1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachinePostDominators.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <map>
54 #include <utility>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "machine-sink"
60 
61 static cl::opt<bool>
62 SplitEdges("machine-sink-split",
63            cl::desc("Split critical edges during machine sinking"),
64            cl::init(true), cl::Hidden);
65 
66 static cl::opt<bool>
67 UseBlockFreqInfo("machine-sink-bfi",
68            cl::desc("Use block frequency info to find successors to sink"),
69            cl::init(true), cl::Hidden);
70 
71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
72     "machine-sink-split-probability-threshold",
73     cl::desc(
74         "Percentage threshold for splitting single-instruction critical edge. "
75         "If the branch threshold is higher than this threshold, we allow "
76         "speculative execution of up to 1 instruction to avoid branching to "
77         "splitted critical edge"),
78     cl::init(40), cl::Hidden);
79 
80 STATISTIC(NumSunk,      "Number of machine instructions sunk");
81 STATISTIC(NumSplit,     "Number of critical edges split");
82 STATISTIC(NumCoalesces, "Number of copies coalesced");
83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
84 
85 namespace {
86 
87   class MachineSinking : public MachineFunctionPass {
88     const TargetInstrInfo *TII;
89     const TargetRegisterInfo *TRI;
90     MachineRegisterInfo  *MRI;     // Machine register information
91     MachineDominatorTree *DT;      // Machine dominator tree
92     MachinePostDominatorTree *PDT; // Machine post dominator tree
93     MachineLoopInfo *LI;
94     MachineBlockFrequencyInfo *MBFI;
95     const MachineBranchProbabilityInfo *MBPI;
96     AliasAnalysis *AA;
97 
98     // Remember which edges have been considered for breaking.
99     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
100     CEBCandidates;
101     // Remember which edges we are about to split.
102     // This is different from CEBCandidates since those edges
103     // will be split.
104     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
105 
106     SparseBitVector<> RegsToClearKillFlags;
107 
108     using AllSuccsCache =
109         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
110 
111     /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
112     /// post-dominated by another DBG_VALUE of the same variable location.
113     /// This is necessary to detect sequences such as:
114     ///     %0 = someinst
115     ///     DBG_VALUE %0, !123, !DIExpression()
116     ///     %1 = anotherinst
117     ///     DBG_VALUE %1, !123, !DIExpression()
118     /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
119     /// would re-order assignments.
120     using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
121 
122     /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
123     /// debug instructions to sink.
124     SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
125 
126     /// Record of debug variables that have had their locations set in the
127     /// current block.
128     DenseSet<DebugVariable> SeenDbgVars;
129 
130   public:
131     static char ID; // Pass identification
132 
133     MachineSinking() : MachineFunctionPass(ID) {
134       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
135     }
136 
137     bool runOnMachineFunction(MachineFunction &MF) override;
138 
139     void getAnalysisUsage(AnalysisUsage &AU) const override {
140       MachineFunctionPass::getAnalysisUsage(AU);
141       AU.addRequired<AAResultsWrapperPass>();
142       AU.addRequired<MachineDominatorTree>();
143       AU.addRequired<MachinePostDominatorTree>();
144       AU.addRequired<MachineLoopInfo>();
145       AU.addRequired<MachineBranchProbabilityInfo>();
146       AU.addPreserved<MachineLoopInfo>();
147       if (UseBlockFreqInfo)
148         AU.addRequired<MachineBlockFrequencyInfo>();
149     }
150 
151     void releaseMemory() override {
152       CEBCandidates.clear();
153     }
154 
155   private:
156     bool ProcessBlock(MachineBasicBlock &MBB);
157     void ProcessDbgInst(MachineInstr &MI);
158     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
159                                      MachineBasicBlock *From,
160                                      MachineBasicBlock *To);
161 
162     /// Postpone the splitting of the given critical
163     /// edge (\p From, \p To).
164     ///
165     /// We do not split the edges on the fly. Indeed, this invalidates
166     /// the dominance information and thus triggers a lot of updates
167     /// of that information underneath.
168     /// Instead, we postpone all the splits after each iteration of
169     /// the main loop. That way, the information is at least valid
170     /// for the lifetime of an iteration.
171     ///
172     /// \return True if the edge is marked as toSplit, false otherwise.
173     /// False can be returned if, for instance, this is not profitable.
174     bool PostponeSplitCriticalEdge(MachineInstr &MI,
175                                    MachineBasicBlock *From,
176                                    MachineBasicBlock *To,
177                                    bool BreakPHIEdge);
178     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
179                          AllSuccsCache &AllSuccessors);
180 
181     /// If we sink a COPY inst, some debug users of it's destination may no
182     /// longer be dominated by the COPY, and will eventually be dropped.
183     /// This is easily rectified by forwarding the non-dominated debug uses
184     /// to the copy source.
