1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Transforms/Utils/GlobalStatus.h"
29 
30 using namespace llvm;
31 
32 /// Compute the linearized index of a member in a nested aggregate/struct/array
33 /// by recursing and accumulating CurIndex as long as there are indices in the
34 /// index list.
35 unsigned llvm::ComputeLinearIndex(Type *Ty,
36                                   const unsigned *Indices,
37                                   const unsigned *IndicesEnd,
38                                   unsigned CurIndex) {
39   // Base case: We're done.
40   if (Indices && Indices == IndicesEnd)
41     return CurIndex;
42 
43   // Given a struct type, recursively traverse the elements.
44   if (StructType *STy = dyn_cast<StructType>(Ty)) {
45     for (StructType::element_iterator EB = STy->element_begin(),
46                                       EI = EB,
47                                       EE = STy->element_end();
48         EI != EE; ++EI) {
49       if (Indices && *Indices == unsigned(EI - EB))
50         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
51       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
52     }
53     assert(!Indices && "Unexpected out of bound");
54     return CurIndex;
55   }
56   // Given an array type, recursively traverse the elements.
57   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
58     Type *EltTy = ATy->getElementType();
59     unsigned NumElts = ATy->getNumElements();
60     // Compute the Linear offset when jumping one element of the array
61     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
62     if (Indices) {
63       assert(*Indices < NumElts && "Unexpected out of bound");
64       // If the indice is inside the array, compute the index to the requested
65       // elt and recurse inside the element with the end of the indices list
66       CurIndex += EltLinearOffset* *Indices;
67       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
68     }
69     CurIndex += EltLinearOffset*NumElts;
70     return CurIndex;
71   }
72   // We haven't found the type we're looking for, so keep searching.
73   return CurIndex + 1;
74 }
75 
76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77 /// EVTs that represent all the individual underlying
78 /// non-aggregate types that comprise it.
79 ///
80 /// If Offsets is non-null, it points to a vector to be filled in
81 /// with the in-memory offsets of each of the individual values.
82 ///
83 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85                            SmallVectorImpl<EVT> *MemVTs,
86                            SmallVectorImpl<uint64_t> *Offsets,
87                            uint64_t StartingOffset) {
88   // Given a struct type, recursively traverse the elements.
89   if (StructType *STy = dyn_cast<StructType>(Ty)) {
90     const StructLayout *SL = DL.getStructLayout(STy);
91     for (StructType::element_iterator EB = STy->element_begin(),
92                                       EI = EB,
93                                       EE = STy->element_end();
94          EI != EE; ++EI)
95       ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
96                       StartingOffset + SL->getElementOffset(EI - EB));
97     return;
98   }
99   // Given an array type, recursively traverse the elements.
100   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
101     Type *EltTy = ATy->getElementType();
102     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
103     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
104       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
105                       StartingOffset + i * EltSize);
106     return;
107   }
108   // Interpret void as zero return values.
109   if (Ty->isVoidTy())
110     return;
111   // Base case: we can get an EVT for this LLVM IR type.
112   ValueVTs.push_back(TLI.getValueType(DL, Ty));
113   if (MemVTs)
114     MemVTs->push_back(TLI.getMemValueType(DL, Ty));
115   if (Offsets)
116     Offsets->push_back(StartingOffset);
117 }
118 
119 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
120                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
121                            SmallVectorImpl<uint64_t> *Offsets,
122                            uint64_t StartingOffset) {
123   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets,
124                          StartingOffset);
125 }
126 
127 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
128                             SmallVectorImpl<LLT> &ValueTys,
129                             SmallVectorImpl<uint64_t> *Offsets,
130                             uint64_t StartingOffset) {
131   // Given a struct type, recursively traverse the elements.
132   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
133     const StructLayout *SL = DL.getStructLayout(STy);
134     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
135       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
136                        StartingOffset + SL->getElementOffset(I));
137     return;
138   }
139   // Given an array type, recursively traverse the elements.
140   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
141     Type *EltTy = ATy->getElementType();
142     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
143     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
144       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
145                        StartingOffset + i * EltSize);
146     return;
147   }
148   // Interpret void as zero return values.
149   if (Ty.isVoidTy())
150     return;
151   // Base case: we can get an LLT for this LLVM IR type.
