1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/PseudoProbe.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Target/TargetMachine.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "instr-emitter"
33 
34 /// MinRCSize - Smallest register class we allow when constraining virtual
35 /// registers.  If satisfying all register class constraints would require
36 /// using a smaller register class, emit a COPY to a new virtual register
37 /// instead.
38 const unsigned MinRCSize = 4;
39 
40 /// CountResults - The results of target nodes have register or immediate
41 /// operands first, then an optional chain, and optional glue operands (which do
42 /// not go into the resulting MachineInstr).
43 unsigned InstrEmitter::CountResults(SDNode *Node) {
44   unsigned N = Node->getNumValues();
45   while (N && Node->getValueType(N - 1) == MVT::Glue)
46     --N;
47   if (N && Node->getValueType(N - 1) == MVT::Other)
48     --N;    // Skip over chain result.
49   return N;
50 }
51 
52 /// countOperands - The inputs to target nodes have any actual inputs first,
53 /// followed by an optional chain operand, then an optional glue operand.
54 /// Compute the number of actual operands that will go into the resulting
55 /// MachineInstr.
56 ///
57 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
58 /// the chain and glue. These operands may be implicit on the machine instr.
59 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
60                               unsigned &NumImpUses) {
61   unsigned N = Node->getNumOperands();
62   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
63     --N;
64   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
65     --N; // Ignore chain if it exists.
66 
67   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
68   NumImpUses = N - NumExpUses;
69   for (unsigned I = N; I > NumExpUses; --I) {
70     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
71       continue;
72     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
73       if (Register::isPhysicalRegister(RN->getReg()))
74         continue;
75     NumImpUses = N - I;
76     break;
77   }
78 
79   return N;
80 }
81 
82 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
83 /// implicit physical register output.
84 void InstrEmitter::
85 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
86                 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
87   Register VRBase;
88   if (SrcReg.isVirtual()) {
89     // Just use the input register directly!
90     SDValue Op(Node, ResNo);
91     if (IsClone)
92       VRBaseMap.erase(Op);
93     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
94     (void)isNew; // Silence compiler warning.
95     assert(isNew && "Node emitted out of order - early");
96     return;
97   }
98 
99   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
100   // the CopyToReg'd destination register instead of creating a new vreg.
101   bool MatchReg = true;
102   const TargetRegisterClass *UseRC = nullptr;
103   MVT VT = Node->getSimpleValueType(ResNo);
104 
105   // Stick to the preferred register classes for legal types.
106   if (TLI->isTypeLegal(VT))
107     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
108 
109   if (!IsClone && !IsCloned)
110     for (SDNode *User : Node->uses()) {
111       bool Match = true;
112       if (User->getOpcode() == ISD::CopyToReg &&
113           User->getOperand(2).getNode() == Node &&
114           User->getOperand(2).getResNo() == ResNo) {
115         Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
116         if (DestReg.isVirtual()) {
117           VRBase = DestReg;
118           Match = false;
119         } else if (DestReg != SrcReg)
120           Match = false;
121       } else {
122         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
123           SDValue Op = User->getOperand(i);
124           if (Op.getNode() != Node || Op.getResNo() != ResNo)
125             continue;
126           MVT VT = Node->getSimpleValueType(Op.getResNo());
127           if (VT == MVT::Other || VT == MVT::Glue)
128             continue;
129           Match = false;
130           if (User->isMachineOpcode()) {
131             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
132             const TargetRegisterClass *RC = nullptr;
133             if (i+II.getNumDefs() < II.getNumOperands()) {
134               RC = TRI->getAllocatableClass(
135                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
136             }
137             if (!UseRC)
138               UseRC = RC;
139             else if (RC) {
140               const TargetRegisterClass *ComRC =
141                 TRI->getCommonSubClass(UseRC, RC);
142               // If multiple uses expect disjoint register classes, we emit
143               // copies in AddRegisterOperand.
144               if (ComRC)
145                 UseRC = ComRC;
146             }
147           }
148         }
149       }
150       MatchReg &= Match;
151       if (VRBase)
152         break;
153     }
154 
155   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
156   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
157 
158   // Figure out the register class to create for the destreg.
159   if (VRBase) {
160     DstRC = MRI->getRegClass(VRBase);
161   } else if (UseRC) {
162     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
163            "Incompatible phys register def and uses!");
164     DstRC = UseRC;
165   } else
166     DstRC = SrcRC;
167 
168   // If all uses are reading from the src physical register and copying the
169   // register is either impossible or very expensive, then don't create a copy.
170   if (MatchReg && SrcRC->getCopyCost() < 0) {
171     VRBase = SrcReg;
172   } else {
173     // Create the reg, emit the copy.
174     VRBase = MRI->createVirtualRegister(DstRC);
175     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
176             VRBase).addReg(SrcReg);
177   }
178 
179   SDValue Op(Node, ResNo);
180   if (IsClone)
181     VRBaseMap.erase(Op);
182   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
183   (void)isNew; // Silence compiler warning.
184   assert(isNew && "Node emitted out of order - early");
185 }
186 
187 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
188                                        MachineInstrBuilder &MIB,
189                                        const MCInstrDesc &II,
190                                        bool IsClone, bool IsCloned,
191                                        DenseMap<SDValue, Register> &VRBaseMap) {
192   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
193          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
194 
195   unsigned NumResults = CountResults(Node);
196   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
197                              II.isVariadic() && II.variadicOpsAreDefs();
198   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
199   if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
200     NumVRegs = NumResults;
201   for (unsigned i = 0; i < NumVRegs; ++i) {
202     // If the specific node value is only used by a CopyToReg and the dest reg
203     // is a vreg in the same register class, use the CopyToReg'd destination
204     // register instead of creating a new vreg.
