1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/CFG.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
36 #include "llvm/CodeGen/CodeGenCommonISel.h"
37 #include "llvm/CodeGen/FastISel.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/ISDOpcodes.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachinePassRegistry.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/SchedulerRegistry.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/StackProtector.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSubtargetInfo.h"
62 #include "llvm/CodeGen/ValueTypes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/InlineAsm.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Statepoint.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/User.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/InitializePasses.h"
84 #include "llvm/MC/MCInstrDesc.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/BranchProbability.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CodeGen.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/ErrorHandling.h"
93 #include "llvm/Support/KnownBits.h"
94 #include "llvm/Support/MachineValueType.h"
95 #include "llvm/Support/Timer.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
101 #include <algorithm>
102 #include <cassert>
103 #include <cstdint>
104 #include <iterator>
105 #include <limits>
106 #include <memory>
107 #include <optional>
108 #include <string>
109 #include <utility>
110 #include <vector>
111 
112 using namespace llvm;
113 
114 #define DEBUG_TYPE "isel"
115 
116 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
117 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
118 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
119 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
120 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
121 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
122 STATISTIC(NumFastIselFailLowerArguments,
123           "Number of entry blocks where fast isel failed to lower arguments");
124 
125 static cl::opt<int> EnableFastISelAbort(
126     "fast-isel-abort", cl::Hidden,
127     cl::desc("Enable abort calls when \"fast\" instruction selection "
128              "fails to lower an instruction: 0 disable the abort, 1 will "
129              "abort but for args, calls and terminators, 2 will also "
130              "abort for argument lowering, and 3 will never fallback "
131              "to SelectionDAG."));
132 
133 static cl::opt<bool> EnableFastISelFallbackReport(
134     "fast-isel-report-on-fallback", cl::Hidden,
135     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
136              "falls back to SelectionDAG."));
137 
138 static cl::opt<bool>
139 UseMBPI("use-mbpi",
140         cl::desc("use Machine Branch Probability Info"),
141         cl::init(true), cl::Hidden);
142 
143 #ifndef NDEBUG
144 static cl::opt<std::string>
145 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
146                         cl::desc("Only display the basic block whose name "
147                                  "matches this for all view-*-dags options"));
148 static cl::opt<bool>
149 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
150           cl::desc("Pop up a window to show dags before the first "
151                    "dag combine pass"));
152 static cl::opt<bool>
153 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
154           cl::desc("Pop up a window to show dags before legalize types"));
155 static cl::opt<bool>
156     ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
157                      cl::desc("Pop up a window to show dags before the post "
158                               "legalize types dag combine pass"));
159 static cl::opt<bool>
160     ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
161                      cl::desc("Pop up a window to show dags before legalize"));
162 static cl::opt<bool>
163 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
164           cl::desc("Pop up a window to show dags before the second "
165                    "dag combine pass"));
166 static cl::opt<bool>
167 ViewISelDAGs("view-isel-dags", cl::Hidden,
168           cl::desc("Pop up a window to show isel dags as they are selected"));
169 static cl::opt<bool>
170 ViewSchedDAGs("view-sched-dags", cl::Hidden,
171           cl::desc("Pop up a window to show sched dags as they are processed"));
172 static cl::opt<bool>
173 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
174       cl::desc("Pop up a window to show SUnit dags after they are processed"));
175 #else
176 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
177                   ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
178                   ViewDAGCombine2 = false, ViewISelDAGs = false,
179                   ViewSchedDAGs = false, ViewSUnitDAGs = false;
180 #endif
181 
182 //===---------------------------------------------------------------------===//
183 ///
184 /// RegisterScheduler class - Track the registration of instruction schedulers.
185 ///
186 //===---------------------------------------------------------------------===//
187 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
188     RegisterScheduler::Registry;
189 
190 //===---------------------------------------------------------------------===//
191 ///
192 /// ISHeuristic command line option for instruction schedulers.
193 ///
194 //===---------------------------------------------------------------------===//
195 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
196                RegisterPassParser<RegisterScheduler>>
197 ISHeuristic("pre-RA-sched",
198             cl::init(&createDefaultScheduler), cl::Hidden,
199             cl::desc("Instruction schedulers available (before register"
200                      " allocation):"));
201 
202 static RegisterScheduler
203 defaultListDAGScheduler("default", "Best scheduler for the target",
204                         createDefaultScheduler);
205 
206 namespace llvm {
207 
208   //===--------------------------------------------------------------------===//
209   /// This class is used by SelectionDAGISel to temporarily override
210   /// the optimization level on a per-function basis.
211   class OptLevelChanger {
212     SelectionDAGISel &IS;
213     CodeGenOpt::Level SavedOptLevel;
214     bool SavedFastISel;
215 
216   public:
217     OptLevelChanger(SelectionDAGISel &ISel,
218                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
219       SavedOptLevel = IS.OptLevel;
220       SavedFastISel = IS.TM.Options.EnableFastISel;
221       if (NewOptLevel == SavedOptLevel)
222         return;
223       IS.OptLevel = NewOptLevel;
224       IS.TM.setOptLevel(NewOptLevel);
225       LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
226                         << IS.MF->getFunction().getName() << "\n");
227       LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
228                         << NewOptLevel << "\n");
229       if (NewOptLevel == CodeGenOpt::None) {
230         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
231         LLVM_DEBUG(
232             dbgs() << "\tFastISel is "
233                    << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
234                    << "\n");
235       }
236     }
237 
238     ~OptLevelChanger() {
239       if (IS.OptLevel == SavedOptLevel)
240         return;
241       LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
242                         << IS.MF->getFunction().getName() << "\n");
243       LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
244                         << SavedOptLevel << "\n");
245       IS.OptLevel = SavedOptLevel;
246       IS.TM.setOptLevel(SavedOptLevel);
247       IS.TM.setFastISel(SavedFastISel);
248     }
249   };
250 
251   //===--------------------------------------------------------------------===//
252   /// createDefaultScheduler - This creates an instruction scheduler appropriate
253   /// for the target.
254   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
255                                              CodeGenOpt::Level OptLevel) {
256     const TargetLowering *TLI = IS->TLI;
257     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
258 
259     // Try first to see if the Target has its own way of selecting a scheduler
260     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
261       return SchedulerCtor(IS, OptLevel);
262     }
263 
264     if (OptLevel == CodeGenOpt::None ||
265         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
266         TLI->getSchedulingPreference() == Sched::Source)
267       return createSourceListDAGScheduler(IS, OptLevel);
268     if (TLI->getSchedulingPreference() == Sched::RegPressure)
269       return createBURRListDAGScheduler(IS, OptLevel);
270     if (TLI->getSchedulingPreference() == Sched::Hybrid)
271       return createHybridListDAGScheduler(IS, OptLevel);
272     if (TLI->getSchedulingPreference() == Sched::VLIW)
273       return createVLIWDAGScheduler(IS, OptLevel);
274     if (TLI->getSchedulingPreference() == Sched::Fast)
275       return createFastDAGScheduler(IS, OptLevel);
276     if (TLI->getSchedulingPreference() == Sched::Linearize)
277       return createDAGLinearizer(IS, OptLevel);
278     assert(TLI->getSchedulingPreference() == Sched::ILP &&
279            "Unknown sched type!");
280     return createILPListDAGScheduler(IS, OptLevel);
281   }
282 
283 } // end namespace llvm
284 
285 // EmitInstrWithCustomInserter - This method should be implemented by targets
286 // that mark instructions with the 'usesCustomInserter' flag.  These
287 // instructions are special in various ways, which require special support to
288 // insert.  The specified MachineInstr is created but not inserted into any
289 // basic blocks, and this method is called to expand it into a sequence of
290 // instructions, potentially also creating new basic blocks and control flow.
291 // When new basic blocks are inserted and the edges from MBB to its successors
292 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
293 // DenseMap.
294 MachineBasicBlock *
295 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
296                                             MachineBasicBlock *MBB) const {
297 #ifndef NDEBUG
298   dbgs() << "If a target marks an instruction with "
299           "'usesCustomInserter', it must implement "
300           "TargetLowering::EmitInstrWithCustomInserter!\n";
301 #endif
302   llvm_unreachable(nullptr);
303 }
304 
305 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
306                                                    SDNode *Node) const {
307   assert(!MI.hasPostISelHook() &&
308          "If a target marks an instruction with 'hasPostISelHook', "
309          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
310 }
311 
312 //===----------------------------------------------------------------------===//
313 // SelectionDAGISel code
314 //===----------------------------------------------------------------------===//
315 
316 SelectionDAGISel::SelectionDAGISel(char &ID, TargetMachine &tm,
317                                    CodeGenOpt::Level OL)
318     : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
319       SwiftError(new SwiftErrorValueTracking()),
320       CurDAG(new SelectionDAG(tm, OL)),
321       SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
322                                                 OL)),
323       OptLevel(OL) {
324   initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
325   initializeBranchProbabilityInfoWrapperPassPass(
326       *PassRegistry::getPassRegistry());
327   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
328   initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
329 }
330 
331 SelectionDAGISel::~SelectionDAGISel() {
332   delete CurDAG;
333   delete SwiftError;
334 }
335 
336 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
337   if (OptLevel != CodeGenOpt::None)
338     AU.addRequired<AAResultsWrapperPass>();
339   AU.addRequired<GCModuleInfo>();
340   AU.addRequired<StackProtector>();
341   AU.addPreserved<GCModuleInfo>();
342   AU.addRequired<TargetLibraryInfoWrapperPass>();
343   AU.addRequired<TargetTransformInfoWrapperPass>();
344   AU.addRequired<AssumptionCacheTracker>();
345   if (UseMBPI && OptLevel != CodeGenOpt::None)
346     AU.addRequired<BranchProbabilityInfoWrapperPass>();
347   AU.addRequired<ProfileSummaryInfoWrapperPass>();
348   // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for
349   // the module.
350   AU.addRequired<AssignmentTrackingAnalysis>();
351   AU.addPreserved<AssignmentTrackingAnalysis>();
352   if (OptLevel != CodeGenOpt::None)
353     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
354   MachineFunctionPass::getAnalysisUsage(AU);
355 }
356 
357 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
358                                          MachineModuleInfo &MMI) {
359   // Only needed for MSVC
360   if (!TT.isWindowsMSVCEnvironment())
361     return;
362 
363   // If it's already set, nothing to do.
364   if (MMI.usesMSVCFloatingPoint())
365     return;
366 
367   for (const Instruction &I : instructions(F)) {
368     if (I.getType()->isFPOrFPVectorTy()) {
369       MMI.setUsesMSVCFloatingPoint(true);
370       return;
371     }
372     for (const auto &Op : I.operands()) {
373       if (Op->getType()->isFPOrFPVectorTy()) {
374         MMI.setUsesMSVCFloatingPoint(true);
375         return;
376       }
377     }
378   }
379 }
380 
381 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
382   // If we already selected that function, we do not need to run SDISel.
383   if (mf.getProperties().hasProperty(
384           MachineFunctionProperties::Property::Selected))
385     return false;
386   // Do some sanity-checking on the command-line options.
387   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
388          "-fast-isel-abort > 0 requires -fast-isel");
389 
390   const Function &Fn = mf.getFunction();
391   MF = &mf;
392 
393   // Decide what flavour of variable location debug-info will be used, before
394   // we change the optimisation level.
395   bool InstrRef = mf.shouldUseDebugInstrRef();
396   mf.setUseDebugInstrRef(InstrRef);
397 
398   // Reset the target options before resetting the optimization
399   // level below.
400   // FIXME: This is a horrible hack and should be processed via
401   // codegen looking at the optimization level explicitly when
402   // it wants to look at it.
403   TM.resetTargetOptions(Fn);
404   // Reset OptLevel to None for optnone functions.
405   CodeGenOpt::Level NewOptLevel = OptLevel;
406   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
407     NewOptLevel = CodeGenOpt::None;
408   OptLevelChanger OLC(*this, NewOptLevel);
409 
410   TII = MF->getSubtarget().getInstrInfo();
411   TLI = MF->getSubtarget().getTargetLowering();
412   RegInfo = &MF->getRegInfo();
413   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
414   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
415   ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
416   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(mf.getFunction());
417   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
418   BlockFrequencyInfo *BFI = nullptr;
419   if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
420     BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
421 
422   FunctionVarLocs const *FnVarLocs = nullptr;
423   if (isAssignmentTrackingEnabled(*Fn.getParent()))
424     FnVarLocs = getAnalysis<AssignmentTrackingAnalysis>().getResults();
425 
426   LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
427 
428   CurDAG->init(*MF, *ORE, this, LibInfo,
429                getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI,
430                FnVarLocs);
431   FuncInfo->set(Fn, *MF, CurDAG);
432   SwiftError->setFunction(*MF);
433 
434   // Now get the optional analyzes if we want to.
435   // This is based on the possibly changed OptLevel (after optnone is taken
436   // into account).  That's unfortunate but OK because it just means we won't
437   // ask for passes that have been required anyway.
438 
439   if (UseMBPI && OptLevel != CodeGenOpt::None)
440     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
441   else
442     FuncInfo->BPI = nullptr;
443 
444   if (OptLevel != CodeGenOpt::None)
445     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
446   else
447     AA = nullptr;
448 
449   SDB->init(GFI, AA, AC, LibInfo);
450 
451   MF->setHasInlineAsm(false);
452 
453   FuncInfo->SplitCSR = false;
454 
455   // We split CSR if the target supports it for the given function
456   // and the function has only return exits.
457   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
458     FuncInfo->SplitCSR = true;
459 
460     // Collect all the return blocks.
461     for (const BasicBlock &BB : Fn) {
462       if (!succ_empty(&BB))
463         continue;
464 
465       const Instruction *Term = BB.getTerminator();
466       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
467         continue;
468 
469       // Bail out if the exit block is not Return nor Unreachable.
470       FuncInfo->SplitCSR = false;
471       break;
472     }
473   }
474 
475   MachineBasicBlock *EntryMBB = &MF->front();
476   if (FuncInfo->SplitCSR)
477     // This performs initialization so lowering for SplitCSR will be correct.
478     TLI->initializeSplitCSR(EntryMBB);
479 
480   SelectAllBasicBlocks(Fn);
481   if (FastISelFailed && EnableFastISelFallbackReport) {
482     DiagnosticInfoISelFallback DiagFallback(Fn);
483     Fn.getContext().diagnose(DiagFallback);
484   }
485 
486   // Replace forward-declared registers with the registers containing
487   // the desired value.
488   // Note: it is important that this happens **before** the call to
489   // EmitLiveInCopies, since implementations can skip copies of unused
490   // registers. If we don't apply the reg fixups before, some registers may
491   // appear as unused and will be skipped, resulting in bad MI.
492   MachineRegisterInfo &MRI = MF->getRegInfo();
493   for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
494                                               E = FuncInfo->RegFixups.end();
495        I != E; ++I) {
496     Register From = I->first;
497     Register To = I->second;
498     // If To is also scheduled to be replaced, find what its ultimate
499     // replacement is.
500     while (true) {
501       DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
502       if (J == E)
503         break;
504       To = J->second;
505     }
506     // Make sure the new register has a sufficiently constrained register class.
507     if (From.isVirtual() && To.isVirtual())
508       MRI.constrainRegClass(To, MRI.getRegClass(From));
509     // Replace it.
510 
511     // Replacing one register with another won't touch the kill flags.
512     // We need to conservatively clear the kill flags as a kill on the old
513     // register might dominate existing uses of the new register.
514     if (!MRI.use_empty(To))
515       MRI.clearKillFlags(From);
516     MRI.replaceRegWith(From, To);
517   }
518 
519   // If the first basic block in the function has live ins that need to be
520   // copied into vregs, emit the copies into the top of the block before
521   // emitting the code for the block.
522   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
523   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
524 
525   // Insert copies in the entry block and the return blocks.