185     void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
186                                        MachineBasicBlock *TargetBlock);
187     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
188                                  MachineBasicBlock *DefMBB,
189                                  bool &BreakPHIEdge, bool &LocalUse) const;
190     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
191                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
192     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
193                               MachineBasicBlock *MBB,
194                               MachineBasicBlock *SuccToSinkTo,
195                               AllSuccsCache &AllSuccessors);
196 
197     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
198                                          MachineBasicBlock *MBB);
199 
200     SmallVector<MachineBasicBlock *, 4> &
201     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
202                            AllSuccsCache &AllSuccessors) const;
203   };
204 
205 } // end anonymous namespace
206 
207 char MachineSinking::ID = 0;
208 
209 char &llvm::MachineSinkingID = MachineSinking::ID;
210 
211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
212                       "Machine code sinking", false, false)
213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
218                     "Machine code sinking", false, false)
219 
220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
221                                                      MachineBasicBlock *MBB) {
222   if (!MI.isCopy())
223     return false;
224 
225   Register SrcReg = MI.getOperand(1).getReg();
226   Register DstReg = MI.getOperand(0).getReg();
227   if (!Register::isVirtualRegister(SrcReg) ||
228       !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
229     return false;
230 
231   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
232   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
233   if (SRC != DRC)
234     return false;
235 
236   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
237   if (DefMI->isCopyLike())
238     return false;
239   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
240   LLVM_DEBUG(dbgs() << "*** to: " << MI);
241   MRI->replaceRegWith(DstReg, SrcReg);
242   MI.eraseFromParent();
243 
244   // Conservatively, clear any kill flags, since it's possible that they are no
245   // longer correct.
246   MRI->clearKillFlags(SrcReg);
247 
248   ++NumCoalesces;
249   return true;
250 }
251 
252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
253 /// occur in blocks dominated by the specified block. If any use is in the
254 /// definition block, then return false since it is never legal to move def
255 /// after uses.
256 bool
257 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
258                                         MachineBasicBlock *MBB,
259                                         MachineBasicBlock *DefMBB,
260                                         bool &BreakPHIEdge,
261                                         bool &LocalUse) const {
262   assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
263 
264   // Ignore debug uses because debug info doesn't affect the code.
265   if (MRI->use_nodbg_empty(Reg))
266     return true;
267 
268   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
269   // into and they are all PHI nodes. In this case, machine-sink must break
270   // the critical edge first. e.g.
271   //
272   // %bb.1:
273   //   Predecessors according to CFG: %bb.0
274   //     ...
275   //     %def = DEC64_32r %x, implicit-def dead %eflags
276   //     ...
277   //     JE_4 <%bb.37>, implicit %eflags
278   //   Successors according to CFG: %bb.37 %bb.2
279   //
280   // %bb.2:
281   //     %p = PHI %y, %bb.0, %def, %bb.1
282   if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
283         MachineInstr *UseInst = MO.getParent();
284         unsigned OpNo = UseInst->getOperandNo(&MO);
285         MachineBasicBlock *UseBlock = UseInst->getParent();
286         return UseBlock == MBB && UseInst->isPHI() &&
287                UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
288       })) {
289     BreakPHIEdge = true;
290     return true;
291   }
292 
293   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
294     // Determine the block of the use.
295     MachineInstr *UseInst = MO.getParent();
296     unsigned OpNo = &MO - &UseInst->getOperand(0);
297     MachineBasicBlock *UseBlock = UseInst->getParent();
298     if (UseInst->isPHI()) {
299       // PHI nodes use the operand in the predecessor block, not the block with
300       // the PHI.
301       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
302     } else if (UseBlock == DefMBB) {
303       LocalUse = true;
304       return false;
305     }
306 
307     // Check that it dominates.
308     if (!DT->dominates(MBB, UseBlock))
309       return false;
310   }
311 
312   return true;
313 }
314 
315 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
316   if (skipFunction(MF.getFunction()))
317     return false;
318 
319   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
320 
321   TII = MF.getSubtarget().getInstrInfo();
322   TRI = MF.getSubtarget().getRegisterInfo();
323   MRI = &MF.getRegInfo();
324   DT = &getAnalysis<MachineDominatorTree>();
325   PDT = &getAnalysis<MachinePostDominatorTree>();
326   LI = &getAnalysis<MachineLoopInfo>();
327   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
328   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
329   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
330 
331   bool EverMadeChange = false;
332 
333   while (true) {
334     bool MadeChange = false;
335 
336     // Process all basic blocks.
337     CEBCandidates.clear();
338     ToSplit.clear();
339     for (auto &MBB: MF)
340       MadeChange |= ProcessBlock(MBB);
341 
342     // If we have anything we marked as toSplit, split it now.
343     for (auto &Pair : ToSplit) {
344       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
345       if (NewSucc != nullptr) {
346         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
347                           << printMBBReference(*Pair.first) << " -- "
348                           << printMBBReference(*NewSucc) << " -- "
349                           << printMBBReference(*Pair.second) << '\n');
350         if (MBFI) {
351           auto NewSuccFreq = MBFI->getBlockFreq(Pair.first) *
352                              MBPI->getEdgeProbability(Pair.first, NewSucc);
353           MBFI->setBlockFreq(NewSucc, NewSuccFreq.getFrequency());
354         }
355         MadeChange = true;
356         ++NumSplit;
357       } else
358         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
359     }
360     // If this iteration over the code changed anything, keep iterating.
361     if (!MadeChange) break;
362     EverMadeChange = true;
363   }
364 
365   // Now clear any kill flags for recorded registers.
366   for (auto I : RegsToClearKillFlags)
367     MRI->clearKillFlags(I);
368   RegsToClearKillFlags.clear();
369 
370   return EverMadeChange;
371 }
372 
373 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
374   // Can't sink anything out of a block that has less than two successors.
375   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
376 
377   // Don't bother sinking code out of unreachable blocks. In addition to being
378   // unprofitable, it can also lead to infinite looping, because in an
379   // unreachable loop there may be nowhere to stop.
380   if (!DT->isReachableFromEntry(&MBB)) return false;
381 
382   bool MadeChange = false;
383 
384   // Cache all successors, sorted by frequency info and loop depth.