205     Register VRBase;
206     const TargetRegisterClass *RC =
207       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
208     // Always let the value type influence the used register class. The
209     // constraints on the instruction may be too lax to represent the value
210     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
211     // the 32-bit float super-class (X86::FR32).
212     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
213       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
214           Node->getSimpleValueType(i),
215           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
216       if (RC)
217         VTRC = TRI->getCommonSubClass(RC, VTRC);
218       if (VTRC)
219         RC = VTRC;
220     }
221 
222     if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
223       // Optional def must be a physical register.
224       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
225       assert(VRBase.isPhysical());
226       MIB.addReg(VRBase, RegState::Define);
227     }
228 
229     if (!VRBase && !IsClone && !IsCloned)
230       for (SDNode *User : Node->uses()) {
231         if (User->getOpcode() == ISD::CopyToReg &&
232             User->getOperand(2).getNode() == Node &&
233             User->getOperand(2).getResNo() == i) {
234           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
235           if (Register::isVirtualRegister(Reg)) {
236             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
237             if (RegRC == RC) {
238               VRBase = Reg;
239               MIB.addReg(VRBase, RegState::Define);
240               break;
241             }
242           }
243         }
244       }
245 
246     // Create the result registers for this node and add the result regs to
247     // the machine instruction.
248     if (VRBase == 0) {
249       assert(RC && "Isn't a register operand!");
250       VRBase = MRI->createVirtualRegister(RC);
251       MIB.addReg(VRBase, RegState::Define);
252     }
253 
254     // If this def corresponds to a result of the SDNode insert the VRBase into
255     // the lookup map.
256     if (i < NumResults) {
257       SDValue Op(Node, i);
258       if (IsClone)
259         VRBaseMap.erase(Op);
260       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
261       (void)isNew; // Silence compiler warning.
262       assert(isNew && "Node emitted out of order - early");
263     }
264   }
265 }
266 
267 /// getVR - Return the virtual register corresponding to the specified result
268 /// of the specified node.
269 Register InstrEmitter::getVR(SDValue Op,
270                              DenseMap<SDValue, Register> &VRBaseMap) {
271   if (Op.isMachineOpcode() &&
272       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
273     // Add an IMPLICIT_DEF instruction before every use.
274     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
275     // does not include operand register class info.
276     const TargetRegisterClass *RC = TLI->getRegClassFor(
277         Op.getSimpleValueType(), Op.getNode()->isDivergent());
278     Register VReg = MRI->createVirtualRegister(RC);
279     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
280             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
281     return VReg;
282   }
283 
284   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
285   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
286   return I->second;
287 }
288 
289 
290 /// AddRegisterOperand - Add the specified register as an operand to the
291 /// specified machine instr. Insert register copies if the register is
292 /// not in the required register class.
293 void
294 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
295                                  SDValue Op,
296                                  unsigned IIOpNum,
297                                  const MCInstrDesc *II,
298                                  DenseMap<SDValue, Register> &VRBaseMap,
299                                  bool IsDebug, bool IsClone, bool IsCloned) {
300   assert(Op.getValueType() != MVT::Other &&
301          Op.getValueType() != MVT::Glue &&
302          "Chain and glue operands should occur at end of operand list!");
303   // Get/emit the operand.
304   Register VReg = getVR(Op, VRBaseMap);
305 
306   const MCInstrDesc &MCID = MIB->getDesc();
307   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
308     MCID.OpInfo[IIOpNum].isOptionalDef();
309 
310   // If the instruction requires a register in a different class, create
311   // a new virtual register and copy the value into it, but first attempt to
312   // shrink VReg's register class within reason.  For example, if VReg == GR32
313   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
314   if (II) {
315     const TargetRegisterClass *OpRC = nullptr;
316     if (IIOpNum < II->getNumOperands())
317       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
318 
319     if (OpRC) {
320       unsigned MinNumRegs = MinRCSize;
321       // Don't apply any RC size limit for IMPLICIT_DEF. Each use has a unique
322       // virtual register.
323       if (Op.isMachineOpcode() &&
324           Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)
325         MinNumRegs = 0;
326 
327       const TargetRegisterClass *ConstrainedRC
328         = MRI->constrainRegClass(VReg, OpRC, MinNumRegs);
329       if (!ConstrainedRC) {
330         OpRC = TRI->getAllocatableClass(OpRC);
331         assert(OpRC && "Constraints cannot be fulfilled for allocation");
332         Register NewVReg = MRI->createVirtualRegister(OpRC);
333         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
334                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
335         VReg = NewVReg;
336       } else {
337         assert(ConstrainedRC->isAllocatable() &&
338            "Constraining an allocatable VReg produced an unallocatable class?");
339       }
340     }
341   }
342 
343   // If this value has only one use, that use is a kill. This is a
344   // conservative approximation. InstrEmitter does trivial coalescing
345   // with CopyFromReg nodes, so don't emit kill flags for them.
346   // Avoid kill flags on Schedule cloned nodes, since there will be
347   // multiple uses.
348   // Tied operands are never killed, so we need to check that. And that
349   // means we need to determine the index of the operand.