152   ValueTys.push_back(getLLTForType(Ty, DL));
153   if (Offsets != nullptr)
154     Offsets->push_back(StartingOffset * 8);
155 }
156 
157 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
158 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
159   V = V->stripPointerCasts();
160   GlobalValue *GV = dyn_cast<GlobalValue>(V);
161   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
162 
163   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
164     assert(Var->hasInitializer() &&
165            "The EH catch-all value must have an initializer");
166     Value *Init = Var->getInitializer();
167     GV = dyn_cast<GlobalValue>(Init);
168     if (!GV) V = cast<ConstantPointerNull>(Init);
169   }
170 
171   assert((GV || isa<ConstantPointerNull>(V)) &&
172          "TypeInfo must be a global variable or NULL");
173   return GV;
174 }
175 
176 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
177 /// processed uses a memory 'm' constraint.
178 bool
179 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
180                                 const TargetLowering &TLI) {
181   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
182     InlineAsm::ConstraintInfo &CI = CInfos[i];
183     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
184       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
185       if (CType == TargetLowering::C_Memory)
186         return true;
187     }
188 
189     // Indirect operand accesses access memory.
190     if (CI.isIndirect)
191       return true;
192   }
193 
194   return false;
195 }
196 
197 /// getFCmpCondCode - Return the ISD condition code corresponding to
198 /// the given LLVM IR floating-point condition code.  This includes
199 /// consideration of global floating-point math flags.
200 ///
201 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
202   switch (Pred) {
203   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
204   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
205   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
206   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
207   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
208   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
209   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
210   case FCmpInst::FCMP_ORD:   return ISD::SETO;
211   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
212   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
213   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
214   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
215   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
216   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
217   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
218   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
219   default: llvm_unreachable("Invalid FCmp predicate opcode!");
220   }
221 }
222 
223 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
224   switch (CC) {
225     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
226     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
227     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
228     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
229     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
230     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
231     default: return CC;
232   }
233 }
234 
235 /// getICmpCondCode - Return the ISD condition code corresponding to
236 /// the given LLVM IR integer condition code.
237 ///
238 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
239   switch (Pred) {
240   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
241   case ICmpInst::ICMP_NE:  return ISD::SETNE;
242   case ICmpInst::ICMP_SLE: return ISD::SETLE;
243   case ICmpInst::ICMP_ULE: return ISD::SETULE;
244   case ICmpInst::ICMP_SGE: return ISD::SETGE;
245   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
246   case ICmpInst::ICMP_SLT: return ISD::SETLT;
247   case ICmpInst::ICMP_ULT: return ISD::SETULT;
248   case ICmpInst::ICMP_SGT: return ISD::SETGT;
249   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
250   default:
251     llvm_unreachable("Invalid ICmp predicate opcode!");
252   }
253 }
254 
255 static bool isNoopBitcast(Type *T1, Type *T2,
256                           const TargetLoweringBase& TLI) {
257   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
258          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
259           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
260 }
261 
262 /// Look through operations that will be free to find the earliest source of
263 /// this value.
264 ///
265 /// @param ValLoc If V has aggegate type, we will be interested in a particular
266 /// scalar component. This records its address; the reverse of this list gives a
267 /// sequence of indices appropriate for an extractvalue to locate the important
268 /// value. This value is updated during the function and on exit will indicate
269 /// similar information for the Value returned.
270 ///
271 /// @param DataBits If this function looks through truncate instructions, this
272 /// will record the smallest size attained.
273 static const Value *getNoopInput(const Value *V,
274                                  SmallVectorImpl<unsigned> &ValLoc,
275                                  unsigned &DataBits,
276                                  const TargetLoweringBase &TLI,
277                                  const DataLayout &DL) {
278   while (true) {
279     // Try to look through V1; if V1 is not an instruction, it can't be looked
280     // through.
281     const Instruction *I = dyn_cast<Instruction>(V);
282     if (!I || I->getNumOperands() == 0) return V;
283     const Value *NoopInput = nullptr;
284 
285     Value *Op = I->getOperand(0);
286     if (isa<BitCastInst>(I)) {
287       // Look through truly no-op bitcasts.
