1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
35 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MD5.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetLoweringObjectFile.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cstddef>
58 #include <iterator>
59 #include <optional>
60 #include <string>
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "dwarfdebug"
65 
66 STATISTIC(NumCSParams, "Number of dbg call site params created");
67 
68 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
69     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
70     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
71 
72 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
73                                            cl::Hidden,
74                                            cl::desc("Generate dwarf aranges"),
75                                            cl::init(false));
76 
77 static cl::opt<bool>
78     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
79                            cl::desc("Generate DWARF4 type units."),
80                            cl::init(false));
81 
82 static cl::opt<bool> SplitDwarfCrossCuReferences(
83     "split-dwarf-cross-cu-references", cl::Hidden,
84     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
85 
86 enum DefaultOnOff { Default, Enable, Disable };
87 
88 static cl::opt<DefaultOnOff> UnknownLocations(
89     "use-unknown-locations", cl::Hidden,
90     cl::desc("Make an absence of debug location information explicit."),
91     cl::values(clEnumVal(Default, "At top of block or after label"),
92                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
93     cl::init(Default));
94 
95 static cl::opt<AccelTableKind> AccelTables(
96     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
97     cl::values(clEnumValN(AccelTableKind::Default, "Default",
98                           "Default for platform"),
99                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
100                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
101                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
102     cl::init(AccelTableKind::Default));
103 
104 static cl::opt<DefaultOnOff>
105 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
106                  cl::desc("Use inlined strings rather than string section."),
107                  cl::values(clEnumVal(Default, "Default for platform"),
108                             clEnumVal(Enable, "Enabled"),
109                             clEnumVal(Disable, "Disabled")),
110                  cl::init(Default));
111 
112 static cl::opt<bool>
113     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
114                          cl::desc("Disable emission .debug_ranges section."),
115                          cl::init(false));
116 
117 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
118     "dwarf-sections-as-references", cl::Hidden,
119     cl::desc("Use sections+offset as references rather than labels."),
120     cl::values(clEnumVal(Default, "Default for platform"),
121                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
122     cl::init(Default));
123 
124 static cl::opt<bool>
125     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
126                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
127                      cl::init(false));
128 
129 static cl::opt<DefaultOnOff> DwarfOpConvert(
130     "dwarf-op-convert", cl::Hidden,
131     cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
132     cl::values(clEnumVal(Default, "Default for platform"),
133                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
134     cl::init(Default));
135 
136 enum LinkageNameOption {
137   DefaultLinkageNames,
138   AllLinkageNames,
139   AbstractLinkageNames
140 };
141 
142 static cl::opt<LinkageNameOption>
143     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
144                       cl::desc("Which DWARF linkage-name attributes to emit."),
145                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
146                                             "Default for platform"),
147                                  clEnumValN(AllLinkageNames, "All", "All"),
148                                  clEnumValN(AbstractLinkageNames, "Abstract",
149                                             "Abstract subprograms")),
150                       cl::init(DefaultLinkageNames));
151 
152 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
153     "minimize-addr-in-v5", cl::Hidden,
154     cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
155              "address pool entry sharing to reduce relocations/object size"),
156     cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
157                           "Default address minimization strategy"),
158                clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
159                           "Use rnglists for contiguous ranges if that allows "
160                           "using a pre-existing base address"),
161                clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
162                           "Expressions",
163                           "Use exprloc addrx+offset expressions for any "
164                           "address with a prior base address"),
165                clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form",
166                           "Use addrx+offset extension form for any address "
167                           "with a prior base address"),
168                clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
169                           "Stuff")),
170     cl::init(DwarfDebug::MinimizeAddrInV5::Default));
171 
172 static constexpr unsigned ULEB128PadSize = 4;
173 
174 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
175   getActiveStreamer().emitInt8(
176       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
177                   : dwarf::OperationEncodingString(Op));
178 }
179 
180 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
181   getActiveStreamer().emitSLEB128(Value, Twine(Value));
182 }
183 
184 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
185   getActiveStreamer().emitULEB128(Value, Twine(Value));
186 }
187 
188 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
189   getActiveStreamer().emitInt8(Value, Twine(Value));
190 }
191 
192 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
193   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
194   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
195 }
196 
197 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
198                                               llvm::Register MachineReg) {
199   // This information is not available while emitting .debug_loc entries.
200   return false;
201 }
202 
203 void DebugLocDwarfExpression::enableTemporaryBuffer() {
204   assert(!IsBuffering && "Already buffering?");
205   if (!TmpBuf)
206     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
207   IsBuffering = true;
208 }
209 
210 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
211 
212 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
213   return TmpBuf ? TmpBuf->Bytes.size() : 0;
214 }
215 
216 void DebugLocDwarfExpression::commitTemporaryBuffer() {
217   if (!TmpBuf)
218     return;
219   for (auto Byte : enumerate(TmpBuf->Bytes)) {
220     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
221                               ? TmpBuf->Comments[Byte.index()].c_str()
222                               : "";
223     OutBS.emitInt8(Byte.value(), Comment);
224   }
225   TmpBuf->Bytes.clear();
226   TmpBuf->Comments.clear();
227 }
228 
229 const DIType *DbgVariable::getType() const {
230   return getVariable()->getType();
231 }
232 
233 /// Get .debug_loc entry for the instruction range starting at MI.
234 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
235   const DIExpression *Expr = MI->getDebugExpression();
236   const bool IsVariadic = MI->isDebugValueList();
237   assert(MI->getNumOperands() >= 3);
238   SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries;
239   for (const MachineOperand &Op : MI->debug_operands()) {
240     if (Op.isReg()) {
241       MachineLocation MLoc(Op.getReg(),
242                            MI->isNonListDebugValue() && MI->isDebugOffsetImm());
243       DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc));
244     } else if (Op.isTargetIndex()) {
245       DbgValueLocEntries.push_back(
246           DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset())));
247     } else if (Op.isImm())
248       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm()));
249     else if (Op.isFPImm())
250       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm()));
251     else if (Op.isCImm())
252       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm()));
253     else
254       llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!");
255   }
256   return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic);
257 }
258 
259 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
260   assert(FrameIndexExprs.empty() && "Already initialized?");
261   assert(!ValueLoc.get() && "Already initialized?");
262 
263   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
264   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
265          "Wrong inlined-at");
266 
267   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
268   if (auto *E = DbgValue->getDebugExpression())
269     if (E->getNumElements())
270       FrameIndexExprs.push_back({0, E});
271 }
272 
273 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
274   if (FrameIndexExprs.size() == 1)
275     return FrameIndexExprs;
276 
277   assert(llvm::all_of(FrameIndexExprs,
278                       [](const FrameIndexExpr &A) {
279                         return A.Expr->isFragment();
280                       }) &&
281          "multiple FI expressions without DW_OP_LLVM_fragment");
282   llvm::sort(FrameIndexExprs,
283              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
284                return A.Expr->getFragmentInfo()->OffsetInBits <
285                       B.Expr->getFragmentInfo()->OffsetInBits;
286              });
287 
288   return FrameIndexExprs;
289 }
290 
291 void DbgVariable::addMMIEntry(const DbgVariable &V) {
292   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
293   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
294   assert(V.getVariable() == getVariable() && "conflicting variable");
295   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
296 
297   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
298   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
299 
300   // FIXME: This logic should not be necessary anymore, as we now have proper
301   // deduplication. However, without it, we currently run into the assertion
302   // below, which means that we are likely dealing with broken input, i.e. two
303   // non-fragment entries for the same variable at different frame indices.
304   if (FrameIndexExprs.size()) {
305     auto *Expr = FrameIndexExprs.back().Expr;
306     if (!Expr || !Expr->isFragment())
307       return;
308   }
309 
310   for (const auto &FIE : V.FrameIndexExprs)
311     // Ignore duplicate entries.
312     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
313           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
314         }))
315       FrameIndexExprs.push_back(FIE);
316 
317   assert((FrameIndexExprs.size() == 1 ||
318           llvm::all_of(FrameIndexExprs,
319                        [](FrameIndexExpr &FIE) {
320                          return FIE.Expr && FIE.Expr->isFragment();
321                        })) &&
322          "conflicting locations for variable");
323 }
324 
325 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
326                                             bool GenerateTypeUnits,
327                                             DebuggerKind Tuning,
328                                             const Triple &TT) {
329   // Honor an explicit request.
330   if (AccelTables != AccelTableKind::Default)
331     return AccelTables;
332 
333   // Accelerator tables with type units are currently not supported.
334   if (GenerateTypeUnits)
335     return AccelTableKind::None;
336 
337   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
338   // always implies debug_names. For lower standard versions we use apple
339   // accelerator tables on apple platforms and debug_names elsewhere.
340   if (DwarfVersion >= 5)
341     return AccelTableKind::Dwarf;
342   if (Tuning == DebuggerKind::LLDB)
343     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
344                                    : AccelTableKind::Dwarf;
345   return AccelTableKind::None;
346 }
347 
348 DwarfDebug::DwarfDebug(AsmPrinter *A)
349     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
350       InfoHolder(A, "info_string", DIEValueAllocator),
351       SkeletonHolder(A, "skel_string", DIEValueAllocator),
352       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
353   const Triple &TT = Asm->TM.getTargetTriple();
354 
355   // Make sure we know our "debugger tuning".  The target option takes
356   // precedence; fall back to triple-based defaults.
357   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
358     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
359   else if (IsDarwin)
360     DebuggerTuning = DebuggerKind::LLDB;
361   else if (TT.isPS())
362     DebuggerTuning = DebuggerKind::SCE;
363   else if (TT.isOSAIX())
364     DebuggerTuning = DebuggerKind::DBX;
365   else
366     DebuggerTuning = DebuggerKind::GDB;
367 
368   if (DwarfInlinedStrings == Default)
369     UseInlineStrings = TT.isNVPTX() || tuneForDBX();
370   else
371     UseInlineStrings = DwarfInlinedStrings == Enable;
372 
373   UseLocSection = !TT.isNVPTX();
374 
375   HasAppleExtensionAttributes = tuneForLLDB();
376 
377   // Handle split DWARF.
378   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
379 
380   // SCE defaults to linkage names only for abstract subprograms.
381   if (DwarfLinkageNames == DefaultLinkageNames)
382     UseAllLinkageNames = !tuneForSCE();
383   else
384     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
385 
386   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
387   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
388                                     : MMI->getModule()->getDwarfVersion();
389   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
390   DwarfVersion =
391       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
392 
393   bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
394                  TT.isArch64Bit();    // DWARF64 requires 64-bit relocations.
395 
396   // Support DWARF64
397   // 1: For ELF when requested.
398   // 2: For XCOFF64: the AIX assembler will fill in debug section lengths
399   //    according to the DWARF64 format for 64-bit assembly, so we must use
400   //    DWARF64 in the compiler too for 64-bit mode.
401   Dwarf64 &=
402       ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) &&
403        TT.isOSBinFormatELF()) ||
404       TT.isOSBinFormatXCOFF();
405 
406   if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF())
407     report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!");
408 
409   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
410 
411   // Use sections as references. Force for NVPTX.
412   if (DwarfSectionsAsReferences == Default)
413     UseSectionsAsReferences = TT.isNVPTX();
414   else
415     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
416 
417   // Don't generate type units for unsupported object file formats.
418   GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
419                        A->TM.getTargetTriple().isOSBinFormatWasm()) &&
420                       GenerateDwarfTypeUnits;
421 
422   TheAccelTableKind = computeAccelTableKind(
423       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
424 
425   // Work around a GDB bug. GDB doesn't support the standard opcode;
426   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
427   // is defined as of DWARF 3.
428   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
429   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
430   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
431 
432   UseDWARF2Bitfields = DwarfVersion < 4;
433 
434   // The DWARF v5 string offsets table has - possibly shared - contributions
435   // from each compile and type unit each preceded by a header. The string
436   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
437   // a monolithic string offsets table without any header.
438   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
439 
440   // Emit call-site-param debug info for GDB and LLDB, if the target supports
441   // the debug entry values feature. It can also be enabled explicitly.
442   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
443 
444   // It is unclear if the GCC .debug_macro extension is well-specified
445   // for split DWARF. For now, do not allow LLVM to emit it.
446   UseDebugMacroSection =
447       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
448   if (DwarfOpConvert == Default)
449     EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
450   else
451     EnableOpConvert = (DwarfOpConvert == Enable);
452 
453   // Split DWARF would benefit object size significantly by trading reductions
454   // in address pool usage for slightly increased range list encodings.
455   if (DwarfVersion >= 5) {
456     MinimizeAddr = MinimizeAddrInV5Option;
457     // FIXME: In the future, enable this by default for Split DWARF where the
458     // tradeoff is more pronounced due to being able to offload the range
459     // lists to the dwo file and shrink object files/reduce relocations there.
460     if (MinimizeAddr == MinimizeAddrInV5::Default)
461       MinimizeAddr = MinimizeAddrInV5::Disabled;
462   }
463 
464   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
465   Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
466                                                         : dwarf::DWARF32);
467 }
468 
469 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
470 DwarfDebug::~DwarfDebug() = default;
471 
472 static bool isObjCClass(StringRef Name) {
473   return Name.startswith("+") || Name.startswith("-");
474 }
475 
476 static bool hasObjCCategory(StringRef Name) {
477   if (!isObjCClass(Name))
478     return false;
479 
480   return Name.contains(") ");
481 }
482 
483 static void getObjCClassCategory(StringRef In, StringRef &Class,
484                                  StringRef &Category) {
485   if (!hasObjCCategory(In)) {
486     Class = In.slice(In.find('[') + 1, In.find(' '));
487     Category = "";
488     return;
489   }
490 
491   Class = In.slice(In.find('[') + 1, In.find('('));
492   Category = In.slice(In.find('[') + 1, In.find(' '));
493 }
494 
495 static StringRef getObjCMethodName(StringRef In) {
496   return In.slice(In.find(' ') + 1, In.find(']'));
497 }
498 
499 // Add the various names to the Dwarf accelerator table names.
500 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
501                                     const DISubprogram *SP, DIE &Die) {
502   if (getAccelTableKind() != AccelTableKind::Apple &&
503       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
504     return;
505 
506   if (!SP->isDefinition())
507     return;
508 
509   if (SP->getName() != "")
510     addAccelName(CU, SP->getName(), Die);
511 
512   // If the linkage name is different than the name, go ahead and output that as
513   // well into the name table. Only do that if we are going to actually emit
514   // that name.
515   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
516       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
517     addAccelName(CU, SP->getLinkageName(), Die);
518 
519   // If this is an Objective-C selector name add it to the ObjC accelerator
520   // too.
521   if (isObjCClass(SP->getName())) {
522     StringRef Class, Category;
523     getObjCClassCategory(SP->getName(), Class, Category);
524     addAccelObjC(CU, Class, Die);
525     if (Category != "")
526       addAccelObjC(CU, Category, Die);
527     // Also add the base method name to the name table.