350   bool isKill = Op.hasOneUse() &&
351                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
352                 !IsDebug &&
353                 !(IsClone || IsCloned);
354   if (isKill) {
355     unsigned Idx = MIB->getNumOperands();
356     while (Idx > 0 &&
357            MIB->getOperand(Idx-1).isReg() &&
358            MIB->getOperand(Idx-1).isImplicit())
359       --Idx;
360     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
361     if (isTied)
362       isKill = false;
363   }
364 
365   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
366              getDebugRegState(IsDebug));
367 }
368 
369 /// AddOperand - Add the specified operand to the specified machine instr.  II
370 /// specifies the instruction information for the node, and IIOpNum is the
371 /// operand number (in the II) that we are adding.
372 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
373                               SDValue Op,
374                               unsigned IIOpNum,
375                               const MCInstrDesc *II,
376                               DenseMap<SDValue, Register> &VRBaseMap,
377                               bool IsDebug, bool IsClone, bool IsCloned) {
378   if (Op.isMachineOpcode()) {
379     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
380                        IsDebug, IsClone, IsCloned);
381   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
382     MIB.addImm(C->getSExtValue());
383   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
384     MIB.addFPImm(F->getConstantFPValue());
385   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
386     Register VReg = R->getReg();
387     MVT OpVT = Op.getSimpleValueType();
388     const TargetRegisterClass *IIRC =
389         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
390            : nullptr;
391     const TargetRegisterClass *OpRC =
392         TLI->isTypeLegal(OpVT)
393             ? TLI->getRegClassFor(OpVT,
394                                   Op.getNode()->isDivergent() ||
395                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
396             : nullptr;
397 
398     if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
399       Register NewVReg = MRI->createVirtualRegister(IIRC);
400       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
401                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
402       VReg = NewVReg;
403     }
404     // Turn additional physreg operands into implicit uses on non-variadic
405     // instructions. This is used by call and return instructions passing
406     // arguments in registers.
407     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
408     MIB.addReg(VReg, getImplRegState(Imp));
409   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
410     MIB.addRegMask(RM->getRegMask());
411   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
412     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
413                          TGA->getTargetFlags());
414   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
415     MIB.addMBB(BBNode->getBasicBlock());
416   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
417     MIB.addFrameIndex(FI->getIndex());
418   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
419     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
420   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
421     int Offset = CP->getOffset();
422     Align Alignment = CP->getAlign();
423 
424     unsigned Idx;
425     MachineConstantPool *MCP = MF->getConstantPool();
426     if (CP->isMachineConstantPoolEntry())
427       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
428     else
429       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
430     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
431   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
432     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
433   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
434     MIB.addSym(SymNode->getMCSymbol());
435   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
436     MIB.addBlockAddress(BA->getBlockAddress(),
437                         BA->getOffset(),
438                         BA->getTargetFlags());
439   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
440     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
441   } else {
442     assert(Op.getValueType() != MVT::Other &&
443            Op.getValueType() != MVT::Glue &&
444            "Chain and glue operands should occur at end of operand list!");
445     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
446                        IsDebug, IsClone, IsCloned);
447   }
448 }
449 
450 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
451                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
452   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
453   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
454 
455   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
456   // within reason.
457   if (RC && RC != VRC)
458     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
459 
460   // VReg has been adjusted.  It can be used with SubIdx operands now.
461   if (RC)
462     return VReg;
463 
464   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
465   // register instead.
466   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
467   assert(RC && "No legal register class for VT supports that SubIdx");
468   Register NewReg = MRI->createVirtualRegister(RC);
469   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
470     .addReg(VReg);
471   return NewReg;
472 }
473 
474 /// EmitSubregNode - Generate machine code for subreg nodes.
475 ///
476 void InstrEmitter::EmitSubregNode(SDNode *Node,
477                                   DenseMap<SDValue, Register> &VRBaseMap,
478                                   bool IsClone, bool IsCloned) {
479   Register VRBase;
480   unsigned Opc = Node->getMachineOpcode();
481 
482   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
483   // the CopyToReg'd destination register instead of creating a new vreg.
484   for (SDNode *User : Node->uses()) {
485     if (User->getOpcode() == ISD::CopyToReg &&
486         User->getOperand(2).getNode() == Node) {
487       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
488       if (DestReg.isVirtual()) {
489         VRBase = DestReg;
490         break;
491       }
492     }
493   }
494 
495   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
496     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
497     // constraints on the %dst register, COPY can target all legal register
498     // classes.
499     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
500     const TargetRegisterClass *TRC =
501       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
502 
503     Register Reg;
504     MachineInstr *DefMI;
505     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
506     if (R && Register::isPhysicalRegister(R->getReg())) {
507       Reg = R->getReg();
508       DefMI = nullptr;
509     } else {
510       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
511       DefMI = MRI->getVRegDef(Reg);
512     }
513 
514     Register SrcReg, DstReg;
515     unsigned DefSubIdx;
516     if (DefMI &&
517         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
518         SubIdx == DefSubIdx &&
519         TRC == MRI->getRegClass(SrcReg)) {
520       // Optimize these:
521       // r1025 = s/zext r1024, 4
522       // r1026 = extract_subreg r1025, 4
523       // to a copy
524       // r1026 = copy r1024
525       VRBase = MRI->createVirtualRegister(TRC);
526       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
527               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
528       MRI->clearKillFlags(SrcReg);
529     } else {
530       // Reg may not support a SubIdx sub-register, and we may need to
531       // constrain its register class or issue a COPY to a compatible register
532       // class.
533       if (Reg.isVirtual())
534         Reg = ConstrainForSubReg(Reg, SubIdx,
535                                  Node->getOperand(0).getSimpleValueType(),
536                                  Node->isDivergent(), Node->getDebugLoc());
537       // Create the destreg if it is missing.
538       if (!VRBase)
539         VRBase = MRI->createVirtualRegister(TRC);
540 
541       // Create the extract_subreg machine instruction.