288       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
289         NoopInput = Op;
290     } else if (isa<GetElementPtrInst>(I)) {
291       // Look through getelementptr
292       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
293         NoopInput = Op;
294     } else if (isa<IntToPtrInst>(I)) {
295       // Look through inttoptr.
296       // Make sure this isn't a truncating or extending cast.  We could
297       // support this eventually, but don't bother for now.
298       if (!isa<VectorType>(I->getType()) &&
299           DL.getPointerSizeInBits() ==
300               cast<IntegerType>(Op->getType())->getBitWidth())
301         NoopInput = Op;
302     } else if (isa<PtrToIntInst>(I)) {
303       // Look through ptrtoint.
304       // Make sure this isn't a truncating or extending cast.  We could
305       // support this eventually, but don't bother for now.
306       if (!isa<VectorType>(I->getType()) &&
307           DL.getPointerSizeInBits() ==
308               cast<IntegerType>(I->getType())->getBitWidth())
309         NoopInput = Op;
310     } else if (isa<TruncInst>(I) &&
311                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
312       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
313       NoopInput = Op;
314     } else if (auto CS = ImmutableCallSite(I)) {
315       const Value *ReturnedOp = CS.getReturnedArgOperand();
316       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
317         NoopInput = ReturnedOp;
318     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
319       // Value may come from either the aggregate or the scalar
320       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
321       if (ValLoc.size() >= InsertLoc.size() &&
322           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
323         // The type being inserted is a nested sub-type of the aggregate; we
324         // have to remove those initial indices to get the location we're
325         // interested in for the operand.
326         ValLoc.resize(ValLoc.size() - InsertLoc.size());
327         NoopInput = IVI->getInsertedValueOperand();
328       } else {
329         // The struct we're inserting into has the value we're interested in, no
330         // change of address.
331         NoopInput = Op;
332       }
333     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
334       // The part we're interested in will inevitably be some sub-section of the
335       // previous aggregate. Combine the two paths to obtain the true address of
336       // our element.
337       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
338       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
339       NoopInput = Op;
340     }
341     // Terminate if we couldn't find anything to look through.
342     if (!NoopInput)
343       return V;
344 
345     V = NoopInput;
346   }
347 }
348 
349 /// Return true if this scalar return value only has bits discarded on its path
350 /// from the "tail call" to the "ret". This includes the obvious noop
351 /// instructions handled by getNoopInput above as well as free truncations (or
352 /// extensions prior to the call).
353 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
354                                  SmallVectorImpl<unsigned> &RetIndices,
355                                  SmallVectorImpl<unsigned> &CallIndices,
356                                  bool AllowDifferingSizes,
357                                  const TargetLoweringBase &TLI,
358                                  const DataLayout &DL) {
359 
360   // Trace the sub-value needed by the return value as far back up the graph as
361   // possible, in the hope that it will intersect with the value produced by the
362   // call. In the simple case with no "returned" attribute, the hope is actually
363   // that we end up back at the tail call instruction itself.
364   unsigned BitsRequired = UINT_MAX;
365   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
366 
367   // If this slot in the value returned is undef, it doesn't matter what the
368   // call puts there, it'll be fine.
369   if (isa<UndefValue>(RetVal))
370     return true;
371 
372   // Now do a similar search up through the graph to find where the value
373   // actually returned by the "tail call" comes from. In the simple case without
374   // a "returned" attribute, the search will be blocked immediately and the loop
375   // a Noop.
376   unsigned BitsProvided = UINT_MAX;
377   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
378 
379   // There's no hope if we can't actually trace them to (the same part of!) the
380   // same value.
381   if (CallVal != RetVal || CallIndices != RetIndices)
382     return false;
383 
384   // However, intervening truncates may have made the call non-tail. Make sure
385   // all the bits that are needed by the "ret" have been provided by the "tail
386   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
387   // extensions too.
388   if (BitsProvided < BitsRequired ||
389       (!AllowDifferingSizes && BitsProvided != BitsRequired))
390     return false;
391 
392   return true;
393 }
394 
395 /// For an aggregate type, determine whether a given index is within bounds or
396 /// not.
397 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
398   if (ArrayType *AT = dyn_cast<ArrayType>(T))
399     return Idx < AT->getNumElements();
400 
401   return Idx < cast<StructType>(T)->getNumElements();
402 }
403 
404 /// Move the given iterators to the next leaf type in depth first traversal.
