1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (LHS.getOpcode() != RHS.getOpcode() ||
346       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
347        LHS.getOpcode() != ISD::SPLAT_VECTOR))
348     return false;
349 
350   EVT SVT = LHS.getValueType().getScalarType();
351   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
352     SDValue LHSOp = LHS.getOperand(i);
353     SDValue RHSOp = RHS.getOperand(i);
354     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
355     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
356     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
357     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
358     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
359       return false;
360     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
361                                LHSOp.getValueType() != RHSOp.getValueType()))
362       return false;
363     if (!Match(LHSCst, RHSCst))
364       return false;
365   }
366   return true;
367 }
368 
369 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
370   switch (VecReduceOpcode) {
371   default:
372     llvm_unreachable("Expected VECREDUCE opcode");
373   case ISD::VECREDUCE_FADD:
374   case ISD::VECREDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378     return ISD::FMUL;
379   case ISD::VECREDUCE_ADD:
380     return ISD::ADD;
381   case ISD::VECREDUCE_MUL:
382     return ISD::MUL;
383   case ISD::VECREDUCE_AND:
384     return ISD::AND;
385   case ISD::VECREDUCE_OR:
386     return ISD::OR;
387   case ISD::VECREDUCE_XOR:
388     return ISD::XOR;
389   case ISD::VECREDUCE_SMAX:
390     return ISD::SMAX;
391   case ISD::VECREDUCE_SMIN:
392     return ISD::SMIN;
393   case ISD::VECREDUCE_UMAX:
394     return ISD::UMAX;
395   case ISD::VECREDUCE_UMIN:
396     return ISD::UMIN;
397   case ISD::VECREDUCE_FMAX:
398     return ISD::FMAXNUM;
399   case ISD::VECREDUCE_FMIN:
400     return ISD::FMINNUM;
401   }
402 }
403 
404 bool ISD::isVPOpcode(unsigned Opcode) {
405   switch (Opcode) {
406   default:
407     return false;
408 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
409   case ISD::SDOPC:                                                             \
410     return true;
411 #include "llvm/IR/VPIntrinsics.def"
412   }
413 }
414 
415 /// The operand position of the vector mask.
416 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
417   switch (Opcode) {
418   default:
419     return None;
420 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
421   case ISD::SDOPC:                                                             \
422     return MASKPOS;
423 #include "llvm/IR/VPIntrinsics.def"
424   }
425 }
426 
427 /// The operand position of the explicit vector length parameter.
428 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     return None;
432 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
433   case ISD::SDOPC:                                                             \
434     return EVLPOS;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437 }
438 
439 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
440   switch (ExtType) {
441   case ISD::EXTLOAD:
442     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
443   case ISD::SEXTLOAD:
444     return ISD::SIGN_EXTEND;
445   case ISD::ZEXTLOAD:
446     return ISD::ZERO_EXTEND;
447   default:
448     break;
449   }
450 
451   llvm_unreachable("Invalid LoadExtType");
452 }
453 
454 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
455   // To perform this operation, we just need to swap the L and G bits of the
456   // operation.
457   unsigned OldL = (Operation >> 2) & 1;
458   unsigned OldG = (Operation >> 1) & 1;
459   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
460                        (OldL << 1) |       // New G bit
461                        (OldG << 2));       // New L bit.
462 }
463 
464 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
465   unsigned Operation = Op;
466   if (isIntegerLike)
467     Operation ^= 7;   // Flip L, G, E bits, but not U.
468   else
469     Operation ^= 15;  // Flip all of the condition bits.
470 
471   if (Operation > ISD::SETTRUE2)
472     Operation &= ~8;  // Don't let N and U bits get set.
473 
474   return ISD::CondCode(Operation);
475 }
476 
477 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
478   return getSetCCInverseImpl(Op, Type.isInteger());
479 }
480 
481 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
482                                                bool isIntegerLike) {
483   return getSetCCInverseImpl(Op, isIntegerLike);
484 }
485 
486 /// For an integer comparison, return 1 if the comparison is a signed operation
487 /// and 2 if the result is an unsigned comparison. Return zero if the operation
488 /// does not depend on the sign of the input (setne and seteq).
489 static int isSignedOp(ISD::CondCode Opcode) {
490   switch (Opcode) {
491   default: llvm_unreachable("Illegal integer setcc operation!");
492   case ISD::SETEQ:
493   case ISD::SETNE: return 0;
494   case ISD::SETLT:
495   case ISD::SETLE:
496   case ISD::SETGT:
497   case ISD::SETGE: return 1;
498   case ISD::SETULT:
499   case ISD::SETULE:
500   case ISD::SETUGT:
501   case ISD::SETUGE: return 2;
502   }
503 }
504 
505 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
506                                        EVT Type) {
507   bool IsInteger = Type.isInteger();
508   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
509     // Cannot fold a signed integer setcc with an unsigned integer setcc.
510     return ISD::SETCC_INVALID;
511 
512   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
513 
514   // If the N and U bits get set, then the resultant comparison DOES suddenly
515   // care about orderedness, and it is true when ordered.
516   if (Op > ISD::SETTRUE2)
517     Op &= ~16;     // Clear the U bit if the N bit is set.
518 
519   // Canonicalize illegal integer setcc's.
520   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
521     Op = ISD::SETNE;
522 
523   return ISD::CondCode(Op);
524 }
525 
526 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
527                                         EVT Type) {
528   bool IsInteger = Type.isInteger();
529   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
530     // Cannot fold a signed setcc with an unsigned setcc.
531     return ISD::SETCC_INVALID;
532 
533   // Combine all of the condition bits.
534   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
535 
536   // Canonicalize illegal integer setcc's.
537   if (IsInteger) {
538     switch (Result) {
539     default: break;
540     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
541     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
542     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
543     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
544     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
545     }
546   }
547 
548   return Result;
549 }
550 
551 //===----------------------------------------------------------------------===//
552 //                           SDNode Profile Support
553 //===----------------------------------------------------------------------===//
554 
555 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
556 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
557   ID.AddInteger(OpC);
558 }
559 
560 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
561 /// solely with their pointer.
562 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
563   ID.AddPointer(VTList.VTs);
564 }
565 
566 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
567 static void AddNodeIDOperands(FoldingSetNodeID &ID,
568                               ArrayRef<SDValue> Ops) {
569   for (auto& Op : Ops) {
570     ID.AddPointer(Op.getNode());
571     ID.AddInteger(Op.getResNo());
572   }
573 }
574 
575 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
576 static void AddNodeIDOperands(FoldingSetNodeID &ID,
577                               ArrayRef<SDUse> Ops) {
578   for (auto& Op : Ops) {
579     ID.AddPointer(Op.getNode());
580     ID.AddInteger(Op.getResNo());
581   }
582 }
583 
584 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
585                           SDVTList VTList, ArrayRef<SDValue> OpList) {
586   AddNodeIDOpcode(ID, OpC);
587   AddNodeIDValueTypes(ID, VTList);
588   AddNodeIDOperands(ID, OpList);
589 }
590 
591 /// If this is an SDNode with special info, add this info to the NodeID data.
592 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
593   switch (N->getOpcode()) {
594   case ISD::TargetExternalSymbol:
595   case ISD::ExternalSymbol:
596   case ISD::MCSymbol:
597     llvm_unreachable("Should only be used on nodes with operands");
598   default: break;  // Normal nodes don't need extra info.
599   case ISD::TargetConstant:
600   case ISD::Constant: {
601     const ConstantSDNode *C = cast<ConstantSDNode>(N);
602     ID.AddPointer(C->getConstantIntValue());
603     ID.AddBoolean(C->isOpaque());
604     break;
605   }
606   case ISD::TargetConstantFP:
607   case ISD::ConstantFP:
608     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
609     break;
610   case ISD::TargetGlobalAddress:
611   case ISD::GlobalAddress:
612   case ISD::TargetGlobalTLSAddress:
613   case ISD::GlobalTLSAddress: {
614     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
615     ID.AddPointer(GA->getGlobal());
616     ID.AddInteger(GA->getOffset());
617     ID.AddInteger(GA->getTargetFlags());
618     break;
619   }
620   case ISD::BasicBlock:
621     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
622     break;
623   case ISD::Register:
624     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
625     break;
626   case ISD::RegisterMask:
627     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
628     break;
629   case ISD::SRCVALUE:
630     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
631     break;
632   case ISD::FrameIndex:
633   case ISD::TargetFrameIndex:
634     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
635     break;
636   case ISD::LIFETIME_START:
637   case ISD::LIFETIME_END:
638     if (cast<LifetimeSDNode>(N)->hasOffset()) {
639       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
640       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
641     }
642     break;
643   case ISD::PSEUDO_PROBE:
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
645     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
646     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
647     break;
648   case ISD::JumpTable:
649   case ISD::TargetJumpTable:
650     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
651     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
652     break;
653   case ISD::ConstantPool:
654   case ISD::TargetConstantPool: {
655     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
656     ID.AddInteger(CP->getAlign().value());
657     ID.AddInteger(CP->getOffset());
658     if (CP->isMachineConstantPoolEntry())
659       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
660     else
661       ID.AddPointer(CP->getConstVal());
662     ID.AddInteger(CP->getTargetFlags());
663     break;
664   }
665   case ISD::TargetIndex: {
666     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
667     ID.AddInteger(TI->getIndex());
668     ID.AddInteger(TI->getOffset());
669     ID.AddInteger(TI->getTargetFlags());
670     break;
671   }
672   case ISD::LOAD: {
673     const LoadSDNode *LD = cast<LoadSDNode>(N);
674     ID.AddInteger(LD->getMemoryVT().getRawBits());
675     ID.AddInteger(LD->getRawSubclassData());
676     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
677     break;
678   }
679   case ISD::STORE: {
680     const StoreSDNode *ST = cast<StoreSDNode>(N);
681     ID.AddInteger(ST->getMemoryVT().getRawBits());
682     ID.AddInteger(ST->getRawSubclassData());
683     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
684     break;
685   }
686   case ISD::MLOAD: {
687     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
688     ID.AddInteger(MLD->getMemoryVT().getRawBits());
689     ID.AddInteger(MLD->getRawSubclassData());
690     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
691     break;
692   }
693   case ISD::MSTORE: {
694     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
695     ID.AddInteger(MST->getMemoryVT().getRawBits());
696     ID.AddInteger(MST->getRawSubclassData());
697     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
698     break;
699   }
700   case ISD::MGATHER: {
701     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
702     ID.AddInteger(MG->getMemoryVT().getRawBits());
703     ID.AddInteger(MG->getRawSubclassData());
704     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
705     break;
706   }
707   case ISD::MSCATTER: {
708     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
709     ID.AddInteger(MS->getMemoryVT().getRawBits());
710     ID.AddInteger(MS->getRawSubclassData());
711     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
712     break;
713   }
714   case ISD::ATOMIC_CMP_SWAP:
715   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
716   case ISD::ATOMIC_SWAP:
717   case ISD::ATOMIC_LOAD_ADD:
718   case ISD::ATOMIC_LOAD_SUB:
719   case ISD::ATOMIC_LOAD_AND:
720   case ISD::ATOMIC_LOAD_CLR:
721   case ISD::ATOMIC_LOAD_OR:
722   case ISD::ATOMIC_LOAD_XOR:
723   case ISD::ATOMIC_LOAD_NAND:
724   case ISD::ATOMIC_LOAD_MIN:
725   case ISD::ATOMIC_LOAD_MAX:
726   case ISD::ATOMIC_LOAD_UMIN:
727   case ISD::ATOMIC_LOAD_UMAX:
728   case ISD::ATOMIC_LOAD:
729   case ISD::ATOMIC_STORE: {
730     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
731     ID.AddInteger(AT->getMemoryVT().getRawBits());
732     ID.AddInteger(AT->getRawSubclassData());
733     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::PREFETCH: {
737     const MemSDNode *PF = cast<MemSDNode>(N);
738     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
739     break;
740   }
741   case ISD::VECTOR_SHUFFLE: {
742     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
743     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
744          i != e; ++i)
745       ID.AddInteger(SVN->getMaskElt(i));
746     break;
747   }
748   case ISD::TargetBlockAddress:
749   case ISD::BlockAddress: {
750     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
751     ID.AddPointer(BA->getBlockAddress());
752     ID.AddInteger(BA->getOffset());
753     ID.AddInteger(BA->getTargetFlags());
754     break;
755   }
756   } // end switch (N->getOpcode())
757 
758   // Target specific memory nodes could also have address spaces to check.
759   if (N->isTargetMemoryOpcode())
760     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
761 }
762 
763 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
764 /// data.
765 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
766   AddNodeIDOpcode(ID, N->getOpcode());
767   // Add the return value info.
768   AddNodeIDValueTypes(ID, N->getVTList());
769   // Add the operand info.
770   AddNodeIDOperands(ID, N->ops());
771 
772   // Handle SDNode leafs with special info.
773   AddNodeIDCustom(ID, N);
774 }
775 
776 //===----------------------------------------------------------------------===//
777 //                              SelectionDAG Class
778 //===----------------------------------------------------------------------===//
779 
780 /// doNotCSE - Return true if CSE should not be performed for this node.
781 static bool doNotCSE(SDNode *N) {
782   if (N->getValueType(0) == MVT::Glue)
783     return true; // Never CSE anything that produces a flag.
784 
785   switch (N->getOpcode()) {
786   default: break;
787   case ISD::HANDLENODE:
788   case ISD::EH_LABEL:
789     return true;   // Never CSE these nodes.
790   }
791 
792   // Check that remaining values produced are not flags.
793   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
794     if (N->getValueType(i) == MVT::Glue)
795       return true; // Never CSE anything that produces a flag.
796 
797   return false;
798 }
799 
800 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
801 /// SelectionDAG.
802 void SelectionDAG::RemoveDeadNodes() {
803   // Create a dummy node (which is not added to allnodes), that adds a reference
804   // to the root node, preventing it from being deleted.
805   HandleSDNode Dummy(getRoot());
806 
807   SmallVector<SDNode*, 128> DeadNodes;
808 
809   // Add all obviously-dead nodes to the DeadNodes worklist.
810   for (SDNode &Node : allnodes())
811     if (Node.use_empty())
812       DeadNodes.push_back(&Node);
813 
814   RemoveDeadNodes(DeadNodes);
815 
816   // If the root changed (e.g. it was a dead load, update the root).
817   setRoot(Dummy.getValue());
818 }
819 
820 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
821 /// given list, and any nodes that become unreachable as a result.
822 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
823 
824   // Process the worklist, deleting the nodes and adding their uses to the
825   // worklist.
826   while (!DeadNodes.empty()) {
827     SDNode *N = DeadNodes.pop_back_val();
828     // Skip to next node if we've already managed to delete the node. This could
829     // happen if replacing a node causes a node previously added to the node to
830     // be deleted.
831     if (N->getOpcode() == ISD::DELETED_NODE)
832       continue;
833 
834     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
835       DUL->NodeDeleted(N, nullptr);
836 
837     // Take the node out of the appropriate CSE map.
838     RemoveNodeFromCSEMaps(N);
839 
840     // Next, brutally remove the operand list.  This is safe to do, as there are
841     // no cycles in the graph.
842     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
843       SDUse &Use = *I++;
844       SDNode *Operand = Use.getNode();
845       Use.set(SDValue());
846 
847       // Now that we removed this operand, see if there are no uses of it left.
848       if (Operand->use_empty())
849         DeadNodes.push_back(Operand);
850     }
851 
852     DeallocateNode(N);
853   }
854 }
855 
856 void SelectionDAG::RemoveDeadNode(SDNode *N){
857   SmallVector<SDNode*, 16> DeadNodes(1, N);
858 
859   // Create a dummy node that adds a reference to the root node, preventing
860   // it from being deleted.  (This matters if the root is an operand of the
861   // dead node.)
862   HandleSDNode Dummy(getRoot());
863 
864   RemoveDeadNodes(DeadNodes);
865 }
866 
867 void SelectionDAG::DeleteNode(SDNode *N) {
868   // First take this out of the appropriate CSE map.
869   RemoveNodeFromCSEMaps(N);
870 
871   // Finally, remove uses due to operands of this node, remove from the
872   // AllNodes list, and delete the node.
873   DeleteNodeNotInCSEMaps(N);
874 }
875 
876 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
877   assert(N->getIterator() != AllNodes.begin() &&
878          "Cannot delete the entry node!");
879   assert(N->use_empty() && "Cannot delete a node that is not dead!");
880 
881   // Drop all of the operands and decrement used node's use counts.
882   N->DropOperands();
883 
884   DeallocateNode(N);
885 }
886 
887 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
888   assert(!(V->isVariadic() && isParameter));
889   if (isParameter)
890     ByvalParmDbgValues.push_back(V);
891   else
892     DbgValues.push_back(V);
893   for (const SDNode *Node : V->getSDNodes())
894     if (Node)
895       DbgValMap[Node].push_back(V);
896 }
897 
898 void SDDbgInfo::erase(const SDNode *Node) {
899   DbgValMapType::iterator I = DbgValMap.find(Node);
900   if (I == DbgValMap.end())
901     return;
902   for (auto &Val: I->second)
903     Val->setIsInvalidated();
904   DbgValMap.erase(I);
905 }
906 
907 void SelectionDAG::DeallocateNode(SDNode *N) {
908   // If we have operands, deallocate them.
909   removeOperands(N);
910 
911   NodeAllocator.Deallocate(AllNodes.remove(N));
912 
913   // Set the opcode to DELETED_NODE to help catch bugs when node
914   // memory is reallocated.
915   // FIXME: There are places in SDag that have grown a dependency on the opcode
916   // value in the released node.
917   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
918   N->NodeType = ISD::DELETED_NODE;
919 
920   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
921   // them and forget about that node.
922   DbgInfo->erase(N);
923 }
924 
925 #ifndef NDEBUG
926 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
927 static void VerifySDNode(SDNode *N) {
928   switch (N->getOpcode()) {
929   default:
930     break;
931   case ISD::BUILD_PAIR: {
932     EVT VT = N->getValueType(0);
933     assert(N->getNumValues() == 1 && "Too many results!");
934     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
935            "Wrong return type!");
936     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
937     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
938            "Mismatched operand types!");
939     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
940            "Wrong operand type!");
941     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
942            "Wrong return type size");
943     break;
944   }
945   case ISD::BUILD_VECTOR: {
946     assert(N->getNumValues() == 1 && "Too many results!");
947     assert(N->getValueType(0).isVector() && "Wrong return type!");
948     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
949            "Wrong number of operands!");
950     EVT EltVT = N->getValueType(0).getVectorElementType();
951     for (const SDUse &Op : N->ops()) {
952       assert((Op.getValueType() == EltVT ||
953               (EltVT.isInteger() && Op.getValueType().isInteger() &&
954                EltVT.bitsLE(Op.getValueType()))) &&
955              "Wrong operand type!");
956       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
957              "Operands must all have the same type");
958     }
959     break;
960   }
961   }
962 }
963 #endif // NDEBUG
964 
965 /// Insert a newly allocated node into the DAG.
966 ///
967 /// Handles insertion into the all nodes list and CSE map, as well as
968 /// verification and other common operations when a new node is allocated.
969 void SelectionDAG::InsertNode(SDNode *N) {
970   AllNodes.push_back(N);
971 #ifndef NDEBUG
972   N->PersistentId = NextPersistentId++;
973   VerifySDNode(N);
974 #endif
975   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
976     DUL->NodeInserted(N);
977 }
978 
979 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
980 /// correspond to it.  This is useful when we're about to delete or repurpose
981 /// the node.  We don't want future request for structurally identical nodes
982 /// to return N anymore.
983 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
984   bool Erased = false;
985   switch (N->getOpcode()) {
986   case ISD::HANDLENODE: return false;  // noop.
987   case ISD::CONDCODE:
988     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
989            "Cond code doesn't exist!");
990     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
991     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
992     break;
993   case ISD::ExternalSymbol:
994     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
995     break;
996   case ISD::TargetExternalSymbol: {
997     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
998     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
999         ESN->getSymbol(), ESN->getTargetFlags()));
1000     break;
1001   }
1002   case ISD::MCSymbol: {
1003     auto *MCSN = cast<MCSymbolSDNode>(N);
1004     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1005     break;
1006   }
1007   case ISD::VALUETYPE: {
1008     EVT VT = cast<VTSDNode>(N)->getVT();
1009     if (VT.isExtended()) {
1010       Erased = ExtendedValueTypeNodes.erase(VT);
1011     } else {
1012       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1013       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1014     }
1015     break;
1016   }
1017   default:
1018     // Remove it from the CSE Map.
1019     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1020     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1021     Erased = CSEMap.RemoveNode(N);
1022     break;
1023   }
1024 #ifndef NDEBUG
1025   // Verify that the node was actually in one of the CSE maps, unless it has a
1026   // flag result (which cannot be CSE'd) or is one of the special cases that are
1027   // not subject to CSE.
1028   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1029       !N->isMachineOpcode() && !doNotCSE(N)) {
1030     N->dump(this);
1031     dbgs() << "\n";
1032     llvm_unreachable("Node is not in map!");
1033   }
1034 #endif
1035   return Erased;
1036 }
1037 
1038 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1039 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1040 /// node already exists, in which case transfer all its users to the existing
1041 /// node. This transfer can potentially trigger recursive merging.
1042 void
1043 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1044   // For node types that aren't CSE'd, just act as if no identical node
1045   // already exists.
1046   if (!doNotCSE(N)) {
1047     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1048     if (Existing != N) {
1049       // If there was already an existing matching node, use ReplaceAllUsesWith
1050       // to replace the dead one with the existing one.  This can cause
1051       // recursive merging of other unrelated nodes down the line.
1052       ReplaceAllUsesWith(N, Existing);
1053 
1054       // N is now dead. Inform the listeners and delete it.
1055       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056         DUL->NodeDeleted(N, Existing);
1057       DeleteNodeNotInCSEMaps(N);
1058       return;
1059     }
1060   }
1061 
1062   // If the node doesn't already exist, we updated it.  Inform listeners.
1063   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1064     DUL->NodeUpdated(N);
1065 }
1066 
1067 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1068 /// were replaced with those specified.  If this node is never memoized,
1069 /// return null, otherwise return a pointer to the slot it would take.  If a
1070 /// node already exists with these operands, the slot will be non-null.
1071 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1072                                            void *&InsertPos) {
1073   if (doNotCSE(N))
1074     return nullptr;
1075 
1076   SDValue Ops[] = { Op };
1077   FoldingSetNodeID ID;
1078   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1079   AddNodeIDCustom(ID, N);
1080   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1081   if (Node)
1082     Node->intersectFlagsWith(N->getFlags());
1083   return Node;
1084 }
1085 
1086 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1087 /// were replaced with those specified.  If this node is never memoized,
1088 /// return null, otherwise return a pointer to the slot it would take.  If a
1089 /// node already exists with these operands, the slot will be non-null.
1090 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1091                                            SDValue Op1, SDValue Op2,
1092                                            void *&InsertPos) {
1093   if (doNotCSE(N))
1094     return nullptr;
1095 
1096   SDValue Ops[] = { Op1, Op2 };
1097   FoldingSetNodeID ID;
1098   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1099   AddNodeIDCustom(ID, N);
1100   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1101   if (Node)
1102     Node->intersectFlagsWith(N->getFlags());
1103   return Node;
1104 }
1105 
1106 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1107 /// were replaced with those specified.  If this node is never memoized,
1108 /// return null, otherwise return a pointer to the slot it would take.  If a
1109 /// node already exists with these operands, the slot will be non-null.
1110 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1111                                            void *&InsertPos) {
1112   if (doNotCSE(N))
1113     return nullptr;
1114 
1115   FoldingSetNodeID ID;
1116   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1117   AddNodeIDCustom(ID, N);
1118   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1119   if (Node)
1120     Node->intersectFlagsWith(N->getFlags());
1121   return Node;
1122 }
1123 
1124 Align SelectionDAG::getEVTAlign(EVT VT) const {
1125   Type *Ty = VT == MVT::iPTR ?
1126                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1127                    VT.getTypeForEVT(*getContext());
1128 
1129   return getDataLayout().getABITypeAlign(Ty);
1130 }
1131 
1132 // EntryNode could meaningfully have debug info if we can find it...
1133 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1134     : TM(tm), OptLevel(OL),
1135       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1136       Root(getEntryNode()) {
1137   InsertNode(&EntryNode);
1138   DbgInfo = new SDDbgInfo();
1139 }
1140 
1141 void SelectionDAG::init(MachineFunction &NewMF,
1142                         OptimizationRemarkEmitter &NewORE,
1143                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1144                         LegacyDivergenceAnalysis * Divergence,
1145                         ProfileSummaryInfo *PSIin,
1146                         BlockFrequencyInfo *BFIin) {
1147   MF = &NewMF;
1148   SDAGISelPass = PassPtr;
1149   ORE = &NewORE;
1150   TLI = getSubtarget().getTargetLowering();
1151   TSI = getSubtarget().getSelectionDAGInfo();
1152   LibInfo = LibraryInfo;
1153   Context = &MF->getFunction().getContext();
1154   DA = Divergence;
1155   PSI = PSIin;
1156   BFI = BFIin;
1157 }
1158 
1159 SelectionDAG::~SelectionDAG() {
1160   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1161   allnodes_clear();
1162   OperandRecycler.clear(OperandAllocator);
1163   delete DbgInfo;
1164 }
1165 
1166 bool SelectionDAG::shouldOptForSize() const {
1167   return MF->getFunction().hasOptSize() ||
1168       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1169 }
1170 
1171 void SelectionDAG::allnodes_clear() {
1172   assert(&*AllNodes.begin() == &EntryNode);
1173   AllNodes.remove(AllNodes.begin());
1174   while (!AllNodes.empty())
1175     DeallocateNode(&AllNodes.front());
1176 #ifndef NDEBUG
1177   NextPersistentId = 0;
1178 #endif
1179 }
1180 
1181 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1182                                           void *&InsertPos) {
1183   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1184   if (N) {
1185     switch (N->getOpcode()) {
1186     default: break;
1187     case ISD::Constant:
1188     case ISD::ConstantFP:
1189       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1190                        "debug location.  Use another overload.");
1191     }
1192   }
1193   return N;
1194 }
1195 
1196 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1197                                           const SDLoc &DL, void *&InsertPos) {
1198   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1199   if (N) {
1200     switch (N->getOpcode()) {
1201     case ISD::Constant:
1202     case ISD::ConstantFP:
1203       // Erase debug location from the node if the node is used at several
1204       // different places. Do not propagate one location to all uses as it
1205       // will cause a worse single stepping debugging experience.
1206       if (N->getDebugLoc() != DL.getDebugLoc())
1207         N->setDebugLoc(DebugLoc());
1208       break;
1209     default:
1210       // When the node's point of use is located earlier in the instruction
1211       // sequence than its prior point of use, update its debug info to the
1212       // earlier location.
1213       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1214         N->setDebugLoc(DL.getDebugLoc());
1215       break;
1216     }
1217   }
1218   return N;
1219 }
1220 
1221 void SelectionDAG::clear() {
1222   allnodes_clear();
1223   OperandRecycler.clear(OperandAllocator);
1224   OperandAllocator.Reset();
1225   CSEMap.clear();
1226 
1227   ExtendedValueTypeNodes.clear();
1228   ExternalSymbols.clear();
1229   TargetExternalSymbols.clear();
1230   MCSymbols.clear();
1231   SDCallSiteDbgInfo.clear();
1232   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1233             static_cast<CondCodeSDNode*>(nullptr));
1234   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1235             static_cast<SDNode*>(nullptr));
1236 
1237   EntryNode.UseList = nullptr;
1238   InsertNode(&EntryNode);
1239   Root = getEntryNode();
1240   DbgInfo->clear();
1241 }
1242 
1243 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1244   return VT.bitsGT(Op.getValueType())
1245              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1246              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1247 }
1248 
1249 std::pair<SDValue, SDValue>
1250 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1251                                        const SDLoc &DL, EVT VT) {
1252   assert(!VT.bitsEq(Op.getValueType()) &&
1253          "Strict no-op FP extend/round not allowed.");
1254   SDValue Res =
1255       VT.bitsGT(Op.getValueType())
1256           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1257           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1258                     {Chain, Op, getIntPtrConstant(0, DL)});
1259 
1260   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1261 }
1262 
1263 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1264   return VT.bitsGT(Op.getValueType()) ?
1265     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1266     getNode(ISD::TRUNCATE, DL, VT, Op);
1267 }
1268 
1269 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1270   return VT.bitsGT(Op.getValueType()) ?
1271     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1272     getNode(ISD::TRUNCATE, DL, VT, Op);
1273 }
1274 
1275 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1276   return VT.bitsGT(Op.getValueType()) ?
1277     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1278     getNode(ISD::TRUNCATE, DL, VT, Op);
1279 }
1280 
1281 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1282                                         EVT OpVT) {
1283   if (VT.bitsLE(Op.getValueType()))
1284     return getNode(ISD::TRUNCATE, SL, VT, Op);
1285 
1286   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1287   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1288 }
1289 
1290 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1291   EVT OpVT = Op.getValueType();
1292   assert(VT.isInteger() && OpVT.isInteger() &&
1293          "Cannot getZeroExtendInReg FP types");
1294   assert(VT.isVector() == OpVT.isVector() &&
1295          "getZeroExtendInReg type should be vector iff the operand "
1296          "type is vector!");
1297   assert((!VT.isVector() ||
1298           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1299          "Vector element counts must match in getZeroExtendInReg");
1300   assert(VT.bitsLE(OpVT) && "Not extending!");
1301   if (OpVT == VT)
1302     return Op;
1303   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1304                                    VT.getScalarSizeInBits());
1305   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1306 }
1307 
1308 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1309   // Only unsigned pointer semantics are supported right now. In the future this
1310   // might delegate to TLI to check pointer signedness.
1311   return getZExtOrTrunc(Op, DL, VT);
1312 }
1313 
1314 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1315   // Only unsigned pointer semantics are supported right now. In the future this
1316   // might delegate to TLI to check pointer signedness.
1317   return getZeroExtendInReg(Op, DL, VT);
1318 }
1319 
1320 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1321 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1322   EVT EltVT = VT.getScalarType();
1323   SDValue NegOne =
1324     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1325   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1326 }
1327 
1328 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1329   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1330   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1331 }
1332 
1333 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1334                                       EVT OpVT) {
1335   if (!V)
1336     return getConstant(0, DL, VT);
1337 
1338   switch (TLI->getBooleanContents(OpVT)) {
1339   case TargetLowering::ZeroOrOneBooleanContent:
1340   case TargetLowering::UndefinedBooleanContent:
1341     return getConstant(1, DL, VT);
1342   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1343     return getAllOnesConstant(DL, VT);
1344   }
1345   llvm_unreachable("Unexpected boolean content enum!");
1346 }
1347 
1348 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1349                                   bool isT, bool isO) {
1350   EVT EltVT = VT.getScalarType();
1351   assert((EltVT.getSizeInBits() >= 64 ||
1352           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1353          "getConstant with a uint64_t value that doesn't fit in the type!");
1354   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1355 }
1356 
1357 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1358                                   bool isT, bool isO) {
1359   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1360 }
1361 
1362 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1363                                   EVT VT, bool isT, bool isO) {
1364   assert(VT.isInteger() && "Cannot create FP integer constant!");
1365 
1366   EVT EltVT = VT.getScalarType();
1367   const ConstantInt *Elt = &Val;
1368 
1369   // In some cases the vector type is legal but the element type is illegal and
1370   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1371   // inserted value (the type does not need to match the vector element type).
1372   // Any extra bits introduced will be truncated away.
1373   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1374                            TargetLowering::TypePromoteInteger) {
1375     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1376     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1377     Elt = ConstantInt::get(*getContext(), NewVal);
1378   }
1379   // In other cases the element type is illegal and needs to be expanded, for
1380   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1381   // the value into n parts and use a vector type with n-times the elements.
1382   // Then bitcast to the type requested.
1383   // Legalizing constants too early makes the DAGCombiner's job harder so we
1384   // only legalize if the DAG tells us we must produce legal types.
1385   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1386            TLI->getTypeAction(*getContext(), EltVT) ==
1387                TargetLowering::TypeExpandInteger) {
1388     const APInt &NewVal = Elt->getValue();
1389     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1390     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1391 
1392     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1393     if (VT.isScalableVector()) {
1394       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1395              "Can only handle an even split!");
1396       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1397 
1398       SmallVector<SDValue, 2> ScalarParts;
1399       for (unsigned i = 0; i != Parts; ++i)
1400         ScalarParts.push_back(getConstant(
1401             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1402             ViaEltVT, isT, isO));
1403 
1404       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1405     }
1406 
1407     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1408     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1409 
1410     // Check the temporary vector is the correct size. If this fails then
1411     // getTypeToTransformTo() probably returned a type whose size (in bits)
1412     // isn't a power-of-2 factor of the requested type size.
1413     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1414 
1415     SmallVector<SDValue, 2> EltParts;
1416     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1417       EltParts.push_back(getConstant(
1418           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1419           ViaEltVT, isT, isO));
1420 
1421     // EltParts is currently in little endian order. If we actually want
1422     // big-endian order then reverse it now.
1423     if (getDataLayout().isBigEndian())
1424       std::reverse(EltParts.begin(), EltParts.end());
1425 
1426     // The elements must be reversed when the element order is different
1427     // to the endianness of the elements (because the BITCAST is itself a
1428     // vector shuffle in this situation). However, we do not need any code to
1429     // perform this reversal because getConstant() is producing a vector
1430     // splat.
1431     // This situation occurs in MIPS MSA.
1432 
1433     SmallVector<SDValue, 8> Ops;
1434     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1435       llvm::append_range(Ops, EltParts);
1436 
1437     SDValue V =
1438         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1439     return V;
1440   }
1441 
1442   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1443          "APInt size does not match type size!");
1444   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1445   FoldingSetNodeID ID;
1446   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1447   ID.AddPointer(Elt);
1448   ID.AddBoolean(isO);
1449   void *IP = nullptr;
1450   SDNode *N = nullptr;
1451   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1452     if (!VT.isVector())
1453       return SDValue(N, 0);
1454 
1455   if (!N) {
1456     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1457     CSEMap.InsertNode(N, IP);
1458     InsertNode(N);
1459     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1460   }
1461 
1462   SDValue Result(N, 0);
1463   if (VT.isScalableVector())
1464     Result = getSplatVector(VT, DL, Result);
1465   else if (VT.isVector())
1466     Result = getSplatBuildVector(VT, DL, Result);
1467 
1468   return Result;
1469 }
1470 
1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1472                                         bool isTarget) {
1473   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1474 }
1475 
1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1477                                              const SDLoc &DL, bool LegalTypes) {
1478   assert(VT.isInteger() && "Shift amount is not an integer type!");
1479   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1480   return getConstant(Val, DL, ShiftVT);
1481 }
1482 
1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1484                                            bool isTarget) {
1485   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1486 }
1487 
1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1489                                     bool isTarget) {
1490   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1491 }
1492 
1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1494                                     EVT VT, bool isTarget) {
1495   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1496 
1497   EVT EltVT = VT.getScalarType();
1498 
1499   // Do the map lookup using the actual bit pattern for the floating point
1500   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1501   // we don't have issues with SNANs.
1502   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1503   FoldingSetNodeID ID;
1504   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1505   ID.AddPointer(&V);
1506   void *IP = nullptr;
1507   SDNode *N = nullptr;
1508   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1509     if (!VT.isVector())
1510       return SDValue(N, 0);
1511 
1512   if (!N) {
1513     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1514     CSEMap.InsertNode(N, IP);
1515     InsertNode(N);
1516   }
1517 
1518   SDValue Result(N, 0);
1519   if (VT.isScalableVector())
1520     Result = getSplatVector(VT, DL, Result);
1521   else if (VT.isVector())
1522     Result = getSplatBuildVector(VT, DL, Result);
1523   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1524   return Result;
1525 }
1526 
1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1528                                     bool isTarget) {
1529   EVT EltVT = VT.getScalarType();
1530   if (EltVT == MVT::f32)
1531     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1532   if (EltVT == MVT::f64)
1533     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1534   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1535       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1536     bool Ignored;
1537     APFloat APF = APFloat(Val);
1538     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1539                 &Ignored);
1540     return getConstantFP(APF, DL, VT, isTarget);
1541   }
1542   llvm_unreachable("Unsupported type in getConstantFP");
1543 }
1544 
1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1546                                        EVT VT, int64_t Offset, bool isTargetGA,
1547                                        unsigned TargetFlags) {
1548   assert((TargetFlags == 0 || isTargetGA) &&
1549          "Cannot set target flags on target-independent globals");
1550 
1551   // Truncate (with sign-extension) the offset value to the pointer size.
1552   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1553   if (BitWidth < 64)
1554     Offset = SignExtend64(Offset, BitWidth);
1555 
1556   unsigned Opc;
1557   if (GV->isThreadLocal())
1558     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1559   else
1560     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1561 
1562   FoldingSetNodeID ID;
1563   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1564   ID.AddPointer(GV);
1565   ID.AddInteger(Offset);
1566   ID.AddInteger(TargetFlags);
1567   void *IP = nullptr;
1568   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1569     return SDValue(E, 0);
1570 
1571   auto *N = newSDNode<GlobalAddressSDNode>(
1572       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1573   CSEMap.InsertNode(N, IP);
1574     InsertNode(N);
1575   return SDValue(N, 0);
1576 }
1577 
1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1579   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1580   FoldingSetNodeID ID;
1581   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1582   ID.AddInteger(FI);
1583   void *IP = nullptr;
1584   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1585     return SDValue(E, 0);
1586 
1587   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1588   CSEMap.InsertNode(N, IP);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1594                                    unsigned TargetFlags) {
1595   assert((TargetFlags == 0 || isTarget) &&
1596          "Cannot set target flags on target-independent jump tables");
1597   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1600   ID.AddInteger(JTI);
1601   ID.AddInteger(TargetFlags);
1602   void *IP = nullptr;
1603   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1604     return SDValue(E, 0);
1605 
1606   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1607   CSEMap.InsertNode(N, IP);
1608   InsertNode(N);
1609   return SDValue(N, 0);
1610 }
1611 
1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1613                                       MaybeAlign Alignment, int Offset,
1614                                       bool isTarget, unsigned TargetFlags) {
1615   assert((TargetFlags == 0 || isTarget) &&
1616          "Cannot set target flags on target-independent globals");
1617   if (!Alignment)
1618     Alignment = shouldOptForSize()
1619                     ? getDataLayout().getABITypeAlign(C->getType())
1620                     : getDataLayout().getPrefTypeAlign(C->getType());
1621   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1622   FoldingSetNodeID ID;
1623   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1624   ID.AddInteger(Alignment->value());
1625   ID.AddInteger(Offset);
1626   ID.AddPointer(C);
1627   ID.AddInteger(TargetFlags);
1628   void *IP = nullptr;
1629   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1630     return SDValue(E, 0);
1631 
1632   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1633                                           TargetFlags);
1634   CSEMap.InsertNode(N, IP);
1635   InsertNode(N);
1636   SDValue V = SDValue(N, 0);
1637   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1638   return V;
1639 }
1640 
1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1642                                       MaybeAlign Alignment, int Offset,
1643                                       bool isTarget, unsigned TargetFlags) {
1644   assert((TargetFlags == 0 || isTarget) &&
1645          "Cannot set target flags on target-independent globals");
1646   if (!Alignment)
1647     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1648   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1649   FoldingSetNodeID ID;
1650   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1651   ID.AddInteger(Alignment->value());
1652   ID.AddInteger(Offset);
1653   C->addSelectionDAGCSEId(ID);
1654   ID.AddInteger(TargetFlags);
1655   void *IP = nullptr;
1656   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1657     return SDValue(E, 0);
1658 
1659   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1660                                           TargetFlags);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1667                                      unsigned TargetFlags) {
1668   FoldingSetNodeID ID;
1669   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1670   ID.AddInteger(Index);
1671   ID.AddInteger(Offset);
1672   ID.AddInteger(TargetFlags);
1673   void *IP = nullptr;
1674   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1675     return SDValue(E, 0);
1676 
1677   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1678   CSEMap.InsertNode(N, IP);
1679   InsertNode(N);
1680   return SDValue(N, 0);
1681 }
1682 
1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1686   ID.AddPointer(MBB);
1687   void *IP = nullptr;
1688   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1689     return SDValue(E, 0);
1690 
1691   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1692   CSEMap.InsertNode(N, IP);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
1697 SDValue SelectionDAG::getValueType(EVT VT) {
1698   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1699       ValueTypeNodes.size())
1700     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1701 
1702   SDNode *&N = VT.isExtended() ?
1703     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1704 
1705   if (N) return SDValue(N, 0);
1706   N = newSDNode<VTSDNode>(VT);
1707   InsertNode(N);
1708   return SDValue(N, 0);
1709 }
1710 
1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1712   SDNode *&N = ExternalSymbols[Sym];
1713   if (N) return SDValue(N, 0);
1714   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1715   InsertNode(N);
1716   return SDValue(N, 0);
1717 }
1718 
1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1720   SDNode *&N = MCSymbols[Sym];
1721   if (N)
1722     return SDValue(N, 0);
1723   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1724   InsertNode(N);
1725   return SDValue(N, 0);
1726 }
1727 
1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1729                                               unsigned TargetFlags) {
1730   SDNode *&N =
1731       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1732   if (N) return SDValue(N, 0);
1733   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1734   InsertNode(N);
1735   return SDValue(N, 0);
1736 }
1737 
1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1739   if ((unsigned)Cond >= CondCodeNodes.size())
1740     CondCodeNodes.resize(Cond+1);
1741 
1742   if (!CondCodeNodes[Cond]) {
1743     auto *N = newSDNode<CondCodeSDNode>(Cond);
1744     CondCodeNodes[Cond] = N;
1745     InsertNode(N);
1746   }
1747 
1748   return SDValue(CondCodeNodes[Cond], 0);
1749 }
1750 
1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1752   APInt One(ResVT.getScalarSizeInBits(), 1);
1753   return getStepVector(DL, ResVT, One);
1754 }
1755 
1756 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1757   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1758   if (ResVT.isScalableVector())
1759     return getNode(
1760         ISD::STEP_VECTOR, DL, ResVT,
1761         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1762 
1763   SmallVector<SDValue, 16> OpsStepConstants;
1764   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1765     OpsStepConstants.push_back(
1766         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1767   return getBuildVector(ResVT, DL, OpsStepConstants);
1768 }
1769 
1770 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1771 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1772 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1773   std::swap(N1, N2);
1774   ShuffleVectorSDNode::commuteMask(M);
1775 }
1776 
1777 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1778                                        SDValue N2, ArrayRef<int> Mask) {
1779   assert(VT.getVectorNumElements() == Mask.size() &&
1780          "Must have the same number of vector elements as mask elements!");
1781   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1782          "Invalid VECTOR_SHUFFLE");
1783 
1784   // Canonicalize shuffle undef, undef -> undef
1785   if (N1.isUndef() && N2.isUndef())
1786     return getUNDEF(VT);
1787 
1788   // Validate that all indices in Mask are within the range of the elements
1789   // input to the shuffle.