542       MachineInstrBuilder CopyMI =
543           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
544                   TII->get(TargetOpcode::COPY), VRBase);
545       if (Reg.isVirtual())
546         CopyMI.addReg(Reg, 0, SubIdx);
547       else
548         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
549     }
550   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
551              Opc == TargetOpcode::SUBREG_TO_REG) {
552     SDValue N0 = Node->getOperand(0);
553     SDValue N1 = Node->getOperand(1);
554     SDValue N2 = Node->getOperand(2);
555     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
556 
557     // Figure out the register class to create for the destreg.  It should be
558     // the largest legal register class supporting SubIdx sub-registers.
559     // RegisterCoalescer will constrain it further if it decides to eliminate
560     // the INSERT_SUBREG instruction.
561     //
562     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
563     //
564     // is lowered by TwoAddressInstructionPass to:
565     //
566     //   %dst = COPY %src
567     //   %dst:SubIdx = COPY %sub
568     //
569     // There is no constraint on the %src register class.
570     //
571     const TargetRegisterClass *SRC =
572         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
573     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
574     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
575 
576     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
577       VRBase = MRI->createVirtualRegister(SRC);
578 
579     // Create the insert_subreg or subreg_to_reg machine instruction.
580     MachineInstrBuilder MIB =
581       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
582 
583     // If creating a subreg_to_reg, then the first input operand
584     // is an implicit value immediate, otherwise it's a register
585     if (Opc == TargetOpcode::SUBREG_TO_REG) {
586       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
587       MIB.addImm(SD->getZExtValue());
588     } else
589       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
590                  IsClone, IsCloned);
591     // Add the subregister being inserted
592     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
593                IsClone, IsCloned);
594     MIB.addImm(SubIdx);
595     MBB->insert(InsertPos, MIB);
596   } else
597     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
598 
599   SDValue Op(Node, 0);
600   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
601   (void)isNew; // Silence compiler warning.
602   assert(isNew && "Node emitted out of order - early");
603 }
604 
605 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
606 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
607 /// register is constrained to be in a particular register class.
608 ///
609 void
610 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
611                                      DenseMap<SDValue, Register> &VRBaseMap) {
612   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
613 
614   // Create the new VReg in the destination class and emit a copy.
615   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
616   const TargetRegisterClass *DstRC =
617     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
618   Register NewVReg = MRI->createVirtualRegister(DstRC);
619   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
620     NewVReg).addReg(VReg);
621 
622   SDValue Op(Node, 0);
623   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
624   (void)isNew; // Silence compiler warning.
625   assert(isNew && "Node emitted out of order - early");
626 }
627 
628 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
629 ///
630 void InstrEmitter::EmitRegSequence(SDNode *Node,
631                                   DenseMap<SDValue, Register> &VRBaseMap,
632                                   bool IsClone, bool IsCloned) {
633   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
634   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
635   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
636   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
637   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
638   unsigned NumOps = Node->getNumOperands();
639   // If the input pattern has a chain, then the root of the corresponding
640   // output pattern will get a chain as well. This can happen to be a
641   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
642   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
643     --NumOps; // Ignore chain if it exists.
644 
645   assert((NumOps & 1) == 1 &&
646          "REG_SEQUENCE must have an odd number of operands!");
647   for (unsigned i = 1; i != NumOps; ++i) {
648     SDValue Op = Node->getOperand(i);
649     if ((i & 1) == 0) {
650       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
651       // Skip physical registers as they don't have a vreg to get and we'll
652       // insert copies for them in TwoAddressInstructionPass anyway.
653       if (!R || !Register::isPhysicalRegister(R->getReg())) {
654         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
655         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
656         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
657         const TargetRegisterClass *SRC =
658         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
659         if (SRC && SRC != RC) {
660           MRI->setRegClass(NewVReg, SRC);
661           RC = SRC;
662         }
663       }
664     }
665     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
666                IsClone, IsCloned);
667   }
668 
669   MBB->insert(InsertPos, MIB);
670   SDValue Op(Node, 0);
671   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
672   (void)isNew; // Silence compiler warning.
673   assert(isNew && "Node emitted out of order - early");
674 }
675 
676 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
677 ///
678 MachineInstr *
679 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
680                            DenseMap<SDValue, Register> &VRBaseMap) {
681   MDNode *Var = SD->getVariable();
682   MDNode *Expr = SD->getExpression();
683   DebugLoc DL = SD->getDebugLoc();
684   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
685          "Expected inlined-at fields to agree");
686 
687   SD->setIsEmitted();
688 
689   ArrayRef<SDDbgOperand> LocationOps = SD->getLocationOps();
690   assert(!LocationOps.empty() && "dbg_value with no location operands?");
691 
692   if (SD->isInvalidated())
693     return EmitDbgNoLocation(SD);
694 
695   // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
696   if (SD->isVariadic()) {
697     // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
698     const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
699     // Build the DBG_VALUE_LIST instruction base.
700     auto MIB = BuildMI(*MF, DL, DbgValDesc);
701     MIB.addMetadata(Var);
702     MIB.addMetadata(Expr);
703     AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
704     return &*MIB;
705   }
706 
707   // Attempt to produce a DBG_INSTR_REF if we've been asked to.
708   // We currently exclude the possibility of instruction references for
709   // variadic nodes; if at some point we enable them, this should be moved
710   // above the variadic block.