528     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
529   }
530 }
531 
532 /// Check whether we should create a DIE for the given Scope, return true
533 /// if we don't create a DIE (the corresponding DIE is null).
534 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
535   if (Scope->isAbstractScope())
536     return false;
537 
538   // We don't create a DIE if there is no Range.
539   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
540   if (Ranges.empty())
541     return true;
542 
543   if (Ranges.size() > 1)
544     return false;
545 
546   // We don't create a DIE if we have a single Range and the end label
547   // is null.
548   return !getLabelAfterInsn(Ranges.front().second);
549 }
550 
551 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
552   F(CU);
553   if (auto *SkelCU = CU.getSkeleton())
554     if (CU.getCUNode()->getSplitDebugInlining())
555       F(*SkelCU);
556 }
557 
558 bool DwarfDebug::shareAcrossDWOCUs() const {
559   return SplitDwarfCrossCuReferences;
560 }
561 
562 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
563                                                      LexicalScope *Scope) {
564   assert(Scope && Scope->getScopeNode());
565   assert(Scope->isAbstractScope());
566   assert(!Scope->getInlinedAt());
567 
568   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
569 
570   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
571   // was inlined from another compile unit.
572   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
573     // Avoid building the original CU if it won't be used
574     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
575   else {
576     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
577     if (auto *SkelCU = CU.getSkeleton()) {
578       (shareAcrossDWOCUs() ? CU : SrcCU)
579           .constructAbstractSubprogramScopeDIE(Scope);
580       if (CU.getCUNode()->getSplitDebugInlining())
581         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
582     } else
583       CU.constructAbstractSubprogramScopeDIE(Scope);
584   }
585 }
586 
587 /// Represents a parameter whose call site value can be described by applying a
588 /// debug expression to a register in the forwarded register worklist.
589 struct FwdRegParamInfo {
590   /// The described parameter register.
591   unsigned ParamReg;
592 
593   /// Debug expression that has been built up when walking through the
594   /// instruction chain that produces the parameter's value.
595   const DIExpression *Expr;
596 };
597 
598 /// Register worklist for finding call site values.
599 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
600 /// Container for the set of registers known to be clobbered on the path to a
601 /// call site.
602 using ClobberedRegSet = SmallSet<Register, 16>;
603 
604 /// Append the expression \p Addition to \p Original and return the result.
605 static const DIExpression *combineDIExpressions(const DIExpression *Original,
606                                                 const DIExpression *Addition) {
607   std::vector<uint64_t> Elts = Addition->getElements().vec();
608   // Avoid multiple DW_OP_stack_values.
609   if (Original->isImplicit() && Addition->isImplicit())
610     erase_value(Elts, dwarf::DW_OP_stack_value);
611   const DIExpression *CombinedExpr =
612       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
613   return CombinedExpr;
614 }
615 
616 /// Emit call site parameter entries that are described by the given value and
617 /// debug expression.
618 template <typename ValT>
619 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
620                                  ArrayRef<FwdRegParamInfo> DescribedParams,
621                                  ParamSet &Params) {
622   for (auto Param : DescribedParams) {
623     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
624 
625     // TODO: Entry value operations can currently not be combined with any
626     // other expressions, so we can't emit call site entries in those cases.
627     if (ShouldCombineExpressions && Expr->isEntryValue())
628       continue;
629 
630     // If a parameter's call site value is produced by a chain of
631     // instructions we may have already created an expression for the
632     // parameter when walking through the instructions. Append that to the
633     // base expression.
634     const DIExpression *CombinedExpr =
635         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
636                                  : Expr;
637     assert((!CombinedExpr || CombinedExpr->isValid()) &&
638            "Combined debug expression is invalid");
639 
640     DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val));
641     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
642     Params.push_back(CSParm);
643     ++NumCSParams;
644   }
645 }
646 
647 /// Add \p Reg to the worklist, if it's not already present, and mark that the
648 /// given parameter registers' values can (potentially) be described using
649 /// that register and an debug expression.
650 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
651                                 const DIExpression *Expr,
652                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
653   auto I = Worklist.insert({Reg, {}});
654   auto &ParamsForFwdReg = I.first->second;
655   for (auto Param : ParamsToAdd) {
656     assert(none_of(ParamsForFwdReg,
657                    [Param](const FwdRegParamInfo &D) {
658                      return D.ParamReg == Param.ParamReg;
659                    }) &&
660            "Same parameter described twice by forwarding reg");
661 
662     // If a parameter's call site value is produced by a chain of
663     // instructions we may have already created an expression for the
664     // parameter when walking through the instructions. Append that to the
665     // new expression.
666     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
667     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
668   }
669 }
670 
671 /// Interpret values loaded into registers by \p CurMI.
672 static void interpretValues(const MachineInstr *CurMI,
673                             FwdRegWorklist &ForwardedRegWorklist,
674                             ParamSet &Params,
675                             ClobberedRegSet &ClobberedRegUnits) {
676 
677   const MachineFunction *MF = CurMI->getMF();
678   const DIExpression *EmptyExpr =
679       DIExpression::get(MF->getFunction().getContext(), {});
680   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
681   const auto &TII = *MF->getSubtarget().getInstrInfo();
682   const auto &TLI = *MF->getSubtarget().getTargetLowering();
683 
684   // If an instruction defines more than one item in the worklist, we may run
685   // into situations where a worklist register's value is (potentially)
686   // described by the previous value of another register that is also defined
687   // by that instruction.
688   //
689   // This can for example occur in cases like this:
690   //
691   //   $r1 = mov 123
692   //   $r0, $r1 = mvrr $r1, 456
693   //   call @foo, $r0, $r1
694   //
695   // When describing $r1's value for the mvrr instruction, we need to make sure
696   // that we don't finalize an entry value for $r0, as that is dependent on the
697   // previous value of $r1 (123 rather than 456).
698   //
699   // In order to not have to distinguish between those cases when finalizing
700   // entry values, we simply postpone adding new parameter registers to the
701   // worklist, by first keeping them in this temporary container until the
702   // instruction has been handled.
703   FwdRegWorklist TmpWorklistItems;
704 
705   // If the MI is an instruction defining one or more parameters' forwarding
706   // registers, add those defines.
707   ClobberedRegSet NewClobberedRegUnits;
708   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
709                                           SmallSetVector<unsigned, 4> &Defs) {
710     if (MI.isDebugInstr())
711       return;
712 
713     for (const MachineOperand &MO : MI.operands()) {
714       if (MO.isReg() && MO.isDef() && MO.getReg().isPhysical()) {
715         for (auto &FwdReg : ForwardedRegWorklist)
716           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
717             Defs.insert(FwdReg.first);
718         for (MCRegUnitIterator Units(MO.getReg(), &TRI); Units.isValid(); ++Units)
719           NewClobberedRegUnits.insert(*Units);
720       }
721     }
722   };
723 
724   // Set of worklist registers that are defined by this instruction.
725   SmallSetVector<unsigned, 4> FwdRegDefs;
726 
727   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
728   if (FwdRegDefs.empty()) {
729     // Any definitions by this instruction will clobber earlier reg movements.
730     ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
731                              NewClobberedRegUnits.end());
732     return;
733   }
734 
735   // It's possible that we find a copy from a non-volatile register to the param
736   // register, which is clobbered in the meantime. Test for clobbered reg unit
737   // overlaps before completing.
738   auto IsRegClobberedInMeantime = [&](Register Reg) -> bool {
739     for (auto &RegUnit : ClobberedRegUnits)
740       if (TRI.hasRegUnit(Reg, RegUnit))
741         return true;
742     return false;
743   };
744 
745   for (auto ParamFwdReg : FwdRegDefs) {
746     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
747       if (ParamValue->first.isImm()) {
748         int64_t Val = ParamValue->first.getImm();
749         finishCallSiteParams(Val, ParamValue->second,
750                              ForwardedRegWorklist[ParamFwdReg], Params);
751       } else if (ParamValue->first.isReg()) {
752         Register RegLoc = ParamValue->first.getReg();
753         Register SP = TLI.getStackPointerRegisterToSaveRestore();
754         Register FP = TRI.getFrameRegister(*MF);
755         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
756         if (!IsRegClobberedInMeantime(RegLoc) &&
757             (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP)) {
758           MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
759           finishCallSiteParams(MLoc, ParamValue->second,
760                                ForwardedRegWorklist[ParamFwdReg], Params);
761         } else {
762           // ParamFwdReg was described by the non-callee saved register
763           // RegLoc. Mark that the call site values for the parameters are
764           // dependent on that register instead of ParamFwdReg. Since RegLoc
765           // may be a register that will be handled in this iteration, we
766           // postpone adding the items to the worklist, and instead keep them
767           // in a temporary container.
768           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
769                               ForwardedRegWorklist[ParamFwdReg]);
770         }
771       }
772     }
773   }
774 
775   // Remove all registers that this instruction defines from the worklist.
776   for (auto ParamFwdReg : FwdRegDefs)
777     ForwardedRegWorklist.erase(ParamFwdReg);
778 
779   // Any definitions by this instruction will clobber earlier reg movements.
780   ClobberedRegUnits.insert(NewClobberedRegUnits.begin(),
781                            NewClobberedRegUnits.end());
782 
783   // Now that we are done handling this instruction, add items from the
784   // temporary worklist to the real one.
785   for (auto &New : TmpWorklistItems)
786     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
787   TmpWorklistItems.clear();
788 }
789 
790 static bool interpretNextInstr(const MachineInstr *CurMI,
791                                FwdRegWorklist &ForwardedRegWorklist,
792                                ParamSet &Params,
793                                ClobberedRegSet &ClobberedRegUnits) {
794   // Skip bundle headers.
795   if (CurMI->isBundle())
796     return true;
797 
798   // If the next instruction is a call we can not interpret parameter's
799   // forwarding registers or we finished the interpretation of all
800   // parameters.
801   if (CurMI->isCall())
802     return false;
803 
804   if (ForwardedRegWorklist.empty())
805     return false;
806 
807   // Avoid NOP description.
808   if (CurMI->getNumOperands() == 0)
809     return true;
810 
811   interpretValues(CurMI, ForwardedRegWorklist, Params, ClobberedRegUnits);
812 
813   return true;
814 }
815 
816 /// Try to interpret values loaded into registers that forward parameters
817 /// for \p CallMI. Store parameters with interpreted value into \p Params.
818 static void collectCallSiteParameters(const MachineInstr *CallMI,
819                                       ParamSet &Params) {
820   const MachineFunction *MF = CallMI->getMF();
821   const auto &CalleesMap = MF->getCallSitesInfo();
822   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
823 
824   // There is no information for the call instruction.
825   if (CallFwdRegsInfo == CalleesMap.end())
826     return;
827 
828   const MachineBasicBlock *MBB = CallMI->getParent();
829 
830   // Skip the call instruction.
831   auto I = std::next(CallMI->getReverseIterator());
832 
833   FwdRegWorklist ForwardedRegWorklist;
834 
835   const DIExpression *EmptyExpr =
836       DIExpression::get(MF->getFunction().getContext(), {});
837 
838   // Add all the forwarding registers into the ForwardedRegWorklist.
839   for (const auto &ArgReg : CallFwdRegsInfo->second) {
840     bool InsertedReg =
841         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
842             .second;
843     assert(InsertedReg && "Single register used to forward two arguments?");
844     (void)InsertedReg;
845   }
846 
847   // Do not emit CSInfo for undef forwarding registers.
848   for (const auto &MO : CallMI->uses())
849     if (MO.isReg() && MO.isUndef())
850       ForwardedRegWorklist.erase(MO.getReg());
851 
852   // We erase, from the ForwardedRegWorklist, those forwarding registers for
853   // which we successfully describe a loaded value (by using
854   // the describeLoadedValue()). For those remaining arguments in the working
855   // list, for which we do not describe a loaded value by
856   // the describeLoadedValue(), we try to generate an entry value expression
857   // for their call site value description, if the call is within the entry MBB.
858   // TODO: Handle situations when call site parameter value can be described
859   // as the entry value within basic blocks other than the first one.
860   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
861 
862   // Search for a loading value in forwarding registers inside call delay slot.
863   ClobberedRegSet ClobberedRegUnits;
864   if (CallMI->hasDelaySlot()) {
865     auto Suc = std::next(CallMI->getIterator());
866     // Only one-instruction delay slot is supported.
867     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
868     (void)BundleEnd;
869     assert(std::next(Suc) == BundleEnd &&
870            "More than one instruction in call delay slot");
871     // Try to interpret value loaded by instruction.
872     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params, ClobberedRegUnits))
873       return;
874   }
875 
876   // Search for a loading value in forwarding registers.
877   for (; I != MBB->rend(); ++I) {
878     // Try to interpret values loaded by instruction.
879     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params, ClobberedRegUnits))
880       return;
881   }
882 
883   // Emit the call site parameter's value as an entry value.
884   if (ShouldTryEmitEntryVals) {
885     // Create an expression where the register's entry value is used.
886     DIExpression *EntryExpr = DIExpression::get(
887         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
888     for (auto &RegEntry : ForwardedRegWorklist) {
889       MachineLocation MLoc(RegEntry.first);
890       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
891     }
892   }
893 }
894 
895 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
896                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
897                                             const MachineFunction &MF) {
898   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
899   // the subprogram is required to have one.
900   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
901     return;
902 
903   // Use DW_AT_call_all_calls to express that call site entries are present
904   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
905   // because one of its requirements is not met: call site entries for
906   // optimized-out calls are elided.
907   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
908 
909   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
910   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
911 
912   // Delay slot support check.
913   auto delaySlotSupported = [&](const MachineInstr &MI) {
914     if (!MI.isBundledWithSucc())
915       return false;
916     auto Suc = std::next(MI.getIterator());
917     auto CallInstrBundle = getBundleStart(MI.getIterator());
918     (void)CallInstrBundle;
919     auto DelaySlotBundle = getBundleStart(Suc);
920     (void)DelaySlotBundle;
921     // Ensure that label after call is following delay slot instruction.
922     // Ex. CALL_INSTRUCTION {
923     //       DELAY_SLOT_INSTRUCTION }
924     //      LABEL_AFTER_CALL
925     assert(getLabelAfterInsn(&*CallInstrBundle) ==
926                getLabelAfterInsn(&*DelaySlotBundle) &&
927            "Call and its successor instruction don't have same label after.");
928     return true;
929   };
930 
931   // Emit call site entries for each call or tail call in the function.
932   for (const MachineBasicBlock &MBB : MF) {
933     for (const MachineInstr &MI : MBB.instrs()) {
934       // Bundles with call in them will pass the isCall() test below but do not
935       // have callee operand information so skip them here. Iterator will
936       // eventually reach the call MI.