1790   int NElts = Mask.size();
1791   assert(llvm::all_of(Mask,
1792                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1793          "Index out of range");
1794 
1795   // Copy the mask so we can do any needed cleanup.
1796   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1797 
1798   // Canonicalize shuffle v, v -> v, undef
1799   if (N1 == N2) {
1800     N2 = getUNDEF(VT);
1801     for (int i = 0; i != NElts; ++i)
1802       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1803   }
1804 
1805   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1806   if (N1.isUndef())
1807     commuteShuffle(N1, N2, MaskVec);
1808 
1809   if (TLI->hasVectorBlend()) {
1810     // If shuffling a splat, try to blend the splat instead. We do this here so
1811     // that even when this arises during lowering we don't have to re-handle it.
1812     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1813       BitVector UndefElements;
1814       SDValue Splat = BV->getSplatValue(&UndefElements);
1815       if (!Splat)
1816         return;
1817 
1818       for (int i = 0; i < NElts; ++i) {
1819         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1820           continue;
1821 
1822         // If this input comes from undef, mark it as such.
1823         if (UndefElements[MaskVec[i] - Offset]) {
1824           MaskVec[i] = -1;
1825           continue;
1826         }
1827 
1828         // If we can blend a non-undef lane, use that instead.
1829         if (!UndefElements[i])
1830           MaskVec[i] = i + Offset;
1831       }
1832     };
1833     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1834       BlendSplat(N1BV, 0);
1835     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1836       BlendSplat(N2BV, NElts);
1837   }
1838 
1839   // Canonicalize all index into lhs, -> shuffle lhs, undef
1840   // Canonicalize all index into rhs, -> shuffle rhs, undef
1841   bool AllLHS = true, AllRHS = true;
1842   bool N2Undef = N2.isUndef();
1843   for (int i = 0; i != NElts; ++i) {
1844     if (MaskVec[i] >= NElts) {
1845       if (N2Undef)
1846         MaskVec[i] = -1;
1847       else
1848         AllLHS = false;
1849     } else if (MaskVec[i] >= 0) {
1850       AllRHS = false;
1851     }
1852   }
1853   if (AllLHS && AllRHS)
1854     return getUNDEF(VT);
1855   if (AllLHS && !N2Undef)
1856     N2 = getUNDEF(VT);
1857   if (AllRHS) {
1858     N1 = getUNDEF(VT);
1859     commuteShuffle(N1, N2, MaskVec);
1860   }
1861   // Reset our undef status after accounting for the mask.
1862   N2Undef = N2.isUndef();
1863   // Re-check whether both sides ended up undef.
1864   if (N1.isUndef() && N2Undef)
1865     return getUNDEF(VT);
1866 
1867   // If Identity shuffle return that node.
1868   bool Identity = true, AllSame = true;
1869   for (int i = 0; i != NElts; ++i) {
1870     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1871     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1872   }
1873   if (Identity && NElts)
1874     return N1;
1875 
1876   // Shuffling a constant splat doesn't change the result.
1877   if (N2Undef) {
1878     SDValue V = N1;
1879 
1880     // Look through any bitcasts. We check that these don't change the number
1881     // (and size) of elements and just changes their types.
1882     while (V.getOpcode() == ISD::BITCAST)
1883       V = V->getOperand(0);
1884 
1885     // A splat should always show up as a build vector node.
1886     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1887       BitVector UndefElements;
1888       SDValue Splat = BV->getSplatValue(&UndefElements);
1889       // If this is a splat of an undef, shuffling it is also undef.
1890       if (Splat && Splat.isUndef())
1891         return getUNDEF(VT);
1892 
1893       bool SameNumElts =
1894           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1895 
1896       // We only have a splat which can skip shuffles if there is a splatted
1897       // value and no undef lanes rearranged by the shuffle.
1898       if (Splat && UndefElements.none()) {
1899         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1900         // number of elements match or the value splatted is a zero constant.
1901         if (SameNumElts)
1902           return N1;
1903         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1904           if (C->isNullValue())
1905             return N1;
1906       }
1907 
1908       // If the shuffle itself creates a splat, build the vector directly.
1909       if (AllSame && SameNumElts) {
1910         EVT BuildVT = BV->getValueType(0);
1911         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1912         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1913 
1914         // We may have jumped through bitcasts, so the type of the
1915         // BUILD_VECTOR may not match the type of the shuffle.
1916         if (BuildVT != VT)
1917           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1918         return NewBV;
1919       }
1920     }
1921   }
1922 
1923   FoldingSetNodeID ID;
1924   SDValue Ops[2] = { N1, N2 };
1925   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1926   for (int i = 0; i != NElts; ++i)
1927     ID.AddInteger(MaskVec[i]);
1928 
1929   void* IP = nullptr;
1930   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1931     return SDValue(E, 0);
1932 
1933   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1934   // SDNode doesn't have access to it.  This memory will be "leaked" when
1935   // the node is deallocated, but recovered when the NodeAllocator is released.
1936   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1937   llvm::copy(MaskVec, MaskAlloc);
1938 
1939   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1940                                            dl.getDebugLoc(), MaskAlloc);
1941   createOperands(N, Ops);
1942 
1943   CSEMap.InsertNode(N, IP);
1944   InsertNode(N);
1945   SDValue V = SDValue(N, 0);
1946   NewSDValueDbgMsg(V, "Creating new node: ", this);
1947   return V;
1948 }
1949 
1950 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1951   EVT VT = SV.getValueType(0);
1952   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1953   ShuffleVectorSDNode::commuteMask(MaskVec);
1954 
1955   SDValue Op0 = SV.getOperand(0);
1956   SDValue Op1 = SV.getOperand(1);
1957   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1958 }
1959 
1960 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1961   FoldingSetNodeID ID;
1962   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1963   ID.AddInteger(RegNo);
1964   void *IP = nullptr;
1965   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1966     return SDValue(E, 0);
1967 
1968   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1969   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1970   CSEMap.InsertNode(N, IP);
1971   InsertNode(N);
1972   return SDValue(N, 0);
1973 }
1974 
1975 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1976   FoldingSetNodeID ID;
1977   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1978   ID.AddPointer(RegMask);
1979   void *IP = nullptr;
1980   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1981     return SDValue(E, 0);
1982 
1983   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1984   CSEMap.InsertNode(N, IP);
1985   InsertNode(N);
1986   return SDValue(N, 0);
1987 }
1988 
1989 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1990                                  MCSymbol *Label) {
1991   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1992 }
1993 
1994 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1995                                    SDValue Root, MCSymbol *Label) {
1996   FoldingSetNodeID ID;
1997   SDValue Ops[] = { Root };
1998   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1999   ID.AddPointer(Label);
2000   void *IP = nullptr;
2001   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2002     return SDValue(E, 0);
2003 
2004   auto *N =
2005       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2006   createOperands(N, Ops);
2007 
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   return SDValue(N, 0);
2011 }
2012 
2013 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2014                                       int64_t Offset, bool isTarget,
2015                                       unsigned TargetFlags) {
2016   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2017 
2018   FoldingSetNodeID ID;
2019   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2020   ID.AddPointer(BA);
2021   ID.AddInteger(Offset);
2022   ID.AddInteger(TargetFlags);
2023   void *IP = nullptr;
2024   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025     return SDValue(E, 0);
2026 
2027   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2028   CSEMap.InsertNode(N, IP);
2029   InsertNode(N);
2030   return SDValue(N, 0);
2031 }
2032 
2033 SDValue SelectionDAG::getSrcValue(const Value *V) {
2034   FoldingSetNodeID ID;
2035   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2036   ID.AddPointer(V);
2037 
2038   void *IP = nullptr;
2039   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2040     return SDValue(E, 0);
2041 
2042   auto *N = newSDNode<SrcValueSDNode>(V);
2043   CSEMap.InsertNode(N, IP);
2044   InsertNode(N);
2045   return SDValue(N, 0);
2046 }
2047 
2048 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2049   FoldingSetNodeID ID;
2050   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2051   ID.AddPointer(MD);
2052 
2053   void *IP = nullptr;
2054   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2055     return SDValue(E, 0);
2056 
2057   auto *N = newSDNode<MDNodeSDNode>(MD);
2058   CSEMap.InsertNode(N, IP);
2059   InsertNode(N);
2060   return SDValue(N, 0);
2061 }
2062 
2063 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2064   if (VT == V.getValueType())
2065     return V;
2066 
2067   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2068 }
2069 
2070 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2071                                        unsigned SrcAS, unsigned DestAS) {
2072   SDValue Ops[] = {Ptr};
2073   FoldingSetNodeID ID;
2074   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2075   ID.AddInteger(SrcAS);
2076   ID.AddInteger(DestAS);
2077 
2078   void *IP = nullptr;
2079   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2080     return SDValue(E, 0);
2081 
2082   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2083                                            VT, SrcAS, DestAS);
2084   createOperands(N, Ops);
2085 
2086   CSEMap.InsertNode(N, IP);
2087   InsertNode(N);
2088   return SDValue(N, 0);
2089 }
2090 
2091 SDValue SelectionDAG::getFreeze(SDValue V) {
2092   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2093 }
2094 
2095 /// getShiftAmountOperand - Return the specified value casted to
2096 /// the target's desired shift amount type.
2097 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2098   EVT OpTy = Op.getValueType();
2099   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2100   if (OpTy == ShTy || OpTy.isVector()) return Op;
2101 
2102   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2103 }
2104 
2105 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2106   SDLoc dl(Node);
2107   const TargetLowering &TLI = getTargetLoweringInfo();
2108   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2109   EVT VT = Node->getValueType(0);
2110   SDValue Tmp1 = Node->getOperand(0);
2111   SDValue Tmp2 = Node->getOperand(1);
2112   const MaybeAlign MA(Node->getConstantOperandVal(3));
2113 
2114   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2115                                Tmp2, MachinePointerInfo(V));
2116   SDValue VAList = VAListLoad;
2117 
2118   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2119     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2120                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2121 
2122     VAList =
2123         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2124                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2125   }
2126 
2127   // Increment the pointer, VAList, to the next vaarg
2128   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2129                  getConstant(getDataLayout().getTypeAllocSize(
2130                                                VT.getTypeForEVT(*getContext())),
2131                              dl, VAList.getValueType()));
2132   // Store the incremented VAList to the legalized pointer
2133   Tmp1 =
2134       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2135   // Load the actual argument out of the pointer VAList
2136   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2137 }
2138 
2139 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2140   SDLoc dl(Node);
2141   const TargetLowering &TLI = getTargetLoweringInfo();
2142   // This defaults to loading a pointer from the input and storing it to the
2143   // output, returning the chain.
2144   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2145   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2146   SDValue Tmp1 =
2147       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2148               Node->getOperand(2), MachinePointerInfo(VS));
2149   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2150                   MachinePointerInfo(VD));
2151 }
2152 
2153 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2154   const DataLayout &DL = getDataLayout();
2155   Type *Ty = VT.getTypeForEVT(*getContext());
2156   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2157 
2158   if (TLI->isTypeLegal(VT) || !VT.isVector())
2159     return RedAlign;
2160 
2161   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2162   const Align StackAlign = TFI->getStackAlign();
2163 
2164   // See if we can choose a smaller ABI alignment in cases where it's an
2165   // illegal vector type that will get broken down.
2166   if (RedAlign > StackAlign) {
2167     EVT IntermediateVT;
2168     MVT RegisterVT;
2169     unsigned NumIntermediates;
2170     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2171                                 NumIntermediates, RegisterVT);
2172     Ty = IntermediateVT.getTypeForEVT(*getContext());
2173     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2174     if (RedAlign2 < RedAlign)
2175       RedAlign = RedAlign2;
2176   }
2177 
2178   return RedAlign;
2179 }
2180 
2181 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2182   MachineFrameInfo &MFI = MF->getFrameInfo();
2183   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2184   int StackID = 0;
2185   if (Bytes.isScalable())
2186     StackID = TFI->getStackIDForScalableVectors();
2187   // The stack id gives an indication of whether the object is scalable or
2188   // not, so it's safe to pass in the minimum size here.
2189   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2190                                        false, nullptr, StackID);
2191   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2192 }
2193 
2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2195   Type *Ty = VT.getTypeForEVT(*getContext());
2196   Align StackAlign =
2197       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2198   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2199 }
2200 
2201 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2202   TypeSize VT1Size = VT1.getStoreSize();
2203   TypeSize VT2Size = VT2.getStoreSize();
2204   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2205          "Don't know how to choose the maximum size when creating a stack "
2206          "temporary");
2207   TypeSize Bytes =
2208       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2209 
2210   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2211   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2212   const DataLayout &DL = getDataLayout();
2213   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2214   return CreateStackTemporary(Bytes, Align);
2215 }
2216 
2217 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2218                                 ISD::CondCode Cond, const SDLoc &dl) {
2219   EVT OpVT = N1.getValueType();
2220 
2221   // These setcc operations always fold.
2222   switch (Cond) {
2223   default: break;
2224   case ISD::SETFALSE:
2225   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2226   case ISD::SETTRUE:
2227   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2228 
2229   case ISD::SETOEQ:
2230   case ISD::SETOGT:
2231   case ISD::SETOGE:
2232   case ISD::SETOLT:
2233   case ISD::SETOLE:
2234   case ISD::SETONE:
2235   case ISD::SETO:
2236   case ISD::SETUO:
2237   case ISD::SETUEQ:
2238   case ISD::SETUNE:
2239     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2240     break;
2241   }
2242 
2243   if (OpVT.isInteger()) {
2244     // For EQ and NE, we can always pick a value for the undef to make the
2245     // predicate pass or fail, so we can return undef.
2246     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2247     // icmp eq/ne X, undef -> undef.
2248     if ((N1.isUndef() || N2.isUndef()) &&
2249         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2250       return getUNDEF(VT);
2251 
2252     // If both operands are undef, we can return undef for int comparison.
2253     // icmp undef, undef -> undef.
2254     if (N1.isUndef() && N2.isUndef())
2255       return getUNDEF(VT);
2256 
2257     // icmp X, X -> true/false
2258     // icmp X, undef -> true/false because undef could be X.
2259     if (N1 == N2)
2260       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2261   }
2262 
2263   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2264     const APInt &C2 = N2C->getAPIntValue();
2265     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2266       const APInt &C1 = N1C->getAPIntValue();
2267 
2268       switch (Cond) {
2269       default: llvm_unreachable("Unknown integer setcc!");
2270       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2271       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2272       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2273       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2274       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2275       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2276       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2277       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2278       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2279       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2280       }
2281     }
2282   }
2283 
2284   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2285   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2286 
2287   if (N1CFP && N2CFP) {
2288     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2289     switch (Cond) {
2290     default: break;
2291     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2292                         return getUNDEF(VT);
2293                       LLVM_FALLTHROUGH;
2294     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2295                                              OpVT);
2296     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2297                         return getUNDEF(VT);
2298                       LLVM_FALLTHROUGH;
2299     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2300                                              R==APFloat::cmpLessThan, dl, VT,
2301                                              OpVT);
2302     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2303                         return getUNDEF(VT);
2304                       LLVM_FALLTHROUGH;
2305     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2306                                              OpVT);
2307     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2308                         return getUNDEF(VT);
2309                       LLVM_FALLTHROUGH;
2310     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2311                                              VT, OpVT);
2312     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2313                         return getUNDEF(VT);
2314                       LLVM_FALLTHROUGH;
2315     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2316                                              R==APFloat::cmpEqual, dl, VT,
2317                                              OpVT);
2318     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2319                         return getUNDEF(VT);
2320                       LLVM_FALLTHROUGH;
2321     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2322                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2323     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2324                                              OpVT);
2325     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2326                                              OpVT);
2327     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2328                                              R==APFloat::cmpEqual, dl, VT,
2329                                              OpVT);
2330     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2331                                              OpVT);
2332     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2333                                              R==APFloat::cmpLessThan, dl, VT,
2334                                              OpVT);
2335     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2336                                              R==APFloat::cmpUnordered, dl, VT,
2337                                              OpVT);
2338     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2339                                              VT, OpVT);
2340     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2341                                              OpVT);
2342     }
2343   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2344     // Ensure that the constant occurs on the RHS.
2345     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2346     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2347       return SDValue();
2348     return getSetCC(dl, VT, N2, N1, SwappedCond);
2349   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2350              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2351     // If an operand is known to be a nan (or undef that could be a nan), we can
2352     // fold it.
2353     // Choosing NaN for the undef will always make unordered comparison succeed
2354     // and ordered comparison fails.
2355     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2356     switch (ISD::getUnorderedFlavor(Cond)) {
2357     default:
2358       llvm_unreachable("Unknown flavor!");
2359     case 0: // Known false.
2360       return getBoolConstant(false, dl, VT, OpVT);
2361     case 1: // Known true.
2362       return getBoolConstant(true, dl, VT, OpVT);
2363     case 2: // Undefined.
2364       return getUNDEF(VT);
2365     }
2366   }
2367 
2368   // Could not fold it.
2369   return SDValue();
2370 }
2371 
2372 /// See if the specified operand can be simplified with the knowledge that only
2373 /// the bits specified by DemandedBits are used.
2374 /// TODO: really we should be making this into the DAG equivalent of
2375 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2376 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2377   EVT VT = V.getValueType();
2378 
2379   if (VT.isScalableVector())
2380     return SDValue();
2381 
2382   APInt DemandedElts = VT.isVector()
2383                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2384                            : APInt(1, 1);
2385   return GetDemandedBits(V, DemandedBits, DemandedElts);
2386 }
2387 
2388 /// See if the specified operand can be simplified with the knowledge that only
2389 /// the bits specified by DemandedBits are used in the elements specified by
2390 /// DemandedElts.
2391 /// TODO: really we should be making this into the DAG equivalent of
2392 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2393 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2394                                       const APInt &DemandedElts) {
2395   switch (V.getOpcode()) {
2396   default:
2397     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2398                                                 *this, 0);
2399   case ISD::Constant: {
2400     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2401     APInt NewVal = CVal & DemandedBits;
2402     if (NewVal != CVal)
2403       return getConstant(NewVal, SDLoc(V), V.getValueType());
2404     break;
2405   }
2406   case ISD::SRL:
2407     // Only look at single-use SRLs.
2408     if (!V.getNode()->hasOneUse())
2409       break;
2410     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2411       // See if we can recursively simplify the LHS.
2412       unsigned Amt = RHSC->getZExtValue();
2413 
2414       // Watch out for shift count overflow though.
2415       if (Amt >= DemandedBits.getBitWidth())
2416         break;
2417       APInt SrcDemandedBits = DemandedBits << Amt;
2418       if (SDValue SimplifyLHS =
2419               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2420         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2421                        V.getOperand(1));
2422     }
2423     break;
2424   }
2425   return SDValue();
2426 }
2427 
2428 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2429 /// use this predicate to simplify operations downstream.
2430 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2431   unsigned BitWidth = Op.getScalarValueSizeInBits();
2432   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2433 }
2434 
2435 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2436 /// this predicate to simplify operations downstream.  Mask is known to be zero
2437 /// for bits that V cannot have.
2438 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2439                                      unsigned Depth) const {
2440   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2441 }
2442 
2443 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2444 /// DemandedElts.  We use this predicate to simplify operations downstream.
2445 /// Mask is known to be zero for bits that V cannot have.
2446 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2447                                      const APInt &DemandedElts,
2448                                      unsigned Depth) const {
2449   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2450 }
2451 
2452 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2453 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2454                                         unsigned Depth) const {
2455   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2456 }
2457 
2458 /// isSplatValue - Return true if the vector V has the same value
2459 /// across all DemandedElts. For scalable vectors it does not make
2460 /// sense to specify which elements are demanded or undefined, therefore
2461 /// they are simply ignored.
2462 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2463                                 APInt &UndefElts, unsigned Depth) {
2464   EVT VT = V.getValueType();
2465   assert(VT.isVector() && "Vector type expected");
2466 
2467   if (!VT.isScalableVector() && !DemandedElts)
2468     return false; // No demanded elts, better to assume we don't know anything.
2469 
2470   if (Depth >= MaxRecursionDepth)
2471     return false; // Limit search depth.
2472 
2473   // Deal with some common cases here that work for both fixed and scalable
2474   // vector types.
2475   switch (V.getOpcode()) {
2476   case ISD::SPLAT_VECTOR:
2477     UndefElts = V.getOperand(0).isUndef()
2478                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2479                     : APInt(DemandedElts.getBitWidth(), 0);
2480     return true;
2481   case ISD::ADD:
2482   case ISD::SUB:
2483   case ISD::AND:
2484   case ISD::XOR:
2485   case ISD::OR: {
2486     APInt UndefLHS, UndefRHS;
2487     SDValue LHS = V.getOperand(0);
2488     SDValue RHS = V.getOperand(1);
2489     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2490         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2491       UndefElts = UndefLHS | UndefRHS;
2492       return true;
2493     }
2494     return false;
2495   }
2496   case ISD::ABS:
2497   case ISD::TRUNCATE:
2498   case ISD::SIGN_EXTEND:
2499   case ISD::ZERO_EXTEND:
2500     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2501   }
2502 
2503   // We don't support other cases than those above for scalable vectors at
2504   // the moment.
2505   if (VT.isScalableVector())
2506     return false;
2507 
2508   unsigned NumElts = VT.getVectorNumElements();
2509   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2510   UndefElts = APInt::getNullValue(NumElts);
2511 
2512   switch (V.getOpcode()) {
2513   case ISD::BUILD_VECTOR: {
2514     SDValue Scl;
2515     for (unsigned i = 0; i != NumElts; ++i) {
2516       SDValue Op = V.getOperand(i);
2517       if (Op.isUndef()) {
2518         UndefElts.setBit(i);
2519         continue;
2520       }
2521       if (!DemandedElts[i])
2522         continue;
2523       if (Scl && Scl != Op)
2524         return false;
2525       Scl = Op;
2526     }
2527     return true;
2528   }
2529   case ISD::VECTOR_SHUFFLE: {
2530     // Check if this is a shuffle node doing a splat.
2531     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2532     int SplatIndex = -1;
2533     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2534     for (int i = 0; i != (int)NumElts; ++i) {
2535       int M = Mask[i];
2536       if (M < 0) {
2537         UndefElts.setBit(i);
2538         continue;
2539       }
2540       if (!DemandedElts[i])
2541         continue;
2542       if (0 <= SplatIndex && SplatIndex != M)
2543         return false;
2544       SplatIndex = M;
2545     }
2546     return true;
2547   }
2548   case ISD::EXTRACT_SUBVECTOR: {
2549     // Offset the demanded elts by the subvector index.
2550     SDValue Src = V.getOperand(0);
2551     // We don't support scalable vectors at the moment.
2552     if (Src.getValueType().isScalableVector())
2553       return false;
2554     uint64_t Idx = V.getConstantOperandVal(1);
2555     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2556     APInt UndefSrcElts;
2557     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2558     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2559       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2560       return true;
2561     }
2562     break;
2563   }
2564   }
2565 
2566   return false;
2567 }
2568 
2569 /// Helper wrapper to main isSplatValue function.
2570 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2571   EVT VT = V.getValueType();
2572   assert(VT.isVector() && "Vector type expected");
2573 
2574   APInt UndefElts;
2575   APInt DemandedElts;
2576 
2577   // For now we don't support this with scalable vectors.
2578   if (!VT.isScalableVector())
2579     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2580   return isSplatValue(V, DemandedElts, UndefElts) &&
2581          (AllowUndefs || !UndefElts);
2582 }
2583 
2584 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2585   V = peekThroughExtractSubvectors(V);
2586 
2587   EVT VT = V.getValueType();
2588   unsigned Opcode = V.getOpcode();
2589   switch (Opcode) {
2590   default: {
2591     APInt UndefElts;
2592     APInt DemandedElts;
2593 
2594     if (!VT.isScalableVector())
2595       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2596 
2597     if (isSplatValue(V, DemandedElts, UndefElts)) {
2598       if (VT.isScalableVector()) {
2599         // DemandedElts and UndefElts are ignored for scalable vectors, since
2600         // the only supported cases are SPLAT_VECTOR nodes.
2601         SplatIdx = 0;
2602       } else {
2603         // Handle case where all demanded elements are UNDEF.
2604         if (DemandedElts.isSubsetOf(UndefElts)) {
2605           SplatIdx = 0;
2606           return getUNDEF(VT);
2607         }
2608         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2609       }
2610       return V;
2611     }
2612     break;
2613   }
2614   case ISD::SPLAT_VECTOR:
2615     SplatIdx = 0;
2616     return V;
2617   case ISD::VECTOR_SHUFFLE: {
2618     if (VT.isScalableVector())
2619       return SDValue();
2620 
2621     // Check if this is a shuffle node doing a splat.
2622     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2623     // getTargetVShiftNode currently struggles without the splat source.
2624     auto *SVN = cast<ShuffleVectorSDNode>(V);
2625     if (!SVN->isSplat())
2626       break;
2627     int Idx = SVN->getSplatIndex();
2628     int NumElts = V.getValueType().getVectorNumElements();
2629     SplatIdx = Idx % NumElts;
2630     return V.getOperand(Idx / NumElts);
2631   }
2632   }
2633 
2634   return SDValue();
2635 }
2636 
2637 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2638   int SplatIdx;
2639   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2640     EVT SVT = SrcVector.getValueType().getScalarType();
2641     EVT LegalSVT = SVT;
2642     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2643       if (!SVT.isInteger())
2644         return SDValue();
2645       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2646       if (LegalSVT.bitsLT(SVT))
2647         return SDValue();
2648     }
2649     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2650                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2651   }
2652   return SDValue();
2653 }
2654 
2655 const APInt *
2656 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2657                                           const APInt &DemandedElts) const {
2658   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2659           V.getOpcode() == ISD::SRA) &&
2660          "Unknown shift node");
2661   unsigned BitWidth = V.getScalarValueSizeInBits();
2662   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2663     // Shifting more than the bitwidth is not valid.
2664     const APInt &ShAmt = SA->getAPIntValue();
2665     if (ShAmt.ult(BitWidth))
2666       return &ShAmt;
2667   }
2668   return nullptr;
2669 }
2670 
2671 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2672     SDValue V, const APInt &DemandedElts) const {
2673   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2674           V.getOpcode() == ISD::SRA) &&
2675          "Unknown shift node");
2676   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2677     return ValidAmt;
2678   unsigned BitWidth = V.getScalarValueSizeInBits();
2679   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2680   if (!BV)
2681     return nullptr;
2682   const APInt *MinShAmt = nullptr;
2683   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2684     if (!DemandedElts[i])
2685       continue;
2686     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2687     if (!SA)
2688       return nullptr;
2689     // Shifting more than the bitwidth is not valid.
2690     const APInt &ShAmt = SA->getAPIntValue();
2691     if (ShAmt.uge(BitWidth))
2692       return nullptr;
2693     if (MinShAmt && MinShAmt->ule(ShAmt))
2694       continue;
2695     MinShAmt = &ShAmt;
2696   }
2697   return MinShAmt;
2698 }
2699 
2700 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2701     SDValue V, const APInt &DemandedElts) const {
2702   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2703           V.getOpcode() == ISD::SRA) &&
2704          "Unknown shift node");
2705   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2706     return ValidAmt;
2707   unsigned BitWidth = V.getScalarValueSizeInBits();
2708   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2709   if (!BV)
2710     return nullptr;
2711   const APInt *MaxShAmt = nullptr;
2712   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2713     if (!DemandedElts[i])
2714       continue;
2715     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2716     if (!SA)
2717       return nullptr;
2718     // Shifting more than the bitwidth is not valid.
2719     const APInt &ShAmt = SA->getAPIntValue();
2720     if (ShAmt.uge(BitWidth))
2721       return nullptr;
2722     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2723       continue;
2724     MaxShAmt = &ShAmt;
2725   }
2726   return MaxShAmt;
2727 }
2728 
2729 /// Determine which bits of Op are known to be either zero or one and return
2730 /// them in Known. For vectors, the known bits are those that are shared by
2731 /// every vector element.
2732 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2733   EVT VT = Op.getValueType();
2734 
2735   // TOOD: Until we have a plan for how to represent demanded elements for
2736   // scalable vectors, we can just bail out for now.
2737   if (Op.getValueType().isScalableVector()) {
2738     unsigned BitWidth = Op.getScalarValueSizeInBits();
2739     return KnownBits(BitWidth);
2740   }
2741 
2742   APInt DemandedElts = VT.isVector()
2743                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2744                            : APInt(1, 1);
2745   return computeKnownBits(Op, DemandedElts, Depth);
2746 }
2747 
2748 /// Determine which bits of Op are known to be either zero or one and return
2749 /// them in Known. The DemandedElts argument allows us to only collect the known
2750 /// bits that are shared by the requested vector elements.
2751 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2752                                          unsigned Depth) const {
2753   unsigned BitWidth = Op.getScalarValueSizeInBits();
2754 
2755   KnownBits Known(BitWidth);   // Don't know anything.
2756 
2757   // TOOD: Until we have a plan for how to represent demanded elements for
2758   // scalable vectors, we can just bail out for now.
2759   if (Op.getValueType().isScalableVector())
2760     return Known;
2761 
2762   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2763     // We know all of the bits for a constant!
2764     return KnownBits::makeConstant(C->getAPIntValue());
2765   }
2766   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2767     // We know all of the bits for a constant fp!
2768     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2769   }
2770 
2771   if (Depth >= MaxRecursionDepth)
2772     return Known;  // Limit search depth.
2773 
2774   KnownBits Known2;
2775   unsigned NumElts = DemandedElts.getBitWidth();
2776   assert((!Op.getValueType().isVector() ||
2777           NumElts == Op.getValueType().getVectorNumElements()) &&
2778          "Unexpected vector size");
2779 
2780   if (!DemandedElts)
2781     return Known;  // No demanded elts, better to assume we don't know anything.
2782 
2783   unsigned Opcode = Op.getOpcode();
2784   switch (Opcode) {
2785   case ISD::BUILD_VECTOR:
2786     // Collect the known bits that are shared by every demanded vector element.
2787     Known.Zero.setAllBits(); Known.One.setAllBits();
2788     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2789       if (!DemandedElts[i])
2790         continue;
2791 
2792       SDValue SrcOp = Op.getOperand(i);
2793       Known2 = computeKnownBits(SrcOp, Depth + 1);
2794 
2795       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2796       if (SrcOp.getValueSizeInBits() != BitWidth) {
2797         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2798                "Expected BUILD_VECTOR implicit truncation");
2799         Known2 = Known2.trunc(BitWidth);
2800       }
2801 
2802       // Known bits are the values that are shared by every demanded element.
2803       Known = KnownBits::commonBits(Known, Known2);
2804 
2805       // If we don't know any bits, early out.
2806       if (Known.isUnknown())
2807         break;
2808     }
2809     break;
2810   case ISD::VECTOR_SHUFFLE: {
2811     // Collect the known bits that are shared by every vector element referenced
2812     // by the shuffle.
2813     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2814     Known.Zero.setAllBits(); Known.One.setAllBits();
2815     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2816     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2817     for (unsigned i = 0; i != NumElts; ++i) {
2818       if (!DemandedElts[i])
2819         continue;
2820 
2821       int M = SVN->getMaskElt(i);
2822       if (M < 0) {
2823         // For UNDEF elements, we don't know anything about the common state of
2824         // the shuffle result.
2825         Known.resetAll();
2826         DemandedLHS.clearAllBits();
2827         DemandedRHS.clearAllBits();
2828         break;
2829       }
2830 
2831       if ((unsigned)M < NumElts)
2832         DemandedLHS.setBit((unsigned)M % NumElts);
2833       else
2834         DemandedRHS.setBit((unsigned)M % NumElts);
2835     }
2836     // Known bits are the values that are shared by every demanded element.
2837     if (!!DemandedLHS) {
2838       SDValue LHS = Op.getOperand(0);
2839       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2840       Known = KnownBits::commonBits(Known, Known2);
2841     }
2842     // If we don't know any bits, early out.
2843     if (Known.isUnknown())
2844       break;
2845     if (!!DemandedRHS) {
2846       SDValue RHS = Op.getOperand(1);
2847       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2848       Known = KnownBits::commonBits(Known, Known2);
2849     }
2850     break;
2851   }
2852   case ISD::CONCAT_VECTORS: {
2853     // Split DemandedElts and test each of the demanded subvectors.
2854     Known.Zero.setAllBits(); Known.One.setAllBits();
2855     EVT SubVectorVT = Op.getOperand(0).getValueType();
2856     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2857     unsigned NumSubVectors = Op.getNumOperands();
2858     for (unsigned i = 0; i != NumSubVectors; ++i) {
2859       APInt DemandedSub =
2860           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2861       if (!!DemandedSub) {
2862         SDValue Sub = Op.getOperand(i);
2863         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2864         Known = KnownBits::commonBits(Known, Known2);
2865       }
2866       // If we don't know any bits, early out.
2867       if (Known.isUnknown())
2868         break;
2869     }
2870     break;
2871   }
2872   case ISD::INSERT_SUBVECTOR: {
2873     // Demand any elements from the subvector and the remainder from the src its
2874     // inserted into.
2875     SDValue Src = Op.getOperand(0);
2876     SDValue Sub = Op.getOperand(1);
2877     uint64_t Idx = Op.getConstantOperandVal(2);
2878     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2879     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2880     APInt DemandedSrcElts = DemandedElts;
2881     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2882 
2883     Known.One.setAllBits();
2884     Known.Zero.setAllBits();
2885     if (!!DemandedSubElts) {
2886       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2887       if (Known.isUnknown())
2888         break; // early-out.
2889     }
2890     if (!!DemandedSrcElts) {
2891       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2892       Known = KnownBits::commonBits(Known, Known2);
2893     }
2894     break;
2895   }
2896   case ISD::EXTRACT_SUBVECTOR: {
2897     // Offset the demanded elts by the subvector index.
2898     SDValue Src = Op.getOperand(0);
2899     // Bail until we can represent demanded elements for scalable vectors.
2900     if (Src.getValueType().isScalableVector())
2901       break;
2902     uint64_t Idx = Op.getConstantOperandVal(1);
2903     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2904     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2905     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2906     break;
2907   }
2908   case ISD::SCALAR_TO_VECTOR: {
2909     // We know about scalar_to_vector as much as we know about it source,
2910     // which becomes the first element of otherwise unknown vector.
2911     if (DemandedElts != 1)
2912       break;
2913 
2914     SDValue N0 = Op.getOperand(0);
2915     Known = computeKnownBits(N0, Depth + 1);
2916     if (N0.getValueSizeInBits() != BitWidth)
2917       Known = Known.trunc(BitWidth);
2918 
2919     break;
2920   }
2921   case ISD::BITCAST: {
2922     SDValue N0 = Op.getOperand(0);
2923     EVT SubVT = N0.getValueType();
2924     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2925 
2926     // Ignore bitcasts from unsupported types.
2927     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2928       break;
2929 
2930     // Fast handling of 'identity' bitcasts.
2931     if (BitWidth == SubBitWidth) {
2932       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2933       break;
2934     }
2935 
2936     bool IsLE = getDataLayout().isLittleEndian();
2937 
2938     // Bitcast 'small element' vector to 'large element' scalar/vector.
2939     if ((BitWidth % SubBitWidth) == 0) {
2940       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2941 
2942       // Collect known bits for the (larger) output by collecting the known
2943       // bits from each set of sub elements and shift these into place.
2944       // We need to separately call computeKnownBits for each set of
2945       // sub elements as the knownbits for each is likely to be different.
2946       unsigned SubScale = BitWidth / SubBitWidth;
2947       APInt SubDemandedElts(NumElts * SubScale, 0);
2948       for (unsigned i = 0; i != NumElts; ++i)
2949         if (DemandedElts[i])
2950           SubDemandedElts.setBit(i * SubScale);
2951 
2952       for (unsigned i = 0; i != SubScale; ++i) {
2953         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2954                          Depth + 1);
2955         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2956         Known.insertBits(Known2, SubBitWidth * Shifts);
2957       }
2958     }
2959 
2960     // Bitcast 'large element' scalar/vector to 'small element' vector.
2961     if ((SubBitWidth % BitWidth) == 0) {
2962       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2963 
2964       // Collect known bits for the (smaller) output by collecting the known
2965       // bits from the overlapping larger input elements and extracting the
2966       // sub sections we actually care about.
2967       unsigned SubScale = SubBitWidth / BitWidth;
2968       APInt SubDemandedElts(NumElts / SubScale, 0);
2969       for (unsigned i = 0; i != NumElts; ++i)
2970         if (DemandedElts[i])
2971           SubDemandedElts.setBit(i / SubScale);
2972 
2973       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2974 
2975       Known.Zero.setAllBits(); Known.One.setAllBits();
2976       for (unsigned i = 0; i != NumElts; ++i)
2977         if (DemandedElts[i]) {
2978           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2979           unsigned Offset = (Shifts % SubScale) * BitWidth;
2980           Known = KnownBits::commonBits(Known,
2981                                         Known2.extractBits(BitWidth, Offset));
2982           // If we don't know any bits, early out.
2983           if (Known.isUnknown())
2984             break;
2985         }
2986     }
2987     break;
2988   }
2989   case ISD::AND:
2990     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2991     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2992 
2993     Known &= Known2;
2994     break;
2995   case ISD::OR:
2996     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2997     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2998 
2999     Known |= Known2;
3000     break;
3001   case ISD::XOR:
3002     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3003     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3004 
3005     Known ^= Known2;
3006     break;
3007   case ISD::MUL: {
3008     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3009     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     Known = KnownBits::mul(Known, Known2);
3011     break;
3012   }
3013   case ISD::MULHU: {
3014     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3015     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3016     Known = KnownBits::mulhu(Known, Known2);
3017     break;
3018   }
3019   case ISD::MULHS: {
3020     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3021     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3022     Known = KnownBits::mulhs(Known, Known2);
3023     break;
3024   }
3025   case ISD::UMUL_LOHI: {
3026     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3027     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3028     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3029     if (Op.getResNo() == 0)
3030       Known = KnownBits::mul(Known, Known2);
3031     else
3032       Known = KnownBits::mulhu(Known, Known2);
3033     break;
3034   }
3035   case ISD::SMUL_LOHI: {
3036     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3037     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3038     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3039     if (Op.getResNo() == 0)
3040       Known = KnownBits::mul(Known, Known2);
3041     else
3042       Known = KnownBits::mulhs(Known, Known2);
3043     break;
3044   }
3045   case ISD::UDIV: {
3046     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3047     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3048     Known = KnownBits::udiv(Known, Known2);
3049     break;
3050   }
3051   case ISD::SELECT:
3052   case ISD::VSELECT:
3053     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3054     // If we don't know any bits, early out.