385   AllSuccsCache AllSuccessors;
386 
387   // Walk the basic block bottom-up.  Remember if we saw a store.
388   MachineBasicBlock::iterator I = MBB.end();
389   --I;
390   bool ProcessedBegin, SawStore = false;
391   do {
392     MachineInstr &MI = *I;  // The instruction to sink.
393 
394     // Predecrement I (if it's not begin) so that it isn't invalidated by
395     // sinking.
396     ProcessedBegin = I == MBB.begin();
397     if (!ProcessedBegin)
398       --I;
399 
400     if (MI.isDebugInstr()) {
401       if (MI.isDebugValue())
402         ProcessDbgInst(MI);
403       continue;
404     }
405 
406     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
407     if (Joined) {
408       MadeChange = true;
409       continue;
410     }
411 
412     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
413       ++NumSunk;
414       MadeChange = true;
415     }
416 
417     // If we just processed the first instruction in the block, we're done.
418   } while (!ProcessedBegin);
419 
420   SeenDbgUsers.clear();
421   SeenDbgVars.clear();
422 
423   return MadeChange;
424 }
425 
426 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
427   // When we see DBG_VALUEs for registers, record any vreg it reads, so that
428   // we know what to sink if the vreg def sinks.
429   assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
430 
431   DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
432                     MI.getDebugLoc()->getInlinedAt());
433   bool SeenBefore = SeenDbgVars.count(Var) != 0;
434 
435   MachineOperand &MO = MI.getDebugOperand(0);
436   if (MO.isReg() && MO.getReg().isVirtual())
437     SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
438 
439   // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
440   SeenDbgVars.insert(Var);
441 }
442 
443 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
444                                                  MachineBasicBlock *From,
445                                                  MachineBasicBlock *To) {
446   // FIXME: Need much better heuristics.
447 
448   // If the pass has already considered breaking this edge (during this pass
449   // through the function), then let's go ahead and break it. This means
450   // sinking multiple "cheap" instructions into the same block.
451   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
452     return true;
453 
454   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
455     return true;
456 
457   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
458       BranchProbability(SplitEdgeProbabilityThreshold, 100))
459     return true;
460 
461   // MI is cheap, we probably don't want to break the critical edge for it.
462   // However, if this would allow some definitions of its source operands
463   // to be sunk then it's probably worth it.
464   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
465     const MachineOperand &MO = MI.getOperand(i);
466     if (!MO.isReg() || !MO.isUse())
467       continue;
468     Register Reg = MO.getReg();
469     if (Reg == 0)
470       continue;
471 
472     // We don't move live definitions of physical registers,
473     // so sinking their uses won't enable any opportunities.
474     if (Register::isPhysicalRegister(Reg))
475       continue;
476 
477     // If this instruction is the only user of a virtual register,
478     // check if breaking the edge will enable sinking
479     // both this instruction and the defining instruction.
480     if (MRI->hasOneNonDBGUse(Reg)) {
481       // If the definition resides in same MBB,
482       // claim it's likely we can sink these together.
483       // If definition resides elsewhere, we aren't
484       // blocking it from being sunk so don't break the edge.
485       MachineInstr *DefMI = MRI->getVRegDef(Reg);
486       if (DefMI->getParent() == MI.getParent())
487         return true;
488     }
489   }
490 
491   return false;
492 }
493 
494 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
495                                                MachineBasicBlock *FromBB,
496                                                MachineBasicBlock *ToBB,
497                                                bool BreakPHIEdge) {
498   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
499     return false;
500 
501   // Avoid breaking back edge. From == To means backedge for single BB loop.
502   if (!SplitEdges || FromBB == ToBB)
503     return false;
504 
505   // Check for backedges of more "complex" loops.
506   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
507       LI->isLoopHeader(ToBB))
508     return false;
509 
510   // It's not always legal to break critical edges and sink the computation
511   // to the edge.
512   //
513   // %bb.1:
514   // v1024
515   // Beq %bb.3
516   // <fallthrough>
517   // %bb.2:
518   // ... no uses of v1024
519   // <fallthrough>
520   // %bb.3:
521   // ...
522   //       = v1024
523   //
524   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
525   //
526   // %bb.1:
527   // ...
528   // Bne %bb.2
529   // %bb.4:
530   // v1024 =
531   // B %bb.3
532   // %bb.2:
533   // ... no uses of v1024
534   // <fallthrough>
535   // %bb.3:
536   // ...
537   //       = v1024
538   //
539   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
540   // flow. We need to ensure the new basic block where the computation is
541   // sunk to dominates all the uses.
542   // It's only legal to break critical edge and sink the computation to the
543   // new block if all the predecessors of "To", except for "From", are
544   // not dominated by "From". Given SSA property, this means these
545   // predecessors are dominated by "To".
546   //
547   // There is no need to do this check if all the uses are PHI nodes. PHI
548   // sources are only defined on the specific predecessor edges.
549   if (!BreakPHIEdge) {
550     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
551            E = ToBB->pred_end(); PI != E; ++PI) {
552       if (*PI == FromBB)
553         continue;
554       if (!DT->dominates(ToBB, *PI))
555         return false;
556     }
557   }
558 
559   ToSplit.insert(std::make_pair(FromBB, ToBB));
560 
561   return true;
562 }
563 
564 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
565 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
566                                           MachineBasicBlock *MBB,
567                                           MachineBasicBlock *SuccToSinkTo,
568                                           AllSuccsCache &AllSuccessors) {
569   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
570 
571   if (MBB == SuccToSinkTo)
572     return false;
573 
574   // It is profitable if SuccToSinkTo does not post dominate current block.