526   if (FuncInfo->SplitCSR) {
527     SmallVector<MachineBasicBlock*, 4> Returns;
528     // Collect all the return blocks.
529     for (MachineBasicBlock &MBB : mf) {
530       if (!MBB.succ_empty())
531         continue;
532 
533       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
534       if (Term != MBB.end() && Term->isReturn()) {
535         Returns.push_back(&MBB);
536         continue;
537       }
538     }
539     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
540   }
541 
542   DenseMap<unsigned, unsigned> LiveInMap;
543   if (!FuncInfo->ArgDbgValues.empty())
544     for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
545       if (LI.second)
546         LiveInMap.insert(LI);
547 
548   // Insert DBG_VALUE instructions for function arguments to the entry block.
549   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
550     MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
551     assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
552            "Function parameters should not be described by DBG_VALUE_LIST.");
553     bool hasFI = MI->getDebugOperand(0).isFI();
554     Register Reg =
555         hasFI ? TRI.getFrameRegister(*MF) : MI->getDebugOperand(0).getReg();
556     if (Reg.isPhysical())
557       EntryMBB->insert(EntryMBB->begin(), MI);
558     else {
559       MachineInstr *Def = RegInfo->getVRegDef(Reg);
560       if (Def) {
561         MachineBasicBlock::iterator InsertPos = Def;
562         // FIXME: VR def may not be in entry block.
563         Def->getParent()->insert(std::next(InsertPos), MI);
564       } else
565         LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
566                           << Register::virtReg2Index(Reg) << "\n");
567     }
568 
569     // Don't try and extend through copies in instruction referencing mode.
570     if (InstrRef)
571       continue;
572 
573     // If Reg is live-in then update debug info to track its copy in a vreg.
574     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
575     if (LDI != LiveInMap.end()) {
576       assert(!hasFI && "There's no handling of frame pointer updating here yet "
577                        "- add if needed");
578       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
579       MachineBasicBlock::iterator InsertPos = Def;
580       const MDNode *Variable = MI->getDebugVariable();
581       const MDNode *Expr = MI->getDebugExpression();
582       DebugLoc DL = MI->getDebugLoc();
583       bool IsIndirect = MI->isIndirectDebugValue();
584       if (IsIndirect)
585         assert(MI->getDebugOffset().getImm() == 0 &&
586                "DBG_VALUE with nonzero offset");
587       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
588              "Expected inlined-at fields to agree");
589       assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
590              "Didn't expect to see a DBG_VALUE_LIST here");
591       // Def is never a terminator here, so it is ok to increment InsertPos.
592       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
593               IsIndirect, LDI->second, Variable, Expr);
594 
595       // If this vreg is directly copied into an exported register then
596       // that COPY instructions also need DBG_VALUE, if it is the only
597       // user of LDI->second.
598       MachineInstr *CopyUseMI = nullptr;
599       for (MachineRegisterInfo::use_instr_iterator
600            UI = RegInfo->use_instr_begin(LDI->second),
601            E = RegInfo->use_instr_end(); UI != E; ) {
602         MachineInstr *UseMI = &*(UI++);
603         if (UseMI->isDebugValue()) continue;
604         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
605           CopyUseMI = UseMI; continue;
606         }
607         // Otherwise this is another use or second copy use.
608         CopyUseMI = nullptr; break;
609       }
610       if (CopyUseMI &&
611           TRI.getRegSizeInBits(LDI->second, MRI) ==
612               TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
613         // Use MI's debug location, which describes where Variable was
614         // declared, rather than whatever is attached to CopyUseMI.
615         MachineInstr *NewMI =
616             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
617                     CopyUseMI->getOperand(0).getReg(), Variable, Expr);
618         MachineBasicBlock::iterator Pos = CopyUseMI;
619         EntryMBB->insertAfter(Pos, NewMI);
620       }
621     }
622   }
623 
624   // For debug-info, in instruction referencing mode, we need to perform some
625   // post-isel maintenence.
626   if (MF->useDebugInstrRef())
627     MF->finalizeDebugInstrRefs();
628 
629   // Determine if there are any calls in this machine function.
630   MachineFrameInfo &MFI = MF->getFrameInfo();
631   for (const auto &MBB : *MF) {
632     if (MFI.hasCalls() && MF->hasInlineAsm())
633       break;
634 
635     for (const auto &MI : MBB) {
636       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
637       if ((MCID.isCall() && !MCID.isReturn()) ||
638           MI.isStackAligningInlineAsm()) {
639         MFI.setHasCalls(true);
640       }
641       if (MI.isInlineAsm()) {
642         MF->setHasInlineAsm(true);
643       }
644     }
645   }
646 
647   // Determine if there is a call to setjmp in the machine function.
648   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
649 
650   // Determine if floating point is used for msvc
651   computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
652 
653   // Release function-specific state. SDB and CurDAG are already cleared
654   // at this point.
655   FuncInfo->clear();
656 
657   LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
658   LLVM_DEBUG(MF->print(dbgs()));
659 
660   return true;
661 }
662 
663 static void reportFastISelFailure(MachineFunction &MF,
664                                   OptimizationRemarkEmitter &ORE,
665                                   OptimizationRemarkMissed &R,
666                                   bool ShouldAbort) {
667   // Print the function name explicitly if we don't have a debug location (which
668   // makes the diagnostic less useful) or if we're going to emit a raw error.
669   if (!R.getLocation().isValid() || ShouldAbort)
670     R << (" (in function: " + MF.getName() + ")").str();
671 
672   if (ShouldAbort)
673     report_fatal_error(Twine(R.getMsg()));
674 
675   ORE.emit(R);
676   LLVM_DEBUG(dbgs() << R.getMsg() << "\n");
677 }
678 
679 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
680                                         BasicBlock::const_iterator End,
681                                         bool &HadTailCall) {
682   // Allow creating illegal types during DAG building for the basic block.
683   CurDAG->NewNodesMustHaveLegalTypes = false;
684 
685   // Lower the instructions. If a call is emitted as a tail call, cease emitting
686   // nodes for this block.
687   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
688     if (!ElidedArgCopyInstrs.count(&*I))
689       SDB->visit(*I);
690   }
691 
692   // Make sure the root of the DAG is up-to-date.
693   CurDAG->setRoot(SDB->getControlRoot());
694   HadTailCall = SDB->HasTailCall;
695   SDB->resolveOrClearDbgInfo();
696   SDB->clear();
697 
698   // Final step, emit the lowered DAG as machine code.
699   CodeGenAndEmitDAG();
700 }
701 
702 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
703   SmallPtrSet<SDNode *, 16> Added;
704   SmallVector<SDNode*, 128> Worklist;
705 
706   Worklist.push_back(CurDAG->getRoot().getNode());
707   Added.insert(CurDAG->getRoot().getNode());
708 
709   KnownBits Known;
710 
711   do {
712     SDNode *N = Worklist.pop_back_val();
713 
714     // Otherwise, add all chain operands to the worklist.
715     for (const SDValue &Op : N->op_values())
716       if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
717         Worklist.push_back(Op.getNode());
718 
719     // If this is a CopyToReg with a vreg dest, process it.
720     if (N->getOpcode() != ISD::CopyToReg)
721       continue;
722 
723     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
724     if (!Register::isVirtualRegister(DestReg))
725       continue;
726 
727     // Ignore non-integer values.
728     SDValue Src = N->getOperand(2);
729     EVT SrcVT = Src.getValueType();
730     if (!SrcVT.isInteger())
731       continue;
732 
733     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
734     Known = CurDAG->computeKnownBits(Src);
735     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
736   } while (!Worklist.empty());
737 }
738 
739 void SelectionDAGISel::CodeGenAndEmitDAG() {
740   StringRef GroupName = "sdag";
741   StringRef GroupDescription = "Instruction Selection and Scheduling";
742   std::string BlockName;
743   bool MatchFilterBB = false; (void)MatchFilterBB;
744 #ifndef NDEBUG
745   TargetTransformInfo &TTI =
746       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
747 #endif
748 
749   // Pre-type legalization allow creation of any node types.
750   CurDAG->NewNodesMustHaveLegalTypes = false;
751 
752 #ifndef NDEBUG
753   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
754                    FilterDAGBasicBlockName ==
755                        FuncInfo->MBB->getBasicBlock()->getName());
756 #endif
757 #ifdef NDEBUG
758   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
759       ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
760       ViewSUnitDAGs)
761 #endif
762   {
763     BlockName =
764         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
765   }
766   LLVM_DEBUG(dbgs() << "Initial selection DAG: "
767                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
768                     << "'\n";
769              CurDAG->dump());
770 
771 #ifndef NDEBUG
772   if (TTI.hasBranchDivergence())
773     CurDAG->VerifyDAGDivergence();
774 #endif
775 
776   if (ViewDAGCombine1 && MatchFilterBB)
777     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
778 
779   // Run the DAG combiner in pre-legalize mode.
780   {
781     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
782                        GroupDescription, TimePassesIsEnabled);
783     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
784   }
785 
786   LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
787                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
788                     << "'\n";
789              CurDAG->dump());
790 
791 #ifndef NDEBUG
792   if (TTI.hasBranchDivergence())
793     CurDAG->VerifyDAGDivergence();
794 #endif
795 
796   // Second step, hack on the DAG until it only uses operations and types that
797   // the target supports.
798   if (ViewLegalizeTypesDAGs && MatchFilterBB)
799     CurDAG->viewGraph("legalize-types input for " + BlockName);
800 
801   bool Changed;
802   {
803     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
804                        GroupDescription, TimePassesIsEnabled);
805     Changed = CurDAG->LegalizeTypes();
806   }
807 
808   LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
809                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
810                     << "'\n";
811              CurDAG->dump());
812 
813 #ifndef NDEBUG
814   if (TTI.hasBranchDivergence())
815     CurDAG->VerifyDAGDivergence();
816 #endif
817 
818   // Only allow creation of legal node types.
819   CurDAG->NewNodesMustHaveLegalTypes = true;
820 
821   if (Changed) {
822     if (ViewDAGCombineLT && MatchFilterBB)
823       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
824 
825     // Run the DAG combiner in post-type-legalize mode.
826     {
827       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
828                          GroupName, GroupDescription, TimePassesIsEnabled);
829       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
830     }
831 
832     LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
833                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
834                       << "'\n";
835                CurDAG->dump());
836 
837 #ifndef NDEBUG
838     if (TTI.hasBranchDivergence())
839       CurDAG->VerifyDAGDivergence();
840 #endif
841   }
842 
843   {
844     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
845                        GroupDescription, TimePassesIsEnabled);
846     Changed = CurDAG->LegalizeVectors();
847   }
848 
849   if (Changed) {
850     LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
851                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
852                       << "'\n";
853                CurDAG->dump());
854 
855 #ifndef NDEBUG
856     if (TTI.hasBranchDivergence())
857       CurDAG->VerifyDAGDivergence();
858 #endif
859 
860     {
861       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
862                          GroupDescription, TimePassesIsEnabled);
863       CurDAG->LegalizeTypes();
864     }
865 
866     LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
867                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
868                       << "'\n";
869                CurDAG->dump());
870 
871 #ifndef NDEBUG
872     if (TTI.hasBranchDivergence())
873       CurDAG->VerifyDAGDivergence();
874 #endif
875 
876     if (ViewDAGCombineLT && MatchFilterBB)
877       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
878 
879     // Run the DAG combiner in post-type-legalize mode.
880     {
881       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
882                          GroupName, GroupDescription, TimePassesIsEnabled);
883       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
884     }
885 
886     LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
887                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
888                       << "'\n";
889                CurDAG->dump());
890 
891 #ifndef NDEBUG
892     if (TTI.hasBranchDivergence())
893       CurDAG->VerifyDAGDivergence();
894 #endif
895   }
896 
897   if (ViewLegalizeDAGs && MatchFilterBB)
898     CurDAG->viewGraph("legalize input for " + BlockName);
899 
900   {
901     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
902                        GroupDescription, TimePassesIsEnabled);
903     CurDAG->Legalize();
904   }
905 
906   LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
907                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
908                     << "'\n";
909              CurDAG->dump());
910 
911 #ifndef NDEBUG
912   if (TTI.hasBranchDivergence())
913     CurDAG->VerifyDAGDivergence();
914 #endif
915 
916   if (ViewDAGCombine2 && MatchFilterBB)
917     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
918 
919   // Run the DAG combiner in post-legalize mode.
920   {
921     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
922                        GroupDescription, TimePassesIsEnabled);
923     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
924   }
925 
926   LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
927                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
928                     << "'\n";
929              CurDAG->dump());
930 
931 #ifndef NDEBUG
932   if (TTI.hasBranchDivergence())
933     CurDAG->VerifyDAGDivergence();
934 #endif
935 
936   if (OptLevel != CodeGenOpt::None)
937     ComputeLiveOutVRegInfo();
938 
939   if (ViewISelDAGs && MatchFilterBB)
940     CurDAG->viewGraph("isel input for " + BlockName);
941 
942   // Third, instruction select all of the operations to machine code, adding the
943   // code to the MachineBasicBlock.
944   {
945     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
946                        GroupDescription, TimePassesIsEnabled);
947     DoInstructionSelection();
948   }
949 
950   LLVM_DEBUG(dbgs() << "Selected selection DAG: "
951                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
952                     << "'\n";
953              CurDAG->dump());
954 
955   if (ViewSchedDAGs && MatchFilterBB)
956     CurDAG->viewGraph("scheduler input for " + BlockName);
957 
958   // Schedule machine code.
959   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
960   {
961     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
962                        GroupDescription, TimePassesIsEnabled);
963     Scheduler->Run(CurDAG, FuncInfo->MBB);
964   }
965 
966   if (ViewSUnitDAGs && MatchFilterBB)
967     Scheduler->viewGraph();
968 
969   // Emit machine code to BB.  This can change 'BB' to the last block being
970   // inserted into.
971   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
972   {
973     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
974                        GroupDescription, TimePassesIsEnabled);
975 
976     // FuncInfo->InsertPt is passed by reference and set to the end of the
977     // scheduled instructions.
978     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
979   }
980 
981   // If the block was split, make sure we update any references that are used to
982   // update PHI nodes later on.
983   if (FirstMBB != LastMBB)
984     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
985 
986   // Free the scheduler state.
987   {
988     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
989                        GroupDescription, TimePassesIsEnabled);
990     delete Scheduler;
991   }
992 
993   // Free the SelectionDAG state, now that we're finished with it.
994   CurDAG->clear();
995 }
996 
997 namespace {
998 
999 /// ISelUpdater - helper class to handle updates of the instruction selection
1000 /// graph.
1001 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1002   SelectionDAG::allnodes_iterator &ISelPosition;
1003 
1004 public:
1005   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1006     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1007 
1008   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1009   /// deleted is the current ISelPosition node, update ISelPosition.
1010   ///
1011   void NodeDeleted(SDNode *N, SDNode *E) override {
1012     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1013       ++ISelPosition;
1014   }
1015 
1016   /// NodeInserted - Handle new nodes inserted into the graph: propagate
1017   /// metadata from root nodes that also applies to new nodes, in case the root
1018   /// is later deleted.
1019   void NodeInserted(SDNode *N) override {
1020     SDNode *CurNode = &*ISelPosition;
1021     if (MDNode *MD = DAG.getPCSections(CurNode))
1022       DAG.addPCSections(N, MD);
1023   }
1024 };
1025 
1026 } // end anonymous namespace
1027 
1028 // This function is used to enforce the topological node id property
1029 // leveraged during instruction selection. Before the selection process all
1030 // nodes are given a non-negative id such that all nodes have a greater id than
1031 // their operands. As this holds transitively we can prune checks that a node N
1032 // is a predecessor of M another by not recursively checking through M's
1033 // operands if N's ID is larger than M's ID. This significantly improves
1034 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1035 
1036 // However, when we fuse multiple nodes into a single node during the
1037 // selection we may induce a predecessor relationship between inputs and
1038 // outputs of distinct nodes being merged, violating the topological property.