3055     if (Known.isUnknown())
3056       break;
3057     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3058 
3059     // Only known if known in both the LHS and RHS.
3060     Known = KnownBits::commonBits(Known, Known2);
3061     break;
3062   case ISD::SELECT_CC:
3063     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3064     // If we don't know any bits, early out.
3065     if (Known.isUnknown())
3066       break;
3067     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3068 
3069     // Only known if known in both the LHS and RHS.
3070     Known = KnownBits::commonBits(Known, Known2);
3071     break;
3072   case ISD::SMULO:
3073   case ISD::UMULO:
3074     if (Op.getResNo() != 1)
3075       break;
3076     // The boolean result conforms to getBooleanContents.
3077     // If we know the result of a setcc has the top bits zero, use this info.
3078     // We know that we have an integer-based boolean since these operations
3079     // are only available for integer.
3080     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3081             TargetLowering::ZeroOrOneBooleanContent &&
3082         BitWidth > 1)
3083       Known.Zero.setBitsFrom(1);
3084     break;
3085   case ISD::SETCC:
3086   case ISD::STRICT_FSETCC:
3087   case ISD::STRICT_FSETCCS: {
3088     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3089     // If we know the result of a setcc has the top bits zero, use this info.
3090     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3091             TargetLowering::ZeroOrOneBooleanContent &&
3092         BitWidth > 1)
3093       Known.Zero.setBitsFrom(1);
3094     break;
3095   }
3096   case ISD::SHL:
3097     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3098     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3099     Known = KnownBits::shl(Known, Known2);
3100 
3101     // Minimum shift low bits are known zero.
3102     if (const APInt *ShMinAmt =
3103             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3104       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3105     break;
3106   case ISD::SRL:
3107     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3108     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3109     Known = KnownBits::lshr(Known, Known2);
3110 
3111     // Minimum shift high bits are known zero.
3112     if (const APInt *ShMinAmt =
3113             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3114       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3115     break;
3116   case ISD::SRA:
3117     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3118     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3119     Known = KnownBits::ashr(Known, Known2);
3120     // TODO: Add minimum shift high known sign bits.
3121     break;
3122   case ISD::FSHL:
3123   case ISD::FSHR:
3124     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3125       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3126 
3127       // For fshl, 0-shift returns the 1st arg.
3128       // For fshr, 0-shift returns the 2nd arg.
3129       if (Amt == 0) {
3130         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3131                                  DemandedElts, Depth + 1);
3132         break;
3133       }
3134 
3135       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3136       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3137       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3138       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3139       if (Opcode == ISD::FSHL) {
3140         Known.One <<= Amt;
3141         Known.Zero <<= Amt;
3142         Known2.One.lshrInPlace(BitWidth - Amt);
3143         Known2.Zero.lshrInPlace(BitWidth - Amt);
3144       } else {
3145         Known.One <<= BitWidth - Amt;
3146         Known.Zero <<= BitWidth - Amt;
3147         Known2.One.lshrInPlace(Amt);
3148         Known2.Zero.lshrInPlace(Amt);
3149       }
3150       Known.One |= Known2.One;
3151       Known.Zero |= Known2.Zero;
3152     }
3153     break;
3154   case ISD::SIGN_EXTEND_INREG: {
3155     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3156     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3157     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3158     break;
3159   }
3160   case ISD::CTTZ:
3161   case ISD::CTTZ_ZERO_UNDEF: {
3162     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3163     // If we have a known 1, its position is our upper bound.
3164     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3165     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3166     Known.Zero.setBitsFrom(LowBits);
3167     break;
3168   }
3169   case ISD::CTLZ:
3170   case ISD::CTLZ_ZERO_UNDEF: {
3171     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3172     // If we have a known 1, its position is our upper bound.
3173     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3174     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3175     Known.Zero.setBitsFrom(LowBits);
3176     break;
3177   }
3178   case ISD::CTPOP: {
3179     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3180     // If we know some of the bits are zero, they can't be one.
3181     unsigned PossibleOnes = Known2.countMaxPopulation();
3182     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3183     break;
3184   }
3185   case ISD::PARITY: {
3186     // Parity returns 0 everywhere but the LSB.
3187     Known.Zero.setBitsFrom(1);
3188     break;
3189   }
3190   case ISD::LOAD: {
3191     LoadSDNode *LD = cast<LoadSDNode>(Op);
3192     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3193     if (ISD::isNON_EXTLoad(LD) && Cst) {
3194       // Determine any common known bits from the loaded constant pool value.
3195       Type *CstTy = Cst->getType();
3196       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3197         // If its a vector splat, then we can (quickly) reuse the scalar path.
3198         // NOTE: We assume all elements match and none are UNDEF.
3199         if (CstTy->isVectorTy()) {
3200           if (const Constant *Splat = Cst->getSplatValue()) {
3201             Cst = Splat;
3202             CstTy = Cst->getType();
3203           }
3204         }
3205         // TODO - do we need to handle different bitwidths?
3206         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3207           // Iterate across all vector elements finding common known bits.
3208           Known.One.setAllBits();
3209           Known.Zero.setAllBits();
3210           for (unsigned i = 0; i != NumElts; ++i) {
3211             if (!DemandedElts[i])
3212               continue;
3213             if (Constant *Elt = Cst->getAggregateElement(i)) {
3214               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3215                 const APInt &Value = CInt->getValue();
3216                 Known.One &= Value;
3217                 Known.Zero &= ~Value;
3218                 continue;
3219               }
3220               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3221                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3222                 Known.One &= Value;
3223                 Known.Zero &= ~Value;
3224                 continue;
3225               }
3226             }
3227             Known.One.clearAllBits();
3228             Known.Zero.clearAllBits();
3229             break;
3230           }
3231         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3232           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3233             Known = KnownBits::makeConstant(CInt->getValue());
3234           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3235             Known =
3236                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3237           }
3238         }
3239       }
3240     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3241       // If this is a ZEXTLoad and we are looking at the loaded value.
3242       EVT VT = LD->getMemoryVT();
3243       unsigned MemBits = VT.getScalarSizeInBits();
3244       Known.Zero.setBitsFrom(MemBits);
3245     } else if (const MDNode *Ranges = LD->getRanges()) {
3246       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3247         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3248     }
3249     break;
3250   }
3251   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3252     EVT InVT = Op.getOperand(0).getValueType();
3253     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3254     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3255     Known = Known.zext(BitWidth);
3256     break;
3257   }
3258   case ISD::ZERO_EXTEND: {
3259     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3260     Known = Known.zext(BitWidth);
3261     break;
3262   }
3263   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3264     EVT InVT = Op.getOperand(0).getValueType();
3265     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3266     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3267     // If the sign bit is known to be zero or one, then sext will extend
3268     // it to the top bits, else it will just zext.
3269     Known = Known.sext(BitWidth);
3270     break;
3271   }
3272   case ISD::SIGN_EXTEND: {
3273     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3274     // If the sign bit is known to be zero or one, then sext will extend
3275     // it to the top bits, else it will just zext.
3276     Known = Known.sext(BitWidth);
3277     break;
3278   }
3279   case ISD::ANY_EXTEND_VECTOR_INREG: {
3280     EVT InVT = Op.getOperand(0).getValueType();
3281     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3282     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3283     Known = Known.anyext(BitWidth);
3284     break;
3285   }
3286   case ISD::ANY_EXTEND: {
3287     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3288     Known = Known.anyext(BitWidth);
3289     break;
3290   }
3291   case ISD::TRUNCATE: {
3292     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3293     Known = Known.trunc(BitWidth);
3294     break;
3295   }
3296   case ISD::AssertZext: {
3297     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3298     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3299     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3300     Known.Zero |= (~InMask);
3301     Known.One  &= (~Known.Zero);
3302     break;
3303   }
3304   case ISD::AssertAlign: {
3305     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3306     assert(LogOfAlign != 0);
3307     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3308     // well as clearing one bits.
3309     Known.Zero.setLowBits(LogOfAlign);
3310     Known.One.clearLowBits(LogOfAlign);
3311     break;
3312   }
3313   case ISD::FGETSIGN:
3314     // All bits are zero except the low bit.
3315     Known.Zero.setBitsFrom(1);
3316     break;
3317   case ISD::USUBO:
3318   case ISD::SSUBO:
3319     if (Op.getResNo() == 1) {
3320       // If we know the result of a setcc has the top bits zero, use this info.
3321       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3322               TargetLowering::ZeroOrOneBooleanContent &&
3323           BitWidth > 1)
3324         Known.Zero.setBitsFrom(1);
3325       break;
3326     }
3327     LLVM_FALLTHROUGH;
3328   case ISD::SUB:
3329   case ISD::SUBC: {
3330     assert(Op.getResNo() == 0 &&
3331            "We only compute knownbits for the difference here.");
3332 
3333     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3334     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3335     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3336                                         Known, Known2);
3337     break;
3338   }
3339   case ISD::UADDO:
3340   case ISD::SADDO:
3341   case ISD::ADDCARRY:
3342     if (Op.getResNo() == 1) {
3343       // If we know the result of a setcc has the top bits zero, use this info.
3344       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3345               TargetLowering::ZeroOrOneBooleanContent &&
3346           BitWidth > 1)
3347         Known.Zero.setBitsFrom(1);
3348       break;
3349     }
3350     LLVM_FALLTHROUGH;
3351   case ISD::ADD:
3352   case ISD::ADDC:
3353   case ISD::ADDE: {
3354     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3355 
3356     // With ADDE and ADDCARRY, a carry bit may be added in.
3357     KnownBits Carry(1);
3358     if (Opcode == ISD::ADDE)
3359       // Can't track carry from glue, set carry to unknown.
3360       Carry.resetAll();
3361     else if (Opcode == ISD::ADDCARRY)
3362       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3363       // the trouble (how often will we find a known carry bit). And I haven't
3364       // tested this very much yet, but something like this might work:
3365       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3366       //   Carry = Carry.zextOrTrunc(1, false);
3367       Carry.resetAll();
3368     else
3369       Carry.setAllZero();
3370 
3371     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3372     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3373     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3374     break;
3375   }
3376   case ISD::SREM: {
3377     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3378     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3379     Known = KnownBits::srem(Known, Known2);
3380     break;
3381   }
3382   case ISD::UREM: {
3383     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3384     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3385     Known = KnownBits::urem(Known, Known2);
3386     break;
3387   }
3388   case ISD::EXTRACT_ELEMENT: {
3389     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3390     const unsigned Index = Op.getConstantOperandVal(1);
3391     const unsigned EltBitWidth = Op.getValueSizeInBits();
3392 
3393     // Remove low part of known bits mask
3394     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3395     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3396 
3397     // Remove high part of known bit mask
3398     Known = Known.trunc(EltBitWidth);
3399     break;
3400   }
3401   case ISD::EXTRACT_VECTOR_ELT: {
3402     SDValue InVec = Op.getOperand(0);
3403     SDValue EltNo = Op.getOperand(1);
3404     EVT VecVT = InVec.getValueType();
3405     // computeKnownBits not yet implemented for scalable vectors.
3406     if (VecVT.isScalableVector())
3407       break;
3408     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3409     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3410 
3411     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3412     // anything about the extended bits.
3413     if (BitWidth > EltBitWidth)
3414       Known = Known.trunc(EltBitWidth);
3415 
3416     // If we know the element index, just demand that vector element, else for
3417     // an unknown element index, ignore DemandedElts and demand them all.
3418     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3419     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3420     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3421       DemandedSrcElts =
3422           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3423 
3424     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3425     if (BitWidth > EltBitWidth)
3426       Known = Known.anyext(BitWidth);
3427     break;
3428   }
3429   case ISD::INSERT_VECTOR_ELT: {
3430     // If we know the element index, split the demand between the
3431     // source vector and the inserted element, otherwise assume we need
3432     // the original demanded vector elements and the value.
3433     SDValue InVec = Op.getOperand(0);
3434     SDValue InVal = Op.getOperand(1);
3435     SDValue EltNo = Op.getOperand(2);
3436     bool DemandedVal = true;
3437     APInt DemandedVecElts = DemandedElts;
3438     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3439     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3440       unsigned EltIdx = CEltNo->getZExtValue();
3441       DemandedVal = !!DemandedElts[EltIdx];
3442       DemandedVecElts.clearBit(EltIdx);
3443     }
3444     Known.One.setAllBits();
3445     Known.Zero.setAllBits();
3446     if (DemandedVal) {
3447       Known2 = computeKnownBits(InVal, Depth + 1);
3448       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3449     }
3450     if (!!DemandedVecElts) {
3451       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3452       Known = KnownBits::commonBits(Known, Known2);
3453     }
3454     break;
3455   }
3456   case ISD::BITREVERSE: {
3457     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3458     Known = Known2.reverseBits();
3459     break;
3460   }
3461   case ISD::BSWAP: {
3462     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3463     Known = Known2.byteSwap();
3464     break;
3465   }
3466   case ISD::ABS: {
3467     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3468     Known = Known2.abs();
3469     break;
3470   }
3471   case ISD::USUBSAT: {
3472     // The result of usubsat will never be larger than the LHS.
3473     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3474     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3475     break;
3476   }
3477   case ISD::UMIN: {
3478     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3479     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3480     Known = KnownBits::umin(Known, Known2);
3481     break;
3482   }
3483   case ISD::UMAX: {
3484     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3485     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3486     Known = KnownBits::umax(Known, Known2);
3487     break;
3488   }
3489   case ISD::SMIN:
3490   case ISD::SMAX: {
3491     // If we have a clamp pattern, we know that the number of sign bits will be
3492     // the minimum of the clamp min/max range.
3493     bool IsMax = (Opcode == ISD::SMAX);
3494     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3495     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3496       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3497         CstHigh =
3498             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3499     if (CstLow && CstHigh) {
3500       if (!IsMax)
3501         std::swap(CstLow, CstHigh);
3502 
3503       const APInt &ValueLow = CstLow->getAPIntValue();
3504       const APInt &ValueHigh = CstHigh->getAPIntValue();
3505       if (ValueLow.sle(ValueHigh)) {
3506         unsigned LowSignBits = ValueLow.getNumSignBits();
3507         unsigned HighSignBits = ValueHigh.getNumSignBits();
3508         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3509         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3510           Known.One.setHighBits(MinSignBits);
3511           break;
3512         }
3513         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3514           Known.Zero.setHighBits(MinSignBits);
3515           break;
3516         }
3517       }
3518     }
3519 
3520     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3521     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3522     if (IsMax)
3523       Known = KnownBits::smax(Known, Known2);
3524     else
3525       Known = KnownBits::smin(Known, Known2);
3526     break;
3527   }
3528   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3529     if (Op.getResNo() == 1) {
3530       // The boolean result conforms to getBooleanContents.
3531       // If we know the result of a setcc has the top bits zero, use this info.
3532       // We know that we have an integer-based boolean since these operations
3533       // are only available for integer.
3534       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3535               TargetLowering::ZeroOrOneBooleanContent &&
3536           BitWidth > 1)
3537         Known.Zero.setBitsFrom(1);
3538       break;
3539     }
3540     LLVM_FALLTHROUGH;
3541   case ISD::ATOMIC_CMP_SWAP:
3542   case ISD::ATOMIC_SWAP:
3543   case ISD::ATOMIC_LOAD_ADD:
3544   case ISD::ATOMIC_LOAD_SUB:
3545   case ISD::ATOMIC_LOAD_AND:
3546   case ISD::ATOMIC_LOAD_CLR:
3547   case ISD::ATOMIC_LOAD_OR:
3548   case ISD::ATOMIC_LOAD_XOR:
3549   case ISD::ATOMIC_LOAD_NAND:
3550   case ISD::ATOMIC_LOAD_MIN:
3551   case ISD::ATOMIC_LOAD_MAX:
3552   case ISD::ATOMIC_LOAD_UMIN:
3553   case ISD::ATOMIC_LOAD_UMAX:
3554   case ISD::ATOMIC_LOAD: {
3555     unsigned MemBits =
3556         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3557     // If we are looking at the loaded value.
3558     if (Op.getResNo() == 0) {
3559       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3560         Known.Zero.setBitsFrom(MemBits);
3561     }
3562     break;
3563   }
3564   case ISD::FrameIndex:
3565   case ISD::TargetFrameIndex:
3566     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3567                                        Known, getMachineFunction());
3568     break;
3569 
3570   default:
3571     if (Opcode < ISD::BUILTIN_OP_END)
3572       break;
3573     LLVM_FALLTHROUGH;
3574   case ISD::INTRINSIC_WO_CHAIN:
3575   case ISD::INTRINSIC_W_CHAIN:
3576   case ISD::INTRINSIC_VOID:
3577     // Allow the target to implement this method for its nodes.
3578     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3579     break;
3580   }
3581 
3582   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3583   return Known;
3584 }
3585 
3586 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3587                                                              SDValue N1) const {
3588   // X + 0 never overflow
3589   if (isNullConstant(N1))
3590     return OFK_Never;
3591 
3592   KnownBits N1Known = computeKnownBits(N1);
3593   if (N1Known.Zero.getBoolValue()) {
3594     KnownBits N0Known = computeKnownBits(N0);
3595 
3596     bool overflow;
3597     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3598     if (!overflow)
3599       return OFK_Never;
3600   }
3601 
3602   // mulhi + 1 never overflow
3603   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3604       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3605     return OFK_Never;
3606 
3607   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3608     KnownBits N0Known = computeKnownBits(N0);
3609 
3610     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3611       return OFK_Never;
3612   }
3613 
3614   return OFK_Sometime;
3615 }
3616 
3617 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3618   EVT OpVT = Val.getValueType();
3619   unsigned BitWidth = OpVT.getScalarSizeInBits();
3620 
3621   // Is the constant a known power of 2?
3622   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3623     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3624 
3625   // A left-shift of a constant one will have exactly one bit set because
3626   // shifting the bit off the end is undefined.
3627   if (Val.getOpcode() == ISD::SHL) {
3628     auto *C = isConstOrConstSplat(Val.getOperand(0));
3629     if (C && C->getAPIntValue() == 1)
3630       return true;
3631   }
3632 
3633   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3634   // one bit set.
3635   if (Val.getOpcode() == ISD::SRL) {
3636     auto *C = isConstOrConstSplat(Val.getOperand(0));
3637     if (C && C->getAPIntValue().isSignMask())
3638       return true;
3639   }
3640 
3641   // Are all operands of a build vector constant powers of two?
3642   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3643     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3644           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3645             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3646           return false;
3647         }))
3648       return true;
3649 
3650   // More could be done here, though the above checks are enough
3651   // to handle some common cases.
3652 
3653   // Fall back to computeKnownBits to catch other known cases.
3654   KnownBits Known = computeKnownBits(Val);
3655   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3656 }
3657 
3658 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3659   EVT VT = Op.getValueType();
3660 
3661   // TODO: Assume we don't know anything for now.
3662   if (VT.isScalableVector())
3663     return 1;
3664 
3665   APInt DemandedElts = VT.isVector()
3666                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3667                            : APInt(1, 1);
3668   return ComputeNumSignBits(Op, DemandedElts, Depth);
3669 }
3670 
3671 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3672                                           unsigned Depth) const {
3673   EVT VT = Op.getValueType();
3674   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3675   unsigned VTBits = VT.getScalarSizeInBits();
3676   unsigned NumElts = DemandedElts.getBitWidth();
3677   unsigned Tmp, Tmp2;
3678   unsigned FirstAnswer = 1;
3679 
3680   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3681     const APInt &Val = C->getAPIntValue();
3682     return Val.getNumSignBits();
3683   }
3684 
3685   if (Depth >= MaxRecursionDepth)
3686     return 1;  // Limit search depth.
3687 
3688   if (!DemandedElts || VT.isScalableVector())
3689     return 1;  // No demanded elts, better to assume we don't know anything.
3690 
3691   unsigned Opcode = Op.getOpcode();
3692   switch (Opcode) {
3693   default: break;
3694   case ISD::AssertSext:
3695     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3696     return VTBits-Tmp+1;
3697   case ISD::AssertZext:
3698     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3699     return VTBits-Tmp;
3700 
3701   case ISD::BUILD_VECTOR:
3702     Tmp = VTBits;
3703     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3704       if (!DemandedElts[i])
3705         continue;
3706 
3707       SDValue SrcOp = Op.getOperand(i);
3708       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3709 
3710       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3711       if (SrcOp.getValueSizeInBits() != VTBits) {
3712         assert(SrcOp.getValueSizeInBits() > VTBits &&
3713                "Expected BUILD_VECTOR implicit truncation");
3714         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3715         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3716       }
3717       Tmp = std::min(Tmp, Tmp2);
3718     }
3719     return Tmp;
3720 
3721   case ISD::VECTOR_SHUFFLE: {
3722     // Collect the minimum number of sign bits that are shared by every vector
3723     // element referenced by the shuffle.
3724     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3725     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3726     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3727     for (unsigned i = 0; i != NumElts; ++i) {
3728       int M = SVN->getMaskElt(i);
3729       if (!DemandedElts[i])
3730         continue;
3731       // For UNDEF elements, we don't know anything about the common state of
3732       // the shuffle result.
3733       if (M < 0)
3734         return 1;
3735       if ((unsigned)M < NumElts)
3736         DemandedLHS.setBit((unsigned)M % NumElts);
3737       else
3738         DemandedRHS.setBit((unsigned)M % NumElts);
3739     }
3740     Tmp = std::numeric_limits<unsigned>::max();
3741     if (!!DemandedLHS)
3742       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3743     if (!!DemandedRHS) {
3744       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3745       Tmp = std::min(Tmp, Tmp2);
3746     }
3747     // If we don't know anything, early out and try computeKnownBits fall-back.
3748     if (Tmp == 1)
3749       break;
3750     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3751     return Tmp;
3752   }
3753 
3754   case ISD::BITCAST: {
3755     SDValue N0 = Op.getOperand(0);
3756     EVT SrcVT = N0.getValueType();
3757     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3758 
3759     // Ignore bitcasts from unsupported types..
3760     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3761       break;
3762 
3763     // Fast handling of 'identity' bitcasts.
3764     if (VTBits == SrcBits)
3765       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3766 
3767     bool IsLE = getDataLayout().isLittleEndian();
3768 
3769     // Bitcast 'large element' scalar/vector to 'small element' vector.
3770     if ((SrcBits % VTBits) == 0) {
3771       assert(VT.isVector() && "Expected bitcast to vector");
3772 
3773       unsigned Scale = SrcBits / VTBits;
3774       APInt SrcDemandedElts(NumElts / Scale, 0);
3775       for (unsigned i = 0; i != NumElts; ++i)
3776         if (DemandedElts[i])
3777           SrcDemandedElts.setBit(i / Scale);
3778 
3779       // Fast case - sign splat can be simply split across the small elements.
3780       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3781       if (Tmp == SrcBits)
3782         return VTBits;
3783 
3784       // Slow case - determine how far the sign extends into each sub-element.
3785       Tmp2 = VTBits;
3786       for (unsigned i = 0; i != NumElts; ++i)
3787         if (DemandedElts[i]) {
3788           unsigned SubOffset = i % Scale;
3789           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3790           SubOffset = SubOffset * VTBits;
3791           if (Tmp <= SubOffset)
3792             return 1;
3793           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3794         }
3795       return Tmp2;
3796     }
3797     break;
3798   }
3799 
3800   case ISD::SIGN_EXTEND:
3801     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3802     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3803   case ISD::SIGN_EXTEND_INREG:
3804     // Max of the input and what this extends.
3805     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3806     Tmp = VTBits-Tmp+1;
3807     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3808     return std::max(Tmp, Tmp2);
3809   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3810     SDValue Src = Op.getOperand(0);
3811     EVT SrcVT = Src.getValueType();
3812     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3813     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3814     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3815   }
3816   case ISD::SRA:
3817     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3818     // SRA X, C -> adds C sign bits.
3819     if (const APInt *ShAmt =
3820             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3821       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3822     return Tmp;
3823   case ISD::SHL:
3824     if (const APInt *ShAmt =
3825             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3826       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3827       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3828       if (ShAmt->ult(Tmp))
3829         return Tmp - ShAmt->getZExtValue();
3830     }
3831     break;
3832   case ISD::AND:
3833   case ISD::OR:
3834   case ISD::XOR:    // NOT is handled here.
3835     // Logical binary ops preserve the number of sign bits at the worst.
3836     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3837     if (Tmp != 1) {
3838       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3839       FirstAnswer = std::min(Tmp, Tmp2);
3840       // We computed what we know about the sign bits as our first
3841       // answer. Now proceed to the generic code that uses
3842       // computeKnownBits, and pick whichever answer is better.
3843     }
3844     break;
3845 
3846   case ISD::SELECT:
3847   case ISD::VSELECT:
3848     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3849     if (Tmp == 1) return 1;  // Early out.
3850     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3851     return std::min(Tmp, Tmp2);
3852   case ISD::SELECT_CC:
3853     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3854     if (Tmp == 1) return 1;  // Early out.
3855     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3856     return std::min(Tmp, Tmp2);
3857 
3858   case ISD::SMIN:
3859   case ISD::SMAX: {
3860     // If we have a clamp pattern, we know that the number of sign bits will be
3861     // the minimum of the clamp min/max range.
3862     bool IsMax = (Opcode == ISD::SMAX);
3863     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3864     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3865       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3866         CstHigh =
3867             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3868     if (CstLow && CstHigh) {
3869       if (!IsMax)
3870         std::swap(CstLow, CstHigh);
3871       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3872         Tmp = CstLow->getAPIntValue().getNumSignBits();
3873         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3874         return std::min(Tmp, Tmp2);
3875       }
3876     }
3877 
3878     // Fallback - just get the minimum number of sign bits of the operands.
3879     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3880     if (Tmp == 1)
3881       return 1;  // Early out.
3882     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3883     return std::min(Tmp, Tmp2);
3884   }
3885   case ISD::UMIN:
3886   case ISD::UMAX:
3887     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3888     if (Tmp == 1)
3889       return 1;  // Early out.
3890     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3891     return std::min(Tmp, Tmp2);
3892   case ISD::SADDO:
3893   case ISD::UADDO:
3894   case ISD::SSUBO:
3895   case ISD::USUBO:
3896   case ISD::SMULO:
3897   case ISD::UMULO:
3898     if (Op.getResNo() != 1)
3899       break;
3900     // The boolean result conforms to getBooleanContents.  Fall through.
3901     // If setcc returns 0/-1, all bits are sign bits.
3902     // We know that we have an integer-based boolean since these operations
3903     // are only available for integer.
3904     if (TLI->getBooleanContents(VT.isVector(), false) ==
3905         TargetLowering::ZeroOrNegativeOneBooleanContent)
3906       return VTBits;
3907     break;
3908   case ISD::SETCC:
3909   case ISD::STRICT_FSETCC:
3910   case ISD::STRICT_FSETCCS: {
3911     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3912     // If setcc returns 0/-1, all bits are sign bits.
3913     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3914         TargetLowering::ZeroOrNegativeOneBooleanContent)
3915       return VTBits;
3916     break;
3917   }
3918   case ISD::ROTL:
3919   case ISD::ROTR:
3920     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3921 
3922     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3923     if (Tmp == VTBits)
3924       return VTBits;
3925 
3926     if (ConstantSDNode *C =
3927             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3928       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3929 
3930       // Handle rotate right by N like a rotate left by 32-N.
3931       if (Opcode == ISD::ROTR)
3932         RotAmt = (VTBits - RotAmt) % VTBits;
3933 
3934       // If we aren't rotating out all of the known-in sign bits, return the
3935       // number that are left.  This handles rotl(sext(x), 1) for example.
3936       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3937     }
3938     break;
3939   case ISD::ADD:
3940   case ISD::ADDC:
3941     // Add can have at most one carry bit.  Thus we know that the output
3942     // is, at worst, one more bit than the inputs.
3943     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3944     if (Tmp == 1) return 1; // Early out.
3945 
3946     // Special case decrementing a value (ADD X, -1):
3947     if (ConstantSDNode *CRHS =
3948             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3949       if (CRHS->isAllOnesValue()) {
3950         KnownBits Known =
3951             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3952 
3953         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3954         // sign bits set.
3955         if ((Known.Zero | 1).isAllOnesValue())
3956           return VTBits;
3957 
3958         // If we are subtracting one from a positive number, there is no carry
3959         // out of the result.
3960         if (Known.isNonNegative())
3961           return Tmp;
3962       }
3963 
3964     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3965     if (Tmp2 == 1) return 1; // Early out.
3966     return std::min(Tmp, Tmp2) - 1;
3967   case ISD::SUB:
3968     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3969     if (Tmp2 == 1) return 1; // Early out.
3970 
3971     // Handle NEG.
3972     if (ConstantSDNode *CLHS =
3973             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3974       if (CLHS->isNullValue()) {
3975         KnownBits Known =
3976             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3977         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3978         // sign bits set.
3979         if ((Known.Zero | 1).isAllOnesValue())
3980           return VTBits;
3981 
3982         // If the input is known to be positive (the sign bit is known clear),
3983         // the output of the NEG has the same number of sign bits as the input.
3984         if (Known.isNonNegative())
3985           return Tmp2;
3986 
3987         // Otherwise, we treat this like a SUB.
3988       }
3989 
3990     // Sub can have at most one carry bit.  Thus we know that the output
3991     // is, at worst, one more bit than the inputs.
3992     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3993     if (Tmp == 1) return 1; // Early out.
3994     return std::min(Tmp, Tmp2) - 1;
3995   case ISD::MUL: {
3996     // The output of the Mul can be at most twice the valid bits in the inputs.
3997     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3998     if (SignBitsOp0 == 1)
3999       break;
4000     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4001     if (SignBitsOp1 == 1)
4002       break;
4003     unsigned OutValidBits =
4004         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4005     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4006   }
4007   case ISD::SREM:
4008     // The sign bit is the LHS's sign bit, except when the result of the
4009     // remainder is zero. The magnitude of the result should be less than or
4010     // equal to the magnitude of the LHS. Therefore, the result should have
4011     // at least as many sign bits as the left hand side.
4012     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4013   case ISD::TRUNCATE: {
4014     // Check if the sign bits of source go down as far as the truncated value.
4015     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4016     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4017     if (NumSrcSignBits > (NumSrcBits - VTBits))
4018       return NumSrcSignBits - (NumSrcBits - VTBits);
4019     break;
4020   }
4021   case ISD::EXTRACT_ELEMENT: {
4022     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4023     const int BitWidth = Op.getValueSizeInBits();
4024     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4025 
4026     // Get reverse index (starting from 1), Op1 value indexes elements from
4027     // little end. Sign starts at big end.
4028     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4029 
4030     // If the sign portion ends in our element the subtraction gives correct
4031     // result. Otherwise it gives either negative or > bitwidth result
4032     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4033   }
4034   case ISD::INSERT_VECTOR_ELT: {
4035     // If we know the element index, split the demand between the
4036     // source vector and the inserted element, otherwise assume we need
4037     // the original demanded vector elements and the value.
4038     SDValue InVec = Op.getOperand(0);
4039     SDValue InVal = Op.getOperand(1);
4040     SDValue EltNo = Op.getOperand(2);
4041     bool DemandedVal = true;
4042     APInt DemandedVecElts = DemandedElts;
4043     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4044     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4045       unsigned EltIdx = CEltNo->getZExtValue();
4046       DemandedVal = !!DemandedElts[EltIdx];
4047       DemandedVecElts.clearBit(EltIdx);
4048     }
4049     Tmp = std::numeric_limits<unsigned>::max();
4050     if (DemandedVal) {
4051       // TODO - handle implicit truncation of inserted elements.
4052       if (InVal.getScalarValueSizeInBits() != VTBits)
4053         break;
4054       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4055       Tmp = std::min(Tmp, Tmp2);
4056     }
4057     if (!!DemandedVecElts) {
4058       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4059       Tmp = std::min(Tmp, Tmp2);
4060     }
4061     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4062     return Tmp;
4063   }
4064   case ISD::EXTRACT_VECTOR_ELT: {
4065     SDValue InVec = Op.getOperand(0);
4066     SDValue EltNo = Op.getOperand(1);
4067     EVT VecVT = InVec.getValueType();
4068     // ComputeNumSignBits not yet implemented for scalable vectors.
4069     if (VecVT.isScalableVector())
4070       break;
4071     const unsigned BitWidth = Op.getValueSizeInBits();
4072     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4073     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4074 
4075     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4076     // anything about sign bits. But if the sizes match we can derive knowledge
4077     // about sign bits from the vector operand.
4078     if (BitWidth != EltBitWidth)
4079       break;
4080 
4081     // If we know the element index, just demand that vector element, else for
4082     // an unknown element index, ignore DemandedElts and demand them all.
4083     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4084     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4085     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4086       DemandedSrcElts =
4087           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4088 
4089     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4090   }
4091   case ISD::EXTRACT_SUBVECTOR: {
4092     // Offset the demanded elts by the subvector index.
4093     SDValue Src = Op.getOperand(0);
4094     // Bail until we can represent demanded elements for scalable vectors.
4095     if (Src.getValueType().isScalableVector())
4096       break;
4097     uint64_t Idx = Op.getConstantOperandVal(1);
4098     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4099     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4100     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4101   }
4102   case ISD::CONCAT_VECTORS: {
4103     // Determine the minimum number of sign bits across all demanded
4104     // elts of the input vectors. Early out if the result is already 1.
4105     Tmp = std::numeric_limits<unsigned>::max();
4106     EVT SubVectorVT = Op.getOperand(0).getValueType();
4107     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4108     unsigned NumSubVectors = Op.getNumOperands();
4109     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4110       APInt DemandedSub =
4111           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4112       if (!DemandedSub)
4113         continue;
4114       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4115       Tmp = std::min(Tmp, Tmp2);
4116     }
4117     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4118     return Tmp;
4119   }
4120   case ISD::INSERT_SUBVECTOR: {
4121     // Demand any elements from the subvector and the remainder from the src its
4122     // inserted into.
4123     SDValue Src = Op.getOperand(0);
4124     SDValue Sub = Op.getOperand(1);
4125     uint64_t Idx = Op.getConstantOperandVal(2);
4126     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4127     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4128     APInt DemandedSrcElts = DemandedElts;
4129     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4130 
4131     Tmp = std::numeric_limits<unsigned>::max();
4132     if (!!DemandedSubElts) {
4133       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4134       if (Tmp == 1)
4135         return 1; // early-out
4136     }
4137     if (!!DemandedSrcElts) {
4138       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4139       Tmp = std::min(Tmp, Tmp2);
4140     }
4141     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4142     return Tmp;
4143   }
4144   case ISD::ATOMIC_CMP_SWAP:
4145   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4146   case ISD::ATOMIC_SWAP:
4147   case ISD::ATOMIC_LOAD_ADD:
4148   case ISD::ATOMIC_LOAD_SUB:
4149   case ISD::ATOMIC_LOAD_AND:
4150   case ISD::ATOMIC_LOAD_CLR:
4151   case ISD::ATOMIC_LOAD_OR:
4152   case ISD::ATOMIC_LOAD_XOR:
4153   case ISD::ATOMIC_LOAD_NAND:
4154   case ISD::ATOMIC_LOAD_MIN:
4155   case ISD::ATOMIC_LOAD_MAX:
4156   case ISD::ATOMIC_LOAD_UMIN:
4157   case ISD::ATOMIC_LOAD_UMAX:
4158   case ISD::ATOMIC_LOAD: {
4159     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4160     // If we are looking at the loaded value.
4161     if (Op.getResNo() == 0) {
4162       if (Tmp == VTBits)
4163         return 1; // early-out
4164       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4165         return VTBits - Tmp + 1;
4166       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4167         return VTBits - Tmp;
4168     }
4169     break;
4170   }
4171   }
4172 
4173   // If we are looking at the loaded value of the SDNode.
4174   if (Op.getResNo() == 0) {
4175     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4176     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4177       unsigned ExtType = LD->getExtensionType();
4178       switch (ExtType) {
4179       default: break;
4180       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4181         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4182         return VTBits - Tmp + 1;
4183       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4184         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4185         return VTBits - Tmp;
4186       case ISD::NON_EXTLOAD:
4187         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4188           // We only need to handle vectors - computeKnownBits should handle
4189           // scalar cases.
4190           Type *CstTy = Cst->getType();
4191           if (CstTy->isVectorTy() &&
4192               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4193             Tmp = VTBits;
4194             for (unsigned i = 0; i != NumElts; ++i) {
4195               if (!DemandedElts[i])
4196                 continue;
4197               if (Constant *Elt = Cst->getAggregateElement(i)) {
4198                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4199                   const APInt &Value = CInt->getValue();
4200                   Tmp = std::min(Tmp, Value.getNumSignBits());
4201                   continue;
4202                 }
4203                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4204                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4205                   Tmp = std::min(Tmp, Value.getNumSignBits());
4206                   continue;
4207                 }
4208               }
4209               // Unknown type. Conservatively assume no bits match sign bit.
4210               return 1;
4211             }
4212             return Tmp;
4213           }
4214         }
4215         break;
4216       }
4217     }
4218   }
4219 
4220   // Allow the target to implement this method for its nodes.
4221   if (Opcode >= ISD::BUILTIN_OP_END ||
4222       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4223       Opcode == ISD::INTRINSIC_W_CHAIN ||
4224       Opcode == ISD::INTRINSIC_VOID) {
4225     unsigned NumBits =
4226         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4227     if (NumBits > 1)
4228       FirstAnswer = std::max(FirstAnswer, NumBits);
4229   }
4230 
4231   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4232   // use this information.
4233   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4234 
4235   APInt Mask;
4236   if (Known.isNonNegative()) {        // sign bit is 0
4237     Mask = Known.Zero;
4238   } else if (Known.isNegative()) {  // sign bit is 1;
4239     Mask = Known.One;
4240   } else {
4241     // Nothing known.
4242     return FirstAnswer;
4243   }
4244 
4245   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4246   // the number of identical bits in the top of the input value.
4247   Mask <<= Mask.getBitWidth()-VTBits;
4248   return std::max(FirstAnswer, Mask.countLeadingOnes());
4249 }
4250 
4251 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4252                                                     unsigned Depth) const {
4253   // Early out for FREEZE.
4254   if (Op.getOpcode() == ISD::FREEZE)
4255     return true;
4256 
4257   // TODO: Assume we don't know anything for now.
4258   EVT VT = Op.getValueType();
4259   if (VT.isScalableVector())
4260     return false;
4261 
4262   APInt DemandedElts = VT.isVector()
4263                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
4264                            : APInt(1, 1);
4265   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4266 }
4267 
4268 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4269                                                     const APInt &DemandedElts,
4270                                                     bool PoisonOnly,
4271                                                     unsigned Depth) const {
4272   unsigned Opcode = Op.getOpcode();
4273 
4274   // Early out for FREEZE.
4275   if (Opcode == ISD::FREEZE)
4276     return true;
4277 
4278   if (Depth >= MaxRecursionDepth)
4279     return false; // Limit search depth.
4280 
4281   if (isIntOrFPConstant(Op))
4282     return true;
4283 
4284   switch (Opcode) {
4285   case ISD::UNDEF:
4286     return PoisonOnly;
4287 
4288   // TODO: ISD::BUILD_VECTOR handling
4289 
4290   // TODO: Search for noundef attributes from library functions.
4291 
4292   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4293 
4294   default:
4295     // Allow the target to implement this method for its nodes.
4296     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4297         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4298       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4299           Op, DemandedElts, *this, PoisonOnly, Depth);
4300     break;
4301   }
4302 
4303   return false;
4304 }
4305 
4306 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4307   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4308       !isa<ConstantSDNode>(Op.getOperand(1)))
4309     return false;
4310 
4311   if (Op.getOpcode() == ISD::OR &&
4312       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4313     return false;
4314 
4315   return true;
4316 }
4317 
4318 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4319   // If we're told that NaNs won't happen, assume they won't.
4320   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4321     return true;
4322 
4323   if (Depth >= MaxRecursionDepth)
4324     return false; // Limit search depth.
4325 
4326   // TODO: Handle vectors.
4327   // If the value is a constant, we can obviously see if it is a NaN or not.
