3740         // Suspend parsing when we reach the function bodies. Subsequent
3741         // materialization calls will resume it when necessary. If the bitcode
3742         // file is old, the symbol table will be at the end instead and will not
3743         // have been seen yet. In this case, just finish the parse now.
3744         if (SeenValueSymbolTable) {
3745           NextUnreadBit = Stream.GetCurrentBitNo();
3746           // After the VST has been parsed, we need to make sure intrinsic name
3747           // are auto-upgraded.
3748           return globalCleanup();
3749         }
3750         break;
3751       case bitc::USELIST_BLOCK_ID:
3752         if (Error Err = parseUseLists())
3753           return Err;
3754         break;
3755       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3756         if (Error Err = parseOperandBundleTags())
3757           return Err;
3758         break;
3759       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3760         if (Error Err = parseSyncScopeNames())
3761           return Err;
3762         break;
3763       }
3764       continue;
3765 
3766     case BitstreamEntry::Record:
3767       // The interesting case.
3768       break;
3769     }
3770 
3771     // Read a record.
3772     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3773     if (!MaybeBitCode)
3774       return MaybeBitCode.takeError();
3775     switch (unsigned BitCode = MaybeBitCode.get()) {
3776     default: break;  // Default behavior, ignore unknown content.
3777     case bitc::MODULE_CODE_VERSION: {
3778       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3779       if (!VersionOrErr)
3780         return VersionOrErr.takeError();
3781       UseRelativeIDs = *VersionOrErr >= 1;
3782       break;
3783     }
3784     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3785       if (ResolvedDataLayout)
3786         return error("target triple too late in module");
3787       std::string S;
3788       if (convertToString(Record, 0, S))
3789         return error("Invalid record");
3790       TheModule->setTargetTriple(S);
3791       break;
3792     }
3793     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3794       if (ResolvedDataLayout)
3795         return error("datalayout too late in module");
3796       std::string S;
3797       if (convertToString(Record, 0, S))
3798         return error("Invalid record");
3799       TheModule->setDataLayout(S);
3800       break;
3801     }
3802     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3803       std::string S;
3804       if (convertToString(Record, 0, S))
3805         return error("Invalid record");
3806       TheModule->setModuleInlineAsm(S);
3807       break;
3808     }
3809     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3810       // Deprecated, but still needed to read old bitcode files.
3811       std::string S;
3812       if (convertToString(Record, 0, S))
3813         return error("Invalid record");
3814       // Ignore value.
3815       break;
3816     }
3817     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3818       std::string S;
3819       if (convertToString(Record, 0, S))
3820         return error("Invalid record");
3821       SectionTable.push_back(S);
3822       break;
3823     }
3824     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3825       std::string S;
3826       if (convertToString(Record, 0, S))
3827         return error("Invalid record");
3828       GCTable.push_back(S);
3829       break;
3830     }
3831     case bitc::MODULE_CODE_COMDAT:
3832       if (Error Err = parseComdatRecord(Record))
3833         return Err;
3834       break;
3835     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
3836     // written by ThinLinkBitcodeWriter. See
3837     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
3838     // record
3839     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
3840     case bitc::MODULE_CODE_GLOBALVAR:
3841       if (Error Err = parseGlobalVarRecord(Record))
3842         return Err;
3843       break;
3844     case bitc::MODULE_CODE_FUNCTION:
3845       ResolveDataLayout();
3846       if (Error Err = parseFunctionRecord(Record))
3847         return Err;
3848       break;
3849     case bitc::MODULE_CODE_IFUNC:
3850     case bitc::MODULE_CODE_ALIAS:
3851     case bitc::MODULE_CODE_ALIAS_OLD:
3852       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3853         return Err;
3854       break;
3855     /// MODULE_CODE_VSTOFFSET: [offset]
3856     case bitc::MODULE_CODE_VSTOFFSET:
3857       if (Record.empty())
3858         return error("Invalid record");
3859       // Note that we subtract 1 here because the offset is relative to one word
3860       // before the start of the identification or module block, which was
3861       // historically always the start of the regular bitcode header.
3862       VSTOffset = Record[0] - 1;
3863       break;
3864     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3865     case bitc::MODULE_CODE_SOURCE_FILENAME:
3866       SmallString<128> ValueName;
3867       if (convertToString(Record, 0, ValueName))
3868         return error("Invalid record");
3869       TheModule->setSourceFileName(ValueName);
3870       break;
3871     }
3872     Record.clear();
3873   }
3874 }
3875 
3876 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3877                                       bool IsImporting,
3878                                       DataLayoutCallbackTy DataLayoutCallback) {
3879   TheModule = M;
3880   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3881                             [&](unsigned ID) { return getTypeByID(ID); });
3882   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3883 }
3884 
3885 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3886   if (!isa<PointerType>(PtrType))
3887     return error("Load/Store operand is not a pointer type");
3888 
3889   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3890     return error("Explicit load/store type does not match pointee "
3891                  "type of pointer operand");
3892   if (!PointerType::isLoadableOrStorableType(ValType))
3893     return error("Cannot load/store from pointer");
3894   return Error::success();
3895 }
3896 
3897 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3898                                             ArrayRef<Type *> ArgsTys) {
3899   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3900     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3901                                      Attribute::InAlloca}) {
3902       if (!CB->paramHasAttr(i, Kind) ||
3903           CB->getParamAttr(i, Kind).getValueAsType())
3904         continue;
3905 
3906       CB->removeParamAttr(i, Kind);
3907 
3908       Type *PtrEltTy = ArgsTys[i]->getPointerElementType();
3909       Attribute NewAttr;
3910       switch (Kind) {
3911       case Attribute::ByVal:
3912         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3913         break;
3914       case Attribute::StructRet:
3915         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3916         break;
3917       case Attribute::InAlloca:
3918         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3919         break;
3920       default:
3921         llvm_unreachable("not an upgraded type attribute");
3922       }
3923 
3924       CB->addParamAttr(i, NewAttr);
3925     }
3926   }
3927 
3928   if (CB->isInlineAsm()) {
3929     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
3930     unsigned ArgNo = 0;
3931     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3932       if (!CI.hasArg())
3933         continue;
3934 
3935       if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) {
3936         Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType();
3937         CB->addParamAttr(
3938             ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy));
3939       }
3940 
3941       ArgNo++;
3942     }
3943   }
3944 
3945   switch (CB->getIntrinsicID()) {
3946   case Intrinsic::preserve_array_access_index:
3947   case Intrinsic::preserve_struct_access_index:
3948     if (!CB->getAttributes().getParamElementType(0)) {
3949       Type *ElTy = ArgsTys[0]->getPointerElementType();
3950       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3951       CB->addParamAttr(0, NewAttr);
3952     }
3953     break;
3954   default:
3955     break;
3956   }
3957 }
3958 
3959 /// Lazily parse the specified function body block.
3960 Error BitcodeReader::parseFunctionBody(Function *F) {
3961   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3962     return Err;
3963 
3964   // Unexpected unresolved metadata when parsing function.
3965   if (MDLoader->hasFwdRefs())
3966     return error("Invalid function metadata: incoming forward references");
3967 
3968   InstructionList.clear();
3969   unsigned ModuleValueListSize = ValueList.size();
3970   unsigned ModuleMDLoaderSize = MDLoader->size();
3971 
3972   // Add all the function arguments to the value table.
3973 #ifndef NDEBUG
3974   unsigned ArgNo = 0;
3975   FunctionType *FTy = FunctionTypes[F];
3976 #endif
3977   for (Argument &I : F->args()) {
3978     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3979            "Incorrect fully specified type for Function Argument");
3980     ValueList.push_back(&I);
3981   }
3982   unsigned NextValueNo = ValueList.size();
3983   BasicBlock *CurBB = nullptr;
3984   unsigned CurBBNo = 0;
3985 
3986   DebugLoc LastLoc;
3987   auto getLastInstruction = [&]() -> Instruction * {
3988     if (CurBB && !CurBB->empty())
3989       return &CurBB->back();
3990     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3991              !FunctionBBs[CurBBNo - 1]->empty())
3992       return &FunctionBBs[CurBBNo - 1]->back();
3993     return nullptr;
3994   };
3995 
3996   std::vector<OperandBundleDef> OperandBundles;
3997 
3998   // Read all the records.
3999   SmallVector<uint64_t, 64> Record;
4000 
4001   while (true) {
4002     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4003     if (!MaybeEntry)
4004       return MaybeEntry.takeError();
4005     llvm::BitstreamEntry Entry = MaybeEntry.get();
4006 
4007     switch (Entry.Kind) {
4008     case BitstreamEntry::Error:
4009       return error("Malformed block");
4010     case BitstreamEntry::EndBlock:
4011       goto OutOfRecordLoop;
4012 
4013     case BitstreamEntry::SubBlock:
4014       switch (Entry.ID) {
4015       default:  // Skip unknown content.
4016         if (Error Err = Stream.SkipBlock())
4017           return Err;
4018         break;
4019       case bitc::CONSTANTS_BLOCK_ID:
4020         if (Error Err = parseConstants())
4021           return Err;
4022         NextValueNo = ValueList.size();
4023         break;
4024       case bitc::VALUE_SYMTAB_BLOCK_ID:
4025         if (Error Err = parseValueSymbolTable())
4026           return Err;
4027         break;
4028       case bitc::METADATA_ATTACHMENT_ID:
4029         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4030           return Err;
4031         break;
4032       case bitc::METADATA_BLOCK_ID:
4033         assert(DeferredMetadataInfo.empty() &&
4034                "Must read all module-level metadata before function-level");
4035         if (Error Err = MDLoader->parseFunctionMetadata())
4036           return Err;
4037         break;
4038       case bitc::USELIST_BLOCK_ID:
4039         if (Error Err = parseUseLists())
4040           return Err;
4041         break;
4042       }
4043       continue;
4044 
4045     case BitstreamEntry::Record:
4046       // The interesting case.
4047       break;
4048     }
4049 
4050     // Read a record.
4051     Record.clear();
4052     Instruction *I = nullptr;
4053     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4054     if (!MaybeBitCode)
4055       return MaybeBitCode.takeError();
4056     switch (unsigned BitCode = MaybeBitCode.get()) {
4057     default: // Default behavior: reject
4058       return error("Invalid value");
4059     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4060       if (Record.empty() || Record[0] == 0)
4061         return error("Invalid record");
4062       // Create all the basic blocks for the function.
4063       FunctionBBs.resize(Record[0]);
4064 
4065       // See if anything took the address of blocks in this function.
4066       auto BBFRI = BasicBlockFwdRefs.find(F);
4067       if (BBFRI == BasicBlockFwdRefs.end()) {
4068         for (BasicBlock *&BB : FunctionBBs)
4069           BB = BasicBlock::Create(Context, "", F);
4070       } else {
4071         auto &BBRefs = BBFRI->second;
4072         // Check for invalid basic block references.
4073         if (BBRefs.size() > FunctionBBs.size())
4074           return error("Invalid ID");
4075         assert(!BBRefs.empty() && "Unexpected empty array");
4076         assert(!BBRefs.front() && "Invalid reference to entry block");
4077         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4078              ++I)
4079           if (I < RE && BBRefs[I]) {
4080             BBRefs[I]->insertInto(F);
4081             FunctionBBs[I] = BBRefs[I];
4082           } else {
4083             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4084           }
4085 
4086         // Erase from the table.
4087         BasicBlockFwdRefs.erase(BBFRI);
4088       }
4089 
4090       CurBB = FunctionBBs[0];
4091       continue;
4092     }
4093 
4094     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4095       // This record indicates that the last instruction is at the same
4096       // location as the previous instruction with a location.