1039 // Should a fused node have a successor which has yet to be selected,
1040 // our legality checks would be incorrect. To avoid this we mark all unselected
1041 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1042 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1043 // We use bit-negation to more clearly enforce that node id -1 can only be
1044 // achieved by selected nodes. As the conversion is reversable to the original
1045 // Id, topological pruning can still be leveraged when looking for unselected
1046 // nodes. This method is called internally in all ISel replacement related
1047 // functions.
1048 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1049   SmallVector<SDNode *, 4> Nodes;
1050   Nodes.push_back(Node);
1051 
1052   while (!Nodes.empty()) {
1053     SDNode *N = Nodes.pop_back_val();
1054     for (auto *U : N->uses()) {
1055       auto UId = U->getNodeId();
1056       if (UId > 0) {
1057         InvalidateNodeId(U);
1058         Nodes.push_back(U);
1059       }
1060     }
1061   }
1062 }
1063 
1064 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1065 // NodeId with the equivalent node id which is invalid for topological
1066 // pruning.
1067 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1068   int InvalidId = -(N->getNodeId() + 1);
1069   N->setNodeId(InvalidId);
1070 }
1071 
1072 // getUninvalidatedNodeId - get original uninvalidated node id.
1073 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1074   int Id = N->getNodeId();
1075   if (Id < -1)
1076     return -(Id + 1);
1077   return Id;
1078 }
1079 
1080 void SelectionDAGISel::DoInstructionSelection() {
1081   LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1082                     << printMBBReference(*FuncInfo->MBB) << " '"
1083                     << FuncInfo->MBB->getName() << "'\n");
1084 
1085   PreprocessISelDAG();
1086 
1087   // Select target instructions for the DAG.
1088   {
1089     // Number all nodes with a topological order and set DAGSize.
1090     DAGSize = CurDAG->AssignTopologicalOrder();
1091 
1092     // Create a dummy node (which is not added to allnodes), that adds
1093     // a reference to the root node, preventing it from being deleted,
1094     // and tracking any changes of the root.
1095     HandleSDNode Dummy(CurDAG->getRoot());
1096     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1097     ++ISelPosition;
1098 
1099     // Make sure that ISelPosition gets properly updated when nodes are deleted
1100     // in calls made from this function. New nodes inherit relevant metadata.
1101     ISelUpdater ISU(*CurDAG, ISelPosition);
1102 
1103     // The AllNodes list is now topological-sorted. Visit the
1104     // nodes by starting at the end of the list (the root of the
1105     // graph) and preceding back toward the beginning (the entry
1106     // node).
1107     while (ISelPosition != CurDAG->allnodes_begin()) {
1108       SDNode *Node = &*--ISelPosition;
1109       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1110       // but there are currently some corner cases that it misses. Also, this
1111       // makes it theoretically possible to disable the DAGCombiner.
1112       if (Node->use_empty())
1113         continue;
1114 
1115 #ifndef NDEBUG
1116       SmallVector<SDNode *, 4> Nodes;
1117       Nodes.push_back(Node);
1118 
1119       while (!Nodes.empty()) {
1120         auto N = Nodes.pop_back_val();
1121         if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1122           continue;
1123         for (const SDValue &Op : N->op_values()) {
1124           if (Op->getOpcode() == ISD::TokenFactor)
1125             Nodes.push_back(Op.getNode());
1126           else {
1127             // We rely on topological ordering of node ids for checking for
1128             // cycles when fusing nodes during selection. All unselected nodes
1129             // successors of an already selected node should have a negative id.
1130             // This assertion will catch such cases. If this assertion triggers
1131             // it is likely you using DAG-level Value/Node replacement functions
1132             // (versus equivalent ISEL replacement) in backend-specific
1133             // selections. See comment in EnforceNodeIdInvariant for more
1134             // details.
1135             assert(Op->getNodeId() != -1 &&
1136                    "Node has already selected predecessor node");
1137           }
1138         }
1139       }
1140 #endif
1141 
1142       // When we are using non-default rounding modes or FP exception behavior
1143       // FP operations are represented by StrictFP pseudo-operations.  For
1144       // targets that do not (yet) understand strict FP operations directly,
1145       // we convert them to normal FP opcodes instead at this point.  This
1146       // will allow them to be handled by existing target-specific instruction
1147       // selectors.
1148       if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1149         // For some opcodes, we need to call TLI->getOperationAction using
1150         // the first operand type instead of the result type.  Note that this
1151         // must match what SelectionDAGLegalize::LegalizeOp is doing.
1152         EVT ActionVT;
1153         switch (Node->getOpcode()) {
1154         case ISD::STRICT_SINT_TO_FP:
1155         case ISD::STRICT_UINT_TO_FP:
1156         case ISD::STRICT_LRINT:
1157         case ISD::STRICT_LLRINT:
1158         case ISD::STRICT_LROUND:
1159         case ISD::STRICT_LLROUND:
1160         case ISD::STRICT_FSETCC:
1161         case ISD::STRICT_FSETCCS:
1162           ActionVT = Node->getOperand(1).getValueType();
1163           break;
1164         default:
1165           ActionVT = Node->getValueType(0);
1166           break;
1167         }
1168         if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1169             == TargetLowering::Expand)
1170           Node = CurDAG->mutateStrictFPToFP(Node);
1171       }
1172 
1173       LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1174                  Node->dump(CurDAG));
1175 
1176       Select(Node);
1177     }
1178 
1179     CurDAG->setRoot(Dummy.getValue());
1180   }
1181 
1182   LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1183 
1184   PostprocessISelDAG();
1185 }
1186 
1187 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1188   for (const User *U : CPI->users()) {
1189     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1190       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1191       if (IID == Intrinsic::eh_exceptionpointer ||
1192           IID == Intrinsic::eh_exceptioncode)
1193         return true;
1194     }
1195   }
1196   return false;
1197 }
1198 
1199 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1200 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1201 // and store the mapping in the function.
1202 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1203                                    const CatchPadInst *CPI) {
1204   MachineFunction *MF = MBB->getParent();
1205   // In case of single catch (...), we don't emit LSDA, so we don't need
1206   // this information.
1207   bool IsSingleCatchAllClause =
1208       CPI->arg_size() == 1 &&
1209       cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1210   // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1211   // and they don't need LSDA info
1212   bool IsCatchLongjmp = CPI->arg_size() == 0;
1213   if (!IsSingleCatchAllClause && !IsCatchLongjmp) {
1214     // Create a mapping from landing pad label to landing pad index.
1215     bool IntrFound = false;
1216     for (const User *U : CPI->users()) {
1217       if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1218         Intrinsic::ID IID = Call->getIntrinsicID();
1219         if (IID == Intrinsic::wasm_landingpad_index) {
1220           Value *IndexArg = Call->getArgOperand(1);
1221           int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1222           MF->setWasmLandingPadIndex(MBB, Index);
1223           IntrFound = true;
1224           break;
1225         }
1226       }
1227     }
1228     assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1229     (void)IntrFound;
1230   }
1231 }
1232 
1233 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1234 /// do other setup for EH landing-pad blocks.
1235 bool SelectionDAGISel::PrepareEHLandingPad() {
1236   MachineBasicBlock *MBB = FuncInfo->MBB;
1237   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1238   const BasicBlock *LLVMBB = MBB->getBasicBlock();
1239   const TargetRegisterClass *PtrRC =
1240       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1241 
1242   auto Pers = classifyEHPersonality(PersonalityFn);
1243 
1244   // Catchpads have one live-in register, which typically holds the exception
1245   // pointer or code.
1246   if (isFuncletEHPersonality(Pers)) {
1247     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1248       if (hasExceptionPointerOrCodeUser(CPI)) {
1249         // Get or create the virtual register to hold the pointer or code.  Mark
1250         // the live in physreg and copy into the vreg.
1251         MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1252         assert(EHPhysReg && "target lacks exception pointer register");
1253         MBB->addLiveIn(EHPhysReg);
1254         unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1255         BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1256                 TII->get(TargetOpcode::COPY), VReg)
1257             .addReg(EHPhysReg, RegState::Kill);
1258       }
1259     }
1260     return true;
1261   }
1262 
1263   // Add a label to mark the beginning of the landing pad.  Deletion of the
1264   // landing pad can thus be detected via the MachineModuleInfo.
1265   MCSymbol *Label = MF->addLandingPad(MBB);
1266 
1267   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1268   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1269     .addSym(Label);
1270 
1271   // If the unwinder does not preserve all registers, ensure that the
1272   // function marks the clobbered registers as used.
1273   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1274   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1275     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1276 
1277   if (Pers == EHPersonality::Wasm_CXX) {
1278     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1279       mapWasmLandingPadIndex(MBB, CPI);
1280   } else {
1281     // Assign the call site to the landing pad's begin label.
1282     MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1283     // Mark exception register as live in.
1284     if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1285       FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1286     // Mark exception selector register as live in.
1287     if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1288       FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1289   }
1290 
1291   return true;
1292 }
1293 
1294 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1295 /// side-effect free and is either dead or folded into a generated instruction.
1296 /// Return false if it needs to be emitted.
1297 static bool isFoldedOrDeadInstruction(const Instruction *I,
1298                                       const FunctionLoweringInfo &FuncInfo) {
1299   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1300          !I->isTerminator() &&     // Terminators aren't folded.
1301          !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1302          !I->isEHPad() &&             // EH pad instructions aren't folded.
1303          !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1304 }
1305 
1306 static void processDbgDeclare(FunctionLoweringInfo &FuncInfo,
1307                               const Value *Address, DIExpression *Expr,
1308                               DILocalVariable *Var, DebugLoc DbgLoc) {
1309   MachineFunction *MF = FuncInfo.MF;
1310   const DataLayout &DL = MF->getDataLayout();
1311 
1312   assert(Var && "Missing variable");
1313   assert(DbgLoc && "Missing location");
1314 
1315   // Look through casts and constant offset GEPs. These mostly come from
1316   // inalloca.
1317   APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1318   Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1319 
1320   // Check if the variable is a static alloca or a byval or inalloca
1321   // argument passed in memory. If it is not, then we will ignore this
1322   // intrinsic and handle this during isel like dbg.value.
1323   int FI = std::numeric_limits<int>::max();
1324   if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1325     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1326     if (SI != FuncInfo.StaticAllocaMap.end())
1327       FI = SI->second;
1328   } else if (const auto *Arg = dyn_cast<Argument>(Address))
1329     FI = FuncInfo.getArgumentFrameIndex(Arg);
1330 
1331   if (FI == std::numeric_limits<int>::max())
1332     return;
1333 
1334   if (Offset.getBoolValue())
1335     Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1336                                  Offset.getZExtValue());
1337 
1338   LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1339                     << ", Expr=" << *Expr << ",  FI=" << FI
1340                     << ", DbgLoc=" << DbgLoc << "\n");
1341   MF->setVariableDbgInfo(Var, Expr, FI, DbgLoc);
1342 }
1343 
1344 /// Collect llvm.dbg.declare information. This is done after argument lowering
1345 /// in case the declarations refer to arguments.
1346 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1347   for (const BasicBlock &BB : *FuncInfo.Fn) {
1348     for (const Instruction &I : BB) {
1349       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I)) {
1350         Value *Address = DI->getAddress();
1351         if (!Address) {
1352           LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1353                             << " (bad address)\n");
1354           continue;
1355         }
1356         processDbgDeclare(FuncInfo, Address, DI->getExpression(),
1357                           DI->getVariable(), DI->getDebugLoc());
1358       }
1359     }
1360   }
1361 }
1362 
1363 /// Collect single location variable information generated with assignment
1364 /// tracking. This is done after argument lowering in case the declarations
1365 /// refer to arguments.
1366 static void processSingleLocVars(FunctionLoweringInfo &FuncInfo,
1367                                  FunctionVarLocs const *FnVarLocs) {
1368   for (auto It = FnVarLocs->single_locs_begin(),
1369             End = FnVarLocs->single_locs_end();
1370        It != End; ++It)
1371     processDbgDeclare(FuncInfo, It->V, It->Expr,
1372                       FnVarLocs->getDILocalVariable(It->VariableID), It->DL);
1373 }
1374 
1375 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1376   FastISelFailed = false;
1377   // Initialize the Fast-ISel state, if needed.
1378   FastISel *FastIS = nullptr;
1379   if (TM.Options.EnableFastISel) {
1380     LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1381     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1382   }
1383 
1384   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1385 
1386   // Lower arguments up front. An RPO iteration always visits the entry block
1387   // first.
1388   assert(*RPOT.begin() == &Fn.getEntryBlock());
1389   ++NumEntryBlocks;
1390 
1391   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1392   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1393   FuncInfo->InsertPt = FuncInfo->MBB->begin();
1394 
1395   CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1396 
1397   if (!FastIS) {
1398     LowerArguments(Fn);
1399   } else {
1400     // See if fast isel can lower the arguments.
1401     FastIS->startNewBlock();
1402     if (!FastIS->lowerArguments()) {
1403       FastISelFailed = true;
1404       // Fast isel failed to lower these arguments
1405       ++NumFastIselFailLowerArguments;
1406 
1407       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1408                                  Fn.getSubprogram(),
1409                                  &Fn.getEntryBlock());
1410       R << "FastISel didn't lower all arguments: "
1411         << ore::NV("Prototype", Fn.getType());
1412       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1413 
1414       // Use SelectionDAG argument lowering
1415       LowerArguments(Fn);
1416       CurDAG->setRoot(SDB->getControlRoot());
1417       SDB->clear();
1418       CodeGenAndEmitDAG();
1419     }
1420 
1421     // If we inserted any instructions at the beginning, make a note of
1422     // where they are, so we can be sure to emit subsequent instructions
1423     // after them.
1424     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1425       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1426     else
1427       FastIS->setLastLocalValue(nullptr);
1428   }
1429 
1430   bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1431 
1432   if (FastIS && Inserted)
1433     FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1434 
1435   if (isAssignmentTrackingEnabled(*Fn.getParent())) {
1436     assert(CurDAG->getFunctionVarLocs() &&
1437            "expected AssignmentTrackingAnalysis pass results");
1438     processSingleLocVars(*FuncInfo, CurDAG->getFunctionVarLocs());
1439   } else {
1440     processDbgDeclares(*FuncInfo);
1441   }
1442 
1443   // Iterate over all basic blocks in the function.
1444   StackProtector &SP = getAnalysis<StackProtector>();
1445   for (const BasicBlock *LLVMBB : RPOT) {
1446     if (OptLevel != CodeGenOpt::None) {
1447       bool AllPredsVisited = true;
1448       for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1449         if (!FuncInfo->VisitedBBs.count(Pred)) {
1450           AllPredsVisited = false;
1451           break;
1452         }
1453       }
1454 
1455       if (AllPredsVisited) {
1456         for (const PHINode &PN : LLVMBB->phis())
1457           FuncInfo->ComputePHILiveOutRegInfo(&PN);
1458       } else {
1459         for (const PHINode &PN : LLVMBB->phis())
1460           FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1461       }
1462 
1463       FuncInfo->VisitedBBs.insert(LLVMBB);
1464     }
1465 
1466     BasicBlock::const_iterator const Begin =
1467         LLVMBB->getFirstNonPHI()->getIterator();
1468     BasicBlock::const_iterator const End = LLVMBB->end();
1469     BasicBlock::const_iterator BI = End;
1470 
1471     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1472     if (!FuncInfo->MBB)
1473       continue; // Some blocks like catchpads have no code or MBB.
1474 
1475     // Insert new instructions after any phi or argument setup code.
1476     FuncInfo->InsertPt = FuncInfo->MBB->end();
1477 
1478     // Setup an EH landing-pad block.