711   if (EmitDebugInstrRefs)
712     if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
713       return InstrRef;
714 
715   return EmitDbgValueFromSingleOp(SD, VRBaseMap);
716 }
717 
718 void InstrEmitter::AddDbgValueLocationOps(
719     MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
720     ArrayRef<SDDbgOperand> LocationOps,
721     DenseMap<SDValue, Register> &VRBaseMap) {
722   for (const SDDbgOperand &Op : LocationOps) {
723     switch (Op.getKind()) {
724     case SDDbgOperand::FRAMEIX:
725       MIB.addFrameIndex(Op.getFrameIx());
726       break;
727     case SDDbgOperand::VREG:
728       MIB.addReg(Op.getVReg());
729       break;
730     case SDDbgOperand::SDNODE: {
731       SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
732       // It's possible we replaced this SDNode with other(s) and therefore
733       // didn't generate code for it. It's better to catch these cases where
734       // they happen and transfer the debug info, but trying to guarantee that
735       // in all cases would be very fragile; this is a safeguard for any
736       // that were missed.
737       if (VRBaseMap.count(V) == 0)
738         MIB.addReg(0U); // undef
739       else
740         AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
741                    /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
742     } break;
743     case SDDbgOperand::CONST: {
744       const Value *V = Op.getConst();
745       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
746         if (CI->getBitWidth() > 64)
747           MIB.addCImm(CI);
748         else
749           MIB.addImm(CI->getSExtValue());
750       } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
751         MIB.addFPImm(CF);
752       } else if (isa<ConstantPointerNull>(V)) {
753         // Note: This assumes that all nullptr constants are zero-valued.
754         MIB.addImm(0);
755       } else {
756         // Could be an Undef. In any case insert an Undef so we can see what we
757         // dropped.
758         MIB.addReg(0U);
759       }
760     } break;
761     }
762   }
763 }
764 
765 MachineInstr *
766 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
767                               DenseMap<SDValue, Register> &VRBaseMap) {
768   assert(!SD->isVariadic());
769   SDDbgOperand DbgOperand = SD->getLocationOps()[0];
770   MDNode *Var = SD->getVariable();
771   DIExpression *Expr = (DIExpression*)SD->getExpression();
772   DebugLoc DL = SD->getDebugLoc();
773   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
774 
775   // Handle variable locations that don't actually depend on the instructions
776   // in the program: constants and stack locations.
777   if (DbgOperand.getKind() == SDDbgOperand::FRAMEIX ||
778       DbgOperand.getKind() == SDDbgOperand::CONST)
779     return EmitDbgValueFromSingleOp(SD, VRBaseMap);
780 
781   // Immediately fold any indirectness from the LLVM-IR intrinsic into the
782   // expression:
783   if (SD->isIndirect()) {
784     std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
785     Expr = DIExpression::append(Expr, Elts);
786   }
787 
788   // It may not be immediately possible to identify the MachineInstr that
789   // defines a VReg, it can depend for example on the order blocks are
790   // emitted in. When this happens, or when further analysis is needed later,
791   // produce an instruction like this:
792   //
793   //    DBG_INSTR_REF %0:gr64, 0, !123, !456
794   //
795   // i.e., point the instruction at the vreg, and patch it up later in
796   // MachineFunction::finalizeDebugInstrRefs.
797   auto EmitHalfDoneInstrRef = [&](unsigned VReg) -> MachineInstr * {
798     auto MIB = BuildMI(*MF, DL, RefII);
799     MIB.addReg(VReg);
800     MIB.addImm(0);
801     MIB.addMetadata(Var);
802     MIB.addMetadata(Expr);
803     return MIB;
804   };
805 
806   // Try to find both the defined register and the instruction defining it.
807   MachineInstr *DefMI = nullptr;
808   unsigned VReg;
809 
810   if (DbgOperand.getKind() == SDDbgOperand::VREG) {
811     VReg = DbgOperand.getVReg();
812 
813     // No definition means that block hasn't been emitted yet. Leave a vreg
814     // reference to be fixed later.
815     if (!MRI->hasOneDef(VReg))
816       return EmitHalfDoneInstrRef(VReg);
817 
818     DefMI = &*MRI->def_instr_begin(VReg);
819   } else {
820     assert(DbgOperand.getKind() == SDDbgOperand::SDNODE);
821     // Look up the corresponding VReg for the given SDNode, if any.
822     SDNode *Node = DbgOperand.getSDNode();
823     SDValue Op = SDValue(Node, DbgOperand.getResNo());
824     DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
825     // No VReg -> produce a DBG_VALUE $noreg instead.
826     if (I==VRBaseMap.end())
827       return EmitDbgNoLocation(SD);
828 
829     // Try to pick out a defining instruction at this point.
830     VReg = getVR(Op, VRBaseMap);
831 
832     // Again, if there's no instruction defining the VReg right now, fix it up
833     // later.
834     if (!MRI->hasOneDef(VReg))
835       return EmitHalfDoneInstrRef(VReg);
836 
837     DefMI = &*MRI->def_instr_begin(VReg);
838   }
839 
840   // Avoid copy like instructions: they don't define values, only move them.
841   // Leave a virtual-register reference until it can be fixed up later, to find
842   // the underlying value definition.
843   if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI))
844     return EmitHalfDoneInstrRef(VReg);
845 
846   auto MIB = BuildMI(*MF, DL, RefII);
847 
848   // Find the operand number which defines the specified VReg.
849   unsigned OperandIdx = 0;
850   for (const auto &MO : DefMI->operands()) {
851     if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
852       break;
853     ++OperandIdx;
854   }
855   assert(OperandIdx < DefMI->getNumOperands());
856 
857   // Make the DBG_INSTR_REF refer to that instruction, and that operand.