937       if (MI.isBundle())
938         continue;
939 
940       // Skip instructions which aren't calls. Both calls and tail-calling jump
941       // instructions (e.g TAILJMPd64) are classified correctly here.
942       if (!MI.isCandidateForCallSiteEntry())
943         continue;
944 
945       // Skip instructions marked as frame setup, as they are not interesting to
946       // the user.
947       if (MI.getFlag(MachineInstr::FrameSetup))
948         continue;
949 
950       // Check if delay slot support is enabled.
951       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
952         return;
953 
954       // If this is a direct call, find the callee's subprogram.
955       // In the case of an indirect call find the register that holds
956       // the callee.
957       const MachineOperand &CalleeOp = TII->getCalleeOperand(MI);
958       if (!CalleeOp.isGlobal() &&
959           (!CalleeOp.isReg() || !CalleeOp.getReg().isPhysical()))
960         continue;
961 
962       unsigned CallReg = 0;
963       const DISubprogram *CalleeSP = nullptr;
964       const Function *CalleeDecl = nullptr;
965       if (CalleeOp.isReg()) {
966         CallReg = CalleeOp.getReg();
967         if (!CallReg)
968           continue;
969       } else {
970         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
971         if (!CalleeDecl || !CalleeDecl->getSubprogram())
972           continue;
973         CalleeSP = CalleeDecl->getSubprogram();
974       }
975 
976       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
977 
978       bool IsTail = TII->isTailCall(MI);
979 
980       // If MI is in a bundle, the label was created after the bundle since
981       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
982       // to search for that label below.
983       const MachineInstr *TopLevelCallMI =
984           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
985 
986       // For non-tail calls, the return PC is needed to disambiguate paths in
987       // the call graph which could lead to some target function. For tail
988       // calls, no return PC information is needed, unless tuning for GDB in
989       // DWARF4 mode in which case we fake a return PC for compatibility.
990       const MCSymbol *PCAddr =
991           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
992               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
993               : nullptr;
994 
995       // For tail calls, it's necessary to record the address of the branch
996       // instruction so that the debugger can show where the tail call occurred.
997       const MCSymbol *CallAddr =
998           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
999 
1000       assert((IsTail || PCAddr) && "Non-tail call without return PC");
1001 
1002       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
1003                         << (CalleeDecl ? CalleeDecl->getName()
1004                                        : StringRef(MF.getSubtarget()
1005                                                        .getRegisterInfo()
1006                                                        ->getName(CallReg)))
1007                         << (IsTail ? " [IsTail]" : "") << "\n");
1008 
1009       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
1010           ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg);
1011 
1012       // Optionally emit call-site-param debug info.
1013       if (emitDebugEntryValues()) {
1014         ParamSet Params;
1015         // Try to interpret values of call site parameters.
1016         collectCallSiteParameters(&MI, Params);
1017         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
1018       }
1019     }
1020   }
1021 }
1022 
1023 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
1024   if (!U.hasDwarfPubSections())
1025     return;
1026 
1027   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1028 }
1029 
1030 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1031                                       DwarfCompileUnit &NewCU) {
1032   DIE &Die = NewCU.getUnitDie();
1033   StringRef FN = DIUnit->getFilename();
1034 
1035   StringRef Producer = DIUnit->getProducer();
1036   StringRef Flags = DIUnit->getFlags();
1037   if (!Flags.empty() && !useAppleExtensionAttributes()) {
1038     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1039     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1040   } else
1041     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1042 
1043   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1044                 DIUnit->getSourceLanguage());
1045   NewCU.addString(Die, dwarf::DW_AT_name, FN);
1046   StringRef SysRoot = DIUnit->getSysRoot();
1047   if (!SysRoot.empty())
1048     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1049   StringRef SDK = DIUnit->getSDK();
1050   if (!SDK.empty())
1051     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1052 
1053   // Add DW_str_offsets_base to the unit DIE, except for split units.
1054   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1055     NewCU.addStringOffsetsStart();
1056 
1057   if (!useSplitDwarf()) {
1058     NewCU.initStmtList();
1059 
1060     // If we're using split dwarf the compilation dir is going to be in the
1061     // skeleton CU and so we don't need to duplicate it here.
1062     if (!CompilationDir.empty())
1063       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1064     addGnuPubAttributes(NewCU, Die);
1065   }
1066 
1067   if (useAppleExtensionAttributes()) {
1068     if (DIUnit->isOptimized())
1069       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1070 
1071     StringRef Flags = DIUnit->getFlags();
1072     if (!Flags.empty())
1073       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1074 
1075     if (unsigned RVer = DIUnit->getRuntimeVersion())
1076       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1077                     dwarf::DW_FORM_data1, RVer);
1078   }
1079 
1080   if (DIUnit->getDWOId()) {
1081     // This CU is either a clang module DWO or a skeleton CU.
1082     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1083                   DIUnit->getDWOId());
1084     if (!DIUnit->getSplitDebugFilename().empty()) {
1085       // This is a prefabricated skeleton CU.
1086       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1087                                          ? dwarf::DW_AT_dwo_name
1088                                          : dwarf::DW_AT_GNU_dwo_name;
1089       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1090     }
1091   }
1092 }
1093 // Create new DwarfCompileUnit for the given metadata node with tag
1094 // DW_TAG_compile_unit.
1095 DwarfCompileUnit &
1096 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1097   if (auto *CU = CUMap.lookup(DIUnit))
1098     return *CU;
1099 
1100   CompilationDir = DIUnit->getDirectory();
1101 
1102   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1103       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1104   DwarfCompileUnit &NewCU = *OwnedUnit;
1105   InfoHolder.addUnit(std::move(OwnedUnit));
1106 
1107   for (auto *IE : DIUnit->getImportedEntities())
1108     NewCU.addImportedEntity(IE);
1109 
1110   // LTO with assembly output shares a single line table amongst multiple CUs.
1111   // To avoid the compilation directory being ambiguous, let the line table
1112   // explicitly describe the directory of all files, never relying on the
1113   // compilation directory.
1114   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1115     Asm->OutStreamer->emitDwarfFile0Directive(
1116         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1117         DIUnit->getSource(), NewCU.getUniqueID());
1118 
1119   if (useSplitDwarf()) {
1120     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1121     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1122   } else {
1123     finishUnitAttributes(DIUnit, NewCU);
1124     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1125   }
1126 
1127   CUMap.insert({DIUnit, &NewCU});
1128   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1129   return NewCU;
1130 }
1131 
1132 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1133                                                   const DIImportedEntity *N) {
1134   if (isa<DILocalScope>(N->getScope()))
1135     return;
1136   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1137     D->addChild(TheCU.constructImportedEntityDIE(N));
1138 }
1139 
1140 /// Sort and unique GVEs by comparing their fragment offset.
1141 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1142 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1143   llvm::sort(
1144       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1145         // Sort order: first null exprs, then exprs without fragment
1146         // info, then sort by fragment offset in bits.
1147         // FIXME: Come up with a more comprehensive comparator so
1148         // the sorting isn't non-deterministic, and so the following
1149         // std::unique call works correctly.
1150         if (!A.Expr || !B.Expr)
1151           return !!B.Expr;
1152         auto FragmentA = A.Expr->getFragmentInfo();
1153         auto FragmentB = B.Expr->getFragmentInfo();
1154         if (!FragmentA || !FragmentB)
1155           return !!FragmentB;
1156         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1157       });
1158   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1159                          [](DwarfCompileUnit::GlobalExpr A,
1160                             DwarfCompileUnit::GlobalExpr B) {
1161                            return A.Expr == B.Expr;
1162                          }),
1163              GVEs.end());
1164   return GVEs;
1165 }
1166 
1167 // Emit all Dwarf sections that should come prior to the content. Create
1168 // global DIEs and emit initial debug info sections. This is invoked by
1169 // the target AsmPrinter.
1170 void DwarfDebug::beginModule(Module *M) {
1171   DebugHandlerBase::beginModule(M);
1172 
1173   if (!Asm || !MMI->hasDebugInfo())
1174     return;
1175 
1176   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1177                                        M->debug_compile_units_end());
1178   assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1179   assert(MMI->hasDebugInfo() &&
1180          "DebugInfoAvailabilty unexpectedly not initialized");
1181   SingleCU = NumDebugCUs == 1;
1182   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1183       GVMap;
1184   for (const GlobalVariable &Global : M->globals()) {
1185     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1186     Global.getDebugInfo(GVs);
1187     for (auto *GVE : GVs)
1188       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1189   }
1190 
1191   // Create the symbol that designates the start of the unit's contribution
1192   // to the string offsets table. In a split DWARF scenario, only the skeleton
1193   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1194   if (useSegmentedStringOffsetsTable())
1195     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1196         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1197 
1198 
1199   // Create the symbols that designates the start of the DWARF v5 range list
1200   // and locations list tables. They are located past the table headers.
1201   if (getDwarfVersion() >= 5) {
1202     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1203     Holder.setRnglistsTableBaseSym(
1204         Asm->createTempSymbol("rnglists_table_base"));
1205 
1206     if (useSplitDwarf())
1207       InfoHolder.setRnglistsTableBaseSym(
1208           Asm->createTempSymbol("rnglists_dwo_table_base"));
1209   }
1210 
1211   // Create the symbol that points to the first entry following the debug
1212   // address table (.debug_addr) header.
1213   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1214   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1215 
1216   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1217     // FIXME: Move local imported entities into a list attached to the
1218     // subprogram, then this search won't be needed and a
1219     // getImportedEntities().empty() test should go below with the rest.
1220     bool HasNonLocalImportedEntities = llvm::any_of(
1221         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1222           return !isa<DILocalScope>(IE->getScope());
1223         });
1224 
1225     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1226         CUNode->getRetainedTypes().empty() &&
1227         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1228       continue;
1229 
1230     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1231 
1232     // Global Variables.
1233     for (auto *GVE : CUNode->getGlobalVariables()) {
1234       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1235       // already know about the variable and it isn't adding a constant
1236       // expression.
1237       auto &GVMapEntry = GVMap[GVE->getVariable()];
1238       auto *Expr = GVE->getExpression();
1239       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1240         GVMapEntry.push_back({nullptr, Expr});
1241     }
1242 
1243     DenseSet<DIGlobalVariable *> Processed;
1244     for (auto *GVE : CUNode->getGlobalVariables()) {
1245       DIGlobalVariable *GV = GVE->getVariable();
1246       if (Processed.insert(GV).second)
1247         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1248     }
1249 
1250     for (auto *Ty : CUNode->getEnumTypes())
1251       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1252 
1253     for (auto *Ty : CUNode->getRetainedTypes()) {
1254       // The retained types array by design contains pointers to
1255       // MDNodes rather than DIRefs. Unique them here.
1256       if (DIType *RT = dyn_cast<DIType>(Ty))
1257         // There is no point in force-emitting a forward declaration.
1258         CU.getOrCreateTypeDIE(RT);
1259     }
1260     // Emit imported_modules last so that the relevant context is already
1261     // available.
1262     for (auto *IE : CUNode->getImportedEntities())
1263       constructAndAddImportedEntityDIE(CU, IE);
1264   }
1265 }
1266 
1267 void DwarfDebug::finishEntityDefinitions() {
1268   for (const auto &Entity : ConcreteEntities) {
1269     DIE *Die = Entity->getDIE();
1270     assert(Die);
1271     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1272     // in the ConcreteEntities list, rather than looking it up again here.
1273     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1274     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1275     assert(Unit);
1276     Unit->finishEntityDefinition(Entity.get());
1277   }
1278 }
1279 
1280 void DwarfDebug::finishSubprogramDefinitions() {
1281   for (const DISubprogram *SP : ProcessedSPNodes) {
1282     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1283     forBothCUs(
1284         getOrCreateDwarfCompileUnit(SP->getUnit()),
1285         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1286   }
1287 }
1288 
1289 void DwarfDebug::finalizeModuleInfo() {
1290   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1291 
1292   finishSubprogramDefinitions();
1293 
1294   finishEntityDefinitions();
1295 
1296   // Include the DWO file name in the hash if there's more than one CU.
1297   // This handles ThinLTO's situation where imported CUs may very easily be
1298   // duplicate with the same CU partially imported into another ThinLTO unit.
1299   StringRef DWOName;
1300   if (CUMap.size() > 1)
1301     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1302 
1303   // Handle anything that needs to be done on a per-unit basis after
1304   // all other generation.
1305   for (const auto &P : CUMap) {
1306     auto &TheCU = *P.second;
1307     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1308       continue;
1309     // Emit DW_AT_containing_type attribute to connect types with their
1310     // vtable holding type.
1311     TheCU.constructContainingTypeDIEs();
1312 
1313     // Add CU specific attributes if we need to add any.
1314     // If we're splitting the dwarf out now that we've got the entire
1315     // CU then add the dwo id to it.
1316     auto *SkCU = TheCU.getSkeleton();
1317 
1318     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1319 
1320     if (HasSplitUnit) {
1321       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1322                                          ? dwarf::DW_AT_dwo_name
1323                                          : dwarf::DW_AT_GNU_dwo_name;
1324       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1325       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1326                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1327       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1328                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1329       // Emit a unique identifier for this CU.
1330       uint64_t ID =
1331           DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1332       if (getDwarfVersion() >= 5) {
1333         TheCU.setDWOId(ID);
1334         SkCU->setDWOId(ID);
1335       } else {
1336         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1337                       dwarf::DW_FORM_data8, ID);
1338         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1339                       dwarf::DW_FORM_data8, ID);
1340       }
1341 
1342       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1343         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1344         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1345                               Sym, Sym);
1346       }
1347     } else if (SkCU) {
1348       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1349     }
1350 
1351     // If we have code split among multiple sections or non-contiguous
1352     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1353     // remain in the .o file, otherwise add a DW_AT_low_pc.
1354     // FIXME: We should use ranges allow reordering of code ala
1355     // .subsections_via_symbols in mach-o. This would mean turning on
1356     // ranges for all subprogram DIEs for mach-o.
1357     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1358 
1359     if (unsigned NumRanges = TheCU.getRanges().size()) {
1360       if (NumRanges > 1 && useRangesSection())
1361         // A DW_AT_low_pc attribute may also be specified in combination with
1362         // DW_AT_ranges to specify the default base address for use in
1363         // location lists (see Section 2.6.2) and range lists (see Section
1364         // 2.17.3).
1365         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1366       else
1367         U.setBaseAddress(TheCU.getRanges().front().Begin);
1368       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1369     }
1370 
1371     // We don't keep track of which addresses are used in which CU so this
1372     // is a bit pessimistic under LTO.
