1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/CodeGen/MachinePipeliner.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/PriorityQueue.h"
38 #include "llvm/ADT/SetOperations.h"
39 #include "llvm/ADT/SetVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/iterator_range.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/Analysis/CycleAnalysis.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/CodeGen/DFAPacketizer.h"
51 #include "llvm/CodeGen/LiveIntervals.h"
52 #include "llvm/CodeGen/MachineBasicBlock.h"
53 #include "llvm/CodeGen/MachineDominators.h"
54 #include "llvm/CodeGen/MachineFunction.h"
55 #include "llvm/CodeGen/MachineFunctionPass.h"
56 #include "llvm/CodeGen/MachineInstr.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineLoopInfo.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineOperand.h"
61 #include "llvm/CodeGen/MachineRegisterInfo.h"
62 #include "llvm/CodeGen/ModuloSchedule.h"
63 #include "llvm/CodeGen/RegisterPressure.h"
64 #include "llvm/CodeGen/ScheduleDAG.h"
65 #include "llvm/CodeGen/ScheduleDAGMutation.h"
66 #include "llvm/CodeGen/TargetOpcodes.h"
67 #include "llvm/CodeGen/TargetRegisterInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/Config/llvm-config.h"
70 #include "llvm/IR/Attributes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/MC/LaneBitmask.h"
73 #include "llvm/MC/MCInstrDesc.h"
74 #include "llvm/MC/MCInstrItineraries.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <climits>
85 #include <cstdint>
86 #include <deque>
87 #include <functional>
88 #include <iomanip>
89 #include <iterator>
90 #include <map>
91 #include <memory>
92 #include <sstream>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 
99 #define DEBUG_TYPE "pipeliner"
100 
101 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
102 STATISTIC(NumPipelined, "Number of loops software pipelined");
103 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
104 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
105 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
106 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
107 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
108 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
109 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
110 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
111 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
112 
113 /// A command line option to turn software pipelining on or off.
114 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
115                                cl::desc("Enable Software Pipelining"));
116 
117 /// A command line option to enable SWP at -Os.
118 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
119                                       cl::desc("Enable SWP at Os."), cl::Hidden,
120                                       cl::init(false));
121 
122 /// A command line argument to limit minimum initial interval for pipelining.
123 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
124                               cl::desc("Size limit for the MII."),
125                               cl::Hidden, cl::init(27));
126 
127 /// A command line argument to force pipeliner to use specified initial
128 /// interval.
129 static cl::opt<int> SwpForceII("pipeliner-force-ii",
130                                cl::desc("Force pipeliner to use specified II."),
131                                cl::Hidden, cl::init(-1));
132 
133 /// A command line argument to limit the number of stages in the pipeline.
134 static cl::opt<int>
135     SwpMaxStages("pipeliner-max-stages",
136                  cl::desc("Maximum stages allowed in the generated scheduled."),
137                  cl::Hidden, cl::init(3));
138 
139 /// A command line option to disable the pruning of chain dependences due to
140 /// an unrelated Phi.
141 static cl::opt<bool>
142     SwpPruneDeps("pipeliner-prune-deps",
143                  cl::desc("Prune dependences between unrelated Phi nodes."),
144                  cl::Hidden, cl::init(true));
145 
146 /// A command line option to disable the pruning of loop carried order
147 /// dependences.
148 static cl::opt<bool>
149     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
150                         cl::desc("Prune loop carried order dependences."),
151                         cl::Hidden, cl::init(true));
152 
153 #ifndef NDEBUG
154 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
155 #endif
156 
157 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
158                                      cl::ReallyHidden,
159                                      cl::desc("Ignore RecMII"));
160 
161 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
162                                     cl::init(false));
163 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
164                                       cl::init(false));
165 
166 static cl::opt<bool> EmitTestAnnotations(
167     "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
168     cl::desc("Instead of emitting the pipelined code, annotate instructions "
169              "with the generated schedule for feeding into the "
170              "-modulo-schedule-test pass"));
171 
172 static cl::opt<bool> ExperimentalCodeGen(
173     "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
174     cl::desc(
175         "Use the experimental peeling code generator for software pipelining"));
176 
177 namespace llvm {
178 
179 // A command line option to enable the CopyToPhi DAG mutation.
180 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
181                                  cl::init(true),
182                                  cl::desc("Enable CopyToPhi DAG Mutation"));
183 
184 /// A command line argument to force pipeliner to use specified issue
185 /// width.
186 cl::opt<int> SwpForceIssueWidth(
187     "pipeliner-force-issue-width",
188     cl::desc("Force pipeliner to use specified issue width."), cl::Hidden,
189     cl::init(-1));
190 
191 } // end namespace llvm
192 
193 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
194 char MachinePipeliner::ID = 0;
195 #ifndef NDEBUG
196 int MachinePipeliner::NumTries = 0;
197 #endif
198 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
199 
200 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
201                       "Modulo Software Pipelining", false, false)
202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
204 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
205 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
206 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
207                     "Modulo Software Pipelining", false, false)
208 
209 /// The "main" function for implementing Swing Modulo Scheduling.
210 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
211   if (skipFunction(mf.getFunction()))
212     return false;
213 
214   if (!EnableSWP)
215     return false;
216 
217   if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
218       !EnableSWPOptSize.getPosition())
219     return false;
220 
221   if (!mf.getSubtarget().enableMachinePipeliner())
222     return false;
223 
224   // Cannot pipeline loops without instruction itineraries if we are using
225   // DFA for the pipeliner.
226   if (mf.getSubtarget().useDFAforSMS() &&
227       (!mf.getSubtarget().getInstrItineraryData() ||
228        mf.getSubtarget().getInstrItineraryData()->isEmpty()))
229     return false;
230 
231   MF = &mf;
232   MLI = &getAnalysis<MachineLoopInfo>();
233   MDT = &getAnalysis<MachineDominatorTree>();
234   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
235   TII = MF->getSubtarget().getInstrInfo();
236   RegClassInfo.runOnMachineFunction(*MF);
237 
238   for (const auto &L : *MLI)
239     scheduleLoop(*L);
240 
241   return false;
242 }
243 
244 /// Attempt to perform the SMS algorithm on the specified loop. This function is
245 /// the main entry point for the algorithm.  The function identifies candidate
246 /// loops, calculates the minimum initiation interval, and attempts to schedule
247 /// the loop.
248 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
249   bool Changed = false;
250   for (const auto &InnerLoop : L)
251     Changed |= scheduleLoop(*InnerLoop);
252 
253 #ifndef NDEBUG
254   // Stop trying after reaching the limit (if any).
255   int Limit = SwpLoopLimit;
256   if (Limit >= 0) {
257     if (NumTries >= SwpLoopLimit)
258       return Changed;
259     NumTries++;
260   }
261 #endif
262 
263   setPragmaPipelineOptions(L);
264   if (!canPipelineLoop(L)) {
265     LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
266     ORE->emit([&]() {
267       return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
268                                              L.getStartLoc(), L.getHeader())
269              << "Failed to pipeline loop";
270     });
271 
272     LI.LoopPipelinerInfo.reset();
273     return Changed;
274   }
275 
276   ++NumTrytoPipeline;
277 
278   Changed = swingModuloScheduler(L);
279 
280   LI.LoopPipelinerInfo.reset();
281   return Changed;
282 }
283 
284 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
285   // Reset the pragma for the next loop in iteration.
286   disabledByPragma = false;
287   II_setByPragma = 0;
288 
289   MachineBasicBlock *LBLK = L.getTopBlock();
290 
291   if (LBLK == nullptr)
292     return;
293 
294   const BasicBlock *BBLK = LBLK->getBasicBlock();
295   if (BBLK == nullptr)
296     return;
297 
298   const Instruction *TI = BBLK->getTerminator();
299   if (TI == nullptr)
300     return;
301 
302   MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
303   if (LoopID == nullptr)
304     return;
305 
306   assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
307   assert(LoopID->getOperand(0) == LoopID && "invalid loop");
308 
309   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
310     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
311 
312     if (MD == nullptr)
313       continue;
314 
315     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
316 
317     if (S == nullptr)
318       continue;
319 
320     if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
321       assert(MD->getNumOperands() == 2 &&
322              "Pipeline initiation interval hint metadata should have two operands.");
323       II_setByPragma =
324           mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
325       assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
326     } else if (S->getString() == "llvm.loop.pipeline.disable") {
327       disabledByPragma = true;
328     }
329   }
330 }
331 
332 /// Return true if the loop can be software pipelined.  The algorithm is
333 /// restricted to loops with a single basic block.  Make sure that the
334 /// branch in the loop can be analyzed.
335 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
336   if (L.getNumBlocks() != 1) {
337     ORE->emit([&]() {
338       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
339                                                L.getStartLoc(), L.getHeader())
340              << "Not a single basic block: "
341              << ore::NV("NumBlocks", L.getNumBlocks());
342     });
343     return false;
344   }
345 
346   if (disabledByPragma) {
347     ORE->emit([&]() {
348       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349                                                L.getStartLoc(), L.getHeader())
350              << "Disabled by Pragma.";
351     });
352     return false;
353   }
354 
355   // Check if the branch can't be understood because we can't do pipelining
356   // if that's the case.
357   LI.TBB = nullptr;
358   LI.FBB = nullptr;
359   LI.BrCond.clear();
360   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
361     LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
362     NumFailBranch++;
363     ORE->emit([&]() {
364       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
365                                                L.getStartLoc(), L.getHeader())
366              << "The branch can't be understood";
367     });
368     return false;
369   }
370 
371   LI.LoopInductionVar = nullptr;
372   LI.LoopCompare = nullptr;
373   LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock());
374   if (!LI.LoopPipelinerInfo) {
375     LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
376     NumFailLoop++;
377     ORE->emit([&]() {
378       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
379                                                L.getStartLoc(), L.getHeader())
380              << "The loop structure is not supported";
381     });
382     return false;
383   }
384 
385   if (!L.getLoopPreheader()) {
386     LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
387     NumFailPreheader++;
388     ORE->emit([&]() {
389       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
390                                                L.getStartLoc(), L.getHeader())
391              << "No loop preheader found";
392     });
393     return false;
394   }
395 
396   // Remove any subregisters from inputs to phi nodes.
397   preprocessPhiNodes(*L.getHeader());
398   return true;
399 }
400 
401 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
402   MachineRegisterInfo &MRI = MF->getRegInfo();
403   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
404 
405   for (MachineInstr &PI : B.phis()) {
406     MachineOperand &DefOp = PI.getOperand(0);
407     assert(DefOp.getSubReg() == 0);
408     auto *RC = MRI.getRegClass(DefOp.getReg());
409 
410     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
411       MachineOperand &RegOp = PI.getOperand(i);
412       if (RegOp.getSubReg() == 0)
413         continue;
414 
415       // If the operand uses a subregister, replace it with a new register
416       // without subregisters, and generate a copy to the new register.
417       Register NewReg = MRI.createVirtualRegister(RC);
418       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
419       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
420       const DebugLoc &DL = PredB.findDebugLoc(At);
421       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
422                     .addReg(RegOp.getReg(), getRegState(RegOp),
423                             RegOp.getSubReg());
424       Slots.insertMachineInstrInMaps(*Copy);
425       RegOp.setReg(NewReg);
426       RegOp.setSubReg(0);
427     }
428   }
429 }
430 
431 /// The SMS algorithm consists of the following main steps:
432 /// 1. Computation and analysis of the dependence graph.
433 /// 2. Ordering of the nodes (instructions).
434 /// 3. Attempt to Schedule the loop.
435 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
436   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
437 
438   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
439                         II_setByPragma, LI.LoopPipelinerInfo.get());
440 
441   MachineBasicBlock *MBB = L.getHeader();
442   // The kernel should not include any terminator instructions.  These
443   // will be added back later.
444   SMS.startBlock(MBB);
445 
446   // Compute the number of 'real' instructions in the basic block by
447   // ignoring terminators.
448   unsigned size = MBB->size();
449   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
450                                    E = MBB->instr_end();
451        I != E; ++I, --size)
452     ;
453 
454   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
455   SMS.schedule();
456   SMS.exitRegion();
457 
458   SMS.finishBlock();
459   return SMS.hasNewSchedule();
460 }
461 
462 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
463   AU.addRequired<AAResultsWrapperPass>();
464   AU.addPreserved<AAResultsWrapperPass>();
465   AU.addRequired<MachineLoopInfo>();
466   AU.addRequired<MachineDominatorTree>();
467   AU.addRequired<LiveIntervals>();
468   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
469   MachineFunctionPass::getAnalysisUsage(AU);
470 }
471 
472 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
473   if (SwpForceII > 0)
474     MII = SwpForceII;
475   else if (II_setByPragma > 0)
476     MII = II_setByPragma;
477   else
478     MII = std::max(ResMII, RecMII);
479 }
480 
481 void SwingSchedulerDAG::setMAX_II() {
482   if (SwpForceII > 0)
483     MAX_II = SwpForceII;
484   else if (II_setByPragma > 0)
485     MAX_II = II_setByPragma;
486   else
487     MAX_II = MII + 10;
488 }
489 
490 /// We override the schedule function in ScheduleDAGInstrs to implement the
491 /// scheduling part of the Swing Modulo Scheduling algorithm.
492 void SwingSchedulerDAG::schedule() {
493   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
494   buildSchedGraph(AA);
495   addLoopCarriedDependences(AA);
496   updatePhiDependences();
497   Topo.InitDAGTopologicalSorting();
498   changeDependences();
499   postProcessDAG();
500   LLVM_DEBUG(dump());
501 
502   NodeSetType NodeSets;
503   findCircuits(NodeSets);
504   NodeSetType Circuits = NodeSets;
505 
506   // Calculate the MII.