858   unsigned InstrNum = DefMI->getDebugInstrNum();
859   MIB.addImm(InstrNum);
860   MIB.addImm(OperandIdx);
861   MIB.addMetadata(Var);
862   MIB.addMetadata(Expr);
863   return &*MIB;
864 }
865 
866 MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
867   // An invalidated SDNode must generate an undef DBG_VALUE: although the
868   // original value is no longer computed, earlier DBG_VALUEs live ranges
869   // must not leak into later code.
870   MDNode *Var = SD->getVariable();
871   MDNode *Expr = SD->getExpression();
872   DebugLoc DL = SD->getDebugLoc();
873   auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
874   MIB.addReg(0U);
875   MIB.addReg(0U);
876   MIB.addMetadata(Var);
877   MIB.addMetadata(Expr);
878   return &*MIB;
879 }
880 
881 MachineInstr *
882 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
883                                        DenseMap<SDValue, Register> &VRBaseMap) {
884   MDNode *Var = SD->getVariable();
885   DIExpression *Expr = SD->getExpression();
886   DebugLoc DL = SD->getDebugLoc();
887   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
888 
889   assert(SD->getLocationOps().size() == 1 &&
890          "Non variadic dbg_value should have only one location op");
891 
892   // See about constant-folding the expression.
893   // Copy the location operand in case we replace it.
894   SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
895   if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
896     const Value *V = LocationOps[0].getConst();
897     if (auto *C = dyn_cast<ConstantInt>(V)) {
898       std::tie(Expr, C) = Expr->constantFold(C);
899       LocationOps[0] = SDDbgOperand::fromConst(C);
900     }
901   }
902 
903   // Emit non-variadic dbg_value nodes as DBG_VALUE.
904   // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
905   auto MIB = BuildMI(*MF, DL, II);
906   AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);
907 
908   if (SD->isIndirect())
909     MIB.addImm(0U);
910   else
911     MIB.addReg(0U);
912 
913   return MIB.addMetadata(Var).addMetadata(Expr);
914 }
915 
916 MachineInstr *
917 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
918   MDNode *Label = SD->getLabel();
919   DebugLoc DL = SD->getDebugLoc();
920   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
921          "Expected inlined-at fields to agree");
922 
923   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
924   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
925   MIB.addMetadata(Label);
926 
927   return &*MIB;
928 }
929 
930 /// EmitMachineNode - Generate machine code for a target-specific node and
931 /// needed dependencies.
932 ///
933 void InstrEmitter::
934 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
935                 DenseMap<SDValue, Register> &VRBaseMap) {
936   unsigned Opc = Node->getMachineOpcode();
937 
938   // Handle subreg insert/extract specially
939   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
940       Opc == TargetOpcode::INSERT_SUBREG ||
941       Opc == TargetOpcode::SUBREG_TO_REG) {
942     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
943     return;
944   }
945 
946   // Handle COPY_TO_REGCLASS specially.
947   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
948     EmitCopyToRegClassNode(Node, VRBaseMap);
949     return;
950   }
951 
952   // Handle REG_SEQUENCE specially.
953   if (Opc == TargetOpcode::REG_SEQUENCE) {
954     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
955     return;
956   }
957 
958   if (Opc == TargetOpcode::IMPLICIT_DEF)
959     // We want a unique VR for each IMPLICIT_DEF use.
960     return;
961 
962   const MCInstrDesc &II = TII->get(Opc);
963   unsigned NumResults = CountResults(Node);
964   unsigned NumDefs = II.getNumDefs();
965   const MCPhysReg *ScratchRegs = nullptr;
966 
967   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
968   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
969     // Stackmaps do not have arguments and do not preserve their calling
970     // convention. However, to simplify runtime support, they clobber the same
971     // scratch registers as AnyRegCC.
972     unsigned CC = CallingConv::AnyReg;
973     if (Opc == TargetOpcode::PATCHPOINT) {
974       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
975       NumDefs = NumResults;
976     }
977     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
978   } else if (Opc == TargetOpcode::STATEPOINT) {
979     NumDefs = NumResults;
980   }
981 
982   unsigned NumImpUses = 0;
983   unsigned NodeOperands =
984     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
985   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
986                              II.isVariadic() && II.variadicOpsAreDefs();
987   bool HasPhysRegOuts = NumResults > NumDefs &&
988                         II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
989 #ifndef NDEBUG
990   unsigned NumMIOperands = NodeOperands + NumResults;
991   if (II.isVariadic())
992     assert(NumMIOperands >= II.getNumOperands() &&
993            "Too few operands for a variadic node!");
994   else
995     assert(NumMIOperands >= II.getNumOperands() &&
996            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
997                             NumImpUses &&
998            "#operands for dag node doesn't match .td file!");
999 #endif
1000 
1001   // Create the new machine instruction.
1002   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
1003 
1004   // Add result register values for things that are defined by this
1005   // instruction.