1479     FuncInfo->ExceptionPointerVirtReg = 0;
1480     FuncInfo->ExceptionSelectorVirtReg = 0;
1481     if (LLVMBB->isEHPad())
1482       if (!PrepareEHLandingPad())
1483         continue;
1484 
1485     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1486     if (FastIS) {
1487       if (LLVMBB != &Fn.getEntryBlock())
1488         FastIS->startNewBlock();
1489 
1490       unsigned NumFastIselRemaining = std::distance(Begin, End);
1491 
1492       // Pre-assign swifterror vregs.
1493       SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1494 
1495       // Do FastISel on as many instructions as possible.
1496       for (; BI != Begin; --BI) {
1497         const Instruction *Inst = &*std::prev(BI);
1498 
1499         // If we no longer require this instruction, skip it.
1500         if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1501             ElidedArgCopyInstrs.count(Inst)) {
1502           --NumFastIselRemaining;
1503           continue;
1504         }
1505 
1506         // Bottom-up: reset the insert pos at the top, after any local-value
1507         // instructions.
1508         FastIS->recomputeInsertPt();
1509 
1510         // Try to select the instruction with FastISel.
1511         if (FastIS->selectInstruction(Inst)) {
1512           --NumFastIselRemaining;
1513           ++NumFastIselSuccess;
1514           // If fast isel succeeded, skip over all the folded instructions, and
1515           // then see if there is a load right before the selected instructions.
1516           // Try to fold the load if so.
1517           const Instruction *BeforeInst = Inst;
1518           while (BeforeInst != &*Begin) {
1519             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1520             if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1521               break;
1522           }
1523           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1524               BeforeInst->hasOneUse() &&
1525               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1526             // If we succeeded, don't re-select the load.
1527             LLVM_DEBUG(dbgs()
1528                        << "FastISel folded load: " << *BeforeInst << "\n");
1529             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1530             --NumFastIselRemaining;
1531             ++NumFastIselSuccess;
1532           }
1533           continue;
1534         }
1535 
1536         FastISelFailed = true;
1537 
1538         // Then handle certain instructions as single-LLVM-Instruction blocks.
1539         // We cannot separate out GCrelocates to their own blocks since we need
1540         // to keep track of gc-relocates for a particular gc-statepoint. This is
1541         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1542         // visitGCRelocate.
1543         if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1544             !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1545           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1546                                      Inst->getDebugLoc(), LLVMBB);
1547 
1548           R << "FastISel missed call";
1549 
1550           if (R.isEnabled() || EnableFastISelAbort) {
1551             std::string InstStrStorage;
1552             raw_string_ostream InstStr(InstStrStorage);
1553             InstStr << *Inst;
1554 
1555             R << ": " << InstStr.str();
1556           }
1557 
1558           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1559 
1560           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1561               !Inst->use_empty()) {
1562             Register &R = FuncInfo->ValueMap[Inst];
1563             if (!R)
1564               R = FuncInfo->CreateRegs(Inst);
1565           }
1566 
1567           bool HadTailCall = false;
1568           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1569           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1570 
1571           // If the call was emitted as a tail call, we're done with the block.
1572           // We also need to delete any previously emitted instructions.
1573           if (HadTailCall) {
1574             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1575             --BI;
1576             break;
1577           }
1578 
1579           // Recompute NumFastIselRemaining as Selection DAG instruction
1580           // selection may have handled the call, input args, etc.
1581           unsigned RemainingNow = std::distance(Begin, BI);
1582           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1583           NumFastIselRemaining = RemainingNow;
1584           continue;
1585         }
1586 
1587         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1588                                    Inst->getDebugLoc(), LLVMBB);
1589 
1590         bool ShouldAbort = EnableFastISelAbort;
1591         if (Inst->isTerminator()) {
1592           // Use a different message for terminator misses.
1593           R << "FastISel missed terminator";
1594           // Don't abort for terminator unless the level is really high
1595           ShouldAbort = (EnableFastISelAbort > 2);
1596         } else {
1597           R << "FastISel missed";
1598         }
1599 
1600         if (R.isEnabled() || EnableFastISelAbort) {
1601           std::string InstStrStorage;
1602           raw_string_ostream InstStr(InstStrStorage);
1603           InstStr << *Inst;
1604           R << ": " << InstStr.str();
1605         }
1606 
1607         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1608 
1609         NumFastIselFailures += NumFastIselRemaining;
1610         break;
1611       }
1612 
1613       FastIS->recomputeInsertPt();
1614     }
1615 
1616     if (SP.shouldEmitSDCheck(*LLVMBB)) {
1617       bool FunctionBasedInstrumentation =
1618           TLI->getSSPStackGuardCheck(*Fn.getParent());
1619       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1620                                    FunctionBasedInstrumentation);
1621     }
1622 
1623     if (Begin != BI)
1624       ++NumDAGBlocks;
1625     else
1626       ++NumFastIselBlocks;
1627 
1628     if (Begin != BI) {
1629       // Run SelectionDAG instruction selection on the remainder of the block
1630       // not handled by FastISel. If FastISel is not run, this is the entire
1631       // block.
1632       bool HadTailCall;
1633       SelectBasicBlock(Begin, BI, HadTailCall);
1634 
1635       // But if FastISel was run, we already selected some of the block.
1636       // If we emitted a tail-call, we need to delete any previously emitted
1637       // instruction that follows it.
1638       if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1639         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1640     }
1641 
1642     if (FastIS)
1643       FastIS->finishBasicBlock();
1644     FinishBasicBlock();
1645     FuncInfo->PHINodesToUpdate.clear();
1646     ElidedArgCopyInstrs.clear();
1647   }
1648 
1649   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1650 
1651   SwiftError->propagateVRegs();
1652 
1653   delete FastIS;
1654   SDB->clearDanglingDebugInfo();
1655   SDB->SPDescriptor.resetPerFunctionState();
1656 }
1657 
1658 void
1659 SelectionDAGISel::FinishBasicBlock() {
1660   LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1661                     << FuncInfo->PHINodesToUpdate.size() << "\n";
1662              for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1663                   ++i) dbgs()
1664              << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1665              << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1666 
1667   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1668   // PHI nodes in successors.
1669   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1670     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1671     assert(PHI->isPHI() &&
1672            "This is not a machine PHI node that we are updating!");
1673     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1674       continue;
1675     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1676   }
1677 
1678   // Handle stack protector.
1679   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1680     // The target provides a guard check function. There is no need to
1681     // generate error handling code or to split current basic block.
1682     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1683 
1684     // Add load and check to the basicblock.
1685     FuncInfo->MBB = ParentMBB;
1686     FuncInfo->InsertPt =
1687         findSplitPointForStackProtector(ParentMBB, *TII);
1688     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1689     CurDAG->setRoot(SDB->getRoot());
1690     SDB->clear();
1691     CodeGenAndEmitDAG();
1692 
1693     // Clear the Per-BB State.
1694     SDB->SPDescriptor.resetPerBBState();
1695   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1696     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1697     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1698 
1699     // Find the split point to split the parent mbb. At the same time copy all
1700     // physical registers used in the tail of parent mbb into virtual registers
1701     // before the split point and back into physical registers after the split
1702     // point. This prevents us needing to deal with Live-ins and many other
1703     // register allocation issues caused by us splitting the parent mbb. The
1704     // register allocator will clean up said virtual copies later on.
1705     MachineBasicBlock::iterator SplitPoint =
1706         findSplitPointForStackProtector(ParentMBB, *TII);
1707 
1708     // Splice the terminator of ParentMBB into SuccessMBB.
1709     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1710                        SplitPoint,
1711                        ParentMBB->end());
1712 
1713     // Add compare/jump on neq/jump to the parent BB.
1714     FuncInfo->MBB = ParentMBB;
1715     FuncInfo->InsertPt = ParentMBB->end();
1716     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1717     CurDAG->setRoot(SDB->getRoot());
1718     SDB->clear();
1719     CodeGenAndEmitDAG();
1720 
1721     // CodeGen Failure MBB if we have not codegened it yet.
1722     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1723     if (FailureMBB->empty()) {
1724       FuncInfo->MBB = FailureMBB;
1725       FuncInfo->InsertPt = FailureMBB->end();
1726       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1727       CurDAG->setRoot(SDB->getRoot());
1728       SDB->clear();
1729       CodeGenAndEmitDAG();
1730     }
1731 
1732     // Clear the Per-BB State.
1733     SDB->SPDescriptor.resetPerBBState();
1734   }
1735 
1736   // Lower each BitTestBlock.
1737   for (auto &BTB : SDB->SL->BitTestCases) {
1738     // Lower header first, if it wasn't already lowered
1739     if (!BTB.Emitted) {
1740       // Set the current basic block to the mbb we wish to insert the code into
1741       FuncInfo->MBB = BTB.Parent;
1742       FuncInfo->InsertPt = FuncInfo->MBB->end();
1743       // Emit the code
1744       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1745       CurDAG->setRoot(SDB->getRoot());
1746       SDB->clear();
1747       CodeGenAndEmitDAG();
1748     }
1749 
1750     BranchProbability UnhandledProb = BTB.Prob;
1751     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1752       UnhandledProb -= BTB.Cases[j].ExtraProb;
1753       // Set the current basic block to the mbb we wish to insert the code into
1754       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1755       FuncInfo->InsertPt = FuncInfo->MBB->end();
1756       // Emit the code
1757 
1758       // If all cases cover a contiguous range, it is not necessary to jump to
1759       // the default block after the last bit test fails. This is because the
1760       // range check during bit test header creation has guaranteed that every
1761       // case here doesn't go outside the range. In this case, there is no need
1762       // to perform the last bit test, as it will always be true. Instead, make
1763       // the second-to-last bit-test fall through to the target of the last bit
1764       // test, and delete the last bit test.
1765 
1766       MachineBasicBlock *NextMBB;
1767       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1768         // Second-to-last bit-test with contiguous range or omitted range
1769         // check: fall through to the target of the final bit test.
1770         NextMBB = BTB.Cases[j + 1].TargetBB;
1771       } else if (j + 1 == ej) {
1772         // For the last bit test, fall through to Default.
1773         NextMBB = BTB.Default;
1774       } else {
1775         // Otherwise, fall through to the next bit test.
1776         NextMBB = BTB.Cases[j + 1].ThisBB;
1777       }
1778 
1779       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1780                             FuncInfo->MBB);
1781 
1782       CurDAG->setRoot(SDB->getRoot());
1783       SDB->clear();
1784       CodeGenAndEmitDAG();
1785 
1786       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1787         // Since we're not going to use the final bit test, remove it.
1788         BTB.Cases.pop_back();
1789         break;
1790       }
1791     }
1792 
1793     // Update PHI Nodes
1794     for (const std::pair<MachineInstr *, unsigned> &P :
1795          FuncInfo->PHINodesToUpdate) {
1796       MachineInstrBuilder PHI(*MF, P.first);
1797       MachineBasicBlock *PHIBB = PHI->getParent();
1798       assert(PHI->isPHI() &&
1799              "This is not a machine PHI node that we are updating!");
1800       // This is "default" BB. We have two jumps to it. From "header" BB and
1801       // from last "case" BB, unless the latter was skipped.
1802       if (PHIBB == BTB.Default) {
1803         PHI.addReg(P.second).addMBB(BTB.Parent);
1804         if (!BTB.ContiguousRange) {
1805           PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB);
1806          }
1807       }
1808       // One of "cases" BB.
1809       for (const SwitchCG::BitTestCase &BT : BTB.Cases) {
1810         MachineBasicBlock* cBB = BT.ThisBB;
1811         if (cBB->isSuccessor(PHIBB))
1812           PHI.addReg(P.second).addMBB(cBB);
1813       }
1814     }
1815   }
1816   SDB->SL->BitTestCases.clear();
1817 
1818   // If the JumpTable record is filled in, then we need to emit a jump table.
1819   // Updating the PHI nodes is tricky in this case, since we need to determine
1820   // whether the PHI is a successor of the range check MBB or the jump table MBB
1821   for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1822     // Lower header first, if it wasn't already lowered
1823     if (!SDB->SL->JTCases[i].first.Emitted) {
1824       // Set the current basic block to the mbb we wish to insert the code into
1825       FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1826       FuncInfo->InsertPt = FuncInfo->MBB->end();
1827       // Emit the code
1828       SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1829                                 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1830       CurDAG->setRoot(SDB->getRoot());
1831       SDB->clear();
1832       CodeGenAndEmitDAG();
1833     }
1834 
1835     // Set the current basic block to the mbb we wish to insert the code into
1836     FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1837     FuncInfo->InsertPt = FuncInfo->MBB->end();
1838     // Emit the code
1839     SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1840     CurDAG->setRoot(SDB->getRoot());
1841     SDB->clear();
1842     CodeGenAndEmitDAG();
1843 
1844     // Update PHI Nodes
1845     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1846          pi != pe; ++pi) {
1847       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1848       MachineBasicBlock *PHIBB = PHI->getParent();
1849       assert(PHI->isPHI() &&
1850              "This is not a machine PHI node that we are updating!");
1851       // "default" BB. We can go there only from header BB.
1852       if (PHIBB == SDB->SL->JTCases[i].second.Default)
1853         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1854            .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1855       // JT BB. Just iterate over successors here
1856       if (FuncInfo->MBB->isSuccessor(PHIBB))
1857         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1858     }
1859   }
1860   SDB->SL->JTCases.clear();
1861 
1862   // If we generated any switch lowering information, build and codegen any
1863   // additional DAGs necessary.
1864   for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1865     // Set the current basic block to the mbb we wish to insert the code into
1866     FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1867     FuncInfo->InsertPt = FuncInfo->MBB->end();
1868 
1869     // Determine the unique successors.
1870     SmallVector<MachineBasicBlock *, 2> Succs;
1871     Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1872     if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1873       Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1874 
1875     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1876     SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1877     CurDAG->setRoot(SDB->getRoot());
1878     SDB->clear();
1879     CodeGenAndEmitDAG();
1880 
1881     // Remember the last block, now that any splitting is done, for use in
1882     // populating PHI nodes in successors.
1883     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1884 
1885     // Handle any PHI nodes in successors of this chunk, as if we were coming
1886     // from the original BB before switch expansion.  Note that PHI nodes can
1887     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1888     // handle them the right number of times.
1889     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1890       FuncInfo->MBB = Succs[i];
1891       FuncInfo->InsertPt = FuncInfo->MBB->end();
1892       // FuncInfo->MBB may have been removed from the CFG if a branch was
1893       // constant folded.
1894       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1895         for (MachineBasicBlock::iterator
1896              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1897              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1898           MachineInstrBuilder PHI(*MF, MBBI);
1899           // This value for this PHI node is recorded in PHINodesToUpdate.
1900           for (unsigned pn = 0; ; ++pn) {
1901             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1902                    "Didn't find PHI entry!");
1903             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1904               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1905               break;
1906             }
1907           }
1908         }
1909       }
1910     }
1911   }
1912   SDB->SL->SwitchCases.clear();
1913 }
1914 
1915 /// Create the scheduler. If a specific scheduler was specified
1916 /// via the SchedulerRegistry, use it, otherwise select the
1917 /// one preferred by the target.
1918 ///
1919 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1920   return ISHeuristic(this, OptLevel);
1921 }
1922 
1923 //===----------------------------------------------------------------------===//
1924 // Helper functions used by the generated instruction selector.
1925 //===----------------------------------------------------------------------===//
1926 // Calls to these methods are generated by tblgen.
1927 
1928 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1929 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1930 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1931 /// specified in the .td file (e.g. 255).
1932 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1933                                     int64_t DesiredMaskS) const {
1934   const APInt &ActualMask = RHS->getAPIntValue();
1935   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1936 
1937   // If the actual mask exactly matches, success!
