1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 static cl::opt<bool> PrintSlotIndexes(
43     "print-slotindexes",
44     cl::desc("When printing machine IR, annotate instructions and blocks with "
45              "SlotIndexes when available"),
46     cl::init(true), cl::Hidden);
47 
48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
49     : BB(B), Number(-1), xParent(&MF) {
50   Insts.Parent = this;
51   if (B)
52     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
53 }
54 
55 MachineBasicBlock::~MachineBasicBlock() {
56 }
57 
58 /// Return the MCSymbol for this basic block.
59 MCSymbol *MachineBasicBlock::getSymbol() const {
60   if (!CachedMCSymbol) {
61     const MachineFunction *MF = getParent();
62     MCContext &Ctx = MF->getContext();
63     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
64 
65     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
66 
67     // We emit a non-temporary symbol for every basic block if we have BBLabels
68     // or -- with basic block sections -- when a basic block begins a section.
69     // With basic block symbols, we use a unary encoding which can
70     // compress the symbol names significantly. For basic block sections where
71     // this block is the first in a cluster, we use a non-temp descriptive name.
72     // Otherwise we fall back to use temp label.
73     if (MF->hasBBLabels()) {
74       auto Iter = MF->getBBSectionsSymbolPrefix().begin();
75       if (getNumber() < 0 ||
76           getNumber() >= (int)MF->getBBSectionsSymbolPrefix().size())
77         report_fatal_error("Unreachable MBB: " + Twine(getNumber()));
78       // The basic blocks for function foo are named a.BB.foo, aa.BB.foo, and
79       // so on.
80       std::string Prefix(Iter + 1, Iter + getNumber() + 1);
81       std::reverse(Prefix.begin(), Prefix.end());
82       CachedMCSymbol =
83           Ctx.getOrCreateSymbol(Twine(Prefix) + ".BB." + Twine(MF->getName()));
84     } else if (MF->hasBBSections() && isBeginSection()) {
85       SmallString<5> Suffix;
86       if (SectionID == MBBSectionID::ColdSectionID) {
87         Suffix += ".cold";
88       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
89         Suffix += ".eh";
90       } else {
91         Suffix += "." + std::to_string(SectionID.Number);
92       }
93       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
94     } else {
95       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
96                                              Twine(MF->getFunctionNumber()) +
97                                              "_" + Twine(getNumber()));
98     }
99   }
100   return CachedMCSymbol;
101 }
102 
103 
104 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
105   MBB.print(OS);
106   return OS;
107 }
108 
109 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
110   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
111 }
112 
113 /// When an MBB is added to an MF, we need to update the parent pointer of the
114 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
115 /// operand list for registers.
116 ///
117 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
118 /// gets the next available unique MBB number. If it is removed from a
119 /// MachineFunction, it goes back to being #-1.
120 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
121     MachineBasicBlock *N) {
122   MachineFunction &MF = *N->getParent();
123   N->Number = MF.addToMBBNumbering(N);
124 
125   // Make sure the instructions have their operands in the reginfo lists.
126   MachineRegisterInfo &RegInfo = MF.getRegInfo();
127   for (MachineBasicBlock::instr_iterator
128          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
129     I->AddRegOperandsToUseLists(RegInfo);
130 }
131 
132 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
133     MachineBasicBlock *N) {
134   N->getParent()->removeFromMBBNumbering(N->Number);
135   N->Number = -1;
136 }
137 
138 /// When we add an instruction to a basic block list, we update its parent
139 /// pointer and add its operands from reg use/def lists if appropriate.
140 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
141   assert(!N->getParent() && "machine instruction already in a basic block");
142   N->setParent(Parent);
143 
144   // Add the instruction's register operands to their corresponding
145   // use/def lists.
146   MachineFunction *MF = Parent->getParent();
147   N->AddRegOperandsToUseLists(MF->getRegInfo());
148   MF->handleInsertion(*N);
149 }
150 
151 /// When we remove an instruction from a basic block list, we update its parent
152 /// pointer and remove its operands from reg use/def lists if appropriate.
153 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
154   assert(N->getParent() && "machine instruction not in a basic block");
155 
156   // Remove from the use/def lists.
157   if (MachineFunction *MF = N->getMF()) {
158     MF->handleRemoval(*N);
159     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
160   }
161 
162   N->setParent(nullptr);
163 }
164 
165 /// When moving a range of instructions from one MBB list to another, we need to
166 /// update the parent pointers and the use/def lists.
167 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
168                                                        instr_iterator First,
169                                                        instr_iterator Last) {
170   assert(Parent->getParent() == FromList.Parent->getParent() &&
171          "cannot transfer MachineInstrs between MachineFunctions");
172 
173   // If it's within the same BB, there's nothing to do.
174   if (this == &FromList)
175     return;
176 
177   assert(Parent != FromList.Parent && "Two lists have the same parent?");
178 
179   // If splicing between two blocks within the same function, just update the
180   // parent pointers.
181   for (; First != Last; ++First)
182     First->setParent(Parent);
183 }
184 
185 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
186   assert(!MI->getParent() && "MI is still in a block!");
187   Parent->getParent()->DeleteMachineInstr(MI);
188 }
189 
190 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
191   instr_iterator I = instr_begin(), E = instr_end();
192   while (I != E && I->isPHI())
193     ++I;
194   assert((I == E || !I->isInsideBundle()) &&
195          "First non-phi MI cannot be inside a bundle!");
196   return I;
197 }
198 
199 MachineBasicBlock::iterator
200 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
201   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
202 
203   iterator E = end();
204   while (I != E && (I->isPHI() || I->isPosition() ||
205                     TII->isBasicBlockPrologue(*I)))
206     ++I;
207   // FIXME: This needs to change if we wish to bundle labels
208   // inside the bundle.