1373     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1374       U.addAddrTableBase();
1375 
1376     if (getDwarfVersion() >= 5) {
1377       if (U.hasRangeLists())
1378         U.addRnglistsBase();
1379 
1380       if (!DebugLocs.getLists().empty()) {
1381         if (!useSplitDwarf())
1382           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1383                             DebugLocs.getSym(),
1384                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1385       }
1386     }
1387 
1388     auto *CUNode = cast<DICompileUnit>(P.first);
1389     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1390     // attribute.
1391     if (CUNode->getMacros()) {
1392       if (UseDebugMacroSection) {
1393         if (useSplitDwarf())
1394           TheCU.addSectionDelta(
1395               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1396               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1397         else {
1398           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1399                                             ? dwarf::DW_AT_macros
1400                                             : dwarf::DW_AT_GNU_macros;
1401           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1402                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1403         }
1404       } else {
1405         if (useSplitDwarf())
1406           TheCU.addSectionDelta(
1407               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1408               U.getMacroLabelBegin(),
1409               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1410         else
1411           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1412                             U.getMacroLabelBegin(),
1413                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1414       }
1415     }
1416     }
1417 
1418   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1419   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1420     if (CUNode->getDWOId())
1421       getOrCreateDwarfCompileUnit(CUNode);
1422 
1423   // Compute DIE offsets and sizes.
1424   InfoHolder.computeSizeAndOffsets();
1425   if (useSplitDwarf())
1426     SkeletonHolder.computeSizeAndOffsets();
1427 }
1428 
1429 // Emit all Dwarf sections that should come after the content.
1430 void DwarfDebug::endModule() {
1431   // Terminate the pending line table.
1432   if (PrevCU)
1433     terminateLineTable(PrevCU);
1434   PrevCU = nullptr;
1435   assert(CurFn == nullptr);
1436   assert(CurMI == nullptr);
1437 
1438   for (const auto &P : CUMap) {
1439     auto &CU = *P.second;
1440     CU.createBaseTypeDIEs();
1441   }
1442 
1443   // If we aren't actually generating debug info (check beginModule -
1444   // conditionalized on the presence of the llvm.dbg.cu metadata node)
1445   if (!Asm || !MMI->hasDebugInfo())
1446     return;
1447 
1448   // Finalize the debug info for the module.
1449   finalizeModuleInfo();
1450 
1451   if (useSplitDwarf())
1452     // Emit debug_loc.dwo/debug_loclists.dwo section.
1453     emitDebugLocDWO();
1454   else
1455     // Emit debug_loc/debug_loclists section.
1456     emitDebugLoc();
1457 
1458   // Corresponding abbreviations into a abbrev section.
1459   emitAbbreviations();
1460 
1461   // Emit all the DIEs into a debug info section.
1462   emitDebugInfo();
1463 
1464   // Emit info into a debug aranges section.
1465   if (GenerateARangeSection)
1466     emitDebugARanges();
1467 
1468   // Emit info into a debug ranges section.
1469   emitDebugRanges();
1470 
1471   if (useSplitDwarf())
1472   // Emit info into a debug macinfo.dwo section.
1473     emitDebugMacinfoDWO();
1474   else
1475     // Emit info into a debug macinfo/macro section.
1476     emitDebugMacinfo();
1477 
1478   emitDebugStr();
1479 
1480   if (useSplitDwarf()) {
1481     emitDebugStrDWO();
1482     emitDebugInfoDWO();
1483     emitDebugAbbrevDWO();
1484     emitDebugLineDWO();
1485     emitDebugRangesDWO();
1486   }
1487 
1488   emitDebugAddr();
1489 
1490   // Emit info into the dwarf accelerator table sections.
1491   switch (getAccelTableKind()) {
1492   case AccelTableKind::Apple:
1493     emitAccelNames();
1494     emitAccelObjC();
1495     emitAccelNamespaces();
1496     emitAccelTypes();
1497     break;
1498   case AccelTableKind::Dwarf:
1499     emitAccelDebugNames();
1500     break;
1501   case AccelTableKind::None:
1502     break;
1503   case AccelTableKind::Default:
1504     llvm_unreachable("Default should have already been resolved.");
1505   }
1506 
1507   // Emit the pubnames and pubtypes sections if requested.
1508   emitDebugPubSections();
1509 
1510   // clean up.
1511   // FIXME: AbstractVariables.clear();
1512 }
1513 
1514 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1515                                                const DINode *Node,
1516                                                const MDNode *ScopeNode) {
1517   if (CU.getExistingAbstractEntity(Node))
1518     return;
1519 
1520   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1521                                        cast<DILocalScope>(ScopeNode)));
1522 }
1523 
1524 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1525     const DINode *Node, const MDNode *ScopeNode) {
1526   if (CU.getExistingAbstractEntity(Node))
1527     return;
1528 
1529   if (LexicalScope *Scope =
1530           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1531     CU.createAbstractEntity(Node, Scope);
1532 }
1533 
1534 // Collect variable information from side table maintained by MF.
1535 void DwarfDebug::collectVariableInfoFromMFTable(
1536     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1537   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1538   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1539   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1540     if (!VI.Var)
1541       continue;
1542     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1543            "Expected inlined-at fields to agree");
1544 
1545     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1546     Processed.insert(Var);
1547     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1548 
1549     // If variable scope is not found then skip this variable.
1550     if (!Scope) {
1551       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1552                         << ", no variable scope found\n");
1553       continue;
1554     }
1555 
1556     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1557     auto RegVar = std::make_unique<DbgVariable>(
1558                     cast<DILocalVariable>(Var.first), Var.second);
1559     RegVar->initializeMMI(VI.Expr, VI.Slot);
1560     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1561                       << "\n");
1562 
1563     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1564       DbgVar->addMMIEntry(*RegVar);
1565     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1566       MFVars.insert({Var, RegVar.get()});
1567       ConcreteEntities.push_back(std::move(RegVar));
1568     }
1569   }
1570 }
1571 
1572 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1573 /// enclosing lexical scope. The check ensures there are no other instructions
1574 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1575 /// either open or otherwise rolls off the end of the scope.
1576 static bool validThroughout(LexicalScopes &LScopes,
1577                             const MachineInstr *DbgValue,
1578                             const MachineInstr *RangeEnd,
1579                             const InstructionOrdering &Ordering) {
1580   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1581   auto MBB = DbgValue->getParent();
1582   auto DL = DbgValue->getDebugLoc();
1583   auto *LScope = LScopes.findLexicalScope(DL);
1584   // Scope doesn't exist; this is a dead DBG_VALUE.
1585   if (!LScope)
1586     return false;
1587   auto &LSRange = LScope->getRanges();
1588   if (LSRange.size() == 0)
1589     return false;
1590 
1591   const MachineInstr *LScopeBegin = LSRange.front().first;
1592   // If the scope starts before the DBG_VALUE then we may have a negative
1593   // result. Otherwise the location is live coming into the scope and we
1594   // can skip the following checks.
1595   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1596     // Exit if the lexical scope begins outside of the current block.
1597     if (LScopeBegin->getParent() != MBB)
1598       return false;
1599 
1600     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1601     for (++Pred; Pred != MBB->rend(); ++Pred) {
1602       if (Pred->getFlag(MachineInstr::FrameSetup))
1603         break;
1604       auto PredDL = Pred->getDebugLoc();
1605       if (!PredDL || Pred->isMetaInstruction())
1606         continue;
1607       // Check whether the instruction preceding the DBG_VALUE is in the same
1608       // (sub)scope as the DBG_VALUE.
1609       if (DL->getScope() == PredDL->getScope())
1610         return false;
1611       auto *PredScope = LScopes.findLexicalScope(PredDL);
1612       if (!PredScope || LScope->dominates(PredScope))
1613         return false;
1614     }
1615   }
1616 
1617   // If the range of the DBG_VALUE is open-ended, report success.
1618   if (!RangeEnd)
1619     return true;
1620 
1621   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1622   // throughout the function. This is a hack, presumably for DWARF v2 and not
1623   // necessarily correct. It would be much better to use a dbg.declare instead
1624   // if we know the constant is live throughout the scope.
1625   if (MBB->pred_empty() &&
1626       all_of(DbgValue->debug_operands(),
1627              [](const MachineOperand &Op) { return Op.isImm(); }))
1628     return true;
1629 
1630   // Test if the location terminates before the end of the scope.
1631   const MachineInstr *LScopeEnd = LSRange.back().second;
1632   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1633     return false;
1634 
1635   // There's a single location which starts at the scope start, and ends at or
1636   // after the scope end.
1637   return true;
1638 }
1639 
1640 /// Build the location list for all DBG_VALUEs in the function that
1641 /// describe the same variable. The resulting DebugLocEntries will have
1642 /// strict monotonically increasing begin addresses and will never
1643 /// overlap. If the resulting list has only one entry that is valid
1644 /// throughout variable's scope return true.
1645 //
1646 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1647 // different kinds of history map entries. One thing to be aware of is that if
1648 // a debug value is ended by another entry (rather than being valid until the
1649 // end of the function), that entry's instruction may or may not be included in
1650 // the range, depending on if the entry is a clobbering entry (it has an
1651 // instruction that clobbers one or more preceding locations), or if it is an
1652 // (overlapping) debug value entry. This distinction can be seen in the example
1653 // below. The first debug value is ended by the clobbering entry 2, and the
1654 // second and third debug values are ended by the overlapping debug value entry
1655 // 4.
1656 //
1657 // Input:
1658 //
1659 //   History map entries [type, end index, mi]
1660 //
1661 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1662 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1663 // 2 | |    [Clobber, $reg0 = [...], -, -]
1664 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1665 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1666 //
1667 // Output [start, end) [Value...]:
1668 //
1669 // [0-1)    [(reg0, fragment 0, 32)]
1670 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1671 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1672 // [4-)     [(@g, fragment 0, 96)]
1673 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1674                                    const DbgValueHistoryMap::Entries &Entries) {
1675   using OpenRange =
1676       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1677   SmallVector<OpenRange, 4> OpenRanges;
1678   bool isSafeForSingleLocation = true;
1679   const MachineInstr *StartDebugMI = nullptr;
1680   const MachineInstr *EndMI = nullptr;
1681 
1682   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1683     const MachineInstr *Instr = EI->getInstr();
1684 
1685     // Remove all values that are no longer live.
1686     size_t Index = std::distance(EB, EI);
1687     erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1688 
1689     // If we are dealing with a clobbering entry, this iteration will result in
1690     // a location list entry starting after the clobbering instruction.
1691     const MCSymbol *StartLabel =
1692         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1693     assert(StartLabel &&
1694            "Forgot label before/after instruction starting a range!");
1695 
1696     const MCSymbol *EndLabel;
1697     if (std::next(EI) == Entries.end()) {
1698       const MachineBasicBlock &EndMBB = Asm->MF->back();
1699       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1700       if (EI->isClobber())
1701         EndMI = EI->getInstr();
1702     }
1703     else if (std::next(EI)->isClobber())
1704       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1705     else
1706       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1707     assert(EndLabel && "Forgot label after instruction ending a range!");
1708 
1709     if (EI->isDbgValue())
1710       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1711 
1712     // If this history map entry has a debug value, add that to the list of
1713     // open ranges and check if its location is valid for a single value
1714     // location.
1715     if (EI->isDbgValue()) {
1716       // Do not add undef debug values, as they are redundant information in
1717       // the location list entries. An undef debug results in an empty location
1718       // description. If there are any non-undef fragments then padding pieces
1719       // with empty location descriptions will automatically be inserted, and if
1720       // all fragments are undef then the whole location list entry is
1721       // redundant.
1722       if (!Instr->isUndefDebugValue()) {
1723         auto Value = getDebugLocValue(Instr);
1724         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1725 
1726         // TODO: Add support for single value fragment locations.
1727         if (Instr->getDebugExpression()->isFragment())
1728           isSafeForSingleLocation = false;
1729 
1730         if (!StartDebugMI)
1731           StartDebugMI = Instr;
1732       } else {
1733         isSafeForSingleLocation = false;
1734       }
1735     }
1736 
1737     // Location list entries with empty location descriptions are redundant
1738     // information in DWARF, so do not emit those.
1739     if (OpenRanges.empty())
1740       continue;
1741 
1742     // Omit entries with empty ranges as they do not have any effect in DWARF.
1743     if (StartLabel == EndLabel) {
1744       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1745       continue;
1746     }
1747 
1748     SmallVector<DbgValueLoc, 4> Values;
1749     for (auto &R : OpenRanges)
1750       Values.push_back(R.second);
1751 
1752     // With Basic block sections, it is posssible that the StartLabel and the
1753     // Instr are not in the same section.  This happens when the StartLabel is
1754     // the function begin label and the dbg value appears in a basic block
1755     // that is not the entry.  In this case, the range needs to be split to
1756     // span each individual section in the range from StartLabel to EndLabel.
1757     if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() &&
1758         !Instr->getParent()->sameSection(&Asm->MF->front())) {
1759       const MCSymbol *BeginSectionLabel = StartLabel;
1760 
1761       for (const MachineBasicBlock &MBB : *Asm->MF) {
1762         if (MBB.isBeginSection() && &MBB != &Asm->MF->front())
1763           BeginSectionLabel = MBB.getSymbol();
1764 
1765         if (MBB.sameSection(Instr->getParent())) {
1766           DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values);
1767           break;
1768         }
1769         if (MBB.isEndSection())
1770           DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values);
1771       }
1772     } else {
1773       DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1774     }
1775 
1776     // Attempt to coalesce the ranges of two otherwise identical
1777     // DebugLocEntries.
1778     auto CurEntry = DebugLoc.rbegin();
1779     LLVM_DEBUG({
1780       dbgs() << CurEntry->getValues().size() << " Values:\n";
1781       for (auto &Value : CurEntry->getValues())
1782         Value.dump();
1783       dbgs() << "-----\n";
1784     });
1785 
1786     auto PrevEntry = std::next(CurEntry);
1787     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1788       DebugLoc.pop_back();
1789   }
1790 
1791   if (!isSafeForSingleLocation ||
1792       !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()))
1793     return false;
1794 
1795   if (DebugLoc.size() == 1)
1796     return true;
1797 
1798   if (!Asm->MF->hasBBSections())
1799     return false;
1800 
1801   // Check here to see if loclist can be merged into a single range. If not,
1802   // we must keep the split loclists per section.  This does exactly what
1803   // MergeRanges does without sections.  We don't actually merge the ranges
1804   // as the split ranges must be kept intact if this cannot be collapsed
1805   // into a single range.
1806   const MachineBasicBlock *RangeMBB = nullptr;
1807   if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin())
1808     RangeMBB = &Asm->MF->front();
1809   else
1810     RangeMBB = Entries.begin()->getInstr()->getParent();
1811   auto *CurEntry = DebugLoc.begin();
1812   auto *NextEntry = std::next(CurEntry);
1813   while (NextEntry != DebugLoc.end()) {
1814     // Get the last machine basic block of this section.