1938   if (ActualMask == DesiredMask)
1939     return true;
1940 
1941   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1942   if (!ActualMask.isSubsetOf(DesiredMask))
1943     return false;
1944 
1945   // Otherwise, the DAG Combiner may have proven that the value coming in is
1946   // either already zero or is not demanded.  Check for known zero input bits.
1947   APInt NeededMask = DesiredMask & ~ActualMask;
1948   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1949     return true;
1950 
1951   // TODO: check to see if missing bits are just not demanded.
1952 
1953   // Otherwise, this pattern doesn't match.
1954   return false;
1955 }
1956 
1957 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1958 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1959 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1960 /// specified in the .td file (e.g. 255).
1961 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1962                                    int64_t DesiredMaskS) const {
1963   const APInt &ActualMask = RHS->getAPIntValue();
1964   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1965 
1966   // If the actual mask exactly matches, success!
1967   if (ActualMask == DesiredMask)
1968     return true;
1969 
1970   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1971   if (!ActualMask.isSubsetOf(DesiredMask))
1972     return false;
1973 
1974   // Otherwise, the DAG Combiner may have proven that the value coming in is
1975   // either already zero or is not demanded.  Check for known zero input bits.
1976   APInt NeededMask = DesiredMask & ~ActualMask;
1977   KnownBits Known = CurDAG->computeKnownBits(LHS);
1978 
1979   // If all the missing bits in the or are already known to be set, match!
1980   if (NeededMask.isSubsetOf(Known.One))
1981     return true;
1982 
1983   // TODO: check to see if missing bits are just not demanded.
1984 
1985   // Otherwise, this pattern doesn't match.
1986   return false;
1987 }
1988 
1989 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1990 /// by tblgen.  Others should not call it.
1991 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
1992                                                      const SDLoc &DL) {
1993   std::vector<SDValue> InOps;
1994   std::swap(InOps, Ops);
1995 
1996   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1997   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1998   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1999   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2000 
2001   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2002   if (InOps[e-1].getValueType() == MVT::Glue)
2003     --e;  // Don't process a glue operand if it is here.
2004 
2005   while (i != e) {
2006     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2007     if (!InlineAsm::isMemKind(Flags) && !InlineAsm::isFuncKind(Flags)) {
2008       // Just skip over this operand, copying the operands verbatim.
2009       Ops.insert(Ops.end(), InOps.begin()+i,
2010                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2011       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2012     } else {
2013       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2014              "Memory operand with multiple values?");
2015 
2016       unsigned TiedToOperand;
2017       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2018         // We need the constraint ID from the operand this is tied to.
2019         unsigned CurOp = InlineAsm::Op_FirstOperand;
2020         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2021         for (; TiedToOperand; --TiedToOperand) {
2022           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2023           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2024         }
2025       }
2026 
2027       // Otherwise, this is a memory operand.  Ask the target to select it.
2028       std::vector<SDValue> SelOps;
2029       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2030       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2031         report_fatal_error("Could not match memory address.  Inline asm"
2032                            " failure!");
2033 
2034       // Add this to the output node.
2035       unsigned NewFlags =
2036           InlineAsm::isMemKind(Flags)
2037               ? InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size())
2038               : InlineAsm::getFlagWord(InlineAsm::Kind_Func, SelOps.size());
2039       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2040       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2041       llvm::append_range(Ops, SelOps);
2042       i += 2;
2043     }
2044   }
2045 
2046   // Add the glue input back if present.
2047   if (e != InOps.size())
2048     Ops.push_back(InOps.back());
2049 }
2050 
2051 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2052 /// SDNode.
2053 ///
2054 static SDNode *findGlueUse(SDNode *N) {
2055   unsigned FlagResNo = N->getNumValues()-1;
2056   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2057     SDUse &Use = I.getUse();
2058     if (Use.getResNo() == FlagResNo)
2059       return Use.getUser();
2060   }
2061   return nullptr;
2062 }
2063 
2064 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2065 /// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2066 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2067                           bool IgnoreChains) {
2068   SmallPtrSet<const SDNode *, 16> Visited;
2069   SmallVector<const SDNode *, 16> WorkList;
2070   // Only check if we have non-immediate uses of Def.
2071   if (ImmedUse->isOnlyUserOf(Def))
2072     return false;
2073 
2074   // We don't care about paths to Def that go through ImmedUse so mark it
2075   // visited and mark non-def operands as used.
2076   Visited.insert(ImmedUse);
2077   for (const SDValue &Op : ImmedUse->op_values()) {
2078     SDNode *N = Op.getNode();
2079     // Ignore chain deps (they are validated by
2080     // HandleMergeInputChains) and immediate uses
2081     if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2082       continue;
2083     if (!Visited.insert(N).second)
2084       continue;
2085     WorkList.push_back(N);
2086   }
2087 
2088   // Initialize worklist to operands of Root.
2089   if (Root != ImmedUse) {
2090     for (const SDValue &Op : Root->op_values()) {
2091       SDNode *N = Op.getNode();
2092       // Ignore chains (they are validated by HandleMergeInputChains)
2093       if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2094         continue;
2095       if (!Visited.insert(N).second)
2096         continue;
2097       WorkList.push_back(N);
2098     }
2099   }
2100 
2101   return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2102 }
2103 
2104 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2105 /// operand node N of U during instruction selection that starts at Root.
2106 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2107                                           SDNode *Root) const {
2108   if (OptLevel == CodeGenOpt::None) return false;
2109   return N.hasOneUse();
2110 }
2111 
2112 /// IsLegalToFold - Returns true if the specific operand node N of
2113 /// U can be folded during instruction selection that starts at Root.
2114 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2115                                      CodeGenOpt::Level OptLevel,
2116                                      bool IgnoreChains) {
2117   if (OptLevel == CodeGenOpt::None) return false;
2118 
2119   // If Root use can somehow reach N through a path that that doesn't contain
2120   // U then folding N would create a cycle. e.g. In the following
2121   // diagram, Root can reach N through X. If N is folded into Root, then
2122   // X is both a predecessor and a successor of U.
2123   //
2124   //          [N*]           //
2125   //         ^   ^           //
2126   //        /     \          //
2127   //      [U*]    [X]?       //
2128   //        ^     ^          //
2129   //         \   /           //
2130   //          \ /            //
2131   //         [Root*]         //
2132   //
2133   // * indicates nodes to be folded together.
2134   //
2135   // If Root produces glue, then it gets (even more) interesting. Since it
2136   // will be "glued" together with its glue use in the scheduler, we need to
2137   // check if it might reach N.
2138   //
2139   //          [N*]           //
2140   //         ^   ^           //
2141   //        /     \          //
2142   //      [U*]    [X]?       //
2143   //        ^       ^        //
2144   //         \       \       //
2145   //          \      |       //
2146   //         [Root*] |       //
2147   //          ^      |       //
2148   //          f      |       //
2149   //          |      /       //
2150   //         [Y]    /        //
2151   //           ^   /         //
2152   //           f  /          //
2153   //           | /           //
2154   //          [GU]           //
2155   //
2156   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2157   // (call it Fold), then X is a predecessor of GU and a successor of
2158   // Fold. But since Fold and GU are glued together, this will create
2159   // a cycle in the scheduling graph.
2160 
2161   // If the node has glue, walk down the graph to the "lowest" node in the
2162   // glueged set.
2163   EVT VT = Root->getValueType(Root->getNumValues()-1);
2164   while (VT == MVT::Glue) {
2165     SDNode *GU = findGlueUse(Root);
2166     if (!GU)
2167       break;
2168     Root = GU;
2169     VT = Root->getValueType(Root->getNumValues()-1);
2170 
2171     // If our query node has a glue result with a use, we've walked up it.  If
2172     // the user (which has already been selected) has a chain or indirectly uses
2173     // the chain, HandleMergeInputChains will not consider it.  Because of
2174     // this, we cannot ignore chains in this predicate.
2175     IgnoreChains = false;
2176   }
2177 
2178   return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2179 }
2180 
2181 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2182   SDLoc DL(N);
2183 
2184   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2185   SelectInlineAsmMemoryOperands(Ops, DL);
2186 
2187   const EVT VTs[] = {MVT::Other, MVT::Glue};
2188   SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2189   New->setNodeId(-1);
2190   ReplaceUses(N, New.getNode());
2191   CurDAG->RemoveDeadNode(N);
2192 }
2193 
2194 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2195   SDLoc dl(Op);
2196   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2197   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2198 
2199   EVT VT = Op->getValueType(0);
2200   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2201   Register Reg =
2202       TLI->getRegisterByName(RegStr->getString().data(), Ty,
2203                              CurDAG->getMachineFunction());
2204   SDValue New = CurDAG->getCopyFromReg(
2205                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2206   New->setNodeId(-1);
2207   ReplaceUses(Op, New.getNode());
2208   CurDAG->RemoveDeadNode(Op);
2209 }
2210 
2211 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2212   SDLoc dl(Op);
2213   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2214   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2215 
2216   EVT VT = Op->getOperand(2).getValueType();
2217   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2218 
2219   Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2220                                         CurDAG->getMachineFunction());
2221   SDValue New = CurDAG->getCopyToReg(
2222                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2223   New->setNodeId(-1);
2224   ReplaceUses(Op, New.getNode());
2225   CurDAG->RemoveDeadNode(Op);
2226 }
2227 
2228 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2229   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2230 }
2231 
2232 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2233   // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2234   // If FREEZE instruction is added later, the code below must be changed as
2235   // well.
2236   CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2237                        N->getOperand(0));
2238 }
2239 
2240 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2241   CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2242                        N->getOperand(0));
2243 }
2244 
2245 void SelectionDAGISel::Select_MEMBARRIER(SDNode *N) {
2246   CurDAG->SelectNodeTo(N, TargetOpcode::MEMBARRIER, N->getValueType(0),
2247                        N->getOperand(0));
2248 }
2249 
2250 void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops,
2251                                                 SDValue OpVal, SDLoc DL) {
2252   SDNode *OpNode = OpVal.getNode();
2253 
2254   // FrameIndex nodes should have been directly emitted to TargetFrameIndex
2255   // nodes at DAG-construction time.
2256   assert(OpNode->getOpcode() != ISD::FrameIndex);
2257 
2258   if (OpNode->getOpcode() == ISD::Constant) {
2259     Ops.push_back(
2260         CurDAG->getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
2261     Ops.push_back(
2262         CurDAG->getTargetConstant(cast<ConstantSDNode>(OpNode)->getZExtValue(),
2263                                   DL, OpVal.getValueType()));
2264   } else {
2265     Ops.push_back(OpVal);
2266   }
2267 }
2268 
2269 void SelectionDAGISel::Select_STACKMAP(SDNode *N) {
2270   SmallVector<SDValue, 32> Ops;
2271   auto *It = N->op_begin();
2272   SDLoc DL(N);
2273 
2274   // Stash the chain and glue operands so we can move them to the end.
2275   SDValue Chain = *It++;
2276   SDValue InFlag = *It++;
2277 
2278   // <id> operand.
2279   SDValue ID = *It++;
2280   assert(ID.getValueType() == MVT::i64);
2281   Ops.push_back(ID);
2282 
2283   // <numShadowBytes> operand.
2284   SDValue Shad = *It++;
2285   assert(Shad.getValueType() == MVT::i32);
2286   Ops.push_back(Shad);
2287 
2288   // Live variable operands.
2289   for (; It != N->op_end(); It++)
2290     pushStackMapLiveVariable(Ops, *It, DL);
2291 
2292   Ops.push_back(Chain);
2293   Ops.push_back(InFlag);
2294 
2295   SDVTList NodeTys = CurDAG->getVTList(MVT::Other, MVT::Glue);
2296   CurDAG->SelectNodeTo(N, TargetOpcode::STACKMAP, NodeTys, Ops);
2297 }
2298 
2299 void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) {
2300   SmallVector<SDValue, 32> Ops;
2301   auto *It = N->op_begin();
2302   SDLoc DL(N);
2303 
2304   // Cache arguments that will be moved to the end in the target node.
2305   SDValue Chain = *It++;
2306   std::optional<SDValue> Glue;
2307   if (It->getValueType() == MVT::Glue)
2308     Glue = *It++;
2309   SDValue RegMask = *It++;
2310 
2311   // <id> operand.
2312   SDValue ID = *It++;
2313   assert(ID.getValueType() == MVT::i64);
2314   Ops.push_back(ID);
2315 
2316   // <numShadowBytes> operand.
2317   SDValue Shad = *It++;
2318   assert(Shad.getValueType() == MVT::i32);
2319   Ops.push_back(Shad);
2320 
2321   // Add the callee.
2322   Ops.push_back(*It++);
2323 
2324   // Add <numArgs>.
2325   SDValue NumArgs = *It++;
2326   assert(NumArgs.getValueType() == MVT::i32);
2327   Ops.push_back(NumArgs);
2328 
2329   // Calling convention.
2330   Ops.push_back(*It++);
2331 
2332   // Push the args for the call.
2333   for (uint64_t I = cast<ConstantSDNode>(NumArgs)->getZExtValue(); I != 0; I--)
2334     Ops.push_back(*It++);
2335 
2336   // Now push the live variables.
2337   for (; It != N->op_end(); It++)
2338     pushStackMapLiveVariable(Ops, *It, DL);
2339 
2340   // Finally, the regmask, chain and (if present) glue are moved to the end.
2341   Ops.push_back(RegMask);
2342   Ops.push_back(Chain);
2343   if (Glue.has_value())
2344     Ops.push_back(*Glue);
2345 
2346   SDVTList NodeTys = N->getVTList();
2347   CurDAG->SelectNodeTo(N, TargetOpcode::PATCHPOINT, NodeTys, Ops);
2348 }
2349 
2350 /// GetVBR - decode a vbr encoding whose top bit is set.
2351 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
2352 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2353   assert(Val >= 128 && "Not a VBR");
2354   Val &= 127;  // Remove first vbr bit.
2355 
2356   unsigned Shift = 7;
2357   uint64_t NextBits;
2358   do {
2359     NextBits = MatcherTable[Idx++];
2360     Val |= (NextBits&127) << Shift;
2361     Shift += 7;
2362   } while (NextBits & 128);
2363 
2364   return Val;
2365 }
2366 
2367 /// When a match is complete, this method updates uses of interior chain results
2368 /// to use the new results.
2369 void SelectionDAGISel::UpdateChains(
2370     SDNode *NodeToMatch, SDValue InputChain,
2371     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2372   SmallVector<SDNode*, 4> NowDeadNodes;
2373 
2374   // Now that all the normal results are replaced, we replace the chain and
2375   // glue results if present.
2376   if (!ChainNodesMatched.empty()) {
2377     assert(InputChain.getNode() &&
2378            "Matched input chains but didn't produce a chain");
2379     // Loop over all of the nodes we matched that produced a chain result.
2380     // Replace all the chain results with the final chain we ended up with.
2381     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2382       SDNode *ChainNode = ChainNodesMatched[i];
2383       // If ChainNode is null, it's because we replaced it on a previous
2384       // iteration and we cleared it out of the map. Just skip it.
2385       if (!ChainNode)
2386         continue;
2387 
2388       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2389              "Deleted node left in chain");
2390 
2391       // Don't replace the results of the root node if we're doing a
2392       // MorphNodeTo.
2393       if (ChainNode == NodeToMatch && isMorphNodeTo)
2394         continue;
2395 
2396       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2397       if (ChainVal.getValueType() == MVT::Glue)
2398         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2399       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2400       SelectionDAG::DAGNodeDeletedListener NDL(
2401           *CurDAG, [&](SDNode *N, SDNode *E) {
2402             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2403                          static_cast<SDNode *>(nullptr));
2404           });
2405       if (ChainNode->getOpcode() != ISD::TokenFactor)
2406         ReplaceUses(ChainVal, InputChain);
2407 
2408       // If the node became dead and we haven't already seen it, delete it.