209   assert((I == E || !I->isInsideBundle()) &&
210          "First non-phi / non-label instruction is inside a bundle!");
211   return I;
212 }
213 
214 MachineBasicBlock::iterator
215 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
216   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
217 
218   iterator E = end();
219   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
220                     TII->isBasicBlockPrologue(*I)))
221     ++I;
222   // FIXME: This needs to change if we wish to bundle labels / dbg_values
223   // inside the bundle.
224   assert((I == E || !I->isInsideBundle()) &&
225          "First non-phi / non-label / non-debug "
226          "instruction is inside a bundle!");
227   return I;
228 }
229 
230 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
231   iterator B = begin(), E = end(), I = E;
232   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
233     ; /*noop */
234   while (I != E && !I->isTerminator())
235     ++I;
236   return I;
237 }
238 
239 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
240   instr_iterator B = instr_begin(), E = instr_end(), I = E;
241   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
242     ; /*noop */
243   while (I != E && !I->isTerminator())
244     ++I;
245   return I;
246 }
247 
248 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
249   // Skip over begin-of-block dbg_value instructions.
250   return skipDebugInstructionsForward(begin(), end());
251 }
252 
253 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
254   // Skip over end-of-block dbg_value instructions.
255   instr_iterator B = instr_begin(), I = instr_end();
256   while (I != B) {
257     --I;
258     // Return instruction that starts a bundle.
259     if (I->isDebugInstr() || I->isInsideBundle())
260       continue;
261     return I;
262   }
263   // The block is all debug values.
264   return end();
265 }
266 
267 bool MachineBasicBlock::hasEHPadSuccessor() const {
268   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
269     if ((*I)->isEHPad())
270       return true;
271   return false;
272 }
273 
274 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
275 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
276   print(dbgs());
277 }
278 #endif
279 
280 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
281   for (const MachineBasicBlock *Succ : successors()) {
282     if (Succ->isInlineAsmBrIndirectTarget())
283       return true;
284   }
285   return false;
286 }
287 
288 bool MachineBasicBlock::isLegalToHoistInto() const {
289   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
290     return false;
291   return true;
292 }
293 
294 StringRef MachineBasicBlock::getName() const {
295   if (const BasicBlock *LBB = getBasicBlock())
296     return LBB->getName();
297   else
298     return StringRef("", 0);
299 }
300 
301 /// Return a hopefully unique identifier for this block.
302 std::string MachineBasicBlock::getFullName() const {
303   std::string Name;
304   if (getParent())
305     Name = (getParent()->getName() + ":").str();
306   if (getBasicBlock())
307     Name += getBasicBlock()->getName();
308   else
309     Name += ("BB" + Twine(getNumber())).str();
310   return Name;
311 }
312 
313 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
314                               bool IsStandalone) const {
315   const MachineFunction *MF = getParent();
316   if (!MF) {
317     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
318        << " is null\n";
319     return;
320   }
321   const Function &F = MF->getFunction();
322   const Module *M = F.getParent();
323   ModuleSlotTracker MST(M);
324   MST.incorporateFunction(F);
325   print(OS, MST, Indexes, IsStandalone);
326 }
327 
328 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
329                               const SlotIndexes *Indexes,
330                               bool IsStandalone) const {
331   const MachineFunction *MF = getParent();
332   if (!MF) {
333     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
334        << " is null\n";
335     return;
336   }
337 
338   if (Indexes && PrintSlotIndexes)
339     OS << Indexes->getMBBStartIdx(this) << '\t';
340 
341   OS << "bb." << getNumber();
342   bool HasAttributes = false;
343   if (const auto *BB = getBasicBlock()) {
344     if (BB->hasName()) {
345       OS << "." << BB->getName();
346     } else {
347       HasAttributes = true;
348       OS << " (";
349       int Slot = MST.getLocalSlot(BB);
350       if (Slot == -1)
351         OS << "<ir-block badref>";
352       else
353         OS << (Twine("%ir-block.") + Twine(Slot)).str();
354     }
355   }
356 
357   if (hasAddressTaken()) {
358     OS << (HasAttributes ? ", " : " (");
359     OS << "address-taken";
360     HasAttributes = true;
361   }
362   if (isEHPad()) {
363     OS << (HasAttributes ? ", " : " (");
364     OS << "landing-pad";
365     HasAttributes = true;
366   }
367   if (getAlignment() != Align(1)) {
368     OS << (HasAttributes ? ", " : " (");
369     OS << "align " << Log2(getAlignment());
370     HasAttributes = true;
371   }
372   if (HasAttributes)
373     OS << ")";
374   OS << ":\n";
375 
376   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
377   const MachineRegisterInfo &MRI = MF->getRegInfo();
378   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
379   bool HasLineAttributes = false;
380 
381   // Print the preds of this block according to the CFG.
382   if (!pred_empty() && IsStandalone) {
383     if (Indexes) OS << '\t';
384     // Don't indent(2), align with previous line attributes.
385     OS << "; predecessors: ";
386     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
387       if (I != pred_begin())
388         OS << ", ";
389       OS << printMBBReference(**I);
390     }
391     OS << '\n';
392     HasLineAttributes = true;
393   }
394 
395   if (!succ_empty()) {
396     if (Indexes) OS << '\t';
397     // Print the successors
398     OS.indent(2) << "successors: ";
399     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
400       if (I != succ_begin())
401         OS << ", ";
402       OS << printMBBReference(**I);
403       if (!Probs.empty())
404         OS << '('
405            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
406            << ')';
407     }
408     if (!Probs.empty() && IsStandalone) {
409       // Print human readable probabilities as comments.