575   if (!PDT->dominates(SuccToSinkTo, MBB))
576     return true;
577 
578   // It is profitable to sink an instruction from a deeper loop to a shallower
579   // loop, even if the latter post-dominates the former (PR21115).
580   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
581     return true;
582 
583   // Check if only use in post dominated block is PHI instruction.
584   bool NonPHIUse = false;
585   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
586     MachineBasicBlock *UseBlock = UseInst.getParent();
587     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
588       NonPHIUse = true;
589   }
590   if (!NonPHIUse)
591     return true;
592 
593   // If SuccToSinkTo post dominates then also it may be profitable if MI
594   // can further profitably sinked into another block in next round.
595   bool BreakPHIEdge = false;
596   // FIXME - If finding successor is compile time expensive then cache results.
597   if (MachineBasicBlock *MBB2 =
598           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
599     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
600 
601   // If SuccToSinkTo is final destination and it is a post dominator of current
602   // block then it is not profitable to sink MI into SuccToSinkTo block.
603   return false;
604 }
605 
606 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
607 /// computing it if it was not already cached.
608 SmallVector<MachineBasicBlock *, 4> &
609 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
610                                        AllSuccsCache &AllSuccessors) const {
611   // Do we have the sorted successors in cache ?
612   auto Succs = AllSuccessors.find(MBB);
613   if (Succs != AllSuccessors.end())
614     return Succs->second;
615 
616   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
617                                                MBB->succ_end());
618 
619   // Handle cases where sinking can happen but where the sink point isn't a
620   // successor. For example:
621   //
622   //   x = computation
623   //   if () {} else {}
624   //   use x
625   //
626   for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
627     // DomTree children of MBB that have MBB as immediate dominator are added.
628     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
629         // Skip MBBs already added to the AllSuccs vector above.
630         !MBB->isSuccessor(DTChild->getBlock()))
631       AllSuccs.push_back(DTChild->getBlock());
632   }
633 
634   // Sort Successors according to their loop depth or block frequency info.
635   llvm::stable_sort(
636       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
637         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
638         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
639         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
640         return HasBlockFreq ? LHSFreq < RHSFreq
641                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
642       });
643 
644   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
645 
646   return it.first->second;
647 }
648 
649 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
650 MachineBasicBlock *
651 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
652                                  bool &BreakPHIEdge,
653                                  AllSuccsCache &AllSuccessors) {
654   assert (MBB && "Invalid MachineBasicBlock!");
655 
656   // Loop over all the operands of the specified instruction.  If there is
657   // anything we can't handle, bail out.
658 
659   // SuccToSinkTo - This is the successor to sink this instruction to, once we
660   // decide.
661   MachineBasicBlock *SuccToSinkTo = nullptr;
662   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
663     const MachineOperand &MO = MI.getOperand(i);
664     if (!MO.isReg()) continue;  // Ignore non-register operands.
665 
666     Register Reg = MO.getReg();
667     if (Reg == 0) continue;
668 
669     if (Register::isPhysicalRegister(Reg)) {
670       if (MO.isUse()) {
671         // If the physreg has no defs anywhere, it's just an ambient register
672         // and we can freely move its uses. Alternatively, if it's allocatable,
673         // it could get allocated to something with a def during allocation.
674         if (!MRI->isConstantPhysReg(Reg))
675           return nullptr;
676       } else if (!MO.isDead()) {
677         // A def that isn't dead. We can't move it.
678         return nullptr;
679       }
680     } else {
681       // Virtual register uses are always safe to sink.
682       if (MO.isUse()) continue;
683 
684       // If it's not safe to move defs of the register class, then abort.
685       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
686         return nullptr;
687 
688       // Virtual register defs can only be sunk if all their uses are in blocks
689       // dominated by one of the successors.
690       if (SuccToSinkTo) {
691         // If a previous operand picked a block to sink to, then this operand
692         // must be sinkable to the same block.
693         bool LocalUse = false;
694         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
695                                      BreakPHIEdge, LocalUse))
696           return nullptr;
697 
698         continue;
699       }
700 
701       // Otherwise, we should look at all the successors and decide which one
702       // we should sink to. If we have reliable block frequency information
703       // (frequency != 0) available, give successors with smaller frequencies
704       // higher priority, otherwise prioritize smaller loop depths.
705       for (MachineBasicBlock *SuccBlock :
706            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
707         bool LocalUse = false;
708         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
709                                     BreakPHIEdge, LocalUse)) {
710           SuccToSinkTo = SuccBlock;
711           break;
712         }
713         if (LocalUse)
714           // Def is used locally, it's never safe to move this def.
715           return nullptr;
716       }
717 
718       // If we couldn't find a block to sink to, ignore this instruction.
719       if (!SuccToSinkTo)
720         return nullptr;
721       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
722         return nullptr;
723     }
724   }
725 
726   // It is not possible to sink an instruction into its own block.  This can
727   // happen with loops.
728   if (MBB == SuccToSinkTo)
729     return nullptr;
730 
731   // It's not safe to sink instructions to EH landing pad. Control flow into
732   // landing pad is implicitly defined.
733   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
734     return nullptr;
735 
736   // It ought to be okay to sink instructions into an INLINEASM_BR target, but
737   // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
738   // the source block (which this code does not yet do). So for now, forbid
739   // doing so.