2409       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2410           !llvm::is_contained(NowDeadNodes, ChainNode))
2411         NowDeadNodes.push_back(ChainNode);
2412     }
2413   }
2414 
2415   if (!NowDeadNodes.empty())
2416     CurDAG->RemoveDeadNodes(NowDeadNodes);
2417 
2418   LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2419 }
2420 
2421 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2422 /// operation for when the pattern matched at least one node with a chains.  The
2423 /// input vector contains a list of all of the chained nodes that we match.  We
2424 /// must determine if this is a valid thing to cover (i.e. matching it won't
2425 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2426 /// be used as the input node chain for the generated nodes.
2427 static SDValue
2428 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2429                        SelectionDAG *CurDAG) {
2430 
2431   SmallPtrSet<const SDNode *, 16> Visited;
2432   SmallVector<const SDNode *, 8> Worklist;
2433   SmallVector<SDValue, 3> InputChains;
2434   unsigned int Max = 8192;
2435 
2436   // Quick exit on trivial merge.
2437   if (ChainNodesMatched.size() == 1)
2438     return ChainNodesMatched[0]->getOperand(0);
2439 
2440   // Add chains that aren't already added (internal). Peek through
2441   // token factors.
2442   std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2443     if (V.getValueType() != MVT::Other)
2444       return;
2445     if (V->getOpcode() == ISD::EntryToken)
2446       return;
2447     if (!Visited.insert(V.getNode()).second)
2448       return;
2449     if (V->getOpcode() == ISD::TokenFactor) {
2450       for (const SDValue &Op : V->op_values())
2451         AddChains(Op);
2452     } else
2453       InputChains.push_back(V);
2454   };
2455 
2456   for (auto *N : ChainNodesMatched) {
2457     Worklist.push_back(N);
2458     Visited.insert(N);
2459   }
2460 
2461   while (!Worklist.empty())
2462     AddChains(Worklist.pop_back_val()->getOperand(0));
2463 
2464   // Skip the search if there are no chain dependencies.
2465   if (InputChains.size() == 0)
2466     return CurDAG->getEntryNode();
2467 
2468   // If one of these chains is a successor of input, we must have a
2469   // node that is both the predecessor and successor of the
2470   // to-be-merged nodes. Fail.
2471   Visited.clear();
2472   for (SDValue V : InputChains)
2473     Worklist.push_back(V.getNode());
2474 
2475   for (auto *N : ChainNodesMatched)
2476     if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2477       return SDValue();
2478 
2479   // Return merged chain.
2480   if (InputChains.size() == 1)
2481     return InputChains[0];
2482   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2483                          MVT::Other, InputChains);
2484 }
2485 
2486 /// MorphNode - Handle morphing a node in place for the selector.
2487 SDNode *SelectionDAGISel::
2488 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2489           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2490   // It is possible we're using MorphNodeTo to replace a node with no
2491   // normal results with one that has a normal result (or we could be
2492   // adding a chain) and the input could have glue and chains as well.
2493   // In this case we need to shift the operands down.
2494   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2495   // than the old isel though.
2496   int OldGlueResultNo = -1, OldChainResultNo = -1;
2497 
2498   unsigned NTMNumResults = Node->getNumValues();
2499   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2500     OldGlueResultNo = NTMNumResults-1;
2501     if (NTMNumResults != 1 &&
2502         Node->getValueType(NTMNumResults-2) == MVT::Other)
2503       OldChainResultNo = NTMNumResults-2;
2504   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2505     OldChainResultNo = NTMNumResults-1;
2506 
2507   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2508   // that this deletes operands of the old node that become dead.
2509   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2510 
2511   // MorphNodeTo can operate in two ways: if an existing node with the
2512   // specified operands exists, it can just return it.  Otherwise, it
2513   // updates the node in place to have the requested operands.
2514   if (Res == Node) {
2515     // If we updated the node in place, reset the node ID.  To the isel,
2516     // this should be just like a newly allocated machine node.
2517     Res->setNodeId(-1);
2518   }
2519 
2520   unsigned ResNumResults = Res->getNumValues();
2521   // Move the glue if needed.
2522   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2523       (unsigned)OldGlueResultNo != ResNumResults-1)
2524     ReplaceUses(SDValue(Node, OldGlueResultNo),
2525                 SDValue(Res, ResNumResults - 1));
2526 
2527   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2528     --ResNumResults;
2529 
2530   // Move the chain reference if needed.
2531   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2532       (unsigned)OldChainResultNo != ResNumResults-1)
2533     ReplaceUses(SDValue(Node, OldChainResultNo),
2534                 SDValue(Res, ResNumResults - 1));
2535 
2536   // Otherwise, no replacement happened because the node already exists. Replace
2537   // Uses of the old node with the new one.
2538   if (Res != Node) {
2539     ReplaceNode(Node, Res);
2540   } else {
2541     EnforceNodeIdInvariant(Res);
2542   }
2543 
2544   return Res;
2545 }
2546 
2547 /// CheckSame - Implements OP_CheckSame.
2548 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2549 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2550           const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2551   // Accept if it is exactly the same as a previously recorded node.
2552   unsigned RecNo = MatcherTable[MatcherIndex++];
2553   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2554   return N == RecordedNodes[RecNo].first;
2555 }
2556 
2557 /// CheckChildSame - Implements OP_CheckChildXSame.
2558 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2559     const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2560     const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2561     unsigned ChildNo) {
2562   if (ChildNo >= N.getNumOperands())
2563     return false;  // Match fails if out of range child #.
2564   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2565                      RecordedNodes);
2566 }
2567 
2568 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2569 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2570 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2571                       const SelectionDAGISel &SDISel) {
2572   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2573 }
2574 
2575 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2576 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2577 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2578                    const SelectionDAGISel &SDISel, SDNode *N) {
2579   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2580 }
2581 
2582 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2583 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2584             SDNode *N) {
2585   uint16_t Opc = MatcherTable[MatcherIndex++];
2586   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2587   return N->getOpcode() == Opc;
2588 }
2589 
2590 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2591 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2592           const TargetLowering *TLI, const DataLayout &DL) {
2593   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2594   if (N.getValueType() == VT) return true;
2595 
2596   // Handle the case when VT is iPTR.
2597   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2598 }
2599 
2600 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2601 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2602                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2603                unsigned ChildNo) {
2604   if (ChildNo >= N.getNumOperands())
2605     return false;  // Match fails if out of range child #.
2606   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2607                      DL);
2608 }
2609 
2610 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2611 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2612               SDValue N) {
2613   return cast<CondCodeSDNode>(N)->get() ==
2614       (ISD::CondCode)MatcherTable[MatcherIndex++];
2615 }
2616 
2617 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2618 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2619                     SDValue N) {
2620   if (2 >= N.getNumOperands())
2621     return false;
2622   return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2623 }
2624 
2625 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2626 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2627                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2628   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2629   if (cast<VTSDNode>(N)->getVT() == VT)
2630     return true;
2631 
2632   // Handle the case when VT is iPTR.
2633   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2634 }
2635 
2636 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2637 // shifted left by 1.
2638 static uint64_t decodeSignRotatedValue(uint64_t V) {
2639   if ((V & 1) == 0)
2640     return V >> 1;
2641   if (V != 1)
2642     return -(V >> 1);
2643   // There is no such thing as -0 with integers.  "-0" really means MININT.
2644   return 1ULL << 63;
2645 }
2646 
2647 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2648 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2649              SDValue N) {
2650   int64_t Val = MatcherTable[MatcherIndex++];
2651   if (Val & 128)
2652     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2653 
2654   Val = decodeSignRotatedValue(Val);
2655 
2656   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2657   return C && C->getSExtValue() == Val;
2658 }
2659 
2660 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2661 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2662                   SDValue N, unsigned ChildNo) {
2663   if (ChildNo >= N.getNumOperands())
2664     return false;  // Match fails if out of range child #.
2665   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2666 }
2667 
2668 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2669 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2670             SDValue N, const SelectionDAGISel &SDISel) {
2671   int64_t Val = MatcherTable[MatcherIndex++];
2672   if (Val & 128)
2673     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2674 
2675   if (N->getOpcode() != ISD::AND) return false;
2676 
2677   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2678   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2679 }
2680 
2681 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2682 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2683            const SelectionDAGISel &SDISel) {
2684   int64_t Val = MatcherTable[MatcherIndex++];
2685   if (Val & 128)
2686     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2687 
2688   if (N->getOpcode() != ISD::OR) return false;
2689 
2690   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2691   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2692 }
2693 
2694 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2695 /// scope, evaluate the current node.  If the current predicate is known to
2696 /// fail, set Result=true and return anything.  If the current predicate is
2697 /// known to pass, set Result=false and return the MatcherIndex to continue
2698 /// with.  If the current predicate is unknown, set Result=false and return the
2699 /// MatcherIndex to continue with.
2700 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2701                                        unsigned Index, SDValue N,
2702                                        bool &Result,
2703                                        const SelectionDAGISel &SDISel,
2704                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2705   switch (Table[Index++]) {
2706   default:
2707     Result = false;
2708     return Index-1;  // Could not evaluate this predicate.
2709   case SelectionDAGISel::OPC_CheckSame:
2710     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2711     return Index;
2712   case SelectionDAGISel::OPC_CheckChild0Same:
2713   case SelectionDAGISel::OPC_CheckChild1Same:
2714   case SelectionDAGISel::OPC_CheckChild2Same:
2715   case SelectionDAGISel::OPC_CheckChild3Same:
2716     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2717                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2718     return Index;
2719   case SelectionDAGISel::OPC_CheckPatternPredicate:
2720     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2721     return Index;
2722   case SelectionDAGISel::OPC_CheckPredicate:
2723     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2724     return Index;
2725   case SelectionDAGISel::OPC_CheckOpcode:
2726     Result = !::CheckOpcode(Table, Index, N.getNode());
2727     return Index;
2728   case SelectionDAGISel::OPC_CheckType:
2729     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2730                           SDISel.CurDAG->getDataLayout());
2731     return Index;
2732   case SelectionDAGISel::OPC_CheckTypeRes: {
2733     unsigned Res = Table[Index++];
2734     Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2735                           SDISel.CurDAG->getDataLayout());
2736     return Index;
2737   }
2738   case SelectionDAGISel::OPC_CheckChild0Type:
2739   case SelectionDAGISel::OPC_CheckChild1Type:
2740   case SelectionDAGISel::OPC_CheckChild2Type:
2741   case SelectionDAGISel::OPC_CheckChild3Type:
2742   case SelectionDAGISel::OPC_CheckChild4Type:
2743   case SelectionDAGISel::OPC_CheckChild5Type:
2744   case SelectionDAGISel::OPC_CheckChild6Type:
2745   case SelectionDAGISel::OPC_CheckChild7Type:
2746     Result = !::CheckChildType(
2747                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2748                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2749     return Index;
2750   case SelectionDAGISel::OPC_CheckCondCode:
2751     Result = !::CheckCondCode(Table, Index, N);
2752     return Index;
2753   case SelectionDAGISel::OPC_CheckChild2CondCode:
2754     Result = !::CheckChild2CondCode(Table, Index, N);
2755     return Index;
2756   case SelectionDAGISel::OPC_CheckValueType:
2757     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2758                                SDISel.CurDAG->getDataLayout());
2759     return Index;
2760   case SelectionDAGISel::OPC_CheckInteger:
2761     Result = !::CheckInteger(Table, Index, N);
2762     return Index;
2763   case SelectionDAGISel::OPC_CheckChild0Integer:
2764   case SelectionDAGISel::OPC_CheckChild1Integer:
2765   case SelectionDAGISel::OPC_CheckChild2Integer:
2766   case SelectionDAGISel::OPC_CheckChild3Integer:
2767   case SelectionDAGISel::OPC_CheckChild4Integer:
2768     Result = !::CheckChildInteger(Table, Index, N,
2769                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2770     return Index;
2771   case SelectionDAGISel::OPC_CheckAndImm:
2772     Result = !::CheckAndImm(Table, Index, N, SDISel);
2773     return Index;
2774   case SelectionDAGISel::OPC_CheckOrImm:
2775     Result = !::CheckOrImm(Table, Index, N, SDISel);
2776     return Index;
2777   }
2778 }
2779 
2780 namespace {
2781 
2782 struct MatchScope {
2783   /// FailIndex - If this match fails, this is the index to continue with.
2784   unsigned FailIndex;
2785 
2786   /// NodeStack - The node stack when the scope was formed.
2787   SmallVector<SDValue, 4> NodeStack;
2788 
2789   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2790   unsigned NumRecordedNodes;
2791 
2792   /// NumMatchedMemRefs - The number of matched memref entries.
2793   unsigned NumMatchedMemRefs;
2794 
2795   /// InputChain/InputGlue - The current chain/glue
2796   SDValue InputChain, InputGlue;
2797 
2798   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2799   bool HasChainNodesMatched;
2800 };
2801 
2802 /// \A DAG update listener to keep the matching state
2803 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2804 /// change the DAG while matching.  X86 addressing mode matcher is an example
2805 /// for this.
2806 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2807 {
2808   SDNode **NodeToMatch;
2809   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2810   SmallVectorImpl<MatchScope> &MatchScopes;
2811 
2812 public:
2813   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2814                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2815                     SmallVectorImpl<MatchScope> &MS)
2816       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2817         RecordedNodes(RN), MatchScopes(MS) {}
2818 
2819   void NodeDeleted(SDNode *N, SDNode *E) override {
2820     // Some early-returns here to avoid the search if we deleted the node or
2821     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2822     // do, so it's unnecessary to update matching state at that point).
2823     // Neither of these can occur currently because we only install this
2824     // update listener during matching a complex patterns.
2825     if (!E || E->isMachineOpcode())
2826       return;
2827     // Check if NodeToMatch was updated.
2828     if (N == *NodeToMatch)
2829       *NodeToMatch = E;
2830     // Performing linear search here does not matter because we almost never
2831     // run this code.  You'd have to have a CSE during complex pattern
2832     // matching.
2833     for (auto &I : RecordedNodes)
2834       if (I.first.getNode() == N)
2835         I.first.setNode(E);
2836 
2837     for (auto &I : MatchScopes)
2838       for (auto &J : I.NodeStack)
2839         if (J.getNode() == N)
2840           J.setNode(E);
2841   }
2842 };
2843 
2844 } // end anonymous namespace
2845 
2846 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2847                                         const unsigned char *MatcherTable,
2848                                         unsigned TableSize) {
2849   // FIXME: Should these even be selected?  Handle these cases in the caller?
2850   switch (NodeToMatch->getOpcode()) {
2851   default:
2852     break;
2853   case ISD::EntryToken:       // These nodes remain the same.