4328   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4329     return !C->getValueAPF().isNaN() ||
4330            (SNaN && !C->getValueAPF().isSignaling());
4331   }
4332 
4333   unsigned Opcode = Op.getOpcode();
4334   switch (Opcode) {
4335   case ISD::FADD:
4336   case ISD::FSUB:
4337   case ISD::FMUL:
4338   case ISD::FDIV:
4339   case ISD::FREM:
4340   case ISD::FSIN:
4341   case ISD::FCOS: {
4342     if (SNaN)
4343       return true;
4344     // TODO: Need isKnownNeverInfinity
4345     return false;
4346   }
4347   case ISD::FCANONICALIZE:
4348   case ISD::FEXP:
4349   case ISD::FEXP2:
4350   case ISD::FTRUNC:
4351   case ISD::FFLOOR:
4352   case ISD::FCEIL:
4353   case ISD::FROUND:
4354   case ISD::FROUNDEVEN:
4355   case ISD::FRINT:
4356   case ISD::FNEARBYINT: {
4357     if (SNaN)
4358       return true;
4359     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4360   }
4361   case ISD::FABS:
4362   case ISD::FNEG:
4363   case ISD::FCOPYSIGN: {
4364     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4365   }
4366   case ISD::SELECT:
4367     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4368            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4369   case ISD::FP_EXTEND:
4370   case ISD::FP_ROUND: {
4371     if (SNaN)
4372       return true;
4373     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4374   }
4375   case ISD::SINT_TO_FP:
4376   case ISD::UINT_TO_FP:
4377     return true;
4378   case ISD::FMA:
4379   case ISD::FMAD: {
4380     if (SNaN)
4381       return true;
4382     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4383            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4384            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4385   }
4386   case ISD::FSQRT: // Need is known positive
4387   case ISD::FLOG:
4388   case ISD::FLOG2:
4389   case ISD::FLOG10:
4390   case ISD::FPOWI:
4391   case ISD::FPOW: {
4392     if (SNaN)
4393       return true;
4394     // TODO: Refine on operand
4395     return false;
4396   }
4397   case ISD::FMINNUM:
4398   case ISD::FMAXNUM: {
4399     // Only one needs to be known not-nan, since it will be returned if the
4400     // other ends up being one.
4401     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4402            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4403   }
4404   case ISD::FMINNUM_IEEE:
4405   case ISD::FMAXNUM_IEEE: {
4406     if (SNaN)
4407       return true;
4408     // This can return a NaN if either operand is an sNaN, or if both operands
4409     // are NaN.
4410     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4411             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4412            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4413             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4414   }
4415   case ISD::FMINIMUM:
4416   case ISD::FMAXIMUM: {
4417     // TODO: Does this quiet or return the origina NaN as-is?
4418     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4419            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4420   }
4421   case ISD::EXTRACT_VECTOR_ELT: {
4422     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4423   }
4424   default:
4425     if (Opcode >= ISD::BUILTIN_OP_END ||
4426         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4427         Opcode == ISD::INTRINSIC_W_CHAIN ||
4428         Opcode == ISD::INTRINSIC_VOID) {
4429       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4430     }
4431 
4432     return false;
4433   }
4434 }
4435 
4436 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4437   assert(Op.getValueType().isFloatingPoint() &&
4438          "Floating point type expected");
4439 
4440   // If the value is a constant, we can obviously see if it is a zero or not.
4441   // TODO: Add BuildVector support.
4442   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4443     return !C->isZero();
4444   return false;
4445 }
4446 
4447 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4448   assert(!Op.getValueType().isFloatingPoint() &&
4449          "Floating point types unsupported - use isKnownNeverZeroFloat");
4450 
4451   // If the value is a constant, we can obviously see if it is a zero or not.
4452   if (ISD::matchUnaryPredicate(
4453           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4454     return true;
4455 
4456   // TODO: Recognize more cases here.
4457   switch (Op.getOpcode()) {
4458   default: break;
4459   case ISD::OR:
4460     if (isKnownNeverZero(Op.getOperand(1)) ||
4461         isKnownNeverZero(Op.getOperand(0)))
4462       return true;
4463     break;
4464   }
4465 
4466   return false;
4467 }
4468 
4469 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4470   // Check the obvious case.
4471   if (A == B) return true;
4472 
4473   // For for negative and positive zero.
4474   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4475     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4476       if (CA->isZero() && CB->isZero()) return true;
4477 
4478   // Otherwise they may not be equal.
4479   return false;
4480 }
4481 
4482 // FIXME: unify with llvm::haveNoCommonBitsSet.
4483 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4484 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4485   assert(A.getValueType() == B.getValueType() &&
4486          "Values must have the same type");
4487   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4488                                         computeKnownBits(B));
4489 }
4490 
4491 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4492                                SelectionDAG &DAG) {
4493   if (cast<ConstantSDNode>(Step)->isNullValue())
4494     return DAG.getConstant(0, DL, VT);
4495 
4496   return SDValue();
4497 }
4498 
4499 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4500                                 ArrayRef<SDValue> Ops,
4501                                 SelectionDAG &DAG) {
4502   int NumOps = Ops.size();
4503   assert(NumOps != 0 && "Can't build an empty vector!");
4504   assert(!VT.isScalableVector() &&
4505          "BUILD_VECTOR cannot be used with scalable types");
4506   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4507          "Incorrect element count in BUILD_VECTOR!");
4508 
4509   // BUILD_VECTOR of UNDEFs is UNDEF.
4510   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4511     return DAG.getUNDEF(VT);
4512 
4513   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4514   SDValue IdentitySrc;
4515   bool IsIdentity = true;
4516   for (int i = 0; i != NumOps; ++i) {
4517     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4518         Ops[i].getOperand(0).getValueType() != VT ||
4519         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4520         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4521         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4522       IsIdentity = false;
4523       break;
4524     }
4525     IdentitySrc = Ops[i].getOperand(0);
4526   }
4527   if (IsIdentity)
4528     return IdentitySrc;
4529 
4530   return SDValue();
4531 }
4532 
4533 /// Try to simplify vector concatenation to an input value, undef, or build
4534 /// vector.
4535 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4536                                   ArrayRef<SDValue> Ops,
4537                                   SelectionDAG &DAG) {
4538   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4539   assert(llvm::all_of(Ops,
4540                       [Ops](SDValue Op) {
4541                         return Ops[0].getValueType() == Op.getValueType();
4542                       }) &&
4543          "Concatenation of vectors with inconsistent value types!");
4544   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4545              VT.getVectorElementCount() &&
4546          "Incorrect element count in vector concatenation!");
4547 
4548   if (Ops.size() == 1)
4549     return Ops[0];
4550 
4551   // Concat of UNDEFs is UNDEF.
4552   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4553     return DAG.getUNDEF(VT);
4554 
4555   // Scan the operands and look for extract operations from a single source
4556   // that correspond to insertion at the same location via this concatenation:
4557   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4558   SDValue IdentitySrc;
4559   bool IsIdentity = true;
4560   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4561     SDValue Op = Ops[i];
4562     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4563     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4564         Op.getOperand(0).getValueType() != VT ||
4565         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4566         Op.getConstantOperandVal(1) != IdentityIndex) {
4567       IsIdentity = false;
4568       break;
4569     }
4570     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4571            "Unexpected identity source vector for concat of extracts");
4572     IdentitySrc = Op.getOperand(0);
4573   }
4574   if (IsIdentity) {
4575     assert(IdentitySrc && "Failed to set source vector of extracts");
4576     return IdentitySrc;
4577   }
4578 
4579   // The code below this point is only designed to work for fixed width
4580   // vectors, so we bail out for now.
4581   if (VT.isScalableVector())
4582     return SDValue();
4583 
4584   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4585   // simplified to one big BUILD_VECTOR.
4586   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4587   EVT SVT = VT.getScalarType();
4588   SmallVector<SDValue, 16> Elts;
4589   for (SDValue Op : Ops) {
4590     EVT OpVT = Op.getValueType();
4591     if (Op.isUndef())
4592       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4593     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4594       Elts.append(Op->op_begin(), Op->op_end());
4595     else
4596       return SDValue();
4597   }
4598 
4599   // BUILD_VECTOR requires all inputs to be of the same type, find the
4600   // maximum type and extend them all.
4601   for (SDValue Op : Elts)
4602     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4603 
4604   if (SVT.bitsGT(VT.getScalarType())) {
4605     for (SDValue &Op : Elts) {
4606       if (Op.isUndef())
4607         Op = DAG.getUNDEF(SVT);
4608       else
4609         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4610                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4611                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4612     }
4613   }
4614 
4615   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4616   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4617   return V;
4618 }
4619 
4620 /// Gets or creates the specified node.
4621 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4622   FoldingSetNodeID ID;
4623   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4624   void *IP = nullptr;
4625   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4626     return SDValue(E, 0);
4627 
4628   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4629                               getVTList(VT));
4630   CSEMap.InsertNode(N, IP);
4631 
4632   InsertNode(N);
4633   SDValue V = SDValue(N, 0);
4634   NewSDValueDbgMsg(V, "Creating new node: ", this);
4635   return V;
4636 }
4637 
4638 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4639                               SDValue Operand) {
4640   SDNodeFlags Flags;
4641   if (Inserter)
4642     Flags = Inserter->getFlags();
4643   return getNode(Opcode, DL, VT, Operand, Flags);
4644 }
4645 
4646 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4647                               SDValue Operand, const SDNodeFlags Flags) {
4648   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4649          "Operand is DELETED_NODE!");
4650   // Constant fold unary operations with an integer constant operand. Even
4651   // opaque constant will be folded, because the folding of unary operations
4652   // doesn't create new constants with different values. Nevertheless, the
4653   // opaque flag is preserved during folding to prevent future folding with
4654   // other constants.
4655   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4656     const APInt &Val = C->getAPIntValue();
4657     switch (Opcode) {
4658     default: break;
4659     case ISD::SIGN_EXTEND:
4660       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4661                          C->isTargetOpcode(), C->isOpaque());
4662     case ISD::TRUNCATE:
4663       if (C->isOpaque())
4664         break;
4665       LLVM_FALLTHROUGH;
4666     case ISD::ZERO_EXTEND:
4667       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4668                          C->isTargetOpcode(), C->isOpaque());
4669     case ISD::ANY_EXTEND:
4670       // Some targets like RISCV prefer to sign extend some types.
4671       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4672         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4673                            C->isTargetOpcode(), C->isOpaque());
4674       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4675                          C->isTargetOpcode(), C->isOpaque());
4676     case ISD::UINT_TO_FP:
4677     case ISD::SINT_TO_FP: {
4678       APFloat apf(EVTToAPFloatSemantics(VT),
4679                   APInt::getNullValue(VT.getSizeInBits()));
4680       (void)apf.convertFromAPInt(Val,
4681                                  Opcode==ISD::SINT_TO_FP,
4682                                  APFloat::rmNearestTiesToEven);
4683       return getConstantFP(apf, DL, VT);
4684     }
4685     case ISD::BITCAST:
4686       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4687         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4688       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4689         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4690       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4691         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4692       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4693         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4694       break;
4695     case ISD::ABS:
4696       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4697                          C->isOpaque());
4698     case ISD::BITREVERSE:
4699       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4700                          C->isOpaque());
4701     case ISD::BSWAP:
4702       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4703                          C->isOpaque());
4704     case ISD::CTPOP:
4705       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4706                          C->isOpaque());
4707     case ISD::CTLZ:
4708     case ISD::CTLZ_ZERO_UNDEF:
4709       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4710                          C->isOpaque());
4711     case ISD::CTTZ:
4712     case ISD::CTTZ_ZERO_UNDEF:
4713       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4714                          C->isOpaque());
4715     case ISD::FP16_TO_FP: {
4716       bool Ignored;
4717       APFloat FPV(APFloat::IEEEhalf(),
4718                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4719 
4720       // This can return overflow, underflow, or inexact; we don't care.
4721       // FIXME need to be more flexible about rounding mode.
4722       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4723                         APFloat::rmNearestTiesToEven, &Ignored);
4724       return getConstantFP(FPV, DL, VT);
4725     }
4726     case ISD::STEP_VECTOR: {
4727       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4728         return V;
4729       break;
4730     }
4731     }
4732   }
4733 
4734   // Constant fold unary operations with a floating point constant operand.
4735   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4736     APFloat V = C->getValueAPF();    // make copy
4737     switch (Opcode) {
4738     case ISD::FNEG:
4739       V.changeSign();
4740       return getConstantFP(V, DL, VT);
4741     case ISD::FABS:
4742       V.clearSign();
4743       return getConstantFP(V, DL, VT);
4744     case ISD::FCEIL: {
4745       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4746       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4747         return getConstantFP(V, DL, VT);
4748       break;
4749     }
4750     case ISD::FTRUNC: {
4751       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4752       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4753         return getConstantFP(V, DL, VT);
4754       break;
4755     }
4756     case ISD::FFLOOR: {
4757       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4758       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4759         return getConstantFP(V, DL, VT);
4760       break;
4761     }
4762     case ISD::FP_EXTEND: {
4763       bool ignored;
4764       // This can return overflow, underflow, or inexact; we don't care.
4765       // FIXME need to be more flexible about rounding mode.
4766       (void)V.convert(EVTToAPFloatSemantics(VT),
4767                       APFloat::rmNearestTiesToEven, &ignored);
4768       return getConstantFP(V, DL, VT);
4769     }
4770     case ISD::FP_TO_SINT:
4771     case ISD::FP_TO_UINT: {
4772       bool ignored;
4773       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4774       // FIXME need to be more flexible about rounding mode.
4775       APFloat::opStatus s =
4776           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4777       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4778         break;
4779       return getConstant(IntVal, DL, VT);
4780     }
4781     case ISD::BITCAST:
4782       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4783         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4784       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4785         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4786       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4787         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4788       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4789         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4790       break;
4791     case ISD::FP_TO_FP16: {
4792       bool Ignored;
4793       // This can return overflow, underflow, or inexact; we don't care.
4794       // FIXME need to be more flexible about rounding mode.
4795       (void)V.convert(APFloat::IEEEhalf(),
4796                       APFloat::rmNearestTiesToEven, &Ignored);
4797       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4798     }
4799     }
4800   }
4801 
4802   // Constant fold unary operations with a vector integer or float operand.
4803   switch (Opcode) {
4804   default:
4805     // FIXME: Entirely reasonable to perform folding of other unary
4806     // operations here as the need arises.
4807     break;
4808   case ISD::FNEG:
4809   case ISD::FABS:
4810   case ISD::FCEIL:
4811   case ISD::FTRUNC:
4812   case ISD::FFLOOR:
4813   case ISD::FP_EXTEND:
4814   case ISD::FP_TO_SINT:
4815   case ISD::FP_TO_UINT:
4816   case ISD::TRUNCATE:
4817   case ISD::ANY_EXTEND:
4818   case ISD::ZERO_EXTEND:
4819   case ISD::SIGN_EXTEND:
4820   case ISD::UINT_TO_FP:
4821   case ISD::SINT_TO_FP:
4822   case ISD::ABS:
4823   case ISD::BITREVERSE:
4824   case ISD::BSWAP:
4825   case ISD::CTLZ:
4826   case ISD::CTLZ_ZERO_UNDEF:
4827   case ISD::CTTZ:
4828   case ISD::CTTZ_ZERO_UNDEF:
4829   case ISD::CTPOP: {
4830     SDValue Ops = {Operand};
4831     if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4832       return Fold;
4833   }
4834   }
4835 
4836   unsigned OpOpcode = Operand.getNode()->getOpcode();
4837   switch (Opcode) {
4838   case ISD::STEP_VECTOR:
4839     assert(VT.isScalableVector() &&
4840            "STEP_VECTOR can only be used with scalable types");
4841     assert(OpOpcode == ISD::TargetConstant &&
4842            VT.getVectorElementType() == Operand.getValueType() &&
4843            "Unexpected step operand");
4844     break;
4845   case ISD::FREEZE:
4846     assert(VT == Operand.getValueType() && "Unexpected VT!");
4847     break;
4848   case ISD::TokenFactor:
4849   case ISD::MERGE_VALUES:
4850   case ISD::CONCAT_VECTORS:
4851     return Operand;         // Factor, merge or concat of one node?  No need.
4852   case ISD::BUILD_VECTOR: {
4853     // Attempt to simplify BUILD_VECTOR.
4854     SDValue Ops[] = {Operand};
4855     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4856       return V;
4857     break;
4858   }
4859   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4860   case ISD::FP_EXTEND:
4861     assert(VT.isFloatingPoint() &&
4862            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4863     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4864     assert((!VT.isVector() ||
4865             VT.getVectorElementCount() ==
4866             Operand.getValueType().getVectorElementCount()) &&
4867            "Vector element count mismatch!");
4868     assert(Operand.getValueType().bitsLT(VT) &&
4869            "Invalid fpext node, dst < src!");
4870     if (Operand.isUndef())
4871       return getUNDEF(VT);
4872     break;
4873   case ISD::FP_TO_SINT:
4874   case ISD::FP_TO_UINT:
4875     if (Operand.isUndef())
4876       return getUNDEF(VT);
4877     break;
4878   case ISD::SINT_TO_FP:
4879   case ISD::UINT_TO_FP:
4880     // [us]itofp(undef) = 0, because the result value is bounded.
4881     if (Operand.isUndef())
4882       return getConstantFP(0.0, DL, VT);
4883     break;
4884   case ISD::SIGN_EXTEND:
4885     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4886            "Invalid SIGN_EXTEND!");
4887     assert(VT.isVector() == Operand.getValueType().isVector() &&
4888            "SIGN_EXTEND result type type should be vector iff the operand "
4889            "type is vector!");
4890     if (Operand.getValueType() == VT) return Operand;   // noop extension
4891     assert((!VT.isVector() ||
4892             VT.getVectorElementCount() ==
4893                 Operand.getValueType().getVectorElementCount()) &&
4894            "Vector element count mismatch!");
4895     assert(Operand.getValueType().bitsLT(VT) &&
4896            "Invalid sext node, dst < src!");
4897     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4898       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4899     if (OpOpcode == ISD::UNDEF)
4900       // sext(undef) = 0, because the top bits will all be the same.
4901       return getConstant(0, DL, VT);
4902     break;
4903   case ISD::ZERO_EXTEND:
4904     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4905            "Invalid ZERO_EXTEND!");
4906     assert(VT.isVector() == Operand.getValueType().isVector() &&
4907            "ZERO_EXTEND result type type should be vector iff the operand "
4908            "type is vector!");
4909     if (Operand.getValueType() == VT) return Operand;   // noop extension
4910     assert((!VT.isVector() ||
4911             VT.getVectorElementCount() ==
4912                 Operand.getValueType().getVectorElementCount()) &&
4913            "Vector element count mismatch!");
4914     assert(Operand.getValueType().bitsLT(VT) &&
4915            "Invalid zext node, dst < src!");
4916     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4917       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4918     if (OpOpcode == ISD::UNDEF)
4919       // zext(undef) = 0, because the top bits will be zero.
4920       return getConstant(0, DL, VT);
4921     break;
4922   case ISD::ANY_EXTEND:
4923     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4924            "Invalid ANY_EXTEND!");
4925     assert(VT.isVector() == Operand.getValueType().isVector() &&
4926            "ANY_EXTEND result type type should be vector iff the operand "
4927            "type is vector!");
4928     if (Operand.getValueType() == VT) return Operand;   // noop extension
4929     assert((!VT.isVector() ||
4930             VT.getVectorElementCount() ==
4931                 Operand.getValueType().getVectorElementCount()) &&
4932            "Vector element count mismatch!");
4933     assert(Operand.getValueType().bitsLT(VT) &&
4934            "Invalid anyext node, dst < src!");
4935 
4936     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4937         OpOpcode == ISD::ANY_EXTEND)
4938       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4939       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4940     if (OpOpcode == ISD::UNDEF)
4941       return getUNDEF(VT);
4942 
4943     // (ext (trunc x)) -> x
4944     if (OpOpcode == ISD::TRUNCATE) {
4945       SDValue OpOp = Operand.getOperand(0);
4946       if (OpOp.getValueType() == VT) {
4947         transferDbgValues(Operand, OpOp);
4948         return OpOp;
4949       }
4950     }
4951     break;
4952   case ISD::TRUNCATE:
4953     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4954            "Invalid TRUNCATE!");
4955     assert(VT.isVector() == Operand.getValueType().isVector() &&
4956            "TRUNCATE result type type should be vector iff the operand "
4957            "type is vector!");
4958     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4959     assert((!VT.isVector() ||
4960             VT.getVectorElementCount() ==
4961                 Operand.getValueType().getVectorElementCount()) &&
4962            "Vector element count mismatch!");
4963     assert(Operand.getValueType().bitsGT(VT) &&
4964            "Invalid truncate node, src < dst!");
4965     if (OpOpcode == ISD::TRUNCATE)
4966       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4967     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4968         OpOpcode == ISD::ANY_EXTEND) {
4969       // If the source is smaller than the dest, we still need an extend.
4970       if (Operand.getOperand(0).getValueType().getScalarType()
4971             .bitsLT(VT.getScalarType()))
4972         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4973       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4974         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4975       return Operand.getOperand(0);
4976     }
4977     if (OpOpcode == ISD::UNDEF)
4978       return getUNDEF(VT);
4979     break;
4980   case ISD::ANY_EXTEND_VECTOR_INREG:
4981   case ISD::ZERO_EXTEND_VECTOR_INREG:
4982   case ISD::SIGN_EXTEND_VECTOR_INREG:
4983     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4984     assert(Operand.getValueType().bitsLE(VT) &&
4985            "The input must be the same size or smaller than the result.");
4986     assert(VT.getVectorMinNumElements() <
4987                Operand.getValueType().getVectorMinNumElements() &&
4988            "The destination vector type must have fewer lanes than the input.");
4989     break;
4990   case ISD::ABS:
4991     assert(VT.isInteger() && VT == Operand.getValueType() &&
4992            "Invalid ABS!");
4993     if (OpOpcode == ISD::UNDEF)
4994       return getUNDEF(VT);
4995     break;
4996   case ISD::BSWAP:
4997     assert(VT.isInteger() && VT == Operand.getValueType() &&
4998            "Invalid BSWAP!");
4999     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5000            "BSWAP types must be a multiple of 16 bits!");
5001     if (OpOpcode == ISD::UNDEF)
5002       return getUNDEF(VT);
5003     break;
5004   case ISD::BITREVERSE:
5005     assert(VT.isInteger() && VT == Operand.getValueType() &&
5006            "Invalid BITREVERSE!");
5007     if (OpOpcode == ISD::UNDEF)
5008       return getUNDEF(VT);
5009     break;
5010   case ISD::BITCAST:
5011     // Basic sanity checking.
5012     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5013            "Cannot BITCAST between types of different sizes!");
5014     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5015     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5016       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5017     if (OpOpcode == ISD::UNDEF)
5018       return getUNDEF(VT);
5019     break;
5020   case ISD::SCALAR_TO_VECTOR:
5021     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5022            (VT.getVectorElementType() == Operand.getValueType() ||
5023             (VT.getVectorElementType().isInteger() &&
5024              Operand.getValueType().isInteger() &&
5025              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5026            "Illegal SCALAR_TO_VECTOR node!");
5027     if (OpOpcode == ISD::UNDEF)
5028       return getUNDEF(VT);
5029     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5030     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5031         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5032         Operand.getConstantOperandVal(1) == 0 &&
5033         Operand.getOperand(0).getValueType() == VT)
5034       return Operand.getOperand(0);
5035     break;
5036   case ISD::FNEG:
5037     // Negation of an unknown bag of bits is still completely undefined.
5038     if (OpOpcode == ISD::UNDEF)
5039       return getUNDEF(VT);
5040 
5041     if (OpOpcode == ISD::FNEG)  // --X -> X
5042       return Operand.getOperand(0);
5043     break;
5044   case ISD::FABS:
5045     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5046       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5047     break;
5048   case ISD::VSCALE:
5049     assert(VT == Operand.getValueType() && "Unexpected VT!");
5050     break;
5051   case ISD::CTPOP:
5052     if (Operand.getValueType().getScalarType() == MVT::i1)
5053       return Operand;
5054     break;
5055   case ISD::CTLZ:
5056   case ISD::CTTZ:
5057     if (Operand.getValueType().getScalarType() == MVT::i1)
5058       return getNOT(DL, Operand, Operand.getValueType());
5059     break;
5060   case ISD::VECREDUCE_SMIN:
5061   case ISD::VECREDUCE_UMAX:
5062     if (Operand.getValueType().getScalarType() == MVT::i1)
5063       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5064     break;
5065   case ISD::VECREDUCE_SMAX:
5066   case ISD::VECREDUCE_UMIN:
5067     if (Operand.getValueType().getScalarType() == MVT::i1)
5068       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5069     break;
5070   }
5071 
5072   SDNode *N;
5073   SDVTList VTs = getVTList(VT);
5074   SDValue Ops[] = {Operand};
5075   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5076     FoldingSetNodeID ID;
5077     AddNodeIDNode(ID, Opcode, VTs, Ops);
5078     void *IP = nullptr;
5079     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5080       E->intersectFlagsWith(Flags);
5081       return SDValue(E, 0);
5082     }
5083 
5084     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5085     N->setFlags(Flags);
5086     createOperands(N, Ops);
5087     CSEMap.InsertNode(N, IP);
5088   } else {
5089     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5090     createOperands(N, Ops);
5091   }
5092 
5093   InsertNode(N);
5094   SDValue V = SDValue(N, 0);
5095   NewSDValueDbgMsg(V, "Creating new node: ", this);
5096   return V;
5097 }
5098 
5099 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5100                                        const APInt &C2) {
5101   switch (Opcode) {
5102   case ISD::ADD:  return C1 + C2;
5103   case ISD::SUB:  return C1 - C2;
5104   case ISD::MUL:  return C1 * C2;
5105   case ISD::AND:  return C1 & C2;
5106   case ISD::OR:   return C1 | C2;
5107   case ISD::XOR:  return C1 ^ C2;
5108   case ISD::SHL:  return C1 << C2;
5109   case ISD::SRL:  return C1.lshr(C2);
5110   case ISD::SRA:  return C1.ashr(C2);
5111   case ISD::ROTL: return C1.rotl(C2);
5112   case ISD::ROTR: return C1.rotr(C2);
5113   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5114   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5115   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5116   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5117   case ISD::SADDSAT: return C1.sadd_sat(C2);
5118   case ISD::UADDSAT: return C1.uadd_sat(C2);
5119   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5120   case ISD::USUBSAT: return C1.usub_sat(C2);
5121   case ISD::UDIV:
5122     if (!C2.getBoolValue())
5123       break;
5124     return C1.udiv(C2);
5125   case ISD::UREM:
5126     if (!C2.getBoolValue())
5127       break;
5128     return C1.urem(C2);
5129   case ISD::SDIV:
5130     if (!C2.getBoolValue())
5131       break;
5132     return C1.sdiv(C2);
5133   case ISD::SREM:
5134     if (!C2.getBoolValue())
5135       break;
5136     return C1.srem(C2);
5137   case ISD::MULHS: {
5138     unsigned FullWidth = C1.getBitWidth() * 2;
5139     APInt C1Ext = C1.sext(FullWidth);
5140     APInt C2Ext = C2.sext(FullWidth);
5141     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5142   }
5143   case ISD::MULHU: {
5144     unsigned FullWidth = C1.getBitWidth() * 2;
5145     APInt C1Ext = C1.zext(FullWidth);
5146     APInt C2Ext = C2.zext(FullWidth);
5147     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5148   }
5149   }
5150   return llvm::None;
5151 }
5152 
5153 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5154                                        const GlobalAddressSDNode *GA,
5155                                        const SDNode *N2) {
5156   if (GA->getOpcode() != ISD::GlobalAddress)
5157     return SDValue();
5158   if (!TLI->isOffsetFoldingLegal(GA))
5159     return SDValue();
5160   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5161   if (!C2)
5162     return SDValue();
5163   int64_t Offset = C2->getSExtValue();
5164   switch (Opcode) {
5165   case ISD::ADD: break;
5166   case ISD::SUB: Offset = -uint64_t(Offset); break;
5167   default: return SDValue();
5168   }
5169   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5170                           GA->getOffset() + uint64_t(Offset));
5171 }
5172 
5173 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5174   switch (Opcode) {
5175   case ISD::SDIV:
5176   case ISD::UDIV:
5177   case ISD::SREM:
5178   case ISD::UREM: {
5179     // If a divisor is zero/undef or any element of a divisor vector is
5180     // zero/undef, the whole op is undef.
5181     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5182     SDValue Divisor = Ops[1];
5183     if (Divisor.isUndef() || isNullConstant(Divisor))
5184       return true;
5185 
5186     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5187            llvm::any_of(Divisor->op_values(),
5188                         [](SDValue V) { return V.isUndef() ||
5189                                         isNullConstant(V); });
5190     // TODO: Handle signed overflow.
5191   }
5192   // TODO: Handle oversized shifts.
5193   default:
5194     return false;
5195   }
5196 }
5197 
5198 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5199                                              EVT VT, ArrayRef<SDValue> Ops) {
5200   // If the opcode is a target-specific ISD node, there's nothing we can
5201   // do here and the operand rules may not line up with the below, so
5202   // bail early.
5203   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5204   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5205   // foldCONCAT_VECTORS in getNode before this is called.
5206   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5207     return SDValue();
5208 
5209   // For now, the array Ops should only contain two values.
5210   // This enforcement will be removed once this function is merged with
5211   // FoldConstantVectorArithmetic
5212   if (Ops.size() != 2)
5213     return SDValue();
5214 
5215   if (isUndef(Opcode, Ops))
5216     return getUNDEF(VT);
5217 
5218   SDNode *N1 = Ops[0].getNode();
5219   SDNode *N2 = Ops[1].getNode();
5220 
5221   // Handle the case of two scalars.
5222   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5223     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5224       if (C1->isOpaque() || C2->isOpaque())
5225         return SDValue();
5226 
5227       Optional<APInt> FoldAttempt =
5228           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5229       if (!FoldAttempt)
5230         return SDValue();
5231 
5232       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5233       assert((!Folded || !VT.isVector()) &&
5234              "Can't fold vectors ops with scalar operands");
5235       return Folded;
5236     }
5237   }
5238 
5239   // fold (add Sym, c) -> Sym+c
5240   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5241     return FoldSymbolOffset(Opcode, VT, GA, N2);
5242   if (TLI->isCommutativeBinOp(Opcode))
5243     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5244       return FoldSymbolOffset(Opcode, VT, GA, N1);
5245 
5246   // For fixed width vectors, extract each constant element and fold them
5247   // individually. Either input may be an undef value.
5248   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5249                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5250   if (!IsBVOrSV1 && !N1->isUndef())
5251     return SDValue();
5252   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5253                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5254   if (!IsBVOrSV2 && !N2->isUndef())
5255     return SDValue();
5256   // If both operands are undef, that's handled the same way as scalars.
5257   if (!IsBVOrSV1 && !IsBVOrSV2)
5258     return SDValue();
5259 
5260   EVT SVT = VT.getScalarType();
5261   EVT LegalSVT = SVT;
5262   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5263     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5264     if (LegalSVT.bitsLT(SVT))
5265       return SDValue();
5266   }
5267 
5268   SmallVector<SDValue, 4> Outputs;
5269   unsigned NumOps = 0;
5270   if (IsBVOrSV1)
5271     NumOps = std::max(NumOps, N1->getNumOperands());
5272   if (IsBVOrSV2)
5273     NumOps = std::max(NumOps, N2->getNumOperands());
5274   assert(NumOps != 0 && "Expected non-zero operands");
5275   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5276   // one iteration for that.
5277   assert((!VT.isScalableVector() || NumOps == 1) &&
5278          "Scalable vector should only have one scalar");
5279 
5280   for (unsigned I = 0; I != NumOps; ++I) {
5281     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5282     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5283     SDValue V1;
5284     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5285       V1 = N1->getOperand(I);
5286     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5287       V1 = N1->getOperand(0);
5288     else
5289       V1 = getUNDEF(SVT);
5290 
5291     SDValue V2;
5292     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5293       V2 = N2->getOperand(I);
5294     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5295       V2 = N2->getOperand(0);
5296     else
5297       V2 = getUNDEF(SVT);
5298 
5299     if (SVT.isInteger()) {
5300       if (V1.getValueType().bitsGT(SVT))
5301         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5302       if (V2.getValueType().bitsGT(SVT))
5303         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5304     }
5305 
5306     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5307       return SDValue();
5308 
5309     // Fold one vector element.
5310     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5311     if (LegalSVT != SVT)
5312       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5313 
5314     // Scalar folding only succeeded if the result is a constant or UNDEF.
5315     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5316         ScalarResult.getOpcode() != ISD::ConstantFP)
5317       return SDValue();
5318     Outputs.push_back(ScalarResult);
5319   }
5320 
5321   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5322       N2->getOpcode() == ISD::BUILD_VECTOR) {
5323     assert(VT.getVectorNumElements() == Outputs.size() &&
5324            "Vector size mismatch!");
5325 
5326     // Build a big vector out of the scalar elements we generated.
5327     return getBuildVector(VT, SDLoc(), Outputs);
5328   }
5329 
5330   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5331           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5332          "One operand should be a splat vector");
5333 
5334   assert(Outputs.size() == 1 && "Vector size mismatch!");
5335   return getSplatVector(VT, SDLoc(), Outputs[0]);
5336 }
5337 
5338 // TODO: Merge with FoldConstantArithmetic
5339 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5340                                                    const SDLoc &DL, EVT VT,
5341                                                    ArrayRef<SDValue> Ops,
5342                                                    const SDNodeFlags Flags) {
5343   // If the opcode is a target-specific ISD node, there's nothing we can
5344   // do here and the operand rules may not line up with the below, so
5345   // bail early.
5346   if (Opcode >= ISD::BUILTIN_OP_END)
5347     return SDValue();
5348 
5349   if (isUndef(Opcode, Ops))
5350     return getUNDEF(VT);
5351 
5352   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5353   if (!VT.isVector())
5354     return SDValue();
5355 
5356   ElementCount NumElts = VT.getVectorElementCount();
5357 
5358   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5359     return !Op.getValueType().isVector() ||
5360            Op.getValueType().getVectorElementCount() == NumElts;
5361   };
5362 
5363   auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5364     APInt SplatVal;
5365     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5366     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5367            (BV && BV->isConstant()) ||
5368            (Op.getOpcode() == ISD::SPLAT_VECTOR &&
5369             ISD::isConstantSplatVector(Op.getNode(), SplatVal));
5370   };
5371 
5372   // All operands must be vector types with the same number of elements as
5373   // the result type and must be either UNDEF or a build vector of constant
5374   // or UNDEF scalars.
5375   if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) ||
5376       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5377     return SDValue();
5378 
5379   // If we are comparing vectors, then the result needs to be a i1 boolean
5380   // that is then sign-extended back to the legal result type.
5381   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5382 
5383   // Find legal integer scalar type for constant promotion and
5384   // ensure that its scalar size is at least as large as source.
5385   EVT LegalSVT = VT.getScalarType();
5386   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5387     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5388     if (LegalSVT.bitsLT(VT.getScalarType()))
5389       return SDValue();
5390   }
5391 
5392   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5393   // only have one operand to check. For fixed-length vector types we may have
5394   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5395   unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5396 
5397   // Constant fold each scalar lane separately.
5398   SmallVector<SDValue, 4> ScalarResults;
5399   for (unsigned I = 0; I != NumOperands; I++) {
5400     SmallVector<SDValue, 4> ScalarOps;
5401     for (SDValue Op : Ops) {
5402       EVT InSVT = Op.getValueType().getScalarType();
5403       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5404           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5405         // We've checked that this is UNDEF or a constant of some kind.
5406         if (Op.isUndef())
5407           ScalarOps.push_back(getUNDEF(InSVT));
5408         else
5409           ScalarOps.push_back(Op);
5410         continue;
5411       }
5412 
5413       SDValue ScalarOp =
5414           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5415       EVT ScalarVT = ScalarOp.getValueType();
5416 
5417       // Build vector (integer) scalar operands may need implicit
5418       // truncation - do this before constant folding.
5419       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5420         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5421 
5422       ScalarOps.push_back(ScalarOp);
5423     }
5424 
5425     // Constant fold the scalar operands.
5426     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5427 
5428     // Legalize the (integer) scalar constant if necessary.
5429     if (LegalSVT != SVT)
5430       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5431 
5432     // Scalar folding only succeeded if the result is a constant or UNDEF.
5433     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5434         ScalarResult.getOpcode() != ISD::ConstantFP)
5435       return SDValue();
5436     ScalarResults.push_back(ScalarResult);
5437   }
5438 
5439   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5440                                    : getBuildVector(VT, DL, ScalarResults);
5441   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5442   return V;
5443 }
5444 
5445 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5446                                          EVT VT, SDValue N1, SDValue N2) {
5447   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5448   //       should. That will require dealing with a potentially non-default
5449   //       rounding mode, checking the "opStatus" return value from the APFloat
5450   //       math calculations, and possibly other variations.
5451   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5452   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5453   if (N1CFP && N2CFP) {
5454     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5455     switch (Opcode) {
5456     case ISD::FADD:
5457       C1.add(C2, APFloat::rmNearestTiesToEven);
5458       return getConstantFP(C1, DL, VT);
5459     case ISD::FSUB:
5460       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5461       return getConstantFP(C1, DL, VT);
5462     case ISD::FMUL:
5463       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5464       return getConstantFP(C1, DL, VT);
5465     case ISD::FDIV:
5466       C1.divide(C2, APFloat::rmNearestTiesToEven);
5467       return getConstantFP(C1, DL, VT);
5468     case ISD::FREM:
5469       C1.mod(C2);
5470       return getConstantFP(C1, DL, VT);
5471     case ISD::FCOPYSIGN:
5472       C1.copySign(C2);
5473       return getConstantFP(C1, DL, VT);
5474     default: break;
5475     }
5476   }
5477   if (N1CFP && Opcode == ISD::FP_ROUND) {
5478     APFloat C1 = N1CFP->getValueAPF();    // make copy
5479     bool Unused;
5480     // This can return overflow, underflow, or inexact; we don't care.
5481     // FIXME need to be more flexible about rounding mode.
5482     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5483                       &Unused);
5484     return getConstantFP(C1, DL, VT);
5485   }
5486 
5487   switch (Opcode) {
5488   case ISD::FSUB:
5489     // -0.0 - undef --> undef (consistent with "fneg undef")
5490     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5491       return getUNDEF(VT);
5492     LLVM_FALLTHROUGH;
5493 
5494   case ISD::FADD:
5495   case ISD::FMUL:
5496   case ISD::FDIV:
5497   case ISD::FREM:
5498     // If both operands are undef, the result is undef. If 1 operand is undef,
5499     // the result is NaN. This should match the behavior of the IR optimizer.
5500     if (N1.isUndef() && N2.isUndef())
5501       return getUNDEF(VT);
5502     if (N1.isUndef() || N2.isUndef())
5503       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5504   }
5505   return SDValue();
5506 }
5507 
5508 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5509   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5510 
5511   // There's no need to assert on a byte-aligned pointer. All pointers are at
5512   // least byte aligned.
5513   if (A == Align(1))
5514     return Val;
5515 
5516   FoldingSetNodeID ID;
5517   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5518   ID.AddInteger(A.value());
5519 
5520   void *IP = nullptr;
5521   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5522     return SDValue(E, 0);
5523 
5524   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5525                                          Val.getValueType(), A);
5526   createOperands(N, {Val});
5527 
5528   CSEMap.InsertNode(N, IP);
5529   InsertNode(N);
5530 
5531   SDValue V(N, 0);
5532   NewSDValueDbgMsg(V, "Creating new node: ", this);
5533   return V;
5534 }
5535 
5536 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5537                               SDValue N1, SDValue N2) {
5538   SDNodeFlags Flags;
5539   if (Inserter)
5540     Flags = Inserter->getFlags();
5541   return getNode(Opcode, DL, VT, N1, N2, Flags);
5542 }
5543 
5544 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5545                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5546   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5547          N2.getOpcode() != ISD::DELETED_NODE &&
5548          "Operand is DELETED_NODE!");
5549   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5550   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5551   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5552   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5553 
5554   // Canonicalize constant to RHS if commutative.
5555   if (TLI->isCommutativeBinOp(Opcode)) {
5556     if (N1C && !N2C) {
5557       std::swap(N1C, N2C);
5558       std::swap(N1, N2);
5559     } else if (N1CFP && !N2CFP) {
5560       std::swap(N1CFP, N2CFP);
5561       std::swap(N1, N2);
5562     }
5563   }
5564 
5565   switch (Opcode) {
5566   default: break;
5567   case ISD::TokenFactor:
5568     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5569            N2.getValueType() == MVT::Other && "Invalid token factor!");
5570     // Fold trivial token factors.
5571     if (N1.getOpcode() == ISD::EntryToken) return N2;
5572     if (N2.getOpcode() == ISD::EntryToken) return N1;
5573     if (N1 == N2) return N1;
5574     break;
5575   case ISD::BUILD_VECTOR: {
5576     // Attempt to simplify BUILD_VECTOR.