1815     while (!RangeMBB->isEndSection())
1816       RangeMBB = RangeMBB->getNextNode();
1817     if (!RangeMBB->getNextNode())
1818       return false;
1819     // CurEntry should end the current section and NextEntry should start
1820     // the next section and the Values must match for these two ranges to be
1821     // merged.
1822     if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() ||
1823         NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() ||
1824         CurEntry->getValues() != NextEntry->getValues())
1825       return false;
1826     RangeMBB = RangeMBB->getNextNode();
1827     CurEntry = NextEntry;
1828     NextEntry = std::next(CurEntry);
1829   }
1830   return true;
1831 }
1832 
1833 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1834                                             LexicalScope &Scope,
1835                                             const DINode *Node,
1836                                             const DILocation *Location,
1837                                             const MCSymbol *Sym) {
1838   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1839   if (isa<const DILocalVariable>(Node)) {
1840     ConcreteEntities.push_back(
1841         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1842                                        Location));
1843     InfoHolder.addScopeVariable(&Scope,
1844         cast<DbgVariable>(ConcreteEntities.back().get()));
1845   } else if (isa<const DILabel>(Node)) {
1846     ConcreteEntities.push_back(
1847         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1848                                     Location, Sym));
1849     InfoHolder.addScopeLabel(&Scope,
1850         cast<DbgLabel>(ConcreteEntities.back().get()));
1851   }
1852   return ConcreteEntities.back().get();
1853 }
1854 
1855 // Find variables for each lexical scope.
1856 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1857                                    const DISubprogram *SP,
1858                                    DenseSet<InlinedEntity> &Processed) {
1859   // Grab the variable info that was squirreled away in the MMI side-table.
1860   collectVariableInfoFromMFTable(TheCU, Processed);
1861 
1862   for (const auto &I : DbgValues) {
1863     InlinedEntity IV = I.first;
1864     if (Processed.count(IV))
1865       continue;
1866 
1867     // Instruction ranges, specifying where IV is accessible.
1868     const auto &HistoryMapEntries = I.second;
1869 
1870     // Try to find any non-empty variable location. Do not create a concrete
1871     // entity if there are no locations.
1872     if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries))
1873       continue;
1874 
1875     LexicalScope *Scope = nullptr;
1876     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1877     if (const DILocation *IA = IV.second)
1878       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1879     else
1880       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1881     // If variable scope is not found then skip this variable.
1882     if (!Scope)
1883       continue;
1884 
1885     Processed.insert(IV);
1886     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1887                                             *Scope, LocalVar, IV.second));
1888 
1889     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1890     assert(MInsn->isDebugValue() && "History must begin with debug value");
1891 
1892     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1893     // If the history map contains a single debug value, there may be an
1894     // additional entry which clobbers the debug value.
1895     size_t HistSize = HistoryMapEntries.size();
1896     bool SingleValueWithClobber =
1897         HistSize == 2 && HistoryMapEntries[1].isClobber();
1898     if (HistSize == 1 || SingleValueWithClobber) {
1899       const auto *End =
1900           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1901       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1902         RegVar->initializeDbgValue(MInsn);
1903         continue;
1904       }
1905     }
1906 
1907     // Do not emit location lists if .debug_loc secton is disabled.
1908     if (!useLocSection())
1909       continue;
1910 
1911     // Handle multiple DBG_VALUE instructions describing one variable.
1912     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1913 
1914     // Build the location list for this variable.
1915     SmallVector<DebugLocEntry, 8> Entries;
1916     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1917 
1918     // Check whether buildLocationList managed to merge all locations to one
1919     // that is valid throughout the variable's scope. If so, produce single
1920     // value location.
1921     if (isValidSingleLocation) {
1922       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1923       continue;
1924     }
1925 
1926     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1927     // unique identifiers, so don't bother resolving the type with the
1928     // identifier map.
1929     const DIBasicType *BT = dyn_cast<DIBasicType>(
1930         static_cast<const Metadata *>(LocalVar->getType()));
1931 
1932     // Finalize the entry by lowering it into a DWARF bytestream.
1933     for (auto &Entry : Entries)
1934       Entry.finalize(*Asm, List, BT, TheCU);
1935   }
1936 
1937   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1938   // DWARF-related DbgLabel.
1939   for (const auto &I : DbgLabels) {
1940     InlinedEntity IL = I.first;
1941     const MachineInstr *MI = I.second;
1942     if (MI == nullptr)
1943       continue;
1944 
1945     LexicalScope *Scope = nullptr;
1946     const DILabel *Label = cast<DILabel>(IL.first);
1947     // The scope could have an extra lexical block file.
1948     const DILocalScope *LocalScope =
1949         Label->getScope()->getNonLexicalBlockFileScope();
1950     // Get inlined DILocation if it is inlined label.
1951     if (const DILocation *IA = IL.second)
1952       Scope = LScopes.findInlinedScope(LocalScope, IA);
1953     else
1954       Scope = LScopes.findLexicalScope(LocalScope);
1955     // If label scope is not found then skip this label.
1956     if (!Scope)
1957       continue;
1958 
1959     Processed.insert(IL);
1960     /// At this point, the temporary label is created.
1961     /// Save the temporary label to DbgLabel entity to get the
1962     /// actually address when generating Dwarf DIE.
1963     MCSymbol *Sym = getLabelBeforeInsn(MI);
1964     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1965   }
1966 
1967   // Collect info for variables/labels that were optimized out.
1968   for (const DINode *DN : SP->getRetainedNodes()) {
1969     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1970       continue;
1971     LexicalScope *Scope = nullptr;
1972     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1973       Scope = LScopes.findLexicalScope(DV->getScope());
1974     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1975       Scope = LScopes.findLexicalScope(DL->getScope());
1976     }
1977 
1978     if (Scope)
1979       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1980   }
1981 }
1982 
1983 // Process beginning of an instruction.
1984 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1985   const MachineFunction &MF = *MI->getMF();
1986   const auto *SP = MF.getFunction().getSubprogram();
1987   bool NoDebug =
1988       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1989 
1990   // Delay slot support check.
1991   auto delaySlotSupported = [](const MachineInstr &MI) {
1992     if (!MI.isBundledWithSucc())
1993       return false;
1994     auto Suc = std::next(MI.getIterator());
1995     (void)Suc;
1996     // Ensure that delay slot instruction is successor of the call instruction.
1997     // Ex. CALL_INSTRUCTION {
1998     //        DELAY_SLOT_INSTRUCTION }
1999     assert(Suc->isBundledWithPred() &&
2000            "Call bundle instructions are out of order");
2001     return true;
2002   };
2003 
2004   // When describing calls, we need a label for the call instruction.
2005   if (!NoDebug && SP->areAllCallsDescribed() &&
2006       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
2007       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
2008     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
2009     bool IsTail = TII->isTailCall(*MI);
2010     // For tail calls, we need the address of the branch instruction for
2011     // DW_AT_call_pc.
2012     if (IsTail)
2013       requestLabelBeforeInsn(MI);
2014     // For non-tail calls, we need the return address for the call for
2015     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
2016     // tail calls as well.
2017     requestLabelAfterInsn(MI);
2018   }
2019 
2020   DebugHandlerBase::beginInstruction(MI);
2021   if (!CurMI)
2022     return;
2023 
2024   if (NoDebug)
2025     return;
2026 
2027   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
2028   // If the instruction is part of the function frame setup code, do not emit
2029   // any line record, as there is no correspondence with any user code.
2030   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
2031     return;
2032   const DebugLoc &DL = MI->getDebugLoc();
2033   unsigned Flags = 0;
2034 
2035   if (MI->getFlag(MachineInstr::FrameDestroy) && DL) {
2036     const MachineBasicBlock *MBB = MI->getParent();
2037     if (MBB && (MBB != EpilogBeginBlock)) {
2038       // First time FrameDestroy has been seen in this basic block
2039       EpilogBeginBlock = MBB;
2040       Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
2041     }
2042   }
2043 
2044   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
2045   // the last line number actually emitted, to see if it was line 0.
2046   unsigned LastAsmLine =
2047       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
2048 
2049   if (DL == PrevInstLoc) {
2050     // If we have an ongoing unspecified location, nothing to do here.
2051     if (!DL)
2052       return;
2053     // We have an explicit location, same as the previous location.
2054     // But we might be coming back to it after a line 0 record.
2055     if ((LastAsmLine == 0 && DL.getLine() != 0) || Flags) {
2056       // Reinstate the source location but not marked as a statement.
2057       const MDNode *Scope = DL.getScope();
2058       recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2059     }
2060     return;
2061   }
2062 
2063   if (!DL) {
2064     // We have an unspecified location, which might want to be line 0.
2065     // If we have already emitted a line-0 record, don't repeat it.
2066     if (LastAsmLine == 0)
2067       return;
2068     // If user said Don't Do That, don't do that.
2069     if (UnknownLocations == Disable)
2070       return;
2071     // See if we have a reason to emit a line-0 record now.
2072     // Reasons to emit a line-0 record include:
2073     // - User asked for it (UnknownLocations).
2074     // - Instruction has a label, so it's referenced from somewhere else,
2075     //   possibly debug information; we want it to have a source location.
2076     // - Instruction is at the top of a block; we don't want to inherit the
2077     //   location from the physically previous (maybe unrelated) block.
2078     if (UnknownLocations == Enable || PrevLabel ||
2079         (PrevInstBB && PrevInstBB != MI->getParent())) {
2080       // Preserve the file and column numbers, if we can, to save space in
2081       // the encoded line table.
2082       // Do not update PrevInstLoc, it remembers the last non-0 line.
2083       const MDNode *Scope = nullptr;
2084       unsigned Column = 0;
2085       if (PrevInstLoc) {
2086         Scope = PrevInstLoc.getScope();
2087         Column = PrevInstLoc.getCol();
2088       }
2089       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
2090     }
2091     return;
2092   }
2093 
2094   // We have an explicit location, different from the previous location.
2095   // Don't repeat a line-0 record, but otherwise emit the new location.
2096   // (The new location might be an explicit line 0, which we do emit.)
2097   if (DL.getLine() == 0 && LastAsmLine == 0)
2098     return;
2099   if (DL == PrologEndLoc) {
2100     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2101     PrologEndLoc = DebugLoc();
2102   }
2103   // If the line changed, we call that a new statement; unless we went to
2104   // line 0 and came back, in which case it is not a new statement.
2105   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2106   if (DL.getLine() && DL.getLine() != OldLine)
2107     Flags |= DWARF2_FLAG_IS_STMT;
2108 
2109   const MDNode *Scope = DL.getScope();
2110   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2111 
2112   // If we're not at line 0, remember this location.
2113   if (DL.getLine())
2114     PrevInstLoc = DL;
2115 }
2116 
2117 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2118   // First known non-DBG_VALUE and non-frame setup location marks
2119   // the beginning of the function body.
2120   DebugLoc LineZeroLoc;
2121   for (const auto &MBB : *MF) {
2122     for (const auto &MI : MBB) {
2123       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2124           MI.getDebugLoc()) {
2125         // Scan forward to try to find a non-zero line number. The prologue_end
2126         // marks the first breakpoint in the function after the frame setup, and
2127         // a compiler-generated line 0 location is not a meaningful breakpoint.
2128         // If none is found, return the first location after the frame setup.
2129         if (MI.getDebugLoc().getLine())
2130           return MI.getDebugLoc();
2131         LineZeroLoc = MI.getDebugLoc();
2132       }
2133     }
2134   }
2135   return LineZeroLoc;
2136 }
2137 
2138 /// Register a source line with debug info. Returns the  unique label that was
2139 /// emitted and which provides correspondence to the source line list.
2140 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2141                              const MDNode *S, unsigned Flags, unsigned CUID,
2142                              uint16_t DwarfVersion,
2143                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2144   StringRef Fn;
2145   unsigned FileNo = 1;
2146   unsigned Discriminator = 0;
2147   if (auto *Scope = cast_or_null<DIScope>(S)) {
2148     Fn = Scope->getFilename();
2149     if (Line != 0 && DwarfVersion >= 4)
2150       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2151         Discriminator = LBF->getDiscriminator();
2152 
2153     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2154                  .getOrCreateSourceID(Scope->getFile());
2155   }
2156   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2157                                          Discriminator, Fn);
2158 }
2159 
2160 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2161                                              unsigned CUID) {
2162   // Get beginning of function.
2163   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2164     // Ensure the compile unit is created if the function is called before
2165     // beginFunction().
2166     (void)getOrCreateDwarfCompileUnit(
2167         MF.getFunction().getSubprogram()->getUnit());
2168     // We'd like to list the prologue as "not statements" but GDB behaves
2169     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2170     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2171     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2172                        CUID, getDwarfVersion(), getUnits());
2173     return PrologEndLoc;
2174   }
2175   return DebugLoc();
2176 }
2177 
2178 // Gather pre-function debug information.  Assumes being called immediately
2179 // after the function entry point has been emitted.
2180 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2181   CurFn = MF;
2182 
2183   auto *SP = MF->getFunction().getSubprogram();
2184   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2185   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2186     return;
2187 
2188   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2189 
2190   Asm->OutStreamer->getContext().setDwarfCompileUnitID(
2191       getDwarfCompileUnitIDForLineTable(CU));
2192 
2193   // Record beginning of function.
2194   PrologEndLoc = emitInitialLocDirective(
2195       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2196 }
2197 
2198 unsigned
2199 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) {
2200   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2201   // belongs to so that we add to the correct per-cu line table in the
2202   // non-asm case.
2203   if (Asm->OutStreamer->hasRawTextSupport())
2204     // Use a single line table if we are generating assembly.
2205     return 0;
2206   else
2207     return CU.getUniqueID();
2208 }
2209 
2210 void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) {
2211   const auto &CURanges = CU->getRanges();
2212   auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable(
2213       getDwarfCompileUnitIDForLineTable(*CU));
2214   // Add the last range label for the given CU.
2215   LineTable.getMCLineSections().addEndEntry(
2216       const_cast<MCSymbol *>(CURanges.back().End));
2217 }
2218 
2219 void DwarfDebug::skippedNonDebugFunction() {
2220   // If we don't have a subprogram for this function then there will be a hole
2221   // in the range information. Keep note of this by setting the previously used
2222   // section to nullptr.
2223   // Terminate the pending line table.
2224   if (PrevCU)
2225     terminateLineTable(PrevCU);
2226   PrevCU = nullptr;
2227   CurFn = nullptr;
2228 }
2229 
2230 // Gather and emit post-function debug information.