507   unsigned ResMII = calculateResMII();
508   unsigned RecMII = calculateRecMII(NodeSets);
509 
510   fuseRecs(NodeSets);
511 
512   // This flag is used for testing and can cause correctness problems.
513   if (SwpIgnoreRecMII)
514     RecMII = 0;
515 
516   setMII(ResMII, RecMII);
517   setMAX_II();
518 
519   LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
520                     << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
521 
522   // Can't schedule a loop without a valid MII.
523   if (MII == 0) {
524     LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
525     NumFailZeroMII++;
526     Pass.ORE->emit([&]() {
527       return MachineOptimizationRemarkAnalysis(
528                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
529              << "Invalid Minimal Initiation Interval: 0";
530     });
531     return;
532   }
533 
534   // Don't pipeline large loops.
535   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
536     LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
537                       << ", we don't pipeline large loops\n");
538     NumFailLargeMaxMII++;
539     Pass.ORE->emit([&]() {
540       return MachineOptimizationRemarkAnalysis(
541                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
542              << "Minimal Initiation Interval too large: "
543              << ore::NV("MII", (int)MII) << " > "
544              << ore::NV("SwpMaxMii", SwpMaxMii) << "."
545              << "Refer to -pipeliner-max-mii.";
546     });
547     return;
548   }
549 
550   computeNodeFunctions(NodeSets);
551 
552   registerPressureFilter(NodeSets);
553 
554   colocateNodeSets(NodeSets);
555 
556   checkNodeSets(NodeSets);
557 
558   LLVM_DEBUG({
559     for (auto &I : NodeSets) {
560       dbgs() << "  Rec NodeSet ";
561       I.dump();
562     }
563   });
564 
565   llvm::stable_sort(NodeSets, std::greater<NodeSet>());
566 
567   groupRemainingNodes(NodeSets);
568 
569   removeDuplicateNodes(NodeSets);
570 
571   LLVM_DEBUG({
572     for (auto &I : NodeSets) {
573       dbgs() << "  NodeSet ";
574       I.dump();
575     }
576   });
577 
578   computeNodeOrder(NodeSets);
579 
580   // check for node order issues
581   checkValidNodeOrder(Circuits);
582 
583   SMSchedule Schedule(Pass.MF, this);
584   Scheduled = schedulePipeline(Schedule);
585 
586   if (!Scheduled){
587     LLVM_DEBUG(dbgs() << "No schedule found, return\n");
588     NumFailNoSchedule++;
589     Pass.ORE->emit([&]() {
590       return MachineOptimizationRemarkAnalysis(
591                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
592              << "Unable to find schedule";
593     });
594     return;
595   }
596 
597   unsigned numStages = Schedule.getMaxStageCount();
598   // No need to generate pipeline if there are no overlapped iterations.
599   if (numStages == 0) {
600     LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
601     NumFailZeroStage++;
602     Pass.ORE->emit([&]() {
603       return MachineOptimizationRemarkAnalysis(
604                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
605              << "No need to pipeline - no overlapped iterations in schedule.";
606     });
607     return;
608   }
609   // Check that the maximum stage count is less than user-defined limit.
610   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
611     LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
612                       << " : too many stages, abort\n");
613     NumFailLargeMaxStage++;
614     Pass.ORE->emit([&]() {
615       return MachineOptimizationRemarkAnalysis(
616                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
617              << "Too many stages in schedule: "
618              << ore::NV("numStages", (int)numStages) << " > "
619              << ore::NV("SwpMaxStages", SwpMaxStages)
620              << ". Refer to -pipeliner-max-stages.";
621     });
622     return;
623   }
624 
625   Pass.ORE->emit([&]() {
626     return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
627                                      Loop.getHeader())
628            << "Pipelined succesfully!";
629   });
630 
631   // Generate the schedule as a ModuloSchedule.
632   DenseMap<MachineInstr *, int> Cycles, Stages;
633   std::vector<MachineInstr *> OrderedInsts;
634   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
635        ++Cycle) {
636     for (SUnit *SU : Schedule.getInstructions(Cycle)) {
637       OrderedInsts.push_back(SU->getInstr());
638       Cycles[SU->getInstr()] = Cycle;
639       Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
640     }
641   }
642   DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
643   for (auto &KV : NewMIs) {
644     Cycles[KV.first] = Cycles[KV.second];
645     Stages[KV.first] = Stages[KV.second];
646     NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
647   }
648 
649   ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
650                     std::move(Stages));
651   if (EmitTestAnnotations) {
652     assert(NewInstrChanges.empty() &&
653            "Cannot serialize a schedule with InstrChanges!");
654     ModuloScheduleTestAnnotater MSTI(MF, MS);
655     MSTI.annotate();
656     return;
657   }
658   // The experimental code generator can't work if there are InstChanges.
659   if (ExperimentalCodeGen && NewInstrChanges.empty()) {
660     PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
661     MSE.expand();
662   } else {
663     ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
664     MSE.expand();
665     MSE.cleanup();
666   }
667   ++NumPipelined;
668 }
669 
670 /// Clean up after the software pipeliner runs.
671 void SwingSchedulerDAG::finishBlock() {
672   for (auto &KV : NewMIs)
673     MF.deleteMachineInstr(KV.second);
674   NewMIs.clear();
675 
676   // Call the superclass.
677   ScheduleDAGInstrs::finishBlock();
678 }
679 
680 /// Return the register values for  the operands of a Phi instruction.
681 /// This function assume the instruction is a Phi.
682 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
683                        unsigned &InitVal, unsigned &LoopVal) {
684   assert(Phi.isPHI() && "Expecting a Phi.");
685 
686   InitVal = 0;
687   LoopVal = 0;
688   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
689     if (Phi.getOperand(i + 1).getMBB() != Loop)
690       InitVal = Phi.getOperand(i).getReg();
691     else
692       LoopVal = Phi.getOperand(i).getReg();
693 
694   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
695 }
696 
697 /// Return the Phi register value that comes the loop block.
698 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
699   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
700     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
701       return Phi.getOperand(i).getReg();
702   return 0;
703 }
704 
705 /// Return true if SUb can be reached from SUa following the chain edges.
706 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
707   SmallPtrSet<SUnit *, 8> Visited;
708   SmallVector<SUnit *, 8> Worklist;
709   Worklist.push_back(SUa);
710   while (!Worklist.empty()) {
711     const SUnit *SU = Worklist.pop_back_val();
712     for (const auto &SI : SU->Succs) {
713       SUnit *SuccSU = SI.getSUnit();
714       if (SI.getKind() == SDep::Order) {
715         if (Visited.count(SuccSU))
716           continue;
717         if (SuccSU == SUb)
718           return true;
719         Worklist.push_back(SuccSU);
720         Visited.insert(SuccSU);
721       }
722     }
723   }
724   return false;
725 }
726 
727 /// Return true if the instruction causes a chain between memory
728 /// references before and after it.
729 static bool isDependenceBarrier(MachineInstr &MI) {
730   return MI.isCall() || MI.mayRaiseFPException() ||
731          MI.hasUnmodeledSideEffects() ||
732          (MI.hasOrderedMemoryRef() &&
733           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
734 }
735 
736 /// Return the underlying objects for the memory references of an instruction.
737 /// This function calls the code in ValueTracking, but first checks that the
738 /// instruction has a memory operand.
739 static void getUnderlyingObjects(const MachineInstr *MI,
740                                  SmallVectorImpl<const Value *> &Objs) {
741   if (!MI->hasOneMemOperand())
742     return;
743   MachineMemOperand *MM = *MI->memoperands_begin();
744   if (!MM->getValue())
745     return;
746   getUnderlyingObjects(MM->getValue(), Objs);
747   for (const Value *V : Objs) {
748     if (!isIdentifiedObject(V)) {
749       Objs.clear();
750       return;
751     }
752     Objs.push_back(V);
753   }
754 }
755 
756 /// Add a chain edge between a load and store if the store can be an
757 /// alias of the load on a subsequent iteration, i.e., a loop carried
758 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
759 /// but that code doesn't create loop carried dependences.
760 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
761   MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
762   Value *UnknownValue =
763     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
764   for (auto &SU : SUnits) {
765     MachineInstr &MI = *SU.getInstr();
766     if (isDependenceBarrier(MI))
767       PendingLoads.clear();
768     else if (MI.mayLoad()) {
769       SmallVector<const Value *, 4> Objs;
770       ::getUnderlyingObjects(&MI, Objs);
771       if (Objs.empty())
772         Objs.push_back(UnknownValue);
773       for (const auto *V : Objs) {
774         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
775         SUs.push_back(&SU);
776       }
777     } else if (MI.mayStore()) {
778       SmallVector<const Value *, 4> Objs;
779       ::getUnderlyingObjects(&MI, Objs);
780       if (Objs.empty())
781         Objs.push_back(UnknownValue);
782       for (const auto *V : Objs) {
783         MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
784             PendingLoads.find(V);
785         if (I == PendingLoads.end())
786           continue;
787         for (auto *Load : I->second) {
788           if (isSuccOrder(Load, &SU))
789             continue;
790           MachineInstr &LdMI = *Load->getInstr();
791           // First, perform the cheaper check that compares the base register.
792           // If they are the same and the load offset is less than the store
793           // offset, then mark the dependence as loop carried potentially.
794           const MachineOperand *BaseOp1, *BaseOp2;
795           int64_t Offset1, Offset2;
796           bool Offset1IsScalable, Offset2IsScalable;
797           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
798                                            Offset1IsScalable, TRI) &&
799               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
800                                            Offset2IsScalable, TRI)) {
801             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
802                 Offset1IsScalable == Offset2IsScalable &&
803                 (int)Offset1 < (int)Offset2) {
804               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
805                      "What happened to the chain edge?");
806               SDep Dep(Load, SDep::Barrier);
807               Dep.setLatency(1);
808               SU.addPred(Dep);
809               continue;
810             }
811           }
812           // Second, the more expensive check that uses alias analysis on the
813           // base registers. If they alias, and the load offset is less than
814           // the store offset, the mark the dependence as loop carried.
815           if (!AA) {
816             SDep Dep(Load, SDep::Barrier);
817             Dep.setLatency(1);
818             SU.addPred(Dep);
819             continue;
820           }
821           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
822           MachineMemOperand *MMO2 = *MI.memoperands_begin();
823           if (!MMO1->getValue() || !MMO2->getValue()) {
824             SDep Dep(Load, SDep::Barrier);
825             Dep.setLatency(1);
826             SU.addPred(Dep);
827             continue;
828           }
829           if (MMO1->getValue() == MMO2->getValue() &&
830               MMO1->getOffset() <= MMO2->getOffset()) {
831             SDep Dep(Load, SDep::Barrier);
832             Dep.setLatency(1);
833             SU.addPred(Dep);
834             continue;
835           }
836           if (!AA->isNoAlias(
837                   MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
838                   MemoryLocation::getAfter(MMO2->getValue(),
839                                            MMO2->getAAInfo()))) {
840             SDep Dep(Load, SDep::Barrier);
841             Dep.setLatency(1);
842             SU.addPred(Dep);
843           }
844         }
845       }
846     }
847   }
848 }
849 
850 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
851 /// processes dependences for PHIs. This function adds true dependences
852 /// from a PHI to a use, and a loop carried dependence from the use to the
853 /// PHI. The loop carried dependence is represented as an anti dependence
854 /// edge. This function also removes chain dependences between unrelated
855 /// PHIs.
856 void SwingSchedulerDAG::updatePhiDependences() {
857   SmallVector<SDep, 4> RemoveDeps;
858   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
859 
860   // Iterate over each DAG node.
861   for (SUnit &I : SUnits) {
862     RemoveDeps.clear();
863     // Set to true if the instruction has an operand defined by a Phi.
864     unsigned HasPhiUse = 0;
865     unsigned HasPhiDef = 0;
866     MachineInstr *MI = I.getInstr();
867     // Iterate over each operand, and we process the definitions.
868     for (const MachineOperand &MO : MI->operands()) {
869       if (!MO.isReg())
870         continue;
871       Register Reg = MO.getReg();
872       if (MO.isDef()) {
873         // If the register is used by a Phi, then create an anti dependence.
874         for (MachineRegisterInfo::use_instr_iterator
875                  UI = MRI.use_instr_begin(Reg),
876                  UE = MRI.use_instr_end();
877              UI != UE; ++UI) {
878           MachineInstr *UseMI = &*UI;
879           SUnit *SU = getSUnit(UseMI);
880           if (SU != nullptr && UseMI->isPHI()) {
881             if (!MI->isPHI()) {
882               SDep Dep(SU, SDep::Anti, Reg);
883               Dep.setLatency(1);
884               I.addPred(Dep);
885             } else {
886               HasPhiDef = Reg;
887               // Add a chain edge to a dependent Phi that isn't an existing
888               // predecessor.
889               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
890                 I.addPred(SDep(SU, SDep::Barrier));
891             }
892           }
893         }
894       } else if (MO.isUse()) {
895         // If the register is defined by a Phi, then create a true dependence.
896         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
897         if (DefMI == nullptr)
898           continue;
899         SUnit *SU = getSUnit(DefMI);
900         if (SU != nullptr && DefMI->isPHI()) {
901           if (!MI->isPHI()) {
902             SDep Dep(SU, SDep::Data, Reg);
903             Dep.setLatency(0);
904             ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep);
905             I.addPred(Dep);
906           } else {
907             HasPhiUse = Reg;
908             // Add a chain edge to a dependent Phi that isn't an existing
909             // predecessor.