5577     SDValue Ops[] = {N1, N2};
5578     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5579       return V;
5580     break;
5581   }
5582   case ISD::CONCAT_VECTORS: {
5583     SDValue Ops[] = {N1, N2};
5584     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5585       return V;
5586     break;
5587   }
5588   case ISD::AND:
5589     assert(VT.isInteger() && "This operator does not apply to FP types!");
5590     assert(N1.getValueType() == N2.getValueType() &&
5591            N1.getValueType() == VT && "Binary operator types must match!");
5592     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5593     // worth handling here.
5594     if (N2C && N2C->isNullValue())
5595       return N2;
5596     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5597       return N1;
5598     break;
5599   case ISD::OR:
5600   case ISD::XOR:
5601   case ISD::ADD:
5602   case ISD::SUB:
5603     assert(VT.isInteger() && "This operator does not apply to FP types!");
5604     assert(N1.getValueType() == N2.getValueType() &&
5605            N1.getValueType() == VT && "Binary operator types must match!");
5606     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5607     // it's worth handling here.
5608     if (N2C && N2C->isNullValue())
5609       return N1;
5610     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5611         VT.getVectorElementType() == MVT::i1)
5612       return getNode(ISD::XOR, DL, VT, N1, N2);
5613     break;
5614   case ISD::MUL:
5615     assert(VT.isInteger() && "This operator does not apply to FP types!");
5616     assert(N1.getValueType() == N2.getValueType() &&
5617            N1.getValueType() == VT && "Binary operator types must match!");
5618     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5619       return getNode(ISD::AND, DL, VT, N1, N2);
5620     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5621       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5622       const APInt &N2CImm = N2C->getAPIntValue();
5623       return getVScale(DL, VT, MulImm * N2CImm);
5624     }
5625     break;
5626   case ISD::UDIV:
5627   case ISD::UREM:
5628   case ISD::MULHU:
5629   case ISD::MULHS:
5630   case ISD::SDIV:
5631   case ISD::SREM:
5632   case ISD::SADDSAT:
5633   case ISD::SSUBSAT:
5634   case ISD::UADDSAT:
5635   case ISD::USUBSAT:
5636     assert(VT.isInteger() && "This operator does not apply to FP types!");
5637     assert(N1.getValueType() == N2.getValueType() &&
5638            N1.getValueType() == VT && "Binary operator types must match!");
5639     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5640       // fold (add_sat x, y) -> (or x, y) for bool types.
5641       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5642         return getNode(ISD::OR, DL, VT, N1, N2);
5643       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5644       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5645         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5646     }
5647     break;
5648   case ISD::SMIN:
5649   case ISD::UMAX:
5650     assert(VT.isInteger() && "This operator does not apply to FP types!");
5651     assert(N1.getValueType() == N2.getValueType() &&
5652            N1.getValueType() == VT && "Binary operator types must match!");
5653     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5654       return getNode(ISD::OR, DL, VT, N1, N2);
5655     break;
5656   case ISD::SMAX:
5657   case ISD::UMIN:
5658     assert(VT.isInteger() && "This operator does not apply to FP types!");
5659     assert(N1.getValueType() == N2.getValueType() &&
5660            N1.getValueType() == VT && "Binary operator types must match!");
5661     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5662       return getNode(ISD::AND, DL, VT, N1, N2);
5663     break;
5664   case ISD::FADD:
5665   case ISD::FSUB:
5666   case ISD::FMUL:
5667   case ISD::FDIV:
5668   case ISD::FREM:
5669     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5670     assert(N1.getValueType() == N2.getValueType() &&
5671            N1.getValueType() == VT && "Binary operator types must match!");
5672     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5673       return V;
5674     break;
5675   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5676     assert(N1.getValueType() == VT &&
5677            N1.getValueType().isFloatingPoint() &&
5678            N2.getValueType().isFloatingPoint() &&
5679            "Invalid FCOPYSIGN!");
5680     break;
5681   case ISD::SHL:
5682     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5683       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5684       const APInt &ShiftImm = N2C->getAPIntValue();
5685       return getVScale(DL, VT, MulImm << ShiftImm);
5686     }
5687     LLVM_FALLTHROUGH;
5688   case ISD::SRA:
5689   case ISD::SRL:
5690     if (SDValue V = simplifyShift(N1, N2))
5691       return V;
5692     LLVM_FALLTHROUGH;
5693   case ISD::ROTL:
5694   case ISD::ROTR:
5695     assert(VT == N1.getValueType() &&
5696            "Shift operators return type must be the same as their first arg");
5697     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5698            "Shifts only work on integers");
5699     assert((!VT.isVector() || VT == N2.getValueType()) &&
5700            "Vector shift amounts must be in the same as their first arg");
5701     // Verify that the shift amount VT is big enough to hold valid shift
5702     // amounts.  This catches things like trying to shift an i1024 value by an
5703     // i8, which is easy to fall into in generic code that uses
5704     // TLI.getShiftAmount().
5705     assert(N2.getValueType().getScalarSizeInBits() >=
5706                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5707            "Invalid use of small shift amount with oversized value!");
5708 
5709     // Always fold shifts of i1 values so the code generator doesn't need to
5710     // handle them.  Since we know the size of the shift has to be less than the
5711     // size of the value, the shift/rotate count is guaranteed to be zero.
5712     if (VT == MVT::i1)
5713       return N1;
5714     if (N2C && N2C->isNullValue())
5715       return N1;
5716     break;
5717   case ISD::FP_ROUND:
5718     assert(VT.isFloatingPoint() &&
5719            N1.getValueType().isFloatingPoint() &&
5720            VT.bitsLE(N1.getValueType()) &&
5721            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5722            "Invalid FP_ROUND!");
5723     if (N1.getValueType() == VT) return N1;  // noop conversion.
5724     break;
5725   case ISD::AssertSext:
5726   case ISD::AssertZext: {
5727     EVT EVT = cast<VTSDNode>(N2)->getVT();
5728     assert(VT == N1.getValueType() && "Not an inreg extend!");
5729     assert(VT.isInteger() && EVT.isInteger() &&
5730            "Cannot *_EXTEND_INREG FP types");
5731     assert(!EVT.isVector() &&
5732            "AssertSExt/AssertZExt type should be the vector element type "
5733            "rather than the vector type!");
5734     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5735     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5736     break;
5737   }
5738   case ISD::SIGN_EXTEND_INREG: {
5739     EVT EVT = cast<VTSDNode>(N2)->getVT();
5740     assert(VT == N1.getValueType() && "Not an inreg extend!");
5741     assert(VT.isInteger() && EVT.isInteger() &&
5742            "Cannot *_EXTEND_INREG FP types");
5743     assert(EVT.isVector() == VT.isVector() &&
5744            "SIGN_EXTEND_INREG type should be vector iff the operand "
5745            "type is vector!");
5746     assert((!EVT.isVector() ||
5747             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5748            "Vector element counts must match in SIGN_EXTEND_INREG");
5749     assert(EVT.bitsLE(VT) && "Not extending!");
5750     if (EVT == VT) return N1;  // Not actually extending
5751 
5752     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5753       unsigned FromBits = EVT.getScalarSizeInBits();
5754       Val <<= Val.getBitWidth() - FromBits;
5755       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5756       return getConstant(Val, DL, ConstantVT);
5757     };
5758 
5759     if (N1C) {
5760       const APInt &Val = N1C->getAPIntValue();
5761       return SignExtendInReg(Val, VT);
5762     }
5763 
5764     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5765       SmallVector<SDValue, 8> Ops;
5766       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5767       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5768         SDValue Op = N1.getOperand(i);
5769         if (Op.isUndef()) {
5770           Ops.push_back(getUNDEF(OpVT));
5771           continue;
5772         }
5773         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5774         APInt Val = C->getAPIntValue();
5775         Ops.push_back(SignExtendInReg(Val, OpVT));
5776       }
5777       return getBuildVector(VT, DL, Ops);
5778     }
5779     break;
5780   }
5781   case ISD::FP_TO_SINT_SAT:
5782   case ISD::FP_TO_UINT_SAT: {
5783     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5784            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5785     assert(N1.getValueType().isVector() == VT.isVector() &&
5786            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5787            "vector!");
5788     assert((!VT.isVector() || VT.getVectorNumElements() ==
5789                                   N1.getValueType().getVectorNumElements()) &&
5790            "Vector element counts must match in FP_TO_*INT_SAT");
5791     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5792            "Type to saturate to must be a scalar.");
5793     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5794            "Not extending!");
5795     break;
5796   }
5797   case ISD::EXTRACT_VECTOR_ELT:
5798     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5799            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5800              element type of the vector.");
5801 
5802     // Extract from an undefined value or using an undefined index is undefined.
5803     if (N1.isUndef() || N2.isUndef())
5804       return getUNDEF(VT);
5805 
5806     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5807     // vectors. For scalable vectors we will provide appropriate support for
5808     // dealing with arbitrary indices.
5809     if (N2C && N1.getValueType().isFixedLengthVector() &&
5810         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5811       return getUNDEF(VT);
5812 
5813     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5814     // expanding copies of large vectors from registers. This only works for
5815     // fixed length vectors, since we need to know the exact number of
5816     // elements.
5817     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5818         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5819       unsigned Factor =
5820         N1.getOperand(0).getValueType().getVectorNumElements();
5821       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5822                      N1.getOperand(N2C->getZExtValue() / Factor),
5823                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5824     }
5825 
5826     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5827     // lowering is expanding large vector constants.
5828     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5829                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5830       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5831               N1.getValueType().isFixedLengthVector()) &&
5832              "BUILD_VECTOR used for scalable vectors");
5833       unsigned Index =
5834           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5835       SDValue Elt = N1.getOperand(Index);
5836 
5837       if (VT != Elt.getValueType())
5838         // If the vector element type is not legal, the BUILD_VECTOR operands
5839         // are promoted and implicitly truncated, and the result implicitly
5840         // extended. Make that explicit here.
5841         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5842 
5843       return Elt;
5844     }
5845 
5846     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5847     // operations are lowered to scalars.
5848     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5849       // If the indices are the same, return the inserted element else
5850       // if the indices are known different, extract the element from
5851       // the original vector.
5852       SDValue N1Op2 = N1.getOperand(2);
5853       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5854 
5855       if (N1Op2C && N2C) {
5856         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5857           if (VT == N1.getOperand(1).getValueType())
5858             return N1.getOperand(1);
5859           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5860         }
5861         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5862       }
5863     }
5864 
5865     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5866     // when vector types are scalarized and v1iX is legal.
5867     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5868     // Here we are completely ignoring the extract element index (N2),
5869     // which is fine for fixed width vectors, since any index other than 0
5870     // is undefined anyway. However, this cannot be ignored for scalable
5871     // vectors - in theory we could support this, but we don't want to do this
5872     // without a profitability check.
5873     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5874         N1.getValueType().isFixedLengthVector() &&
5875         N1.getValueType().getVectorNumElements() == 1) {
5876       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5877                      N1.getOperand(1));
5878     }
5879     break;
5880   case ISD::EXTRACT_ELEMENT:
5881     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5882     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5883            (N1.getValueType().isInteger() == VT.isInteger()) &&
5884            N1.getValueType() != VT &&
5885            "Wrong types for EXTRACT_ELEMENT!");
5886 
5887     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5888     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5889     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5890     if (N1.getOpcode() == ISD::BUILD_PAIR)
5891       return N1.getOperand(N2C->getZExtValue());
5892 
5893     // EXTRACT_ELEMENT of a constant int is also very common.
5894     if (N1C) {
5895       unsigned ElementSize = VT.getSizeInBits();
5896       unsigned Shift = ElementSize * N2C->getZExtValue();
5897       const APInt &Val = N1C->getAPIntValue();
5898       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5899     }
5900     break;
5901   case ISD::EXTRACT_SUBVECTOR: {
5902     EVT N1VT = N1.getValueType();
5903     assert(VT.isVector() && N1VT.isVector() &&
5904            "Extract subvector VTs must be vectors!");
5905     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5906            "Extract subvector VTs must have the same element type!");
5907     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5908            "Cannot extract a scalable vector from a fixed length vector!");
5909     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5910             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5911            "Extract subvector must be from larger vector to smaller vector!");
5912     assert(N2C && "Extract subvector index must be a constant");
5913     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5914             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5915                 N1VT.getVectorMinNumElements()) &&
5916            "Extract subvector overflow!");
5917     assert(N2C->getAPIntValue().getBitWidth() ==
5918                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5919            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5920 
5921     // Trivial extraction.
5922     if (VT == N1VT)
5923       return N1;
5924 
5925     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5926     if (N1.isUndef())
5927       return getUNDEF(VT);
5928 
5929     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5930     // the concat have the same type as the extract.
5931     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5932         VT == N1.getOperand(0).getValueType()) {
5933       unsigned Factor = VT.getVectorMinNumElements();
5934       return N1.getOperand(N2C->getZExtValue() / Factor);
5935     }
5936 
5937     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5938     // during shuffle legalization.
5939     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5940         VT == N1.getOperand(1).getValueType())
5941       return N1.getOperand(1);
5942     break;
5943   }
5944   }
5945 
5946   // Perform trivial constant folding.
5947   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5948     return SV;
5949 
5950   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5951     return V;
5952 
5953   // Canonicalize an UNDEF to the RHS, even over a constant.
5954   if (N1.isUndef()) {
5955     if (TLI->isCommutativeBinOp(Opcode)) {
5956       std::swap(N1, N2);
5957     } else {
5958       switch (Opcode) {
5959       case ISD::SIGN_EXTEND_INREG:
5960       case ISD::SUB:
5961         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5962       case ISD::UDIV:
5963       case ISD::SDIV:
5964       case ISD::UREM:
5965       case ISD::SREM:
5966       case ISD::SSUBSAT:
5967       case ISD::USUBSAT:
5968         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5969       }
5970     }
5971   }
5972 
5973   // Fold a bunch of operators when the RHS is undef.
5974   if (N2.isUndef()) {
5975     switch (Opcode) {
5976     case ISD::XOR:
5977       if (N1.isUndef())
5978         // Handle undef ^ undef -> 0 special case. This is a common
5979         // idiom (misuse).
5980         return getConstant(0, DL, VT);
5981       LLVM_FALLTHROUGH;
5982     case ISD::ADD:
5983     case ISD::SUB:
5984     case ISD::UDIV:
5985     case ISD::SDIV:
5986     case ISD::UREM:
5987     case ISD::SREM:
5988       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5989     case ISD::MUL:
5990     case ISD::AND:
5991     case ISD::SSUBSAT:
5992     case ISD::USUBSAT:
5993       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5994     case ISD::OR:
5995     case ISD::SADDSAT:
5996     case ISD::UADDSAT:
5997       return getAllOnesConstant(DL, VT);
5998     }
5999   }
6000 
6001   // Memoize this node if possible.
6002   SDNode *N;
6003   SDVTList VTs = getVTList(VT);
6004   SDValue Ops[] = {N1, N2};
6005   if (VT != MVT::Glue) {
6006     FoldingSetNodeID ID;
6007     AddNodeIDNode(ID, Opcode, VTs, Ops);
6008     void *IP = nullptr;
6009     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6010       E->intersectFlagsWith(Flags);
6011       return SDValue(E, 0);
6012     }
6013 
6014     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6015     N->setFlags(Flags);
6016     createOperands(N, Ops);
6017     CSEMap.InsertNode(N, IP);
6018   } else {
6019     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6020     createOperands(N, Ops);
6021   }
6022 
6023   InsertNode(N);
6024   SDValue V = SDValue(N, 0);
6025   NewSDValueDbgMsg(V, "Creating new node: ", this);
6026   return V;
6027 }
6028 
6029 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6030                               SDValue N1, SDValue N2, SDValue N3) {
6031   SDNodeFlags Flags;
6032   if (Inserter)
6033     Flags = Inserter->getFlags();
6034   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6035 }
6036 
6037 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6038                               SDValue N1, SDValue N2, SDValue N3,
6039                               const SDNodeFlags Flags) {
6040   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6041          N2.getOpcode() != ISD::DELETED_NODE &&
6042          N3.getOpcode() != ISD::DELETED_NODE &&
6043          "Operand is DELETED_NODE!");
6044   // Perform various simplifications.
6045   switch (Opcode) {
6046   case ISD::FMA: {
6047     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6048     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6049            N3.getValueType() == VT && "FMA types must match!");
6050     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6051     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6052     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6053     if (N1CFP && N2CFP && N3CFP) {
6054       APFloat  V1 = N1CFP->getValueAPF();
6055       const APFloat &V2 = N2CFP->getValueAPF();
6056       const APFloat &V3 = N3CFP->getValueAPF();
6057       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6058       return getConstantFP(V1, DL, VT);
6059     }
6060     break;
6061   }
6062   case ISD::BUILD_VECTOR: {
6063     // Attempt to simplify BUILD_VECTOR.
6064     SDValue Ops[] = {N1, N2, N3};
6065     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6066       return V;
6067     break;
6068   }
6069   case ISD::CONCAT_VECTORS: {
6070     SDValue Ops[] = {N1, N2, N3};
6071     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6072       return V;
6073     break;
6074   }
6075   case ISD::SETCC: {
6076     assert(VT.isInteger() && "SETCC result type must be an integer!");
6077     assert(N1.getValueType() == N2.getValueType() &&
6078            "SETCC operands must have the same type!");
6079     assert(VT.isVector() == N1.getValueType().isVector() &&
6080            "SETCC type should be vector iff the operand type is vector!");
6081     assert((!VT.isVector() || VT.getVectorElementCount() ==
6082                                   N1.getValueType().getVectorElementCount()) &&
6083            "SETCC vector element counts must match!");
6084     // Use FoldSetCC to simplify SETCC's.
6085     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6086       return V;
6087     // Vector constant folding.
6088     SDValue Ops[] = {N1, N2, N3};
6089     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
6090       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6091       return V;
6092     }
6093     break;
6094   }
6095   case ISD::SELECT:
6096   case ISD::VSELECT:
6097     if (SDValue V = simplifySelect(N1, N2, N3))
6098       return V;
6099     break;
6100   case ISD::VECTOR_SHUFFLE:
6101     llvm_unreachable("should use getVectorShuffle constructor!");
6102   case ISD::INSERT_VECTOR_ELT: {
6103     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6104     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6105     // for scalable vectors where we will generate appropriate code to
6106     // deal with out-of-bounds cases correctly.
6107     if (N3C && N1.getValueType().isFixedLengthVector() &&
6108         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6109       return getUNDEF(VT);
6110 
6111     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6112     if (N3.isUndef())
6113       return getUNDEF(VT);
6114 
6115     // If the inserted element is an UNDEF, just use the input vector.
6116     if (N2.isUndef())
6117       return N1;
6118 
6119     break;
6120   }
6121   case ISD::INSERT_SUBVECTOR: {
6122     // Inserting undef into undef is still undef.
6123     if (N1.isUndef() && N2.isUndef())
6124       return getUNDEF(VT);
6125 
6126     EVT N2VT = N2.getValueType();
6127     assert(VT == N1.getValueType() &&
6128            "Dest and insert subvector source types must match!");
6129     assert(VT.isVector() && N2VT.isVector() &&
6130            "Insert subvector VTs must be vectors!");
6131     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6132            "Cannot insert a scalable vector into a fixed length vector!");
6133     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6134             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6135            "Insert subvector must be from smaller vector to larger vector!");
6136     assert(isa<ConstantSDNode>(N3) &&
6137            "Insert subvector index must be constant");
6138     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6139             (N2VT.getVectorMinNumElements() +
6140              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6141                 VT.getVectorMinNumElements()) &&
6142            "Insert subvector overflow!");
6143     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6144                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6145            "Constant index for INSERT_SUBVECTOR has an invalid size");
6146 
6147     // Trivial insertion.
6148     if (VT == N2VT)
6149       return N2;
6150 
6151     // If this is an insert of an extracted vector into an undef vector, we
6152     // can just use the input to the extract.
6153     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6154         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6155       return N2.getOperand(0);
6156     break;
6157   }
6158   case ISD::BITCAST:
6159     // Fold bit_convert nodes from a type to themselves.
6160     if (N1.getValueType() == VT)
6161       return N1;
6162     break;
6163   }
6164 
6165   // Memoize node if it doesn't produce a flag.
6166   SDNode *N;
6167   SDVTList VTs = getVTList(VT);
6168   SDValue Ops[] = {N1, N2, N3};
6169   if (VT != MVT::Glue) {
6170     FoldingSetNodeID ID;
6171     AddNodeIDNode(ID, Opcode, VTs, Ops);
6172     void *IP = nullptr;
6173     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6174       E->intersectFlagsWith(Flags);
6175       return SDValue(E, 0);
6176     }
6177 
6178     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6179     N->setFlags(Flags);
6180     createOperands(N, Ops);
6181     CSEMap.InsertNode(N, IP);
6182   } else {
6183     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6184     createOperands(N, Ops);
6185   }
6186 
6187   InsertNode(N);
6188   SDValue V = SDValue(N, 0);
6189   NewSDValueDbgMsg(V, "Creating new node: ", this);
6190   return V;
6191 }
6192 
6193 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6194                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6195   SDValue Ops[] = { N1, N2, N3, N4 };
6196   return getNode(Opcode, DL, VT, Ops);
6197 }
6198 
6199 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6200                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6201                               SDValue N5) {
6202   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6203   return getNode(Opcode, DL, VT, Ops);
6204 }
6205 
6206 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6207 /// the incoming stack arguments to be loaded from the stack.
6208 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6209   SmallVector<SDValue, 8> ArgChains;
6210 
6211   // Include the original chain at the beginning of the list. When this is
6212   // used by target LowerCall hooks, this helps legalize find the
6213   // CALLSEQ_BEGIN node.
6214   ArgChains.push_back(Chain);
6215 
6216   // Add a chain value for each stack argument.
6217   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6218        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6219     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6220       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6221         if (FI->getIndex() < 0)
6222           ArgChains.push_back(SDValue(L, 1));
6223 
6224   // Build a tokenfactor for all the chains.
6225   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6226 }
6227 
6228 /// getMemsetValue - Vectorized representation of the memset value
6229 /// operand.
6230 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6231                               const SDLoc &dl) {
6232   assert(!Value.isUndef());
6233 
6234   unsigned NumBits = VT.getScalarSizeInBits();
6235   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6236     assert(C->getAPIntValue().getBitWidth() == 8);
6237     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6238     if (VT.isInteger()) {
6239       bool IsOpaque = VT.getSizeInBits() > 64 ||
6240           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6241       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6242     }
6243     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6244                              VT);
6245   }
6246 
6247   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6248   EVT IntVT = VT.getScalarType();
6249   if (!IntVT.isInteger())
6250     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6251 
6252   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6253   if (NumBits > 8) {
6254     // Use a multiplication with 0x010101... to extend the input to the
6255     // required length.
6256     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6257     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6258                         DAG.getConstant(Magic, dl, IntVT));
6259   }
6260 
6261   if (VT != Value.getValueType() && !VT.isInteger())
6262     Value = DAG.getBitcast(VT.getScalarType(), Value);
6263   if (VT != Value.getValueType())
6264     Value = DAG.getSplatBuildVector(VT, dl, Value);
6265 
6266   return Value;
6267 }
6268 
6269 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6270 /// used when a memcpy is turned into a memset when the source is a constant
6271 /// string ptr.
6272 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6273                                   const TargetLowering &TLI,
6274                                   const ConstantDataArraySlice &Slice) {
6275   // Handle vector with all elements zero.
6276   if (Slice.Array == nullptr) {
6277     if (VT.isInteger())
6278       return DAG.getConstant(0, dl, VT);
6279     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6280       return DAG.getConstantFP(0.0, dl, VT);
6281     if (VT.isVector()) {
6282       unsigned NumElts = VT.getVectorNumElements();
6283       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6284       return DAG.getNode(ISD::BITCAST, dl, VT,
6285                          DAG.getConstant(0, dl,
6286                                          EVT::getVectorVT(*DAG.getContext(),
6287                                                           EltVT, NumElts)));
6288     }
6289     llvm_unreachable("Expected type!");
6290   }
6291 
6292   assert(!VT.isVector() && "Can't handle vector type here!");
6293   unsigned NumVTBits = VT.getSizeInBits();
6294   unsigned NumVTBytes = NumVTBits / 8;
6295   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6296 
6297   APInt Val(NumVTBits, 0);
6298   if (DAG.getDataLayout().isLittleEndian()) {
6299     for (unsigned i = 0; i != NumBytes; ++i)
6300       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6301   } else {
6302     for (unsigned i = 0; i != NumBytes; ++i)
6303       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6304   }
6305 
6306   // If the "cost" of materializing the integer immediate is less than the cost
6307   // of a load, then it is cost effective to turn the load into the immediate.
6308   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6309   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6310     return DAG.getConstant(Val, dl, VT);
6311   return SDValue(nullptr, 0);
6312 }
6313 
6314 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6315                                            const SDLoc &DL,
6316                                            const SDNodeFlags Flags) {
6317   EVT VT = Base.getValueType();
6318   SDValue Index;
6319 
6320   if (Offset.isScalable())
6321     Index = getVScale(DL, Base.getValueType(),
6322                       APInt(Base.getValueSizeInBits().getFixedSize(),
6323                             Offset.getKnownMinSize()));
6324   else
6325     Index = getConstant(Offset.getFixedSize(), DL, VT);
6326 
6327   return getMemBasePlusOffset(Base, Index, DL, Flags);
6328 }
6329 
6330 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6331                                            const SDLoc &DL,
6332                                            const SDNodeFlags Flags) {
6333   assert(Offset.getValueType().isInteger());
6334   EVT BasePtrVT = Ptr.getValueType();
6335   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6336 }
6337 
6338 /// Returns true if memcpy source is constant data.
6339 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6340   uint64_t SrcDelta = 0;
6341   GlobalAddressSDNode *G = nullptr;
6342   if (Src.getOpcode() == ISD::GlobalAddress)
6343     G = cast<GlobalAddressSDNode>(Src);
6344   else if (Src.getOpcode() == ISD::ADD &&
6345            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6346            Src.getOperand(1).getOpcode() == ISD::Constant) {
6347     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6348     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6349   }
6350   if (!G)
6351     return false;
6352 
6353   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6354                                   SrcDelta + G->getOffset());
6355 }
6356 
6357 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6358                                       SelectionDAG &DAG) {
6359   // On Darwin, -Os means optimize for size without hurting performance, so
6360   // only really optimize for size when -Oz (MinSize) is used.
6361   if (MF.getTarget().getTargetTriple().isOSDarwin())
6362     return MF.getFunction().hasMinSize();
6363   return DAG.shouldOptForSize();
6364 }
6365 
6366 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6367                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6368                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6369                           SmallVector<SDValue, 16> &OutStoreChains) {
6370   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6371   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6372   SmallVector<SDValue, 16> GluedLoadChains;
6373   for (unsigned i = From; i < To; ++i) {
6374     OutChains.push_back(OutLoadChains[i]);
6375     GluedLoadChains.push_back(OutLoadChains[i]);
6376   }
6377 
6378   // Chain for all loads.
6379   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6380                                   GluedLoadChains);
6381 
6382   for (unsigned i = From; i < To; ++i) {
6383     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6384     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6385                                   ST->getBasePtr(), ST->getMemoryVT(),
6386                                   ST->getMemOperand());
6387     OutChains.push_back(NewStore);
6388   }
6389 }
6390 
6391 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6392                                        SDValue Chain, SDValue Dst, SDValue Src,
6393                                        uint64_t Size, Align Alignment,
6394                                        bool isVol, bool AlwaysInline,
6395                                        MachinePointerInfo DstPtrInfo,
6396                                        MachinePointerInfo SrcPtrInfo,
6397                                        const AAMDNodes &AAInfo) {
6398   // Turn a memcpy of undef to nop.
6399   // FIXME: We need to honor volatile even is Src is undef.
6400   if (Src.isUndef())
6401     return Chain;
6402 
6403   // Expand memcpy to a series of load and store ops if the size operand falls
6404   // below a certain threshold.
6405   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6406   // rather than maybe a humongous number of loads and stores.
6407   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6408   const DataLayout &DL = DAG.getDataLayout();
6409   LLVMContext &C = *DAG.getContext();
6410   std::vector<EVT> MemOps;
6411   bool DstAlignCanChange = false;
6412   MachineFunction &MF = DAG.getMachineFunction();
6413   MachineFrameInfo &MFI = MF.getFrameInfo();
6414   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6415   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6416   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6417     DstAlignCanChange = true;
6418   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6419   if (!SrcAlign || Alignment > *SrcAlign)
6420     SrcAlign = Alignment;
6421   assert(SrcAlign && "SrcAlign must be set");
6422   ConstantDataArraySlice Slice;
6423   // If marked as volatile, perform a copy even when marked as constant.
6424   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6425   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6426   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6427   const MemOp Op = isZeroConstant
6428                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6429                                     /*IsZeroMemset*/ true, isVol)
6430                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6431                                      *SrcAlign, isVol, CopyFromConstant);
6432   if (!TLI.findOptimalMemOpLowering(
6433           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6434           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6435     return SDValue();
6436 
6437   if (DstAlignCanChange) {
6438     Type *Ty = MemOps[0].getTypeForEVT(C);
6439     Align NewAlign = DL.getABITypeAlign(Ty);
6440 
6441     // Don't promote to an alignment that would require dynamic stack
6442     // realignment.
6443     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6444     if (!TRI->hasStackRealignment(MF))
6445       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6446         NewAlign = NewAlign / 2;
6447 
6448     if (NewAlign > Alignment) {
6449       // Give the stack frame object a larger alignment if needed.
6450       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6451         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6452       Alignment = NewAlign;
6453     }
6454   }
6455 
6456   // Prepare AAInfo for loads/stores after lowering this memcpy.
6457   AAMDNodes NewAAInfo = AAInfo;
6458   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6459 
6460   MachineMemOperand::Flags MMOFlags =
6461       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6462   SmallVector<SDValue, 16> OutLoadChains;
6463   SmallVector<SDValue, 16> OutStoreChains;
6464   SmallVector<SDValue, 32> OutChains;
6465   unsigned NumMemOps = MemOps.size();
6466   uint64_t SrcOff = 0, DstOff = 0;
6467   for (unsigned i = 0; i != NumMemOps; ++i) {
6468     EVT VT = MemOps[i];
6469     unsigned VTSize = VT.getSizeInBits() / 8;
6470     SDValue Value, Store;
6471 
6472     if (VTSize > Size) {
6473       // Issuing an unaligned load / store pair  that overlaps with the previous
6474       // pair. Adjust the offset accordingly.
6475       assert(i == NumMemOps-1 && i != 0);
6476       SrcOff -= VTSize - Size;
6477       DstOff -= VTSize - Size;
6478     }
6479 
6480     if (CopyFromConstant &&
6481         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6482       // It's unlikely a store of a vector immediate can be done in a single
6483       // instruction. It would require a load from a constantpool first.
6484       // We only handle zero vectors here.
6485       // FIXME: Handle other cases where store of vector immediate is done in
6486       // a single instruction.
6487       ConstantDataArraySlice SubSlice;
6488       if (SrcOff < Slice.Length) {
6489         SubSlice = Slice;
6490         SubSlice.move(SrcOff);
6491       } else {
6492         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6493         SubSlice.Array = nullptr;
6494         SubSlice.Offset = 0;
6495         SubSlice.Length = VTSize;
6496       }
6497       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6498       if (Value.getNode()) {
6499         Store = DAG.getStore(
6500             Chain, dl, Value,
6501             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6502             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6503         OutChains.push_back(Store);
6504       }
6505     }
6506 
6507     if (!Store.getNode()) {
6508       // The type might not be legal for the target.  This should only happen
6509       // if the type is smaller than a legal type, as on PPC, so the right
6510       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6511       // to Load/Store if NVT==VT.
6512       // FIXME does the case above also need this?
6513       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6514       assert(NVT.bitsGE(VT));
6515 
6516       bool isDereferenceable =
6517         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6518       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6519       if (isDereferenceable)
6520         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6521 
6522       Value = DAG.getExtLoad(
6523           ISD::EXTLOAD, dl, NVT, Chain,
6524           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6525           SrcPtrInfo.getWithOffset(SrcOff), VT,
6526           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6527       OutLoadChains.push_back(Value.getValue(1));
6528 
6529       Store = DAG.getTruncStore(
6530           Chain, dl, Value,
6531           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6532           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6533       OutStoreChains.push_back(Store);
6534     }
6535     SrcOff += VTSize;
6536     DstOff += VTSize;
6537     Size -= VTSize;
6538   }
6539 
6540   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6541                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6542   unsigned NumLdStInMemcpy = OutStoreChains.size();
6543 
6544   if (NumLdStInMemcpy) {
6545     // It may be that memcpy might be converted to memset if it's memcpy
6546     // of constants. In such a case, we won't have loads and stores, but
6547     // just stores. In the absence of loads, there is nothing to gang up.
6548     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6549       // If target does not care, just leave as it.
6550       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6551         OutChains.push_back(OutLoadChains[i]);
6552         OutChains.push_back(OutStoreChains[i]);
6553       }
6554     } else {
6555       // Ld/St less than/equal limit set by target.
6556       if (NumLdStInMemcpy <= GluedLdStLimit) {
6557           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6558                                         NumLdStInMemcpy, OutLoadChains,
6559                                         OutStoreChains);
6560       } else {
6561         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6562         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6563         unsigned GlueIter = 0;
6564 
6565         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6566           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6567           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6568 
6569           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6570                                        OutLoadChains, OutStoreChains);
6571           GlueIter += GluedLdStLimit;
6572         }
6573 
6574         // Residual ld/st.
6575         if (RemainingLdStInMemcpy) {
6576           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6577                                         RemainingLdStInMemcpy, OutLoadChains,
6578                                         OutStoreChains);
6579         }
6580       }
6581     }
6582   }
6583   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6584 }
6585 
6586 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6587                                         SDValue Chain, SDValue Dst, SDValue Src,
6588                                         uint64_t Size, Align Alignment,
6589                                         bool isVol, bool AlwaysInline,
6590                                         MachinePointerInfo DstPtrInfo,
6591                                         MachinePointerInfo SrcPtrInfo,
6592                                         const AAMDNodes &AAInfo) {
6593   // Turn a memmove of undef to nop.
6594   // FIXME: We need to honor volatile even is Src is undef.
6595   if (Src.isUndef())
6596     return Chain;
6597 
6598   // Expand memmove to a series of load and store ops if the size operand falls
6599   // below a certain threshold.
6600   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6601   const DataLayout &DL = DAG.getDataLayout();
6602   LLVMContext &C = *DAG.getContext();
6603   std::vector<EVT> MemOps;
6604   bool DstAlignCanChange = false;
6605   MachineFunction &MF = DAG.getMachineFunction();
6606   MachineFrameInfo &MFI = MF.getFrameInfo();
6607   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6608   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6609   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6610     DstAlignCanChange = true;
6611   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6612   if (!SrcAlign || Alignment > *SrcAlign)
6613     SrcAlign = Alignment;
6614   assert(SrcAlign && "SrcAlign must be set");
6615   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6616   if (!TLI.findOptimalMemOpLowering(
6617           MemOps, Limit,
6618           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6619                       /*IsVolatile*/ true),
6620           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6621           MF.getFunction().getAttributes()))
6622     return SDValue();
6623 
6624   if (DstAlignCanChange) {
6625     Type *Ty = MemOps[0].getTypeForEVT(C);
6626     Align NewAlign = DL.getABITypeAlign(Ty);
6627     if (NewAlign > Alignment) {
6628       // Give the stack frame object a larger alignment if needed.
6629       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6630         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6631       Alignment = NewAlign;
6632     }
6633   }
6634 
6635   // Prepare AAInfo for loads/stores after lowering this memmove.
6636   AAMDNodes NewAAInfo = AAInfo;
6637   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6638 
6639   MachineMemOperand::Flags MMOFlags =
6640       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6641   uint64_t SrcOff = 0, DstOff = 0;
6642   SmallVector<SDValue, 8> LoadValues;
6643   SmallVector<SDValue, 8> LoadChains;
6644   SmallVector<SDValue, 8> OutChains;
6645   unsigned NumMemOps = MemOps.size();
6646   for (unsigned i = 0; i < NumMemOps; i++) {
6647     EVT VT = MemOps[i];
6648     unsigned VTSize = VT.getSizeInBits() / 8;
6649     SDValue Value;
6650 
6651     bool isDereferenceable =
6652       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6653     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6654     if (isDereferenceable)
6655       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6656 
6657     Value = DAG.getLoad(
6658         VT, dl, Chain,
6659         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6660         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6661     LoadValues.push_back(Value);
6662     LoadChains.push_back(Value.getValue(1));
6663     SrcOff += VTSize;
6664   }
6665   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6666   OutChains.clear();
6667   for (unsigned i = 0; i < NumMemOps; i++) {
6668     EVT VT = MemOps[i];
6669     unsigned VTSize = VT.getSizeInBits() / 8;
6670     SDValue Store;
6671 
6672     Store = DAG.getStore(
6673         Chain, dl, LoadValues[i],
6674         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6675         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6676     OutChains.push_back(Store);
6677     DstOff += VTSize;
6678   }
6679 
6680   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6681 }
6682 
6683 /// Lower the call to 'memset' intrinsic function into a series of store
6684 /// operations.
6685 ///
6686 /// \param DAG Selection DAG where lowered code is placed.
6687 /// \param dl Link to corresponding IR location.
6688 /// \param Chain Control flow dependency.
6689 /// \param Dst Pointer to destination memory location.
6690 /// \param Src Value of byte to write into the memory.
6691 /// \param Size Number of bytes to write.
6692 /// \param Alignment Alignment of the destination in bytes.
6693 /// \param isVol True if destination is volatile.
6694 /// \param DstPtrInfo IR information on the memory pointer.
6695 /// \returns New head in the control flow, if lowering was successful, empty
6696 /// SDValue otherwise.
6697 ///
6698 /// The function tries to replace 'llvm.memset' intrinsic with several store
6699 /// operations and value calculation code. This is usually profitable for small
6700 /// memory size.
6701 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6702                                SDValue Chain, SDValue Dst, SDValue Src,
6703                                uint64_t Size, Align Alignment, bool isVol,
6704                                MachinePointerInfo DstPtrInfo,
6705                                const AAMDNodes &AAInfo) {
6706   // Turn a memset of undef to nop.
6707   // FIXME: We need to honor volatile even is Src is undef.
6708   if (Src.isUndef())
6709     return Chain;
6710 
6711   // Expand memset to a series of load/store ops if the size operand
6712   // falls below a certain threshold.
6713   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6714   std::vector<EVT> MemOps;
6715   bool DstAlignCanChange = false;
6716   MachineFunction &MF = DAG.getMachineFunction();
6717   MachineFrameInfo &MFI = MF.getFrameInfo();
6718   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6719   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6720   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6721     DstAlignCanChange = true;
6722   bool IsZeroVal =
6723     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6724   if (!TLI.findOptimalMemOpLowering(
6725           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6726           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6727           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6728     return SDValue();
6729 
6730   if (DstAlignCanChange) {
6731     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6732     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6733     if (NewAlign > Alignment) {
6734       // Give the stack frame object a larger alignment if needed.
6735       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6736         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6737       Alignment = NewAlign;
6738     }
6739   }
6740 
6741   SmallVector<SDValue, 8> OutChains;
6742   uint64_t DstOff = 0;
6743   unsigned NumMemOps = MemOps.size();
6744 
6745   // Find the largest store and generate the bit pattern for it.
6746   EVT LargestVT = MemOps[0];
6747   for (unsigned i = 1; i < NumMemOps; i++)
6748     if (MemOps[i].bitsGT(LargestVT))
6749       LargestVT = MemOps[i];
6750   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6751 
6752   // Prepare AAInfo for loads/stores after lowering this memset.
6753   AAMDNodes NewAAInfo = AAInfo;
6754   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6755 
6756   for (unsigned i = 0; i < NumMemOps; i++) {
6757     EVT VT = MemOps[i];
6758     unsigned VTSize = VT.getSizeInBits() / 8;
6759     if (VTSize > Size) {
6760       // Issuing an unaligned load / store pair  that overlaps with the previous
6761       // pair. Adjust the offset accordingly.
6762       assert(i == NumMemOps-1 && i != 0);
6763       DstOff -= VTSize - Size;
6764     }
6765 
6766     // If this store is smaller than the largest store see whether we can get
6767     // the smaller value for free with a truncate.