410       OS << "; ";
411       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
412         const BranchProbability &BP = getSuccProbability(I);
413         if (I != succ_begin())
414           OS << ", ";
415         OS << printMBBReference(**I) << '('
416            << format("%.2f%%",
417                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
418                           100.0 * 100.0) /
419                          100.0)
420            << ')';
421       }
422     }
423 
424     OS << '\n';
425     HasLineAttributes = true;
426   }
427 
428   if (!livein_empty() && MRI.tracksLiveness()) {
429     if (Indexes) OS << '\t';
430     OS.indent(2) << "liveins: ";
431 
432     bool First = true;
433     for (const auto &LI : liveins()) {
434       if (!First)
435         OS << ", ";
436       First = false;
437       OS << printReg(LI.PhysReg, TRI);
438       if (!LI.LaneMask.all())
439         OS << ":0x" << PrintLaneMask(LI.LaneMask);
440     }
441     HasLineAttributes = true;
442   }
443 
444   if (HasLineAttributes)
445     OS << '\n';
446 
447   bool IsInBundle = false;
448   for (const MachineInstr &MI : instrs()) {
449     if (Indexes && PrintSlotIndexes) {
450       if (Indexes->hasIndex(MI))
451         OS << Indexes->getInstructionIndex(MI);
452       OS << '\t';
453     }
454 
455     if (IsInBundle && !MI.isInsideBundle()) {
456       OS.indent(2) << "}\n";
457       IsInBundle = false;
458     }
459 
460     OS.indent(IsInBundle ? 4 : 2);
461     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
462              /*AddNewLine=*/false, &TII);
463 
464     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
465       OS << " {";
466       IsInBundle = true;
467     }
468     OS << '\n';
469   }
470 
471   if (IsInBundle)
472     OS.indent(2) << "}\n";
473 
474   if (IrrLoopHeaderWeight && IsStandalone) {
475     if (Indexes) OS << '\t';
476     OS.indent(2) << "; Irreducible loop header weight: "
477                  << IrrLoopHeaderWeight.getValue() << '\n';
478   }
479 }
480 
481 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
482                                        bool /*PrintType*/) const {
483   OS << "%bb." << getNumber();
484 }
485 
486 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
487   LiveInVector::iterator I = find_if(
488       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
489   if (I == LiveIns.end())
490     return;
491 
492   I->LaneMask &= ~LaneMask;
493   if (I->LaneMask.none())
494     LiveIns.erase(I);
495 }
496 
497 MachineBasicBlock::livein_iterator
498 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
499   // Get non-const version of iterator.
500   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
501   return LiveIns.erase(LI);
502 }
503 
504 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
505   livein_iterator I = find_if(
506       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
507   return I != livein_end() && (I->LaneMask & LaneMask).any();
508 }
509 
510 void MachineBasicBlock::sortUniqueLiveIns() {
511   llvm::sort(LiveIns,
512              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
513                return LI0.PhysReg < LI1.PhysReg;
514              });
515   // Liveins are sorted by physreg now we can merge their lanemasks.
516   LiveInVector::const_iterator I = LiveIns.begin();
517   LiveInVector::const_iterator J;
518   LiveInVector::iterator Out = LiveIns.begin();
519   for (; I != LiveIns.end(); ++Out, I = J) {
520     MCRegister PhysReg = I->PhysReg;
521     LaneBitmask LaneMask = I->LaneMask;
522     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
523       LaneMask |= J->LaneMask;
524     Out->PhysReg = PhysReg;
525     Out->LaneMask = LaneMask;
526   }
527   LiveIns.erase(Out, LiveIns.end());
528 }
529 
530 Register
531 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
532   assert(getParent() && "MBB must be inserted in function");
533   assert(PhysReg.isPhysical() && "Expected physreg");
534   assert(RC && "Register class is required");
535   assert((isEHPad() || this == &getParent()->front()) &&
536          "Only the entry block and landing pads can have physreg live ins");
537 
538   bool LiveIn = isLiveIn(PhysReg);
539   iterator I = SkipPHIsAndLabels(begin()), E = end();
540   MachineRegisterInfo &MRI = getParent()->getRegInfo();
541   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
542 
543   // Look for an existing copy.
544   if (LiveIn)
545     for (;I != E && I->isCopy(); ++I)
546       if (I->getOperand(1).getReg() == PhysReg) {
547         Register VirtReg = I->getOperand(0).getReg();
548         if (!MRI.constrainRegClass(VirtReg, RC))
549           llvm_unreachable("Incompatible live-in register class.");
550         return VirtReg;
551       }
552 
553   // No luck, create a virtual register.
554   Register VirtReg = MRI.createVirtualRegister(RC);
555   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
556     .addReg(PhysReg, RegState::Kill);
557   if (!LiveIn)
558     addLiveIn(PhysReg);
559   return VirtReg;
560 }
561 
562 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
563   getParent()->splice(NewAfter->getIterator(), getIterator());
564 }
565 
566 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
567   getParent()->splice(++NewBefore->getIterator(), getIterator());
568 }
569 
570 void MachineBasicBlock::updateTerminator(
571     MachineBasicBlock *PreviousLayoutSuccessor) {
572   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
573                     << "\n");
574 
575   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
576   // A block with no successors has no concerns with fall-through edges.
577   if (this->succ_empty())
578     return;
579 
580   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
581   SmallVector<MachineOperand, 4> Cond;
582   DebugLoc DL = findBranchDebugLoc();
583   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
584   (void) B;
585   assert(!B && "UpdateTerminators requires analyzable predecessors!");
586   if (Cond.empty()) {
587     if (TBB) {
588       // The block has an unconditional branch. If its successor is now its
589       // layout successor, delete the branch.
590       if (isLayoutSuccessor(TBB))
591         TII->removeBranch(*this);
592     } else {
593       // The block has an unconditional fallthrough, or the end of the block is
594       // unreachable.