910             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
911               I.addPred(SDep(SU, SDep::Barrier));
912           }
913         }
914       }
915     }
916     // Remove order dependences from an unrelated Phi.
917     if (!SwpPruneDeps)
918       continue;
919     for (auto &PI : I.Preds) {
920       MachineInstr *PMI = PI.getSUnit()->getInstr();
921       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
922         if (I.getInstr()->isPHI()) {
923           if (PMI->getOperand(0).getReg() == HasPhiUse)
924             continue;
925           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
926             continue;
927         }
928         RemoveDeps.push_back(PI);
929       }
930     }
931     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
932       I.removePred(RemoveDeps[i]);
933   }
934 }
935 
936 /// Iterate over each DAG node and see if we can change any dependences
937 /// in order to reduce the recurrence MII.
938 void SwingSchedulerDAG::changeDependences() {
939   // See if an instruction can use a value from the previous iteration.
940   // If so, we update the base and offset of the instruction and change
941   // the dependences.
942   for (SUnit &I : SUnits) {
943     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
944     int64_t NewOffset = 0;
945     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
946                                NewOffset))
947       continue;
948 
949     // Get the MI and SUnit for the instruction that defines the original base.
950     Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
951     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
952     if (!DefMI)
953       continue;
954     SUnit *DefSU = getSUnit(DefMI);
955     if (!DefSU)
956       continue;
957     // Get the MI and SUnit for the instruction that defins the new base.
958     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
959     if (!LastMI)
960       continue;
961     SUnit *LastSU = getSUnit(LastMI);
962     if (!LastSU)
963       continue;
964 
965     if (Topo.IsReachable(&I, LastSU))
966       continue;
967 
968     // Remove the dependence. The value now depends on a prior iteration.
969     SmallVector<SDep, 4> Deps;
970     for (const SDep &P : I.Preds)
971       if (P.getSUnit() == DefSU)
972         Deps.push_back(P);
973     for (int i = 0, e = Deps.size(); i != e; i++) {
974       Topo.RemovePred(&I, Deps[i].getSUnit());
975       I.removePred(Deps[i]);
976     }
977     // Remove the chain dependence between the instructions.
978     Deps.clear();
979     for (auto &P : LastSU->Preds)
980       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
981         Deps.push_back(P);
982     for (int i = 0, e = Deps.size(); i != e; i++) {
983       Topo.RemovePred(LastSU, Deps[i].getSUnit());
984       LastSU->removePred(Deps[i]);
985     }
986 
987     // Add a dependence between the new instruction and the instruction
988     // that defines the new base.
989     SDep Dep(&I, SDep::Anti, NewBase);
990     Topo.AddPred(LastSU, &I);
991     LastSU->addPred(Dep);
992 
993     // Remember the base and offset information so that we can update the
994     // instruction during code generation.
995     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
996   }
997 }
998 
999 namespace {
1000 
1001 // FuncUnitSorter - Comparison operator used to sort instructions by
1002 // the number of functional unit choices.
1003 struct FuncUnitSorter {
1004   const InstrItineraryData *InstrItins;
1005   const MCSubtargetInfo *STI;
1006   DenseMap<InstrStage::FuncUnits, unsigned> Resources;
1007 
1008   FuncUnitSorter(const TargetSubtargetInfo &TSI)
1009       : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
1010 
1011   // Compute the number of functional unit alternatives needed
1012   // at each stage, and take the minimum value. We prioritize the
1013   // instructions by the least number of choices first.
1014   unsigned minFuncUnits(const MachineInstr *Inst,
1015                         InstrStage::FuncUnits &F) const {
1016     unsigned SchedClass = Inst->getDesc().getSchedClass();
1017     unsigned min = UINT_MAX;
1018     if (InstrItins && !InstrItins->isEmpty()) {
1019       for (const InstrStage &IS :
1020            make_range(InstrItins->beginStage(SchedClass),
1021                       InstrItins->endStage(SchedClass))) {
1022         InstrStage::FuncUnits funcUnits = IS.getUnits();
1023         unsigned numAlternatives = llvm::popcount(funcUnits);
1024         if (numAlternatives < min) {
1025           min = numAlternatives;
1026           F = funcUnits;
1027         }
1028       }
1029       return min;
1030     }
1031     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1032       const MCSchedClassDesc *SCDesc =
1033           STI->getSchedModel().getSchedClassDesc(SchedClass);
1034       if (!SCDesc->isValid())
1035         // No valid Schedule Class Desc for schedClass, should be
1036         // Pseudo/PostRAPseudo
1037         return min;
1038 
1039       for (const MCWriteProcResEntry &PRE :
1040            make_range(STI->getWriteProcResBegin(SCDesc),
1041                       STI->getWriteProcResEnd(SCDesc))) {
1042         if (!PRE.Cycles)
1043           continue;
1044         const MCProcResourceDesc *ProcResource =
1045             STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1046         unsigned NumUnits = ProcResource->NumUnits;
1047         if (NumUnits < min) {
1048           min = NumUnits;
1049           F = PRE.ProcResourceIdx;
1050         }
1051       }
1052       return min;
1053     }
1054     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1055   }
1056 
1057   // Compute the critical resources needed by the instruction. This
1058   // function records the functional units needed by instructions that
1059   // must use only one functional unit. We use this as a tie breaker
1060   // for computing the resource MII. The instrutions that require
1061   // the same, highly used, functional unit have high priority.
1062   void calcCriticalResources(MachineInstr &MI) {
1063     unsigned SchedClass = MI.getDesc().getSchedClass();
1064     if (InstrItins && !InstrItins->isEmpty()) {
1065       for (const InstrStage &IS :
1066            make_range(InstrItins->beginStage(SchedClass),
1067                       InstrItins->endStage(SchedClass))) {
1068         InstrStage::FuncUnits FuncUnits = IS.getUnits();
1069         if (llvm::popcount(FuncUnits) == 1)
1070           Resources[FuncUnits]++;
1071       }
1072       return;
1073     }
1074     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1075       const MCSchedClassDesc *SCDesc =
1076           STI->getSchedModel().getSchedClassDesc(SchedClass);
1077       if (!SCDesc->isValid())
1078         // No valid Schedule Class Desc for schedClass, should be
1079         // Pseudo/PostRAPseudo
1080         return;
1081 
1082       for (const MCWriteProcResEntry &PRE :
1083            make_range(STI->getWriteProcResBegin(SCDesc),
1084                       STI->getWriteProcResEnd(SCDesc))) {
1085         if (!PRE.Cycles)
1086           continue;
1087         Resources[PRE.ProcResourceIdx]++;
1088       }
1089       return;
1090     }
1091     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1092   }
1093 
1094   /// Return true if IS1 has less priority than IS2.
1095   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1096     InstrStage::FuncUnits F1 = 0, F2 = 0;
1097     unsigned MFUs1 = minFuncUnits(IS1, F1);
1098     unsigned MFUs2 = minFuncUnits(IS2, F2);
1099     if (MFUs1 == MFUs2)
1100       return Resources.lookup(F1) < Resources.lookup(F2);
1101     return MFUs1 > MFUs2;
1102   }
1103 };
1104 
1105 } // end anonymous namespace
1106 
1107 /// Calculate the resource constrained minimum initiation interval for the
1108 /// specified loop. We use the DFA to model the resources needed for
1109 /// each instruction, and we ignore dependences. A different DFA is created
1110 /// for each cycle that is required. When adding a new instruction, we attempt
1111 /// to add it to each existing DFA, until a legal space is found. If the
1112 /// instruction cannot be reserved in an existing DFA, we create a new one.
1113 unsigned SwingSchedulerDAG::calculateResMII() {
1114   LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1115   ResourceManager RM(&MF.getSubtarget(), this);
1116   return RM.calculateResMII();
1117 }
1118 
1119 /// Calculate the recurrence-constrainted minimum initiation interval.
1120 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
1121 /// for each circuit. The II needs to satisfy the inequality
1122 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1123 /// II that satisfies the inequality, and the RecMII is the maximum
1124 /// of those values.
1125 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1126   unsigned RecMII = 0;
1127 
1128   for (NodeSet &Nodes : NodeSets) {
1129     if (Nodes.empty())
1130       continue;
1131 
1132     unsigned Delay = Nodes.getLatency();
1133     unsigned Distance = 1;
1134 
1135     // ii = ceil(delay / distance)
1136     unsigned CurMII = (Delay + Distance - 1) / Distance;
1137     Nodes.setRecMII(CurMII);
1138     if (CurMII > RecMII)
1139       RecMII = CurMII;
1140   }
1141 
1142   return RecMII;
1143 }
1144 
1145 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1146 /// but we do this to find the circuits, and then change them back.
1147 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1148   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1149   for (SUnit &SU : SUnits) {
1150     for (SDep &Pred : SU.Preds)
1151       if (Pred.getKind() == SDep::Anti)
1152         DepsAdded.push_back(std::make_pair(&SU, Pred));
1153   }
1154   for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1155     // Remove this anti dependency and add one in the reverse direction.
1156     SUnit *SU = P.first;
1157     SDep &D = P.second;
1158     SUnit *TargetSU = D.getSUnit();
1159     unsigned Reg = D.getReg();
1160     unsigned Lat = D.getLatency();
1161     SU->removePred(D);
1162     SDep Dep(SU, SDep::Anti, Reg);
1163     Dep.setLatency(Lat);
1164     TargetSU->addPred(Dep);
1165   }
1166 }
1167 
1168 /// Create the adjacency structure of the nodes in the graph.
1169 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1170     SwingSchedulerDAG *DAG) {
1171   BitVector Added(SUnits.size());
1172   DenseMap<int, int> OutputDeps;
1173   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1174     Added.reset();
1175     // Add any successor to the adjacency matrix and exclude duplicates.
1176     for (auto &SI : SUnits[i].Succs) {
1177       // Only create a back-edge on the first and last nodes of a dependence
1178       // chain. This records any chains and adds them later.
1179       if (SI.getKind() == SDep::Output) {
1180         int N = SI.getSUnit()->NodeNum;
1181         int BackEdge = i;
1182         auto Dep = OutputDeps.find(BackEdge);
1183         if (Dep != OutputDeps.end()) {
1184           BackEdge = Dep->second;
1185           OutputDeps.erase(Dep);
1186         }
1187         OutputDeps[N] = BackEdge;
1188       }
1189       // Do not process a boundary node, an artificial node.
1190       // A back-edge is processed only if it goes to a Phi.
1191       if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1192           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1193         continue;
1194       int N = SI.getSUnit()->NodeNum;
1195       if (!Added.test(N)) {
1196         AdjK[i].push_back(N);
1197         Added.set(N);
1198       }
1199     }
1200     // A chain edge between a store and a load is treated as a back-edge in the
1201     // adjacency matrix.
1202     for (auto &PI : SUnits[i].Preds) {
1203       if (!SUnits[i].getInstr()->mayStore() ||
1204           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1205         continue;
1206       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1207         int N = PI.getSUnit()->NodeNum;
1208         if (!Added.test(N)) {
1209           AdjK[i].push_back(N);
1210           Added.set(N);
1211         }
1212       }
1213     }
1214   }
1215   // Add back-edges in the adjacency matrix for the output dependences.
1216   for (auto &OD : OutputDeps)
1217     if (!Added.test(OD.second)) {
1218       AdjK[OD.first].push_back(OD.second);
1219       Added.set(OD.second);
1220     }
1221 }
1222 
1223 /// Identify an elementary circuit in the dependence graph starting at the
1224 /// specified node.
1225 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1226                                           bool HasBackedge) {
1227   SUnit *SV = &SUnits[V];
1228   bool F = false;
1229   Stack.insert(SV);
1230   Blocked.set(V);
1231 
1232   for (auto W : AdjK[V]) {
1233     if (NumPaths > MaxPaths)
1234       break;
1235     if (W < S)
1236       continue;
1237     if (W == S) {
1238       if (!HasBackedge)
1239         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1240       F = true;
1241       ++NumPaths;
1242       break;
1243     } else if (!Blocked.test(W)) {
1244       if (circuit(W, S, NodeSets,
1245                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1246         F = true;
1247     }
1248   }
1249 
1250   if (F)
1251     unblock(V);
1252   else {
1253     for (auto W : AdjK[V]) {
1254       if (W < S)
1255         continue;
1256       B[W].insert(SV);
1257     }
1258   }
1259   Stack.pop_back();
1260   return F;
1261 }
1262 
1263 /// Unblock a node in the circuit finding algorithm.
1264 void SwingSchedulerDAG::Circuits::unblock(int U) {
1265   Blocked.reset(U);
1266   SmallPtrSet<SUnit *, 4> &BU = B[U];
1267   while (!BU.empty()) {
1268     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1269     assert(SI != BU.end() && "Invalid B set.");
1270     SUnit *W = *SI;
1271     BU.erase(W);
1272     if (Blocked.test(W->NodeNum))
1273       unblock(W->NodeNum);
1274   }
1275 }
1276 
1277 /// Identify all the elementary circuits in the dependence graph using
1278 /// Johnson's circuit algorithm.
1279 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1280   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1281   // but we do this to find the circuits, and then change them back.
1282   swapAntiDependences(SUnits);
1283 
1284   Circuits Cir(SUnits, Topo);
1285   // Create the adjacency structure.
1286   Cir.createAdjacencyStructure(this);
1287   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1288     Cir.reset();
1289     Cir.circuit(i, i, NodeSets);
1290   }
1291 
1292   // Change the dependences back so that we've created a DAG again.