6768     SDValue Value = MemSetValue;
6769     if (VT.bitsLT(LargestVT)) {
6770       if (!LargestVT.isVector() && !VT.isVector() &&
6771           TLI.isTruncateFree(LargestVT, VT))
6772         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6773       else
6774         Value = getMemsetValue(Src, VT, DAG, dl);
6775     }
6776     assert(Value.getValueType() == VT && "Value with wrong type.");
6777     SDValue Store = DAG.getStore(
6778         Chain, dl, Value,
6779         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6780         DstPtrInfo.getWithOffset(DstOff), Alignment,
6781         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6782         NewAAInfo);
6783     OutChains.push_back(Store);
6784     DstOff += VT.getSizeInBits() / 8;
6785     Size -= VTSize;
6786   }
6787 
6788   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6789 }
6790 
6791 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6792                                             unsigned AS) {
6793   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6794   // pointer operands can be losslessly bitcasted to pointers of address space 0
6795   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6796     report_fatal_error("cannot lower memory intrinsic in address space " +
6797                        Twine(AS));
6798   }
6799 }
6800 
6801 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6802                                 SDValue Src, SDValue Size, Align Alignment,
6803                                 bool isVol, bool AlwaysInline, bool isTailCall,
6804                                 MachinePointerInfo DstPtrInfo,
6805                                 MachinePointerInfo SrcPtrInfo,
6806                                 const AAMDNodes &AAInfo) {
6807   // Check to see if we should lower the memcpy to loads and stores first.
6808   // For cases within the target-specified limits, this is the best choice.
6809   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6810   if (ConstantSize) {
6811     // Memcpy with size zero? Just return the original chain.
6812     if (ConstantSize->isNullValue())
6813       return Chain;
6814 
6815     SDValue Result = getMemcpyLoadsAndStores(
6816         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6817         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6818     if (Result.getNode())
6819       return Result;
6820   }
6821 
6822   // Then check to see if we should lower the memcpy with target-specific
6823   // code. If the target chooses to do this, this is the next best.
6824   if (TSI) {
6825     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6826         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6827         DstPtrInfo, SrcPtrInfo);
6828     if (Result.getNode())
6829       return Result;
6830   }
6831 
6832   // If we really need inline code and the target declined to provide it,
6833   // use a (potentially long) sequence of loads and stores.
6834   if (AlwaysInline) {
6835     assert(ConstantSize && "AlwaysInline requires a constant size!");
6836     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6837                                    ConstantSize->getZExtValue(), Alignment,
6838                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6839   }
6840 
6841   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6842   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6843 
6844   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6845   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6846   // respect volatile, so they may do things like read or write memory
6847   // beyond the given memory regions. But fixing this isn't easy, and most
6848   // people don't care.
6849 
6850   // Emit a library call.
6851   TargetLowering::ArgListTy Args;
6852   TargetLowering::ArgListEntry Entry;
6853   Entry.Ty = Type::getInt8PtrTy(*getContext());
6854   Entry.Node = Dst; Args.push_back(Entry);
6855   Entry.Node = Src; Args.push_back(Entry);
6856 
6857   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6858   Entry.Node = Size; Args.push_back(Entry);
6859   // FIXME: pass in SDLoc
6860   TargetLowering::CallLoweringInfo CLI(*this);
6861   CLI.setDebugLoc(dl)
6862       .setChain(Chain)
6863       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6864                     Dst.getValueType().getTypeForEVT(*getContext()),
6865                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6866                                       TLI->getPointerTy(getDataLayout())),
6867                     std::move(Args))
6868       .setDiscardResult()
6869       .setTailCall(isTailCall);
6870 
6871   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6872   return CallResult.second;
6873 }
6874 
6875 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6876                                       SDValue Dst, unsigned DstAlign,
6877                                       SDValue Src, unsigned SrcAlign,
6878                                       SDValue Size, Type *SizeTy,
6879                                       unsigned ElemSz, bool isTailCall,
6880                                       MachinePointerInfo DstPtrInfo,
6881                                       MachinePointerInfo SrcPtrInfo) {
6882   // Emit a library call.
6883   TargetLowering::ArgListTy Args;
6884   TargetLowering::ArgListEntry Entry;
6885   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6886   Entry.Node = Dst;
6887   Args.push_back(Entry);
6888 
6889   Entry.Node = Src;
6890   Args.push_back(Entry);
6891 
6892   Entry.Ty = SizeTy;
6893   Entry.Node = Size;
6894   Args.push_back(Entry);
6895 
6896   RTLIB::Libcall LibraryCall =
6897       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6898   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6899     report_fatal_error("Unsupported element size");
6900 
6901   TargetLowering::CallLoweringInfo CLI(*this);
6902   CLI.setDebugLoc(dl)
6903       .setChain(Chain)
6904       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6905                     Type::getVoidTy(*getContext()),
6906                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6907                                       TLI->getPointerTy(getDataLayout())),
6908                     std::move(Args))
6909       .setDiscardResult()
6910       .setTailCall(isTailCall);
6911 
6912   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6913   return CallResult.second;
6914 }
6915 
6916 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6917                                  SDValue Src, SDValue Size, Align Alignment,
6918                                  bool isVol, bool isTailCall,
6919                                  MachinePointerInfo DstPtrInfo,
6920                                  MachinePointerInfo SrcPtrInfo,
6921                                  const AAMDNodes &AAInfo) {
6922   // Check to see if we should lower the memmove to loads and stores first.
6923   // For cases within the target-specified limits, this is the best choice.
6924   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6925   if (ConstantSize) {
6926     // Memmove with size zero? Just return the original chain.
6927     if (ConstantSize->isNullValue())
6928       return Chain;
6929 
6930     SDValue Result = getMemmoveLoadsAndStores(
6931         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6932         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6933     if (Result.getNode())
6934       return Result;
6935   }
6936 
6937   // Then check to see if we should lower the memmove with target-specific
6938   // code. If the target chooses to do this, this is the next best.
6939   if (TSI) {
6940     SDValue Result =
6941         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6942                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6943     if (Result.getNode())
6944       return Result;
6945   }
6946 
6947   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6948   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6949 
6950   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6951   // not be safe.  See memcpy above for more details.
6952 
6953   // Emit a library call.
6954   TargetLowering::ArgListTy Args;
6955   TargetLowering::ArgListEntry Entry;
6956   Entry.Ty = Type::getInt8PtrTy(*getContext());
6957   Entry.Node = Dst; Args.push_back(Entry);
6958   Entry.Node = Src; Args.push_back(Entry);
6959 
6960   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6961   Entry.Node = Size; Args.push_back(Entry);
6962   // FIXME:  pass in SDLoc
6963   TargetLowering::CallLoweringInfo CLI(*this);
6964   CLI.setDebugLoc(dl)
6965       .setChain(Chain)
6966       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6967                     Dst.getValueType().getTypeForEVT(*getContext()),
6968                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6969                                       TLI->getPointerTy(getDataLayout())),
6970                     std::move(Args))
6971       .setDiscardResult()
6972       .setTailCall(isTailCall);
6973 
6974   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6975   return CallResult.second;
6976 }
6977 
6978 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6979                                        SDValue Dst, unsigned DstAlign,
6980                                        SDValue Src, unsigned SrcAlign,
6981                                        SDValue Size, Type *SizeTy,
6982                                        unsigned ElemSz, bool isTailCall,
6983                                        MachinePointerInfo DstPtrInfo,
6984                                        MachinePointerInfo SrcPtrInfo) {
6985   // Emit a library call.
6986   TargetLowering::ArgListTy Args;
6987   TargetLowering::ArgListEntry Entry;
6988   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6989   Entry.Node = Dst;
6990   Args.push_back(Entry);
6991 
6992   Entry.Node = Src;
6993   Args.push_back(Entry);
6994 
6995   Entry.Ty = SizeTy;
6996   Entry.Node = Size;
6997   Args.push_back(Entry);
6998 
6999   RTLIB::Libcall LibraryCall =
7000       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7001   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7002     report_fatal_error("Unsupported element size");
7003 
7004   TargetLowering::CallLoweringInfo CLI(*this);
7005   CLI.setDebugLoc(dl)
7006       .setChain(Chain)
7007       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7008                     Type::getVoidTy(*getContext()),
7009                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7010                                       TLI->getPointerTy(getDataLayout())),
7011                     std::move(Args))
7012       .setDiscardResult()
7013       .setTailCall(isTailCall);
7014 
7015   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7016   return CallResult.second;
7017 }
7018 
7019 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7020                                 SDValue Src, SDValue Size, Align Alignment,
7021                                 bool isVol, bool isTailCall,
7022                                 MachinePointerInfo DstPtrInfo,
7023                                 const AAMDNodes &AAInfo) {
7024   // Check to see if we should lower the memset to stores first.
7025   // For cases within the target-specified limits, this is the best choice.
7026   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7027   if (ConstantSize) {
7028     // Memset with size zero? Just return the original chain.
7029     if (ConstantSize->isNullValue())
7030       return Chain;
7031 
7032     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7033                                      ConstantSize->getZExtValue(), Alignment,
7034                                      isVol, DstPtrInfo, AAInfo);
7035 
7036     if (Result.getNode())
7037       return Result;
7038   }
7039 
7040   // Then check to see if we should lower the memset with target-specific
7041   // code. If the target chooses to do this, this is the next best.
7042   if (TSI) {
7043     SDValue Result = TSI->EmitTargetCodeForMemset(
7044         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7045     if (Result.getNode())
7046       return Result;
7047   }
7048 
7049   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7050 
7051   // Emit a library call.
7052   TargetLowering::ArgListTy Args;
7053   TargetLowering::ArgListEntry Entry;
7054   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7055   Args.push_back(Entry);
7056   Entry.Node = Src;
7057   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7058   Args.push_back(Entry);
7059   Entry.Node = Size;
7060   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7061   Args.push_back(Entry);
7062 
7063   // FIXME: pass in SDLoc
7064   TargetLowering::CallLoweringInfo CLI(*this);
7065   CLI.setDebugLoc(dl)
7066       .setChain(Chain)
7067       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7068                     Dst.getValueType().getTypeForEVT(*getContext()),
7069                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7070                                       TLI->getPointerTy(getDataLayout())),
7071                     std::move(Args))
7072       .setDiscardResult()
7073       .setTailCall(isTailCall);
7074 
7075   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7076   return CallResult.second;
7077 }
7078 
7079 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7080                                       SDValue Dst, unsigned DstAlign,
7081                                       SDValue Value, SDValue Size, Type *SizeTy,
7082                                       unsigned ElemSz, bool isTailCall,
7083                                       MachinePointerInfo DstPtrInfo) {
7084   // Emit a library call.
7085   TargetLowering::ArgListTy Args;
7086   TargetLowering::ArgListEntry Entry;
7087   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7088   Entry.Node = Dst;
7089   Args.push_back(Entry);
7090 
7091   Entry.Ty = Type::getInt8Ty(*getContext());
7092   Entry.Node = Value;
7093   Args.push_back(Entry);
7094 
7095   Entry.Ty = SizeTy;
7096   Entry.Node = Size;
7097   Args.push_back(Entry);
7098 
7099   RTLIB::Libcall LibraryCall =
7100       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7101   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7102     report_fatal_error("Unsupported element size");
7103 
7104   TargetLowering::CallLoweringInfo CLI(*this);
7105   CLI.setDebugLoc(dl)
7106       .setChain(Chain)
7107       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7108                     Type::getVoidTy(*getContext()),
7109                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7110                                       TLI->getPointerTy(getDataLayout())),
7111                     std::move(Args))
7112       .setDiscardResult()
7113       .setTailCall(isTailCall);
7114 
7115   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7116   return CallResult.second;
7117 }
7118 
7119 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7120                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7121                                 MachineMemOperand *MMO) {
7122   FoldingSetNodeID ID;
7123   ID.AddInteger(MemVT.getRawBits());
7124   AddNodeIDNode(ID, Opcode, VTList, Ops);
7125   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7126   void* IP = nullptr;
7127   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7128     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7129     return SDValue(E, 0);
7130   }
7131 
7132   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7133                                     VTList, MemVT, MMO);
7134   createOperands(N, Ops);
7135 
7136   CSEMap.InsertNode(N, IP);
7137   InsertNode(N);
7138   return SDValue(N, 0);
7139 }
7140 
7141 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7142                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7143                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7144                                        MachineMemOperand *MMO) {
7145   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7146          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7147   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7148 
7149   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7150   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7151 }
7152 
7153 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7154                                 SDValue Chain, SDValue Ptr, SDValue Val,
7155                                 MachineMemOperand *MMO) {
7156   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7157           Opcode == ISD::ATOMIC_LOAD_SUB ||
7158           Opcode == ISD::ATOMIC_LOAD_AND ||
7159           Opcode == ISD::ATOMIC_LOAD_CLR ||
7160           Opcode == ISD::ATOMIC_LOAD_OR ||
7161           Opcode == ISD::ATOMIC_LOAD_XOR ||
7162           Opcode == ISD::ATOMIC_LOAD_NAND ||
7163           Opcode == ISD::ATOMIC_LOAD_MIN ||
7164           Opcode == ISD::ATOMIC_LOAD_MAX ||
7165           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7166           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7167           Opcode == ISD::ATOMIC_LOAD_FADD ||
7168           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7169           Opcode == ISD::ATOMIC_SWAP ||
7170           Opcode == ISD::ATOMIC_STORE) &&
7171          "Invalid Atomic Op");
7172 
7173   EVT VT = Val.getValueType();
7174 
7175   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7176                                                getVTList(VT, MVT::Other);
7177   SDValue Ops[] = {Chain, Ptr, Val};
7178   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7179 }
7180 
7181 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7182                                 EVT VT, SDValue Chain, SDValue Ptr,
7183                                 MachineMemOperand *MMO) {
7184   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7185 
7186   SDVTList VTs = getVTList(VT, MVT::Other);
7187   SDValue Ops[] = {Chain, Ptr};
7188   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7189 }
7190 
7191 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7192 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7193   if (Ops.size() == 1)
7194     return Ops[0];
7195 
7196   SmallVector<EVT, 4> VTs;
7197   VTs.reserve(Ops.size());
7198   for (const SDValue &Op : Ops)
7199     VTs.push_back(Op.getValueType());
7200   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7201 }
7202 
7203 SDValue SelectionDAG::getMemIntrinsicNode(
7204     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7205     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7206     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7207   if (!Size && MemVT.isScalableVector())
7208     Size = MemoryLocation::UnknownSize;
7209   else if (!Size)
7210     Size = MemVT.getStoreSize();
7211 
7212   MachineFunction &MF = getMachineFunction();
7213   MachineMemOperand *MMO =
7214       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7215 
7216   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7217 }
7218 
7219 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7220                                           SDVTList VTList,
7221                                           ArrayRef<SDValue> Ops, EVT MemVT,
7222                                           MachineMemOperand *MMO) {
7223   assert((Opcode == ISD::INTRINSIC_VOID ||
7224           Opcode == ISD::INTRINSIC_W_CHAIN ||
7225           Opcode == ISD::PREFETCH ||
7226           ((int)Opcode <= std::numeric_limits<int>::max() &&
7227            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7228          "Opcode is not a memory-accessing opcode!");
7229 
7230   // Memoize the node unless it returns a flag.
7231   MemIntrinsicSDNode *N;
7232   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7233     FoldingSetNodeID ID;
7234     AddNodeIDNode(ID, Opcode, VTList, Ops);
7235     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7236         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7237     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7238     void *IP = nullptr;
7239     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7240       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7241       return SDValue(E, 0);
7242     }
7243 
7244     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7245                                       VTList, MemVT, MMO);
7246     createOperands(N, Ops);
7247 
7248   CSEMap.InsertNode(N, IP);
7249   } else {
7250     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7251                                       VTList, MemVT, MMO);
7252     createOperands(N, Ops);
7253   }
7254   InsertNode(N);
7255   SDValue V(N, 0);
7256   NewSDValueDbgMsg(V, "Creating new node: ", this);
7257   return V;
7258 }
7259 
7260 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7261                                       SDValue Chain, int FrameIndex,
7262                                       int64_t Size, int64_t Offset) {
7263   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7264   const auto VTs = getVTList(MVT::Other);
7265   SDValue Ops[2] = {
7266       Chain,
7267       getFrameIndex(FrameIndex,
7268                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7269                     true)};
7270 
7271   FoldingSetNodeID ID;
7272   AddNodeIDNode(ID, Opcode, VTs, Ops);
7273   ID.AddInteger(FrameIndex);
7274   ID.AddInteger(Size);
7275   ID.AddInteger(Offset);
7276   void *IP = nullptr;
7277   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7278     return SDValue(E, 0);
7279 
7280   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7281       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7282   createOperands(N, Ops);
7283   CSEMap.InsertNode(N, IP);
7284   InsertNode(N);
7285   SDValue V(N, 0);
7286   NewSDValueDbgMsg(V, "Creating new node: ", this);
7287   return V;
7288 }
7289 
7290 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7291                                          uint64_t Guid, uint64_t Index,
7292                                          uint32_t Attr) {
7293   const unsigned Opcode = ISD::PSEUDO_PROBE;
7294   const auto VTs = getVTList(MVT::Other);
7295   SDValue Ops[] = {Chain};
7296   FoldingSetNodeID ID;
7297   AddNodeIDNode(ID, Opcode, VTs, Ops);
7298   ID.AddInteger(Guid);
7299   ID.AddInteger(Index);
7300   void *IP = nullptr;
7301   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7302     return SDValue(E, 0);
7303 
7304   auto *N = newSDNode<PseudoProbeSDNode>(
7305       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7306   createOperands(N, Ops);
7307   CSEMap.InsertNode(N, IP);
7308   InsertNode(N);
7309   SDValue V(N, 0);
7310   NewSDValueDbgMsg(V, "Creating new node: ", this);
7311   return V;
7312 }
7313 
7314 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7315 /// MachinePointerInfo record from it.  This is particularly useful because the
7316 /// code generator has many cases where it doesn't bother passing in a
7317 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7318 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7319                                            SelectionDAG &DAG, SDValue Ptr,
7320                                            int64_t Offset = 0) {
7321   // If this is FI+Offset, we can model it.
7322   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7323     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7324                                              FI->getIndex(), Offset);
7325 
7326   // If this is (FI+Offset1)+Offset2, we can model it.
7327   if (Ptr.getOpcode() != ISD::ADD ||
7328       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7329       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7330     return Info;
7331 
7332   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7333   return MachinePointerInfo::getFixedStack(
7334       DAG.getMachineFunction(), FI,
7335       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7336 }
7337 
7338 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7339 /// MachinePointerInfo record from it.  This is particularly useful because the
7340 /// code generator has many cases where it doesn't bother passing in a
7341 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7342 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7343                                            SelectionDAG &DAG, SDValue Ptr,
7344                                            SDValue OffsetOp) {
7345   // If the 'Offset' value isn't a constant, we can't handle this.
7346   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7347     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7348   if (OffsetOp.isUndef())
7349     return InferPointerInfo(Info, DAG, Ptr);
7350   return Info;
7351 }
7352 
7353 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7354                               EVT VT, const SDLoc &dl, SDValue Chain,
7355                               SDValue Ptr, SDValue Offset,
7356                               MachinePointerInfo PtrInfo, EVT MemVT,
7357                               Align Alignment,
7358                               MachineMemOperand::Flags MMOFlags,
7359                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7360   assert(Chain.getValueType() == MVT::Other &&
7361         "Invalid chain type");
7362 
7363   MMOFlags |= MachineMemOperand::MOLoad;
7364   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7365   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7366   // clients.
7367   if (PtrInfo.V.isNull())
7368     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7369 
7370   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7371   MachineFunction &MF = getMachineFunction();
7372   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7373                                                    Alignment, AAInfo, Ranges);
7374   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7375 }
7376 
7377 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7378                               EVT VT, const SDLoc &dl, SDValue Chain,
7379                               SDValue Ptr, SDValue Offset, EVT MemVT,
7380                               MachineMemOperand *MMO) {
7381   if (VT == MemVT) {
7382     ExtType = ISD::NON_EXTLOAD;
7383   } else if (ExtType == ISD::NON_EXTLOAD) {
7384     assert(VT == MemVT && "Non-extending load from different memory type!");
7385   } else {
7386     // Extending load.
7387     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7388            "Should only be an extending load, not truncating!");
7389     assert(VT.isInteger() == MemVT.isInteger() &&
7390            "Cannot convert from FP to Int or Int -> FP!");
7391     assert(VT.isVector() == MemVT.isVector() &&
7392            "Cannot use an ext load to convert to or from a vector!");
7393     assert((!VT.isVector() ||
7394             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7395            "Cannot use an ext load to change the number of vector elements!");
7396   }
7397 
7398   bool Indexed = AM != ISD::UNINDEXED;
7399   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7400 
7401   SDVTList VTs = Indexed ?
7402     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7403   SDValue Ops[] = { Chain, Ptr, Offset };
7404   FoldingSetNodeID ID;
7405   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7406   ID.AddInteger(MemVT.getRawBits());
7407   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7408       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7409   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7410   void *IP = nullptr;
7411   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7412     cast<LoadSDNode>(E)->refineAlignment(MMO);
7413     return SDValue(E, 0);
7414   }
7415   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7416                                   ExtType, MemVT, MMO);
7417   createOperands(N, Ops);
7418 
7419   CSEMap.InsertNode(N, IP);
7420   InsertNode(N);
7421   SDValue V(N, 0);
7422   NewSDValueDbgMsg(V, "Creating new node: ", this);
7423   return V;
7424 }
7425 
7426 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7427                               SDValue Ptr, MachinePointerInfo PtrInfo,
7428                               MaybeAlign Alignment,
7429                               MachineMemOperand::Flags MMOFlags,
7430                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7431   SDValue Undef = getUNDEF(Ptr.getValueType());
7432   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7433                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7434 }
7435 
7436 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7437                               SDValue Ptr, MachineMemOperand *MMO) {
7438   SDValue Undef = getUNDEF(Ptr.getValueType());
7439   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7440                  VT, MMO);
7441 }
7442 
7443 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7444                                  EVT VT, SDValue Chain, SDValue Ptr,
7445                                  MachinePointerInfo PtrInfo, EVT MemVT,
7446                                  MaybeAlign Alignment,
7447                                  MachineMemOperand::Flags MMOFlags,
7448                                  const AAMDNodes &AAInfo) {
7449   SDValue Undef = getUNDEF(Ptr.getValueType());
7450   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7451                  MemVT, Alignment, MMOFlags, AAInfo);
7452 }
7453 
7454 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7455                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7456                                  MachineMemOperand *MMO) {
7457   SDValue Undef = getUNDEF(Ptr.getValueType());
7458   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7459                  MemVT, MMO);
7460 }
7461 
7462 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7463                                      SDValue Base, SDValue Offset,
7464                                      ISD::MemIndexedMode AM) {
7465   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7466   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7467   // Don't propagate the invariant or dereferenceable flags.
7468   auto MMOFlags =
7469       LD->getMemOperand()->getFlags() &
7470       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7471   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7472                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7473                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7474 }
7475 
7476 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7477                                SDValue Ptr, MachinePointerInfo PtrInfo,
7478                                Align Alignment,
7479                                MachineMemOperand::Flags MMOFlags,
7480                                const AAMDNodes &AAInfo) {
7481   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7482 
7483   MMOFlags |= MachineMemOperand::MOStore;
7484   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7485 
7486   if (PtrInfo.V.isNull())
7487     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7488 
7489   MachineFunction &MF = getMachineFunction();
7490   uint64_t Size =
7491       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7492   MachineMemOperand *MMO =
7493       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7494   return getStore(Chain, dl, Val, Ptr, MMO);
7495 }
7496 
7497 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7498                                SDValue Ptr, MachineMemOperand *MMO) {
7499   assert(Chain.getValueType() == MVT::Other &&
7500         "Invalid chain type");
7501   EVT VT = Val.getValueType();
7502   SDVTList VTs = getVTList(MVT::Other);
7503   SDValue Undef = getUNDEF(Ptr.getValueType());
7504   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7505   FoldingSetNodeID ID;
7506   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7507   ID.AddInteger(VT.getRawBits());
7508   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7509       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7510   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7511   void *IP = nullptr;
7512   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7513     cast<StoreSDNode>(E)->refineAlignment(MMO);
7514     return SDValue(E, 0);
7515   }
7516   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7517                                    ISD::UNINDEXED, false, VT, MMO);
7518   createOperands(N, Ops);
7519 
7520   CSEMap.InsertNode(N, IP);
7521   InsertNode(N);
7522   SDValue V(N, 0);
7523   NewSDValueDbgMsg(V, "Creating new node: ", this);
7524   return V;
7525 }
7526 
7527 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7528                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7529                                     EVT SVT, Align Alignment,
7530                                     MachineMemOperand::Flags MMOFlags,
7531                                     const AAMDNodes &AAInfo) {
7532   assert(Chain.getValueType() == MVT::Other &&
7533         "Invalid chain type");
7534 
7535   MMOFlags |= MachineMemOperand::MOStore;
7536   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7537 
7538   if (PtrInfo.V.isNull())
7539     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7540 
7541   MachineFunction &MF = getMachineFunction();
7542   MachineMemOperand *MMO = MF.getMachineMemOperand(
7543       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7544       Alignment, AAInfo);
7545   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7546 }
7547 
7548 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7549                                     SDValue Ptr, EVT SVT,
7550                                     MachineMemOperand *MMO) {
7551   EVT VT = Val.getValueType();
7552 
7553   assert(Chain.getValueType() == MVT::Other &&
7554         "Invalid chain type");
7555   if (VT == SVT)
7556     return getStore(Chain, dl, Val, Ptr, MMO);
7557 
7558   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7559          "Should only be a truncating store, not extending!");
7560   assert(VT.isInteger() == SVT.isInteger() &&
7561          "Can't do FP-INT conversion!");
7562   assert(VT.isVector() == SVT.isVector() &&
7563          "Cannot use trunc store to convert to or from a vector!");
7564   assert((!VT.isVector() ||
7565           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7566          "Cannot use trunc store to change the number of vector elements!");
7567 
7568   SDVTList VTs = getVTList(MVT::Other);
7569   SDValue Undef = getUNDEF(Ptr.getValueType());
7570   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7571   FoldingSetNodeID ID;
7572   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7573   ID.AddInteger(SVT.getRawBits());
7574   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7575       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7576   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7577   void *IP = nullptr;
7578   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7579     cast<StoreSDNode>(E)->refineAlignment(MMO);
7580     return SDValue(E, 0);
7581   }
7582   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7583                                    ISD::UNINDEXED, true, SVT, MMO);
7584   createOperands(N, Ops);
7585 
7586   CSEMap.InsertNode(N, IP);
7587   InsertNode(N);
7588   SDValue V(N, 0);
7589   NewSDValueDbgMsg(V, "Creating new node: ", this);
7590   return V;
7591 }
7592 
7593 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7594                                       SDValue Base, SDValue Offset,
7595                                       ISD::MemIndexedMode AM) {
7596   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7597   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7598   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7599   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7600   FoldingSetNodeID ID;
7601   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7602   ID.AddInteger(ST->getMemoryVT().getRawBits());
7603   ID.AddInteger(ST->getRawSubclassData());
7604   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7605   void *IP = nullptr;
7606   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7607     return SDValue(E, 0);
7608 
7609   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7610                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7611                                    ST->getMemOperand());
7612   createOperands(N, Ops);
7613 
7614   CSEMap.InsertNode(N, IP);
7615   InsertNode(N);
7616   SDValue V(N, 0);
7617   NewSDValueDbgMsg(V, "Creating new node: ", this);
7618   return V;
7619 }
7620 
7621 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7622                                     SDValue Base, SDValue Offset, SDValue Mask,
7623                                     SDValue PassThru, EVT MemVT,
7624                                     MachineMemOperand *MMO,
7625                                     ISD::MemIndexedMode AM,
7626                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7627   bool Indexed = AM != ISD::UNINDEXED;
7628   assert((Indexed || Offset.isUndef()) &&
7629          "Unindexed masked load with an offset!");
7630   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7631                          : getVTList(VT, MVT::Other);
7632   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7633   FoldingSetNodeID ID;
7634   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7635   ID.AddInteger(MemVT.getRawBits());
7636   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7637       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7638   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7639   void *IP = nullptr;
7640   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7641     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7642     return SDValue(E, 0);
7643   }
7644   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7645                                         AM, ExtTy, isExpanding, MemVT, MMO);
7646   createOperands(N, Ops);
7647 
7648   CSEMap.InsertNode(N, IP);
7649   InsertNode(N);
7650   SDValue V(N, 0);
7651   NewSDValueDbgMsg(V, "Creating new node: ", this);
7652   return V;
7653 }
7654 
7655 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7656                                            SDValue Base, SDValue Offset,
7657                                            ISD::MemIndexedMode AM) {
7658   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7659   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7660   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7661                        Offset, LD->getMask(), LD->getPassThru(),
7662                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7663                        LD->getExtensionType(), LD->isExpandingLoad());
7664 }
7665 
7666 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7667                                      SDValue Val, SDValue Base, SDValue Offset,
7668                                      SDValue Mask, EVT MemVT,
7669                                      MachineMemOperand *MMO,
7670                                      ISD::MemIndexedMode AM, bool IsTruncating,
7671                                      bool IsCompressing) {
7672   assert(Chain.getValueType() == MVT::Other &&
7673         "Invalid chain type");
7674   bool Indexed = AM != ISD::UNINDEXED;
7675   assert((Indexed || Offset.isUndef()) &&
7676          "Unindexed masked store with an offset!");
7677   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7678                          : getVTList(MVT::Other);
7679   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7680   FoldingSetNodeID ID;
7681   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7682   ID.AddInteger(MemVT.getRawBits());
7683   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7684       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7685   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7686   void *IP = nullptr;
7687   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7688     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7689     return SDValue(E, 0);
7690   }
7691   auto *N =
7692       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7693                                    IsTruncating, IsCompressing, MemVT, MMO);
7694   createOperands(N, Ops);
7695 
7696   CSEMap.InsertNode(N, IP);
7697   InsertNode(N);
7698   SDValue V(N, 0);
7699   NewSDValueDbgMsg(V, "Creating new node: ", this);
7700   return V;
7701 }
7702 
7703 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7704                                             SDValue Base, SDValue Offset,
7705                                             ISD::MemIndexedMode AM) {
7706   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7707   assert(ST->getOffset().isUndef() &&
7708          "Masked store is already a indexed store!");
7709   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7710                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7711                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7712 }
7713 
7714 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
7715                                       ArrayRef<SDValue> Ops,
7716                                       MachineMemOperand *MMO,
7717                                       ISD::MemIndexType IndexType,
7718                                       ISD::LoadExtType ExtTy) {
7719   assert(Ops.size() == 6 && "Incompatible number of operands");
7720 
7721   FoldingSetNodeID ID;
7722   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7723   ID.AddInteger(MemVT.getRawBits());
7724   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7725       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
7726   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7727   void *IP = nullptr;
7728   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7729     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7730     return SDValue(E, 0);
7731   }
7732 
7733   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
7734   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7735                                           VTs, MemVT, MMO, IndexType, ExtTy);
7736   createOperands(N, Ops);
7737 
7738   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7739          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7740   assert(N->getMask().getValueType().getVectorElementCount() ==
7741              N->getValueType(0).getVectorElementCount() &&
7742          "Vector width mismatch between mask and data");
7743   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7744              N->getValueType(0).getVectorElementCount().isScalable() &&
7745          "Scalable flags of index and data do not match");
7746   assert(ElementCount::isKnownGE(
7747              N->getIndex().getValueType().getVectorElementCount(),
7748              N->getValueType(0).getVectorElementCount()) &&
7749          "Vector width mismatch between index and data");
7750   assert(isa<ConstantSDNode>(N->getScale()) &&
7751          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7752          "Scale should be a constant power of 2");
7753 
7754   CSEMap.InsertNode(N, IP);
7755   InsertNode(N);
7756   SDValue V(N, 0);
7757   NewSDValueDbgMsg(V, "Creating new node: ", this);
7758   return V;
7759 }
7760 
7761 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
7762                                        ArrayRef<SDValue> Ops,
7763                                        MachineMemOperand *MMO,
7764                                        ISD::MemIndexType IndexType,
7765                                        bool IsTrunc) {
7766   assert(Ops.size() == 6 && "Incompatible number of operands");
7767 
7768   FoldingSetNodeID ID;
7769   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7770   ID.AddInteger(MemVT.getRawBits());
7771   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7772       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
7773   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7774   void *IP = nullptr;
7775   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7776     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7777     return SDValue(E, 0);
7778   }
7779 
7780   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
7781   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7782                                            VTs, MemVT, MMO, IndexType, IsTrunc);
7783   createOperands(N, Ops);
7784 
7785   assert(N->getMask().getValueType().getVectorElementCount() ==
7786              N->getValue().getValueType().getVectorElementCount() &&
7787          "Vector width mismatch between mask and data");
7788   assert(
7789       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7790           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7791       "Scalable flags of index and data do not match");
7792   assert(ElementCount::isKnownGE(
7793              N->getIndex().getValueType().getVectorElementCount(),
7794              N->getValue().getValueType().getVectorElementCount()) &&
7795          "Vector width mismatch between index and data");
7796   assert(isa<ConstantSDNode>(N->getScale()) &&
7797          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7798          "Scale should be a constant power of 2");
7799 
7800   CSEMap.InsertNode(N, IP);
7801   InsertNode(N);
7802   SDValue V(N, 0);
7803   NewSDValueDbgMsg(V, "Creating new node: ", this);
7804   return V;
7805 }
7806 
7807 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7808   // select undef, T, F --> T (if T is a constant), otherwise F
7809   // select, ?, undef, F --> F
7810   // select, ?, T, undef --> T
7811   if (Cond.isUndef())
7812     return isConstantValueOfAnyType(T) ? T : F;
7813   if (T.isUndef())
7814     return F;
7815   if (F.isUndef())
7816     return T;
7817 
7818   // select true, T, F --> T
7819   // select false, T, F --> F
7820   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7821     return CondC->isNullValue() ? F : T;
7822 
7823   // TODO: This should simplify VSELECT with constant condition using something
7824   // like this (but check boolean contents to be complete?):
7825   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7826   //    return T;
7827   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7828   //    return F;
7829 
7830   // select ?, T, T --> T
7831   if (T == F)
7832     return T;
7833 
7834   return SDValue();
7835 }
7836 
7837 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7838   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7839   if (X.isUndef())
7840     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7841   // shift X, undef --> undef (because it may shift by the bitwidth)
7842   if (Y.isUndef())
7843     return getUNDEF(X.getValueType());
7844 
7845   // shift 0, Y --> 0
7846   // shift X, 0 --> X
7847   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7848     return X;
7849 
7850   // shift X, C >= bitwidth(X) --> undef
7851   // All vector elements must be too big (or undef) to avoid partial undefs.
7852   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7853     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7854   };
7855   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7856     return getUNDEF(X.getValueType());
7857 
7858   return SDValue();
7859 }
7860 
7861 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7862                                       SDNodeFlags Flags) {
7863   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7864   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7865   // operation is poison. That result can be relaxed to undef.
7866   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7867   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7868   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7869                 (YC && YC->getValueAPF().isNaN());
7870   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7871                 (YC && YC->getValueAPF().isInfinity());
7872 
7873   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7874     return getUNDEF(X.getValueType());
7875 
7876   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7877     return getUNDEF(X.getValueType());
7878 
7879   if (!YC)
7880     return SDValue();
7881 
7882   // X + -0.0 --> X
7883   if (Opcode == ISD::FADD)
7884     if (YC->getValueAPF().isNegZero())
7885       return X;
7886 
7887   // X - +0.0 --> X
7888   if (Opcode == ISD::FSUB)
7889     if (YC->getValueAPF().isPosZero())
7890       return X;
7891 
7892   // X * 1.0 --> X
7893   // X / 1.0 --> X
7894   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7895     if (YC->getValueAPF().isExactlyValue(1.0))
7896       return X;
7897 
7898   // X * 0.0 --> 0.0
7899   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7900     if (YC->getValueAPF().isZero())
7901       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7902 
7903   return SDValue();
7904 }
7905 
7906 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7907                                SDValue Ptr, SDValue SV, unsigned Align) {
7908   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7909   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7910 }
7911 
7912 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7913                               ArrayRef<SDUse> Ops) {
7914   switch (Ops.size()) {
7915   case 0: return getNode(Opcode, DL, VT);
7916   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7917   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7918   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7919   default: break;
7920   }
7921 
7922   // Copy from an SDUse array into an SDValue array for use with
7923   // the regular getNode logic.
7924   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7925   return getNode(Opcode, DL, VT, NewOps);
7926 }
7927 
7928 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7929                               ArrayRef<SDValue> Ops) {
7930   SDNodeFlags Flags;
7931   if (Inserter)
7932     Flags = Inserter->getFlags();
7933   return getNode(Opcode, DL, VT, Ops, Flags);
7934 }
7935 
7936 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7937                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7938   unsigned NumOps = Ops.size();
7939   switch (NumOps) {
7940   case 0: return getNode(Opcode, DL, VT);
7941   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7942   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7943   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7944   default: break;
7945   }
7946 
7947 #ifndef NDEBUG
7948   for (auto &Op : Ops)
7949     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7950            "Operand is DELETED_NODE!");
7951 #endif
7952 
7953   switch (Opcode) {
7954   default: break;
7955   case ISD::BUILD_VECTOR:
7956     // Attempt to simplify BUILD_VECTOR.
7957     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7958       return V;
7959     break;
7960   case ISD::CONCAT_VECTORS:
7961     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7962       return V;
7963     break;
7964   case ISD::SELECT_CC:
7965     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7966     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7967            "LHS and RHS of condition must have same type!");
7968     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7969            "True and False arms of SelectCC must have same type!");
7970     assert(Ops[2].getValueType() == VT &&
7971            "select_cc node must be of same type as true and false value!");
7972     break;
7973   case ISD::BR_CC:
7974     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7975     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7976            "LHS/RHS of comparison should match types!");
7977     break;
7978   }
7979 
7980   // Memoize nodes.
7981   SDNode *N;
7982   SDVTList VTs = getVTList(VT);
7983 
7984   if (VT != MVT::Glue) {
7985     FoldingSetNodeID ID;
7986     AddNodeIDNode(ID, Opcode, VTs, Ops);
7987     void *IP = nullptr;
7988 
7989     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7990       return SDValue(E, 0);
7991 
7992     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7993     createOperands(N, Ops);
7994 
7995     CSEMap.InsertNode(N, IP);
7996   } else {
7997     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7998     createOperands(N, Ops);
7999   }
8000 
8001   N->setFlags(Flags);
8002   InsertNode(N);
8003   SDValue V(N, 0);
8004   NewSDValueDbgMsg(V, "Creating new node: ", this);
8005   return V;
8006 }
8007 
8008 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8009                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8010   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8011 }
8012 
8013 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8014                               ArrayRef<SDValue> Ops) {
8015   SDNodeFlags Flags;
8016   if (Inserter)
8017     Flags = Inserter->getFlags();
8018   return getNode(Opcode, DL, VTList, Ops, Flags);
8019 }
8020 
8021 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8022                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8023   if (VTList.NumVTs == 1)
8024     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8025 
8026 #ifndef NDEBUG
8027   for (auto &Op : Ops)
8028     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8029            "Operand is DELETED_NODE!");
8030 #endif
8031 
8032   switch (Opcode) {
8033   case ISD::STRICT_FP_EXTEND:
8034     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8035            "Invalid STRICT_FP_EXTEND!");
8036     assert(VTList.VTs[0].isFloatingPoint() &&
8037            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8038     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8039            "STRICT_FP_EXTEND result type should be vector iff the operand "
8040            "type is vector!");
8041     assert((!VTList.VTs[0].isVector() ||
8042             VTList.VTs[0].getVectorNumElements() ==
8043             Ops[1].getValueType().getVectorNumElements()) &&
8044            "Vector element count mismatch!");
8045     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8046            "Invalid fpext node, dst <= src!");
8047     break;
8048   case ISD::STRICT_FP_ROUND:
8049     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8050     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8051            "STRICT_FP_ROUND result type should be vector iff the operand "
8052            "type is vector!");
8053     assert((!VTList.VTs[0].isVector() ||
8054             VTList.VTs[0].getVectorNumElements() ==
8055             Ops[1].getValueType().getVectorNumElements()) &&
8056            "Vector element count mismatch!");
8057     assert(VTList.VTs[0].isFloatingPoint() &&
8058            Ops[1].getValueType().isFloatingPoint() &&
8059            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8060            isa<ConstantSDNode>(Ops[2]) &&
8061            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8062             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8063            "Invalid STRICT_FP_ROUND!");
8064     break;
8065 #if 0
8066   // FIXME: figure out how to safely handle things like
8067   // int foo(int x) { return 1 << (x & 255); }
8068   // int bar() { return foo(256); }
8069   case ISD::SRA_PARTS:
8070   case ISD::SRL_PARTS:
8071   case ISD::SHL_PARTS:
8072     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8073         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8074       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8075     else if (N3.getOpcode() == ISD::AND)
8076       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8077         // If the and is only masking out bits that cannot effect the shift,
8078         // eliminate the and.