740   if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
741     return nullptr;
742 
743   return SuccToSinkTo;
744 }
745 
746 /// Return true if MI is likely to be usable as a memory operation by the
747 /// implicit null check optimization.
748 ///
749 /// This is a "best effort" heuristic, and should not be relied upon for
750 /// correctness.  This returning true does not guarantee that the implicit null
751 /// check optimization is legal over MI, and this returning false does not
752 /// guarantee MI cannot possibly be used to do a null check.
753 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
754                                              const TargetInstrInfo *TII,
755                                              const TargetRegisterInfo *TRI) {
756   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
757 
758   auto *MBB = MI.getParent();
759   if (MBB->pred_size() != 1)
760     return false;
761 
762   auto *PredMBB = *MBB->pred_begin();
763   auto *PredBB = PredMBB->getBasicBlock();
764 
765   // Frontends that don't use implicit null checks have no reason to emit
766   // branches with make.implicit metadata, and this function should always
767   // return false for them.
768   if (!PredBB ||
769       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
770     return false;
771 
772   const MachineOperand *BaseOp;
773   int64_t Offset;
774   bool OffsetIsScalable;
775   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
776     return false;
777 
778   if (!BaseOp->isReg())
779     return false;
780 
781   if (!(MI.mayLoad() && !MI.isPredicable()))
782     return false;
783 
784   MachineBranchPredicate MBP;
785   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
786     return false;
787 
788   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
789          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
790           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
791          MBP.LHS.getReg() == BaseOp->getReg();
792 }
793 
794 /// If the sunk instruction is a copy, try to forward the copy instead of
795 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
796 /// there's any subregister weirdness involved. Returns true if copy
797 /// propagation occurred.
798 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
799   const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
800   const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
801 
802   // Copy DBG_VALUE operand and set the original to undef. We then check to
803   // see whether this is something that can be copy-forwarded. If it isn't,
804   // continue around the loop.
805   MachineOperand &DbgMO = DbgMI.getDebugOperand(0);
806 
807   const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
808   auto CopyOperands = TII.isCopyInstr(SinkInst);
809   if (!CopyOperands)
810     return false;
811   SrcMO = CopyOperands->Source;
812   DstMO = CopyOperands->Destination;
813 
814   // Check validity of forwarding this copy.
815   bool PostRA = MRI.getNumVirtRegs() == 0;
816 
817   // Trying to forward between physical and virtual registers is too hard.
818   if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
819     return false;
820 
821   // Only try virtual register copy-forwarding before regalloc, and physical
822   // register copy-forwarding after regalloc.
823   bool arePhysRegs = !DbgMO.getReg().isVirtual();
824   if (arePhysRegs != PostRA)
825     return false;
826 
827   // Pre-regalloc, only forward if all subregisters agree (or there are no
828   // subregs at all). More analysis might recover some forwardable copies.
829   if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
830                   DbgMO.getSubReg() != DstMO->getSubReg()))
831     return false;
832 
833   // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
834   // of this copy. Only forward the copy if the DBG_VALUE operand exactly
835   // matches the copy destination.
836   if (PostRA && DbgMO.getReg() != DstMO->getReg())
837     return false;
838 
839   DbgMO.setReg(SrcMO->getReg());
840   DbgMO.setSubReg(SrcMO->getSubReg());
841   return true;
842 }
843 
844 /// Sink an instruction and its associated debug instructions.
845 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
846                         MachineBasicBlock::iterator InsertPos,
847                         SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
848 
849   // If we cannot find a location to use (merge with), then we erase the debug
850   // location to prevent debug-info driven tools from potentially reporting
851   // wrong location information.
852   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
853     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
854                                                  InsertPos->getDebugLoc()));
855   else
856     MI.setDebugLoc(DebugLoc());
857 
858   // Move the instruction.
859   MachineBasicBlock *ParentBlock = MI.getParent();
860   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
861                       ++MachineBasicBlock::iterator(MI));
862 
863   // Sink a copy of debug users to the insert position. Mark the original
864   // DBG_VALUE location as 'undef', indicating that any earlier variable
865   // location should be terminated as we've optimised away the value at this
866   // point.
867   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
868                                                  DBE = DbgValuesToSink.end();
869        DBI != DBE; ++DBI) {
870     MachineInstr *DbgMI = *DBI;
871     MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
872     SuccToSinkTo.insert(InsertPos, NewDbgMI);
873 
874     if (!attemptDebugCopyProp(MI, *DbgMI))
875       DbgMI->setDebugValueUndef();
876   }
877 }
878 
879 /// SinkInstruction - Determine whether it is safe to sink the specified machine
880 /// instruction out of its current block into a successor.
881 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
882                                      AllSuccsCache &AllSuccessors) {
883   // Don't sink instructions that the target prefers not to sink.
884   if (!TII->shouldSink(MI))
885     return false;
886 
887   // Check if it's safe to move the instruction.
888   if (!MI.isSafeToMove(AA, SawStore))
889     return false;
890 
891   // Convergent operations may not be made control-dependent on additional
892   // values.
893   if (MI.isConvergent())
894     return false;
895 
896   // Don't break implicit null checks.  This is a performance heuristic, and not
897   // required for correctness.
898   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
899     return false;
900 
901   // FIXME: This should include support for sinking instructions within the
902   // block they are currently in to shorten the live ranges.  We often get
903   // instructions sunk into the top of a large block, but it would be better to
904   // also sink them down before their first use in the block.  This xform has to
905   // be careful not to *increase* register pressure though, e.g. sinking
906   // "x = y + z" down if it kills y and z would increase the live ranges of y
907   // and z and only shrink the live range of x.