1293   swapAntiDependences(SUnits);
1294 }
1295 
1296 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1297 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1298 // additional copies that are needed across iterations. An artificial dependence
1299 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1300 
1301 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1302 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1303 // PHI-------True-Dep------> USEOfPhi
1304 
1305 // The mutation creates
1306 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1307 
1308 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1309 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1310 // late  to avoid additional copies across iterations. The possible scheduling
1311 // order would be
1312 // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
1313 
1314 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1315   for (SUnit &SU : DAG->SUnits) {
1316     // Find the COPY/REG_SEQUENCE instruction.
1317     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1318       continue;
1319 
1320     // Record the loop carried PHIs.
1321     SmallVector<SUnit *, 4> PHISUs;
1322     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1323     SmallVector<SUnit *, 4> SrcSUs;
1324 
1325     for (auto &Dep : SU.Preds) {
1326       SUnit *TmpSU = Dep.getSUnit();
1327       MachineInstr *TmpMI = TmpSU->getInstr();
1328       SDep::Kind DepKind = Dep.getKind();
1329       // Save the loop carried PHI.
1330       if (DepKind == SDep::Anti && TmpMI->isPHI())
1331         PHISUs.push_back(TmpSU);
1332       // Save the source of COPY/REG_SEQUENCE.
1333       // If the source has no pre-decessors, we will end up creating cycles.
1334       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1335         SrcSUs.push_back(TmpSU);
1336     }
1337 
1338     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1339       continue;
1340 
1341     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1342     // SUnit to the container.
1343     SmallVector<SUnit *, 8> UseSUs;
1344     // Do not use iterator based loop here as we are updating the container.
1345     for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1346       for (auto &Dep : PHISUs[Index]->Succs) {
1347         if (Dep.getKind() != SDep::Data)
1348           continue;
1349 
1350         SUnit *TmpSU = Dep.getSUnit();
1351         MachineInstr *TmpMI = TmpSU->getInstr();
1352         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1353           PHISUs.push_back(TmpSU);
1354           continue;
1355         }
1356         UseSUs.push_back(TmpSU);
1357       }
1358     }
1359 
1360     if (UseSUs.size() == 0)
1361       continue;
1362 
1363     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1364     // Add the artificial dependencies if it does not form a cycle.
1365     for (auto *I : UseSUs) {
1366       for (auto *Src : SrcSUs) {
1367         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1368           Src->addPred(SDep(I, SDep::Artificial));
1369           SDAG->Topo.AddPred(Src, I);
1370         }
1371       }
1372     }
1373   }
1374 }
1375 
1376 /// Return true for DAG nodes that we ignore when computing the cost functions.
1377 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1378 /// in the calculation of the ASAP, ALAP, etc functions.
1379 static bool ignoreDependence(const SDep &D, bool isPred) {
1380   if (D.isArtificial() || D.getSUnit()->isBoundaryNode())
1381     return true;
1382   return D.getKind() == SDep::Anti && isPred;
1383 }
1384 
1385 /// Compute several functions need to order the nodes for scheduling.
1386 ///  ASAP - Earliest time to schedule a node.
1387 ///  ALAP - Latest time to schedule a node.
1388 ///  MOV - Mobility function, difference between ALAP and ASAP.
1389 ///  D - Depth of each node.
1390 ///  H - Height of each node.
1391 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1392   ScheduleInfo.resize(SUnits.size());
1393 
1394   LLVM_DEBUG({
1395     for (int I : Topo) {
1396       const SUnit &SU = SUnits[I];
1397       dumpNode(SU);
1398     }
1399   });
1400 
1401   int maxASAP = 0;
1402   // Compute ASAP and ZeroLatencyDepth.
1403   for (int I : Topo) {
1404     int asap = 0;
1405     int zeroLatencyDepth = 0;
1406     SUnit *SU = &SUnits[I];
1407     for (const SDep &P : SU->Preds) {
1408       SUnit *pred = P.getSUnit();
1409       if (P.getLatency() == 0)
1410         zeroLatencyDepth =
1411             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1412       if (ignoreDependence(P, true))
1413         continue;
1414       asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
1415                                   getDistance(pred, SU, P) * MII));
1416     }
1417     maxASAP = std::max(maxASAP, asap);
1418     ScheduleInfo[I].ASAP = asap;
1419     ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1420   }
1421 
1422   // Compute ALAP, ZeroLatencyHeight, and MOV.
1423   for (int I : llvm::reverse(Topo)) {
1424     int alap = maxASAP;
1425     int zeroLatencyHeight = 0;
1426     SUnit *SU = &SUnits[I];
1427     for (const SDep &S : SU->Succs) {
1428       SUnit *succ = S.getSUnit();
1429       if (succ->isBoundaryNode())
1430         continue;
1431       if (S.getLatency() == 0)
1432         zeroLatencyHeight =
1433             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1434       if (ignoreDependence(S, true))
1435         continue;
1436       alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
1437                                   getDistance(SU, succ, S) * MII));
1438     }
1439 
1440     ScheduleInfo[I].ALAP = alap;
1441     ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1442   }
1443 
1444   // After computing the node functions, compute the summary for each node set.
1445   for (NodeSet &I : NodeSets)
1446     I.computeNodeSetInfo(this);
1447 
1448   LLVM_DEBUG({
1449     for (unsigned i = 0; i < SUnits.size(); i++) {
1450       dbgs() << "\tNode " << i << ":\n";
1451       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1452       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1453       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1454       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1455       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
1456       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1457       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1458     }
1459   });
1460 }
1461 
1462 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1463 /// as the predecessors of the elements of NodeOrder that are not also in
1464 /// NodeOrder.
1465 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1466                    SmallSetVector<SUnit *, 8> &Preds,
1467                    const NodeSet *S = nullptr) {
1468   Preds.clear();
1469   for (const SUnit *SU : NodeOrder) {
1470     for (const SDep &Pred : SU->Preds) {
1471       if (S && S->count(Pred.getSUnit()) == 0)
1472         continue;
1473       if (ignoreDependence(Pred, true))
1474         continue;
1475       if (NodeOrder.count(Pred.getSUnit()) == 0)
1476         Preds.insert(Pred.getSUnit());
1477     }
1478     // Back-edges are predecessors with an anti-dependence.
1479     for (const SDep &Succ : SU->Succs) {
1480       if (Succ.getKind() != SDep::Anti)
1481         continue;
1482       if (S && S->count(Succ.getSUnit()) == 0)
1483         continue;
1484       if (NodeOrder.count(Succ.getSUnit()) == 0)
1485         Preds.insert(Succ.getSUnit());
1486     }
1487   }
1488   return !Preds.empty();
1489 }
1490 
1491 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1492 /// as the successors of the elements of NodeOrder that are not also in
1493 /// NodeOrder.
1494 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1495                    SmallSetVector<SUnit *, 8> &Succs,
1496                    const NodeSet *S = nullptr) {
1497   Succs.clear();
1498   for (const SUnit *SU : NodeOrder) {
1499     for (const SDep &Succ : SU->Succs) {
1500       if (S && S->count(Succ.getSUnit()) == 0)
1501         continue;
1502       if (ignoreDependence(Succ, false))
1503         continue;
1504       if (NodeOrder.count(Succ.getSUnit()) == 0)
1505         Succs.insert(Succ.getSUnit());
1506     }
1507     for (const SDep &Pred : SU->Preds) {
1508       if (Pred.getKind() != SDep::Anti)
1509         continue;
1510       if (S && S->count(Pred.getSUnit()) == 0)
1511         continue;
1512       if (NodeOrder.count(Pred.getSUnit()) == 0)
1513         Succs.insert(Pred.getSUnit());
1514     }
1515   }
1516   return !Succs.empty();
1517 }
1518 
1519 /// Return true if there is a path from the specified node to any of the nodes
1520 /// in DestNodes. Keep track and return the nodes in any path.
1521 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1522                         SetVector<SUnit *> &DestNodes,
1523                         SetVector<SUnit *> &Exclude,
1524                         SmallPtrSet<SUnit *, 8> &Visited) {
1525   if (Cur->isBoundaryNode())
1526     return false;
1527   if (Exclude.contains(Cur))
1528     return false;
1529   if (DestNodes.contains(Cur))
1530     return true;
1531   if (!Visited.insert(Cur).second)
1532     return Path.contains(Cur);
1533   bool FoundPath = false;
1534   for (auto &SI : Cur->Succs)
1535     if (!ignoreDependence(SI, false))
1536       FoundPath |=
1537           computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1538   for (auto &PI : Cur->Preds)
1539     if (PI.getKind() == SDep::Anti)
1540       FoundPath |=
1541           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1542   if (FoundPath)
1543     Path.insert(Cur);
1544   return FoundPath;
1545 }
1546 
1547 /// Compute the live-out registers for the instructions in a node-set.
1548 /// The live-out registers are those that are defined in the node-set,
1549 /// but not used. Except for use operands of Phis.
1550 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1551                             NodeSet &NS) {
1552   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1553   MachineRegisterInfo &MRI = MF.getRegInfo();
1554   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1555   SmallSet<unsigned, 4> Uses;
1556   for (SUnit *SU : NS) {
1557     const MachineInstr *MI = SU->getInstr();
1558     if (MI->isPHI())
1559       continue;
1560     for (const MachineOperand &MO : MI->all_uses()) {
1561       Register Reg = MO.getReg();
1562       if (Reg.isVirtual())
1563         Uses.insert(Reg);
1564       else if (MRI.isAllocatable(Reg))
1565         for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
1566           Uses.insert(Unit);
1567     }
1568   }
1569   for (SUnit *SU : NS)
1570     for (const MachineOperand &MO : SU->getInstr()->all_defs())
1571       if (!MO.isDead()) {
1572         Register Reg = MO.getReg();
1573         if (Reg.isVirtual()) {
1574           if (!Uses.count(Reg))
1575             LiveOutRegs.push_back(RegisterMaskPair(Reg,
1576                                                    LaneBitmask::getNone()));
1577         } else if (MRI.isAllocatable(Reg)) {
1578           for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
1579             if (!Uses.count(Unit))
1580               LiveOutRegs.push_back(
1581                   RegisterMaskPair(Unit, LaneBitmask::getNone()));
1582         }
1583       }
1584   RPTracker.addLiveRegs(LiveOutRegs);
1585 }
1586 
1587 /// A heuristic to filter nodes in recurrent node-sets if the register
1588 /// pressure of a set is too high.
1589 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1590   for (auto &NS : NodeSets) {
1591     // Skip small node-sets since they won't cause register pressure problems.
1592     if (NS.size() <= 2)
1593       continue;
1594     IntervalPressure RecRegPressure;
1595     RegPressureTracker RecRPTracker(RecRegPressure);
1596     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1597     computeLiveOuts(MF, RecRPTracker, NS);
1598     RecRPTracker.closeBottom();
1599 
1600     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1601     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1602       return A->NodeNum > B->NodeNum;
1603     });
1604 
1605     for (auto &SU : SUnits) {
1606       // Since we're computing the register pressure for a subset of the
1607       // instructions in a block, we need to set the tracker for each
1608       // instruction in the node-set. The tracker is set to the instruction
1609       // just after the one we're interested in.
1610       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1611       RecRPTracker.setPos(std::next(CurInstI));
1612 
1613       RegPressureDelta RPDelta;
1614       ArrayRef<PressureChange> CriticalPSets;
1615       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1616                                              CriticalPSets,
1617                                              RecRegPressure.MaxSetPressure);
1618       if (RPDelta.Excess.isValid()) {
1619         LLVM_DEBUG(
1620             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1621                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1622                    << ":" << RPDelta.Excess.getUnitInc() << "\n");
1623         NS.setExceedPressure(SU);
1624         break;
1625       }
1626       RecRPTracker.recede();
1627     }
1628   }
1629 }
1630 
1631 /// A heuristic to colocate node sets that have the same set of
1632 /// successors.
1633 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1634   unsigned Colocate = 0;
1635   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1636     NodeSet &N1 = NodeSets[i];
1637     SmallSetVector<SUnit *, 8> S1;
1638     if (N1.empty() || !succ_L(N1, S1))
1639       continue;
1640     for (int j = i + 1; j < e; ++j) {
1641       NodeSet &N2 = NodeSets[j];
1642       if (N1.compareRecMII(N2) != 0)
1643         continue;
1644       SmallSetVector<SUnit *, 8> S2;
1645       if (N2.empty() || !succ_L(N2, S2))
1646         continue;
1647       if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1648         N1.setColocate(++Colocate);
1649         N2.setColocate(Colocate);
1650         break;
1651       }
1652     }
1653   }
1654 }
1655 
1656 /// Check if the existing node-sets are profitable. If not, then ignore the
1657 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1658 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1659 /// then it's best to try to schedule all instructions together instead of
1660 /// starting with the recurrent node-sets.
1661 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1662   // Look for loops with a large MII.
1663   if (MII < 17)
1664     return;
1665   // Check if the node-set contains only a simple add recurrence.
1666   for (auto &NS : NodeSets) {
1667     if (NS.getRecMII() > 2)
1668       return;
1669     if (NS.getMaxDepth() > MII)
1670       return;
1671   }
1672   NodeSets.clear();
1673   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1674 }
1675 
1676 /// Add the nodes that do not belong to a recurrence set into groups
1677 /// based upon connected components.
1678 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1679   SetVector<SUnit *> NodesAdded;
1680   SmallPtrSet<SUnit *, 8> Visited;
1681   // Add the nodes that are on a path between the previous node sets and
1682   // the current node set.