8079         unsigned NumBits = VT.getScalarSizeInBits()*2;
8080         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8081           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8082       }
8083     break;
8084 #endif
8085   }
8086 
8087   // Memoize the node unless it returns a flag.
8088   SDNode *N;
8089   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8090     FoldingSetNodeID ID;
8091     AddNodeIDNode(ID, Opcode, VTList, Ops);
8092     void *IP = nullptr;
8093     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8094       return SDValue(E, 0);
8095 
8096     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8097     createOperands(N, Ops);
8098     CSEMap.InsertNode(N, IP);
8099   } else {
8100     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8101     createOperands(N, Ops);
8102   }
8103 
8104   N->setFlags(Flags);
8105   InsertNode(N);
8106   SDValue V(N, 0);
8107   NewSDValueDbgMsg(V, "Creating new node: ", this);
8108   return V;
8109 }
8110 
8111 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8112                               SDVTList VTList) {
8113   return getNode(Opcode, DL, VTList, None);
8114 }
8115 
8116 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8117                               SDValue N1) {
8118   SDValue Ops[] = { N1 };
8119   return getNode(Opcode, DL, VTList, Ops);
8120 }
8121 
8122 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8123                               SDValue N1, SDValue N2) {
8124   SDValue Ops[] = { N1, N2 };
8125   return getNode(Opcode, DL, VTList, Ops);
8126 }
8127 
8128 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8129                               SDValue N1, SDValue N2, SDValue N3) {
8130   SDValue Ops[] = { N1, N2, N3 };
8131   return getNode(Opcode, DL, VTList, Ops);
8132 }
8133 
8134 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8135                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8136   SDValue Ops[] = { N1, N2, N3, N4 };
8137   return getNode(Opcode, DL, VTList, Ops);
8138 }
8139 
8140 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8141                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8142                               SDValue N5) {
8143   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8144   return getNode(Opcode, DL, VTList, Ops);
8145 }
8146 
8147 SDVTList SelectionDAG::getVTList(EVT VT) {
8148   return makeVTList(SDNode::getValueTypeList(VT), 1);
8149 }
8150 
8151 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8152   FoldingSetNodeID ID;
8153   ID.AddInteger(2U);
8154   ID.AddInteger(VT1.getRawBits());
8155   ID.AddInteger(VT2.getRawBits());
8156 
8157   void *IP = nullptr;
8158   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8159   if (!Result) {
8160     EVT *Array = Allocator.Allocate<EVT>(2);
8161     Array[0] = VT1;
8162     Array[1] = VT2;
8163     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8164     VTListMap.InsertNode(Result, IP);
8165   }
8166   return Result->getSDVTList();
8167 }
8168 
8169 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8170   FoldingSetNodeID ID;
8171   ID.AddInteger(3U);
8172   ID.AddInteger(VT1.getRawBits());
8173   ID.AddInteger(VT2.getRawBits());
8174   ID.AddInteger(VT3.getRawBits());
8175 
8176   void *IP = nullptr;
8177   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8178   if (!Result) {
8179     EVT *Array = Allocator.Allocate<EVT>(3);
8180     Array[0] = VT1;
8181     Array[1] = VT2;
8182     Array[2] = VT3;
8183     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8184     VTListMap.InsertNode(Result, IP);
8185   }
8186   return Result->getSDVTList();
8187 }
8188 
8189 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8190   FoldingSetNodeID ID;
8191   ID.AddInteger(4U);
8192   ID.AddInteger(VT1.getRawBits());
8193   ID.AddInteger(VT2.getRawBits());
8194   ID.AddInteger(VT3.getRawBits());
8195   ID.AddInteger(VT4.getRawBits());
8196 
8197   void *IP = nullptr;
8198   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8199   if (!Result) {
8200     EVT *Array = Allocator.Allocate<EVT>(4);
8201     Array[0] = VT1;
8202     Array[1] = VT2;
8203     Array[2] = VT3;
8204     Array[3] = VT4;
8205     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8206     VTListMap.InsertNode(Result, IP);
8207   }
8208   return Result->getSDVTList();
8209 }
8210 
8211 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8212   unsigned NumVTs = VTs.size();
8213   FoldingSetNodeID ID;
8214   ID.AddInteger(NumVTs);
8215   for (unsigned index = 0; index < NumVTs; index++) {
8216     ID.AddInteger(VTs[index].getRawBits());
8217   }
8218 
8219   void *IP = nullptr;
8220   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8221   if (!Result) {
8222     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8223     llvm::copy(VTs, Array);
8224     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8225     VTListMap.InsertNode(Result, IP);
8226   }
8227   return Result->getSDVTList();
8228 }
8229 
8230 
8231 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8232 /// specified operands.  If the resultant node already exists in the DAG,
8233 /// this does not modify the specified node, instead it returns the node that
8234 /// already exists.  If the resultant node does not exist in the DAG, the
8235 /// input node is returned.  As a degenerate case, if you specify the same
8236 /// input operands as the node already has, the input node is returned.
8237 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8238   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8239 
8240   // Check to see if there is no change.
8241   if (Op == N->getOperand(0)) return N;
8242 
8243   // See if the modified node already exists.
8244   void *InsertPos = nullptr;
8245   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8246     return Existing;
8247 
8248   // Nope it doesn't.  Remove the node from its current place in the maps.
8249   if (InsertPos)
8250     if (!RemoveNodeFromCSEMaps(N))
8251       InsertPos = nullptr;
8252 
8253   // Now we update the operands.
8254   N->OperandList[0].set(Op);
8255 
8256   updateDivergence(N);
8257   // If this gets put into a CSE map, add it.
8258   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8259   return N;
8260 }
8261 
8262 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8263   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8264 
8265   // Check to see if there is no change.
8266   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8267     return N;   // No operands changed, just return the input node.
8268 
8269   // See if the modified node already exists.
8270   void *InsertPos = nullptr;
8271   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8272     return Existing;
8273 
8274   // Nope it doesn't.  Remove the node from its current place in the maps.
8275   if (InsertPos)
8276     if (!RemoveNodeFromCSEMaps(N))
8277       InsertPos = nullptr;
8278 
8279   // Now we update the operands.
8280   if (N->OperandList[0] != Op1)
8281     N->OperandList[0].set(Op1);
8282   if (N->OperandList[1] != Op2)
8283     N->OperandList[1].set(Op2);
8284 
8285   updateDivergence(N);
8286   // If this gets put into a CSE map, add it.
8287   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8288   return N;
8289 }
8290 
8291 SDNode *SelectionDAG::
8292 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8293   SDValue Ops[] = { Op1, Op2, Op3 };
8294   return UpdateNodeOperands(N, Ops);
8295 }
8296 
8297 SDNode *SelectionDAG::
8298 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8299                    SDValue Op3, SDValue Op4) {
8300   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8301   return UpdateNodeOperands(N, Ops);
8302 }
8303 
8304 SDNode *SelectionDAG::
8305 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8306                    SDValue Op3, SDValue Op4, SDValue Op5) {
8307   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8308   return UpdateNodeOperands(N, Ops);
8309 }
8310 
8311 SDNode *SelectionDAG::
8312 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8313   unsigned NumOps = Ops.size();
8314   assert(N->getNumOperands() == NumOps &&
8315          "Update with wrong number of operands");
8316 
8317   // If no operands changed just return the input node.
8318   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8319     return N;
8320 
8321   // See if the modified node already exists.
8322   void *InsertPos = nullptr;
8323   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8324     return Existing;
8325 
8326   // Nope it doesn't.  Remove the node from its current place in the maps.
8327   if (InsertPos)
8328     if (!RemoveNodeFromCSEMaps(N))
8329       InsertPos = nullptr;
8330 
8331   // Now we update the operands.
8332   for (unsigned i = 0; i != NumOps; ++i)
8333     if (N->OperandList[i] != Ops[i])
8334       N->OperandList[i].set(Ops[i]);
8335 
8336   updateDivergence(N);
8337   // If this gets put into a CSE map, add it.
8338   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8339   return N;
8340 }
8341 
8342 /// DropOperands - Release the operands and set this node to have
8343 /// zero operands.
8344 void SDNode::DropOperands() {
8345   // Unlike the code in MorphNodeTo that does this, we don't need to
8346   // watch for dead nodes here.
8347   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8348     SDUse &Use = *I++;
8349     Use.set(SDValue());
8350   }
8351 }
8352 
8353 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8354                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8355   if (NewMemRefs.empty()) {
8356     N->clearMemRefs();
8357     return;
8358   }
8359 
8360   // Check if we can avoid allocating by storing a single reference directly.
8361   if (NewMemRefs.size() == 1) {
8362     N->MemRefs = NewMemRefs[0];
8363     N->NumMemRefs = 1;
8364     return;
8365   }
8366 
8367   MachineMemOperand **MemRefsBuffer =
8368       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8369   llvm::copy(NewMemRefs, MemRefsBuffer);
8370   N->MemRefs = MemRefsBuffer;
8371   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8372 }
8373 
8374 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8375 /// machine opcode.
8376 ///
8377 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8378                                    EVT VT) {
8379   SDVTList VTs = getVTList(VT);
8380   return SelectNodeTo(N, MachineOpc, VTs, None);
8381 }
8382 
8383 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8384                                    EVT VT, SDValue Op1) {
8385   SDVTList VTs = getVTList(VT);
8386   SDValue Ops[] = { Op1 };
8387   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8388 }
8389 
8390 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8391                                    EVT VT, SDValue Op1,
8392                                    SDValue Op2) {
8393   SDVTList VTs = getVTList(VT);
8394   SDValue Ops[] = { Op1, Op2 };
8395   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8396 }
8397 
8398 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8399                                    EVT VT, SDValue Op1,
8400                                    SDValue Op2, SDValue Op3) {
8401   SDVTList VTs = getVTList(VT);
8402   SDValue Ops[] = { Op1, Op2, Op3 };
8403   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8404 }
8405 
8406 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8407                                    EVT VT, ArrayRef<SDValue> Ops) {
8408   SDVTList VTs = getVTList(VT);
8409   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8410 }
8411 
8412 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8413                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8414   SDVTList VTs = getVTList(VT1, VT2);
8415   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8416 }
8417 
8418 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8419                                    EVT VT1, EVT VT2) {
8420   SDVTList VTs = getVTList(VT1, VT2);
8421   return SelectNodeTo(N, MachineOpc, VTs, None);
8422 }
8423 
8424 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8425                                    EVT VT1, EVT VT2, EVT VT3,
8426                                    ArrayRef<SDValue> Ops) {
8427   SDVTList VTs = getVTList(VT1, VT2, VT3);
8428   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8429 }
8430 
8431 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8432                                    EVT VT1, EVT VT2,
8433                                    SDValue Op1, SDValue Op2) {
8434   SDVTList VTs = getVTList(VT1, VT2);
8435   SDValue Ops[] = { Op1, Op2 };
8436   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8437 }
8438 
8439 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8440                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8441   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8442   // Reset the NodeID to -1.
8443   New->setNodeId(-1);
8444   if (New != N) {
8445     ReplaceAllUsesWith(N, New);
8446     RemoveDeadNode(N);
8447   }
8448   return New;
8449 }
8450 
8451 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8452 /// the line number information on the merged node since it is not possible to
8453 /// preserve the information that operation is associated with multiple lines.
8454 /// This will make the debugger working better at -O0, were there is a higher
8455 /// probability having other instructions associated with that line.
8456 ///
8457 /// For IROrder, we keep the smaller of the two
8458 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8459   DebugLoc NLoc = N->getDebugLoc();
8460   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8461     N->setDebugLoc(DebugLoc());
8462   }
8463   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8464   N->setIROrder(Order);
8465   return N;
8466 }
8467 
8468 /// MorphNodeTo - This *mutates* the specified node to have the specified
8469 /// return type, opcode, and operands.
8470 ///
8471 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8472 /// node of the specified opcode and operands, it returns that node instead of
8473 /// the current one.  Note that the SDLoc need not be the same.
8474 ///
8475 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8476 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8477 /// node, and because it doesn't require CSE recalculation for any of
8478 /// the node's users.
8479 ///
8480 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8481 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8482 /// the legalizer which maintain worklists that would need to be updated when
8483 /// deleting things.
8484 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8485                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8486   // If an identical node already exists, use it.
8487   void *IP = nullptr;
8488   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8489     FoldingSetNodeID ID;
8490     AddNodeIDNode(ID, Opc, VTs, Ops);
8491     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8492       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8493   }
8494 
8495   if (!RemoveNodeFromCSEMaps(N))
8496     IP = nullptr;
8497 
8498   // Start the morphing.
8499   N->NodeType = Opc;
8500   N->ValueList = VTs.VTs;
8501   N->NumValues = VTs.NumVTs;
8502 
8503   // Clear the operands list, updating used nodes to remove this from their
8504   // use list.  Keep track of any operands that become dead as a result.
8505   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8506   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8507     SDUse &Use = *I++;
8508     SDNode *Used = Use.getNode();
8509     Use.set(SDValue());
8510     if (Used->use_empty())
8511       DeadNodeSet.insert(Used);
8512   }
8513 
8514   // For MachineNode, initialize the memory references information.
8515   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8516     MN->clearMemRefs();
8517 
8518   // Swap for an appropriately sized array from the recycler.
8519   removeOperands(N);
8520   createOperands(N, Ops);
8521 
8522   // Delete any nodes that are still dead after adding the uses for the
8523   // new operands.
8524   if (!DeadNodeSet.empty()) {
8525     SmallVector<SDNode *, 16> DeadNodes;
8526     for (SDNode *N : DeadNodeSet)
8527       if (N->use_empty())
8528         DeadNodes.push_back(N);
8529     RemoveDeadNodes(DeadNodes);
8530   }
8531 
8532   if (IP)
8533     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8534   return N;
8535 }
8536 
8537 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8538   unsigned OrigOpc = Node->getOpcode();
8539   unsigned NewOpc;
8540   switch (OrigOpc) {
8541   default:
8542     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8543 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8544   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8545 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8546   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8547 #include "llvm/IR/ConstrainedOps.def"
8548   }
8549 
8550   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8551 
8552   // We're taking this node out of the chain, so we need to re-link things.
8553   SDValue InputChain = Node->getOperand(0);
8554   SDValue OutputChain = SDValue(Node, 1);
8555   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8556 
8557   SmallVector<SDValue, 3> Ops;
8558   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8559     Ops.push_back(Node->getOperand(i));
8560 
8561   SDVTList VTs = getVTList(Node->getValueType(0));
8562   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8563 
8564   // MorphNodeTo can operate in two ways: if an existing node with the
8565   // specified operands exists, it can just return it.  Otherwise, it
8566   // updates the node in place to have the requested operands.
8567   if (Res == Node) {
8568     // If we updated the node in place, reset the node ID.  To the isel,
8569     // this should be just like a newly allocated machine node.
8570     Res->setNodeId(-1);
8571   } else {
8572     ReplaceAllUsesWith(Node, Res);
8573     RemoveDeadNode(Node);
8574   }
8575 
8576   return Res;
8577 }
8578 
8579 /// getMachineNode - These are used for target selectors to create a new node
8580 /// with specified return type(s), MachineInstr opcode, and operands.
8581 ///
8582 /// Note that getMachineNode returns the resultant node.  If there is already a
8583 /// node of the specified opcode and operands, it returns that node instead of
8584 /// the current one.
8585 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8586                                             EVT VT) {
8587   SDVTList VTs = getVTList(VT);
8588   return getMachineNode(Opcode, dl, VTs, None);
8589 }
8590 
8591 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8592                                             EVT VT, SDValue Op1) {
8593   SDVTList VTs = getVTList(VT);
8594   SDValue Ops[] = { Op1 };
8595   return getMachineNode(Opcode, dl, VTs, Ops);
8596 }
8597 
8598 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8599                                             EVT VT, SDValue Op1, SDValue Op2) {
8600   SDVTList VTs = getVTList(VT);
8601   SDValue Ops[] = { Op1, Op2 };
8602   return getMachineNode(Opcode, dl, VTs, Ops);
8603 }
8604 
8605 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8606                                             EVT VT, SDValue Op1, SDValue Op2,
8607                                             SDValue Op3) {
8608   SDVTList VTs = getVTList(VT);
8609   SDValue Ops[] = { Op1, Op2, Op3 };
8610   return getMachineNode(Opcode, dl, VTs, Ops);
8611 }
8612 
8613 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8614                                             EVT VT, ArrayRef<SDValue> Ops) {
8615   SDVTList VTs = getVTList(VT);
8616   return getMachineNode(Opcode, dl, VTs, Ops);
8617 }
8618 
8619 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8620                                             EVT VT1, EVT VT2, SDValue Op1,
8621                                             SDValue Op2) {
8622   SDVTList VTs = getVTList(VT1, VT2);
8623   SDValue Ops[] = { Op1, Op2 };
8624   return getMachineNode(Opcode, dl, VTs, Ops);
8625 }
8626 
8627 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8628                                             EVT VT1, EVT VT2, SDValue Op1,
8629                                             SDValue Op2, SDValue Op3) {
8630   SDVTList VTs = getVTList(VT1, VT2);
8631   SDValue Ops[] = { Op1, Op2, Op3 };
8632   return getMachineNode(Opcode, dl, VTs, Ops);
8633 }
8634 
8635 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8636                                             EVT VT1, EVT VT2,
8637                                             ArrayRef<SDValue> Ops) {
8638   SDVTList VTs = getVTList(VT1, VT2);
8639   return getMachineNode(Opcode, dl, VTs, Ops);
8640 }
8641 
8642 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8643                                             EVT VT1, EVT VT2, EVT VT3,
8644                                             SDValue Op1, SDValue Op2) {
8645   SDVTList VTs = getVTList(VT1, VT2, VT3);
8646   SDValue Ops[] = { Op1, Op2 };
8647   return getMachineNode(Opcode, dl, VTs, Ops);
8648 }
8649 
8650 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8651                                             EVT VT1, EVT VT2, EVT VT3,
8652                                             SDValue Op1, SDValue Op2,
8653                                             SDValue Op3) {
8654   SDVTList VTs = getVTList(VT1, VT2, VT3);
8655   SDValue Ops[] = { Op1, Op2, Op3 };
8656   return getMachineNode(Opcode, dl, VTs, Ops);
8657 }
8658 
8659 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8660                                             EVT VT1, EVT VT2, EVT VT3,
8661                                             ArrayRef<SDValue> Ops) {
8662   SDVTList VTs = getVTList(VT1, VT2, VT3);
8663   return getMachineNode(Opcode, dl, VTs, Ops);
8664 }
8665 
8666 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8667                                             ArrayRef<EVT> ResultTys,
8668                                             ArrayRef<SDValue> Ops) {
8669   SDVTList VTs = getVTList(ResultTys);
8670   return getMachineNode(Opcode, dl, VTs, Ops);
8671 }
8672 
8673 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8674                                             SDVTList VTs,
8675                                             ArrayRef<SDValue> Ops) {
8676   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8677   MachineSDNode *N;
8678   void *IP = nullptr;
8679 
8680   if (DoCSE) {
8681     FoldingSetNodeID ID;
8682     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8683     IP = nullptr;
8684     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8685       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8686     }
8687   }
8688 
8689   // Allocate a new MachineSDNode.
8690   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8691   createOperands(N, Ops);
8692 
8693   if (DoCSE)
8694     CSEMap.InsertNode(N, IP);
8695 
8696   InsertNode(N);
8697   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8698   return N;
8699 }
8700 
8701 /// getTargetExtractSubreg - A convenience function for creating
8702 /// TargetOpcode::EXTRACT_SUBREG nodes.
8703 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8704                                              SDValue Operand) {
8705   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8706   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8707                                   VT, Operand, SRIdxVal);
8708   return SDValue(Subreg, 0);
8709 }
8710 
8711 /// getTargetInsertSubreg - A convenience function for creating
8712 /// TargetOpcode::INSERT_SUBREG nodes.
8713 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8714                                             SDValue Operand, SDValue Subreg) {
8715   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8716   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8717                                   VT, Operand, Subreg, SRIdxVal);
8718   return SDValue(Result, 0);
8719 }
8720 
8721 /// getNodeIfExists - Get the specified node if it's already available, or
8722 /// else return NULL.
8723 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8724                                       ArrayRef<SDValue> Ops) {
8725   SDNodeFlags Flags;
8726   if (Inserter)
8727     Flags = Inserter->getFlags();
8728   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8729 }
8730 
8731 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8732                                       ArrayRef<SDValue> Ops,
8733                                       const SDNodeFlags Flags) {
8734   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8735     FoldingSetNodeID ID;
8736     AddNodeIDNode(ID, Opcode, VTList, Ops);
8737     void *IP = nullptr;
8738     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8739       E->intersectFlagsWith(Flags);
8740       return E;
8741     }
8742   }
8743   return nullptr;
8744 }
8745 
8746 /// doesNodeExist - Check if a node exists without modifying its flags.
8747 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8748                                  ArrayRef<SDValue> Ops) {
8749   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8750     FoldingSetNodeID ID;
8751     AddNodeIDNode(ID, Opcode, VTList, Ops);
8752     void *IP = nullptr;
8753     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8754       return true;
8755   }
8756   return false;
8757 }
8758 
8759 /// getDbgValue - Creates a SDDbgValue node.
8760 ///
8761 /// SDNode
8762 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8763                                       SDNode *N, unsigned R, bool IsIndirect,
8764                                       const DebugLoc &DL, unsigned O) {
8765   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8766          "Expected inlined-at fields to agree");
8767   return new (DbgInfo->getAlloc())
8768       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
8769                  {}, IsIndirect, DL, O,
8770                  /*IsVariadic=*/false);
8771 }
8772 
8773 /// Constant
8774 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8775                                               DIExpression *Expr,
8776                                               const Value *C,
8777                                               const DebugLoc &DL, unsigned O) {
8778   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8779          "Expected inlined-at fields to agree");
8780   return new (DbgInfo->getAlloc())
8781       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
8782                  /*IsIndirect=*/false, DL, O,
8783                  /*IsVariadic=*/false);
8784 }
8785 
8786 /// FrameIndex
8787 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8788                                                 DIExpression *Expr, unsigned FI,
8789                                                 bool IsIndirect,
8790                                                 const DebugLoc &DL,
8791                                                 unsigned O) {
8792   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8793          "Expected inlined-at fields to agree");
8794   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8795 }
8796 
8797 /// FrameIndex with dependencies
8798 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8799                                                 DIExpression *Expr, unsigned FI,
8800                                                 ArrayRef<SDNode *> Dependencies,
8801                                                 bool IsIndirect,
8802                                                 const DebugLoc &DL,
8803                                                 unsigned O) {
8804   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8805          "Expected inlined-at fields to agree");
8806   return new (DbgInfo->getAlloc())
8807       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
8808                  Dependencies, IsIndirect, DL, O,
8809                  /*IsVariadic=*/false);
8810 }
8811 
8812 /// VReg
8813 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8814                                           unsigned VReg, bool IsIndirect,
8815                                           const DebugLoc &DL, unsigned O) {
8816   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8817          "Expected inlined-at fields to agree");
8818   return new (DbgInfo->getAlloc())
8819       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
8820                  {}, IsIndirect, DL, O,
8821                  /*IsVariadic=*/false);
8822 }
8823 
8824 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8825                                           ArrayRef<SDDbgOperand> Locs,
8826                                           ArrayRef<SDNode *> Dependencies,
8827                                           bool IsIndirect, const DebugLoc &DL,
8828                                           unsigned O, bool IsVariadic) {
8829   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8830          "Expected inlined-at fields to agree");
8831   return new (DbgInfo->getAlloc())
8832       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
8833                  DL, O, IsVariadic);
8834 }
8835 
8836 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8837                                      unsigned OffsetInBits, unsigned SizeInBits,
8838                                      bool InvalidateDbg) {
8839   SDNode *FromNode = From.getNode();
8840   SDNode *ToNode = To.getNode();
8841   assert(FromNode && ToNode && "Can't modify dbg values");
8842 
8843   // PR35338
8844   // TODO: assert(From != To && "Redundant dbg value transfer");
8845   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8846   if (From == To || FromNode == ToNode)
8847     return;
8848 
8849   if (!FromNode->getHasDebugValue())
8850     return;
8851 
8852   SDDbgOperand FromLocOp =
8853       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8854   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8855 
8856   SmallVector<SDDbgValue *, 2> ClonedDVs;
8857   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8858     if (Dbg->isInvalidated())
8859       continue;
8860 
8861     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8862 
8863     // Create a new location ops vector that is equal to the old vector, but
8864     // with each instance of FromLocOp replaced with ToLocOp.
8865     bool Changed = false;
8866     auto NewLocOps = Dbg->copyLocationOps();
8867     std::replace_if(
8868         NewLocOps.begin(), NewLocOps.end(),
8869         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8870           bool Match = Op == FromLocOp;
8871           Changed |= Match;
8872           return Match;
8873         },
8874         ToLocOp);
8875     // Ignore this SDDbgValue if we didn't find a matching location.
8876     if (!Changed)
8877       continue;
8878 
8879     DIVariable *Var = Dbg->getVariable();
8880     auto *Expr = Dbg->getExpression();
8881     // If a fragment is requested, update the expression.
8882     if (SizeInBits) {
8883       // When splitting a larger (e.g., sign-extended) value whose
8884       // lower bits are described with an SDDbgValue, do not attempt
8885       // to transfer the SDDbgValue to the upper bits.
8886       if (auto FI = Expr->getFragmentInfo())
8887         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8888           continue;
8889       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8890                                                              SizeInBits);
8891       if (!Fragment)
8892         continue;
8893       Expr = *Fragment;
8894     }
8895 
8896     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
8897     // Clone the SDDbgValue and move it to To.
8898     SDDbgValue *Clone = getDbgValueList(
8899         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
8900         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8901         Dbg->isVariadic());
8902     ClonedDVs.push_back(Clone);
8903 
8904     if (InvalidateDbg) {
8905       // Invalidate value and indicate the SDDbgValue should not be emitted.
8906       Dbg->setIsInvalidated();
8907       Dbg->setIsEmitted();
8908     }
8909   }
8910 
8911   for (SDDbgValue *Dbg : ClonedDVs) {
8912     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8913            "Transferred DbgValues should depend on the new SDNode");
8914     AddDbgValue(Dbg, false);
8915   }
8916 }
8917 
8918 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8919   if (!N.getHasDebugValue())
8920     return;
8921 
8922   SmallVector<SDDbgValue *, 2> ClonedDVs;
8923   for (auto DV : GetDbgValues(&N)) {
8924     if (DV->isInvalidated())
8925       continue;
8926     switch (N.getOpcode()) {
8927     default:
8928       break;
8929     case ISD::ADD:
8930       SDValue N0 = N.getOperand(0);
8931       SDValue N1 = N.getOperand(1);
8932       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8933           isConstantIntBuildVectorOrConstantInt(N1)) {
8934         uint64_t Offset = N.getConstantOperandVal(1);
8935 
8936         // Rewrite an ADD constant node into a DIExpression. Since we are
8937         // performing arithmetic to compute the variable's *value* in the
8938         // DIExpression, we need to mark the expression with a
8939         // DW_OP_stack_value.
8940         auto *DIExpr = DV->getExpression();
8941         auto NewLocOps = DV->copyLocationOps();
8942         bool Changed = false;
8943         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8944           // We're not given a ResNo to compare against because the whole
8945           // node is going away. We know that any ISD::ADD only has one
8946           // result, so we can assume any node match is using the result.
8947           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8948               NewLocOps[i].getSDNode() != &N)
8949             continue;
8950           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8951           SmallVector<uint64_t, 3> ExprOps;
8952           DIExpression::appendOffset(ExprOps, Offset);
8953           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8954           Changed = true;
8955         }
8956         (void)Changed;
8957         assert(Changed && "Salvage target doesn't use N");
8958 
8959         auto AdditionalDependencies = DV->getAdditionalDependencies();
8960         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8961                                             NewLocOps, AdditionalDependencies,
8962                                             DV->isIndirect(), DV->getDebugLoc(),
8963                                             DV->getOrder(), DV->isVariadic());
8964         ClonedDVs.push_back(Clone);
8965         DV->setIsInvalidated();
8966         DV->setIsEmitted();
8967         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8968                    N0.getNode()->dumprFull(this);
8969                    dbgs() << " into " << *DIExpr << '\n');
8970       }
8971     }
8972   }
8973 
8974   for (SDDbgValue *Dbg : ClonedDVs) {
8975     assert(!Dbg->getSDNodes().empty() &&
8976            "Salvaged DbgValue should depend on a new SDNode");
8977     AddDbgValue(Dbg, false);
8978   }
8979 }
8980 
8981 /// Creates a SDDbgLabel node.
8982 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8983                                       const DebugLoc &DL, unsigned O) {
8984   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8985          "Expected inlined-at fields to agree");
8986   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8987 }
8988 
8989 namespace {
8990 
8991 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8992 /// pointed to by a use iterator is deleted, increment the use iterator
8993 /// so that it doesn't dangle.
8994 ///
8995 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8996   SDNode::use_iterator &UI;
8997   SDNode::use_iterator &UE;
8998 
8999   void NodeDeleted(SDNode *N, SDNode *E) override {
9000     // Increment the iterator as needed.
9001     while (UI != UE && N == *UI)
9002       ++UI;
9003   }
9004 
9005 public:
9006   RAUWUpdateListener(SelectionDAG &d,
9007                      SDNode::use_iterator &ui,
9008                      SDNode::use_iterator &ue)
9009     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9010 };
9011 
9012 } // end anonymous namespace
9013 
9014 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9015 /// This can cause recursive merging of nodes in the DAG.
9016 ///
9017 /// This version assumes From has a single result value.
9018 ///
9019 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9020   SDNode *From = FromN.getNode();
9021   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9022          "Cannot replace with this method!");
9023   assert(From != To.getNode() && "Cannot replace uses of with self");
9024 
9025   // Preserve Debug Values
9026   transferDbgValues(FromN, To);
9027 
9028   // Iterate over all the existing uses of From. New uses will be added
9029   // to the beginning of the use list, which we avoid visiting.
9030   // This specifically avoids visiting uses of From that arise while the
9031   // replacement is happening, because any such uses would be the result
9032   // of CSE: If an existing node looks like From after one of its operands
9033   // is replaced by To, we don't want to replace of all its users with To
9034   // too. See PR3018 for more info.
9035   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9036   RAUWUpdateListener Listener(*this, UI, UE);
9037   while (UI != UE) {
9038     SDNode *User = *UI;
9039 
9040     // This node is about to morph, remove its old self from the CSE maps.
9041     RemoveNodeFromCSEMaps(User);
9042 
9043     // A user can appear in a use list multiple times, and when this
9044     // happens the uses are usually next to each other in the list.
9045     // To help reduce the number of CSE recomputations, process all
9046     // the uses of this user that we can find this way.
9047     do {
9048       SDUse &Use = UI.getUse();
9049       ++UI;
9050       Use.set(To);
9051       if (To->isDivergent() != From->isDivergent())
9052         updateDivergence(User);
9053     } while (UI != UE && *UI == User);
9054     // Now that we have modified User, add it back to the CSE maps.  If it
9055     // already exists there, recursively merge the results together.
9056     AddModifiedNodeToCSEMaps(User);
9057   }
9058 
9059   // If we just RAUW'd the root, take note.
9060   if (FromN == getRoot())
9061     setRoot(To);
9062 }
9063 
9064 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9065 /// This can cause recursive merging of nodes in the DAG.
9066 ///
9067 /// This version assumes that for each value of From, there is a
9068 /// corresponding value in To in the same position with the same type.
9069 ///
9070 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9071 #ifndef NDEBUG
9072   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9073     assert((!From->hasAnyUseOfValue(i) ||
9074             From->getValueType(i) == To->getValueType(i)) &&
9075            "Cannot use this version of ReplaceAllUsesWith!");
9076 #endif
9077 
9078   // Handle the trivial case.
9079   if (From == To)
9080     return;
9081 
9082   // Preserve Debug Info. Only do this if there's a use.
9083   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9084     if (From->hasAnyUseOfValue(i)) {
9085       assert((i < To->getNumValues()) && "Invalid To location");
9086       transferDbgValues(SDValue(From, i), SDValue(To, i));
9087     }
9088 
9089   // Iterate over just the existing users of From. See the comments in
9090   // the ReplaceAllUsesWith above.
9091   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9092   RAUWUpdateListener Listener(*this, UI, UE);
9093   while (UI != UE) {
9094     SDNode *User = *UI;
9095 
9096     // This node is about to morph, remove its old self from the CSE maps.
9097     RemoveNodeFromCSEMaps(User);
9098 
9099     // A user can appear in a use list multiple times, and when this
9100     // happens the uses are usually next to each other in the list.
9101     // To help reduce the number of CSE recomputations, process all
9102     // the uses of this user that we can find this way.
9103     do {
9104       SDUse &Use = UI.getUse();
9105       ++UI;
9106       Use.setNode(To);
9107       if (To->isDivergent() != From->isDivergent())
9108         updateDivergence(User);
9109     } while (UI != UE && *UI == User);
9110 
9111     // Now that we have modified User, add it back to the CSE maps.  If it
9112     // already exists there, recursively merge the results together.
9113     AddModifiedNodeToCSEMaps(User);
9114   }
9115 
9116   // If we just RAUW'd the root, take note.
9117   if (From == getRoot().getNode())
9118     setRoot(SDValue(To, getRoot().getResNo()));
9119 }
9120 
9121 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9122 /// This can cause recursive merging of nodes in the DAG.
9123 ///
9124 /// This version can replace From with any result values.  To must match the
9125 /// number and types of values returned by From.
9126 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9127   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9128     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9129 
9130   // Preserve Debug Info.
9131   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9132     transferDbgValues(SDValue(From, i), To[i]);
9133 
9134   // Iterate over just the existing users of From. See the comments in
9135   // the ReplaceAllUsesWith above.
9136   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9137   RAUWUpdateListener Listener(*this, UI, UE);
9138   while (UI != UE) {
9139     SDNode *User = *UI;
9140 
9141     // This node is about to morph, remove its old self from the CSE maps.
9142     RemoveNodeFromCSEMaps(User);
9143 
9144     // A user can appear in a use list multiple times, and when this happens the
9145     // uses are usually next to each other in the list.  To help reduce the
9146     // number of CSE and divergence recomputations, process all the uses of this
9147     // user that we can find this way.
9148     bool To_IsDivergent = false;
9149     do {
9150       SDUse &Use = UI.getUse();
9151       const SDValue &ToOp = To[Use.getResNo()];
9152       ++UI;
9153       Use.set(ToOp);
9154       To_IsDivergent |= ToOp->isDivergent();
9155     } while (UI != UE && *UI == User);
9156 
9157     if (To_IsDivergent != From->isDivergent())
9158       updateDivergence(User);
9159 
9160     // Now that we have modified User, add it back to the CSE maps.  If it
9161     // already exists there, recursively merge the results together.
9162     AddModifiedNodeToCSEMaps(User);
9163   }
9164 
9165   // If we just RAUW'd the root, take note.
9166   if (From == getRoot().getNode())
9167     setRoot(SDValue(To[getRoot().getResNo()]));
9168 }
9169 
9170 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9171 /// uses of other values produced by From.getNode() alone.  The Deleted
9172 /// vector is handled the same way as for ReplaceAllUsesWith.
9173 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9174   // Handle the really simple, really trivial case efficiently.
9175   if (From == To) return;
9176 
9177   // Handle the simple, trivial, case efficiently.
9178   if (From.getNode()->getNumValues() == 1) {
9179     ReplaceAllUsesWith(From, To);
9180     return;
9181   }
9182 
9183   // Preserve Debug Info.
9184   transferDbgValues(From, To);
9185 
9186   // Iterate over just the existing users of From. See the comments in
9187   // the ReplaceAllUsesWith above.
9188   SDNode::use_iterator UI = From.getNode()->use_begin(),
9189                        UE = From.getNode()->use_end();
9190   RAUWUpdateListener Listener(*this, UI, UE);
9191   while (UI != UE) {
9192     SDNode *User = *UI;
9193     bool UserRemovedFromCSEMaps = false;
9194 
9195     // A user can appear in a use list multiple times, and when this
9196     // happens the uses are usually next to each other in the list.
9197     // To help reduce the number of CSE recomputations, process all
9198     // the uses of this user that we can find this way.
9199     do {
9200       SDUse &Use = UI.getUse();
9201 
9202       // Skip uses of different values from the same node.
9203       if (Use.getResNo() != From.getResNo()) {
9204         ++UI;
9205         continue;
9206       }
9207 
9208       // If this node hasn't been modified yet, it's still in the CSE maps,
9209       // so remove its old self from the CSE maps.
9210       if (!UserRemovedFromCSEMaps) {
9211         RemoveNodeFromCSEMaps(User);
9212         UserRemovedFromCSEMaps = true;
9213       }
9214 
9215       ++UI;
9216       Use.set(To);
9217       if (To->isDivergent() != From->isDivergent())
9218         updateDivergence(User);
9219     } while (UI != UE && *UI == User);
9220     // We are iterating over all uses of the From node, so if a use
9221     // doesn't use the specific value, no changes are made.
9222     if (!UserRemovedFromCSEMaps)
9223       continue;
9224 
9225     // Now that we have modified User, add it back to the CSE maps.  If it
9226     // already exists there, recursively merge the results together.
9227     AddModifiedNodeToCSEMaps(User);
9228   }
9229 
9230   // If we just RAUW'd the root, take note.
9231   if (From == getRoot())
9232     setRoot(To);
9233 }
9234 
9235 namespace {
9236 
9237   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9238   /// to record information about a use.
9239   struct UseMemo {
9240     SDNode *User;
9241     unsigned Index;
9242     SDUse *Use;
9243   };
9244 
9245   /// operator< - Sort Memos by User.
9246   bool operator<(const UseMemo &L, const UseMemo &R) {
9247     return (intptr_t)L.User < (intptr_t)R.User;
9248   }
9249 
9250 } // end anonymous namespace
9251 
9252 bool SelectionDAG::calculateDivergence(SDNode *N) {
9253   if (TLI->isSDNodeAlwaysUniform(N)) {
9254     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9255            "Conflicting divergence information!");
9256     return false;
9257   }
9258   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9259     return true;
9260   for (auto &Op : N->ops()) {
9261     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9262       return true;
9263   }
9264   return false;
9265 }
9266 
9267 void SelectionDAG::updateDivergence(SDNode *N) {
9268   SmallVector<SDNode *, 16> Worklist(1, N);
9269   do {
9270     N = Worklist.pop_back_val();
9271     bool IsDivergent = calculateDivergence(N);
9272     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9273       N->SDNodeBits.IsDivergent = IsDivergent;
9274       llvm::append_range(Worklist, N->uses());
9275     }
9276   } while (!Worklist.empty());
9277 }
9278 
9279 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9280   DenseMap<SDNode *, unsigned> Degree;
9281   Order.reserve(AllNodes.size());
9282   for (auto &N : allnodes()) {
9283     unsigned NOps = N.getNumOperands();
9284     Degree[&N] = NOps;
9285     if (0 == NOps)
9286       Order.push_back(&N);
9287   }
9288   for (size_t I = 0; I != Order.size(); ++I) {
9289     SDNode *N = Order[I];
9290     for (auto U : N->uses()) {
9291       unsigned &UnsortedOps = Degree[U];
9292       if (0 == --UnsortedOps)
9293         Order.push_back(U);
9294     }
9295   }
9296 }
9297 
9298 #ifndef NDEBUG
9299 void SelectionDAG::VerifyDAGDiverence() {
9300   std::vector<SDNode *> TopoOrder;
9301   CreateTopologicalOrder(TopoOrder);
9302   for (auto *N : TopoOrder) {
9303     assert(calculateDivergence(N) == N->isDivergent() &&
9304            "Divergence bit inconsistency detected");
9305   }
9306 }
9307 #endif
9308 
9309 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9310 /// uses of other values produced by From.getNode() alone.  The same value
9311 /// may appear in both the From and To list.  The Deleted vector is
9312 /// handled the same way as for ReplaceAllUsesWith.
9313 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9314                                               const SDValue *To,
9315                                               unsigned Num){
9316   // Handle the simple, trivial case efficiently.
9317   if (Num == 1)
9318     return ReplaceAllUsesOfValueWith(*From, *To);
9319 
9320   transferDbgValues(*From, *To);
9321 
9322   // Read up all the uses and make records of them. This helps
9323   // processing new uses that are introduced during the
9324   // replacement process.