595 
596       // Unfortunately, whether the end of the block is unreachable is not
597       // immediately obvious; we must fall back to checking the successor list,
598       // and assuming that if the passed in block is in the succesor list and
599       // not an EHPad, it must be the intended target.
600       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
601           PreviousLayoutSuccessor->isEHPad())
602         return;
603 
604       // If the unconditional successor block is not the current layout
605       // successor, insert a branch to jump to it.
606       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
607         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
608     }
609     return;
610   }
611 
612   if (FBB) {
613     // The block has a non-fallthrough conditional branch. If one of its
614     // successors is its layout successor, rewrite it to a fallthrough
615     // conditional branch.
616     if (isLayoutSuccessor(TBB)) {
617       if (TII->reverseBranchCondition(Cond))
618         return;
619       TII->removeBranch(*this);
620       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
621     } else if (isLayoutSuccessor(FBB)) {
622       TII->removeBranch(*this);
623       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
624     }
625     return;
626   }
627 
628   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
629   assert(PreviousLayoutSuccessor);
630   assert(!PreviousLayoutSuccessor->isEHPad());
631   assert(isSuccessor(PreviousLayoutSuccessor));
632 
633   if (PreviousLayoutSuccessor == TBB) {
634     // We had a fallthrough to the same basic block as the conditional jump
635     // targets.  Remove the conditional jump, leaving an unconditional
636     // fallthrough or an unconditional jump.
637     TII->removeBranch(*this);
638     if (!isLayoutSuccessor(TBB)) {
639       Cond.clear();
640       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
641     }
642     return;
643   }
644 
645   // The block has a fallthrough conditional branch.
646   if (isLayoutSuccessor(TBB)) {
647     if (TII->reverseBranchCondition(Cond)) {
648       // We can't reverse the condition, add an unconditional branch.
649       Cond.clear();
650       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
651       return;
652     }
653     TII->removeBranch(*this);
654     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
655   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
656     TII->removeBranch(*this);
657     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
658   }
659 }
660 
661 void MachineBasicBlock::validateSuccProbs() const {
662 #ifndef NDEBUG
663   int64_t Sum = 0;
664   for (auto Prob : Probs)
665     Sum += Prob.getNumerator();
666   // Due to precision issue, we assume that the sum of probabilities is one if
667   // the difference between the sum of their numerators and the denominator is
668   // no greater than the number of successors.
669   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
670              Probs.size() &&
671          "The sum of successors's probabilities exceeds one.");
672 #endif // NDEBUG
673 }
674 
675 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
676                                      BranchProbability Prob) {
677   // Probability list is either empty (if successor list isn't empty, this means
678   // disabled optimization) or has the same size as successor list.
679   if (!(Probs.empty() && !Successors.empty()))
680     Probs.push_back(Prob);
681   Successors.push_back(Succ);
682   Succ->addPredecessor(this);
683 }
684 
685 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
686   // We need to make sure probability list is either empty or has the same size
687   // of successor list. When this function is called, we can safely delete all
688   // probability in the list.
689   Probs.clear();
690   Successors.push_back(Succ);
691   Succ->addPredecessor(this);
692 }
693 
694 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
695                                        MachineBasicBlock *New,
696                                        bool NormalizeSuccProbs) {
697   succ_iterator OldI = llvm::find(successors(), Old);
698   assert(OldI != succ_end() && "Old is not a successor of this block!");
699   assert(llvm::find(successors(), New) == succ_end() &&
700          "New is already a successor of this block!");
701 
702   // Add a new successor with equal probability as the original one. Note
703   // that we directly copy the probability using the iterator rather than
704   // getting a potentially synthetic probability computed when unknown. This
705   // preserves the probabilities as-is and then we can renormalize them and
706   // query them effectively afterward.
707   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
708                                   : *getProbabilityIterator(OldI));
709   if (NormalizeSuccProbs)
710     normalizeSuccProbs();
711 }
712 
713 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
714                                         bool NormalizeSuccProbs) {
715   succ_iterator I = find(Successors, Succ);
716   removeSuccessor(I, NormalizeSuccProbs);
717 }
718 
719 MachineBasicBlock::succ_iterator
720 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
721   assert(I != Successors.end() && "Not a current successor!");
722 
723   // If probability list is empty it means we don't use it (disabled
724   // optimization).
725   if (!Probs.empty()) {
726     probability_iterator WI = getProbabilityIterator(I);
727     Probs.erase(WI);
728     if (NormalizeSuccProbs)
729       normalizeSuccProbs();
730   }
731 
732   (*I)->removePredecessor(this);
733   return Successors.erase(I);
734 }
735 
736 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
737                                          MachineBasicBlock *New) {
738   if (Old == New)
739     return;
740 
741   succ_iterator E = succ_end();
742   succ_iterator NewI = E;
743   succ_iterator OldI = E;
744   for (succ_iterator I = succ_begin(); I != E; ++I) {
745     if (*I == Old) {
746       OldI = I;
747       if (NewI != E)
748         break;
749     }
750     if (*I == New) {
751       NewI = I;
752       if (OldI != E)
753         break;
754     }
755   }
756   assert(OldI != E && "Old is not a successor of this block");
757 
758   // If New isn't already a successor, let it take Old's place.
759   if (NewI == E) {
760     Old->removePredecessor(this);
761     New->addPredecessor(this);
762     *OldI = New;
763     return;
764   }
765 
766   // New is already a successor.
767   // Update its probability instead of adding a duplicate edge.