2854   case ISD::BasicBlock:
2855   case ISD::Register:
2856   case ISD::RegisterMask:
2857   case ISD::HANDLENODE:
2858   case ISD::MDNODE_SDNODE:
2859   case ISD::TargetConstant:
2860   case ISD::TargetConstantFP:
2861   case ISD::TargetConstantPool:
2862   case ISD::TargetFrameIndex:
2863   case ISD::TargetExternalSymbol:
2864   case ISD::MCSymbol:
2865   case ISD::TargetBlockAddress:
2866   case ISD::TargetJumpTable:
2867   case ISD::TargetGlobalTLSAddress:
2868   case ISD::TargetGlobalAddress:
2869   case ISD::TokenFactor:
2870   case ISD::CopyFromReg:
2871   case ISD::CopyToReg:
2872   case ISD::EH_LABEL:
2873   case ISD::ANNOTATION_LABEL:
2874   case ISD::LIFETIME_START:
2875   case ISD::LIFETIME_END:
2876   case ISD::PSEUDO_PROBE:
2877     NodeToMatch->setNodeId(-1); // Mark selected.
2878     return;
2879   case ISD::AssertSext:
2880   case ISD::AssertZext:
2881   case ISD::AssertAlign:
2882     ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2883     CurDAG->RemoveDeadNode(NodeToMatch);
2884     return;
2885   case ISD::INLINEASM:
2886   case ISD::INLINEASM_BR:
2887     Select_INLINEASM(NodeToMatch);
2888     return;
2889   case ISD::READ_REGISTER:
2890     Select_READ_REGISTER(NodeToMatch);
2891     return;
2892   case ISD::WRITE_REGISTER:
2893     Select_WRITE_REGISTER(NodeToMatch);
2894     return;
2895   case ISD::UNDEF:
2896     Select_UNDEF(NodeToMatch);
2897     return;
2898   case ISD::FREEZE:
2899     Select_FREEZE(NodeToMatch);
2900     return;
2901   case ISD::ARITH_FENCE:
2902     Select_ARITH_FENCE(NodeToMatch);
2903     return;
2904   case ISD::MEMBARRIER:
2905     Select_MEMBARRIER(NodeToMatch);
2906     return;
2907   case ISD::STACKMAP:
2908     Select_STACKMAP(NodeToMatch);
2909     return;
2910   case ISD::PATCHPOINT:
2911     Select_PATCHPOINT(NodeToMatch);
2912     return;
2913   }
2914 
2915   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2916 
2917   // Set up the node stack with NodeToMatch as the only node on the stack.
2918   SmallVector<SDValue, 8> NodeStack;
2919   SDValue N = SDValue(NodeToMatch, 0);
2920   NodeStack.push_back(N);
2921 
2922   // MatchScopes - Scopes used when matching, if a match failure happens, this
2923   // indicates where to continue checking.
2924   SmallVector<MatchScope, 8> MatchScopes;
2925 
2926   // RecordedNodes - This is the set of nodes that have been recorded by the
2927   // state machine.  The second value is the parent of the node, or null if the
2928   // root is recorded.
2929   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2930 
2931   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2932   // pattern.
2933   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2934 
2935   // These are the current input chain and glue for use when generating nodes.
2936   // Various Emit operations change these.  For example, emitting a copytoreg
2937   // uses and updates these.
2938   SDValue InputChain, InputGlue;
2939 
2940   // ChainNodesMatched - If a pattern matches nodes that have input/output
2941   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2942   // which ones they are.  The result is captured into this list so that we can
2943   // update the chain results when the pattern is complete.
2944   SmallVector<SDNode*, 3> ChainNodesMatched;
2945 
2946   LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2947 
2948   // Determine where to start the interpreter.  Normally we start at opcode #0,
2949   // but if the state machine starts with an OPC_SwitchOpcode, then we
2950   // accelerate the first lookup (which is guaranteed to be hot) with the
2951   // OpcodeOffset table.
2952   unsigned MatcherIndex = 0;
2953 
2954   if (!OpcodeOffset.empty()) {
2955     // Already computed the OpcodeOffset table, just index into it.
2956     if (N.getOpcode() < OpcodeOffset.size())
2957       MatcherIndex = OpcodeOffset[N.getOpcode()];
2958     LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2959 
2960   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2961     // Otherwise, the table isn't computed, but the state machine does start
2962     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2963     // is the first time we're selecting an instruction.
2964     unsigned Idx = 1;
2965     while (true) {
2966       // Get the size of this case.
2967       unsigned CaseSize = MatcherTable[Idx++];
2968       if (CaseSize & 128)
2969         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2970       if (CaseSize == 0) break;
2971 
2972       // Get the opcode, add the index to the table.
2973       uint16_t Opc = MatcherTable[Idx++];
2974       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2975       if (Opc >= OpcodeOffset.size())
2976         OpcodeOffset.resize((Opc+1)*2);
2977       OpcodeOffset[Opc] = Idx;
2978       Idx += CaseSize;
2979     }
2980 
2981     // Okay, do the lookup for the first opcode.
2982     if (N.getOpcode() < OpcodeOffset.size())
2983       MatcherIndex = OpcodeOffset[N.getOpcode()];
2984   }
2985 
2986   while (true) {
2987     assert(MatcherIndex < TableSize && "Invalid index");
2988 #ifndef NDEBUG
2989     unsigned CurrentOpcodeIndex = MatcherIndex;
2990 #endif
2991     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2992     switch (Opcode) {
2993     case OPC_Scope: {
2994       // Okay, the semantics of this operation are that we should push a scope
2995       // then evaluate the first child.  However, pushing a scope only to have
2996       // the first check fail (which then pops it) is inefficient.  If we can
2997       // determine immediately that the first check (or first several) will
2998       // immediately fail, don't even bother pushing a scope for them.
2999       unsigned FailIndex;
3000 
3001       while (true) {
3002         unsigned NumToSkip = MatcherTable[MatcherIndex++];
3003         if (NumToSkip & 128)
3004           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3005         // Found the end of the scope with no match.
3006         if (NumToSkip == 0) {
3007           FailIndex = 0;
3008           break;
3009         }
3010 
3011         FailIndex = MatcherIndex+NumToSkip;
3012 
3013         unsigned MatcherIndexOfPredicate = MatcherIndex;
3014         (void)MatcherIndexOfPredicate; // silence warning.
3015 
3016         // If we can't evaluate this predicate without pushing a scope (e.g. if
3017         // it is a 'MoveParent') or if the predicate succeeds on this node, we
3018         // push the scope and evaluate the full predicate chain.
3019         bool Result;
3020         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3021                                               Result, *this, RecordedNodes);
3022         if (!Result)
3023           break;
3024 
3025         LLVM_DEBUG(
3026             dbgs() << "  Skipped scope entry (due to false predicate) at "
3027                    << "index " << MatcherIndexOfPredicate << ", continuing at "
3028                    << FailIndex << "\n");
3029         ++NumDAGIselRetries;
3030 
3031         // Otherwise, we know that this case of the Scope is guaranteed to fail,
3032         // move to the next case.
3033         MatcherIndex = FailIndex;
3034       }
3035 
3036       // If the whole scope failed to match, bail.
3037       if (FailIndex == 0) break;
3038 
3039       // Push a MatchScope which indicates where to go if the first child fails
3040       // to match.
3041       MatchScope NewEntry;
3042       NewEntry.FailIndex = FailIndex;
3043       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3044       NewEntry.NumRecordedNodes = RecordedNodes.size();
3045       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3046       NewEntry.InputChain = InputChain;
3047       NewEntry.InputGlue = InputGlue;
3048       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3049       MatchScopes.push_back(NewEntry);
3050       continue;
3051     }
3052     case OPC_RecordNode: {
3053       // Remember this node, it may end up being an operand in the pattern.
3054       SDNode *Parent = nullptr;
3055       if (NodeStack.size() > 1)
3056         Parent = NodeStack[NodeStack.size()-2].getNode();
3057       RecordedNodes.push_back(std::make_pair(N, Parent));
3058       continue;
3059     }
3060 
3061     case OPC_RecordChild0: case OPC_RecordChild1:
3062     case OPC_RecordChild2: case OPC_RecordChild3:
3063     case OPC_RecordChild4: case OPC_RecordChild5:
3064     case OPC_RecordChild6: case OPC_RecordChild7: {
3065       unsigned ChildNo = Opcode-OPC_RecordChild0;
3066       if (ChildNo >= N.getNumOperands())
3067         break;  // Match fails if out of range child #.
3068 
3069       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3070                                              N.getNode()));
3071       continue;
3072     }
3073     case OPC_RecordMemRef:
3074       if (auto *MN = dyn_cast<MemSDNode>(N))
3075         MatchedMemRefs.push_back(MN->getMemOperand());
3076       else {
3077         LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3078                    dbgs() << '\n');
3079       }
3080 
3081       continue;
3082 
3083     case OPC_CaptureGlueInput:
3084       // If the current node has an input glue, capture it in InputGlue.
3085       if (N->getNumOperands() != 0 &&
3086           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3087         InputGlue = N->getOperand(N->getNumOperands()-1);
3088       continue;
3089 
3090     case OPC_MoveChild: {
3091       unsigned ChildNo = MatcherTable[MatcherIndex++];
3092       if (ChildNo >= N.getNumOperands())
3093         break;  // Match fails if out of range child #.
3094       N = N.getOperand(ChildNo);
3095       NodeStack.push_back(N);
3096       continue;
3097     }
3098 
3099     case OPC_MoveChild0: case OPC_MoveChild1:
3100     case OPC_MoveChild2: case OPC_MoveChild3:
3101     case OPC_MoveChild4: case OPC_MoveChild5:
3102     case OPC_MoveChild6: case OPC_MoveChild7: {
3103       unsigned ChildNo = Opcode-OPC_MoveChild0;
3104       if (ChildNo >= N.getNumOperands())
3105         break;  // Match fails if out of range child #.
3106       N = N.getOperand(ChildNo);
3107       NodeStack.push_back(N);
3108       continue;
3109     }
3110 
3111     case OPC_MoveParent:
3112       // Pop the current node off the NodeStack.
3113       NodeStack.pop_back();
3114       assert(!NodeStack.empty() && "Node stack imbalance!");
3115       N = NodeStack.back();
3116       continue;
3117 
3118     case OPC_CheckSame:
3119       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3120       continue;
3121 
3122     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3123     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3124       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3125                             Opcode-OPC_CheckChild0Same))
3126         break;
3127       continue;
3128 
3129     case OPC_CheckPatternPredicate:
3130       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3131       continue;
3132     case OPC_CheckPredicate:
3133       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3134                                 N.getNode()))
3135         break;
3136       continue;
3137     case OPC_CheckPredicateWithOperands: {
3138       unsigned OpNum = MatcherTable[MatcherIndex++];
3139       SmallVector<SDValue, 8> Operands;
3140 
3141       for (unsigned i = 0; i < OpNum; ++i)
3142         Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3143 
3144       unsigned PredNo = MatcherTable[MatcherIndex++];
3145       if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3146         break;
3147       continue;
3148     }
3149     case OPC_CheckComplexPat: {
3150       unsigned CPNum = MatcherTable[MatcherIndex++];
3151       unsigned RecNo = MatcherTable[MatcherIndex++];
3152       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3153 
3154       // If target can modify DAG during matching, keep the matching state
3155       // consistent.
3156       std::unique_ptr<MatchStateUpdater> MSU;
3157       if (ComplexPatternFuncMutatesDAG())
3158         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3159                                         MatchScopes));
3160 
3161       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3162                                RecordedNodes[RecNo].first, CPNum,
3163                                RecordedNodes))
3164         break;
3165       continue;
3166     }
3167     case OPC_CheckOpcode:
3168       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3169       continue;
3170 
3171     case OPC_CheckType:
3172       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3173                        CurDAG->getDataLayout()))
3174         break;
3175       continue;
3176 
3177     case OPC_CheckTypeRes: {
3178       unsigned Res = MatcherTable[MatcherIndex++];
3179       if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3180                        CurDAG->getDataLayout()))
3181         break;
3182       continue;
3183     }
3184 
3185     case OPC_SwitchOpcode: {
3186       unsigned CurNodeOpcode = N.getOpcode();
3187       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3188       unsigned CaseSize;
3189       while (true) {
3190         // Get the size of this case.
3191         CaseSize = MatcherTable[MatcherIndex++];
3192         if (CaseSize & 128)
3193           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3194         if (CaseSize == 0) break;
3195 
3196         uint16_t Opc = MatcherTable[MatcherIndex++];
3197         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3198 
3199         // If the opcode matches, then we will execute this case.
3200         if (CurNodeOpcode == Opc)
3201           break;
3202 
3203         // Otherwise, skip over this case.
3204         MatcherIndex += CaseSize;
3205       }
3206 
3207       // If no cases matched, bail out.
3208       if (CaseSize == 0) break;
3209 
3210       // Otherwise, execute the case we found.
3211       LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3212                         << MatcherIndex << "\n");
3213       continue;
3214     }
3215 
3216     case OPC_SwitchType: {
3217       MVT CurNodeVT = N.getSimpleValueType();
3218       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3219       unsigned CaseSize;
3220       while (true) {
3221         // Get the size of this case.
3222         CaseSize = MatcherTable[MatcherIndex++];
3223         if (CaseSize & 128)
3224           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3225         if (CaseSize == 0) break;
3226 
3227         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3228         if (CaseVT == MVT::iPTR)
3229           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3230 
3231         // If the VT matches, then we will execute this case.
3232         if (CurNodeVT == CaseVT)
3233           break;
3234 
3235         // Otherwise, skip over this case.
3236         MatcherIndex += CaseSize;
3237       }
3238 
3239       // If no cases matched, bail out.
3240       if (CaseSize == 0) break;
3241 
3242       // Otherwise, execute the case we found.
3243       LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3244                         << "] from " << SwitchStart << " to " << MatcherIndex
3245                         << '\n');
3246       continue;
3247     }
3248     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3249     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3250     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3251     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3252       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3253                             CurDAG->getDataLayout(),
3254                             Opcode - OPC_CheckChild0Type))
3255         break;
3256       continue;
3257     case OPC_CheckCondCode:
3258       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3259       continue;
3260     case OPC_CheckChild2CondCode:
3261       if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3262       continue;
3263     case OPC_CheckValueType:
3264       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3265                             CurDAG->getDataLayout()))
3266         break;
3267       continue;
3268     case OPC_CheckInteger:
3269       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3270       continue;
3271     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3272     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3273     case OPC_CheckChild4Integer:
3274       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3275                                Opcode-OPC_CheckChild0Integer)) break;
3276       continue;
3277     case OPC_CheckAndImm:
3278       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3279       continue;
3280     case OPC_CheckOrImm:
3281       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3282       continue;
3283     case OPC_CheckImmAllOnesV:
3284       if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3285         break;
3286       continue;
3287     case OPC_CheckImmAllZerosV:
3288       if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3289         break;
3290       continue;
3291 
3292     case OPC_CheckFoldableChainNode: {
3293       assert(NodeStack.size() != 1 && "No parent node");
3294       // Verify that all intermediate nodes between the root and this one have
3295       // a single use (ignoring chains, which are handled in UpdateChains).
3296       bool HasMultipleUses = false;
3297       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3298         unsigned NNonChainUses = 0;
3299         SDNode *NS = NodeStack[i].getNode();
3300         for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3301           if (UI.getUse().getValueType() != MVT::Other)
3302             if (++NNonChainUses > 1) {
3303               HasMultipleUses = true;
3304               break;
3305             }
3306         if (HasMultipleUses) break;
3307       }
3308       if (HasMultipleUses) break;
3309 
3310       // Check to see that the target thinks this is profitable to fold and that
3311       // we can fold it without inducing cycles in the graph.
3312       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3313                               NodeToMatch) ||
3314           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3315                          NodeToMatch, OptLevel,
3316                          true/*We validate our own chains*/))
3317         break;
3318 
3319       continue;
3320     }
3321     case OPC_EmitInteger:
3322     case OPC_EmitStringInteger: {
3323       MVT::SimpleValueType VT =
3324         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3325       int64_t Val = MatcherTable[MatcherIndex++];
3326       if (Val & 128)
3327         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3328       if (Opcode == OPC_EmitInteger)
3329         Val = decodeSignRotatedValue(Val);
3330       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3331                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3332                                                         VT), nullptr));
3333       continue;
3334     }
3335     case OPC_EmitRegister: {
3336       MVT::SimpleValueType VT =
3337         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3338       unsigned RegNo = MatcherTable[MatcherIndex++];
3339       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3340                               CurDAG->getRegister(RegNo, VT), nullptr));
3341       continue;
3342     }
3343     case OPC_EmitRegister2: {
3344       // For targets w/ more than 256 register names, the register enum
3345       // values are stored in two bytes in the matcher table (just like
3346       // opcodes).