9325   SmallVector<UseMemo, 4> Uses;
9326   for (unsigned i = 0; i != Num; ++i) {
9327     unsigned FromResNo = From[i].getResNo();
9328     SDNode *FromNode = From[i].getNode();
9329     for (SDNode::use_iterator UI = FromNode->use_begin(),
9330          E = FromNode->use_end(); UI != E; ++UI) {
9331       SDUse &Use = UI.getUse();
9332       if (Use.getResNo() == FromResNo) {
9333         UseMemo Memo = { *UI, i, &Use };
9334         Uses.push_back(Memo);
9335       }
9336     }
9337   }
9338 
9339   // Sort the uses, so that all the uses from a given User are together.
9340   llvm::sort(Uses);
9341 
9342   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9343        UseIndex != UseIndexEnd; ) {
9344     // We know that this user uses some value of From.  If it is the right
9345     // value, update it.
9346     SDNode *User = Uses[UseIndex].User;
9347 
9348     // This node is about to morph, remove its old self from the CSE maps.
9349     RemoveNodeFromCSEMaps(User);
9350 
9351     // The Uses array is sorted, so all the uses for a given User
9352     // are next to each other in the list.
9353     // To help reduce the number of CSE recomputations, process all
9354     // the uses of this user that we can find this way.
9355     do {
9356       unsigned i = Uses[UseIndex].Index;
9357       SDUse &Use = *Uses[UseIndex].Use;
9358       ++UseIndex;
9359 
9360       Use.set(To[i]);
9361     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9362 
9363     // Now that we have modified User, add it back to the CSE maps.  If it
9364     // already exists there, recursively merge the results together.
9365     AddModifiedNodeToCSEMaps(User);
9366   }
9367 }
9368 
9369 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9370 /// based on their topological order. It returns the maximum id and a vector
9371 /// of the SDNodes* in assigned order by reference.
9372 unsigned SelectionDAG::AssignTopologicalOrder() {
9373   unsigned DAGSize = 0;
9374 
9375   // SortedPos tracks the progress of the algorithm. Nodes before it are
9376   // sorted, nodes after it are unsorted. When the algorithm completes
9377   // it is at the end of the list.
9378   allnodes_iterator SortedPos = allnodes_begin();
9379 
9380   // Visit all the nodes. Move nodes with no operands to the front of
9381   // the list immediately. Annotate nodes that do have operands with their
9382   // operand count. Before we do this, the Node Id fields of the nodes
9383   // may contain arbitrary values. After, the Node Id fields for nodes
9384   // before SortedPos will contain the topological sort index, and the
9385   // Node Id fields for nodes At SortedPos and after will contain the
9386   // count of outstanding operands.
9387   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9388     SDNode *N = &*I++;
9389     checkForCycles(N, this);
9390     unsigned Degree = N->getNumOperands();
9391     if (Degree == 0) {
9392       // A node with no uses, add it to the result array immediately.
9393       N->setNodeId(DAGSize++);
9394       allnodes_iterator Q(N);
9395       if (Q != SortedPos)
9396         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9397       assert(SortedPos != AllNodes.end() && "Overran node list");
9398       ++SortedPos;
9399     } else {
9400       // Temporarily use the Node Id as scratch space for the degree count.
9401       N->setNodeId(Degree);
9402     }
9403   }
9404 
9405   // Visit all the nodes. As we iterate, move nodes into sorted order,
9406   // such that by the time the end is reached all nodes will be sorted.
9407   for (SDNode &Node : allnodes()) {
9408     SDNode *N = &Node;
9409     checkForCycles(N, this);
9410     // N is in sorted position, so all its uses have one less operand
9411     // that needs to be sorted.
9412     for (SDNode *P : N->uses()) {
9413       unsigned Degree = P->getNodeId();
9414       assert(Degree != 0 && "Invalid node degree");
9415       --Degree;
9416       if (Degree == 0) {
9417         // All of P's operands are sorted, so P may sorted now.
9418         P->setNodeId(DAGSize++);
9419         if (P->getIterator() != SortedPos)
9420           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9421         assert(SortedPos != AllNodes.end() && "Overran node list");
9422         ++SortedPos;
9423       } else {
9424         // Update P's outstanding operand count.
9425         P->setNodeId(Degree);
9426       }
9427     }
9428     if (Node.getIterator() == SortedPos) {
9429 #ifndef NDEBUG
9430       allnodes_iterator I(N);
9431       SDNode *S = &*++I;
9432       dbgs() << "Overran sorted position:\n";
9433       S->dumprFull(this); dbgs() << "\n";
9434       dbgs() << "Checking if this is due to cycles\n";
9435       checkForCycles(this, true);
9436 #endif
9437       llvm_unreachable(nullptr);
9438     }
9439   }
9440 
9441   assert(SortedPos == AllNodes.end() &&
9442          "Topological sort incomplete!");
9443   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9444          "First node in topological sort is not the entry token!");
9445   assert(AllNodes.front().getNodeId() == 0 &&
9446          "First node in topological sort has non-zero id!");
9447   assert(AllNodes.front().getNumOperands() == 0 &&
9448          "First node in topological sort has operands!");
9449   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9450          "Last node in topologic sort has unexpected id!");
9451   assert(AllNodes.back().use_empty() &&
9452          "Last node in topologic sort has users!");
9453   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9454   return DAGSize;
9455 }
9456 
9457 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9458 /// value is produced by SD.
9459 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9460   for (SDNode *SD : DB->getSDNodes()) {
9461     if (!SD)
9462       continue;
9463     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9464     SD->setHasDebugValue(true);
9465   }
9466   DbgInfo->add(DB, isParameter);
9467 }
9468 
9469 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9470 
9471 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9472                                                    SDValue NewMemOpChain) {
9473   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9474   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9475   // The new memory operation must have the same position as the old load in
9476   // terms of memory dependency. Create a TokenFactor for the old load and new
9477   // memory operation and update uses of the old load's output chain to use that
9478   // TokenFactor.
9479   if (OldChain == NewMemOpChain || OldChain.use_empty())
9480     return NewMemOpChain;
9481 
9482   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9483                                 OldChain, NewMemOpChain);
9484   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9485   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9486   return TokenFactor;
9487 }
9488 
9489 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9490                                                    SDValue NewMemOp) {
9491   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9492   SDValue OldChain = SDValue(OldLoad, 1);
9493   SDValue NewMemOpChain = NewMemOp.getValue(1);
9494   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9495 }
9496 
9497 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9498                                                      Function **OutFunction) {
9499   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9500 
9501   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9502   auto *Module = MF->getFunction().getParent();
9503   auto *Function = Module->getFunction(Symbol);
9504 
9505   if (OutFunction != nullptr)
9506       *OutFunction = Function;
9507 
9508   if (Function != nullptr) {
9509     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9510     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9511   }
9512 
9513   std::string ErrorStr;
9514   raw_string_ostream ErrorFormatter(ErrorStr);
9515 
9516   ErrorFormatter << "Undefined external symbol ";
9517   ErrorFormatter << '"' << Symbol << '"';
9518   ErrorFormatter.flush();
9519 
9520   report_fatal_error(ErrorStr);
9521 }
9522 
9523 //===----------------------------------------------------------------------===//
9524 //                              SDNode Class
9525 //===----------------------------------------------------------------------===//
9526 
9527 bool llvm::isNullConstant(SDValue V) {
9528   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9529   return Const != nullptr && Const->isNullValue();
9530 }
9531 
9532 bool llvm::isNullFPConstant(SDValue V) {
9533   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9534   return Const != nullptr && Const->isZero() && !Const->isNegative();
9535 }
9536 
9537 bool llvm::isAllOnesConstant(SDValue V) {
9538   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9539   return Const != nullptr && Const->isAllOnesValue();
9540 }
9541 
9542 bool llvm::isOneConstant(SDValue V) {
9543   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9544   return Const != nullptr && Const->isOne();
9545 }
9546 
9547 SDValue llvm::peekThroughBitcasts(SDValue V) {
9548   while (V.getOpcode() == ISD::BITCAST)
9549     V = V.getOperand(0);
9550   return V;
9551 }
9552 
9553 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9554   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9555     V = V.getOperand(0);
9556   return V;
9557 }
9558 
9559 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9560   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9561     V = V.getOperand(0);
9562   return V;
9563 }
9564 
9565 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9566   if (V.getOpcode() != ISD::XOR)
9567     return false;
9568   V = peekThroughBitcasts(V.getOperand(1));
9569   unsigned NumBits = V.getScalarValueSizeInBits();
9570   ConstantSDNode *C =
9571       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9572   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9573 }
9574 
9575 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9576                                           bool AllowTruncation) {
9577   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9578     return CN;
9579 
9580   // SplatVectors can truncate their operands. Ignore that case here unless
9581   // AllowTruncation is set.
9582   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9583     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9584     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9585       EVT CVT = CN->getValueType(0);
9586       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9587       if (AllowTruncation || CVT == VecEltVT)
9588         return CN;
9589     }
9590   }
9591 
9592   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9593     BitVector UndefElements;
9594     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9595 
9596     // BuildVectors can truncate their operands. Ignore that case here unless
9597     // AllowTruncation is set.
9598     if (CN && (UndefElements.none() || AllowUndefs)) {
9599       EVT CVT = CN->getValueType(0);
9600       EVT NSVT = N.getValueType().getScalarType();
9601       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9602       if (AllowTruncation || (CVT == NSVT))
9603         return CN;
9604     }
9605   }
9606 
9607   return nullptr;
9608 }
9609 
9610 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9611                                           bool AllowUndefs,
9612                                           bool AllowTruncation) {
9613   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9614     return CN;
9615 
9616   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9617     BitVector UndefElements;
9618     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9619 
9620     // BuildVectors can truncate their operands. Ignore that case here unless
9621     // AllowTruncation is set.
9622     if (CN && (UndefElements.none() || AllowUndefs)) {
9623       EVT CVT = CN->getValueType(0);
9624       EVT NSVT = N.getValueType().getScalarType();
9625       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9626       if (AllowTruncation || (CVT == NSVT))
9627         return CN;
9628     }
9629   }
9630 
9631   return nullptr;
9632 }
9633 
9634 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9635   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9636     return CN;
9637 
9638   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9639     BitVector UndefElements;
9640     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9641     if (CN && (UndefElements.none() || AllowUndefs))
9642       return CN;
9643   }
9644 
9645   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9646     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9647       return CN;
9648 
9649   return nullptr;
9650 }
9651 
9652 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9653                                               const APInt &DemandedElts,
9654                                               bool AllowUndefs) {
9655   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9656     return CN;
9657 
9658   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9659     BitVector UndefElements;
9660     ConstantFPSDNode *CN =
9661         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9662     if (CN && (UndefElements.none() || AllowUndefs))
9663       return CN;
9664   }
9665 
9666   return nullptr;
9667 }
9668 
9669 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9670   // TODO: may want to use peekThroughBitcast() here.
9671   ConstantSDNode *C =
9672       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
9673   return C && C->isNullValue();
9674 }
9675 
9676 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9677   // TODO: may want to use peekThroughBitcast() here.
9678   unsigned BitWidth = N.getScalarValueSizeInBits();
9679   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9680   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9681 }
9682 
9683 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9684   N = peekThroughBitcasts(N);
9685   unsigned BitWidth = N.getScalarValueSizeInBits();
9686   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9687   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9688 }
9689 
9690 HandleSDNode::~HandleSDNode() {
9691   DropOperands();
9692 }
9693 
9694 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9695                                          const DebugLoc &DL,
9696                                          const GlobalValue *GA, EVT VT,
9697                                          int64_t o, unsigned TF)
9698     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9699   TheGlobal = GA;
9700 }
9701 
9702 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9703                                          EVT VT, unsigned SrcAS,
9704                                          unsigned DestAS)
9705     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9706       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9707 
9708 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9709                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9710     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9711   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9712   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9713   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9714   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9715 
9716   // We check here that the size of the memory operand fits within the size of
9717   // the MMO. This is because the MMO might indicate only a possible address
9718   // range instead of specifying the affected memory addresses precisely.
9719   // TODO: Make MachineMemOperands aware of scalable vectors.
9720   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9721          "Size mismatch!");
9722 }
9723 
9724 /// Profile - Gather unique data for the node.
9725 ///
9726 void SDNode::Profile(FoldingSetNodeID &ID) const {
9727   AddNodeIDNode(ID, this);
9728 }
9729 
9730 namespace {
9731 
9732   struct EVTArray {
9733     std::vector<EVT> VTs;
9734 
9735     EVTArray() {
9736       VTs.reserve(MVT::VALUETYPE_SIZE);
9737       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
9738         VTs.push_back(MVT((MVT::SimpleValueType)i));
9739     }
9740   };
9741 
9742 } // end anonymous namespace
9743 
9744 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9745 static ManagedStatic<EVTArray> SimpleVTArray;
9746 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9747 
9748 /// getValueTypeList - Return a pointer to the specified value type.
9749 ///
9750 const EVT *SDNode::getValueTypeList(EVT VT) {
9751   if (VT.isExtended()) {
9752     sys::SmartScopedLock<true> Lock(*VTMutex);
9753     return &(*EVTs->insert(VT).first);
9754   }
9755   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
9756   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9757 }
9758 
9759 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9760 /// indicated value.  This method ignores uses of other values defined by this
9761 /// operation.
9762 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9763   assert(Value < getNumValues() && "Bad value!");
9764 
9765   // TODO: Only iterate over uses of a given value of the node
9766   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9767     if (UI.getUse().getResNo() == Value) {
9768       if (NUses == 0)
9769         return false;
9770       --NUses;
9771     }
9772   }
9773 
9774   // Found exactly the right number of uses?
9775   return NUses == 0;
9776 }
9777 
9778 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9779 /// value. This method ignores uses of other values defined by this operation.
9780 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9781   assert(Value < getNumValues() && "Bad value!");
9782 
9783   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9784     if (UI.getUse().getResNo() == Value)
9785       return true;
9786 
9787   return false;
9788 }
9789 
9790 /// isOnlyUserOf - Return true if this node is the only use of N.
9791 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9792   bool Seen = false;
9793   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9794     SDNode *User = *I;
9795     if (User == this)
9796       Seen = true;
9797     else
9798       return false;
9799   }
9800 
9801   return Seen;
9802 }
9803 
9804 /// Return true if the only users of N are contained in Nodes.
9805 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9806   bool Seen = false;
9807   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9808     SDNode *User = *I;
9809     if (llvm::is_contained(Nodes, User))
9810       Seen = true;
9811     else
9812       return false;
9813   }
9814 
9815   return Seen;
9816 }
9817 
9818 /// isOperand - Return true if this node is an operand of N.
9819 bool SDValue::isOperandOf(const SDNode *N) const {
9820   return is_contained(N->op_values(), *this);
9821 }
9822 
9823 bool SDNode::isOperandOf(const SDNode *N) const {
9824   return any_of(N->op_values(),
9825                 [this](SDValue Op) { return this == Op.getNode(); });
9826 }
9827 
9828 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9829 /// be a chain) reaches the specified operand without crossing any
9830 /// side-effecting instructions on any chain path.  In practice, this looks
9831 /// through token factors and non-volatile loads.  In order to remain efficient,
9832 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9833 ///
9834 /// Note that we only need to examine chains when we're searching for
9835 /// side-effects; SelectionDAG requires that all side-effects are represented
9836 /// by chains, even if another operand would force a specific ordering. This
9837 /// constraint is necessary to allow transformations like splitting loads.
9838 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9839                                              unsigned Depth) const {
9840   if (*this == Dest) return true;
9841 
9842   // Don't search too deeply, we just want to be able to see through
9843   // TokenFactor's etc.
9844   if (Depth == 0) return false;
9845 
9846   // If this is a token factor, all inputs to the TF happen in parallel.
9847   if (getOpcode() == ISD::TokenFactor) {
9848     // First, try a shallow search.
9849     if (is_contained((*this)->ops(), Dest)) {
9850       // We found the chain we want as an operand of this TokenFactor.
9851       // Essentially, we reach the chain without side-effects if we could
9852       // serialize the TokenFactor into a simple chain of operations with
9853       // Dest as the last operation. This is automatically true if the
9854       // chain has one use: there are no other ordering constraints.
9855       // If the chain has more than one use, we give up: some other
9856       // use of Dest might force a side-effect between Dest and the current
9857       // node.
9858       if (Dest.hasOneUse())
9859         return true;
9860     }
9861     // Next, try a deep search: check whether every operand of the TokenFactor
9862     // reaches Dest.
9863     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9864       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9865     });
9866   }
9867 
9868   // Loads don't have side effects, look through them.
9869   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9870     if (Ld->isUnordered())
9871       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9872   }
9873   return false;
9874 }
9875 
9876 bool SDNode::hasPredecessor(const SDNode *N) const {
9877   SmallPtrSet<const SDNode *, 32> Visited;
9878   SmallVector<const SDNode *, 16> Worklist;
9879   Worklist.push_back(this);
9880   return hasPredecessorHelper(N, Visited, Worklist);
9881 }
9882 
9883 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9884   this->Flags.intersectWith(Flags);
9885 }
9886 
9887 SDValue
9888 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9889                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9890                                   bool AllowPartials) {
9891   // The pattern must end in an extract from index 0.
9892   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9893       !isNullConstant(Extract->getOperand(1)))
9894     return SDValue();
9895 
9896   // Match against one of the candidate binary ops.
9897   SDValue Op = Extract->getOperand(0);
9898   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9899         return Op.getOpcode() == unsigned(BinOp);
9900       }))
9901     return SDValue();
9902 
9903   // Floating-point reductions may require relaxed constraints on the final step
9904   // of the reduction because they may reorder intermediate operations.
9905   unsigned CandidateBinOp = Op.getOpcode();
9906   if (Op.getValueType().isFloatingPoint()) {
9907     SDNodeFlags Flags = Op->getFlags();
9908     switch (CandidateBinOp) {
9909     case ISD::FADD:
9910       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9911         return SDValue();
9912       break;
9913     default:
9914       llvm_unreachable("Unhandled FP opcode for binop reduction");
9915     }
9916   }
9917 
9918   // Matching failed - attempt to see if we did enough stages that a partial
9919   // reduction from a subvector is possible.
9920   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9921     if (!AllowPartials || !Op)
9922       return SDValue();
9923     EVT OpVT = Op.getValueType();
9924     EVT OpSVT = OpVT.getScalarType();
9925     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9926     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9927       return SDValue();
9928     BinOp = (ISD::NodeType)CandidateBinOp;
9929     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9930                    getVectorIdxConstant(0, SDLoc(Op)));
9931   };
9932 
9933   // At each stage, we're looking for something that looks like:
9934   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9935   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9936   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9937   // %a = binop <8 x i32> %op, %s
9938   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9939   // we expect something like:
9940   // <4,5,6,7,u,u,u,u>
9941   // <2,3,u,u,u,u,u,u>
9942   // <1,u,u,u,u,u,u,u>
9943   // While a partial reduction match would be:
9944   // <2,3,u,u,u,u,u,u>
9945   // <1,u,u,u,u,u,u,u>
9946   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9947   SDValue PrevOp;
9948   for (unsigned i = 0; i < Stages; ++i) {
9949     unsigned MaskEnd = (1 << i);
9950 
9951     if (Op.getOpcode() != CandidateBinOp)
9952       return PartialReduction(PrevOp, MaskEnd);
9953 
9954     SDValue Op0 = Op.getOperand(0);
9955     SDValue Op1 = Op.getOperand(1);
9956 
9957     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9958     if (Shuffle) {
9959       Op = Op1;
9960     } else {
9961       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9962       Op = Op0;
9963     }
9964 
9965     // The first operand of the shuffle should be the same as the other operand
9966     // of the binop.
9967     if (!Shuffle || Shuffle->getOperand(0) != Op)
9968       return PartialReduction(PrevOp, MaskEnd);
9969 
9970     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9971     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9972       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9973         return PartialReduction(PrevOp, MaskEnd);
9974 
9975     PrevOp = Op;
9976   }
9977 
9978   // Handle subvector reductions, which tend to appear after the shuffle
9979   // reduction stages.
9980   while (Op.getOpcode() == CandidateBinOp) {
9981     unsigned NumElts = Op.getValueType().getVectorNumElements();
9982     SDValue Op0 = Op.getOperand(0);
9983     SDValue Op1 = Op.getOperand(1);
9984     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9985         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9986         Op0.getOperand(0) != Op1.getOperand(0))
9987       break;
9988     SDValue Src = Op0.getOperand(0);
9989     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9990     if (NumSrcElts != (2 * NumElts))
9991       break;
9992     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9993           Op1.getConstantOperandAPInt(1) == NumElts) &&
9994         !(Op1.getConstantOperandAPInt(1) == 0 &&
9995           Op0.getConstantOperandAPInt(1) == NumElts))
9996       break;
9997     Op = Src;
9998   }
9999 
10000   BinOp = (ISD::NodeType)CandidateBinOp;
10001   return Op;
10002 }
10003 
10004 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10005   assert(N->getNumValues() == 1 &&
10006          "Can't unroll a vector with multiple results!");
10007 
10008   EVT VT = N->getValueType(0);
10009   unsigned NE = VT.getVectorNumElements();
10010   EVT EltVT = VT.getVectorElementType();
10011   SDLoc dl(N);
10012 
10013   SmallVector<SDValue, 8> Scalars;
10014   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10015 
10016   // If ResNE is 0, fully unroll the vector op.
10017   if (ResNE == 0)
10018     ResNE = NE;
10019   else if (NE > ResNE)
10020     NE = ResNE;
10021 
10022   unsigned i;
10023   for (i= 0; i != NE; ++i) {
10024     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10025       SDValue Operand = N->getOperand(j);
10026       EVT OperandVT = Operand.getValueType();
10027       if (OperandVT.isVector()) {
10028         // A vector operand; extract a single element.
10029         EVT OperandEltVT = OperandVT.getVectorElementType();
10030         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10031                               Operand, getVectorIdxConstant(i, dl));
10032       } else {
10033         // A scalar operand; just use it as is.
10034         Operands[j] = Operand;
10035       }
10036     }
10037 
10038     switch (N->getOpcode()) {
10039     default: {
10040       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10041                                 N->getFlags()));
10042       break;
10043     }
10044     case ISD::VSELECT:
10045       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10046       break;
10047     case ISD::SHL:
10048     case ISD::SRA:
10049     case ISD::SRL:
10050     case ISD::ROTL:
10051     case ISD::ROTR:
10052       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10053                                getShiftAmountOperand(Operands[0].getValueType(),
10054                                                      Operands[1])));
10055       break;
10056     case ISD::SIGN_EXTEND_INREG: {
10057       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10058       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10059                                 Operands[0],
10060                                 getValueType(ExtVT)));
10061     }
10062     }
10063   }
10064 
10065   for (; i < ResNE; ++i)
10066     Scalars.push_back(getUNDEF(EltVT));
10067 
10068   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10069   return getBuildVector(VecVT, dl, Scalars);
10070 }
10071 
10072 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10073     SDNode *N, unsigned ResNE) {
10074   unsigned Opcode = N->getOpcode();
10075   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10076           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10077           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10078          "Expected an overflow opcode");
10079 
10080   EVT ResVT = N->getValueType(0);
10081   EVT OvVT = N->getValueType(1);
10082   EVT ResEltVT = ResVT.getVectorElementType();
10083   EVT OvEltVT = OvVT.getVectorElementType();
10084   SDLoc dl(N);
10085 
10086   // If ResNE is 0, fully unroll the vector op.
10087   unsigned NE = ResVT.getVectorNumElements();
10088   if (ResNE == 0)
10089     ResNE = NE;
10090   else if (NE > ResNE)
10091     NE = ResNE;
10092 
10093   SmallVector<SDValue, 8> LHSScalars;
10094   SmallVector<SDValue, 8> RHSScalars;
10095   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10096   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10097 
10098   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10099   SDVTList VTs = getVTList(ResEltVT, SVT);
10100   SmallVector<SDValue, 8> ResScalars;
10101   SmallVector<SDValue, 8> OvScalars;
10102   for (unsigned i = 0; i < NE; ++i) {
10103     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10104     SDValue Ov =
10105         getSelect(dl, OvEltVT, Res.getValue(1),
10106                   getBoolConstant(true, dl, OvEltVT, ResVT),
10107                   getConstant(0, dl, OvEltVT));
10108 
10109     ResScalars.push_back(Res);
10110     OvScalars.push_back(Ov);
10111   }
10112 
10113   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10114   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10115 
10116   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10117   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10118   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10119                         getBuildVector(NewOvVT, dl, OvScalars));
10120 }
10121 
10122 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10123                                                   LoadSDNode *Base,
10124                                                   unsigned Bytes,
10125                                                   int Dist) const {
10126   if (LD->isVolatile() || Base->isVolatile())
10127     return false;
10128   // TODO: probably too restrictive for atomics, revisit
10129   if (!LD->isSimple())
10130     return false;
10131   if (LD->isIndexed() || Base->isIndexed())
10132     return false;
10133   if (LD->getChain() != Base->getChain())
10134     return false;
10135   EVT VT = LD->getValueType(0);
10136   if (VT.getSizeInBits() / 8 != Bytes)
10137     return false;
10138 
10139   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10140   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10141 
10142   int64_t Offset = 0;
10143   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10144     return (Dist * Bytes == Offset);
10145   return false;
10146 }
10147 
10148 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10149 /// if it cannot be inferred.
10150 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10151   // If this is a GlobalAddress + cst, return the alignment.
10152   const GlobalValue *GV = nullptr;
10153   int64_t GVOffset = 0;
10154   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10155     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10156     KnownBits Known(PtrWidth);
10157     llvm::computeKnownBits(GV, Known, getDataLayout());
10158     unsigned AlignBits = Known.countMinTrailingZeros();
10159     if (AlignBits)
10160       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10161   }
10162 
10163   // If this is a direct reference to a stack slot, use information about the
10164   // stack slot's alignment.
10165   int FrameIdx = INT_MIN;
10166   int64_t FrameOffset = 0;
10167   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10168     FrameIdx = FI->getIndex();
10169   } else if (isBaseWithConstantOffset(Ptr) &&
10170              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10171     // Handle FI+Cst
10172     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10173     FrameOffset = Ptr.getConstantOperandVal(1);
10174   }
10175 
10176   if (FrameIdx != INT_MIN) {
10177     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10178     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10179   }
10180 
10181   return None;
10182 }
10183 
10184 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10185 /// which is split (or expanded) into two not necessarily identical pieces.
10186 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10187   // Currently all types are split in half.
10188   EVT LoVT, HiVT;
10189   if (!VT.isVector())
10190     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10191   else
10192     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10193 
10194   return std::make_pair(LoVT, HiVT);
10195 }
10196 
10197 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10198 /// type, dependent on an enveloping VT that has been split into two identical
10199 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10200 std::pair<EVT, EVT>
10201 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10202                                        bool *HiIsEmpty) const {
10203   EVT EltTp = VT.getVectorElementType();
10204   // Examples:
10205   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10206   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10207   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10208   //   etc.
10209   ElementCount VTNumElts = VT.getVectorElementCount();
10210   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10211   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10212          "Mixing fixed width and scalable vectors when enveloping a type");
10213   EVT LoVT, HiVT;
10214   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10215     LoVT = EnvVT;
10216     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10217     *HiIsEmpty = false;
10218   } else {
10219     // Flag that hi type has zero storage size, but return split envelop type
10220     // (this would be easier if vector types with zero elements were allowed).
10221     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10222     HiVT = EnvVT;
10223     *HiIsEmpty = true;
10224   }
10225   return std::make_pair(LoVT, HiVT);
10226 }
10227 
10228 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10229 /// low/high part.
10230 std::pair<SDValue, SDValue>
10231 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10232                           const EVT &HiVT) {
10233   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10234          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10235          "Splitting vector with an invalid mixture of fixed and scalable "
10236          "vector types");
10237   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10238              N.getValueType().getVectorMinNumElements() &&
10239          "More vector elements requested than available!");
10240   SDValue Lo, Hi;
10241   Lo =
10242       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10243   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10244   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10245   // IDX with the runtime scaling factor of the result vector type. For
10246   // fixed-width result vectors, that runtime scaling factor is 1.
10247   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10248                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10249   return std::make_pair(Lo, Hi);
10250 }
10251 
10252 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10253 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10254   EVT VT = N.getValueType();
10255   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10256                                 NextPowerOf2(VT.getVectorNumElements()));
10257   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10258                  getVectorIdxConstant(0, DL));
10259 }
10260 
10261 void SelectionDAG::ExtractVectorElements(SDValue Op,
10262                                          SmallVectorImpl<SDValue> &Args,
10263                                          unsigned Start, unsigned Count,
10264                                          EVT EltVT) {
10265   EVT VT = Op.getValueType();
10266   if (Count == 0)
10267     Count = VT.getVectorNumElements();
10268   if (EltVT == EVT())
10269     EltVT = VT.getVectorElementType();
10270   SDLoc SL(Op);
10271   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10272     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10273                            getVectorIdxConstant(i, SL)));
10274   }
10275 }
10276 
10277 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10278 unsigned GlobalAddressSDNode::getAddressSpace() const {
10279   return getGlobal()->getType()->getAddressSpace();
10280 }
10281 
10282 Type *ConstantPoolSDNode::getType() const {
10283   if (isMachineConstantPoolEntry())
10284     return Val.MachineCPVal->getType();
10285   return Val.ConstVal->getType();
10286 }
10287 
10288 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10289                                         unsigned &SplatBitSize,
10290                                         bool &HasAnyUndefs,
10291                                         unsigned MinSplatBits,
10292                                         bool IsBigEndian) const {
10293   EVT VT = getValueType(0);
10294   assert(VT.isVector() && "Expected a vector type");
10295   unsigned VecWidth = VT.getSizeInBits();
10296   if (MinSplatBits > VecWidth)
10297     return false;
10298 
10299   // FIXME: The widths are based on this node's type, but build vectors can
10300   // truncate their operands.
10301   SplatValue = APInt(VecWidth, 0);
10302   SplatUndef = APInt(VecWidth, 0);
10303 
10304   // Get the bits. Bits with undefined values (when the corresponding element
10305   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10306   // in SplatValue. If any of the values are not constant, give up and return
10307   // false.
10308   unsigned int NumOps = getNumOperands();
10309   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10310   unsigned EltWidth = VT.getScalarSizeInBits();
10311 
10312   for (unsigned j = 0; j < NumOps; ++j) {
10313     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10314     SDValue OpVal = getOperand(i);
10315     unsigned BitPos = j * EltWidth;
10316 
10317     if (OpVal.isUndef())
10318       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10319     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10320       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10321     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10322       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10323     else
10324       return false;
10325   }
10326 
10327   // The build_vector is all constants or undefs. Find the smallest element
10328   // size that splats the vector.
10329   HasAnyUndefs = (SplatUndef != 0);
10330 
10331   // FIXME: This does not work for vectors with elements less than 8 bits.
10332   while (VecWidth > 8) {
10333     unsigned HalfSize = VecWidth / 2;
10334     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10335     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10336     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10337     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10338 
10339     // If the two halves do not match (ignoring undef bits), stop here.
10340     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10341         MinSplatBits > HalfSize)
10342       break;
10343 
10344     SplatValue = HighValue | LowValue;
10345     SplatUndef = HighUndef & LowUndef;
10346 
10347     VecWidth = HalfSize;
10348   }
10349 
10350   SplatBitSize = VecWidth;
10351   return true;
10352 }
10353 
10354 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10355                                          BitVector *UndefElements) const {
10356   unsigned NumOps = getNumOperands();
10357   if (UndefElements) {
10358     UndefElements->clear();
10359     UndefElements->resize(NumOps);
10360   }
10361   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10362   if (!DemandedElts)
10363     return SDValue();
10364   SDValue Splatted;
10365   for (unsigned i = 0; i != NumOps; ++i) {
10366     if (!DemandedElts[i])
10367       continue;
10368     SDValue Op = getOperand(i);
10369     if (Op.isUndef()) {
10370       if (UndefElements)
10371         (*UndefElements)[i] = true;
10372     } else if (!Splatted) {
10373       Splatted = Op;
10374     } else if (Splatted != Op) {
10375       return SDValue();
10376     }
10377   }
10378 
10379   if (!Splatted) {
10380     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10381     assert(getOperand(FirstDemandedIdx).isUndef() &&
10382            "Can only have a splat without a constant for all undefs.");
10383     return getOperand(FirstDemandedIdx);
10384   }
10385 
10386   return Splatted;
10387 }
10388 
10389 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10390   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10391   return getSplatValue(DemandedElts, UndefElements);
10392 }
10393 
10394 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10395                                             SmallVectorImpl<SDValue> &Sequence,
10396                                             BitVector *UndefElements) const {
10397   unsigned NumOps = getNumOperands();
10398   Sequence.clear();
10399   if (UndefElements) {
10400     UndefElements->clear();
10401     UndefElements->resize(NumOps);
10402   }
10403   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10404   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10405     return false;
10406 
10407   // Set the undefs even if we don't find a sequence (like getSplatValue).
10408   if (UndefElements)
10409     for (unsigned I = 0; I != NumOps; ++I)
10410       if (DemandedElts[I] && getOperand(I).isUndef())
10411         (*UndefElements)[I] = true;
10412 
10413   // Iteratively widen the sequence length looking for repetitions.
10414   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10415     Sequence.append(SeqLen, SDValue());
10416     for (unsigned I = 0; I != NumOps; ++I) {
10417       if (!DemandedElts[I])
10418         continue;
10419       SDValue &SeqOp = Sequence[I % SeqLen];
10420       SDValue Op = getOperand(I);
10421       if (Op.isUndef()) {
10422         if (!SeqOp)
10423           SeqOp = Op;
10424         continue;
10425       }
10426       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10427         Sequence.clear();
10428         break;
10429       }
10430       SeqOp = Op;
10431     }
10432     if (!Sequence.empty())
10433       return true;
10434   }
10435 
10436   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10437   return false;
10438 }
10439 
10440 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10441                                             BitVector *UndefElements) const {
10442   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10443   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10444 }
10445 
10446 ConstantSDNode *
10447 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10448                                         BitVector *UndefElements) const {
10449   return dyn_cast_or_null<ConstantSDNode>(
10450       getSplatValue(DemandedElts, UndefElements));
10451 }
10452 
10453 ConstantSDNode *
10454 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10455   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10456 }
10457 
10458 ConstantFPSDNode *
10459 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10460                                           BitVector *UndefElements) const {
10461   return dyn_cast_or_null<ConstantFPSDNode>(
10462       getSplatValue(DemandedElts, UndefElements));
10463 }
10464 
10465 ConstantFPSDNode *
10466 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10467   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10468 }
10469 
10470 int32_t
10471 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10472                                                    uint32_t BitWidth) const {
10473   if (ConstantFPSDNode *CN =
10474           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10475     bool IsExact;
10476     APSInt IntVal(BitWidth);
10477     const APFloat &APF = CN->getValueAPF();
10478     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10479             APFloat::opOK ||
10480         !IsExact)
10481       return -1;
10482 
10483     return IntVal.exactLogBase2();
10484   }
10485   return -1;
10486 }
10487 
10488 bool BuildVectorSDNode::isConstant() const {
10489   for (const SDValue &Op : op_values()) {
10490     unsigned Opc = Op.getOpcode();
10491     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10492       return false;
10493   }
10494   return true;
10495 }
10496 
10497 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10498   // Find the first non-undef value in the shuffle mask.
10499   unsigned i, e;
10500   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10501     /* search */;
10502 
10503   // If all elements are undefined, this shuffle can be considered a splat
10504   // (although it should eventually get simplified away completely).
10505   if (i == e)
10506     return true;
10507 
10508   // Make sure all remaining elements are either undef or the same as the first
10509   // non-undef value.
10510   for (int Idx = Mask[i]; i != e; ++i)
10511     if (Mask[i] >= 0 && Mask[i] != Idx)
10512       return false;
10513   return true;
10514 }
10515 
10516 // Returns the SDNode if it is a constant integer BuildVector
10517 // or constant integer.
10518 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10519   if (isa<ConstantSDNode>(N))
10520     return N.getNode();
10521   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10522     return N.getNode();
10523   // Treat a GlobalAddress supporting constant offset folding as a
10524   // constant integer.
10525   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10526     if (GA->getOpcode() == ISD::GlobalAddress &&
10527         TLI->isOffsetFoldingLegal(GA))
10528       return GA;
10529   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10530       isa<ConstantSDNode>(N.getOperand(0)))
10531     return N.getNode();
10532   return nullptr;
10533 }
10534 
10535 // Returns the SDNode if it is a constant float BuildVector
10536 // or constant float.
10537 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10538   if (isa<ConstantFPSDNode>(N))
10539     return N.getNode();
10540 
10541   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10542     return N.getNode();
10543 
10544   return nullptr;
10545 }
10546 
10547 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10548   assert(!Node->OperandList && "Node already has operands");
10549   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10550          "too many operands to fit into SDNode");
10551   SDUse *Ops = OperandRecycler.allocate(
10552       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10553 
10554   bool IsDivergent = false;
10555   for (unsigned I = 0; I != Vals.size(); ++I) {
10556     Ops[I].setUser(Node);
10557     Ops[I].setInitial(Vals[I]);
10558     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10559       IsDivergent |= Ops[I].getNode()->isDivergent();
10560   }
10561   Node->NumOperands = Vals.size();
10562   Node->OperandList = Ops;
10563   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10564     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10565     Node->SDNodeBits.IsDivergent = IsDivergent;
10566   }
10567   checkForCycles(Node);
10568 }
10569 
10570 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10571                                      SmallVectorImpl<SDValue> &Vals) {
10572   size_t Limit = SDNode::getMaxNumOperands();
10573   while (Vals.size() > Limit) {
10574     unsigned SliceIdx = Vals.size() - Limit;
10575     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10576     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10577     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10578     Vals.emplace_back(NewTF);
10579   }
10580   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10581 }
10582 
10583 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10584                                         EVT VT, SDNodeFlags Flags) {
10585   switch (Opcode) {
10586   default:
10587     return SDValue();
10588   case ISD::ADD:
10589   case ISD::OR:
10590   case ISD::XOR:
10591   case ISD::UMAX:
10592     return getConstant(0, DL, VT);
10593   case ISD::MUL:
10594     return getConstant(1, DL, VT);
10595   case ISD::AND:
10596   case ISD::UMIN:
10597     return getAllOnesConstant(DL, VT);
10598   case ISD::SMAX:
10599     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10600   case ISD::SMIN:
10601     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10602   case ISD::FADD:
10603     return getConstantFP(-0.0, DL, VT);
10604   case ISD::FMUL:
10605     return getConstantFP(1.0, DL, VT);
10606   case ISD::FMINNUM:
10607   case ISD::FMAXNUM: {
10608     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10609     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10610     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10611                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10612                         APFloat::getLargest(Semantics);
10613     if (Opcode == ISD::FMAXNUM)
10614       NeutralAF.changeSign();
10615 
10616     return getConstantFP(NeutralAF, DL, VT);
10617   }
10618   }
10619 }
10620 
10621 #ifndef NDEBUG
10622 static void checkForCyclesHelper(const SDNode *N,
10623                                  SmallPtrSetImpl<const SDNode*> &Visited,
10624                                  SmallPtrSetImpl<const SDNode*> &Checked,
10625                                  const llvm::SelectionDAG *DAG) {
10626   // If this node has already been checked, don't check it again.
10627   if (Checked.count(N))
10628     return;
10629 
10630   // If a node has already been visited on this depth-first walk, reject it as
10631   // a cycle.
10632   if (!Visited.insert(N).second) {
10633     errs() << "Detected cycle in SelectionDAG\n";
10634     dbgs() << "Offending node:\n";
10635     N->dumprFull(DAG); dbgs() << "\n";
10636     abort();
10637   }
10638 
10639   for (const SDValue &Op : N->op_values())
10640     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10641 
10642   Checked.insert(N);
10643   Visited.erase(N);
10644 }
10645 #endif
10646 
10647 void llvm::checkForCycles(const llvm::SDNode *N,
10648                           const llvm::SelectionDAG *DAG,
10649                           bool force) {
10650 #ifndef NDEBUG
10651   bool check = force;
10652 #ifdef EXPENSIVE_CHECKS
10653   check = true;
10654 #endif  // EXPENSIVE_CHECKS
10655   if (check) {
10656     assert(N && "Checking nonexistent SDNode");
10657     SmallPtrSet<const SDNode*, 32> visited;
10658     SmallPtrSet<const SDNode*, 32> checked;
10659     checkForCyclesHelper(N, visited, checked, DAG);
10660   }
10661 #endif  // !NDEBUG
10662 }
10663 
10664 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10665   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10666 }
10667