768   if (!Probs.empty()) {
769     auto ProbIter = getProbabilityIterator(NewI);
770     if (!ProbIter->isUnknown())
771       *ProbIter += *getProbabilityIterator(OldI);
772   }
773   removeSuccessor(OldI);
774 }
775 
776 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
777                                       succ_iterator I) {
778   if (Orig->Probs.empty())
779     addSuccessor(*I, Orig->getSuccProbability(I));
780   else
781     addSuccessorWithoutProb(*I);
782 }
783 
784 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
785   Predecessors.push_back(Pred);
786 }
787 
788 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
789   pred_iterator I = find(Predecessors, Pred);
790   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
791   Predecessors.erase(I);
792 }
793 
794 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
795   if (this == FromMBB)
796     return;
797 
798   while (!FromMBB->succ_empty()) {
799     MachineBasicBlock *Succ = *FromMBB->succ_begin();
800 
801     // If probability list is empty it means we don't use it (disabled
802     // optimization).
803     if (!FromMBB->Probs.empty()) {
804       auto Prob = *FromMBB->Probs.begin();
805       addSuccessor(Succ, Prob);
806     } else
807       addSuccessorWithoutProb(Succ);
808 
809     FromMBB->removeSuccessor(Succ);
810   }
811 }
812 
813 void
814 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
815   if (this == FromMBB)
816     return;
817 
818   while (!FromMBB->succ_empty()) {
819     MachineBasicBlock *Succ = *FromMBB->succ_begin();
820     if (!FromMBB->Probs.empty()) {
821       auto Prob = *FromMBB->Probs.begin();
822       addSuccessor(Succ, Prob);
823     } else
824       addSuccessorWithoutProb(Succ);
825     FromMBB->removeSuccessor(Succ);
826 
827     // Fix up any PHI nodes in the successor.
828     Succ->replacePhiUsesWith(FromMBB, this);
829   }
830   normalizeSuccProbs();
831 }
832 
833 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
834   return is_contained(predecessors(), MBB);
835 }
836 
837 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
838   return is_contained(successors(), MBB);
839 }
840 
841 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
842   MachineFunction::const_iterator I(this);
843   return std::next(I) == MachineFunction::const_iterator(MBB);
844 }
845 
846 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
847   MachineFunction::iterator Fallthrough = getIterator();
848   ++Fallthrough;
849   // If FallthroughBlock is off the end of the function, it can't fall through.
850   if (Fallthrough == getParent()->end())
851     return nullptr;
852 
853   // If FallthroughBlock isn't a successor, no fallthrough is possible.
854   if (!isSuccessor(&*Fallthrough))
855     return nullptr;
856 
857   // Analyze the branches, if any, at the end of the block.
858   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
859   SmallVector<MachineOperand, 4> Cond;
860   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
861   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
862     // If we couldn't analyze the branch, examine the last instruction.
863     // If the block doesn't end in a known control barrier, assume fallthrough
864     // is possible. The isPredicated check is needed because this code can be
865     // called during IfConversion, where an instruction which is normally a
866     // Barrier is predicated and thus no longer an actual control barrier.
867     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
868                ? &*Fallthrough
869                : nullptr;
870   }
871 
872   // If there is no branch, control always falls through.
873   if (!TBB) return &*Fallthrough;
874 
875   // If there is some explicit branch to the fallthrough block, it can obviously
876   // reach, even though the branch should get folded to fall through implicitly.
877   if (MachineFunction::iterator(TBB) == Fallthrough ||
878       MachineFunction::iterator(FBB) == Fallthrough)
879     return &*Fallthrough;
880 
881   // If it's an unconditional branch to some block not the fall through, it
882   // doesn't fall through.
883   if (Cond.empty()) return nullptr;
884 
885   // Otherwise, if it is conditional and has no explicit false block, it falls
886   // through.
887   return (FBB == nullptr) ? &*Fallthrough : nullptr;
888 }
889 
890 bool MachineBasicBlock::canFallThrough() {
891   return getFallThrough() != nullptr;
892 }
893 
894 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
895     MachineBasicBlock *Succ, Pass &P,
896     std::vector<SparseBitVector<>> *LiveInSets) {
897   if (!canSplitCriticalEdge(Succ))
898     return nullptr;
899 
900   MachineFunction *MF = getParent();
901   MachineBasicBlock *PrevFallthrough = getNextNode();
902   DebugLoc DL;  // FIXME: this is nowhere
903 
904   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
905   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
906   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
907                     << " -- " << printMBBReference(*NMBB) << " -- "
908                     << printMBBReference(*Succ) << '\n');
909 
910   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
911   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
912   if (LIS)
913     LIS->insertMBBInMaps(NMBB);
914   else if (Indexes)
915     Indexes->insertMBBInMaps(NMBB);
916 
917   // On some targets like Mips, branches may kill virtual registers. Make sure
918   // that LiveVariables is properly updated after updateTerminator replaces the
919   // terminators.
920   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
921 
922   // Collect a list of virtual registers killed by the terminators.
923   SmallVector<Register, 4> KilledRegs;
924   if (LV)
925     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
926          I != E; ++I) {
927       MachineInstr *MI = &*I;
928       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
929            OE = MI->operands_end(); OI != OE; ++OI) {
930         if (!OI->isReg() || OI->getReg() == 0 ||
931             !OI->isUse() || !OI->isKill() || OI->isUndef())
932           continue;
933         Register Reg = OI->getReg();
934         if (Register::isPhysicalRegister(Reg) ||
935             LV->getVarInfo(Reg).removeKill(*MI)) {
936           KilledRegs.push_back(Reg);
937           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
938           OI->setIsKill(false);
939         }
940       }
941     }
942 
943   SmallVector<Register, 4> UsedRegs;
944   if (LIS) {
945     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
946          I != E; ++I) {
947       MachineInstr *MI = &*I;
948 
949       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
950            OE = MI->operands_end(); OI != OE; ++OI) {
951         if (!OI->isReg() || OI->getReg() == 0)
952           continue;
953 
954         Register Reg = OI->getReg();
955         if (!is_contained(UsedRegs, Reg))
956           UsedRegs.push_back(Reg);
957       }
958     }
959   }
960 
961   ReplaceUsesOfBlockWith(Succ, NMBB);
962 
963   // If updateTerminator() removes instructions, we need to remove them from
964   // SlotIndexes.