4097       I = getLastInstruction();
4098 
4099       if (!I)
4100         return error("Invalid record");
4101       I->setDebugLoc(LastLoc);
4102       I = nullptr;
4103       continue;
4104 
4105     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4106       I = getLastInstruction();
4107       if (!I || Record.size() < 4)
4108         return error("Invalid record");
4109 
4110       unsigned Line = Record[0], Col = Record[1];
4111       unsigned ScopeID = Record[2], IAID = Record[3];
4112       bool isImplicitCode = Record.size() == 5 && Record[4];
4113 
4114       MDNode *Scope = nullptr, *IA = nullptr;
4115       if (ScopeID) {
4116         Scope = dyn_cast_or_null<MDNode>(
4117             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4118         if (!Scope)
4119           return error("Invalid record");
4120       }
4121       if (IAID) {
4122         IA = dyn_cast_or_null<MDNode>(
4123             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4124         if (!IA)
4125           return error("Invalid record");
4126       }
4127       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4128                                 isImplicitCode);
4129       I->setDebugLoc(LastLoc);
4130       I = nullptr;
4131       continue;
4132     }
4133     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4134       unsigned OpNum = 0;
4135       Value *LHS;
4136       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4137           OpNum+1 > Record.size())
4138         return error("Invalid record");
4139 
4140       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4141       if (Opc == -1)
4142         return error("Invalid record");
4143       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4144       InstructionList.push_back(I);
4145       if (OpNum < Record.size()) {
4146         if (isa<FPMathOperator>(I)) {
4147           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4148           if (FMF.any())
4149             I->setFastMathFlags(FMF);
4150         }
4151       }
4152       break;
4153     }
4154     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4155       unsigned OpNum = 0;
4156       Value *LHS, *RHS;
4157       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4158           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4159           OpNum+1 > Record.size())
4160         return error("Invalid record");
4161 
4162       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4163       if (Opc == -1)
4164         return error("Invalid record");
4165       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4166       InstructionList.push_back(I);
4167       if (OpNum < Record.size()) {
4168         if (Opc == Instruction::Add ||
4169             Opc == Instruction::Sub ||
4170             Opc == Instruction::Mul ||
4171             Opc == Instruction::Shl) {
4172           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4173             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4174           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4175             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4176         } else if (Opc == Instruction::SDiv ||
4177                    Opc == Instruction::UDiv ||
4178                    Opc == Instruction::LShr ||
4179                    Opc == Instruction::AShr) {
4180           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4181             cast<BinaryOperator>(I)->setIsExact(true);
4182         } else if (isa<FPMathOperator>(I)) {
4183           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4184           if (FMF.any())
4185             I->setFastMathFlags(FMF);
4186         }
4187 
4188       }
4189       break;
4190     }
4191     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4192       unsigned OpNum = 0;
4193       Value *Op;
4194       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4195           OpNum+2 != Record.size())
4196         return error("Invalid record");
4197 
4198       Type *ResTy = getTypeByID(Record[OpNum]);
4199       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4200       if (Opc == -1 || !ResTy)
4201         return error("Invalid record");
4202       Instruction *Temp = nullptr;
4203       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4204         if (Temp) {
4205           InstructionList.push_back(Temp);
4206           assert(CurBB && "No current BB?");
4207           CurBB->getInstList().push_back(Temp);
4208         }
4209       } else {
4210         auto CastOp = (Instruction::CastOps)Opc;
4211         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4212           return error("Invalid cast");
4213         I = CastInst::Create(CastOp, Op, ResTy);
4214       }
4215       InstructionList.push_back(I);
4216       break;
4217     }
4218     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4219     case bitc::FUNC_CODE_INST_GEP_OLD:
4220     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4221       unsigned OpNum = 0;
4222 
4223       Type *Ty;
4224       bool InBounds;
4225 
4226       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4227         InBounds = Record[OpNum++];
4228         Ty = getTypeByID(Record[OpNum++]);
4229       } else {
4230         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4231         Ty = nullptr;
4232       }
4233 
4234       Value *BasePtr;
4235       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4236         return error("Invalid record");
4237 
4238       if (!Ty) {
4239         Ty = BasePtr->getType()->getScalarType()->getPointerElementType();
4240       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4241                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4242         return error(
4243             "Explicit gep type does not match pointee type of pointer operand");
4244       }
4245 
4246       SmallVector<Value*, 16> GEPIdx;
4247       while (OpNum != Record.size()) {
4248         Value *Op;
4249         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4250           return error("Invalid record");
4251         GEPIdx.push_back(Op);
4252       }
4253 
4254       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4255 
4256       InstructionList.push_back(I);
4257       if (InBounds)
4258         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4259       break;
4260     }
4261 
4262     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4263                                        // EXTRACTVAL: [opty, opval, n x indices]
4264       unsigned OpNum = 0;
4265       Value *Agg;
4266       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4267         return error("Invalid record");
4268       Type *Ty = Agg->getType();
4269 
4270       unsigned RecSize = Record.size();
4271       if (OpNum == RecSize)
4272         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4273 
4274       SmallVector<unsigned, 4> EXTRACTVALIdx;
4275       for (; OpNum != RecSize; ++OpNum) {
4276         bool IsArray = Ty->isArrayTy();
4277         bool IsStruct = Ty->isStructTy();
4278         uint64_t Index = Record[OpNum];
4279 
4280         if (!IsStruct && !IsArray)
4281           return error("EXTRACTVAL: Invalid type");
4282         if ((unsigned)Index != Index)
4283           return error("Invalid value");
4284         if (IsStruct && Index >= Ty->getStructNumElements())
4285           return error("EXTRACTVAL: Invalid struct index");
4286         if (IsArray && Index >= Ty->getArrayNumElements())
4287           return error("EXTRACTVAL: Invalid array index");
4288         EXTRACTVALIdx.push_back((unsigned)Index);
4289 
4290         if (IsStruct)
4291           Ty = Ty->getStructElementType(Index);
4292         else
4293           Ty = Ty->getArrayElementType();
4294       }
4295 
4296       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4297       InstructionList.push_back(I);
4298       break;
4299     }
4300 
4301     case bitc::FUNC_CODE_INST_INSERTVAL: {
4302                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4303       unsigned OpNum = 0;
4304       Value *Agg;
4305       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4306         return error("Invalid record");
4307       Value *Val;
4308       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4309         return error("Invalid record");
4310 
4311       unsigned RecSize = Record.size();
4312       if (OpNum == RecSize)
4313         return error("INSERTVAL: Invalid instruction with 0 indices");
4314 
4315       SmallVector<unsigned, 4> INSERTVALIdx;
4316       Type *CurTy = Agg->getType();
4317       for (; OpNum != RecSize; ++OpNum) {
4318         bool IsArray = CurTy->isArrayTy();
4319         bool IsStruct = CurTy->isStructTy();
4320         uint64_t Index = Record[OpNum];
4321 
4322         if (!IsStruct && !IsArray)
4323           return error("INSERTVAL: Invalid type");
4324         if ((unsigned)Index != Index)
4325           return error("Invalid value");
4326         if (IsStruct && Index >= CurTy->getStructNumElements())
4327           return error("INSERTVAL: Invalid struct index");
4328         if (IsArray && Index >= CurTy->getArrayNumElements())
4329           return error("INSERTVAL: Invalid array index");
4330 
4331         INSERTVALIdx.push_back((unsigned)Index);
4332         if (IsStruct)
4333           CurTy = CurTy->getStructElementType(Index);
4334         else
4335           CurTy = CurTy->getArrayElementType();
4336       }
4337 
4338       if (CurTy != Val->getType())
4339         return error("Inserted value type doesn't match aggregate type");
4340 
4341       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4342       InstructionList.push_back(I);
4343       break;
4344     }
4345 
4346     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4347       // obsolete form of select
4348       // handles select i1 ... in old bitcode
4349       unsigned OpNum = 0;
4350       Value *TrueVal, *FalseVal, *Cond;
4351       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4352           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4353           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4354         return error("Invalid record");
4355 
4356       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4357       InstructionList.push_back(I);
4358       break;
4359     }
4360 
4361     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4362       // new form of select
4363       // handles select i1 or select [N x i1]
4364       unsigned OpNum = 0;
4365       Value *TrueVal, *FalseVal, *Cond;
4366       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4367           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4368           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4369         return error("Invalid record");
4370 
4371       // select condition can be either i1 or [N x i1]
4372       if (VectorType* vector_type =
4373           dyn_cast<VectorType>(Cond->getType())) {
4374         // expect <n x i1>
4375         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4376           return error("Invalid type for value");
4377       } else {
4378         // expect i1
4379         if (Cond->getType() != Type::getInt1Ty(Context))
4380           return error("Invalid type for value");
4381       }
4382 
4383       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4384       InstructionList.push_back(I);
4385       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4386         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4387         if (FMF.any())
4388           I->setFastMathFlags(FMF);
4389       }
4390       break;
4391     }
4392 
4393     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4394       unsigned OpNum = 0;
4395       Value *Vec, *Idx;
4396       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4397           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4398         return error("Invalid record");
4399       if (!Vec->getType()->isVectorTy())
4400         return error("Invalid type for value");
4401       I = ExtractElementInst::Create(Vec, Idx);
4402       InstructionList.push_back(I);
4403       break;
4404     }
4405 
4406     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4407       unsigned OpNum = 0;
4408       Value *Vec, *Elt, *Idx;
4409       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4410         return error("Invalid record");
4411       if (!Vec->getType()->isVectorTy())
4412         return error("Invalid type for value");
4413       if (popValue(Record, OpNum, NextValueNo,
4414                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4415           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4416         return error("Invalid record");
4417       I = InsertElementInst::Create(Vec, Elt, Idx);
4418       InstructionList.push_back(I);
4419       break;
4420     }
4421 
4422     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4423       unsigned OpNum = 0;
4424       Value *Vec1, *Vec2, *Mask;
4425       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4426           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4427         return error("Invalid record");
4428 
4429       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4430         return error("Invalid record");
4431       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4432         return error("Invalid type for value");
4433 
4434       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4435       InstructionList.push_back(I);
4436       break;
4437     }
4438 
4439     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4440       // Old form of ICmp/FCmp returning bool
4441       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4442       // both legal on vectors but had different behaviour.
4443     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4444       // FCmp/ICmp returning bool or vector of bool
4445 
4446       unsigned OpNum = 0;
4447       Value *LHS, *RHS;
4448       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4449           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4450         return error("Invalid record");
4451 
4452       if (OpNum >= Record.size())
4453         return error(
4454             "Invalid record: operand number exceeded available operands");
4455 
4456       unsigned PredVal = Record[OpNum];
4457       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4458       FastMathFlags FMF;
4459       if (IsFP && Record.size() > OpNum+1)
4460         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4461 
4462       if (OpNum+1 != Record.size())
4463         return error("Invalid record");
4464 
4465       if (LHS->getType()->isFPOrFPVectorTy())
4466         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4467       else
4468         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4469 
4470       if (FMF.any())
4471         I->setFastMathFlags(FMF);
4472       InstructionList.push_back(I);
4473       break;
4474     }
4475 
4476     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4477       {
4478         unsigned Size = Record.size();
4479         if (Size == 0) {
4480           I = ReturnInst::Create(Context);
4481           InstructionList.push_back(I);
4482           break;
4483         }
4484 
4485         unsigned OpNum = 0;
4486         Value *Op = nullptr;
4487         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4488           return error("Invalid record");
4489         if (OpNum != Record.size())
4490           return error("Invalid record");
4491 
4492         I = ReturnInst::Create(Context, Op);
4493         InstructionList.push_back(I);
4494         break;
4495       }
4496     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4497       if (Record.size() != 1 && Record.size() != 3)
4498         return error("Invalid record");
4499       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4500       if (!TrueDest)
4501         return error("Invalid record");
4502 
4503       if (Record.size() == 1) {
4504         I = BranchInst::Create(TrueDest);
4505         InstructionList.push_back(I);
4506       }
4507       else {
4508         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4509         Value *Cond = getValue(Record, 2, NextValueNo,
4510                                Type::getInt1Ty(Context));
4511         if (!FalseDest || !Cond)
4512           return error("Invalid record");
4513         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4514         InstructionList.push_back(I);
4515       }
4516       break;
4517     }
4518     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4519       if (Record.size() != 1 && Record.size() != 2)
4520         return error("Invalid record");
4521       unsigned Idx = 0;
4522       Value *CleanupPad =
4523           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4524       if (!CleanupPad)
4525         return error("Invalid record");
4526       BasicBlock *UnwindDest = nullptr;
4527       if (Record.size() == 2) {
4528         UnwindDest = getBasicBlock(Record[Idx++]);
4529         if (!UnwindDest)
4530           return error("Invalid record");
4531       }
4532 
4533       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4534       InstructionList.push_back(I);
4535       break;
4536     }
4537     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4538       if (Record.size() != 2)
4539         return error("Invalid record");
4540       unsigned Idx = 0;
4541       Value *CatchPad =
4542           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4543       if (!CatchPad)
4544         return error("Invalid record");
4545       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4546       if (!BB)
4547         return error("Invalid record");
4548 
4549       I = CatchReturnInst::Create(CatchPad, BB);
4550       InstructionList.push_back(I);
4551       break;
4552     }
4553     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4554       // We must have, at minimum, the outer scope and the number of arguments.
4555       if (Record.size() < 2)
4556         return error("Invalid record");
4557 
4558       unsigned Idx = 0;
4559 
4560       Value *ParentPad =
4561           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4562 
4563       unsigned NumHandlers = Record[Idx++];
4564 
4565       SmallVector<BasicBlock *, 2> Handlers;
4566       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4567         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4568         if (!BB)
4569           return error("Invalid record");
4570         Handlers.push_back(BB);
4571       }
4572 
4573       BasicBlock *UnwindDest = nullptr;
4574       if (Idx + 1 == Record.size()) {
4575         UnwindDest = getBasicBlock(Record[Idx++]);
4576         if (!UnwindDest)
4577           return error("Invalid record");
4578       }
4579 
4580       if (Record.size() != Idx)
4581         return error("Invalid record");
4582 
4583       auto *CatchSwitch =
4584           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4585       for (BasicBlock *Handler : Handlers)
4586         CatchSwitch->addHandler(Handler);
4587       I = CatchSwitch;
4588       InstructionList.push_back(I);
4589       break;
4590     }
4591     case bitc::FUNC_CODE_INST_CATCHPAD:
4592     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4593       // We must have, at minimum, the outer scope and the number of arguments.