3347       MVT::SimpleValueType VT =
3348         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3349       unsigned RegNo = MatcherTable[MatcherIndex++];
3350       RegNo |= MatcherTable[MatcherIndex++] << 8;
3351       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3352                               CurDAG->getRegister(RegNo, VT), nullptr));
3353       continue;
3354     }
3355 
3356     case OPC_EmitConvertToTarget:  {
3357       // Convert from IMM/FPIMM to target version.
3358       unsigned RecNo = MatcherTable[MatcherIndex++];
3359       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3360       SDValue Imm = RecordedNodes[RecNo].first;
3361 
3362       if (Imm->getOpcode() == ISD::Constant) {
3363         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3364         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3365                                         Imm.getValueType());
3366       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3367         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3368         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3369                                           Imm.getValueType());
3370       }
3371 
3372       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3373       continue;
3374     }
3375 
3376     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3377     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3378     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3379       // These are space-optimized forms of OPC_EmitMergeInputChains.
3380       assert(!InputChain.getNode() &&
3381              "EmitMergeInputChains should be the first chain producing node");
3382       assert(ChainNodesMatched.empty() &&
3383              "Should only have one EmitMergeInputChains per match");
3384 
3385       // Read all of the chained nodes.
3386       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3387       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3388       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3389 
3390       // If the chained node is not the root, we can't fold it if it has
3391       // multiple uses.
3392       // FIXME: What if other value results of the node have uses not matched
3393       // by this pattern?
3394       if (ChainNodesMatched.back() != NodeToMatch &&
3395           !RecordedNodes[RecNo].first.hasOneUse()) {
3396         ChainNodesMatched.clear();
3397         break;
3398       }
3399 
3400       // Merge the input chains if they are not intra-pattern references.
3401       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3402 
3403       if (!InputChain.getNode())
3404         break;  // Failed to merge.
3405       continue;
3406     }
3407 
3408     case OPC_EmitMergeInputChains: {
3409       assert(!InputChain.getNode() &&
3410              "EmitMergeInputChains should be the first chain producing node");
3411       // This node gets a list of nodes we matched in the input that have
3412       // chains.  We want to token factor all of the input chains to these nodes
3413       // together.  However, if any of the input chains is actually one of the
3414       // nodes matched in this pattern, then we have an intra-match reference.
3415       // Ignore these because the newly token factored chain should not refer to
3416       // the old nodes.
3417       unsigned NumChains = MatcherTable[MatcherIndex++];
3418       assert(NumChains != 0 && "Can't TF zero chains");
3419 
3420       assert(ChainNodesMatched.empty() &&
3421              "Should only have one EmitMergeInputChains per match");
3422 
3423       // Read all of the chained nodes.
3424       for (unsigned i = 0; i != NumChains; ++i) {
3425         unsigned RecNo = MatcherTable[MatcherIndex++];
3426         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3427         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3428 
3429         // If the chained node is not the root, we can't fold it if it has
3430         // multiple uses.
3431         // FIXME: What if other value results of the node have uses not matched
3432         // by this pattern?
3433         if (ChainNodesMatched.back() != NodeToMatch &&
3434             !RecordedNodes[RecNo].first.hasOneUse()) {
3435           ChainNodesMatched.clear();
3436           break;
3437         }
3438       }
3439 
3440       // If the inner loop broke out, the match fails.
3441       if (ChainNodesMatched.empty())
3442         break;
3443 
3444       // Merge the input chains if they are not intra-pattern references.
3445       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3446 
3447       if (!InputChain.getNode())
3448         break;  // Failed to merge.
3449 
3450       continue;
3451     }
3452 
3453     case OPC_EmitCopyToReg:
3454     case OPC_EmitCopyToReg2: {
3455       unsigned RecNo = MatcherTable[MatcherIndex++];
3456       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3457       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3458       if (Opcode == OPC_EmitCopyToReg2)
3459         DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3460 
3461       if (!InputChain.getNode())
3462         InputChain = CurDAG->getEntryNode();
3463 
3464       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3465                                         DestPhysReg, RecordedNodes[RecNo].first,
3466                                         InputGlue);
3467 
3468       InputGlue = InputChain.getValue(1);
3469       continue;
3470     }
3471 
3472     case OPC_EmitNodeXForm: {
3473       unsigned XFormNo = MatcherTable[MatcherIndex++];
3474       unsigned RecNo = MatcherTable[MatcherIndex++];
3475       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3476       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3477       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3478       continue;
3479     }
3480     case OPC_Coverage: {
3481       // This is emitted right before MorphNode/EmitNode.
3482       // So it should be safe to assume that this node has been selected
3483       unsigned index = MatcherTable[MatcherIndex++];
3484       index |= (MatcherTable[MatcherIndex++] << 8);
3485       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3486       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3487       continue;
3488     }
3489 
3490     case OPC_EmitNode:     case OPC_MorphNodeTo:
3491     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3492     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3493       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3494       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3495       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3496       // Get the result VT list.
3497       unsigned NumVTs;
3498       // If this is one of the compressed forms, get the number of VTs based
3499       // on the Opcode. Otherwise read the next byte from the table.
3500       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3501         NumVTs = Opcode - OPC_MorphNodeTo0;
3502       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3503         NumVTs = Opcode - OPC_EmitNode0;
3504       else
3505         NumVTs = MatcherTable[MatcherIndex++];
3506       SmallVector<EVT, 4> VTs;
3507       for (unsigned i = 0; i != NumVTs; ++i) {
3508         MVT::SimpleValueType VT =
3509           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3510         if (VT == MVT::iPTR)
3511           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3512         VTs.push_back(VT);
3513       }
3514 
3515       if (EmitNodeInfo & OPFL_Chain)
3516         VTs.push_back(MVT::Other);
3517       if (EmitNodeInfo & OPFL_GlueOutput)
3518         VTs.push_back(MVT::Glue);
3519 
3520       // This is hot code, so optimize the two most common cases of 1 and 2
3521       // results.
3522       SDVTList VTList;
3523       if (VTs.size() == 1)
3524         VTList = CurDAG->getVTList(VTs[0]);
3525       else if (VTs.size() == 2)
3526         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3527       else
3528         VTList = CurDAG->getVTList(VTs);
3529 
3530       // Get the operand list.
3531       unsigned NumOps = MatcherTable[MatcherIndex++];
3532       SmallVector<SDValue, 8> Ops;
3533       for (unsigned i = 0; i != NumOps; ++i) {
3534         unsigned RecNo = MatcherTable[MatcherIndex++];
3535         if (RecNo & 128)
3536           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3537 
3538         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3539         Ops.push_back(RecordedNodes[RecNo].first);
3540       }
3541 
3542       // If there are variadic operands to add, handle them now.
3543       if (EmitNodeInfo & OPFL_VariadicInfo) {
3544         // Determine the start index to copy from.
3545         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3546         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3547         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3548                "Invalid variadic node");
3549         // Copy all of the variadic operands, not including a potential glue
3550         // input.
3551         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3552              i != e; ++i) {
3553           SDValue V = NodeToMatch->getOperand(i);
3554           if (V.getValueType() == MVT::Glue) break;
3555           Ops.push_back(V);
3556         }
3557       }
3558 
3559       // If this has chain/glue inputs, add them.
3560       if (EmitNodeInfo & OPFL_Chain)
3561         Ops.push_back(InputChain);
3562       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3563         Ops.push_back(InputGlue);
3564 
3565       // Check whether any matched node could raise an FP exception.  Since all
3566       // such nodes must have a chain, it suffices to check ChainNodesMatched.
3567       // We need to perform this check before potentially modifying one of the
3568       // nodes via MorphNode.
3569       bool MayRaiseFPException =
3570           llvm::any_of(ChainNodesMatched, [this](SDNode *N) {
3571             return mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept();
3572           });
3573 
3574       // Create the node.
3575       MachineSDNode *Res = nullptr;
3576       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3577                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3578       if (!IsMorphNodeTo) {
3579         // If this is a normal EmitNode command, just create the new node and
3580         // add the results to the RecordedNodes list.
3581         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3582                                      VTList, Ops);
3583 
3584         // Add all the non-glue/non-chain results to the RecordedNodes list.
3585         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3586           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3587           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3588                                                              nullptr));
3589         }
3590       } else {
3591         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3592                "NodeToMatch was removed partway through selection");
3593         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3594                                                               SDNode *E) {
3595           CurDAG->salvageDebugInfo(*N);
3596           auto &Chain = ChainNodesMatched;
3597           assert((!E || !is_contained(Chain, N)) &&
3598                  "Chain node replaced during MorphNode");
3599           llvm::erase_value(Chain, N);
3600         });
3601         Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3602                                             Ops, EmitNodeInfo));
3603       }
3604 
3605       // Set the NoFPExcept flag when no original matched node could
3606       // raise an FP exception, but the new node potentially might.
3607       if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3608         SDNodeFlags Flags = Res->getFlags();
3609         Flags.setNoFPExcept(true);
3610         Res->setFlags(Flags);
3611       }
3612 
3613       // If the node had chain/glue results, update our notion of the current
3614       // chain and glue.
3615       if (EmitNodeInfo & OPFL_GlueOutput) {
3616         InputGlue = SDValue(Res, VTs.size()-1);
3617         if (EmitNodeInfo & OPFL_Chain)
3618           InputChain = SDValue(Res, VTs.size()-2);
3619       } else if (EmitNodeInfo & OPFL_Chain)
3620         InputChain = SDValue(Res, VTs.size()-1);
3621 
3622       // If the OPFL_MemRefs glue is set on this node, slap all of the
3623       // accumulated memrefs onto it.
3624       //
3625       // FIXME: This is vastly incorrect for patterns with multiple outputs
3626       // instructions that access memory and for ComplexPatterns that match
3627       // loads.
3628       if (EmitNodeInfo & OPFL_MemRefs) {
3629         // Only attach load or store memory operands if the generated
3630         // instruction may load or store.
3631         const MCInstrDesc &MCID = TII->get(TargetOpc);
3632         bool mayLoad = MCID.mayLoad();
3633         bool mayStore = MCID.mayStore();
3634 
3635         // We expect to have relatively few of these so just filter them into a
3636         // temporary buffer so that we can easily add them to the instruction.
3637         SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3638         for (MachineMemOperand *MMO : MatchedMemRefs) {
3639           if (MMO->isLoad()) {
3640             if (mayLoad)
3641               FilteredMemRefs.push_back(MMO);
3642           } else if (MMO->isStore()) {
3643             if (mayStore)
3644               FilteredMemRefs.push_back(MMO);
3645           } else {
3646             FilteredMemRefs.push_back(MMO);
3647           }
3648         }
3649 
3650         CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3651       }
3652 
3653       LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3654                      << "  Dropping mem operands\n";
3655                  dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3656                         << " node: ";
3657                  Res->dump(CurDAG););
3658 
3659       // If this was a MorphNodeTo then we're completely done!
3660       if (IsMorphNodeTo) {
3661         // Update chain uses.
3662         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3663         return;
3664       }
3665       continue;
3666     }
3667 
3668     case OPC_CompleteMatch: {
3669       // The match has been completed, and any new nodes (if any) have been
3670       // created.  Patch up references to the matched dag to use the newly
3671       // created nodes.
3672       unsigned NumResults = MatcherTable[MatcherIndex++];
3673 
3674       for (unsigned i = 0; i != NumResults; ++i) {
3675         unsigned ResSlot = MatcherTable[MatcherIndex++];
3676         if (ResSlot & 128)
3677           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3678 
3679         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3680         SDValue Res = RecordedNodes[ResSlot].first;
3681 
3682         assert(i < NodeToMatch->getNumValues() &&
3683                NodeToMatch->getValueType(i) != MVT::Other &&
3684                NodeToMatch->getValueType(i) != MVT::Glue &&
3685                "Invalid number of results to complete!");
3686         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3687                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3688                 Res.getValueType() == MVT::iPTR ||
3689                 NodeToMatch->getValueType(i).getSizeInBits() ==
3690                     Res.getValueSizeInBits()) &&
3691                "invalid replacement");
3692         ReplaceUses(SDValue(NodeToMatch, i), Res);
3693       }
3694 
3695       // Update chain uses.
3696       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3697 
3698       // If the root node defines glue, we need to update it to the glue result.
3699       // TODO: This never happens in our tests and I think it can be removed /
3700       // replaced with an assert, but if we do it this the way the change is
3701       // NFC.
3702       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3703               MVT::Glue &&
3704           InputGlue.getNode())
3705         ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3706                     InputGlue);
3707 
3708       assert(NodeToMatch->use_empty() &&
3709              "Didn't replace all uses of the node?");
3710       CurDAG->RemoveDeadNode(NodeToMatch);
3711 
3712       return;
3713     }
3714     }
3715 
3716     // If the code reached this point, then the match failed.  See if there is
3717     // another child to try in the current 'Scope', otherwise pop it until we
3718     // find a case to check.
3719     LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3720                       << "\n");
3721     ++NumDAGIselRetries;
3722     while (true) {
3723       if (MatchScopes.empty()) {
3724         CannotYetSelect(NodeToMatch);
3725         return;
3726       }
3727 
3728       // Restore the interpreter state back to the point where the scope was
3729       // formed.
3730       MatchScope &LastScope = MatchScopes.back();
3731       RecordedNodes.resize(LastScope.NumRecordedNodes);
3732       NodeStack.clear();
3733       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3734       N = NodeStack.back();
3735 
3736       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3737         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3738       MatcherIndex = LastScope.FailIndex;
3739 
3740       LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3741 
3742       InputChain = LastScope.InputChain;
3743       InputGlue = LastScope.InputGlue;
3744       if (!LastScope.HasChainNodesMatched)
3745         ChainNodesMatched.clear();
3746 
3747       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3748       // we have reached the end of this scope, otherwise we have another child
3749       // in the current scope to try.
3750       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3751       if (NumToSkip & 128)
3752         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3753 
3754       // If we have another child in this scope to match, update FailIndex and
3755       // try it.
3756       if (NumToSkip != 0) {
3757         LastScope.FailIndex = MatcherIndex+NumToSkip;
3758         break;
3759       }
3760 
3761       // End of this scope, pop it and try the next child in the containing
3762       // scope.
3763       MatchScopes.pop_back();
3764     }
3765   }
3766 }
3767 
3768 /// Return whether the node may raise an FP exception.
3769 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3770   // For machine opcodes, consult the MCID flag.
3771   if (N->isMachineOpcode()) {
3772     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3773     return MCID.mayRaiseFPException();
3774   }
3775 
3776   // For ISD opcodes, only StrictFP opcodes may raise an FP
3777   // exception.
3778   if (N->isTargetOpcode())
3779     return N->isTargetStrictFPOpcode();
3780   return N->isStrictFPOpcode();
3781 }
3782 
3783 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3784   assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3785   auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3786   if (!C)
3787     return false;
3788 
3789   // Detect when "or" is used to add an offset to a stack object.
3790   if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3791     MachineFrameInfo &MFI = MF->getFrameInfo();
3792     Align A = MFI.getObjectAlign(FN->getIndex());
3793     int32_t Off = C->getSExtValue();
3794     // If the alleged offset fits in the zero bits guaranteed by
3795     // the alignment, then this or is really an add.
3796     return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3797   }
3798   return false;
3799 }
3800 
3801 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3802   std::string msg;
3803   raw_string_ostream Msg(msg);
3804   Msg << "Cannot select: ";
3805 
3806   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3807       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3808       N->getOpcode() != ISD::INTRINSIC_VOID) {
3809     N->printrFull(Msg, CurDAG);
3810     Msg << "\nIn function: " << MF->getName();
3811   } else {
3812     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3813     unsigned iid =
3814       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3815     if (iid < Intrinsic::num_intrinsics)
3816       Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
3817     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3818       Msg << "target intrinsic %" << TII->getName(iid);
3819     else
3820       Msg << "unknown intrinsic #" << iid;
3821   }
3822   report_fatal_error(Twine(Msg.str()));
3823 }
3824