405 ///
406 /// Performs a depth-first traversal of the type as specified by its arguments,
407 /// stopping at the next leaf node (which may be a legitimate scalar type or an
408 /// empty struct or array).
409 ///
410 /// @param SubTypes List of the partial components making up the type from
411 /// outermost to innermost non-empty aggregate. The element currently
412 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
413 ///
414 /// @param Path Set of extractvalue indices leading from the outermost type
415 /// (SubTypes[0]) to the leaf node currently represented.
416 ///
417 /// @returns true if a new type was found, false otherwise. Calling this
418 /// function again on a finished iterator will repeatedly return
419 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
420 /// aggregate or a non-aggregate
421 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
422                                   SmallVectorImpl<unsigned> &Path) {
423   // First march back up the tree until we can successfully increment one of the
424   // coordinates in Path.
425   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
426     Path.pop_back();
427     SubTypes.pop_back();
428   }
429 
430   // If we reached the top, then the iterator is done.
431   if (Path.empty())
432     return false;
433 
434   // We know there's *some* valid leaf now, so march back down the tree picking
435   // out the left-most element at each node.
436   ++Path.back();
437   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
438   while (DeeperType->isAggregateType()) {
439     CompositeType *CT = cast<CompositeType>(DeeperType);
440     if (!indexReallyValid(CT, 0))
441       return true;
442 
443     SubTypes.push_back(CT);
444     Path.push_back(0);
445 
446     DeeperType = CT->getTypeAtIndex(0U);
447   }
448 
449   return true;
450 }
451 
452 /// Find the first non-empty, scalar-like type in Next and setup the iterator
453 /// components.
454 ///
455 /// Assuming Next is an aggregate of some kind, this function will traverse the
456 /// tree from left to right (i.e. depth-first) looking for the first
457 /// non-aggregate type which will play a role in function return.
458 ///
459 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
460 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
461 /// i32 in that type.
462 static bool firstRealType(Type *Next,
463                           SmallVectorImpl<CompositeType *> &SubTypes,
464                           SmallVectorImpl<unsigned> &Path) {
465   // First initialise the iterator components to the first "leaf" node
466   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
467   // despite nominally being an aggregate).
468   while (Next->isAggregateType() &&
469          indexReallyValid(cast<CompositeType>(Next), 0)) {
470     SubTypes.push_back(cast<CompositeType>(Next));
471     Path.push_back(0);
472     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
473   }
474 
475   // If there's no Path now, Next was originally scalar already (or empty
476   // leaf). We're done.
477   if (Path.empty())
478     return true;
479 
480   // Otherwise, use normal iteration to keep looking through the tree until we
481   // find a non-aggregate type.
482   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
483     if (!advanceToNextLeafType(SubTypes, Path))
484       return false;
485   }
486 
487   return true;
488 }
489 
490 /// Set the iterator data-structures to the next non-empty, non-aggregate
491 /// subtype.
492 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
493                          SmallVectorImpl<unsigned> &Path) {
494   do {
495     if (!advanceToNextLeafType(SubTypes, Path))
496       return false;
497 
498     assert(!Path.empty() && "found a leaf but didn't set the path?");
499   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
500 
501   return true;
502 }
503 
504 
505 /// Test if the given instruction is in a position to be optimized
506 /// with a tail-call. This roughly means that it's in a block with
507 /// a return and there's nothing that needs to be scheduled
508 /// between it and the return.
509 ///
510 /// This function only tests target-independent requirements.
511 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
512   const Instruction *I = CS.getInstruction();
513   const BasicBlock *ExitBB = I->getParent();
514   const Instruction *Term = ExitBB->getTerminator();
515   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
516 
517   // The block must end in a return statement or unreachable.
518   //
519   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
520   // an unreachable, for now. The way tailcall optimization is currently
521   // implemented means it will add an epilogue followed by a jump. That is
522   // not profitable. Also, if the callee is a special function (e.g.
523   // longjmp on x86), it can end up causing miscompilation that has not
524   // been fully understood.
525   if (!Ret &&
526       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
527     return false;
528 
529   // If I will have a chain, make sure no other instruction that will have a
530   // chain interposes between I and the return.