4594       if (Record.size() < 2)
4595         return error("Invalid record");
4596 
4597       unsigned Idx = 0;
4598 
4599       Value *ParentPad =
4600           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4601 
4602       unsigned NumArgOperands = Record[Idx++];
4603 
4604       SmallVector<Value *, 2> Args;
4605       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4606         Value *Val;
4607         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4608           return error("Invalid record");
4609         Args.push_back(Val);
4610       }
4611 
4612       if (Record.size() != Idx)
4613         return error("Invalid record");
4614 
4615       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4616         I = CleanupPadInst::Create(ParentPad, Args);
4617       else
4618         I = CatchPadInst::Create(ParentPad, Args);
4619       InstructionList.push_back(I);
4620       break;
4621     }
4622     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4623       // Check magic
4624       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4625         // "New" SwitchInst format with case ranges. The changes to write this
4626         // format were reverted but we still recognize bitcode that uses it.
4627         // Hopefully someday we will have support for case ranges and can use
4628         // this format again.
4629 
4630         Type *OpTy = getTypeByID(Record[1]);
4631         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4632 
4633         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4634         BasicBlock *Default = getBasicBlock(Record[3]);
4635         if (!OpTy || !Cond || !Default)
4636           return error("Invalid record");
4637 
4638         unsigned NumCases = Record[4];
4639 
4640         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4641         InstructionList.push_back(SI);
4642 
4643         unsigned CurIdx = 5;
4644         for (unsigned i = 0; i != NumCases; ++i) {
4645           SmallVector<ConstantInt*, 1> CaseVals;
4646           unsigned NumItems = Record[CurIdx++];
4647           for (unsigned ci = 0; ci != NumItems; ++ci) {
4648             bool isSingleNumber = Record[CurIdx++];
4649 
4650             APInt Low;
4651             unsigned ActiveWords = 1;
4652             if (ValueBitWidth > 64)
4653               ActiveWords = Record[CurIdx++];
4654             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4655                                 ValueBitWidth);
4656             CurIdx += ActiveWords;
4657 
4658             if (!isSingleNumber) {
4659               ActiveWords = 1;
4660               if (ValueBitWidth > 64)
4661                 ActiveWords = Record[CurIdx++];
4662               APInt High = readWideAPInt(
4663                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4664               CurIdx += ActiveWords;
4665 
4666               // FIXME: It is not clear whether values in the range should be
4667               // compared as signed or unsigned values. The partially
4668               // implemented changes that used this format in the past used
4669               // unsigned comparisons.
4670               for ( ; Low.ule(High); ++Low)
4671                 CaseVals.push_back(ConstantInt::get(Context, Low));
4672             } else
4673               CaseVals.push_back(ConstantInt::get(Context, Low));
4674           }
4675           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4676           for (ConstantInt *Cst : CaseVals)
4677             SI->addCase(Cst, DestBB);
4678         }
4679         I = SI;
4680         break;
4681       }
4682 
4683       // Old SwitchInst format without case ranges.
4684 
4685       if (Record.size() < 3 || (Record.size() & 1) == 0)
4686         return error("Invalid record");
4687       Type *OpTy = getTypeByID(Record[0]);
4688       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4689       BasicBlock *Default = getBasicBlock(Record[2]);
4690       if (!OpTy || !Cond || !Default)
4691         return error("Invalid record");
4692       unsigned NumCases = (Record.size()-3)/2;
4693       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4694       InstructionList.push_back(SI);
4695       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4696         ConstantInt *CaseVal =
4697           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4698         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4699         if (!CaseVal || !DestBB) {
4700           delete SI;
4701           return error("Invalid record");
4702         }
4703         SI->addCase(CaseVal, DestBB);
4704       }
4705       I = SI;
4706       break;
4707     }
4708     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4709       if (Record.size() < 2)
4710         return error("Invalid record");
4711       Type *OpTy = getTypeByID(Record[0]);
4712       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4713       if (!OpTy || !Address)
4714         return error("Invalid record");
4715       unsigned NumDests = Record.size()-2;
4716       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4717       InstructionList.push_back(IBI);
4718       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4719         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4720           IBI->addDestination(DestBB);
4721         } else {
4722           delete IBI;
4723           return error("Invalid record");
4724         }
4725       }
4726       I = IBI;
4727       break;
4728     }
4729 
4730     case bitc::FUNC_CODE_INST_INVOKE: {
4731       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4732       if (Record.size() < 4)
4733         return error("Invalid record");
4734       unsigned OpNum = 0;
4735       AttributeList PAL = getAttributes(Record[OpNum++]);
4736       unsigned CCInfo = Record[OpNum++];
4737       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4738       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4739 
4740       FunctionType *FTy = nullptr;
4741       if ((CCInfo >> 13) & 1) {
4742         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4743         if (!FTy)
4744           return error("Explicit invoke type is not a function type");
4745       }
4746 
4747       Value *Callee;
4748       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4749         return error("Invalid record");
4750 
4751       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4752       if (!CalleeTy)
4753         return error("Callee is not a pointer");
4754       if (!FTy) {
4755         FTy =
4756             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4757         if (!FTy)
4758           return error("Callee is not of pointer to function type");
4759       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4760         return error("Explicit invoke type does not match pointee type of "
4761                      "callee operand");
4762       if (Record.size() < FTy->getNumParams() + OpNum)
4763         return error("Insufficient operands to call");
4764 
4765       SmallVector<Value*, 16> Ops;
4766       SmallVector<Type *, 16> ArgsTys;
4767       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4768         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4769                                FTy->getParamType(i)));
4770         ArgsTys.push_back(FTy->getParamType(i));
4771         if (!Ops.back())
4772           return error("Invalid record");
4773       }
4774 
4775       if (!FTy->isVarArg()) {
4776         if (Record.size() != OpNum)
4777           return error("Invalid record");
4778       } else {
4779         // Read type/value pairs for varargs params.
4780         while (OpNum != Record.size()) {
4781           Value *Op;
4782           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4783             return error("Invalid record");
4784           Ops.push_back(Op);
4785           ArgsTys.push_back(Op->getType());
4786         }
4787       }
4788 
4789       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4790                              OperandBundles);
4791       OperandBundles.clear();
4792       InstructionList.push_back(I);
4793       cast<InvokeInst>(I)->setCallingConv(
4794           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4795       cast<InvokeInst>(I)->setAttributes(PAL);
4796       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4797 
4798       break;
4799     }
4800     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4801       unsigned Idx = 0;
4802       Value *Val = nullptr;
4803       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4804         return error("Invalid record");
4805       I = ResumeInst::Create(Val);
4806       InstructionList.push_back(I);
4807       break;
4808     }
4809     case bitc::FUNC_CODE_INST_CALLBR: {
4810       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4811       unsigned OpNum = 0;
4812       AttributeList PAL = getAttributes(Record[OpNum++]);
4813       unsigned CCInfo = Record[OpNum++];
4814 
4815       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4816       unsigned NumIndirectDests = Record[OpNum++];
4817       SmallVector<BasicBlock *, 16> IndirectDests;
4818       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4819         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4820 
4821       FunctionType *FTy = nullptr;
4822       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4823         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4824         if (!FTy)
4825           return error("Explicit call type is not a function type");
4826       }
4827 
4828       Value *Callee;
4829       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4830         return error("Invalid record");
4831 
4832       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4833       if (!OpTy)
4834         return error("Callee is not a pointer type");
4835       if (!FTy) {
4836         FTy =
4837             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4838         if (!FTy)
4839           return error("Callee is not of pointer to function type");
4840       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
4841         return error("Explicit call type does not match pointee type of "
4842                      "callee operand");
4843       if (Record.size() < FTy->getNumParams() + OpNum)
4844         return error("Insufficient operands to call");
4845 
4846       SmallVector<Value*, 16> Args;
4847       SmallVector<Type *, 16> ArgsTys;
4848       // Read the fixed params.
4849       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4850         Value *Arg;
4851         if (FTy->getParamType(i)->isLabelTy())
4852           Arg = getBasicBlock(Record[OpNum]);
4853         else
4854           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i));
4855         if (!Arg)
4856           return error("Invalid record");
4857         Args.push_back(Arg);
4858         ArgsTys.push_back(Arg->getType());
4859       }
4860 
4861       // Read type/value pairs for varargs params.
4862       if (!FTy->isVarArg()) {
4863         if (OpNum != Record.size())
4864           return error("Invalid record");
4865       } else {
4866         while (OpNum != Record.size()) {
4867           Value *Op;
4868           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4869             return error("Invalid record");
4870           Args.push_back(Op);
4871           ArgsTys.push_back(Op->getType());
4872         }
4873       }
4874 
4875       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4876                              OperandBundles);
4877       OperandBundles.clear();
4878       InstructionList.push_back(I);
4879       cast<CallBrInst>(I)->setCallingConv(
4880           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4881       cast<CallBrInst>(I)->setAttributes(PAL);
4882       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4883       break;
4884     }
4885     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4886       I = new UnreachableInst(Context);
4887       InstructionList.push_back(I);
4888       break;
4889     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4890       if (Record.empty())
4891         return error("Invalid record");
4892       // The first record specifies the type.
4893       Type *Ty = getTypeByID(Record[0]);
4894       if (!Ty)
4895         return error("Invalid record");
4896 
4897       // Phi arguments are pairs of records of [value, basic block].
4898       // There is an optional final record for fast-math-flags if this phi has a
4899       // floating-point type.
4900       size_t NumArgs = (Record.size() - 1) / 2;
4901       PHINode *PN = PHINode::Create(Ty, NumArgs);
4902       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4903         return error("Invalid record");
4904       InstructionList.push_back(PN);
4905 
4906       for (unsigned i = 0; i != NumArgs; i++) {
4907         Value *V;
4908         // With the new function encoding, it is possible that operands have
4909         // negative IDs (for forward references).  Use a signed VBR
4910         // representation to keep the encoding small.
4911         if (UseRelativeIDs)
4912           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4913         else
4914           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4915         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4916         if (!V || !BB)
4917           return error("Invalid record");
4918         PN->addIncoming(V, BB);
4919       }
4920       I = PN;
4921 
4922       // If there are an even number of records, the final record must be FMF.
4923       if (Record.size() % 2 == 0) {
4924         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4925         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4926         if (FMF.any())
4927           I->setFastMathFlags(FMF);
4928       }
4929 
4930       break;
4931     }
4932 
4933     case bitc::FUNC_CODE_INST_LANDINGPAD:
4934     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4935       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4936       unsigned Idx = 0;
4937       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4938         if (Record.size() < 3)
4939           return error("Invalid record");
4940       } else {
4941         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4942         if (Record.size() < 4)
4943           return error("Invalid record");
4944       }
4945       Type *Ty = getTypeByID(Record[Idx++]);
4946       if (!Ty)
4947         return error("Invalid record");
4948       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4949         Value *PersFn = nullptr;
4950         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4951           return error("Invalid record");
4952 
4953         if (!F->hasPersonalityFn())
4954           F->setPersonalityFn(cast<Constant>(PersFn));
4955         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4956           return error("Personality function mismatch");
4957       }
4958 
4959       bool IsCleanup = !!Record[Idx++];
4960       unsigned NumClauses = Record[Idx++];
4961       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4962       LP->setCleanup(IsCleanup);
4963       for (unsigned J = 0; J != NumClauses; ++J) {
4964         LandingPadInst::ClauseType CT =
4965           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4966         Value *Val;
4967 
4968         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4969           delete LP;
4970           return error("Invalid record");
4971         }
4972 
4973         assert((CT != LandingPadInst::Catch ||
4974                 !isa<ArrayType>(Val->getType())) &&
4975                "Catch clause has a invalid type!");
4976         assert((CT != LandingPadInst::Filter ||
4977                 isa<ArrayType>(Val->getType())) &&
4978                "Filter clause has invalid type!");
4979         LP->addClause(cast<Constant>(Val));
4980       }
4981 
4982       I = LP;
4983       InstructionList.push_back(I);
4984       break;
4985     }
4986 
4987     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4988       if (Record.size() != 4)
4989         return error("Invalid record");
4990       using APV = AllocaPackedValues;
4991       const uint64_t Rec = Record[3];
4992       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4993       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4994       Type *Ty = getTypeByID(Record[0]);
4995       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4996         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4997         if (!PTy)
4998           return error("Old-style alloca with a non-pointer type");
4999         Ty = PTy->getPointerElementType();
5000       }
5001       Type *OpTy = getTypeByID(Record[1]);
5002       Value *Size = getFnValueByID(Record[2], OpTy);
5003       MaybeAlign Align;
5004       uint64_t AlignExp =
5005           Bitfield::get<APV::AlignLower>(Rec) |
5006           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5007       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5008         return Err;
5009       }
5010       if (!Ty || !Size)
5011         return error("Invalid record");
5012 
5013       // FIXME: Make this an optional field.