965   SmallVector<MachineInstr*, 4> Terminators;
966   if (Indexes) {
967     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
968          I != E; ++I)
969       Terminators.push_back(&*I);
970   }
971 
972   // Since we replaced all uses of Succ with NMBB, that should also be treated
973   // as the fallthrough successor
974   if (Succ == PrevFallthrough)
975     PrevFallthrough = NMBB;
976   updateTerminator(PrevFallthrough);
977 
978   if (Indexes) {
979     SmallVector<MachineInstr*, 4> NewTerminators;
980     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
981          I != E; ++I)
982       NewTerminators.push_back(&*I);
983 
984     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
985         E = Terminators.end(); I != E; ++I) {
986       if (!is_contained(NewTerminators, *I))
987         Indexes->removeMachineInstrFromMaps(**I);
988     }
989   }
990 
991   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
992   NMBB->addSuccessor(Succ);
993   if (!NMBB->isLayoutSuccessor(Succ)) {
994     SmallVector<MachineOperand, 4> Cond;
995     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
996     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
997 
998     if (Indexes) {
999       for (MachineInstr &MI : NMBB->instrs()) {
1000         // Some instructions may have been moved to NMBB by updateTerminator(),
1001         // so we first remove any instruction that already has an index.
1002         if (Indexes->hasIndex(MI))
1003           Indexes->removeMachineInstrFromMaps(MI);
1004         Indexes->insertMachineInstrInMaps(MI);
1005       }
1006     }
1007   }
1008 
1009   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1010   Succ->replacePhiUsesWith(this, NMBB);
1011 
1012   // Inherit live-ins from the successor
1013   for (const auto &LI : Succ->liveins())
1014     NMBB->addLiveIn(LI);
1015 
1016   // Update LiveVariables.
1017   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1018   if (LV) {
1019     // Restore kills of virtual registers that were killed by the terminators.
1020     while (!KilledRegs.empty()) {
1021       Register Reg = KilledRegs.pop_back_val();
1022       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1023         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1024           continue;
1025         if (Register::isVirtualRegister(Reg))
1026           LV->getVarInfo(Reg).Kills.push_back(&*I);
1027         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1028         break;
1029       }
1030     }
1031     // Update relevant live-through information.
1032     if (LiveInSets != nullptr)
1033       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1034     else
1035       LV->addNewBlock(NMBB, this, Succ);
1036   }
1037 
1038   if (LIS) {
1039     // After splitting the edge and updating SlotIndexes, live intervals may be
1040     // in one of two situations, depending on whether this block was the last in
1041     // the function. If the original block was the last in the function, all
1042     // live intervals will end prior to the beginning of the new split block. If
1043     // the original block was not at the end of the function, all live intervals
1044     // will extend to the end of the new split block.
1045 
1046     bool isLastMBB =
1047       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1048 
1049     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1050     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1051     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1052 
1053     // Find the registers used from NMBB in PHIs in Succ.
1054     SmallSet<Register, 8> PHISrcRegs;
1055     for (MachineBasicBlock::instr_iterator
1056          I = Succ->instr_begin(), E = Succ->instr_end();
1057          I != E && I->isPHI(); ++I) {
1058       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1059         if (I->getOperand(ni+1).getMBB() == NMBB) {
1060           MachineOperand &MO = I->getOperand(ni);
1061           Register Reg = MO.getReg();
1062           PHISrcRegs.insert(Reg);
1063           if (MO.isUndef())
1064             continue;
1065 
1066           LiveInterval &LI = LIS->getInterval(Reg);
1067           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1068           assert(VNI &&
1069                  "PHI sources should be live out of their predecessors.");
1070           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1071         }
1072       }
1073     }
1074 
1075     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1076     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1077       Register Reg = Register::index2VirtReg(i);
1078       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1079         continue;
1080 
1081       LiveInterval &LI = LIS->getInterval(Reg);
1082       if (!LI.liveAt(PrevIndex))
1083         continue;
1084 
1085       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1086       if (isLiveOut && isLastMBB) {
1087         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1088         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1089         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1090       } else if (!isLiveOut && !isLastMBB) {
1091         LI.removeSegment(StartIndex, EndIndex);
1092       }
1093     }
1094 
1095     // Update all intervals for registers whose uses may have been modified by
1096     // updateTerminator().
1097     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1098   }
1099 
1100   if (MachineDominatorTree *MDT =
1101           P.getAnalysisIfAvailable<MachineDominatorTree>())
1102     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1103 
1104   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1105     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1106       // If one or the other blocks were not in a loop, the new block is not
1107       // either, and thus LI doesn't need to be updated.
1108       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1109         if (TIL == DestLoop) {
1110           // Both in the same loop, the NMBB joins loop.
1111           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1112         } else if (TIL->contains(DestLoop)) {
1113           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1114           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1115         } else if (DestLoop->contains(TIL)) {
1116           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1117           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1118         } else {
1119           // Edge from two loops with no containment relation.  Because these
1120           // are natural loops, we know that the destination block must be the
1121           // header of its loop (adding a branch into a loop elsewhere would
1122           // create an irreducible loop).
1123           assert(DestLoop->getHeader() == Succ &&
1124                  "Should not create irreducible loops!");
1125           if (MachineLoop *P = DestLoop->getParentLoop())
1126             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1127         }
1128       }
1129     }
1130 
1131   return NMBB;
1132 }
1133 
1134 bool MachineBasicBlock::canSplitCriticalEdge(
1135     const MachineBasicBlock *Succ) const {
1136   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1137   // it in this generic function.