1683   for (NodeSet &I : NodeSets) {
1684     SmallSetVector<SUnit *, 8> N;
1685     // Add the nodes from the current node set to the previous node set.
1686     if (succ_L(I, N)) {
1687       SetVector<SUnit *> Path;
1688       for (SUnit *NI : N) {
1689         Visited.clear();
1690         computePath(NI, Path, NodesAdded, I, Visited);
1691       }
1692       if (!Path.empty())
1693         I.insert(Path.begin(), Path.end());
1694     }
1695     // Add the nodes from the previous node set to the current node set.
1696     N.clear();
1697     if (succ_L(NodesAdded, N)) {
1698       SetVector<SUnit *> Path;
1699       for (SUnit *NI : N) {
1700         Visited.clear();
1701         computePath(NI, Path, I, NodesAdded, Visited);
1702       }
1703       if (!Path.empty())
1704         I.insert(Path.begin(), Path.end());
1705     }
1706     NodesAdded.insert(I.begin(), I.end());
1707   }
1708 
1709   // Create a new node set with the connected nodes of any successor of a node
1710   // in a recurrent set.
1711   NodeSet NewSet;
1712   SmallSetVector<SUnit *, 8> N;
1713   if (succ_L(NodesAdded, N))
1714     for (SUnit *I : N)
1715       addConnectedNodes(I, NewSet, NodesAdded);
1716   if (!NewSet.empty())
1717     NodeSets.push_back(NewSet);
1718 
1719   // Create a new node set with the connected nodes of any predecessor of a node
1720   // in a recurrent set.
1721   NewSet.clear();
1722   if (pred_L(NodesAdded, N))
1723     for (SUnit *I : N)
1724       addConnectedNodes(I, NewSet, NodesAdded);
1725   if (!NewSet.empty())
1726     NodeSets.push_back(NewSet);
1727 
1728   // Create new nodes sets with the connected nodes any remaining node that
1729   // has no predecessor.
1730   for (SUnit &SU : SUnits) {
1731     if (NodesAdded.count(&SU) == 0) {
1732       NewSet.clear();
1733       addConnectedNodes(&SU, NewSet, NodesAdded);
1734       if (!NewSet.empty())
1735         NodeSets.push_back(NewSet);
1736     }
1737   }
1738 }
1739 
1740 /// Add the node to the set, and add all of its connected nodes to the set.
1741 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1742                                           SetVector<SUnit *> &NodesAdded) {
1743   NewSet.insert(SU);
1744   NodesAdded.insert(SU);
1745   for (auto &SI : SU->Succs) {
1746     SUnit *Successor = SI.getSUnit();
1747     if (!SI.isArtificial() && !Successor->isBoundaryNode() &&
1748         NodesAdded.count(Successor) == 0)
1749       addConnectedNodes(Successor, NewSet, NodesAdded);
1750   }
1751   for (auto &PI : SU->Preds) {
1752     SUnit *Predecessor = PI.getSUnit();
1753     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1754       addConnectedNodes(Predecessor, NewSet, NodesAdded);
1755   }
1756 }
1757 
1758 /// Return true if Set1 contains elements in Set2. The elements in common
1759 /// are returned in a different container.
1760 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1761                         SmallSetVector<SUnit *, 8> &Result) {
1762   Result.clear();
1763   for (SUnit *SU : Set1) {
1764     if (Set2.count(SU) != 0)
1765       Result.insert(SU);
1766   }
1767   return !Result.empty();
1768 }
1769 
1770 /// Merge the recurrence node sets that have the same initial node.
1771 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1772   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1773        ++I) {
1774     NodeSet &NI = *I;
1775     for (NodeSetType::iterator J = I + 1; J != E;) {
1776       NodeSet &NJ = *J;
1777       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1778         if (NJ.compareRecMII(NI) > 0)
1779           NI.setRecMII(NJ.getRecMII());
1780         for (SUnit *SU : *J)
1781           I->insert(SU);
1782         NodeSets.erase(J);
1783         E = NodeSets.end();
1784       } else {
1785         ++J;
1786       }
1787     }
1788   }
1789 }
1790 
1791 /// Remove nodes that have been scheduled in previous NodeSets.
1792 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1793   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1794        ++I)
1795     for (NodeSetType::iterator J = I + 1; J != E;) {
1796       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1797 
1798       if (J->empty()) {
1799         NodeSets.erase(J);
1800         E = NodeSets.end();
1801       } else {
1802         ++J;
1803       }
1804     }
1805 }
1806 
1807 /// Compute an ordered list of the dependence graph nodes, which
1808 /// indicates the order that the nodes will be scheduled.  This is a
1809 /// two-level algorithm. First, a partial order is created, which
1810 /// consists of a list of sets ordered from highest to lowest priority.
1811 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1812   SmallSetVector<SUnit *, 8> R;
1813   NodeOrder.clear();
1814 
1815   for (auto &Nodes : NodeSets) {
1816     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1817     OrderKind Order;
1818     SmallSetVector<SUnit *, 8> N;
1819     if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1820       R.insert(N.begin(), N.end());
1821       Order = BottomUp;
1822       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
1823     } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1824       R.insert(N.begin(), N.end());
1825       Order = TopDown;
1826       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
1827     } else if (isIntersect(N, Nodes, R)) {
1828       // If some of the successors are in the existing node-set, then use the
1829       // top-down ordering.
1830       Order = TopDown;
1831       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
1832     } else if (NodeSets.size() == 1) {
1833       for (const auto &N : Nodes)
1834         if (N->Succs.size() == 0)
1835           R.insert(N);
1836       Order = BottomUp;
1837       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
1838     } else {
1839       // Find the node with the highest ASAP.
1840       SUnit *maxASAP = nullptr;
1841       for (SUnit *SU : Nodes) {
1842         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1843             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1844           maxASAP = SU;
1845       }
1846       R.insert(maxASAP);
1847       Order = BottomUp;
1848       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
1849     }
1850 
1851     while (!R.empty()) {
1852       if (Order == TopDown) {
1853         // Choose the node with the maximum height.  If more than one, choose
1854         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1855         // choose the node with the lowest MOV.
1856         while (!R.empty()) {
1857           SUnit *maxHeight = nullptr;
1858           for (SUnit *I : R) {
1859             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1860               maxHeight = I;
1861             else if (getHeight(I) == getHeight(maxHeight) &&
1862                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1863               maxHeight = I;
1864             else if (getHeight(I) == getHeight(maxHeight) &&
1865                      getZeroLatencyHeight(I) ==
1866                          getZeroLatencyHeight(maxHeight) &&
1867                      getMOV(I) < getMOV(maxHeight))
1868               maxHeight = I;
1869           }
1870           NodeOrder.insert(maxHeight);
1871           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1872           R.remove(maxHeight);
1873           for (const auto &I : maxHeight->Succs) {
1874             if (Nodes.count(I.getSUnit()) == 0)
1875               continue;
1876             if (NodeOrder.contains(I.getSUnit()))
1877               continue;
1878             if (ignoreDependence(I, false))
1879               continue;
1880             R.insert(I.getSUnit());
1881           }
1882           // Back-edges are predecessors with an anti-dependence.
1883           for (const auto &I : maxHeight->Preds) {
1884             if (I.getKind() != SDep::Anti)
1885               continue;
1886             if (Nodes.count(I.getSUnit()) == 0)
1887               continue;
1888             if (NodeOrder.contains(I.getSUnit()))
1889               continue;
1890             R.insert(I.getSUnit());
1891           }
1892         }
1893         Order = BottomUp;
1894         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
1895         SmallSetVector<SUnit *, 8> N;
1896         if (pred_L(NodeOrder, N, &Nodes))
1897           R.insert(N.begin(), N.end());
1898       } else {
1899         // Choose the node with the maximum depth.  If more than one, choose
1900         // the node with the maximum ZeroLatencyDepth. If still more than one,
1901         // choose the node with the lowest MOV.
1902         while (!R.empty()) {
1903           SUnit *maxDepth = nullptr;
1904           for (SUnit *I : R) {
1905             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1906               maxDepth = I;
1907             else if (getDepth(I) == getDepth(maxDepth) &&
1908                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1909               maxDepth = I;
1910             else if (getDepth(I) == getDepth(maxDepth) &&
1911                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1912                      getMOV(I) < getMOV(maxDepth))
1913               maxDepth = I;
1914           }
1915           NodeOrder.insert(maxDepth);
1916           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1917           R.remove(maxDepth);
1918           if (Nodes.isExceedSU(maxDepth)) {
1919             Order = TopDown;
1920             R.clear();
1921             R.insert(Nodes.getNode(0));
1922             break;
1923           }
1924           for (const auto &I : maxDepth->Preds) {
1925             if (Nodes.count(I.getSUnit()) == 0)
1926               continue;
1927             if (NodeOrder.contains(I.getSUnit()))
1928               continue;
1929             R.insert(I.getSUnit());
1930           }
1931           // Back-edges are predecessors with an anti-dependence.
1932           for (const auto &I : maxDepth->Succs) {
1933             if (I.getKind() != SDep::Anti)
1934               continue;
1935             if (Nodes.count(I.getSUnit()) == 0)
1936               continue;
1937             if (NodeOrder.contains(I.getSUnit()))
1938               continue;
1939             R.insert(I.getSUnit());
1940           }
1941         }
1942         Order = TopDown;
1943         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
1944         SmallSetVector<SUnit *, 8> N;
1945         if (succ_L(NodeOrder, N, &Nodes))
1946           R.insert(N.begin(), N.end());
1947       }
1948     }
1949     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1950   }
1951 
1952   LLVM_DEBUG({
1953     dbgs() << "Node order: ";
1954     for (SUnit *I : NodeOrder)
1955       dbgs() << " " << I->NodeNum << " ";
1956     dbgs() << "\n";
1957   });
1958 }
1959 
1960 /// Process the nodes in the computed order and create the pipelined schedule
1961 /// of the instructions, if possible. Return true if a schedule is found.
1962 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
1963 
1964   if (NodeOrder.empty()){
1965     LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
1966     return false;
1967   }
1968 
1969   bool scheduleFound = false;
1970   // Keep increasing II until a valid schedule is found.
1971   for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
1972     Schedule.reset();
1973     Schedule.setInitiationInterval(II);
1974     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
1975 
1976     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1977     SetVector<SUnit *>::iterator NE = NodeOrder.end();
1978     do {
1979       SUnit *SU = *NI;
1980 
1981       // Compute the schedule time for the instruction, which is based
1982       // upon the scheduled time for any predecessors/successors.
1983       int EarlyStart = INT_MIN;
1984       int LateStart = INT_MAX;
1985       // These values are set when the size of the schedule window is limited
1986       // due to chain dependences.
1987       int SchedEnd = INT_MAX;
1988       int SchedStart = INT_MIN;
1989       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1990                             II, this);
1991       LLVM_DEBUG({
1992         dbgs() << "\n";
1993         dbgs() << "Inst (" << SU->NodeNum << ") ";
1994         SU->getInstr()->dump();
1995         dbgs() << "\n";
1996       });
1997       LLVM_DEBUG({
1998         dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
1999                          LateStart, SchedEnd, SchedStart);
2000       });
2001 
2002       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2003           SchedStart > LateStart)
2004         scheduleFound = false;
2005       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2006         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2007         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2008       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2009         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2010         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2011       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2012         SchedEnd =
2013             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2014         // When scheduling a Phi it is better to start at the late cycle and go
2015         // backwards. The default order may insert the Phi too far away from
2016         // its first dependence.
2017         if (SU->getInstr()->isPHI())
2018           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2019         else
2020           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2021       } else {
2022         int FirstCycle = Schedule.getFirstCycle();
2023         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2024                                         FirstCycle + getASAP(SU) + II - 1, II);
2025       }
2026       // Even if we find a schedule, make sure the schedule doesn't exceed the
2027       // allowable number of stages. We keep trying if this happens.
2028       if (scheduleFound)
2029         if (SwpMaxStages > -1 &&
2030             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2031           scheduleFound = false;
2032 
2033       LLVM_DEBUG({
2034         if (!scheduleFound)
2035           dbgs() << "\tCan't schedule\n";
2036       });
2037     } while (++NI != NE && scheduleFound);
2038 
2039     // If a schedule is found, ensure non-pipelined instructions are in stage 0
2040     if (scheduleFound)
2041       scheduleFound =
2042           Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo);
2043 
2044     // If a schedule is found, check if it is a valid schedule too.
2045     if (scheduleFound)
2046       scheduleFound = Schedule.isValidSchedule(this);
2047   }
2048 
2049   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2050                     << " (II=" << Schedule.getInitiationInterval()
2051                     << ")\n");
2052 
2053   if (scheduleFound) {
2054     scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule);
2055     if (!scheduleFound)
2056       LLVM_DEBUG(dbgs() << "Target rejected schedule\n");
2057   }
2058 
2059   if (scheduleFound) {
2060     Schedule.finalizeSchedule(this);
2061     Pass.ORE->emit([&]() {
2062       return MachineOptimizationRemarkAnalysis(
2063                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2064              << "Schedule found with Initiation Interval: "
2065              << ore::NV("II", Schedule.getInitiationInterval())
2066              << ", MaxStageCount: "
2067              << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2068     });
2069   } else
2070     Schedule.reset();
2071 
2072   return scheduleFound && Schedule.getMaxStageCount() > 0;
2073 }
2074 
2075 /// Return true if we can compute the amount the instruction changes
2076 /// during each iteration. Set Delta to the amount of the change.