5014       const DataLayout &DL = TheModule->getDataLayout();
5015       unsigned AS = DL.getAllocaAddrSpace();
5016 
5017       SmallPtrSet<Type *, 4> Visited;
5018       if (!Align && !Ty->isSized(&Visited))
5019         return error("alloca of unsized type");
5020       if (!Align)
5021         Align = DL.getPrefTypeAlign(Ty);
5022 
5023       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5024       AI->setUsedWithInAlloca(InAlloca);
5025       AI->setSwiftError(SwiftError);
5026       I = AI;
5027       InstructionList.push_back(I);
5028       break;
5029     }
5030     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5031       unsigned OpNum = 0;
5032       Value *Op;
5033       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5034           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5035         return error("Invalid record");
5036 
5037       if (!isa<PointerType>(Op->getType()))
5038         return error("Load operand is not a pointer type");
5039 
5040       Type *Ty = nullptr;
5041       if (OpNum + 3 == Record.size()) {
5042         Ty = getTypeByID(Record[OpNum++]);
5043       } else {
5044         Ty = Op->getType()->getPointerElementType();
5045       }
5046 
5047       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5048         return Err;
5049 
5050       MaybeAlign Align;
5051       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5052         return Err;
5053       SmallPtrSet<Type *, 4> Visited;
5054       if (!Align && !Ty->isSized(&Visited))
5055         return error("load of unsized type");
5056       if (!Align)
5057         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5058       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5059       InstructionList.push_back(I);
5060       break;
5061     }
5062     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5063        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5064       unsigned OpNum = 0;
5065       Value *Op;
5066       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5067           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5068         return error("Invalid record");
5069 
5070       if (!isa<PointerType>(Op->getType()))
5071         return error("Load operand is not a pointer type");
5072 
5073       Type *Ty = nullptr;
5074       if (OpNum + 5 == Record.size()) {
5075         Ty = getTypeByID(Record[OpNum++]);
5076       } else {
5077         Ty = Op->getType()->getPointerElementType();
5078       }
5079 
5080       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5081         return Err;
5082 
5083       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5084       if (Ordering == AtomicOrdering::NotAtomic ||
5085           Ordering == AtomicOrdering::Release ||
5086           Ordering == AtomicOrdering::AcquireRelease)
5087         return error("Invalid record");
5088       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5089         return error("Invalid record");
5090       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5091 
5092       MaybeAlign Align;
5093       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5094         return Err;
5095       if (!Align)
5096         return error("Alignment missing from atomic load");
5097       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5098       InstructionList.push_back(I);
5099       break;
5100     }
5101     case bitc::FUNC_CODE_INST_STORE:
5102     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5103       unsigned OpNum = 0;
5104       Value *Val, *Ptr;
5105       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5106           (BitCode == bitc::FUNC_CODE_INST_STORE
5107                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5108                : popValue(Record, OpNum, NextValueNo,
5109                           Ptr->getType()->getPointerElementType(), Val)) ||
5110           OpNum + 2 != Record.size())
5111         return error("Invalid record");
5112 
5113       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5114         return Err;
5115       MaybeAlign Align;
5116       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5117         return Err;
5118       SmallPtrSet<Type *, 4> Visited;
5119       if (!Align && !Val->getType()->isSized(&Visited))
5120         return error("store of unsized type");
5121       if (!Align)
5122         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5123       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5124       InstructionList.push_back(I);
5125       break;
5126     }
5127     case bitc::FUNC_CODE_INST_STOREATOMIC:
5128     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5129       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5130       unsigned OpNum = 0;
5131       Value *Val, *Ptr;
5132       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5133           !isa<PointerType>(Ptr->getType()) ||
5134           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5135                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5136                : popValue(Record, OpNum, NextValueNo,
5137                           Ptr->getType()->getPointerElementType(), Val)) ||
5138           OpNum + 4 != Record.size())
5139         return error("Invalid record");
5140 
5141       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5142         return Err;
5143       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5144       if (Ordering == AtomicOrdering::NotAtomic ||
5145           Ordering == AtomicOrdering::Acquire ||
5146           Ordering == AtomicOrdering::AcquireRelease)
5147         return error("Invalid record");
5148       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5149       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5150         return error("Invalid record");
5151 
5152       MaybeAlign Align;
5153       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5154         return Err;
5155       if (!Align)
5156         return error("Alignment missing from atomic store");
5157       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5158       InstructionList.push_back(I);
5159       break;
5160     }
5161     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5162       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5163       // failure_ordering?, weak?]
5164       const size_t NumRecords = Record.size();
5165       unsigned OpNum = 0;
5166       Value *Ptr = nullptr;
5167       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5168         return error("Invalid record");
5169 
5170       if (!isa<PointerType>(Ptr->getType()))
5171         return error("Cmpxchg operand is not a pointer type");
5172 
5173       Value *Cmp = nullptr;
5174       if (popValue(Record, OpNum, NextValueNo,
5175                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5176                    Cmp))
5177         return error("Invalid record");
5178 
5179       Value *New = nullptr;
5180       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5181           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5182         return error("Invalid record");
5183 
5184       const AtomicOrdering SuccessOrdering =
5185           getDecodedOrdering(Record[OpNum + 1]);
5186       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5187           SuccessOrdering == AtomicOrdering::Unordered)
5188         return error("Invalid record");
5189 
5190       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5191 
5192       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5193         return Err;
5194 
5195       const AtomicOrdering FailureOrdering =
5196           NumRecords < 7
5197               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5198               : getDecodedOrdering(Record[OpNum + 3]);
5199 
5200       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5201           FailureOrdering == AtomicOrdering::Unordered)
5202         return error("Invalid record");
5203 
5204       const Align Alignment(
5205           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5206 
5207       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5208                                 FailureOrdering, SSID);
5209       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5210 
5211       if (NumRecords < 8) {
5212         // Before weak cmpxchgs existed, the instruction simply returned the
5213         // value loaded from memory, so bitcode files from that era will be
5214         // expecting the first component of a modern cmpxchg.
5215         CurBB->getInstList().push_back(I);
5216         I = ExtractValueInst::Create(I, 0);
5217       } else {
5218         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5219       }
5220 
5221       InstructionList.push_back(I);
5222       break;
5223     }
5224     case bitc::FUNC_CODE_INST_CMPXCHG: {
5225       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5226       // failure_ordering, weak, align?]
5227       const size_t NumRecords = Record.size();
5228       unsigned OpNum = 0;
5229       Value *Ptr = nullptr;
5230       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5231         return error("Invalid record");
5232 
5233       if (!isa<PointerType>(Ptr->getType()))
5234         return error("Cmpxchg operand is not a pointer type");
5235 
5236       Value *Cmp = nullptr;
5237       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5238         return error("Invalid record");
5239 
5240       Value *Val = nullptr;
5241       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5242         return error("Invalid record");
5243 
5244       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5245         return error("Invalid record");
5246 
5247       const bool IsVol = Record[OpNum];
5248 
5249       const AtomicOrdering SuccessOrdering =
5250           getDecodedOrdering(Record[OpNum + 1]);
5251       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5252         return error("Invalid cmpxchg success ordering");
5253 
5254       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5255 
5256       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5257         return Err;
5258 
5259       const AtomicOrdering FailureOrdering =
5260           getDecodedOrdering(Record[OpNum + 3]);
5261       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5262         return error("Invalid cmpxchg failure ordering");
5263 
5264       const bool IsWeak = Record[OpNum + 4];
5265 
5266       MaybeAlign Alignment;
5267 
5268       if (NumRecords == (OpNum + 6)) {
5269         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5270           return Err;
5271       }
5272       if (!Alignment)
5273         Alignment =
5274             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5275 
5276       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5277                                 FailureOrdering, SSID);
5278       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5279       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5280 
5281       InstructionList.push_back(I);
5282       break;
5283     }
5284     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5285     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5286       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5287       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5288       const size_t NumRecords = Record.size();
5289       unsigned OpNum = 0;
5290 
5291       Value *Ptr = nullptr;
5292       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5293         return error("Invalid record");
5294 
5295       if (!isa<PointerType>(Ptr->getType()))
5296         return error("Invalid record");
5297 
5298       Value *Val = nullptr;
5299       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5300         if (popValue(Record, OpNum, NextValueNo,
5301                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5302                      Val))
5303           return error("Invalid record");
5304       } else {
5305         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5306           return error("Invalid record");
5307       }
5308 
5309       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5310         return error("Invalid record");
5311 
5312       const AtomicRMWInst::BinOp Operation =
5313           getDecodedRMWOperation(Record[OpNum]);
5314       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5315           Operation > AtomicRMWInst::LAST_BINOP)
5316         return error("Invalid record");
5317 
5318       const bool IsVol = Record[OpNum + 1];
5319 
5320       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5321       if (Ordering == AtomicOrdering::NotAtomic ||
5322           Ordering == AtomicOrdering::Unordered)
5323         return error("Invalid record");
5324 
5325       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5326 
5327       MaybeAlign Alignment;
5328 
5329       if (NumRecords == (OpNum + 5)) {
5330         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5331           return Err;
5332       }
5333 
5334       if (!Alignment)
5335         Alignment =
5336             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5337 
5338       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5339       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5340 
5341       InstructionList.push_back(I);
5342       break;
5343     }
5344     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5345       if (2 != Record.size())
5346         return error("Invalid record");
5347       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5348       if (Ordering == AtomicOrdering::NotAtomic ||
5349           Ordering == AtomicOrdering::Unordered ||
5350           Ordering == AtomicOrdering::Monotonic)
5351         return error("Invalid record");
5352       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5353       I = new FenceInst(Context, Ordering, SSID);
5354       InstructionList.push_back(I);
5355       break;
5356     }
5357     case bitc::FUNC_CODE_INST_CALL: {
5358       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5359       if (Record.size() < 3)
5360         return error("Invalid record");
5361 
5362       unsigned OpNum = 0;
5363       AttributeList PAL = getAttributes(Record[OpNum++]);
5364       unsigned CCInfo = Record[OpNum++];
5365 
5366       FastMathFlags FMF;
5367       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5368         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5369         if (!FMF.any())
5370           return error("Fast math flags indicator set for call with no FMF");
5371       }
5372 
5373       FunctionType *FTy = nullptr;
5374       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5375         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5376         if (!FTy)
5377           return error("Explicit call type is not a function type");
5378       }
5379 
5380       Value *Callee;
5381       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5382         return error("Invalid record");
5383 
5384       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5385       if (!OpTy)
5386         return error("Callee is not a pointer type");
5387       if (!FTy) {
5388         FTy =
5389             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
5390         if (!FTy)
5391           return error("Callee is not of pointer to function type");
5392       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5393         return error("Explicit call type does not match pointee type of "
5394                      "callee operand");
5395       if (Record.size() < FTy->getNumParams() + OpNum)
5396         return error("Insufficient operands to call");
5397 
5398       SmallVector<Value*, 16> Args;
5399       SmallVector<Type *, 16> ArgsTys;
5400       // Read the fixed params.
5401       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5402         if (FTy->getParamType(i)->isLabelTy())
5403           Args.push_back(getBasicBlock(Record[OpNum]));
5404         else
5405           Args.push_back(getValue(Record, OpNum, NextValueNo,
5406                                   FTy->getParamType(i)));
5407         ArgsTys.push_back(FTy->getParamType(i));
5408         if (!Args.back())
5409           return error("Invalid record");
5410       }
5411 
5412       // Read type/value pairs for varargs params.
5413       if (!FTy->isVarArg()) {
5414         if (OpNum != Record.size())
5415           return error("Invalid record");
5416       } else {
5417         while (OpNum != Record.size()) {
5418           Value *Op;
5419           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5420             return error("Invalid record");
5421           Args.push_back(Op);
5422           ArgsTys.push_back(Op->getType());
5423         }
5424       }
5425 
5426       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5427       OperandBundles.clear();
5428       InstructionList.push_back(I);
5429       cast<CallInst>(I)->setCallingConv(
5430           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5431       CallInst::TailCallKind TCK = CallInst::TCK_None;
5432       if (CCInfo & 1 << bitc::CALL_TAIL)
5433         TCK = CallInst::TCK_Tail;
5434       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5435         TCK = CallInst::TCK_MustTail;
5436       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5437         TCK = CallInst::TCK_NoTail;
5438       cast<CallInst>(I)->setTailCallKind(TCK);
5439       cast<CallInst>(I)->setAttributes(PAL);
5440       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5441       if (FMF.any()) {
5442         if (!isa<FPMathOperator>(I))
5443           return error("Fast-math-flags specified for call without "
5444                        "floating-point scalar or vector return type");
5445         I->setFastMathFlags(FMF);
5446       }
5447       break;
5448     }
5449     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5450       if (Record.size() < 3)
5451         return error("Invalid record");
5452       Type *OpTy = getTypeByID(Record[0]);
5453       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5454       Type *ResTy = getTypeByID(Record[2]);
5455       if (!OpTy || !Op || !ResTy)
5456         return error("Invalid record");
5457       I = new VAArgInst(Op, ResTy);
5458       InstructionList.push_back(I);
5459       break;
5460     }
5461 
5462     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5463       // A call or an invoke can be optionally prefixed with some variable
5464       // number of operand bundle blocks.  These blocks are read into
5465       // OperandBundles and consumed at the next call or invoke instruction.
5466 
5467       if (Record.empty() || Record[0] >= BundleTags.size())
5468         return error("Invalid record");
5469 
5470       std::vector<Value *> Inputs;
5471 
5472       unsigned OpNum = 1;
5473       while (OpNum != Record.size()) {
5474         Value *Op;
5475         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5476           return error("Invalid record");
5477         Inputs.push_back(Op);
5478       }
5479 
5480       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5481       continue;
5482     }
5483 
5484     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5485       unsigned OpNum = 0;
5486       Value *Op = nullptr;
5487       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5488         return error("Invalid record");
5489       if (OpNum != Record.size())
5490         return error("Invalid record");
5491 
5492       I = new FreezeInst(Op);
5493       InstructionList.push_back(I);
5494       break;
5495     }
5496     }
5497 
5498     // Add instruction to end of current BB.  If there is no current BB, reject
5499     // this file.