1138   if (Succ->isEHPad())
1139     return false;
1140 
1141   // Splitting the critical edge to a callbr's indirect block isn't advised.
1142   // Don't do it in this generic function.
1143   if (Succ->isInlineAsmBrIndirectTarget())
1144     return false;
1145 
1146   const MachineFunction *MF = getParent();
1147   // Performance might be harmed on HW that implements branching using exec mask
1148   // where both sides of the branches are always executed.
1149   if (MF->getTarget().requiresStructuredCFG())
1150     return false;
1151 
1152   // We may need to update this's terminator, but we can't do that if
1153   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1154   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1155   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1156   SmallVector<MachineOperand, 4> Cond;
1157   // AnalyzeBanch should modify this, since we did not allow modification.
1158   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1159                          /*AllowModify*/ false))
1160     return false;
1161 
1162   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1163   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1164   // case that we can't handle. Since this never happens in properly optimized
1165   // code, just skip those edges.
1166   if (TBB && TBB == FBB) {
1167     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1168                       << printMBBReference(*this) << '\n');
1169     return false;
1170   }
1171   return true;
1172 }
1173 
1174 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1175 /// neighboring instructions so the bundle won't be broken by removing MI.
1176 static void unbundleSingleMI(MachineInstr *MI) {
1177   // Removing the first instruction in a bundle.
1178   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1179     MI->unbundleFromSucc();
1180   // Removing the last instruction in a bundle.
1181   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1182     MI->unbundleFromPred();
1183   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1184   // are already fine.
1185 }
1186 
1187 MachineBasicBlock::instr_iterator
1188 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1189   unbundleSingleMI(&*I);
1190   return Insts.erase(I);
1191 }
1192 
1193 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1194   unbundleSingleMI(MI);
1195   MI->clearFlag(MachineInstr::BundledPred);
1196   MI->clearFlag(MachineInstr::BundledSucc);
1197   return Insts.remove(MI);
1198 }
1199 
1200 MachineBasicBlock::instr_iterator
1201 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1202   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1203          "Cannot insert instruction with bundle flags");
1204   // Set the bundle flags when inserting inside a bundle.
1205   if (I != instr_end() && I->isBundledWithPred()) {
1206     MI->setFlag(MachineInstr::BundledPred);
1207     MI->setFlag(MachineInstr::BundledSucc);
1208   }
1209   return Insts.insert(I, MI);
1210 }
1211 
1212 /// This method unlinks 'this' from the containing function, and returns it, but
1213 /// does not delete it.
1214 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1215   assert(getParent() && "Not embedded in a function!");
1216   getParent()->remove(this);
1217   return this;
1218 }
1219 
1220 /// This method unlinks 'this' from the containing function, and deletes it.
1221 void MachineBasicBlock::eraseFromParent() {
1222   assert(getParent() && "Not embedded in a function!");
1223   getParent()->erase(this);
1224 }
1225 
1226 /// Given a machine basic block that branched to 'Old', change the code and CFG
1227 /// so that it branches to 'New' instead.
1228 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1229                                                MachineBasicBlock *New) {
1230   assert(Old != New && "Cannot replace self with self!");
1231 
1232   MachineBasicBlock::instr_iterator I = instr_end();
1233   while (I != instr_begin()) {
1234     --I;
1235     if (!I->isTerminator()) break;
1236 
1237     // Scan the operands of this machine instruction, replacing any uses of Old
1238     // with New.
1239     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1240       if (I->getOperand(i).isMBB() &&
1241           I->getOperand(i).getMBB() == Old)
1242         I->getOperand(i).setMBB(New);
1243   }
1244 
1245   // Update the successor information.
1246   replaceSuccessor(Old, New);
1247 }
1248 
1249 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1250                                            MachineBasicBlock *New) {
1251   for (MachineInstr &MI : phis())
1252     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1253       MachineOperand &MO = MI.getOperand(i);
1254       if (MO.getMBB() == Old)
1255         MO.setMBB(New);
1256     }
1257 }
1258 
1259 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1260 /// instructions.  Return UnknownLoc if there is none.
1261 DebugLoc
1262 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1263   // Skip debug declarations, we don't want a DebugLoc from them.
1264   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1265   if (MBBI != instr_end())
1266     return MBBI->getDebugLoc();
1267   return {};
1268 }
1269 
1270 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1271 /// instructions.  Return UnknownLoc if there is none.
1272 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1273   if (MBBI == instr_begin()) return {};
1274   // Skip debug instructions, we don't want a DebugLoc from them.
1275   MBBI = prev_nodbg(MBBI, instr_begin());
1276   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1277   return {};
1278 }
1279 
1280 /// Find and return the merged DebugLoc of the branch instructions of the block.
1281 /// Return UnknownLoc if there is none.
1282 DebugLoc
1283 MachineBasicBlock::findBranchDebugLoc() {
1284   DebugLoc DL;
1285   auto TI = getFirstTerminator();
1286   while (TI != end() && !TI->isBranch())
1287     ++TI;
1288 
1289   if (TI != end()) {
1290     DL = TI->getDebugLoc();
1291     for (++TI ; TI != end() ; ++TI)
1292       if (TI->isBranch())
1293         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1294   }
1295   return DL;
1296 }
1297 
1298 /// Return probability of the edge from this block to MBB.
1299 BranchProbability
1300 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1301   if (Probs.empty())
1302     return BranchProbability(1, succ_size());
1303 
1304   const auto &Prob = *getProbabilityIterator(Succ);
1305   if (Prob.isUnknown()) {
1306     // For unknown probabilities, collect the sum of all known ones, and evenly
1307     // ditribute the complemental of the sum to each unknown probability.