2077 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2078   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2079   const MachineOperand *BaseOp;
2080   int64_t Offset;
2081   bool OffsetIsScalable;
2082   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2083     return false;
2084 
2085   // FIXME: This algorithm assumes instructions have fixed-size offsets.
2086   if (OffsetIsScalable)
2087     return false;
2088 
2089   if (!BaseOp->isReg())
2090     return false;
2091 
2092   Register BaseReg = BaseOp->getReg();
2093 
2094   MachineRegisterInfo &MRI = MF.getRegInfo();
2095   // Check if there is a Phi. If so, get the definition in the loop.
2096   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2097   if (BaseDef && BaseDef->isPHI()) {
2098     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2099     BaseDef = MRI.getVRegDef(BaseReg);
2100   }
2101   if (!BaseDef)
2102     return false;
2103 
2104   int D = 0;
2105   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2106     return false;
2107 
2108   Delta = D;
2109   return true;
2110 }
2111 
2112 /// Check if we can change the instruction to use an offset value from the
2113 /// previous iteration. If so, return true and set the base and offset values
2114 /// so that we can rewrite the load, if necessary.
2115 ///   v1 = Phi(v0, v3)
2116 ///   v2 = load v1, 0
2117 ///   v3 = post_store v1, 4, x
2118 /// This function enables the load to be rewritten as v2 = load v3, 4.
2119 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2120                                               unsigned &BasePos,
2121                                               unsigned &OffsetPos,
2122                                               unsigned &NewBase,
2123                                               int64_t &Offset) {
2124   // Get the load instruction.
2125   if (TII->isPostIncrement(*MI))
2126     return false;
2127   unsigned BasePosLd, OffsetPosLd;
2128   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2129     return false;
2130   Register BaseReg = MI->getOperand(BasePosLd).getReg();
2131 
2132   // Look for the Phi instruction.
2133   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2134   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2135   if (!Phi || !Phi->isPHI())
2136     return false;
2137   // Get the register defined in the loop block.
2138   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2139   if (!PrevReg)
2140     return false;
2141 
2142   // Check for the post-increment load/store instruction.
2143   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2144   if (!PrevDef || PrevDef == MI)
2145     return false;
2146 
2147   if (!TII->isPostIncrement(*PrevDef))
2148     return false;
2149 
2150   unsigned BasePos1 = 0, OffsetPos1 = 0;
2151   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2152     return false;
2153 
2154   // Make sure that the instructions do not access the same memory location in
2155   // the next iteration.
2156   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2157   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2158   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2159   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2160   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2161   MF.deleteMachineInstr(NewMI);
2162   if (!Disjoint)
2163     return false;
2164 
2165   // Set the return value once we determine that we return true.
2166   BasePos = BasePosLd;
2167   OffsetPos = OffsetPosLd;
2168   NewBase = PrevReg;
2169   Offset = StoreOffset;
2170   return true;
2171 }
2172 
2173 /// Apply changes to the instruction if needed. The changes are need
2174 /// to improve the scheduling and depend up on the final schedule.
2175 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2176                                          SMSchedule &Schedule) {
2177   SUnit *SU = getSUnit(MI);
2178   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2179       InstrChanges.find(SU);
2180   if (It != InstrChanges.end()) {
2181     std::pair<unsigned, int64_t> RegAndOffset = It->second;
2182     unsigned BasePos, OffsetPos;
2183     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2184       return;
2185     Register BaseReg = MI->getOperand(BasePos).getReg();
2186     MachineInstr *LoopDef = findDefInLoop(BaseReg);
2187     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2188     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2189     int BaseStageNum = Schedule.stageScheduled(SU);
2190     int BaseCycleNum = Schedule.cycleScheduled(SU);
2191     if (BaseStageNum < DefStageNum) {
2192       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2193       int OffsetDiff = DefStageNum - BaseStageNum;
2194       if (DefCycleNum < BaseCycleNum) {
2195         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2196         if (OffsetDiff > 0)
2197           --OffsetDiff;
2198       }
2199       int64_t NewOffset =
2200           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2201       NewMI->getOperand(OffsetPos).setImm(NewOffset);
2202       SU->setInstr(NewMI);
2203       MISUnitMap[NewMI] = SU;
2204       NewMIs[MI] = NewMI;
2205     }
2206   }
2207 }
2208 
2209 /// Return the instruction in the loop that defines the register.
2210 /// If the definition is a Phi, then follow the Phi operand to
2211 /// the instruction in the loop.
2212 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2213   SmallPtrSet<MachineInstr *, 8> Visited;
2214   MachineInstr *Def = MRI.getVRegDef(Reg);
2215   while (Def->isPHI()) {
2216     if (!Visited.insert(Def).second)
2217       break;
2218     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2219       if (Def->getOperand(i + 1).getMBB() == BB) {
2220         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2221         break;
2222       }
2223   }
2224   return Def;
2225 }
2226 
2227 /// Return true for an order or output dependence that is loop carried
2228 /// potentially. A dependence is loop carried if the destination defines a valu
2229 /// that may be used or defined by the source in a subsequent iteration.
2230 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2231                                          bool isSucc) {
2232   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2233       Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode())
2234     return false;
2235 
2236   if (!SwpPruneLoopCarried)
2237     return true;
2238 
2239   if (Dep.getKind() == SDep::Output)
2240     return true;
2241 
2242   MachineInstr *SI = Source->getInstr();
2243   MachineInstr *DI = Dep.getSUnit()->getInstr();
2244   if (!isSucc)
2245     std::swap(SI, DI);
2246   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2247 
2248   // Assume ordered loads and stores may have a loop carried dependence.
2249   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2250       SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2251       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2252     return true;
2253 
2254   // Only chain dependences between a load and store can be loop carried.
2255   if (!DI->mayStore() || !SI->mayLoad())
2256     return false;
2257 
2258   unsigned DeltaS, DeltaD;
2259   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2260     return true;
2261 
2262   const MachineOperand *BaseOpS, *BaseOpD;
2263   int64_t OffsetS, OffsetD;
2264   bool OffsetSIsScalable, OffsetDIsScalable;
2265   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2266   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2267                                     TRI) ||
2268       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2269                                     TRI))
2270     return true;
2271 
2272   assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2273          "Expected offsets to be byte offsets");
2274 
2275   MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg());
2276   MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg());
2277   if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI())
2278     return true;
2279 
2280   unsigned InitValS = 0;
2281   unsigned LoopValS = 0;
2282   unsigned InitValD = 0;
2283   unsigned LoopValD = 0;
2284   getPhiRegs(*DefS, BB, InitValS, LoopValS);
2285   getPhiRegs(*DefD, BB, InitValD, LoopValD);
2286   MachineInstr *InitDefS = MRI.getVRegDef(InitValS);
2287   MachineInstr *InitDefD = MRI.getVRegDef(InitValD);
2288 
2289   if (!InitDefS->isIdenticalTo(*InitDefD))
2290     return true;
2291 
2292   // Check that the base register is incremented by a constant value for each
2293   // iteration.
2294   MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS);
2295   int D = 0;
2296   if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D))
2297     return true;
2298 
2299   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2300   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2301 
2302   // This is the main test, which checks the offset values and the loop
2303   // increment value to determine if the accesses may be loop carried.
2304   if (AccessSizeS == MemoryLocation::UnknownSize ||
2305       AccessSizeD == MemoryLocation::UnknownSize)
2306     return true;
2307 
2308   if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2309     return true;
2310 
2311   return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2312 }
2313 
2314 void SwingSchedulerDAG::postProcessDAG() {
2315   for (auto &M : Mutations)
2316     M->apply(this);
2317 }
2318 
2319 /// Try to schedule the node at the specified StartCycle and continue
2320 /// until the node is schedule or the EndCycle is reached.  This function
2321 /// returns true if the node is scheduled.  This routine may search either
2322 /// forward or backward for a place to insert the instruction based upon
2323 /// the relative values of StartCycle and EndCycle.
2324 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2325   bool forward = true;
2326   LLVM_DEBUG({
2327     dbgs() << "Trying to insert node between " << StartCycle << " and "
2328            << EndCycle << " II: " << II << "\n";
2329   });
2330   if (StartCycle > EndCycle)
2331     forward = false;
2332 
2333   // The terminating condition depends on the direction.
2334   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2335   for (int curCycle = StartCycle; curCycle != termCycle;
2336        forward ? ++curCycle : --curCycle) {
2337 
2338     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2339         ProcItinResources.canReserveResources(*SU, curCycle)) {
2340       LLVM_DEBUG({
2341         dbgs() << "\tinsert at cycle " << curCycle << " ";
2342         SU->getInstr()->dump();
2343       });
2344 
2345       if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
2346         ProcItinResources.reserveResources(*SU, curCycle);
2347       ScheduledInstrs[curCycle].push_back(SU);
2348       InstrToCycle.insert(std::make_pair(SU, curCycle));
2349       if (curCycle > LastCycle)
2350         LastCycle = curCycle;
2351       if (curCycle < FirstCycle)
2352         FirstCycle = curCycle;
2353       return true;
2354     }
2355     LLVM_DEBUG({
2356       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2357       SU->getInstr()->dump();
2358     });
2359   }
2360   return false;
2361 }
2362 
2363 // Return the cycle of the earliest scheduled instruction in the chain.
2364 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2365   SmallPtrSet<SUnit *, 8> Visited;
2366   SmallVector<SDep, 8> Worklist;
2367   Worklist.push_back(Dep);
2368   int EarlyCycle = INT_MAX;
2369   while (!Worklist.empty()) {
2370     const SDep &Cur = Worklist.pop_back_val();
2371     SUnit *PrevSU = Cur.getSUnit();
2372     if (Visited.count(PrevSU))
2373       continue;
2374     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2375     if (it == InstrToCycle.end())
2376       continue;
2377     EarlyCycle = std::min(EarlyCycle, it->second);
2378     for (const auto &PI : PrevSU->Preds)
2379       if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2380         Worklist.push_back(PI);
2381     Visited.insert(PrevSU);
2382   }
2383   return EarlyCycle;
2384 }
2385 
2386 // Return the cycle of the latest scheduled instruction in the chain.
2387 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2388   SmallPtrSet<SUnit *, 8> Visited;
2389   SmallVector<SDep, 8> Worklist;
2390   Worklist.push_back(Dep);
2391   int LateCycle = INT_MIN;
2392   while (!Worklist.empty()) {
2393     const SDep &Cur = Worklist.pop_back_val();
2394     SUnit *SuccSU = Cur.getSUnit();
2395     if (Visited.count(SuccSU) || SuccSU->isBoundaryNode())
2396       continue;
2397     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2398     if (it == InstrToCycle.end())
2399       continue;
2400     LateCycle = std::max(LateCycle, it->second);
2401     for (const auto &SI : SuccSU->Succs)
2402       if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2403         Worklist.push_back(SI);
2404     Visited.insert(SuccSU);
2405   }
2406   return LateCycle;
2407 }
2408 
2409 /// If an instruction has a use that spans multiple iterations, then
2410 /// return true. These instructions are characterized by having a back-ege
2411 /// to a Phi, which contains a reference to another Phi.
2412 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2413   for (auto &P : SU->Preds)
2414     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2415       for (auto &S : P.getSUnit()->Succs)
2416         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2417           return P.getSUnit();
2418   return nullptr;
2419 }
2420 
2421 /// Compute the scheduling start slot for the instruction.  The start slot
2422 /// depends on any predecessor or successor nodes scheduled already.
2423 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2424                               int *MinEnd, int *MaxStart, int II,
2425                               SwingSchedulerDAG *DAG) {
2426   // Iterate over each instruction that has been scheduled already.  The start
2427   // slot computation depends on whether the previously scheduled instruction
2428   // is a predecessor or successor of the specified instruction.
2429   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2430 
2431     // Iterate over each instruction in the current cycle.
2432     for (SUnit *I : getInstructions(cycle)) {
2433       // Because we're processing a DAG for the dependences, we recognize
2434       // the back-edge in recurrences by anti dependences.
2435       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2436         const SDep &Dep = SU->Preds[i];
2437         if (Dep.getSUnit() == I) {
2438           if (!DAG->isBackedge(SU, Dep)) {
2439             int EarlyStart = cycle + Dep.getLatency() -
2440                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2441             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2442             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2443               int End = earliestCycleInChain(Dep) + (II - 1);
2444               *MinEnd = std::min(*MinEnd, End);
2445             }
2446           } else {
2447             int LateStart = cycle - Dep.getLatency() +
2448                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2449             *MinLateStart = std::min(*MinLateStart, LateStart);
2450           }
2451         }
2452         // For instruction that requires multiple iterations, make sure that
2453         // the dependent instruction is not scheduled past the definition.
2454         SUnit *BE = multipleIterations(I, DAG);
2455         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2456             !SU->isPred(I))
2457           *MinLateStart = std::min(*MinLateStart, cycle);
2458       }
2459       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2460         if (SU->Succs[i].getSUnit() == I) {
2461           const SDep &Dep = SU->Succs[i];
2462           if (!DAG->isBackedge(SU, Dep)) {
2463             int LateStart = cycle - Dep.getLatency() +
2464                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2465             *MinLateStart = std::min(*MinLateStart, LateStart);
2466             if (DAG->isLoopCarriedDep(SU, Dep)) {
2467               int Start = latestCycleInChain(Dep) + 1 - II;
2468               *MaxStart = std::max(*MaxStart, Start);
2469             }
2470           } else {
2471             int EarlyStart = cycle + Dep.getLatency() -
2472                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2473             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2474           }
2475         }
2476       }
2477     }
2478   }
2479 }
2480 
2481 /// Order the instructions within a cycle so that the definitions occur
2482 /// before the uses. Returns true if the instruction is added to the start
2483 /// of the list, or false if added to the end.