5500     if (!CurBB) {
5501       I->deleteValue();
5502       return error("Invalid instruction with no BB");
5503     }
5504     if (!OperandBundles.empty()) {
5505       I->deleteValue();
5506       return error("Operand bundles found with no consumer");
5507     }
5508     CurBB->getInstList().push_back(I);
5509 
5510     // If this was a terminator instruction, move to the next block.
5511     if (I->isTerminator()) {
5512       ++CurBBNo;
5513       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5514     }
5515 
5516     // Non-void values get registered in the value table for future use.
5517     if (!I->getType()->isVoidTy())
5518       ValueList.assignValue(I, NextValueNo++);
5519   }
5520 
5521 OutOfRecordLoop:
5522 
5523   if (!OperandBundles.empty())
5524     return error("Operand bundles found with no consumer");
5525 
5526   // Check the function list for unresolved values.
5527   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5528     if (!A->getParent()) {
5529       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5530       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5531         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5532           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5533           delete A;
5534         }
5535       }
5536       return error("Never resolved value found in function");
5537     }
5538   }
5539 
5540   // Unexpected unresolved metadata about to be dropped.
5541   if (MDLoader->hasFwdRefs())
5542     return error("Invalid function metadata: outgoing forward refs");
5543 
5544   // Trim the value list down to the size it was before we parsed this function.
5545   ValueList.shrinkTo(ModuleValueListSize);
5546   MDLoader->shrinkTo(ModuleMDLoaderSize);
5547   std::vector<BasicBlock*>().swap(FunctionBBs);
5548   return Error::success();
5549 }
5550 
5551 /// Find the function body in the bitcode stream
5552 Error BitcodeReader::findFunctionInStream(
5553     Function *F,
5554     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5555   while (DeferredFunctionInfoIterator->second == 0) {
5556     // This is the fallback handling for the old format bitcode that
5557     // didn't contain the function index in the VST, or when we have
5558     // an anonymous function which would not have a VST entry.
5559     // Assert that we have one of those two cases.
5560     assert(VSTOffset == 0 || !F->hasName());
5561     // Parse the next body in the stream and set its position in the
5562     // DeferredFunctionInfo map.
5563     if (Error Err = rememberAndSkipFunctionBodies())
5564       return Err;
5565   }
5566   return Error::success();
5567 }
5568 
5569 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5570   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5571     return SyncScope::ID(Val);
5572   if (Val >= SSIDs.size())
5573     return SyncScope::System; // Map unknown synchronization scopes to system.
5574   return SSIDs[Val];
5575 }
5576 
5577 //===----------------------------------------------------------------------===//
5578 // GVMaterializer implementation
5579 //===----------------------------------------------------------------------===//
5580 
5581 Error BitcodeReader::materialize(GlobalValue *GV) {
5582   Function *F = dyn_cast<Function>(GV);
5583   // If it's not a function or is already material, ignore the request.
5584   if (!F || !F->isMaterializable())
5585     return Error::success();
5586 
5587   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5588   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5589   // If its position is recorded as 0, its body is somewhere in the stream
5590   // but we haven't seen it yet.
5591   if (DFII->second == 0)
5592     if (Error Err = findFunctionInStream(F, DFII))
5593       return Err;
5594 
5595   // Materialize metadata before parsing any function bodies.
5596   if (Error Err = materializeMetadata())
5597     return Err;
5598 
5599   // Move the bit stream to the saved position of the deferred function body.
5600   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5601     return JumpFailed;
5602   if (Error Err = parseFunctionBody(F))
5603     return Err;
5604   F->setIsMaterializable(false);
5605 
5606   if (StripDebugInfo)
5607     stripDebugInfo(*F);
5608 
5609   // Upgrade any old intrinsic calls in the function.
5610   for (auto &I : UpgradedIntrinsics) {
5611     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5612       if (CallInst *CI = dyn_cast<CallInst>(U))
5613         UpgradeIntrinsicCall(CI, I.second);
5614   }
5615 
5616   // Update calls to the remangled intrinsics
5617   for (auto &I : RemangledIntrinsics)
5618     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5619       // Don't expect any other users than call sites
5620       cast<CallBase>(U)->setCalledFunction(I.second);
5621 
5622   // Finish fn->subprogram upgrade for materialized functions.
5623   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5624     F->setSubprogram(SP);
5625 
5626   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5627   if (!MDLoader->isStrippingTBAA()) {
5628     for (auto &I : instructions(F)) {
5629       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5630       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5631         continue;
5632       MDLoader->setStripTBAA(true);
5633       stripTBAA(F->getParent());
5634     }
5635   }
5636 
5637   for (auto &I : instructions(F)) {
5638     // "Upgrade" older incorrect branch weights by dropping them.
5639     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5640       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5641         MDString *MDS = cast<MDString>(MD->getOperand(0));
5642         StringRef ProfName = MDS->getString();
5643         // Check consistency of !prof branch_weights metadata.
5644         if (!ProfName.equals("branch_weights"))
5645           continue;
5646         unsigned ExpectedNumOperands = 0;
5647         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5648           ExpectedNumOperands = BI->getNumSuccessors();
5649         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5650           ExpectedNumOperands = SI->getNumSuccessors();
5651         else if (isa<CallInst>(&I))
5652           ExpectedNumOperands = 1;
5653         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5654           ExpectedNumOperands = IBI->getNumDestinations();
5655         else if (isa<SelectInst>(&I))
5656           ExpectedNumOperands = 2;
5657         else
5658           continue; // ignore and continue.
5659 
5660         // If branch weight doesn't match, just strip branch weight.
5661         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5662           I.setMetadata(LLVMContext::MD_prof, nullptr);
5663       }
5664     }
5665 
5666     // Remove incompatible attributes on function calls.
5667     if (auto *CI = dyn_cast<CallBase>(&I)) {
5668       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5669           CI->getFunctionType()->getReturnType()));
5670 
5671       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5672         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5673                                         CI->getArgOperand(ArgNo)->getType()));
5674     }
5675   }
5676 
5677   // Look for functions that rely on old function attribute behavior.
5678   UpgradeFunctionAttributes(*F);
5679 
5680   // Bring in any functions that this function forward-referenced via
5681   // blockaddresses.
5682   return materializeForwardReferencedFunctions();
5683 }
5684 
5685 Error BitcodeReader::materializeModule() {
5686   if (Error Err = materializeMetadata())
5687     return Err;
5688 
5689   // Promise to materialize all forward references.
5690   WillMaterializeAllForwardRefs = true;
5691 
5692   // Iterate over the module, deserializing any functions that are still on
5693   // disk.
5694   for (Function &F : *TheModule) {
5695     if (Error Err = materialize(&F))
5696       return Err;
5697   }
5698   // At this point, if there are any function bodies, parse the rest of
5699   // the bits in the module past the last function block we have recorded
5700   // through either lazy scanning or the VST.
5701   if (LastFunctionBlockBit || NextUnreadBit)
5702     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5703                                     ? LastFunctionBlockBit
5704                                     : NextUnreadBit))
5705       return Err;
5706 
5707   // Check that all block address forward references got resolved (as we
5708   // promised above).
5709   if (!BasicBlockFwdRefs.empty())
5710     return error("Never resolved function from blockaddress");
5711 
5712   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5713   // delete the old functions to clean up. We can't do this unless the entire
5714   // module is materialized because there could always be another function body
5715   // with calls to the old function.
5716   for (auto &I : UpgradedIntrinsics) {
5717     for (auto *U : I.first->users()) {
5718       if (CallInst *CI = dyn_cast<CallInst>(U))
5719         UpgradeIntrinsicCall(CI, I.second);
5720     }
5721     if (!I.first->use_empty())
5722       I.first->replaceAllUsesWith(I.second);
5723     I.first->eraseFromParent();
5724   }
5725   UpgradedIntrinsics.clear();
5726   // Do the same for remangled intrinsics
5727   for (auto &I : RemangledIntrinsics) {
5728     I.first->replaceAllUsesWith(I.second);
5729     I.first->eraseFromParent();
5730   }
5731   RemangledIntrinsics.clear();
5732 
5733   UpgradeDebugInfo(*TheModule);
5734 
5735   UpgradeModuleFlags(*TheModule);
5736 
5737   UpgradeARCRuntime(*TheModule);
5738 
5739   return Error::success();
5740 }
5741 
5742 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5743   return IdentifiedStructTypes;
5744 }
5745 
5746 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5747     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5748     StringRef ModulePath, unsigned ModuleId)
5749     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5750       ModulePath(ModulePath), ModuleId(ModuleId) {}
5751 
5752 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5753   TheIndex.addModule(ModulePath, ModuleId);
5754 }
5755 
5756 ModuleSummaryIndex::ModuleInfo *
5757 ModuleSummaryIndexBitcodeReader::getThisModule() {
5758   return TheIndex.getModule(ModulePath);
5759 }
5760 
5761 std::pair<ValueInfo, GlobalValue::GUID>
5762 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5763   auto VGI = ValueIdToValueInfoMap[ValueId];
5764   assert(VGI.first);
5765   return VGI;
5766 }
5767 
5768 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5769     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5770     StringRef SourceFileName) {
5771   std::string GlobalId =
5772       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5773   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5774   auto OriginalNameID = ValueGUID;
5775   if (GlobalValue::isLocalLinkage(Linkage))
5776     OriginalNameID = GlobalValue::getGUID(ValueName);
5777   if (PrintSummaryGUIDs)
5778     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5779            << ValueName << "\n";
5780 
5781   // UseStrtab is false for legacy summary formats and value names are
5782   // created on stack. In that case we save the name in a string saver in
5783   // the index so that the value name can be recorded.
5784   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5785       TheIndex.getOrInsertValueInfo(
5786           ValueGUID,
5787           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5788       OriginalNameID);
5789 }
5790 
5791 // Specialized value symbol table parser used when reading module index
5792 // blocks where we don't actually create global values. The parsed information
5793 // is saved in the bitcode reader for use when later parsing summaries.
5794 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5795     uint64_t Offset,
5796     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5797   // With a strtab the VST is not required to parse the summary.
5798   if (UseStrtab)
5799     return Error::success();
5800 
5801   assert(Offset > 0 && "Expected non-zero VST offset");
5802   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5803   if (!MaybeCurrentBit)
5804     return MaybeCurrentBit.takeError();
5805   uint64_t CurrentBit = MaybeCurrentBit.get();
5806 
5807   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5808     return Err;
5809 
5810   SmallVector<uint64_t, 64> Record;
5811 
5812   // Read all the records for this value table.
5813   SmallString<128> ValueName;
5814 
5815   while (true) {
5816     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5817     if (!MaybeEntry)
5818       return MaybeEntry.takeError();
5819     BitstreamEntry Entry = MaybeEntry.get();
5820 
5821     switch (Entry.Kind) {
5822     case BitstreamEntry::SubBlock: // Handled for us already.
5823     case BitstreamEntry::Error:
5824       return error("Malformed block");
5825     case BitstreamEntry::EndBlock:
5826       // Done parsing VST, jump back to wherever we came from.
5827       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5828         return JumpFailed;
5829       return Error::success();
5830     case BitstreamEntry::Record:
5831       // The interesting case.
5832       break;
5833     }
5834 
5835     // Read a record.
5836     Record.clear();
5837     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5838     if (!MaybeRecord)
5839       return MaybeRecord.takeError();
5840     switch (MaybeRecord.get()) {
5841     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5842       break;
5843     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5844       if (convertToString(Record, 1, ValueName))
5845         return error("Invalid record");
5846       unsigned ValueID = Record[0];
5847       assert(!SourceFileName.empty());
5848       auto VLI = ValueIdToLinkageMap.find(ValueID);
5849       assert(VLI != ValueIdToLinkageMap.end() &&
5850              "No linkage found for VST entry?");
5851       auto Linkage = VLI->second;
5852       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5853       ValueName.clear();
5854       break;
5855     }
5856     case bitc::VST_CODE_FNENTRY: {
5857       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5858       if (convertToString(Record, 2, ValueName))
5859         return error("Invalid record");
5860       unsigned ValueID = Record[0];
5861       assert(!SourceFileName.empty());
5862       auto VLI = ValueIdToLinkageMap.find(ValueID);
5863       assert(VLI != ValueIdToLinkageMap.end() &&
5864              "No linkage found for VST entry?");
5865       auto Linkage = VLI->second;
5866       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5867       ValueName.clear();
5868       break;
5869     }
5870     case bitc::VST_CODE_COMBINED_ENTRY: {
5871       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5872       unsigned ValueID = Record[0];
5873       GlobalValue::GUID RefGUID = Record[1];
5874       // The "original name", which is the second value of the pair will be
5875       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5876       ValueIdToValueInfoMap[ValueID] =
5877           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5878       break;
5879     }
5880     }
5881   }
5882 }
5883 
5884 // Parse just the blocks needed for building the index out of the module.
5885 // At the end of this routine the module Index is populated with a map
5886 // from global value id to GlobalValueSummary objects.
5887 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5888   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5889     return Err;
5890 
5891   SmallVector<uint64_t, 64> Record;
5892   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5893   unsigned ValueId = 0;
5894 
5895   // Read the index for this module.