1308     unsigned KnownProbNum = 0;
1309     auto Sum = BranchProbability::getZero();
1310     for (auto &P : Probs) {
1311       if (!P.isUnknown()) {
1312         Sum += P;
1313         KnownProbNum++;
1314       }
1315     }
1316     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1317   } else
1318     return Prob;
1319 }
1320 
1321 /// Set successor probability of a given iterator.
1322 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1323                                            BranchProbability Prob) {
1324   assert(!Prob.isUnknown());
1325   if (Probs.empty())
1326     return;
1327   *getProbabilityIterator(I) = Prob;
1328 }
1329 
1330 /// Return probability iterator corresonding to the I successor iterator
1331 MachineBasicBlock::const_probability_iterator
1332 MachineBasicBlock::getProbabilityIterator(
1333     MachineBasicBlock::const_succ_iterator I) const {
1334   assert(Probs.size() == Successors.size() && "Async probability list!");
1335   const size_t index = std::distance(Successors.begin(), I);
1336   assert(index < Probs.size() && "Not a current successor!");
1337   return Probs.begin() + index;
1338 }
1339 
1340 /// Return probability iterator corresonding to the I successor iterator.
1341 MachineBasicBlock::probability_iterator
1342 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1343   assert(Probs.size() == Successors.size() && "Async probability list!");
1344   const size_t index = std::distance(Successors.begin(), I);
1345   assert(index < Probs.size() && "Not a current successor!");
1346   return Probs.begin() + index;
1347 }
1348 
1349 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1350 /// as of just before "MI".
1351 ///
1352 /// Search is localised to a neighborhood of
1353 /// Neighborhood instructions before (searching for defs or kills) and N
1354 /// instructions after (searching just for defs) MI.
1355 MachineBasicBlock::LivenessQueryResult
1356 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1357                                            MCRegister Reg, const_iterator Before,
1358                                            unsigned Neighborhood) const {
1359   unsigned N = Neighborhood;
1360 
1361   // Try searching forwards from Before, looking for reads or defs.
1362   const_iterator I(Before);
1363   for (; I != end() && N > 0; ++I) {
1364     if (I->isDebugInstr())
1365       continue;
1366 
1367     --N;
1368 
1369     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1370 
1371     // Register is live when we read it here.
1372     if (Info.Read)
1373       return LQR_Live;
1374     // Register is dead if we can fully overwrite or clobber it here.
1375     if (Info.FullyDefined || Info.Clobbered)
1376       return LQR_Dead;
1377   }
1378 
1379   // If we reached the end, it is safe to clobber Reg at the end of a block of
1380   // no successor has it live in.
1381   if (I == end()) {
1382     for (MachineBasicBlock *S : successors()) {
1383       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1384         if (TRI->regsOverlap(LI.PhysReg, Reg))
1385           return LQR_Live;
1386       }
1387     }
1388 
1389     return LQR_Dead;
1390   }
1391 
1392 
1393   N = Neighborhood;
1394 
1395   // Start by searching backwards from Before, looking for kills, reads or defs.
1396   I = const_iterator(Before);
1397   // If this is the first insn in the block, don't search backwards.
1398   if (I != begin()) {
1399     do {
1400       --I;
1401 
1402       if (I->isDebugInstr())
1403         continue;
1404 
1405       --N;
1406 
1407       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1408 
1409       // Defs happen after uses so they take precedence if both are present.
1410 
1411       // Register is dead after a dead def of the full register.
1412       if (Info.DeadDef)
1413         return LQR_Dead;
1414       // Register is (at least partially) live after a def.
1415       if (Info.Defined) {
1416         if (!Info.PartialDeadDef)
1417           return LQR_Live;
1418         // As soon as we saw a partial definition (dead or not),
1419         // we cannot tell if the value is partial live without
1420         // tracking the lanemasks. We are not going to do this,
1421         // so fall back on the remaining of the analysis.
1422         break;
1423       }
1424       // Register is dead after a full kill or clobber and no def.
1425       if (Info.Killed || Info.Clobbered)
1426         return LQR_Dead;
1427       // Register must be live if we read it.
1428       if (Info.Read)
1429         return LQR_Live;
1430 
1431     } while (I != begin() && N > 0);
1432   }
1433 
1434   // If all the instructions before this in the block are debug instructions,
1435   // skip over them.
1436   while (I != begin() && std::prev(I)->isDebugInstr())
1437     --I;
1438 
1439   // Did we get to the start of the block?
1440   if (I == begin()) {
1441     // If so, the register's state is definitely defined by the live-in state.
1442     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1443       if (TRI->regsOverlap(LI.PhysReg, Reg))
1444         return LQR_Live;
1445 
1446     return LQR_Dead;
1447   }
1448 
1449   // At this point we have no idea of the liveness of the register.
1450   return LQR_Unknown;
1451 }
1452 
1453 const uint32_t *
1454 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1455   // EH funclet entry does not preserve any registers.
1456   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1457 }
1458 
1459 const uint32_t *
1460 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1461   // If we see a return block with successors, this must be a funclet return,
1462   // which does not preserve any registers. If there are no successors, we don't
1463   // care what kind of return it is, putting a mask after it is a no-op.
1464   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1465 }
1466 
1467 void MachineBasicBlock::clearLiveIns() {
1468   LiveIns.clear();
1469 }
1470 
1471 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1472   assert(getParent()->getProperties().hasProperty(
1473       MachineFunctionProperties::Property::TracksLiveness) &&
1474       "Liveness information is accurate");
1475   return LiveIns.begin();
1476 }
1477 
1478 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1479 const MBBSectionID
1480     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1481