908 
909   bool BreakPHIEdge = false;
910   MachineBasicBlock *ParentBlock = MI.getParent();
911   MachineBasicBlock *SuccToSinkTo =
912       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
913 
914   // If there are no outputs, it must have side-effects.
915   if (!SuccToSinkTo)
916     return false;
917 
918   // If the instruction to move defines a dead physical register which is live
919   // when leaving the basic block, don't move it because it could turn into a
920   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
921   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
922     const MachineOperand &MO = MI.getOperand(I);
923     if (!MO.isReg()) continue;
924     Register Reg = MO.getReg();
925     if (Reg == 0 || !Register::isPhysicalRegister(Reg))
926       continue;
927     if (SuccToSinkTo->isLiveIn(Reg))
928       return false;
929   }
930 
931   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
932 
933   // If the block has multiple predecessors, this is a critical edge.
934   // Decide if we can sink along it or need to break the edge.
935   if (SuccToSinkTo->pred_size() > 1) {
936     // We cannot sink a load across a critical edge - there may be stores in
937     // other code paths.
938     bool TryBreak = false;
939     bool store = true;
940     if (!MI.isSafeToMove(AA, store)) {
941       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
942       TryBreak = true;
943     }
944 
945     // We don't want to sink across a critical edge if we don't dominate the
946     // successor. We could be introducing calculations to new code paths.
947     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
948       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
949       TryBreak = true;
950     }
951 
952     // Don't sink instructions into a loop.
953     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
954       LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
955       TryBreak = true;
956     }
957 
958     // Otherwise we are OK with sinking along a critical edge.
959     if (!TryBreak)
960       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
961     else {
962       // Mark this edge as to be split.
963       // If the edge can actually be split, the next iteration of the main loop
964       // will sink MI in the newly created block.
965       bool Status =
966         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
967       if (!Status)
968         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
969                              "break critical edge\n");
970       // The instruction will not be sunk this time.
971       return false;
972     }
973   }
974 
975   if (BreakPHIEdge) {
976     // BreakPHIEdge is true if all the uses are in the successor MBB being
977     // sunken into and they are all PHI nodes. In this case, machine-sink must
978     // break the critical edge first.
979     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
980                                             SuccToSinkTo, BreakPHIEdge);
981     if (!Status)
982       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
983                            "break critical edge\n");
984     // The instruction will not be sunk this time.
985     return false;
986   }
987 
988   // Determine where to insert into. Skip phi nodes.
989   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
990   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
991     ++InsertPos;
992 
993   // Collect debug users of any vreg that this inst defines.
994   SmallVector<MachineInstr *, 4> DbgUsersToSink;
995   for (auto &MO : MI.operands()) {
996     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
997       continue;
998     if (!SeenDbgUsers.count(MO.getReg()))
999       continue;
1000 
1001     // Sink any users that don't pass any other DBG_VALUEs for this variable.
1002     auto &Users = SeenDbgUsers[MO.getReg()];
1003     for (auto &User : Users) {
1004       MachineInstr *DbgMI = User.getPointer();
1005       if (User.getInt()) {
1006         // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1007         // it, it can't be recovered. Set it undef.
1008         if (!attemptDebugCopyProp(MI, *DbgMI))
1009           DbgMI->setDebugValueUndef();
1010       } else {
1011         DbgUsersToSink.push_back(DbgMI);
1012       }
1013     }
1014   }
1015 
1016   // After sinking, some debug users may not be dominated any more. If possible,
1017   // copy-propagate their operands. As it's expensive, don't do this if there's
1018   // no debuginfo in the program.
1019   if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1020     SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1021 
1022   performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1023 
1024   // Conservatively, clear any kill flags, since it's possible that they are no
1025   // longer correct.
1026   // Note that we have to clear the kill flags for any register this instruction
1027   // uses as we may sink over another instruction which currently kills the
1028   // used registers.
1029   for (MachineOperand &MO : MI.operands()) {
1030     if (MO.isReg() && MO.isUse())
1031       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1032   }
1033 
1034   return true;
1035 }
1036 
1037 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1038     MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1039   assert(MI.isCopy());
1040   assert(MI.getOperand(1).isReg());
1041 
1042   // Enumerate all users of vreg operands that are def'd. Skip those that will
1043   // be sunk. For the rest, if they are not dominated by the block we will sink
1044   // MI into, propagate the copy source to them.
1045   SmallVector<MachineInstr *, 4> DbgDefUsers;
1046   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1047   for (auto &MO : MI.operands()) {
1048     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1049       continue;
1050     for (auto &User : MRI.use_instructions(MO.getReg())) {
1051       if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1052         continue;
1053 
1054       // If is in same block, will either sink or be use-before-def.
1055       if (User.getParent() == MI.getParent())
1056         continue;
1057 
1058       assert(User.getDebugOperand(0).isReg() &&
1059              "DBG_VALUE user of vreg, but non reg operand?");
1060       DbgDefUsers.push_back(&User);
1061     }
1062   }
1063 
1064   // Point the users of this copy that are no longer dominated, at the source
1065   // of the copy.
1066   for (auto *User : DbgDefUsers) {
1067     User->getDebugOperand(0).setReg(MI.getOperand(1).getReg());
1068     User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg());
1069   }
1070 }
1071 
1072 //===----------------------------------------------------------------------===//
1073 // This pass is not intended to be a replacement or a complete alternative
1074 // for the pre-ra machine sink pass. It is only designed to sink COPY
1075 // instructions which should be handled after RA.