5896   while (true) {
5897     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5898     if (!MaybeEntry)
5899       return MaybeEntry.takeError();
5900     llvm::BitstreamEntry Entry = MaybeEntry.get();
5901 
5902     switch (Entry.Kind) {
5903     case BitstreamEntry::Error:
5904       return error("Malformed block");
5905     case BitstreamEntry::EndBlock:
5906       return Error::success();
5907 
5908     case BitstreamEntry::SubBlock:
5909       switch (Entry.ID) {
5910       default: // Skip unknown content.
5911         if (Error Err = Stream.SkipBlock())
5912           return Err;
5913         break;
5914       case bitc::BLOCKINFO_BLOCK_ID:
5915         // Need to parse these to get abbrev ids (e.g. for VST)
5916         if (readBlockInfo())
5917           return error("Malformed block");
5918         break;
5919       case bitc::VALUE_SYMTAB_BLOCK_ID:
5920         // Should have been parsed earlier via VSTOffset, unless there
5921         // is no summary section.
5922         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5923                 !SeenGlobalValSummary) &&
5924                "Expected early VST parse via VSTOffset record");
5925         if (Error Err = Stream.SkipBlock())
5926           return Err;
5927         break;
5928       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5929       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5930         // Add the module if it is a per-module index (has a source file name).
5931         if (!SourceFileName.empty())
5932           addThisModule();
5933         assert(!SeenValueSymbolTable &&
5934                "Already read VST when parsing summary block?");
5935         // We might not have a VST if there were no values in the
5936         // summary. An empty summary block generated when we are
5937         // performing ThinLTO compiles so we don't later invoke
5938         // the regular LTO process on them.
5939         if (VSTOffset > 0) {
5940           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5941             return Err;
5942           SeenValueSymbolTable = true;
5943         }
5944         SeenGlobalValSummary = true;
5945         if (Error Err = parseEntireSummary(Entry.ID))
5946           return Err;
5947         break;
5948       case bitc::MODULE_STRTAB_BLOCK_ID:
5949         if (Error Err = parseModuleStringTable())
5950           return Err;
5951         break;
5952       }
5953       continue;
5954 
5955     case BitstreamEntry::Record: {
5956         Record.clear();
5957         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5958         if (!MaybeBitCode)
5959           return MaybeBitCode.takeError();
5960         switch (MaybeBitCode.get()) {
5961         default:
5962           break; // Default behavior, ignore unknown content.
5963         case bitc::MODULE_CODE_VERSION: {
5964           if (Error Err = parseVersionRecord(Record).takeError())
5965             return Err;
5966           break;
5967         }
5968         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5969         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5970           SmallString<128> ValueName;
5971           if (convertToString(Record, 0, ValueName))
5972             return error("Invalid record");
5973           SourceFileName = ValueName.c_str();
5974           break;
5975         }
5976         /// MODULE_CODE_HASH: [5*i32]
5977         case bitc::MODULE_CODE_HASH: {
5978           if (Record.size() != 5)
5979             return error("Invalid hash length " + Twine(Record.size()).str());
5980           auto &Hash = getThisModule()->second.second;
5981           int Pos = 0;
5982           for (auto &Val : Record) {
5983             assert(!(Val >> 32) && "Unexpected high bits set");
5984             Hash[Pos++] = Val;
5985           }
5986           break;
5987         }
5988         /// MODULE_CODE_VSTOFFSET: [offset]
5989         case bitc::MODULE_CODE_VSTOFFSET:
5990           if (Record.empty())
5991             return error("Invalid record");
5992           // Note that we subtract 1 here because the offset is relative to one
5993           // word before the start of the identification or module block, which
5994           // was historically always the start of the regular bitcode header.
5995           VSTOffset = Record[0] - 1;
5996           break;
5997         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5998         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5999         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6000         // v2: [strtab offset, strtab size, v1]
6001         case bitc::MODULE_CODE_GLOBALVAR:
6002         case bitc::MODULE_CODE_FUNCTION:
6003         case bitc::MODULE_CODE_ALIAS: {
6004           StringRef Name;
6005           ArrayRef<uint64_t> GVRecord;
6006           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6007           if (GVRecord.size() <= 3)
6008             return error("Invalid record");
6009           uint64_t RawLinkage = GVRecord[3];
6010           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6011           if (!UseStrtab) {
6012             ValueIdToLinkageMap[ValueId++] = Linkage;
6013             break;
6014           }
6015 
6016           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6017           break;
6018         }
6019         }
6020       }
6021       continue;
6022     }
6023   }
6024 }
6025 
6026 std::vector<ValueInfo>
6027 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6028   std::vector<ValueInfo> Ret;
6029   Ret.reserve(Record.size());
6030   for (uint64_t RefValueId : Record)
6031     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6032   return Ret;
6033 }
6034 
6035 std::vector<FunctionSummary::EdgeTy>
6036 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6037                                               bool IsOldProfileFormat,
6038                                               bool HasProfile, bool HasRelBF) {
6039   std::vector<FunctionSummary::EdgeTy> Ret;
6040   Ret.reserve(Record.size());
6041   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6042     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6043     uint64_t RelBF = 0;
6044     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6045     if (IsOldProfileFormat) {
6046       I += 1; // Skip old callsitecount field
6047       if (HasProfile)
6048         I += 1; // Skip old profilecount field
6049     } else if (HasProfile)
6050       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6051     else if (HasRelBF)
6052       RelBF = Record[++I];
6053     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6054   }
6055   return Ret;
6056 }
6057 
6058 static void
6059 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6060                                        WholeProgramDevirtResolution &Wpd) {
6061   uint64_t ArgNum = Record[Slot++];
6062   WholeProgramDevirtResolution::ByArg &B =
6063       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6064   Slot += ArgNum;
6065 
6066   B.TheKind =
6067       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6068   B.Info = Record[Slot++];
6069   B.Byte = Record[Slot++];
6070   B.Bit = Record[Slot++];
6071 }
6072 
6073 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6074                                               StringRef Strtab, size_t &Slot,
6075                                               TypeIdSummary &TypeId) {
6076   uint64_t Id = Record[Slot++];
6077   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6078 
6079   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6080   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6081                         static_cast<size_t>(Record[Slot + 1])};
6082   Slot += 2;
6083 
6084   uint64_t ResByArgNum = Record[Slot++];
6085   for (uint64_t I = 0; I != ResByArgNum; ++I)
6086     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6087 }
6088 
6089 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6090                                      StringRef Strtab,
6091                                      ModuleSummaryIndex &TheIndex) {
6092   size_t Slot = 0;
6093   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6094       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6095   Slot += 2;
6096 
6097   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6098   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6099   TypeId.TTRes.AlignLog2 = Record[Slot++];
6100   TypeId.TTRes.SizeM1 = Record[Slot++];
6101   TypeId.TTRes.BitMask = Record[Slot++];
6102   TypeId.TTRes.InlineBits = Record[Slot++];
6103 
6104   while (Slot < Record.size())
6105     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6106 }
6107 
6108 std::vector<FunctionSummary::ParamAccess>
6109 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6110   auto ReadRange = [&]() {
6111     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6112                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6113     Record = Record.drop_front();
6114     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6115                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6116     Record = Record.drop_front();
6117     ConstantRange Range{Lower, Upper};
6118     assert(!Range.isFullSet());
6119     assert(!Range.isUpperSignWrapped());
6120     return Range;
6121   };
6122 
6123   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6124   while (!Record.empty()) {
6125     PendingParamAccesses.emplace_back();
6126     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6127     ParamAccess.ParamNo = Record.front();
6128     Record = Record.drop_front();
6129     ParamAccess.Use = ReadRange();
6130     ParamAccess.Calls.resize(Record.front());
6131     Record = Record.drop_front();
6132     for (auto &Call : ParamAccess.Calls) {
6133       Call.ParamNo = Record.front();
6134       Record = Record.drop_front();
6135       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6136       Record = Record.drop_front();
6137       Call.Offsets = ReadRange();
6138     }
6139   }
6140   return PendingParamAccesses;
6141 }
6142 
6143 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6144     ArrayRef<uint64_t> Record, size_t &Slot,
6145     TypeIdCompatibleVtableInfo &TypeId) {
6146   uint64_t Offset = Record[Slot++];
6147   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6148   TypeId.push_back({Offset, Callee});
6149 }
6150 
6151 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6152     ArrayRef<uint64_t> Record) {
6153   size_t Slot = 0;
6154   TypeIdCompatibleVtableInfo &TypeId =
6155       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6156           {Strtab.data() + Record[Slot],
6157            static_cast<size_t>(Record[Slot + 1])});
6158   Slot += 2;
6159 
6160   while (Slot < Record.size())
6161     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6162 }
6163 
6164 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6165                            unsigned WOCnt) {
6166   // Readonly and writeonly refs are in the end of the refs list.
6167   assert(ROCnt + WOCnt <= Refs.size());
6168   unsigned FirstWORef = Refs.size() - WOCnt;
6169   unsigned RefNo = FirstWORef - ROCnt;
6170   for (; RefNo < FirstWORef; ++RefNo)
6171     Refs[RefNo].setReadOnly();
6172   for (; RefNo < Refs.size(); ++RefNo)
6173     Refs[RefNo].setWriteOnly();
6174 }
6175 
6176 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6177 // objects in the index.
6178 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6179   if (Error Err = Stream.EnterSubBlock(ID))
6180     return Err;
6181   SmallVector<uint64_t, 64> Record;
6182 
6183   // Parse version
6184   {
6185     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6186     if (!MaybeEntry)
6187       return MaybeEntry.takeError();
6188     BitstreamEntry Entry = MaybeEntry.get();
6189 
6190     if (Entry.Kind != BitstreamEntry::Record)
6191       return error("Invalid Summary Block: record for version expected");
6192     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6193     if (!MaybeRecord)
6194       return MaybeRecord.takeError();
6195     if (MaybeRecord.get() != bitc::FS_VERSION)
6196       return error("Invalid Summary Block: version expected");
6197   }
6198   const uint64_t Version = Record[0];
6199   const bool IsOldProfileFormat = Version == 1;
6200   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6201     return error("Invalid summary version " + Twine(Version) +
6202                  ". Version should be in the range [1-" +
6203                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6204                  "].");
6205   Record.clear();
6206 
6207   // Keep around the last seen summary to be used when we see an optional
6208   // "OriginalName" attachement.
6209   GlobalValueSummary *LastSeenSummary = nullptr;
6210   GlobalValue::GUID LastSeenGUID = 0;
6211 
6212   // We can expect to see any number of type ID information records before
6213   // each function summary records; these variables store the information
6214   // collected so far so that it can be used to create the summary object.
6215   std::vector<GlobalValue::GUID> PendingTypeTests;
6216   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6217       PendingTypeCheckedLoadVCalls;
6218   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6219       PendingTypeCheckedLoadConstVCalls;
6220   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6221 
6222   while (true) {
6223     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6224     if (!MaybeEntry)
6225       return MaybeEntry.takeError();
6226     BitstreamEntry Entry = MaybeEntry.get();
6227 
6228     switch (Entry.Kind) {
6229     case BitstreamEntry::SubBlock: // Handled for us already.
6230     case BitstreamEntry::Error:
6231       return error("Malformed block");
6232     case BitstreamEntry::EndBlock:
6233       return Error::success();
6234     case BitstreamEntry::Record:
6235       // The interesting case.
6236       break;
6237     }
6238 
6239     // Read a record. The record format depends on whether this
6240     // is a per-module index or a combined index file. In the per-module
6241     // case the records contain the associated value's ID for correlation
6242     // with VST entries. In the combined index the correlation is done
6243     // via the bitcode offset of the summary records (which were saved
6244     // in the combined index VST entries). The records also contain
6245     // information used for ThinLTO renaming and importing.
6246     Record.clear();
6247     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6248     if (!MaybeBitCode)
6249       return MaybeBitCode.takeError();
6250     switch (unsigned BitCode = MaybeBitCode.get()) {
6251     default: // Default behavior: ignore.
6252       break;
6253     case bitc::FS_FLAGS: {  // [flags]
6254       TheIndex.setFlags(Record[0]);
6255       break;
6256     }
6257     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6258       uint64_t ValueID = Record[0];
6259       GlobalValue::GUID RefGUID = Record[1];
6260       ValueIdToValueInfoMap[ValueID] =
6261           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6262       break;
6263     }
6264     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6265     //                numrefs x valueid, n x (valueid)]
6266     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6267     //                        numrefs x valueid,
6268     //                        n x (valueid, hotness)]
6269     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6270     //                      numrefs x valueid,
6271     //                      n x (valueid, relblockfreq)]
6272     case bitc::FS_PERMODULE:
6273     case bitc::FS_PERMODULE_RELBF:
6274     case bitc::FS_PERMODULE_PROFILE: {
6275       unsigned ValueID = Record[0];
6276       uint64_t RawFlags = Record[1];
6277       unsigned InstCount = Record[2];
6278       uint64_t RawFunFlags = 0;
6279       unsigned NumRefs = Record[3];
6280       unsigned NumRORefs = 0, NumWORefs = 0;
6281       int RefListStartIndex = 4;
6282       if (Version >= 4) {
6283         RawFunFlags = Record[3];
6284         NumRefs = Record[4];
6285         RefListStartIndex = 5;
6286         if (Version >= 5) {
6287           NumRORefs = Record[5];
6288           RefListStartIndex = 6;
6289           if (Version >= 7) {
6290             NumWORefs = Record[6];
6291             RefListStartIndex = 7;
6292           }
6293         }
6294       }
6295 
6296       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6297       // The module path string ref set in the summary must be owned by the
6298       // index's module string table. Since we don't have a module path
6299       // string table section in the per-module index, we create a single
6300       // module path string table entry with an empty (0) ID to take
6301       // ownership.