2231 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2232   const DISubprogram *SP = MF->getFunction().getSubprogram();
2233 
2234   assert(CurFn == MF &&
2235       "endFunction should be called with the same function as beginFunction");
2236 
2237   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2238   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2239 
2240   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2241   assert(!FnScope || SP == FnScope->getScopeNode());
2242   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2243   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2244     PrevLabel = nullptr;
2245     CurFn = nullptr;
2246     return;
2247   }
2248 
2249   DenseSet<InlinedEntity> Processed;
2250   collectEntityInfo(TheCU, SP, Processed);
2251 
2252   // Add the range of this function to the list of ranges for the CU.
2253   // With basic block sections, add ranges for all basic block sections.
2254   for (const auto &R : Asm->MBBSectionRanges)
2255     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2256 
2257   // Under -gmlt, skip building the subprogram if there are no inlined
2258   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2259   // is still needed as we need its source location.
2260   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2261       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2262       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2263     assert(InfoHolder.getScopeVariables().empty());
2264     PrevLabel = nullptr;
2265     CurFn = nullptr;
2266     return;
2267   }
2268 
2269 #ifndef NDEBUG
2270   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2271 #endif
2272   // Construct abstract scopes.
2273   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2274     const auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2275     for (const DINode *DN : SP->getRetainedNodes()) {
2276       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2277         continue;
2278 
2279       const MDNode *Scope = nullptr;
2280       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2281         Scope = DV->getScope();
2282       else if (auto *DL = dyn_cast<DILabel>(DN))
2283         Scope = DL->getScope();
2284       else
2285         llvm_unreachable("Unexpected DI type!");
2286 
2287       // Collect info for variables/labels that were optimized out.
2288       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2289       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2290              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2291     }
2292     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2293   }
2294 
2295   ProcessedSPNodes.insert(SP);
2296   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2297   if (auto *SkelCU = TheCU.getSkeleton())
2298     if (!LScopes.getAbstractScopesList().empty() &&
2299         TheCU.getCUNode()->getSplitDebugInlining())
2300       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2301 
2302   // Construct call site entries.
2303   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2304 
2305   // Clear debug info
2306   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2307   // DbgVariables except those that are also in AbstractVariables (since they
2308   // can be used cross-function)
2309   InfoHolder.getScopeVariables().clear();
2310   InfoHolder.getScopeLabels().clear();
2311   PrevLabel = nullptr;
2312   CurFn = nullptr;
2313 }
2314 
2315 // Register a source line with debug info. Returns the  unique label that was
2316 // emitted and which provides correspondence to the source line list.
2317 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2318                                   unsigned Flags) {
2319   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2320                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2321                      getDwarfVersion(), getUnits());
2322 }
2323 
2324 //===----------------------------------------------------------------------===//
2325 // Emit Methods
2326 //===----------------------------------------------------------------------===//
2327 
2328 // Emit the debug info section.
2329 void DwarfDebug::emitDebugInfo() {
2330   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2331   Holder.emitUnits(/* UseOffsets */ false);
2332 }
2333 
2334 // Emit the abbreviation section.
2335 void DwarfDebug::emitAbbreviations() {
2336   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2337 
2338   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2339 }
2340 
2341 void DwarfDebug::emitStringOffsetsTableHeader() {
2342   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2343   Holder.getStringPool().emitStringOffsetsTableHeader(
2344       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2345       Holder.getStringOffsetsStartSym());
2346 }
2347 
2348 template <typename AccelTableT>
2349 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2350                            StringRef TableName) {
2351   Asm->OutStreamer->switchSection(Section);
2352 
2353   // Emit the full data.
2354   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2355 }
2356 
2357 void DwarfDebug::emitAccelDebugNames() {
2358   // Don't emit anything if we have no compilation units to index.
2359   if (getUnits().empty())
2360     return;
2361 
2362   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2363 }
2364 
2365 // Emit visible names into a hashed accelerator table section.
2366 void DwarfDebug::emitAccelNames() {
2367   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2368             "Names");
2369 }
2370 
2371 // Emit objective C classes and categories into a hashed accelerator table
2372 // section.
2373 void DwarfDebug::emitAccelObjC() {
2374   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2375             "ObjC");
2376 }
2377 
2378 // Emit namespace dies into a hashed accelerator table.
2379 void DwarfDebug::emitAccelNamespaces() {
2380   emitAccel(AccelNamespace,
2381             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2382             "namespac");
2383 }
2384 
2385 // Emit type dies into a hashed accelerator table.
2386 void DwarfDebug::emitAccelTypes() {
2387   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2388             "types");
2389 }
2390 
2391 // Public name handling.
2392 // The format for the various pubnames:
2393 //
2394 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2395 // for the DIE that is named.
2396 //
2397 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2398 // into the CU and the index value is computed according to the type of value
2399 // for the DIE that is named.
2400 //
2401 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2402 // it's the offset within the debug_info/debug_types dwo section, however, the
2403 // reference in the pubname header doesn't change.
2404 
2405 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2406 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2407                                                         const DIE *Die) {
2408   // Entities that ended up only in a Type Unit reference the CU instead (since
2409   // the pub entry has offsets within the CU there's no real offset that can be
2410   // provided anyway). As it happens all such entities (namespaces and types,
2411   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2412   // not to be true it would be necessary to persist this information from the
2413   // point at which the entry is added to the index data structure - since by
2414   // the time the index is built from that, the original type/namespace DIE in a
2415   // type unit has already been destroyed so it can't be queried for properties
2416   // like tag, etc.
2417   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2418     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2419                                           dwarf::GIEL_EXTERNAL);
2420   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2421 
2422   // We could have a specification DIE that has our most of our knowledge,
2423   // look for that now.
2424   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2425     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2426     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2427       Linkage = dwarf::GIEL_EXTERNAL;
2428   } else if (Die->findAttribute(dwarf::DW_AT_external))
2429     Linkage = dwarf::GIEL_EXTERNAL;
2430 
2431   switch (Die->getTag()) {
2432   case dwarf::DW_TAG_class_type:
2433   case dwarf::DW_TAG_structure_type:
2434   case dwarf::DW_TAG_union_type:
2435   case dwarf::DW_TAG_enumeration_type:
2436     return dwarf::PubIndexEntryDescriptor(
2437         dwarf::GIEK_TYPE,
2438         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2439             ? dwarf::GIEL_EXTERNAL
2440             : dwarf::GIEL_STATIC);
2441   case dwarf::DW_TAG_typedef:
2442   case dwarf::DW_TAG_base_type:
2443   case dwarf::DW_TAG_subrange_type:
2444     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2445   case dwarf::DW_TAG_namespace:
2446     return dwarf::GIEK_TYPE;
2447   case dwarf::DW_TAG_subprogram:
2448     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2449   case dwarf::DW_TAG_variable:
2450     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2451   case dwarf::DW_TAG_enumerator:
2452     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2453                                           dwarf::GIEL_STATIC);
2454   default:
2455     return dwarf::GIEK_NONE;
2456   }
2457 }
2458 
2459 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2460 /// pubtypes sections.
2461 void DwarfDebug::emitDebugPubSections() {
2462   for (const auto &NU : CUMap) {
2463     DwarfCompileUnit *TheU = NU.second;
2464     if (!TheU->hasDwarfPubSections())
2465       continue;
2466 
2467     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2468                     DICompileUnit::DebugNameTableKind::GNU;
2469 
2470     Asm->OutStreamer->switchSection(
2471         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2472                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2473     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2474 
2475     Asm->OutStreamer->switchSection(
2476         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2477                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2478     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2479   }
2480 }
2481 
2482 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2483   if (useSectionsAsReferences())
2484     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2485                          CU.getDebugSectionOffset());
2486   else
2487     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2488 }
2489 
2490 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2491                                      DwarfCompileUnit *TheU,
2492                                      const StringMap<const DIE *> &Globals) {
2493   if (auto *Skeleton = TheU->getSkeleton())
2494     TheU = Skeleton;
2495 
2496   // Emit the header.
2497   MCSymbol *EndLabel = Asm->emitDwarfUnitLength(
2498       "pub" + Name, "Length of Public " + Name + " Info");
2499 
2500   Asm->OutStreamer->AddComment("DWARF Version");
2501   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2502 
2503   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2504   emitSectionReference(*TheU);
2505 
2506   Asm->OutStreamer->AddComment("Compilation Unit Length");
2507   Asm->emitDwarfLengthOrOffset(TheU->getLength());
2508 
2509   // Emit the pubnames for this compilation unit.
2510   for (const auto &GI : Globals) {
2511     const char *Name = GI.getKeyData();
2512     const DIE *Entity = GI.second;
2513 
2514     Asm->OutStreamer->AddComment("DIE offset");
2515     Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2516 
2517     if (GnuStyle) {
2518       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2519       Asm->OutStreamer->AddComment(
2520           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2521           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2522       Asm->emitInt8(Desc.toBits());
2523     }
2524 
2525     Asm->OutStreamer->AddComment("External Name");
2526     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2527   }
2528 
2529   Asm->OutStreamer->AddComment("End Mark");
2530   Asm->emitDwarfLengthOrOffset(0);
2531   Asm->OutStreamer->emitLabel(EndLabel);
2532 }
2533 
2534 /// Emit null-terminated strings into a debug str section.
2535 void DwarfDebug::emitDebugStr() {
2536   MCSection *StringOffsetsSection = nullptr;
2537   if (useSegmentedStringOffsetsTable()) {
2538     emitStringOffsetsTableHeader();
2539     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2540   }
2541   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2542   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2543                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2544 }
2545 
2546 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2547                                    const DebugLocStream::Entry &Entry,
2548                                    const DwarfCompileUnit *CU) {
2549   auto &&Comments = DebugLocs.getComments(Entry);
2550   auto Comment = Comments.begin();
2551   auto End = Comments.end();
2552 
2553   // The expressions are inserted into a byte stream rather early (see
2554   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2555   // need to reference a base_type DIE the offset of that DIE is not yet known.
2556   // To deal with this we instead insert a placeholder early and then extract
2557   // it here and replace it with the real reference.
2558   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2559   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2560                                     DebugLocs.getBytes(Entry).size()),
2561                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2562   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2563 
2564   using Encoding = DWARFExpression::Operation::Encoding;
2565   uint64_t Offset = 0;
2566   for (const auto &Op : Expr) {
2567     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2568            "3 operand ops not yet supported");
2569     Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2570     Offset++;
2571     for (unsigned I = 0; I < 2; ++I) {
2572       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2573         continue;
2574       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2575         unsigned Length =
2576           Streamer.emitDIERef(*CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die);
2577         // Make sure comments stay aligned.
2578         for (unsigned J = 0; J < Length; ++J)
2579           if (Comment != End)
2580             Comment++;
2581       } else {
2582         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2583           Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2584       }
2585       Offset = Op.getOperandEndOffset(I);
2586     }
2587     assert(Offset == Op.getEndOffset());
2588   }
2589 }
2590 
2591 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2592                                    const DbgValueLoc &Value,
2593                                    DwarfExpression &DwarfExpr) {
2594   auto *DIExpr = Value.getExpression();
2595   DIExpressionCursor ExprCursor(DIExpr);
2596   DwarfExpr.addFragmentOffset(DIExpr);
2597 
2598   // If the DIExpr is is an Entry Value, we want to follow the same code path
2599   // regardless of whether the DBG_VALUE is variadic or not.
2600   if (DIExpr && DIExpr->isEntryValue()) {
2601     // Entry values can only be a single register with no additional DIExpr,
2602     // so just add it directly.
2603     assert(Value.getLocEntries().size() == 1);
2604     assert(Value.getLocEntries()[0].isLocation());
2605     MachineLocation Location = Value.getLocEntries()[0].getLoc();
2606     DwarfExpr.setLocation(Location, DIExpr);
2607 
2608     DwarfExpr.beginEntryValueExpression(ExprCursor);
2609 
2610     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2611     if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg()))
2612       return;
2613     return DwarfExpr.addExpression(std::move(ExprCursor));
2614   }
2615 
2616   // Regular entry.
2617   auto EmitValueLocEntry = [&DwarfExpr, &BT,
2618                             &AP](const DbgValueLocEntry &Entry,
2619                                  DIExpressionCursor &Cursor) -> bool {
2620     if (Entry.isInt()) {
2621       if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2622                  BT->getEncoding() == dwarf::DW_ATE_signed_char))
2623         DwarfExpr.addSignedConstant(Entry.getInt());
2624       else
2625         DwarfExpr.addUnsignedConstant(Entry.getInt());
2626     } else if (Entry.isLocation()) {
2627       MachineLocation Location = Entry.getLoc();
2628       if (Location.isIndirect())
2629         DwarfExpr.setMemoryLocationKind();
2630 
2631       const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2632       if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2633         return false;
2634     } else if (Entry.isTargetIndexLocation()) {
2635       TargetIndexLocation Loc = Entry.getTargetIndexLocation();
2636       // TODO TargetIndexLocation is a target-independent. Currently only the
2637       // WebAssembly-specific encoding is supported.
2638       assert(AP.TM.getTargetTriple().isWasm());
2639       DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2640     } else if (Entry.isConstantFP()) {
2641       if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2642           !Cursor) {
2643         DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP);
2644       } else if (Entry.getConstantFP()
2645                      ->getValueAPF()
2646                      .bitcastToAPInt()
2647                      .getBitWidth() <= 64 /*bits*/) {
2648         DwarfExpr.addUnsignedConstant(
2649             Entry.getConstantFP()->getValueAPF().bitcastToAPInt());
2650       } else {
2651         LLVM_DEBUG(
2652             dbgs() << "Skipped DwarfExpression creation for ConstantFP of size"
2653                    << Entry.getConstantFP()
2654                           ->getValueAPF()
2655                           .bitcastToAPInt()
2656                           .getBitWidth()
2657                    << " bits\n");
2658         return false;
2659       }
2660     }
2661     return true;
2662   };
2663 
2664   if (!Value.isVariadic()) {
2665     if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor))
2666       return;
2667     DwarfExpr.addExpression(std::move(ExprCursor));
2668     return;
2669   }
2670 
2671   // If any of the location entries are registers with the value 0, then the
2672   // location is undefined.
2673   if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) {
2674         return Entry.isLocation() && !Entry.getLoc().getReg();
2675       }))
2676     return;
2677 
2678   DwarfExpr.addExpression(
2679       std::move(ExprCursor),
2680       [EmitValueLocEntry, &Value](unsigned Idx,
2681                                   DIExpressionCursor &Cursor) -> bool {
2682         return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor);
2683       });
2684 }
2685 
2686 void DebugLocEntry::finalize(const AsmPrinter &AP,
2687                              DebugLocStream::ListBuilder &List,
2688                              const DIBasicType *BT,
2689                              DwarfCompileUnit &TheCU) {
2690   assert(!Values.empty() &&
2691          "location list entries without values are redundant");
2692   assert(Begin != End && "unexpected location list entry with empty range");
2693   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2694   BufferByteStreamer Streamer = Entry.getStreamer();
2695   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2696   const DbgValueLoc &Value = Values[0];
2697   if (Value.isFragment()) {
2698     // Emit all fragments that belong to the same variable and range.