2484 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2485                                  std::deque<SUnit *> &Insts) {
2486   MachineInstr *MI = SU->getInstr();
2487   bool OrderBeforeUse = false;
2488   bool OrderAfterDef = false;
2489   bool OrderBeforeDef = false;
2490   unsigned MoveDef = 0;
2491   unsigned MoveUse = 0;
2492   int StageInst1 = stageScheduled(SU);
2493 
2494   unsigned Pos = 0;
2495   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2496        ++I, ++Pos) {
2497     for (MachineOperand &MO : MI->operands()) {
2498       if (!MO.isReg() || !MO.getReg().isVirtual())
2499         continue;
2500 
2501       Register Reg = MO.getReg();
2502       unsigned BasePos, OffsetPos;
2503       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2504         if (MI->getOperand(BasePos).getReg() == Reg)
2505           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2506             Reg = NewReg;
2507       bool Reads, Writes;
2508       std::tie(Reads, Writes) =
2509           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2510       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2511         OrderBeforeUse = true;
2512         if (MoveUse == 0)
2513           MoveUse = Pos;
2514       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2515         // Add the instruction after the scheduled instruction.
2516         OrderAfterDef = true;
2517         MoveDef = Pos;
2518       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2519         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2520           OrderBeforeUse = true;
2521           if (MoveUse == 0)
2522             MoveUse = Pos;
2523         } else {
2524           OrderAfterDef = true;
2525           MoveDef = Pos;
2526         }
2527       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2528         OrderBeforeUse = true;
2529         if (MoveUse == 0)
2530           MoveUse = Pos;
2531         if (MoveUse != 0) {
2532           OrderAfterDef = true;
2533           MoveDef = Pos - 1;
2534         }
2535       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2536         // Add the instruction before the scheduled instruction.
2537         OrderBeforeUse = true;
2538         if (MoveUse == 0)
2539           MoveUse = Pos;
2540       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2541                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2542         if (MoveUse == 0) {
2543           OrderBeforeDef = true;
2544           MoveUse = Pos;
2545         }
2546       }
2547     }
2548     // Check for order dependences between instructions. Make sure the source
2549     // is ordered before the destination.
2550     for (auto &S : SU->Succs) {
2551       if (S.getSUnit() != *I)
2552         continue;
2553       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2554         OrderBeforeUse = true;
2555         if (Pos < MoveUse)
2556           MoveUse = Pos;
2557       }
2558       // We did not handle HW dependences in previous for loop,
2559       // and we normally set Latency = 0 for Anti deps,
2560       // so may have nodes in same cycle with Anti denpendent on HW regs.
2561       else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2562         OrderBeforeUse = true;
2563         if ((MoveUse == 0) || (Pos < MoveUse))
2564           MoveUse = Pos;
2565       }
2566     }
2567     for (auto &P : SU->Preds) {
2568       if (P.getSUnit() != *I)
2569         continue;
2570       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2571         OrderAfterDef = true;
2572         MoveDef = Pos;
2573       }
2574     }
2575   }
2576 
2577   // A circular dependence.
2578   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2579     OrderBeforeUse = false;
2580 
2581   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2582   // to a loop-carried dependence.
2583   if (OrderBeforeDef)
2584     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2585 
2586   // The uncommon case when the instruction order needs to be updated because
2587   // there is both a use and def.
2588   if (OrderBeforeUse && OrderAfterDef) {
2589     SUnit *UseSU = Insts.at(MoveUse);
2590     SUnit *DefSU = Insts.at(MoveDef);
2591     if (MoveUse > MoveDef) {
2592       Insts.erase(Insts.begin() + MoveUse);
2593       Insts.erase(Insts.begin() + MoveDef);
2594     } else {
2595       Insts.erase(Insts.begin() + MoveDef);
2596       Insts.erase(Insts.begin() + MoveUse);
2597     }
2598     orderDependence(SSD, UseSU, Insts);
2599     orderDependence(SSD, SU, Insts);
2600     orderDependence(SSD, DefSU, Insts);
2601     return;
2602   }
2603   // Put the new instruction first if there is a use in the list. Otherwise,
2604   // put it at the end of the list.
2605   if (OrderBeforeUse)
2606     Insts.push_front(SU);
2607   else
2608     Insts.push_back(SU);
2609 }
2610 
2611 /// Return true if the scheduled Phi has a loop carried operand.
2612 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2613   if (!Phi.isPHI())
2614     return false;
2615   assert(Phi.isPHI() && "Expecting a Phi.");
2616   SUnit *DefSU = SSD->getSUnit(&Phi);
2617   unsigned DefCycle = cycleScheduled(DefSU);
2618   int DefStage = stageScheduled(DefSU);
2619 
2620   unsigned InitVal = 0;
2621   unsigned LoopVal = 0;
2622   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2623   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2624   if (!UseSU)
2625     return true;
2626   if (UseSU->getInstr()->isPHI())
2627     return true;
2628   unsigned LoopCycle = cycleScheduled(UseSU);
2629   int LoopStage = stageScheduled(UseSU);
2630   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2631 }
2632 
2633 /// Return true if the instruction is a definition that is loop carried
2634 /// and defines the use on the next iteration.
2635 ///        v1 = phi(v2, v3)
2636 ///  (Def) v3 = op v1
2637 ///  (MO)   = v1
2638 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2639 /// register.
2640 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2641                                        MachineInstr *Def, MachineOperand &MO) {
2642   if (!MO.isReg())
2643     return false;
2644   if (Def->isPHI())
2645     return false;
2646   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2647   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2648     return false;
2649   if (!isLoopCarried(SSD, *Phi))
2650     return false;
2651   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2652   for (MachineOperand &DMO : Def->all_defs()) {
2653     if (DMO.getReg() == LoopReg)
2654       return true;
2655   }
2656   return false;
2657 }
2658 
2659 /// Determine transitive dependences of unpipelineable instructions
2660 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
2661     SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2662   SmallSet<SUnit *, 8> DoNotPipeline;
2663   SmallVector<SUnit *, 8> Worklist;
2664 
2665   for (auto &SU : SSD->SUnits)
2666     if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr()))
2667       Worklist.push_back(&SU);
2668 
2669   while (!Worklist.empty()) {
2670     auto SU = Worklist.pop_back_val();
2671     if (DoNotPipeline.count(SU))
2672       continue;
2673     LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
2674     DoNotPipeline.insert(SU);
2675     for (auto &Dep : SU->Preds)
2676       Worklist.push_back(Dep.getSUnit());
2677     if (SU->getInstr()->isPHI())
2678       for (auto &Dep : SU->Succs)
2679         if (Dep.getKind() == SDep::Anti)
2680           Worklist.push_back(Dep.getSUnit());
2681   }
2682   return DoNotPipeline;
2683 }
2684 
2685 // Determine all instructions upon which any unpipelineable instruction depends
2686 // and ensure that they are in stage 0.  If unable to do so, return false.
2687 bool SMSchedule::normalizeNonPipelinedInstructions(
2688     SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2689   SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
2690 
2691   int NewLastCycle = INT_MIN;
2692   for (SUnit &SU : SSD->SUnits) {
2693     if (!SU.isInstr())
2694       continue;
2695     if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) {
2696       NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]);
2697       continue;
2698     }
2699 
2700     // Put the non-pipelined instruction as early as possible in the schedule
2701     int NewCycle = getFirstCycle();
2702     for (auto &Dep : SU.Preds)
2703       NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle);
2704 
2705     int OldCycle = InstrToCycle[&SU];
2706     if (OldCycle != NewCycle) {
2707       InstrToCycle[&SU] = NewCycle;
2708       auto &OldS = getInstructions(OldCycle);
2709       llvm::erase_value(OldS, &SU);
2710       getInstructions(NewCycle).emplace_back(&SU);
2711       LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
2712                         << ") is not pipelined; moving from cycle " << OldCycle
2713                         << " to " << NewCycle << " Instr:" << *SU.getInstr());
2714     }
2715     NewLastCycle = std::max(NewLastCycle, NewCycle);
2716   }
2717   LastCycle = NewLastCycle;
2718   return true;
2719 }
2720 
2721 // Check if the generated schedule is valid. This function checks if
2722 // an instruction that uses a physical register is scheduled in a
2723 // different stage than the definition. The pipeliner does not handle
2724 // physical register values that may cross a basic block boundary.
2725 // Furthermore, if a physical def/use pair is assigned to the same
2726 // cycle, orderDependence does not guarantee def/use ordering, so that
2727 // case should be considered invalid.  (The test checks for both
2728 // earlier and same-cycle use to be more robust.)
2729 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2730   for (SUnit &SU : SSD->SUnits) {
2731     if (!SU.hasPhysRegDefs)
2732       continue;
2733     int StageDef = stageScheduled(&SU);
2734     int CycleDef = InstrToCycle[&SU];
2735     assert(StageDef != -1 && "Instruction should have been scheduled.");
2736     for (auto &SI : SU.Succs)
2737       if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode())
2738         if (Register::isPhysicalRegister(SI.getReg())) {
2739           if (stageScheduled(SI.getSUnit()) != StageDef)
2740             return false;
2741           if (InstrToCycle[SI.getSUnit()] <= CycleDef)
2742             return false;
2743         }
2744   }
2745   return true;
2746 }
2747 
2748 /// A property of the node order in swing-modulo-scheduling is
2749 /// that for nodes outside circuits the following holds:
2750 /// none of them is scheduled after both a successor and a
2751 /// predecessor.
2752 /// The method below checks whether the property is met.
2753 /// If not, debug information is printed and statistics information updated.
2754 /// Note that we do not use an assert statement.
2755 /// The reason is that although an invalid node oder may prevent
2756 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2757 /// it does not lead to the generation of incorrect code.
2758 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2759 
2760   // a sorted vector that maps each SUnit to its index in the NodeOrder
2761   typedef std::pair<SUnit *, unsigned> UnitIndex;
2762   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2763 
2764   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2765     Indices.push_back(std::make_pair(NodeOrder[i], i));
2766 
2767   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2768     return std::get<0>(i1) < std::get<0>(i2);
2769   };
2770 
2771   // sort, so that we can perform a binary search
2772   llvm::sort(Indices, CompareKey);
2773 
2774   bool Valid = true;
2775   (void)Valid;
2776   // for each SUnit in the NodeOrder, check whether
2777   // it appears after both a successor and a predecessor
2778   // of the SUnit. If this is the case, and the SUnit
2779   // is not part of circuit, then the NodeOrder is not
2780   // valid.
2781   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2782     SUnit *SU = NodeOrder[i];
2783     unsigned Index = i;
2784 
2785     bool PredBefore = false;
2786     bool SuccBefore = false;
2787 
2788     SUnit *Succ;
2789     SUnit *Pred;
2790     (void)Succ;
2791     (void)Pred;
2792 
2793     for (SDep &PredEdge : SU->Preds) {
2794       SUnit *PredSU = PredEdge.getSUnit();
2795       unsigned PredIndex = std::get<1>(
2796           *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2797       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2798         PredBefore = true;
2799         Pred = PredSU;
2800         break;
2801       }
2802     }
2803 
2804     for (SDep &SuccEdge : SU->Succs) {
2805       SUnit *SuccSU = SuccEdge.getSUnit();
2806       // Do not process a boundary node, it was not included in NodeOrder,
2807       // hence not in Indices either, call to std::lower_bound() below will
2808       // return Indices.end().
2809       if (SuccSU->isBoundaryNode())
2810         continue;
2811       unsigned SuccIndex = std::get<1>(
2812           *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2813       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2814         SuccBefore = true;
2815         Succ = SuccSU;
2816         break;
2817       }
2818     }
2819 
2820     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2821       // instructions in circuits are allowed to be scheduled
2822       // after both a successor and predecessor.
2823       bool InCircuit = llvm::any_of(
2824           Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2825       if (InCircuit)
2826         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2827       else {
2828         Valid = false;
2829         NumNodeOrderIssues++;
2830         LLVM_DEBUG(dbgs() << "Predecessor ";);
2831       }
2832       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2833                         << " are scheduled before node " << SU->NodeNum
2834                         << "\n";);
2835     }
2836   }
2837 
2838   LLVM_DEBUG({
2839     if (!Valid)
2840       dbgs() << "Invalid node order found!\n";
2841   });
2842 }
2843 
2844 /// Attempt to fix the degenerate cases when the instruction serialization
2845 /// causes the register lifetimes to overlap. For example,
2846 ///   p' = store_pi(p, b)
2847 ///      = load p, offset
2848 /// In this case p and p' overlap, which means that two registers are needed.
2849 /// Instead, this function changes the load to use p' and updates the offset.
2850 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2851   unsigned OverlapReg = 0;
2852   unsigned NewBaseReg = 0;
2853   for (SUnit *SU : Instrs) {
2854     MachineInstr *MI = SU->getInstr();
2855     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2856       const MachineOperand &MO = MI->getOperand(i);
2857       // Look for an instruction that uses p. The instruction occurs in the
2858       // same cycle but occurs later in the serialized order.
2859       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2860         // Check that the instruction appears in the InstrChanges structure,
2861         // which contains instructions that can have the offset updated.
2862         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2863           InstrChanges.find(SU);
2864         if (It != InstrChanges.end()) {
2865           unsigned BasePos, OffsetPos;
2866           // Update the base register and adjust the offset.