1006   if (NumResults) {
1007     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
1008 
1009     // Transfer any IR flags from the SDNode to the MachineInstr
1010     MachineInstr *MI = MIB.getInstr();
1011     const SDNodeFlags Flags = Node->getFlags();
1012     if (Flags.hasNoSignedZeros())
1013       MI->setFlag(MachineInstr::MIFlag::FmNsz);
1014 
1015     if (Flags.hasAllowReciprocal())
1016       MI->setFlag(MachineInstr::MIFlag::FmArcp);
1017 
1018     if (Flags.hasNoNaNs())
1019       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
1020 
1021     if (Flags.hasNoInfs())
1022       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1023 
1024     if (Flags.hasAllowContract())
1025       MI->setFlag(MachineInstr::MIFlag::FmContract);
1026 
1027     if (Flags.hasApproximateFuncs())
1028       MI->setFlag(MachineInstr::MIFlag::FmAfn);
1029 
1030     if (Flags.hasAllowReassociation())
1031       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1032 
1033     if (Flags.hasNoUnsignedWrap())
1034       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1035 
1036     if (Flags.hasNoSignedWrap())
1037       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1038 
1039     if (Flags.hasExact())
1040       MI->setFlag(MachineInstr::MIFlag::IsExact);
1041 
1042     if (Flags.hasNoFPExcept())
1043       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1044   }
1045 
1046   // Emit all of the actual operands of this instruction, adding them to the
1047   // instruction as appropriate.
1048   bool HasOptPRefs = NumDefs > NumResults;
1049   assert((!HasOptPRefs || !HasPhysRegOuts) &&
1050          "Unable to cope with optional defs and phys regs defs!");
1051   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1052   for (unsigned i = NumSkip; i != NodeOperands; ++i)
1053     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1054                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1055 
1056   // Add scratch registers as implicit def and early clobber
1057   if (ScratchRegs)
1058     for (unsigned i = 0; ScratchRegs[i]; ++i)
1059       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1060                                  RegState::EarlyClobber);
1061 
1062   // Set the memory reference descriptions of this instruction now that it is
1063   // part of the function.
1064   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1065 
1066   // Insert the instruction into position in the block. This needs to
1067   // happen before any custom inserter hook is called so that the
1068   // hook knows where in the block to insert the replacement code.
1069   MBB->insert(InsertPos, MIB);
1070 
1071   // The MachineInstr may also define physregs instead of virtregs.  These
1072   // physreg values can reach other instructions in different ways:
1073   //
1074   // 1. When there is a use of a Node value beyond the explicitly defined
1075   //    virtual registers, we emit a CopyFromReg for one of the implicitly
1076   //    defined physregs.  This only happens when HasPhysRegOuts is true.
1077   //
1078   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1079   //
1080   // 3. A glued instruction may implicitly use a physreg.
1081   //
1082   // 4. A glued instruction may use a RegisterSDNode operand.
1083   //
1084   // Collect all the used physreg defs, and make sure that any unused physreg
1085   // defs are marked as dead.
1086   SmallVector<Register, 8> UsedRegs;
1087 
1088   // Additional results must be physical register defs.
1089   if (HasPhysRegOuts) {
1090     for (unsigned i = NumDefs; i < NumResults; ++i) {
1091       Register Reg = II.getImplicitDefs()[i - NumDefs];
1092       if (!Node->hasAnyUseOfValue(i))
1093         continue;
1094       // This implicitly defined physreg has a use.
1095       UsedRegs.push_back(Reg);
1096       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
1097     }
1098   }
1099 
1100   // Scan the glue chain for any used physregs.
1101   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1102     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1103       if (F->getOpcode() == ISD::CopyFromReg) {
1104         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1105         continue;
1106       } else if (F->getOpcode() == ISD::CopyToReg) {
1107         // Skip CopyToReg nodes that are internal to the glue chain.
1108         continue;
1109       }
1110       // Collect declared implicit uses.
1111       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1112       UsedRegs.append(MCID.getImplicitUses(),
1113                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
1114       // In addition to declared implicit uses, we must also check for
1115       // direct RegisterSDNode operands.
1116       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1117         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1118           Register Reg = R->getReg();
1119           if (Reg.isPhysical())
1120             UsedRegs.push_back(Reg);
1121         }
1122     }
1123   }
1124 
1125   // Finally mark unused registers as dead.
1126   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
1127     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1128 
1129   // STATEPOINT is too 'dynamic' to have meaningful machine description.
1130   // We have to manually tie operands.
1131   if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1132     assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1133     MachineInstr *MI = MIB;
1134     unsigned Def = 0;
1135     int First = StatepointOpers(MI).getFirstGCPtrIdx();
1136     assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1137     unsigned Use = (unsigned)First;
1138     while (Def < NumDefs) {
1139       if (MI->getOperand(Use).isReg())
1140         MI->tieOperands(Def++, Use);
1141       Use = StackMaps::getNextMetaArgIdx(MI, Use);
1142     }
1143   }
1144 
1145   // Run post-isel target hook to adjust this instruction if needed.
1146   if (II.hasPostISelHook())
1147     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1148 }
1149 
1150 /// EmitSpecialNode - Generate machine code for a target-independent node and
1151 /// needed dependencies.
1152 void InstrEmitter::
1153 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1154                 DenseMap<SDValue, Register> &VRBaseMap) {
1155   switch (Node->getOpcode()) {
1156   default:
1157 #ifndef NDEBUG
1158     Node->dump();
1159 #endif
1160     llvm_unreachable("This target-independent node should have been selected!");
1161   case ISD::EntryToken:
1162     llvm_unreachable("EntryToken should have been excluded from the schedule!");
1163   case ISD::MERGE_VALUES:
1164   case ISD::TokenFactor: // fall thru
1165     break;
1166   case ISD::CopyToReg: {
1167     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1168     SDValue SrcVal = Node->getOperand(2);
1169     if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1170         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1171       // Instead building a COPY to that vreg destination, build an
1172       // IMPLICIT_DEF instruction instead.