6302       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6303       assert(Record.size() >= RefListStartIndex + NumRefs &&
6304              "Record size inconsistent with number of references");
6305       std::vector<ValueInfo> Refs = makeRefList(
6306           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6307       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6308       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6309       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6310           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6311           IsOldProfileFormat, HasProfile, HasRelBF);
6312       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6313       auto FS = std::make_unique<FunctionSummary>(
6314           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6315           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6316           std::move(PendingTypeTestAssumeVCalls),
6317           std::move(PendingTypeCheckedLoadVCalls),
6318           std::move(PendingTypeTestAssumeConstVCalls),
6319           std::move(PendingTypeCheckedLoadConstVCalls),
6320           std::move(PendingParamAccesses));
6321       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6322       FS->setModulePath(getThisModule()->first());
6323       FS->setOriginalName(VIAndOriginalGUID.second);
6324       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6325       break;
6326     }
6327     // FS_ALIAS: [valueid, flags, valueid]
6328     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6329     // they expect all aliasee summaries to be available.
6330     case bitc::FS_ALIAS: {
6331       unsigned ValueID = Record[0];
6332       uint64_t RawFlags = Record[1];
6333       unsigned AliaseeID = Record[2];
6334       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6335       auto AS = std::make_unique<AliasSummary>(Flags);
6336       // The module path string ref set in the summary must be owned by the
6337       // index's module string table. Since we don't have a module path
6338       // string table section in the per-module index, we create a single
6339       // module path string table entry with an empty (0) ID to take
6340       // ownership.
6341       AS->setModulePath(getThisModule()->first());
6342 
6343       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6344       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6345       if (!AliaseeInModule)
6346         return error("Alias expects aliasee summary to be parsed");
6347       AS->setAliasee(AliaseeVI, AliaseeInModule);
6348 
6349       auto GUID = getValueInfoFromValueId(ValueID);
6350       AS->setOriginalName(GUID.second);
6351       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6352       break;
6353     }
6354     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6355     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6356       unsigned ValueID = Record[0];
6357       uint64_t RawFlags = Record[1];
6358       unsigned RefArrayStart = 2;
6359       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6360                                       /* WriteOnly */ false,
6361                                       /* Constant */ false,
6362                                       GlobalObject::VCallVisibilityPublic);
6363       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6364       if (Version >= 5) {
6365         GVF = getDecodedGVarFlags(Record[2]);
6366         RefArrayStart = 3;
6367       }
6368       std::vector<ValueInfo> Refs =
6369           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6370       auto FS =
6371           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6372       FS->setModulePath(getThisModule()->first());
6373       auto GUID = getValueInfoFromValueId(ValueID);
6374       FS->setOriginalName(GUID.second);
6375       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6376       break;
6377     }
6378     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6379     //                        numrefs, numrefs x valueid,
6380     //                        n x (valueid, offset)]
6381     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6382       unsigned ValueID = Record[0];
6383       uint64_t RawFlags = Record[1];
6384       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6385       unsigned NumRefs = Record[3];
6386       unsigned RefListStartIndex = 4;
6387       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6388       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6389       std::vector<ValueInfo> Refs = makeRefList(
6390           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6391       VTableFuncList VTableFuncs;
6392       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6393         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6394         uint64_t Offset = Record[++I];
6395         VTableFuncs.push_back({Callee, Offset});
6396       }
6397       auto VS =
6398           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6399       VS->setModulePath(getThisModule()->first());
6400       VS->setVTableFuncs(VTableFuncs);
6401       auto GUID = getValueInfoFromValueId(ValueID);
6402       VS->setOriginalName(GUID.second);
6403       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6404       break;
6405     }
6406     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6407     //               numrefs x valueid, n x (valueid)]
6408     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6409     //                       numrefs x valueid, n x (valueid, hotness)]
6410     case bitc::FS_COMBINED:
6411     case bitc::FS_COMBINED_PROFILE: {
6412       unsigned ValueID = Record[0];
6413       uint64_t ModuleId = Record[1];
6414       uint64_t RawFlags = Record[2];
6415       unsigned InstCount = Record[3];
6416       uint64_t RawFunFlags = 0;
6417       uint64_t EntryCount = 0;
6418       unsigned NumRefs = Record[4];
6419       unsigned NumRORefs = 0, NumWORefs = 0;
6420       int RefListStartIndex = 5;
6421 
6422       if (Version >= 4) {
6423         RawFunFlags = Record[4];
6424         RefListStartIndex = 6;
6425         size_t NumRefsIndex = 5;
6426         if (Version >= 5) {
6427           unsigned NumRORefsOffset = 1;
6428           RefListStartIndex = 7;
6429           if (Version >= 6) {
6430             NumRefsIndex = 6;
6431             EntryCount = Record[5];
6432             RefListStartIndex = 8;
6433             if (Version >= 7) {
6434               RefListStartIndex = 9;
6435               NumWORefs = Record[8];
6436               NumRORefsOffset = 2;
6437             }
6438           }
6439           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6440         }
6441         NumRefs = Record[NumRefsIndex];
6442       }
6443 
6444       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6445       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6446       assert(Record.size() >= RefListStartIndex + NumRefs &&
6447              "Record size inconsistent with number of references");
6448       std::vector<ValueInfo> Refs = makeRefList(
6449           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6450       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6451       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6452           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6453           IsOldProfileFormat, HasProfile, false);
6454       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6455       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6456       auto FS = std::make_unique<FunctionSummary>(
6457           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6458           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6459           std::move(PendingTypeTestAssumeVCalls),
6460           std::move(PendingTypeCheckedLoadVCalls),
6461           std::move(PendingTypeTestAssumeConstVCalls),
6462           std::move(PendingTypeCheckedLoadConstVCalls),
6463           std::move(PendingParamAccesses));
6464       LastSeenSummary = FS.get();
6465       LastSeenGUID = VI.getGUID();
6466       FS->setModulePath(ModuleIdMap[ModuleId]);
6467       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6468       break;
6469     }
6470     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6471     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6472     // they expect all aliasee summaries to be available.
6473     case bitc::FS_COMBINED_ALIAS: {
6474       unsigned ValueID = Record[0];
6475       uint64_t ModuleId = Record[1];
6476       uint64_t RawFlags = Record[2];
6477       unsigned AliaseeValueId = Record[3];
6478       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6479       auto AS = std::make_unique<AliasSummary>(Flags);
6480       LastSeenSummary = AS.get();
6481       AS->setModulePath(ModuleIdMap[ModuleId]);
6482 
6483       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6484       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6485       AS->setAliasee(AliaseeVI, AliaseeInModule);
6486 
6487       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6488       LastSeenGUID = VI.getGUID();
6489       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6490       break;
6491     }
6492     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6493     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6494       unsigned ValueID = Record[0];
6495       uint64_t ModuleId = Record[1];
6496       uint64_t RawFlags = Record[2];
6497       unsigned RefArrayStart = 3;
6498       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6499                                       /* WriteOnly */ false,
6500                                       /* Constant */ false,
6501                                       GlobalObject::VCallVisibilityPublic);
6502       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6503       if (Version >= 5) {
6504         GVF = getDecodedGVarFlags(Record[3]);
6505         RefArrayStart = 4;
6506       }
6507       std::vector<ValueInfo> Refs =
6508           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6509       auto FS =
6510           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6511       LastSeenSummary = FS.get();
6512       FS->setModulePath(ModuleIdMap[ModuleId]);
6513       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6514       LastSeenGUID = VI.getGUID();
6515       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6516       break;
6517     }
6518     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6519     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6520       uint64_t OriginalName = Record[0];
6521       if (!LastSeenSummary)
6522         return error("Name attachment that does not follow a combined record");
6523       LastSeenSummary->setOriginalName(OriginalName);
6524       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6525       // Reset the LastSeenSummary
6526       LastSeenSummary = nullptr;
6527       LastSeenGUID = 0;
6528       break;
6529     }
6530     case bitc::FS_TYPE_TESTS:
6531       assert(PendingTypeTests.empty());
6532       llvm::append_range(PendingTypeTests, Record);
6533       break;
6534 
6535     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6536       assert(PendingTypeTestAssumeVCalls.empty());
6537       for (unsigned I = 0; I != Record.size(); I += 2)
6538         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6539       break;
6540 
6541     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6542       assert(PendingTypeCheckedLoadVCalls.empty());
6543       for (unsigned I = 0; I != Record.size(); I += 2)
6544         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6545       break;
6546 
6547     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6548       PendingTypeTestAssumeConstVCalls.push_back(
6549           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6550       break;
6551 
6552     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6553       PendingTypeCheckedLoadConstVCalls.push_back(
6554           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6555       break;
6556 
6557     case bitc::FS_CFI_FUNCTION_DEFS: {
6558       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6559       for (unsigned I = 0; I != Record.size(); I += 2)
6560         CfiFunctionDefs.insert(
6561             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6562       break;
6563     }
6564 
6565     case bitc::FS_CFI_FUNCTION_DECLS: {
6566       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6567       for (unsigned I = 0; I != Record.size(); I += 2)
6568         CfiFunctionDecls.insert(
6569             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6570       break;
6571     }
6572 
6573     case bitc::FS_TYPE_ID:
6574       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6575       break;
6576 
6577     case bitc::FS_TYPE_ID_METADATA:
6578       parseTypeIdCompatibleVtableSummaryRecord(Record);
6579       break;
6580 
6581     case bitc::FS_BLOCK_COUNT:
6582       TheIndex.addBlockCount(Record[0]);
6583       break;
6584 
6585     case bitc::FS_PARAM_ACCESS: {
6586       PendingParamAccesses = parseParamAccesses(Record);
6587       break;
6588     }
6589     }
6590   }
6591   llvm_unreachable("Exit infinite loop");
6592 }
6593 
6594 // Parse the  module string table block into the Index.
6595 // This populates the ModulePathStringTable map in the index.
6596 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6597   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6598     return Err;
6599 
6600   SmallVector<uint64_t, 64> Record;
6601 
6602   SmallString<128> ModulePath;
6603   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6604 
6605   while (true) {
6606     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6607     if (!MaybeEntry)
6608       return MaybeEntry.takeError();
6609     BitstreamEntry Entry = MaybeEntry.get();
6610 
6611     switch (Entry.Kind) {
6612     case BitstreamEntry::SubBlock: // Handled for us already.
6613     case BitstreamEntry::Error:
6614       return error("Malformed block");
6615     case BitstreamEntry::EndBlock:
6616       return Error::success();
6617     case BitstreamEntry::Record:
6618       // The interesting case.
6619       break;
6620     }
6621 
6622     Record.clear();
6623     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6624     if (!MaybeRecord)
6625       return MaybeRecord.takeError();
6626     switch (MaybeRecord.get()) {
6627     default: // Default behavior: ignore.
6628       break;
6629     case bitc::MST_CODE_ENTRY: {
6630       // MST_ENTRY: [modid, namechar x N]
6631       uint64_t ModuleId = Record[0];
6632 
6633       if (convertToString(Record, 1, ModulePath))
6634         return error("Invalid record");
6635 
6636       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6637       ModuleIdMap[ModuleId] = LastSeenModule->first();
6638 
6639       ModulePath.clear();
6640       break;
6641     }
6642     /// MST_CODE_HASH: [5*i32]
6643     case bitc::MST_CODE_HASH: {
6644       if (Record.size() != 5)
6645         return error("Invalid hash length " + Twine(Record.size()).str());
6646       if (!LastSeenModule)
6647         return error("Invalid hash that does not follow a module path");
6648       int Pos = 0;
6649       for (auto &Val : Record) {
6650         assert(!(Val >> 32) && "Unexpected high bits set");
6651         LastSeenModule->second.second[Pos++] = Val;
6652       }
6653       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6654       LastSeenModule = nullptr;
6655       break;
6656     }
6657     }
6658   }
6659   llvm_unreachable("Exit infinite loop");
6660 }
6661 
6662 namespace {
6663 
6664 // FIXME: This class is only here to support the transition to llvm::Error. It
6665 // will be removed once this transition is complete. Clients should prefer to
6666 // deal with the Error value directly, rather than converting to error_code.