2867           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2868             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2869             NewMI->getOperand(BasePos).setReg(NewBaseReg);
2870             int64_t NewOffset =
2871                 MI->getOperand(OffsetPos).getImm() - It->second.second;
2872             NewMI->getOperand(OffsetPos).setImm(NewOffset);
2873             SU->setInstr(NewMI);
2874             MISUnitMap[NewMI] = SU;
2875             NewMIs[MI] = NewMI;
2876           }
2877         }
2878         OverlapReg = 0;
2879         NewBaseReg = 0;
2880         break;
2881       }
2882       // Look for an instruction of the form p' = op(p), which uses and defines
2883       // two virtual registers that get allocated to the same physical register.
2884       unsigned TiedUseIdx = 0;
2885       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2886         // OverlapReg is p in the example above.
2887         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2888         // NewBaseReg is p' in the example above.
2889         NewBaseReg = MI->getOperand(i).getReg();
2890         break;
2891       }
2892     }
2893   }
2894 }
2895 
2896 /// After the schedule has been formed, call this function to combine
2897 /// the instructions from the different stages/cycles.  That is, this
2898 /// function creates a schedule that represents a single iteration.
2899 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2900   // Move all instructions to the first stage from later stages.
2901   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2902     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2903          ++stage) {
2904       std::deque<SUnit *> &cycleInstrs =
2905           ScheduledInstrs[cycle + (stage * InitiationInterval)];
2906       for (SUnit *SU : llvm::reverse(cycleInstrs))
2907         ScheduledInstrs[cycle].push_front(SU);
2908     }
2909   }
2910 
2911   // Erase all the elements in the later stages. Only one iteration should
2912   // remain in the scheduled list, and it contains all the instructions.
2913   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2914     ScheduledInstrs.erase(cycle);
2915 
2916   // Change the registers in instruction as specified in the InstrChanges
2917   // map. We need to use the new registers to create the correct order.
2918   for (const SUnit &SU : SSD->SUnits)
2919     SSD->applyInstrChange(SU.getInstr(), *this);
2920 
2921   // Reorder the instructions in each cycle to fix and improve the
2922   // generated code.
2923   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2924     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2925     std::deque<SUnit *> newOrderPhi;
2926     for (SUnit *SU : cycleInstrs) {
2927       if (SU->getInstr()->isPHI())
2928         newOrderPhi.push_back(SU);
2929     }
2930     std::deque<SUnit *> newOrderI;
2931     for (SUnit *SU : cycleInstrs) {
2932       if (!SU->getInstr()->isPHI())
2933         orderDependence(SSD, SU, newOrderI);
2934     }
2935     // Replace the old order with the new order.
2936     cycleInstrs.swap(newOrderPhi);
2937     llvm::append_range(cycleInstrs, newOrderI);
2938     SSD->fixupRegisterOverlaps(cycleInstrs);
2939   }
2940 
2941   LLVM_DEBUG(dump(););
2942 }
2943 
2944 void NodeSet::print(raw_ostream &os) const {
2945   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2946      << " depth " << MaxDepth << " col " << Colocate << "\n";
2947   for (const auto &I : Nodes)
2948     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
2949   os << "\n";
2950 }
2951 
2952 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2953 /// Print the schedule information to the given output.
2954 void SMSchedule::print(raw_ostream &os) const {
2955   // Iterate over each cycle.
2956   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2957     // Iterate over each instruction in the cycle.
2958     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2959     for (SUnit *CI : cycleInstrs->second) {
2960       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2961       os << "(" << CI->NodeNum << ") ";
2962       CI->getInstr()->print(os);
2963       os << "\n";
2964     }
2965   }
2966 }
2967 
2968 /// Utility function used for debugging to print the schedule.
2969 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2970 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2971 
2972 void ResourceManager::dumpMRT() const {
2973   LLVM_DEBUG({
2974     if (UseDFA)
2975       return;
2976     std::stringstream SS;
2977     SS << "MRT:\n";
2978     SS << std::setw(4) << "Slot";
2979     for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
2980       SS << std::setw(3) << I;
2981     SS << std::setw(7) << "#Mops"
2982        << "\n";
2983     for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
2984       SS << std::setw(4) << Slot;
2985       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
2986         SS << std::setw(3) << MRT[Slot][I];
2987       SS << std::setw(7) << NumScheduledMops[Slot] << "\n";
2988     }
2989     dbgs() << SS.str();
2990   });
2991 }
2992 #endif
2993 
2994 void ResourceManager::initProcResourceVectors(
2995     const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2996   unsigned ProcResourceID = 0;
2997 
2998   // We currently limit the resource kinds to 64 and below so that we can use
2999   // uint64_t for Masks
3000   assert(SM.getNumProcResourceKinds() < 64 &&
3001          "Too many kinds of resources, unsupported");
3002   // Create a unique bitmask for every processor resource unit.
3003   // Skip resource at index 0, since it always references 'InvalidUnit'.
3004   Masks.resize(SM.getNumProcResourceKinds());
3005   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3006     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3007     if (Desc.SubUnitsIdxBegin)
3008       continue;
3009     Masks[I] = 1ULL << ProcResourceID;
3010     ProcResourceID++;
3011   }
3012   // Create a unique bitmask for every processor resource group.
3013   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3014     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3015     if (!Desc.SubUnitsIdxBegin)
3016       continue;
3017     Masks[I] = 1ULL << ProcResourceID;
3018     for (unsigned U = 0; U < Desc.NumUnits; ++U)
3019       Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3020     ProcResourceID++;
3021   }
3022   LLVM_DEBUG({
3023     if (SwpShowResMask) {
3024       dbgs() << "ProcResourceDesc:\n";
3025       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3026         const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3027         dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3028                          ProcResource->Name, I, Masks[I],
3029                          ProcResource->NumUnits);
3030       }
3031       dbgs() << " -----------------\n";
3032     }
3033   });
3034 }
3035 
3036 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) {
3037   LLVM_DEBUG({
3038     if (SwpDebugResource)
3039       dbgs() << "canReserveResources:\n";
3040   });
3041   if (UseDFA)
3042     return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3043         ->canReserveResources(&SU.getInstr()->getDesc());
3044 
3045   const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3046   if (!SCDesc->isValid()) {
3047     LLVM_DEBUG({
3048       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3049       dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3050     });
3051     return true;
3052   }
3053 
3054   reserveResources(SCDesc, Cycle);
3055   bool Result = !isOverbooked();
3056   unreserveResources(SCDesc, Cycle);
3057 
3058   LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";);
3059   return Result;
3060 }
3061 
3062 void ResourceManager::reserveResources(SUnit &SU, int Cycle) {
3063   LLVM_DEBUG({
3064     if (SwpDebugResource)
3065       dbgs() << "reserveResources:\n";
3066   });
3067   if (UseDFA)
3068     return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3069         ->reserveResources(&SU.getInstr()->getDesc());
3070 
3071   const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3072   if (!SCDesc->isValid()) {
3073     LLVM_DEBUG({
3074       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3075       dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3076     });
3077     return;
3078   }
3079 
3080   reserveResources(SCDesc, Cycle);
3081 
3082   LLVM_DEBUG({
3083     if (SwpDebugResource) {
3084       dumpMRT();
3085       dbgs() << "reserveResources: done!\n\n";
3086     }
3087   });
3088 }
3089 
3090 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc,
3091                                        int Cycle) {
3092   assert(!UseDFA);
3093   for (const MCWriteProcResEntry &PRE : make_range(
3094            STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3095     for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
3096       ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3097 
3098   for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3099     ++NumScheduledMops[positiveModulo(C, InitiationInterval)];
3100 }
3101 
3102 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc,
3103                                          int Cycle) {
3104   assert(!UseDFA);
3105   for (const MCWriteProcResEntry &PRE : make_range(
3106            STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3107     for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
3108       --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3109 
3110   for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3111     --NumScheduledMops[positiveModulo(C, InitiationInterval)];
3112 }
3113 
3114 bool ResourceManager::isOverbooked() const {
3115   assert(!UseDFA);
3116   for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3117     for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3118       const MCProcResourceDesc *Desc = SM.getProcResource(I);
3119       if (MRT[Slot][I] > Desc->NumUnits)
3120         return true;
3121     }
3122     if (NumScheduledMops[Slot] > IssueWidth)
3123       return true;
3124   }
3125   return false;
3126 }
3127 
3128 int ResourceManager::calculateResMIIDFA() const {
3129   assert(UseDFA);
3130 
3131   // Sort the instructions by the number of available choices for scheduling,
3132   // least to most. Use the number of critical resources as the tie breaker.
3133   FuncUnitSorter FUS = FuncUnitSorter(*ST);
3134   for (SUnit &SU : DAG->SUnits)
3135     FUS.calcCriticalResources(*SU.getInstr());
3136   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
3137       FuncUnitOrder(FUS);
3138 
3139   for (SUnit &SU : DAG->SUnits)
3140     FuncUnitOrder.push(SU.getInstr());
3141 
3142   SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources;
3143   Resources.push_back(
3144       std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST)));
3145 
3146   while (!FuncUnitOrder.empty()) {
3147     MachineInstr *MI = FuncUnitOrder.top();
3148     FuncUnitOrder.pop();
3149     if (TII->isZeroCost(MI->getOpcode()))
3150       continue;
3151 
3152     // Attempt to reserve the instruction in an existing DFA. At least one
3153     // DFA is needed for each cycle.
3154     unsigned NumCycles = DAG->getSUnit(MI)->Latency;
3155     unsigned ReservedCycles = 0;
3156     auto *RI = Resources.begin();
3157     auto *RE = Resources.end();
3158     LLVM_DEBUG({
3159       dbgs() << "Trying to reserve resource for " << NumCycles
3160              << " cycles for \n";
3161       MI->dump();
3162     });
3163     for (unsigned C = 0; C < NumCycles; ++C)
3164       while (RI != RE) {
3165         if ((*RI)->canReserveResources(*MI)) {
3166           (*RI)->reserveResources(*MI);
3167           ++ReservedCycles;
3168           break;
3169         }
3170         RI++;
3171       }
3172     LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
3173                       << ", NumCycles:" << NumCycles << "\n");
3174     // Add new DFAs, if needed, to reserve resources.
3175     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
3176       LLVM_DEBUG(if (SwpDebugResource) dbgs()
3177                  << "NewResource created to reserve resources"
3178                  << "\n");
3179       auto *NewResource = TII->CreateTargetScheduleState(*ST);
3180       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
3181       NewResource->reserveResources(*MI);
3182       Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource));
3183     }
3184   }
3185 
3186   int Resmii = Resources.size();
3187   LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
3188   return Resmii;
3189 }
3190 
3191 int ResourceManager::calculateResMII() const {
3192   if (UseDFA)
3193     return calculateResMIIDFA();
3194 
3195   // Count each resource consumption and divide it by the number of units.
3196   // ResMII is the max value among them.
3197 
3198   int NumMops = 0;
3199   SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds());
3200   for (SUnit &SU : DAG->SUnits) {
3201     if (TII->isZeroCost(SU.getInstr()->getOpcode()))
3202       continue;
3203 
3204     const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3205     if (!SCDesc->isValid())
3206       continue;
3207 
3208     LLVM_DEBUG({
3209       if (SwpDebugResource) {
3210         DAG->dumpNode(SU);
3211         dbgs() << "  #Mops: " << SCDesc->NumMicroOps << "\n"
3212                << "  WriteProcRes: ";
3213       }
3214     });
3215     NumMops += SCDesc->NumMicroOps;
3216     for (const MCWriteProcResEntry &PRE :
3217          make_range(STI->getWriteProcResBegin(SCDesc),
3218                     STI->getWriteProcResEnd(SCDesc))) {
3219       LLVM_DEBUG({
3220         if (SwpDebugResource) {
3221           const MCProcResourceDesc *Desc =
3222               SM.getProcResource(PRE.ProcResourceIdx);
3223           dbgs() << Desc->Name << ": " << PRE.Cycles << ", ";
3224         }
3225       });
3226       ResourceCount[PRE.ProcResourceIdx] += PRE.Cycles;
3227     }
3228     LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n");
3229   }
3230 
3231   int Result = (NumMops + IssueWidth - 1) / IssueWidth;
3232   LLVM_DEBUG({
3233     if (SwpDebugResource)
3234       dbgs() << "#Mops: " << NumMops << ", "
3235              << "IssueWidth: " << IssueWidth << ", "
3236              << "Cycles: " << Result << "\n";
3237   });
3238 
3239   LLVM_DEBUG({
3240     if (SwpDebugResource) {
3241       std::stringstream SS;
3242       SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10)
3243          << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles"
3244          << "\n";
3245       dbgs() << SS.str();
3246     }
3247   });
3248   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3249     const MCProcResourceDesc *Desc = SM.getProcResource(I);
3250     int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits;
3251     LLVM_DEBUG({
3252       if (SwpDebugResource) {
3253         std::stringstream SS;
3254         SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10)
3255            << Desc->NumUnits << std::setw(10) << ResourceCount[I]
3256            << std::setw(10) << Cycles << "\n";
3257         dbgs() << SS.str();
3258       }
3259     });
3260     if (Cycles > Result)
3261       Result = Cycles;
3262   }
3263   return Result;
3264 }
3265 
3266 void ResourceManager::init(int II) {
3267   InitiationInterval = II;
3268   DFAResources.clear();
3269   DFAResources.resize(II);
3270   for (auto &I : DFAResources)
3271     I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST));
3272   MRT.clear();
3273   MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds()));
3274   NumScheduledMops.clear();
3275   NumScheduledMops.resize(II);
3276 }
3277