2699     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2700           return P.isFragment();
2701         }) && "all values are expected to be fragments");
2702     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2703 
2704     for (const auto &Fragment : Values)
2705       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2706 
2707   } else {
2708     assert(Values.size() == 1 && "only fragments may have >1 value");
2709     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2710   }
2711   DwarfExpr.finalize();
2712   if (DwarfExpr.TagOffset)
2713     List.setTagOffset(*DwarfExpr.TagOffset);
2714 }
2715 
2716 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2717                                            const DwarfCompileUnit *CU) {
2718   // Emit the size.
2719   Asm->OutStreamer->AddComment("Loc expr size");
2720   if (getDwarfVersion() >= 5)
2721     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2722   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2723     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2724   else {
2725     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2726     // can do.
2727     Asm->emitInt16(0);
2728     return;
2729   }
2730   // Emit the entry.
2731   APByteStreamer Streamer(*Asm);
2732   emitDebugLocEntry(Streamer, Entry, CU);
2733 }
2734 
2735 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2736 // that designates the end of the table for the caller to emit when the table is
2737 // complete.
2738 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2739                                          const DwarfFile &Holder) {
2740   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2741 
2742   Asm->OutStreamer->AddComment("Offset entry count");
2743   Asm->emitInt32(Holder.getRangeLists().size());
2744   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2745 
2746   for (const RangeSpanList &List : Holder.getRangeLists())
2747     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2748                              Asm->getDwarfOffsetByteSize());
2749 
2750   return TableEnd;
2751 }
2752 
2753 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2754 // designates the end of the table for the caller to emit when the table is
2755 // complete.
2756 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2757                                          const DwarfDebug &DD) {
2758   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2759 
2760   const auto &DebugLocs = DD.getDebugLocs();
2761 
2762   Asm->OutStreamer->AddComment("Offset entry count");
2763   Asm->emitInt32(DebugLocs.getLists().size());
2764   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2765 
2766   for (const auto &List : DebugLocs.getLists())
2767     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2768                              Asm->getDwarfOffsetByteSize());
2769 
2770   return TableEnd;
2771 }
2772 
2773 template <typename Ranges, typename PayloadEmitter>
2774 static void emitRangeList(
2775     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2776     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2777     unsigned StartxLength, unsigned EndOfList,
2778     StringRef (*StringifyEnum)(unsigned),
2779     bool ShouldUseBaseAddress,
2780     PayloadEmitter EmitPayload) {
2781 
2782   auto Size = Asm->MAI->getCodePointerSize();
2783   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2784 
2785   // Emit our symbol so we can find the beginning of the range.
2786   Asm->OutStreamer->emitLabel(Sym);
2787 
2788   // Gather all the ranges that apply to the same section so they can share
2789   // a base address entry.
2790   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2791 
2792   for (const auto &Range : R)
2793     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2794 
2795   const MCSymbol *CUBase = CU.getBaseAddress();
2796   bool BaseIsSet = false;
2797   for (const auto &P : SectionRanges) {
2798     auto *Base = CUBase;
2799     if (!Base && ShouldUseBaseAddress) {
2800       const MCSymbol *Begin = P.second.front()->Begin;
2801       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2802       if (!UseDwarf5) {
2803         Base = NewBase;
2804         BaseIsSet = true;
2805         Asm->OutStreamer->emitIntValue(-1, Size);
2806         Asm->OutStreamer->AddComment("  base address");
2807         Asm->OutStreamer->emitSymbolValue(Base, Size);
2808       } else if (NewBase != Begin || P.second.size() > 1) {
2809         // Only use a base address if
2810         //  * the existing pool address doesn't match (NewBase != Begin)
2811         //  * or, there's more than one entry to share the base address
2812         Base = NewBase;
2813         BaseIsSet = true;
2814         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2815         Asm->emitInt8(BaseAddressx);
2816         Asm->OutStreamer->AddComment("  base address index");
2817         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2818       }
2819     } else if (BaseIsSet && !UseDwarf5) {
2820       BaseIsSet = false;
2821       assert(!Base);
2822       Asm->OutStreamer->emitIntValue(-1, Size);
2823       Asm->OutStreamer->emitIntValue(0, Size);
2824     }
2825 
2826     for (const auto *RS : P.second) {
2827       const MCSymbol *Begin = RS->Begin;
2828       const MCSymbol *End = RS->End;
2829       assert(Begin && "Range without a begin symbol?");
2830       assert(End && "Range without an end symbol?");
2831       if (Base) {
2832         if (UseDwarf5) {
2833           // Emit offset_pair when we have a base.
2834           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2835           Asm->emitInt8(OffsetPair);
2836           Asm->OutStreamer->AddComment("  starting offset");
2837           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2838           Asm->OutStreamer->AddComment("  ending offset");
2839           Asm->emitLabelDifferenceAsULEB128(End, Base);
2840         } else {
2841           Asm->emitLabelDifference(Begin, Base, Size);
2842           Asm->emitLabelDifference(End, Base, Size);
2843         }
2844       } else if (UseDwarf5) {
2845         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2846         Asm->emitInt8(StartxLength);
2847         Asm->OutStreamer->AddComment("  start index");
2848         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2849         Asm->OutStreamer->AddComment("  length");
2850         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2851       } else {
2852         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2853         Asm->OutStreamer->emitSymbolValue(End, Size);
2854       }
2855       EmitPayload(*RS);
2856     }
2857   }
2858 
2859   if (UseDwarf5) {
2860     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2861     Asm->emitInt8(EndOfList);
2862   } else {
2863     // Terminate the list with two 0 values.
2864     Asm->OutStreamer->emitIntValue(0, Size);
2865     Asm->OutStreamer->emitIntValue(0, Size);
2866   }
2867 }
2868 
2869 // Handles emission of both debug_loclist / debug_loclist.dwo
2870 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2871   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2872                 *List.CU, dwarf::DW_LLE_base_addressx,
2873                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2874                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2875                 /* ShouldUseBaseAddress */ true,
2876                 [&](const DebugLocStream::Entry &E) {
2877                   DD.emitDebugLocEntryLocation(E, List.CU);
2878                 });
2879 }
2880 
2881 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2882   if (DebugLocs.getLists().empty())
2883     return;
2884 
2885   Asm->OutStreamer->switchSection(Sec);
2886 
2887   MCSymbol *TableEnd = nullptr;
2888   if (getDwarfVersion() >= 5)
2889     TableEnd = emitLoclistsTableHeader(Asm, *this);
2890 
2891   for (const auto &List : DebugLocs.getLists())
2892     emitLocList(*this, Asm, List);
2893 
2894   if (TableEnd)
2895     Asm->OutStreamer->emitLabel(TableEnd);
2896 }
2897 
2898 // Emit locations into the .debug_loc/.debug_loclists section.
2899 void DwarfDebug::emitDebugLoc() {
2900   emitDebugLocImpl(
2901       getDwarfVersion() >= 5
2902           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2903           : Asm->getObjFileLowering().getDwarfLocSection());
2904 }
2905 
2906 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2907 void DwarfDebug::emitDebugLocDWO() {
2908   if (getDwarfVersion() >= 5) {
2909     emitDebugLocImpl(
2910         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2911 
2912     return;
2913   }
2914 
2915   for (const auto &List : DebugLocs.getLists()) {
2916     Asm->OutStreamer->switchSection(
2917         Asm->getObjFileLowering().getDwarfLocDWOSection());
2918     Asm->OutStreamer->emitLabel(List.Label);
2919 
2920     for (const auto &Entry : DebugLocs.getEntries(List)) {
2921       // GDB only supports startx_length in pre-standard split-DWARF.
2922       // (in v5 standard loclists, it currently* /only/ supports base_address +
2923       // offset_pair, so the implementations can't really share much since they
2924       // need to use different representations)
2925       // * as of October 2018, at least
2926       //
2927       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2928       // addresses in the address pool to minimize object size/relocations.
2929       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2930       unsigned idx = AddrPool.getIndex(Entry.Begin);
2931       Asm->emitULEB128(idx);
2932       // Also the pre-standard encoding is slightly different, emitting this as
2933       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2934       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2935       emitDebugLocEntryLocation(Entry, List.CU);
2936     }
2937     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2938   }
2939 }
2940 
2941 struct ArangeSpan {
2942   const MCSymbol *Start, *End;
2943 };
2944 
2945 // Emit a debug aranges section, containing a CU lookup for any
2946 // address we can tie back to a CU.
2947 void DwarfDebug::emitDebugARanges() {
2948   // Provides a unique id per text section.
2949   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2950 
2951   // Filter labels by section.
2952   for (const SymbolCU &SCU : ArangeLabels) {
2953     if (SCU.Sym->isInSection()) {
2954       // Make a note of this symbol and it's section.
2955       MCSection *Section = &SCU.Sym->getSection();
2956       if (!Section->getKind().isMetadata())
2957         SectionMap[Section].push_back(SCU);
2958     } else {
2959       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2960       // appear in the output. This sucks as we rely on sections to build
2961       // arange spans. We can do it without, but it's icky.
2962       SectionMap[nullptr].push_back(SCU);
2963     }
2964   }
2965 
2966   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2967 
2968   for (auto &I : SectionMap) {
2969     MCSection *Section = I.first;
2970     SmallVector<SymbolCU, 8> &List = I.second;
2971     if (List.size() < 1)
2972       continue;
2973 
2974     // If we have no section (e.g. common), just write out
2975     // individual spans for each symbol.
2976     if (!Section) {
2977       for (const SymbolCU &Cur : List) {
2978         ArangeSpan Span;
2979         Span.Start = Cur.Sym;
2980         Span.End = nullptr;
2981         assert(Cur.CU);
2982         Spans[Cur.CU].push_back(Span);
2983       }
2984       continue;
2985     }
2986 
2987     // Sort the symbols by offset within the section.
2988     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2989       unsigned IA = A.Sym ? Asm->OutStreamer->getSymbolOrder(A.Sym) : 0;
2990       unsigned IB = B.Sym ? Asm->OutStreamer->getSymbolOrder(B.Sym) : 0;
2991 
2992       // Symbols with no order assigned should be placed at the end.
2993       // (e.g. section end labels)
2994       if (IA == 0)
2995         return false;
2996       if (IB == 0)
2997         return true;
2998       return IA < IB;
2999     });
3000 
3001     // Insert a final terminator.
3002     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
3003 
3004     // Build spans between each label.
3005     const MCSymbol *StartSym = List[0].Sym;
3006     for (size_t n = 1, e = List.size(); n < e; n++) {
3007       const SymbolCU &Prev = List[n - 1];
3008       const SymbolCU &Cur = List[n];
3009 
3010       // Try and build the longest span we can within the same CU.
3011       if (Cur.CU != Prev.CU) {
3012         ArangeSpan Span;
3013         Span.Start = StartSym;
3014         Span.End = Cur.Sym;
3015         assert(Prev.CU);
3016         Spans[Prev.CU].push_back(Span);
3017         StartSym = Cur.Sym;
3018       }
3019     }
3020   }
3021 
3022   // Start the dwarf aranges section.
3023   Asm->OutStreamer->switchSection(
3024       Asm->getObjFileLowering().getDwarfARangesSection());
3025 
3026   unsigned PtrSize = Asm->MAI->getCodePointerSize();
3027 
3028   // Build a list of CUs used.
3029   std::vector<DwarfCompileUnit *> CUs;
3030   for (const auto &it : Spans) {
3031     DwarfCompileUnit *CU = it.first;
3032     CUs.push_back(CU);
3033   }
3034 
3035   // Sort the CU list (again, to ensure consistent output order).
3036   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
3037     return A->getUniqueID() < B->getUniqueID();
3038   });
3039 
3040   // Emit an arange table for each CU we used.
3041   for (DwarfCompileUnit *CU : CUs) {
3042     std::vector<ArangeSpan> &List = Spans[CU];
3043 
3044     // Describe the skeleton CU's offset and length, not the dwo file's.
3045     if (auto *Skel = CU->getSkeleton())
3046       CU = Skel;
3047 
3048     // Emit size of content not including length itself.
3049     unsigned ContentSize =
3050         sizeof(int16_t) +               // DWARF ARange version number
3051         Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
3052                                         // section
3053         sizeof(int8_t) +                // Pointer Size (in bytes)
3054         sizeof(int8_t);                 // Segment Size (in bytes)
3055 
3056     unsigned TupleSize = PtrSize * 2;
3057 
3058     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
3059     unsigned Padding = offsetToAlignment(
3060         Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
3061 
3062     ContentSize += Padding;
3063     ContentSize += (List.size() + 1) * TupleSize;
3064 
3065     // For each compile unit, write the list of spans it covers.
3066     Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
3067     Asm->OutStreamer->AddComment("DWARF Arange version number");
3068     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
3069     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
3070     emitSectionReference(*CU);
3071     Asm->OutStreamer->AddComment("Address Size (in bytes)");
3072     Asm->emitInt8(PtrSize);
3073     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
3074     Asm->emitInt8(0);
3075 
3076     Asm->OutStreamer->emitFill(Padding, 0xff);
3077 
3078     for (const ArangeSpan &Span : List) {
3079       Asm->emitLabelReference(Span.Start, PtrSize);
3080 
3081       // Calculate the size as being from the span start to its end.
3082       //
3083       // If the size is zero, then round it up to one byte. The DWARF
3084       // specification requires that entries in this table have nonzero
3085       // lengths.
3086       auto SizeRef = SymSize.find(Span.Start);
3087       if ((SizeRef == SymSize.end() || SizeRef->second != 0) && Span.End) {
3088         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
3089       } else {
3090         // For symbols without an end marker (e.g. common), we
3091         // write a single arange entry containing just that one symbol.
3092         uint64_t Size;
3093         if (SizeRef == SymSize.end() || SizeRef->second == 0)
3094           Size = 1;
3095         else
3096           Size = SizeRef->second;
3097 
3098         Asm->OutStreamer->emitIntValue(Size, PtrSize);
3099       }
3100     }
3101 
3102     Asm->OutStreamer->AddComment("ARange terminator");
3103     Asm->OutStreamer->emitIntValue(0, PtrSize);
3104     Asm->OutStreamer->emitIntValue(0, PtrSize);
3105   }
3106 }
3107 
3108 /// Emit a single range list. We handle both DWARF v5 and earlier.