531   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
532       !isSafeToSpeculativelyExecute(I))
533     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
534       if (&*BBI == I)
535         break;
536       // Debug info intrinsics do not get in the way of tail call optimization.
537       if (isa<DbgInfoIntrinsic>(BBI))
538         continue;
539       // A lifetime end intrinsic should not stop tail call optimization.
540       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
541         if (II->getIntrinsicID() == Intrinsic::lifetime_end)
542           continue;
543       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
544           !isSafeToSpeculativelyExecute(&*BBI))
545         return false;
546     }
547 
548   const Function *F = ExitBB->getParent();
549   return returnTypeIsEligibleForTailCall(
550       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
551 }
552 
553 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
554                                     const ReturnInst *Ret,
555                                     const TargetLoweringBase &TLI,
556                                     bool *AllowDifferingSizes) {
557   // ADS may be null, so don't write to it directly.
558   bool DummyADS;
559   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
560   ADS = true;
561 
562   AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
563   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
564                           AttributeList::ReturnIndex);
565 
566   // NoAlias and NonNull are completely benign as far as calling convention
567   // goes, they shouldn't affect whether the call is a tail call.
568   CallerAttrs.removeAttribute(Attribute::NoAlias);
569   CalleeAttrs.removeAttribute(Attribute::NoAlias);
570   CallerAttrs.removeAttribute(Attribute::NonNull);
571   CalleeAttrs.removeAttribute(Attribute::NonNull);
572 
573   if (CallerAttrs.contains(Attribute::ZExt)) {
574     if (!CalleeAttrs.contains(Attribute::ZExt))
575       return false;
576 
577     ADS = false;
578     CallerAttrs.removeAttribute(Attribute::ZExt);
579     CalleeAttrs.removeAttribute(Attribute::ZExt);
580   } else if (CallerAttrs.contains(Attribute::SExt)) {
581     if (!CalleeAttrs.contains(Attribute::SExt))
582       return false;
583 
584     ADS = false;
585     CallerAttrs.removeAttribute(Attribute::SExt);
586     CalleeAttrs.removeAttribute(Attribute::SExt);
587   }
588 
589   // Drop sext and zext return attributes if the result is not used.
590   // This enables tail calls for code like:
591   //
592   // define void @caller() {
593   // entry:
594   //   %unused_result = tail call zeroext i1 @callee()
595   //   br label %retlabel
596   // retlabel:
597   //   ret void
598   // }
599   if (I->use_empty()) {
600     CalleeAttrs.removeAttribute(Attribute::SExt);
601     CalleeAttrs.removeAttribute(Attribute::ZExt);
602   }
603 
604   // If they're still different, there's some facet we don't understand
605   // (currently only "inreg", but in future who knows). It may be OK but the
606   // only safe option is to reject the tail call.
607   return CallerAttrs == CalleeAttrs;
608 }
609 
610 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
611                                            const Instruction *I,
612                                            const ReturnInst *Ret,
613                                            const TargetLoweringBase &TLI) {
614   // If the block ends with a void return or unreachable, it doesn't matter
615   // what the call's return type is.
616   if (!Ret || Ret->getNumOperands() == 0) return true;
617 
618   // If the return value is undef, it doesn't matter what the call's
619   // return type is.
620   if (isa<UndefValue>(Ret->getOperand(0))) return true;
621 
622   // Make sure the attributes attached to each return are compatible.
623   bool AllowDifferingSizes;
624   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
625     return false;
626 
627   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
628   // Intrinsic like llvm.memcpy has no return value, but the expanded
629   // libcall may or may not have return value. On most platforms, it
630   // will be expanded as memcpy in libc, which returns the first
631   // argument. On other platforms like arm-none-eabi, memcpy may be
632   // expanded as library call without return value, like __aeabi_memcpy.
633   const CallInst *Call = cast<CallInst>(I);
634   if (Function *F = Call->getCalledFunction()) {
635     Intrinsic::ID IID = F->getIntrinsicID();
636     if (((IID == Intrinsic::memcpy &&
637           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
638          (IID == Intrinsic::memmove &&
639           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
640          (IID == Intrinsic::memset &&
641           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
642         RetVal == Call->getArgOperand(0))
643       return true;
644   }
645 
646   SmallVector<unsigned, 4> RetPath, CallPath;
647   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
648 
649   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
650   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
651 
652   // Nothing's actually returned, it doesn't matter what the callee put there
653   // it's a valid tail call.