1173       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1174               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1175       break;
1176     }
1177     Register SrcReg;
1178     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1179       SrcReg = R->getReg();
1180     else
1181       SrcReg = getVR(SrcVal, VRBaseMap);
1182 
1183     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1184       break;
1185 
1186     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1187             DestReg).addReg(SrcReg);
1188     break;
1189   }
1190   case ISD::CopyFromReg: {
1191     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1192     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1193     break;
1194   }
1195   case ISD::EH_LABEL:
1196   case ISD::ANNOTATION_LABEL: {
1197     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1198                        ? TargetOpcode::EH_LABEL
1199                        : TargetOpcode::ANNOTATION_LABEL;
1200     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1201     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1202             TII->get(Opc)).addSym(S);
1203     break;
1204   }
1205 
1206   case ISD::LIFETIME_START:
1207   case ISD::LIFETIME_END: {
1208     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1209                          ? TargetOpcode::LIFETIME_START
1210                          : TargetOpcode::LIFETIME_END;
1211     auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1212     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1213     .addFrameIndex(FI->getIndex());
1214     break;
1215   }
1216 
1217   case ISD::PSEUDO_PROBE: {
1218     unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1219     auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1220     auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1221     auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1222 
1223     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1224         .addImm(Guid)
1225         .addImm(Index)
1226         .addImm((uint8_t)PseudoProbeType::Block)
1227         .addImm(Attr);
1228     break;
1229   }
1230 
1231   case ISD::INLINEASM:
1232   case ISD::INLINEASM_BR: {
1233     unsigned NumOps = Node->getNumOperands();
1234     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1235       --NumOps;  // Ignore the glue operand.
1236 
1237     // Create the inline asm machine instruction.
1238     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1239                           ? TargetOpcode::INLINEASM_BR
1240                           : TargetOpcode::INLINEASM;
1241     MachineInstrBuilder MIB =
1242         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1243 
1244     // Add the asm string as an external symbol operand.
1245     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1246     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1247     MIB.addExternalSymbol(AsmStr);
1248 
1249     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1250     // bits.
1251     int64_t ExtraInfo =
1252       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1253                           getZExtValue();
1254     MIB.addImm(ExtraInfo);
1255 
1256     // Remember to operand index of the group flags.
1257     SmallVector<unsigned, 8> GroupIdx;
1258 
1259     // Remember registers that are part of early-clobber defs.
1260     SmallVector<unsigned, 8> ECRegs;
1261 
1262     // Add all of the operand registers to the instruction.
1263     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1264       unsigned Flags =
1265         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1266       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1267 
1268       GroupIdx.push_back(MIB->getNumOperands());
1269       MIB.addImm(Flags);
1270       ++i;  // Skip the ID value.
1271 
1272       switch (InlineAsm::getKind(Flags)) {
1273       default: llvm_unreachable("Bad flags!");
1274         case InlineAsm::Kind_RegDef:
1275         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1276           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1277           // FIXME: Add dead flags for physical and virtual registers defined.
1278           // For now, mark physical register defs as implicit to help fast
1279           // regalloc. This makes inline asm look a lot like calls.
1280           MIB.addReg(Reg,
1281                      RegState::Define |
1282                          getImplRegState(Register::isPhysicalRegister(Reg)));
1283         }
1284         break;
1285       case InlineAsm::Kind_RegDefEarlyClobber:
1286       case InlineAsm::Kind_Clobber:
1287         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1288           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1289           MIB.addReg(Reg,
1290                      RegState::Define | RegState::EarlyClobber |
1291                          getImplRegState(Register::isPhysicalRegister(Reg)));
1292           ECRegs.push_back(Reg);
1293         }
1294         break;
1295       case InlineAsm::Kind_RegUse:  // Use of register.
1296       case InlineAsm::Kind_Imm:  // Immediate.
1297       case InlineAsm::Kind_Mem:  // Addressing mode.
1298         // The addressing mode has been selected, just add all of the
1299         // operands to the machine instruction.
1300         for (unsigned j = 0; j != NumVals; ++j, ++i)
1301           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1302                      /*IsDebug=*/false, IsClone, IsCloned);
1303 
1304         // Manually set isTied bits.
1305         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1306           unsigned DefGroup = 0;
1307           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1308             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1309             unsigned UseIdx = GroupIdx.back() + 1;
1310             for (unsigned j = 0; j != NumVals; ++j)
1311               MIB->tieOperands(DefIdx + j, UseIdx + j);
1312           }
1313         }
1314         break;
1315       }
1316     }
1317 
1318     // GCC inline assembly allows input operands to also be early-clobber
1319     // output operands (so long as the operand is written only after it's
1320     // used), but this does not match the semantics of our early-clobber flag.
1321     // If an early-clobber operand register is also an input operand register,
1322     // then remove the early-clobber flag.
1323     for (unsigned Reg : ECRegs) {
1324       if (MIB->readsRegister(Reg, TRI)) {
1325         MachineOperand *MO =
1326             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1327         assert(MO && "No def operand for clobbered register?");
1328         MO->setIsEarlyClobber(false);
1329       }
1330     }
1331 
1332     // Get the mdnode from the asm if it exists and add it to the instruction.
1333     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1334     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1335     if (MD)
1336       MIB.addMetadata(MD);
1337 
1338     MBB->insert(InsertPos, MIB);
1339     break;
1340   }
1341   }
1342 }
1343 
1344 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1345 /// at the given position in the given block.
1346 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1347                            MachineBasicBlock::iterator insertpos,
1348                            bool UseInstrRefDebugInfo)
1349     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1350       TII(MF->getSubtarget().getInstrInfo()),
1351       TRI(MF->getSubtarget().getRegisterInfo()),
1352       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1353       InsertPos(insertpos) {
1354   EmitDebugInstrRefs = UseInstrRefDebugInfo;
1355 }
1356