3109 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
3110                           const RangeSpanList &List) {
3111   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
3112                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
3113                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
3114                 llvm::dwarf::RangeListEncodingString,
3115                 List.CU->getCUNode()->getRangesBaseAddress() ||
3116                     DD.getDwarfVersion() >= 5,
3117                 [](auto) {});
3118 }
3119 
3120 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
3121   if (Holder.getRangeLists().empty())
3122     return;
3123 
3124   assert(useRangesSection());
3125   assert(!CUMap.empty());
3126   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
3127     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
3128   }));
3129 
3130   Asm->OutStreamer->switchSection(Section);
3131 
3132   MCSymbol *TableEnd = nullptr;
3133   if (getDwarfVersion() >= 5)
3134     TableEnd = emitRnglistsTableHeader(Asm, Holder);
3135 
3136   for (const RangeSpanList &List : Holder.getRangeLists())
3137     emitRangeList(*this, Asm, List);
3138 
3139   if (TableEnd)
3140     Asm->OutStreamer->emitLabel(TableEnd);
3141 }
3142 
3143 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
3144 /// .debug_rnglists section.
3145 void DwarfDebug::emitDebugRanges() {
3146   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3147 
3148   emitDebugRangesImpl(Holder,
3149                       getDwarfVersion() >= 5
3150                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
3151                           : Asm->getObjFileLowering().getDwarfRangesSection());
3152 }
3153 
3154 void DwarfDebug::emitDebugRangesDWO() {
3155   emitDebugRangesImpl(InfoHolder,
3156                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
3157 }
3158 
3159 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
3160 /// DWARF 4.
3161 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
3162                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
3163   enum HeaderFlagMask {
3164 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
3165 #include "llvm/BinaryFormat/Dwarf.def"
3166   };
3167   Asm->OutStreamer->AddComment("Macro information version");
3168   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
3169   // We emit the line offset flag unconditionally here, since line offset should
3170   // be mostly present.
3171   if (Asm->isDwarf64()) {
3172     Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
3173     Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
3174   } else {
3175     Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3176     Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3177   }
3178   Asm->OutStreamer->AddComment("debug_line_offset");
3179   if (DD.useSplitDwarf())
3180     Asm->emitDwarfLengthOrOffset(0);
3181   else
3182     Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3183 }
3184 
3185 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3186   for (auto *MN : Nodes) {
3187     if (auto *M = dyn_cast<DIMacro>(MN))
3188       emitMacro(*M);
3189     else if (auto *F = dyn_cast<DIMacroFile>(MN))
3190       emitMacroFile(*F, U);
3191     else
3192       llvm_unreachable("Unexpected DI type!");
3193   }
3194 }
3195 
3196 void DwarfDebug::emitMacro(DIMacro &M) {
3197   StringRef Name = M.getName();
3198   StringRef Value = M.getValue();
3199 
3200   // There should be one space between the macro name and the macro value in
3201   // define entries. In undef entries, only the macro name is emitted.
3202   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3203 
3204   if (UseDebugMacroSection) {
3205     if (getDwarfVersion() >= 5) {
3206       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3207                           ? dwarf::DW_MACRO_define_strx
3208                           : dwarf::DW_MACRO_undef_strx;
3209       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3210       Asm->emitULEB128(Type);
3211       Asm->OutStreamer->AddComment("Line Number");
3212       Asm->emitULEB128(M.getLine());
3213       Asm->OutStreamer->AddComment("Macro String");
3214       Asm->emitULEB128(
3215           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3216     } else {
3217       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3218                           ? dwarf::DW_MACRO_GNU_define_indirect
3219                           : dwarf::DW_MACRO_GNU_undef_indirect;
3220       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3221       Asm->emitULEB128(Type);
3222       Asm->OutStreamer->AddComment("Line Number");
3223       Asm->emitULEB128(M.getLine());
3224       Asm->OutStreamer->AddComment("Macro String");
3225       Asm->emitDwarfSymbolReference(
3226           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3227     }
3228   } else {
3229     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3230     Asm->emitULEB128(M.getMacinfoType());
3231     Asm->OutStreamer->AddComment("Line Number");
3232     Asm->emitULEB128(M.getLine());
3233     Asm->OutStreamer->AddComment("Macro String");
3234     Asm->OutStreamer->emitBytes(Str);
3235     Asm->emitInt8('\0');
3236   }
3237 }
3238 
3239 void DwarfDebug::emitMacroFileImpl(
3240     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3241     StringRef (*MacroFormToString)(unsigned Form)) {
3242 
3243   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3244   Asm->emitULEB128(StartFile);
3245   Asm->OutStreamer->AddComment("Line Number");
3246   Asm->emitULEB128(MF.getLine());
3247   Asm->OutStreamer->AddComment("File Number");
3248   DIFile &F = *MF.getFile();
3249   if (useSplitDwarf())
3250     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3251         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3252         Asm->OutContext.getDwarfVersion(), F.getSource()));
3253   else
3254     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3255   handleMacroNodes(MF.getElements(), U);
3256   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3257   Asm->emitULEB128(EndFile);
3258 }
3259 
3260 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3261   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3262   // so for readibility/uniformity, We are explicitly emitting those.
3263   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3264   if (UseDebugMacroSection)
3265     emitMacroFileImpl(
3266         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3267         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3268   else
3269     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3270                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3271 }
3272 
3273 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3274   for (const auto &P : CUMap) {
3275     auto &TheCU = *P.second;
3276     auto *SkCU = TheCU.getSkeleton();
3277     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3278     auto *CUNode = cast<DICompileUnit>(P.first);
3279     DIMacroNodeArray Macros = CUNode->getMacros();
3280     if (Macros.empty())
3281       continue;
3282     Asm->OutStreamer->switchSection(Section);
3283     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3284     if (UseDebugMacroSection)
3285       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3286     handleMacroNodes(Macros, U);
3287     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3288     Asm->emitInt8(0);
3289   }
3290 }
3291 
3292 /// Emit macros into a debug macinfo/macro section.
3293 void DwarfDebug::emitDebugMacinfo() {
3294   auto &ObjLower = Asm->getObjFileLowering();
3295   emitDebugMacinfoImpl(UseDebugMacroSection
3296                            ? ObjLower.getDwarfMacroSection()
3297                            : ObjLower.getDwarfMacinfoSection());
3298 }
3299 
3300 void DwarfDebug::emitDebugMacinfoDWO() {
3301   auto &ObjLower = Asm->getObjFileLowering();
3302   emitDebugMacinfoImpl(UseDebugMacroSection
3303                            ? ObjLower.getDwarfMacroDWOSection()
3304                            : ObjLower.getDwarfMacinfoDWOSection());
3305 }
3306 
3307 // DWARF5 Experimental Separate Dwarf emitters.
3308 
3309 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3310                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3311 
3312   if (!CompilationDir.empty())
3313     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3314   addGnuPubAttributes(*NewU, Die);
3315 
3316   SkeletonHolder.addUnit(std::move(NewU));
3317 }
3318 
3319 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3320 
3321   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3322       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3323       UnitKind::Skeleton);
3324   DwarfCompileUnit &NewCU = *OwnedUnit;
3325   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3326 
3327   NewCU.initStmtList();
3328 
3329   if (useSegmentedStringOffsetsTable())
3330     NewCU.addStringOffsetsStart();
3331 
3332   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3333 
3334   return NewCU;
3335 }
3336 
3337 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3338 // compile units that would normally be in debug_info.
3339 void DwarfDebug::emitDebugInfoDWO() {
3340   assert(useSplitDwarf() && "No split dwarf debug info?");
3341   // Don't emit relocations into the dwo file.
3342   InfoHolder.emitUnits(/* UseOffsets */ true);
3343 }
3344 
3345 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3346 // abbreviations for the .debug_info.dwo section.
3347 void DwarfDebug::emitDebugAbbrevDWO() {
3348   assert(useSplitDwarf() && "No split dwarf?");
3349   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3350 }
3351 
3352 void DwarfDebug::emitDebugLineDWO() {
3353   assert(useSplitDwarf() && "No split dwarf?");
3354   SplitTypeUnitFileTable.Emit(
3355       *Asm->OutStreamer, MCDwarfLineTableParams(),
3356       Asm->getObjFileLowering().getDwarfLineDWOSection());
3357 }
3358 
3359 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3360   assert(useSplitDwarf() && "No split dwarf?");
3361   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3362       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3363       InfoHolder.getStringOffsetsStartSym());
3364 }
3365 
3366 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3367 // string section and is identical in format to traditional .debug_str
3368 // sections.
3369 void DwarfDebug::emitDebugStrDWO() {
3370   if (useSegmentedStringOffsetsTable())
3371     emitStringOffsetsTableHeaderDWO();
3372   assert(useSplitDwarf() && "No split dwarf?");
3373   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3374   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3375                          OffSec, /* UseRelativeOffsets = */ false);
3376 }
3377 
3378 // Emit address pool.
3379 void DwarfDebug::emitDebugAddr() {
3380   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3381 }
3382 
3383 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3384   if (!useSplitDwarf())
3385     return nullptr;
3386   const DICompileUnit *DIUnit = CU.getCUNode();
3387   SplitTypeUnitFileTable.maybeSetRootFile(
3388       DIUnit->getDirectory(), DIUnit->getFilename(),
3389       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3390   return &SplitTypeUnitFileTable;
3391 }
3392 
3393 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3394   MD5 Hash;
3395   Hash.update(Identifier);
3396   // ... take the least significant 8 bytes and return those. Our MD5
3397   // implementation always returns its results in little endian, so we actually
3398   // need the "high" word.
3399   MD5::MD5Result Result;
3400   Hash.final(Result);
3401   return Result.high();
3402 }
3403 
3404 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3405                                       StringRef Identifier, DIE &RefDie,
3406                                       const DICompositeType *CTy) {
3407   // Fast path if we're building some type units and one has already used the
3408   // address pool we know we're going to throw away all this work anyway, so
3409   // don't bother building dependent types.
3410   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3411     return;
3412 
3413   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3414   if (!Ins.second) {
3415     CU.addDIETypeSignature(RefDie, Ins.first->second);
3416     return;
3417   }
3418 
3419   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3420   AddrPool.resetUsedFlag();
3421 
3422   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3423                                                     getDwoLineTable(CU));
3424   DwarfTypeUnit &NewTU = *OwnedUnit;
3425   DIE &UnitDie = NewTU.getUnitDie();
3426   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3427 
3428   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3429                 CU.getLanguage());
3430 
3431   uint64_t Signature = makeTypeSignature(Identifier);
3432   NewTU.setTypeSignature(Signature);
3433   Ins.first->second = Signature;
3434 
3435   if (useSplitDwarf()) {
3436     MCSection *Section =
3437         getDwarfVersion() <= 4
3438             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3439             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3440     NewTU.setSection(Section);
3441   } else {
3442     MCSection *Section =
3443         getDwarfVersion() <= 4
3444             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3445             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3446     NewTU.setSection(Section);
3447     // Non-split type units reuse the compile unit's line table.
3448     CU.applyStmtList(UnitDie);
3449   }
3450 
3451   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3452   // units.
3453   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3454     NewTU.addStringOffsetsStart();
3455 
3456   NewTU.setType(NewTU.createTypeDIE(CTy));
3457 
3458   if (TopLevelType) {
3459     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3460     TypeUnitsUnderConstruction.clear();
3461 
3462     // Types referencing entries in the address table cannot be placed in type
3463     // units.
3464     if (AddrPool.hasBeenUsed()) {
3465 
3466       // Remove all the types built while building this type.
3467       // This is pessimistic as some of these types might not be dependent on
3468       // the type that used an address.
3469       for (const auto &TU : TypeUnitsToAdd)
3470         TypeSignatures.erase(TU.second);
3471 
3472       // Construct this type in the CU directly.
3473       // This is inefficient because all the dependent types will be rebuilt
3474       // from scratch, including building them in type units, discovering that
3475       // they depend on addresses, throwing them out and rebuilding them.
3476       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3477       return;
3478     }
3479 
3480     // If the type wasn't dependent on fission addresses, finish adding the type
3481     // and all its dependent types.
3482     for (auto &TU : TypeUnitsToAdd) {
3483       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3484       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3485     }
3486   }
3487   CU.addDIETypeSignature(RefDie, Signature);
3488 }
3489 
3490 // Add the Name along with its companion DIE to the appropriate accelerator
3491 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3492 // AccelTableKind::Apple, we use the table we got as an argument). If
3493 // accelerator tables are disabled, this function does nothing.
3494 template <typename DataT>
3495 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3496                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3497                                   const DIE &Die) {
3498   if (getAccelTableKind() == AccelTableKind::None)
3499     return;
3500 
3501   if (getAccelTableKind() != AccelTableKind::Apple &&
3502       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3503     return;
3504 
3505   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3506   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3507 
3508   switch (getAccelTableKind()) {
3509   case AccelTableKind::Apple:
3510     AppleAccel.addName(Ref, Die);
3511     break;
3512   case AccelTableKind::Dwarf:
3513     AccelDebugNames.addName(Ref, Die);
3514     break;
3515   case AccelTableKind::Default:
3516     llvm_unreachable("Default should have already been resolved.");
3517   case AccelTableKind::None:
3518     llvm_unreachable("None handled above");
3519   }
3520 }
3521 
3522 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3523                               const DIE &Die) {
3524   addAccelNameImpl(CU, AccelNames, Name, Die);
3525 }
3526 
3527 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3528                               const DIE &Die) {
3529   // ObjC names go only into the Apple accelerator tables.
3530   if (getAccelTableKind() == AccelTableKind::Apple)
3531     addAccelNameImpl(CU, AccelObjC, Name, Die);
3532 }
3533 
3534 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3535                                    const DIE &Die) {
3536   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3537 }
3538 
3539 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3540                               const DIE &Die, char Flags) {
3541   addAccelNameImpl(CU, AccelTypes, Name, Die);
3542 }
3543 
3544 uint16_t DwarfDebug::getDwarfVersion() const {
3545   return Asm->OutStreamer->getContext().getDwarfVersion();
3546 }
3547 
3548 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3549   if (Asm->getDwarfVersion() >= 4)
3550     return dwarf::Form::DW_FORM_sec_offset;
3551   assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3552          "DWARF64 is not defined prior DWARFv3");
3553   return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3554                           : dwarf::Form::DW_FORM_data4;
3555 }
3556 
3557 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3558   auto I = SectionLabels.find(S);
3559   if (I == SectionLabels.end())
3560     return nullptr;
3561   return I->second;
3562 }
3563 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3564   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3565     if (useSplitDwarf() || getDwarfVersion() >= 5)
3566       AddrPool.getIndex(S);
3567 }
3568 
3569 std::optional<MD5::MD5Result>
3570 DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3571   assert(File);
3572   if (getDwarfVersion() < 5)
3573     return std::nullopt;
3574   std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3575   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3576     return std::nullopt;
3577 
3578   // Convert the string checksum to an MD5Result for the streamer.
3579   // The verifier validates the checksum so we assume it's okay.
3580   // An MD5 checksum is 16 bytes.
3581   std::string ChecksumString = fromHex(Checksum->Value);
3582   MD5::MD5Result CKMem;
3583   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.data());
3584   return CKMem;
3585 }
3586