654   if (RetEmpty)
655     return true;
656 
657   // Iterate pairwise through each of the value types making up the tail call
658   // and the corresponding return. For each one we want to know whether it's
659   // essentially going directly from the tail call to the ret, via operations
660   // that end up not generating any code.
661   //
662   // We allow a certain amount of covariance here. For example it's permitted
663   // for the tail call to define more bits than the ret actually cares about
664   // (e.g. via a truncate).
665   do {
666     if (CallEmpty) {
667       // We've exhausted the values produced by the tail call instruction, the
668       // rest are essentially undef. The type doesn't really matter, but we need
669       // *something*.
670       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
671       CallVal = UndefValue::get(SlotType);
672     }
673 
674     // The manipulations performed when we're looking through an insertvalue or
675     // an extractvalue would happen at the front of the RetPath list, so since
676     // we have to copy it anyway it's more efficient to create a reversed copy.
677     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
678     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
679 
680     // Finally, we can check whether the value produced by the tail call at this
681     // index is compatible with the value we return.
682     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
683                               AllowDifferingSizes, TLI,
684                               F->getParent()->getDataLayout()))
685       return false;
686 
687     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
688   } while(nextRealType(RetSubTypes, RetPath));
689 
690   return true;
691 }
692 
693 static void collectEHScopeMembers(
694     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
695     const MachineBasicBlock *MBB) {
696   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
697   while (!Worklist.empty()) {
698     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
699     // Don't follow blocks which start new scopes.
700     if (Visiting->isEHPad() && Visiting != MBB)
701       continue;
702 
703     // Add this MBB to our scope.
704     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
705 
706     // Don't revisit blocks.
707     if (!P.second) {
708       assert(P.first->second == EHScope && "MBB is part of two scopes!");
709       continue;
710     }
711 
712     // Returns are boundaries where scope transfer can occur, don't follow
713     // successors.
714     if (Visiting->isEHScopeReturnBlock())
715       continue;
716 
717     for (const MachineBasicBlock *Succ : Visiting->successors())
718       Worklist.push_back(Succ);
719   }
720 }
721 
722 DenseMap<const MachineBasicBlock *, int>
723 llvm::getEHScopeMembership(const MachineFunction &MF) {
724   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
725 
726   // We don't have anything to do if there aren't any EH pads.
727   if (!MF.hasEHScopes())
728     return EHScopeMembership;
729 
730   int EntryBBNumber = MF.front().getNumber();
731   bool IsSEH = isAsynchronousEHPersonality(
732       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
733 
734   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
735   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
736   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
737   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
738   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
739   for (const MachineBasicBlock &MBB : MF) {
740     if (MBB.isEHScopeEntry()) {
741       EHScopeBlocks.push_back(&MBB);
742     } else if (IsSEH && MBB.isEHPad()) {
743       SEHCatchPads.push_back(&MBB);
744     } else if (MBB.pred_empty()) {
745       UnreachableBlocks.push_back(&MBB);
746     }
747 
748     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
749 
750     // CatchPads are not scopes for SEH so do not consider CatchRet to
751     // transfer control to another scope.
752     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
753       continue;
754 
755     // FIXME: SEH CatchPads are not necessarily in the parent function:
756     // they could be inside a finally block.
757     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
758     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
759     CatchRetSuccessors.push_back(
760         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
761   }
762 
763   // We don't have anything to do if there aren't any EH pads.
764   if (EHScopeBlocks.empty())
765     return EHScopeMembership;
766 
767   // Identify all the basic blocks reachable from the function entry.
768   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
769   // All blocks not part of a scope are in the parent function.
770   for (const MachineBasicBlock *MBB : UnreachableBlocks)
771     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
772   // Next, identify all the blocks inside the scopes.
773   for (const MachineBasicBlock *MBB : EHScopeBlocks)
774     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
775   // SEH CatchPads aren't really scopes, handle them separately.
776   for (const MachineBasicBlock *MBB : SEHCatchPads)
777     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
778   // Finally, identify all the targets of a catchret.
779   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
780        CatchRetSuccessors)
781     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
782                           CatchRetPair.first);
783   return EHScopeMembership;
784 }
785