1076 //
1077 // This pass sinks COPY instructions into a successor block, if the COPY is not
1078 // used in the current block and the COPY is live-in to a single successor
1079 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
1080 // copy on paths where their results aren't needed.  This also exposes
1081 // additional opportunites for dead copy elimination and shrink wrapping.
1082 //
1083 // These copies were either not handled by or are inserted after the MachineSink
1084 // pass. As an example of the former case, the MachineSink pass cannot sink
1085 // COPY instructions with allocatable source registers; for AArch64 these type
1086 // of copy instructions are frequently used to move function parameters (PhyReg)
1087 // into virtual registers in the entry block.
1088 //
1089 // For the machine IR below, this pass will sink %w19 in the entry into its
1090 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1091 // %bb.0:
1092 //   %wzr = SUBSWri %w1, 1
1093 //   %w19 = COPY %w0
1094 //   Bcc 11, %bb.2
1095 // %bb.1:
1096 //   Live Ins: %w19
1097 //   BL @fun
1098 //   %w0 = ADDWrr %w0, %w19
1099 //   RET %w0
1100 // %bb.2:
1101 //   %w0 = COPY %wzr
1102 //   RET %w0
1103 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1104 // able to see %bb.0 as a candidate.
1105 //===----------------------------------------------------------------------===//
1106 namespace {
1107 
1108 class PostRAMachineSinking : public MachineFunctionPass {
1109 public:
1110   bool runOnMachineFunction(MachineFunction &MF) override;
1111 
1112   static char ID;
1113   PostRAMachineSinking() : MachineFunctionPass(ID) {}
1114   StringRef getPassName() const override { return "PostRA Machine Sink"; }
1115 
1116   void getAnalysisUsage(AnalysisUsage &AU) const override {
1117     AU.setPreservesCFG();
1118     MachineFunctionPass::getAnalysisUsage(AU);
1119   }
1120 
1121   MachineFunctionProperties getRequiredProperties() const override {
1122     return MachineFunctionProperties().set(
1123         MachineFunctionProperties::Property::NoVRegs);
1124   }
1125 
1126 private:
1127   /// Track which register units have been modified and used.
1128   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1129 
1130   /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1131   /// entry in this map for each unit it touches.
1132   DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
1133 
1134   /// Sink Copy instructions unused in the same block close to their uses in
1135   /// successors.
1136   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1137                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1138 };
1139 } // namespace
1140 
1141 char PostRAMachineSinking::ID = 0;
1142 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1143 
1144 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1145                 "PostRA Machine Sink", false, false)
1146 
1147 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1148                                   const TargetRegisterInfo *TRI) {
1149   LiveRegUnits LiveInRegUnits(*TRI);
1150   LiveInRegUnits.addLiveIns(MBB);
1151   return !LiveInRegUnits.available(Reg);
1152 }
1153 
1154 static MachineBasicBlock *
1155 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1156                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1157                       unsigned Reg, const TargetRegisterInfo *TRI) {
1158   // Try to find a single sinkable successor in which Reg is live-in.
1159   MachineBasicBlock *BB = nullptr;
1160   for (auto *SI : SinkableBBs) {
1161     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1162       // If BB is set here, Reg is live-in to at least two sinkable successors,
1163       // so quit.
1164       if (BB)
1165         return nullptr;
1166       BB = SI;
1167     }
1168   }
1169   // Reg is not live-in to any sinkable successors.
1170   if (!BB)
1171     return nullptr;
1172 
1173   // Check if any register aliased with Reg is live-in in other successors.
1174   for (auto *SI : CurBB.successors()) {
1175     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1176       return nullptr;
1177   }
1178   return BB;
1179 }
1180 
1181 static MachineBasicBlock *
1182 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1183                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1184                       ArrayRef<unsigned> DefedRegsInCopy,
1185                       const TargetRegisterInfo *TRI) {
1186   MachineBasicBlock *SingleBB = nullptr;
1187   for (auto DefReg : DefedRegsInCopy) {
1188     MachineBasicBlock *BB =
1189         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1190     if (!BB || (SingleBB && SingleBB != BB))
1191       return nullptr;
1192     SingleBB = BB;
1193   }
1194   return SingleBB;
1195 }
1196 
1197 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1198                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1199                            LiveRegUnits &UsedRegUnits,
1200                            const TargetRegisterInfo *TRI) {
1201   for (auto U : UsedOpsInCopy) {
1202     MachineOperand &MO = MI->getOperand(U);
1203     Register SrcReg = MO.getReg();
1204     if (!UsedRegUnits.available(SrcReg)) {
1205       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1206       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1207         if (UI.killsRegister(SrcReg, TRI)) {
1208           UI.clearRegisterKills(SrcReg, TRI);
1209           MO.setIsKill(true);
1210           break;
1211         }
1212       }
1213     }
1214   }
1215 }
1216 
1217 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1218                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1219                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1220   MachineFunction &MF = *SuccBB->getParent();
1221   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1222   for (unsigned DefReg : DefedRegsInCopy)
1223     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1224       SuccBB->removeLiveIn(*S);
1225   for (auto U : UsedOpsInCopy) {
1226     Register SrcReg = MI->getOperand(U).getReg();
1227     LaneBitmask Mask;
1228     for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1229       Mask |= (*S).second;
1230     }
1231     SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1232   }
1233   SuccBB->sortUniqueLiveIns();
1234 }
1235 
1236 static bool hasRegisterDependency(MachineInstr *MI,
1237                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1238                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1239                                   LiveRegUnits &ModifiedRegUnits,
1240                                   LiveRegUnits &UsedRegUnits) {
1241   bool HasRegDependency = false;
1242   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1243     MachineOperand &MO = MI->getOperand(i);
1244     if (!MO.isReg())
1245       continue;
1246     Register Reg = MO.getReg();
1247     if (!Reg)
1248       continue;
1249     if (MO.isDef()) {
1250       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1251         HasRegDependency = true;
1252         break;
1253       }
1254       DefedRegsInCopy.push_back(Reg);
1255 
1256       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1257       // For example, we can ignore modifications in reg with undef. However,
1258       // it's not perfectly clear if skipping the internal read is safe in all
1259       // other targets.