6667 class BitcodeErrorCategoryType : public std::error_category {
6668   const char *name() const noexcept override {
6669     return "llvm.bitcode";
6670   }
6671 
6672   std::string message(int IE) const override {
6673     BitcodeError E = static_cast<BitcodeError>(IE);
6674     switch (E) {
6675     case BitcodeError::CorruptedBitcode:
6676       return "Corrupted bitcode";
6677     }
6678     llvm_unreachable("Unknown error type!");
6679   }
6680 };
6681 
6682 } // end anonymous namespace
6683 
6684 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6685 
6686 const std::error_category &llvm::BitcodeErrorCategory() {
6687   return *ErrorCategory;
6688 }
6689 
6690 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6691                                             unsigned Block, unsigned RecordID) {
6692   if (Error Err = Stream.EnterSubBlock(Block))
6693     return std::move(Err);
6694 
6695   StringRef Strtab;
6696   while (true) {
6697     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6698     if (!MaybeEntry)
6699       return MaybeEntry.takeError();
6700     llvm::BitstreamEntry Entry = MaybeEntry.get();
6701 
6702     switch (Entry.Kind) {
6703     case BitstreamEntry::EndBlock:
6704       return Strtab;
6705 
6706     case BitstreamEntry::Error:
6707       return error("Malformed block");
6708 
6709     case BitstreamEntry::SubBlock:
6710       if (Error Err = Stream.SkipBlock())
6711         return std::move(Err);
6712       break;
6713 
6714     case BitstreamEntry::Record:
6715       StringRef Blob;
6716       SmallVector<uint64_t, 1> Record;
6717       Expected<unsigned> MaybeRecord =
6718           Stream.readRecord(Entry.ID, Record, &Blob);
6719       if (!MaybeRecord)
6720         return MaybeRecord.takeError();
6721       if (MaybeRecord.get() == RecordID)
6722         Strtab = Blob;
6723       break;
6724     }
6725   }
6726 }
6727 
6728 //===----------------------------------------------------------------------===//
6729 // External interface
6730 //===----------------------------------------------------------------------===//
6731 
6732 Expected<std::vector<BitcodeModule>>
6733 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6734   auto FOrErr = getBitcodeFileContents(Buffer);
6735   if (!FOrErr)
6736     return FOrErr.takeError();
6737   return std::move(FOrErr->Mods);
6738 }
6739 
6740 Expected<BitcodeFileContents>
6741 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6742   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6743   if (!StreamOrErr)
6744     return StreamOrErr.takeError();
6745   BitstreamCursor &Stream = *StreamOrErr;
6746 
6747   BitcodeFileContents F;
6748   while (true) {
6749     uint64_t BCBegin = Stream.getCurrentByteNo();
6750 
6751     // We may be consuming bitcode from a client that leaves garbage at the end
6752     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6753     // the end that there cannot possibly be another module, stop looking.
6754     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6755       return F;
6756 
6757     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6758     if (!MaybeEntry)
6759       return MaybeEntry.takeError();
6760     llvm::BitstreamEntry Entry = MaybeEntry.get();
6761 
6762     switch (Entry.Kind) {
6763     case BitstreamEntry::EndBlock:
6764     case BitstreamEntry::Error:
6765       return error("Malformed block");
6766 
6767     case BitstreamEntry::SubBlock: {
6768       uint64_t IdentificationBit = -1ull;
6769       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6770         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6771         if (Error Err = Stream.SkipBlock())
6772           return std::move(Err);
6773 
6774         {
6775           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6776           if (!MaybeEntry)
6777             return MaybeEntry.takeError();
6778           Entry = MaybeEntry.get();
6779         }
6780 
6781         if (Entry.Kind != BitstreamEntry::SubBlock ||
6782             Entry.ID != bitc::MODULE_BLOCK_ID)
6783           return error("Malformed block");
6784       }
6785 
6786       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6787         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6788         if (Error Err = Stream.SkipBlock())
6789           return std::move(Err);
6790 
6791         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6792                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6793                           Buffer.getBufferIdentifier(), IdentificationBit,
6794                           ModuleBit});
6795         continue;
6796       }
6797 
6798       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6799         Expected<StringRef> Strtab =
6800             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6801         if (!Strtab)
6802           return Strtab.takeError();
6803         // This string table is used by every preceding bitcode module that does
6804         // not have its own string table. A bitcode file may have multiple
6805         // string tables if it was created by binary concatenation, for example
6806         // with "llvm-cat -b".
6807         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
6808           if (!I.Strtab.empty())
6809             break;
6810           I.Strtab = *Strtab;
6811         }
6812         // Similarly, the string table is used by every preceding symbol table;
6813         // normally there will be just one unless the bitcode file was created
6814         // by binary concatenation.
6815         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6816           F.StrtabForSymtab = *Strtab;
6817         continue;
6818       }
6819 
6820       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6821         Expected<StringRef> SymtabOrErr =
6822             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6823         if (!SymtabOrErr)
6824           return SymtabOrErr.takeError();
6825 
6826         // We can expect the bitcode file to have multiple symbol tables if it
6827         // was created by binary concatenation. In that case we silently
6828         // ignore any subsequent symbol tables, which is fine because this is a
6829         // low level function. The client is expected to notice that the number
6830         // of modules in the symbol table does not match the number of modules
6831         // in the input file and regenerate the symbol table.
6832         if (F.Symtab.empty())
6833           F.Symtab = *SymtabOrErr;
6834         continue;
6835       }
6836 
6837       if (Error Err = Stream.SkipBlock())
6838         return std::move(Err);
6839       continue;
6840     }
6841     case BitstreamEntry::Record:
6842       if (Error E = Stream.skipRecord(Entry.ID).takeError())
6843         return std::move(E);
6844       continue;
6845     }
6846   }
6847 }
6848 
6849 /// Get a lazy one-at-time loading module from bitcode.
6850 ///
6851 /// This isn't always used in a lazy context.  In particular, it's also used by
6852 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6853 /// in forward-referenced functions from block address references.
6854 ///
6855 /// \param[in] MaterializeAll Set to \c true if we should materialize
6856 /// everything.
6857 Expected<std::unique_ptr<Module>>
6858 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6859                              bool ShouldLazyLoadMetadata, bool IsImporting,
6860                              DataLayoutCallbackTy DataLayoutCallback) {
6861   BitstreamCursor Stream(Buffer);
6862 
6863   std::string ProducerIdentification;
6864   if (IdentificationBit != -1ull) {
6865     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6866       return std::move(JumpFailed);
6867     if (Error E =
6868             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
6869       return std::move(E);
6870   }
6871 
6872   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6873     return std::move(JumpFailed);
6874   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6875                               Context);
6876 
6877   std::unique_ptr<Module> M =
6878       std::make_unique<Module>(ModuleIdentifier, Context);
6879   M->setMaterializer(R);
6880 
6881   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6882   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6883                                       IsImporting, DataLayoutCallback))
6884     return std::move(Err);
6885 
6886   if (MaterializeAll) {
6887     // Read in the entire module, and destroy the BitcodeReader.
6888     if (Error Err = M->materializeAll())
6889       return std::move(Err);
6890   } else {
6891     // Resolve forward references from blockaddresses.
6892     if (Error Err = R->materializeForwardReferencedFunctions())
6893       return std::move(Err);
6894   }
6895   return std::move(M);
6896 }
6897 
6898 Expected<std::unique_ptr<Module>>
6899 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6900                              bool IsImporting) {
6901   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6902                        [](StringRef) { return None; });
6903 }
6904 
6905 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6906 // We don't use ModuleIdentifier here because the client may need to control the
6907 // module path used in the combined summary (e.g. when reading summaries for
6908 // regular LTO modules).
6909 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6910                                  StringRef ModulePath, uint64_t ModuleId) {
6911   BitstreamCursor Stream(Buffer);
6912   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6913     return JumpFailed;
6914 
6915   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6916                                     ModulePath, ModuleId);
6917   return R.parseModule();
6918 }
6919 
6920 // Parse the specified bitcode buffer, returning the function info index.
6921 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6922   BitstreamCursor Stream(Buffer);
6923   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6924     return std::move(JumpFailed);
6925 
6926   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6927   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6928                                     ModuleIdentifier, 0);
6929 
6930   if (Error Err = R.parseModule())
6931     return std::move(Err);
6932 
6933   return std::move(Index);
6934 }
6935 
6936 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6937                                                 unsigned ID) {
6938   if (Error Err = Stream.EnterSubBlock(ID))
6939     return std::move(Err);
6940   SmallVector<uint64_t, 64> Record;
6941 
6942   while (true) {
6943     BitstreamEntry Entry;
6944     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
6945       return std::move(E);
6946 
6947     switch (Entry.Kind) {
6948     case BitstreamEntry::SubBlock: // Handled for us already.
6949     case BitstreamEntry::Error:
6950       return error("Malformed block");
6951     case BitstreamEntry::EndBlock:
6952       // If no flags record found, conservatively return true to mimic
6953       // behavior before this flag was added.
6954       return true;
6955     case BitstreamEntry::Record:
6956       // The interesting case.
6957       break;
6958     }
6959 
6960     // Look for the FS_FLAGS record.
6961     Record.clear();
6962     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6963     if (!MaybeBitCode)
6964       return MaybeBitCode.takeError();
6965     switch (MaybeBitCode.get()) {
6966     default: // Default behavior: ignore.
6967       break;
6968     case bitc::FS_FLAGS: { // [flags]
6969       uint64_t Flags = Record[0];
6970       // Scan flags.
6971       assert(Flags <= 0x7f && "Unexpected bits in flag");
6972 
6973       return Flags & 0x8;
6974     }
6975     }
6976   }
6977   llvm_unreachable("Exit infinite loop");
6978 }
6979 
6980 // Check if the given bitcode buffer contains a global value summary block.
6981 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6982   BitstreamCursor Stream(Buffer);
6983   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6984     return std::move(JumpFailed);
6985 
6986   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6987     return std::move(Err);
6988 
6989   while (true) {
6990     llvm::BitstreamEntry Entry;
6991     if (Error E = Stream.advance().moveInto(Entry))
6992       return std::move(E);
6993 
6994     switch (Entry.Kind) {
6995     case BitstreamEntry::Error:
6996       return error("Malformed block");
6997     case BitstreamEntry::EndBlock:
6998       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6999                             /*EnableSplitLTOUnit=*/false};
7000 
7001     case BitstreamEntry::SubBlock:
7002       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7003         Expected<bool> EnableSplitLTOUnit =
7004             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7005         if (!EnableSplitLTOUnit)
7006           return EnableSplitLTOUnit.takeError();
7007         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7008                               *EnableSplitLTOUnit};
7009       }
7010 
7011       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7012         Expected<bool> EnableSplitLTOUnit =
7013             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7014         if (!EnableSplitLTOUnit)
7015           return EnableSplitLTOUnit.takeError();
7016         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7017                               *EnableSplitLTOUnit};
7018       }
7019 
7020       // Ignore other sub-blocks.
7021       if (Error Err = Stream.SkipBlock())
7022         return std::move(Err);
7023       continue;
7024 
7025     case BitstreamEntry::Record:
7026       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7027         continue;
7028       else
7029         return StreamFailed.takeError();
7030     }
7031   }
7032 }
7033 
7034 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7035   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7036   if (!MsOrErr)
7037     return MsOrErr.takeError();
7038 
7039   if (MsOrErr->size() != 1)
7040     return error("Expected a single module");
7041 
7042   return (*MsOrErr)[0];
7043 }
7044 
7045 Expected<std::unique_ptr<Module>>
7046 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7047                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7048   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7049   if (!BM)
7050     return BM.takeError();
7051 
7052   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7053 }
7054 
7055 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7056     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7057     bool ShouldLazyLoadMetadata, bool IsImporting) {
7058   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7059                                      IsImporting);
7060   if (MOrErr)
7061     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7062   return MOrErr;
7063 }
7064 
7065 Expected<std::unique_ptr<Module>>
7066 BitcodeModule::parseModule(LLVMContext &Context,
7067                            DataLayoutCallbackTy DataLayoutCallback) {
7068   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7069   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7070   // written.  We must defer until the Module has been fully materialized.
7071 }
7072 
7073 Expected<std::unique_ptr<Module>>
7074 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7075                        DataLayoutCallbackTy DataLayoutCallback) {
7076   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7077   if (!BM)
7078     return BM.takeError();
7079 
7080   return BM->parseModule(Context, DataLayoutCallback);
7081 }
7082 
7083 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7084   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7085   if (!StreamOrErr)
7086     return StreamOrErr.takeError();
7087 
7088   return readTriple(*StreamOrErr);
7089 }
7090 
7091 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7092   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7093   if (!StreamOrErr)
7094     return StreamOrErr.takeError();
7095 
7096   return hasObjCCategory(*StreamOrErr);
7097 }
7098 
7099 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7100   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7101   if (!StreamOrErr)
7102     return StreamOrErr.takeError();
7103 
7104   return readIdentificationCode(*StreamOrErr);
7105 }
7106 
7107 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7108                                    ModuleSummaryIndex &CombinedIndex,
7109                                    uint64_t ModuleId) {
7110   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7111   if (!BM)
7112     return BM.takeError();
7113 
7114   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7115 }
7116 
7117 Expected<std::unique_ptr<ModuleSummaryIndex>>
7118 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7119   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7120   if (!BM)
7121     return BM.takeError();
7122 
7123   return BM->getSummary();
7124 }
7125 
7126 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7127   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7128   if (!BM)
7129     return BM.takeError();
7130 
7131   return BM->getLTOInfo();
7132 }
7133 
7134 Expected<std::unique_ptr<ModuleSummaryIndex>>
7135 llvm::getModuleSummaryIndexForFile(StringRef Path,
7136                                    bool IgnoreEmptyThinLTOIndexFile) {
7137   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7138       MemoryBuffer::getFileOrSTDIN(Path);
7139   if (!FileOrErr)
7140     return errorCodeToError(FileOrErr.getError());
7141   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7142     return nullptr;
7143   return getModuleSummaryIndex(**FileOrErr);
7144 }
7145