1260     } else if (MO.isUse()) {
1261       if (!ModifiedRegUnits.available(Reg)) {
1262         HasRegDependency = true;
1263         break;
1264       }
1265       UsedOpsInCopy.push_back(i);
1266     }
1267   }
1268   return HasRegDependency;
1269 }
1270 
1271 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1272                                          const TargetRegisterInfo *TRI) {
1273   SmallSet<unsigned, 4> RegUnits;
1274   for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1275     RegUnits.insert(*RI);
1276   return RegUnits;
1277 }
1278 
1279 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1280                                          MachineFunction &MF,
1281                                          const TargetRegisterInfo *TRI,
1282                                          const TargetInstrInfo *TII) {
1283   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1284   // FIXME: For now, we sink only to a successor which has a single predecessor
1285   // so that we can directly sink COPY instructions to the successor without
1286   // adding any new block or branch instruction.
1287   for (MachineBasicBlock *SI : CurBB.successors())
1288     if (!SI->livein_empty() && SI->pred_size() == 1)
1289       SinkableBBs.insert(SI);
1290 
1291   if (SinkableBBs.empty())
1292     return false;
1293 
1294   bool Changed = false;
1295 
1296   // Track which registers have been modified and used between the end of the
1297   // block and the current instruction.
1298   ModifiedRegUnits.clear();
1299   UsedRegUnits.clear();
1300   SeenDbgInstrs.clear();
1301 
1302   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1303     MachineInstr *MI = &*I;
1304     ++I;
1305 
1306     // Track the operand index for use in Copy.
1307     SmallVector<unsigned, 2> UsedOpsInCopy;
1308     // Track the register number defed in Copy.
1309     SmallVector<unsigned, 2> DefedRegsInCopy;
1310 
1311     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1312     // for DBG_VALUEs later, record them when they're encountered.
1313     if (MI->isDebugValue()) {
1314       auto &MO = MI->getDebugOperand(0);
1315       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1316         // Bail if we can already tell the sink would be rejected, rather
1317         // than needlessly accumulating lots of DBG_VALUEs.
1318         if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1319                                   ModifiedRegUnits, UsedRegUnits))
1320           continue;
1321 
1322         // Record debug use of each reg unit.
1323         SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1324         for (unsigned Reg : Units)
1325           SeenDbgInstrs[Reg].push_back(MI);
1326       }
1327       continue;
1328     }
1329 
1330     if (MI->isDebugInstr())
1331       continue;
1332 
1333     // Do not move any instruction across function call.
1334     if (MI->isCall())
1335       return false;
1336 
1337     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1338       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1339                                         TRI);
1340       continue;
1341     }
1342 
1343     // Don't sink the COPY if it would violate a register dependency.
1344     if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1345                               ModifiedRegUnits, UsedRegUnits)) {
1346       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1347                                         TRI);
1348       continue;
1349     }
1350     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1351            "Unexpect SrcReg or DefReg");
1352     MachineBasicBlock *SuccBB =
1353         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1354     // Don't sink if we cannot find a single sinkable successor in which Reg
1355     // is live-in.
1356     if (!SuccBB) {
1357       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1358                                         TRI);
1359       continue;
1360     }
1361     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1362            "Unexpected predecessor");
1363 
1364     // Collect DBG_VALUEs that must sink with this copy. We've previously
1365     // recorded which reg units that DBG_VALUEs read, if this instruction
1366     // writes any of those units then the corresponding DBG_VALUEs must sink.
1367     SetVector<MachineInstr *> DbgValsToSinkSet;
1368     SmallVector<MachineInstr *, 4> DbgValsToSink;
1369     for (auto &MO : MI->operands()) {
1370       if (!MO.isReg() || !MO.isDef())
1371         continue;
1372 
1373       SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1374       for (unsigned Reg : Units)
1375         for (auto *MI : SeenDbgInstrs.lookup(Reg))
1376           DbgValsToSinkSet.insert(MI);
1377     }
1378     DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1379                          DbgValsToSinkSet.end());
1380 
1381     // Clear the kill flag if SrcReg is killed between MI and the end of the
1382     // block.
1383     clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1384     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1385     performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1386     updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1387 
1388     Changed = true;
1389     ++NumPostRACopySink;
1390   }
1391   return Changed;
1392 }
1393 
1394 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1395   if (skipFunction(MF.getFunction()))
1396     return false;
1397 
1398   bool Changed = false;
1399   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1400   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1401 
1402   ModifiedRegUnits.init(*TRI);
1403   UsedRegUnits.init(*TRI);
1404   for (auto &BB : MF)
1405     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1406 
1407   return Changed;
1408 }
1409