1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
487                                             const APInt &DemandedBits,
488                                             const APInt &DemandedElts,
489                                             TargetLoweringOpt &TLO) const {
490   SDLoc DL(Op);
491   unsigned Opcode = Op.getOpcode();
492 
493   // Do target-specific constant optimization.
494   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
495     return TLO.New.getNode();
496 
497   // FIXME: ISD::SELECT, ISD::SELECT_CC
498   switch (Opcode) {
499   default:
500     break;
501   case ISD::XOR:
502   case ISD::AND:
503   case ISD::OR: {
504     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
505     if (!Op1C)
506       return false;
507 
508     // If this is a 'not' op, don't touch it because that's a canonical form.
509     const APInt &C = Op1C->getAPIntValue();
510     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
511       return false;
512 
513     if (!C.isSubsetOf(DemandedBits)) {
514       EVT VT = Op.getValueType();
515       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
516       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
517       return TLO.CombineTo(Op, NewOp);
518     }
519 
520     break;
521   }
522   }
523 
524   return false;
525 }
526 
527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
528                                             const APInt &DemandedBits,
529                                             TargetLoweringOpt &TLO) const {
530   EVT VT = Op.getValueType();
531   APInt DemandedElts = VT.isVector()
532                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
533                            : APInt(1, 1);
534   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
535 }
536 
537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
539 /// generalized for targets with other types of implicit widening casts.
540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
541                                       const APInt &Demanded,
542                                       TargetLoweringOpt &TLO) const {
543   assert(Op.getNumOperands() == 2 &&
544          "ShrinkDemandedOp only supports binary operators!");
545   assert(Op.getNode()->getNumValues() == 1 &&
546          "ShrinkDemandedOp only supports nodes with one result!");
547 
548   SelectionDAG &DAG = TLO.DAG;
549   SDLoc dl(Op);
550 
551   // Early return, as this function cannot handle vector types.
552   if (Op.getValueType().isVector())
553     return false;
554 
555   // Don't do this if the node has another user, which may require the
556   // full value.
557   if (!Op.getNode()->hasOneUse())
558     return false;
559 
560   // Search for the smallest integer type with free casts to and from
561   // Op's type. For expedience, just check power-of-2 integer types.
562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
563   unsigned DemandedSize = Demanded.getActiveBits();
564   unsigned SmallVTBits = DemandedSize;
565   if (!isPowerOf2_32(SmallVTBits))
566     SmallVTBits = NextPowerOf2(SmallVTBits);
567   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
568     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
569     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
570         TLI.isZExtFree(SmallVT, Op.getValueType())) {
571       // We found a type with free casts.
572       SDValue X = DAG.getNode(
573           Op.getOpcode(), dl, SmallVT,
574           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
575           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
576       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
577       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
578       return TLO.CombineTo(Op, Z);
579     }
580   }
581   return false;
582 }
583 
584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
585                                           DAGCombinerInfo &DCI) const {
586   SelectionDAG &DAG = DCI.DAG;
587   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
588                         !DCI.isBeforeLegalizeOps());
589   KnownBits Known;
590 
591   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
592   if (Simplified) {
593     DCI.AddToWorklist(Op.getNode());
594     DCI.CommitTargetLoweringOpt(TLO);
595   }
596   return Simplified;
597 }
598 
599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
600                                           KnownBits &Known,
601                                           TargetLoweringOpt &TLO,
602                                           unsigned Depth,
603                                           bool AssumeSingleUse) const {
604   EVT VT = Op.getValueType();
605 
606   // TODO: We can probably do more work on calculating the known bits and
607   // simplifying the operations for scalable vectors, but for now we just
608   // bail out.
609   if (VT.isScalableVector()) {
610     // Pretend we don't know anything for now.
611     Known = KnownBits(DemandedBits.getBitWidth());
612     return false;
613   }
614 
615   APInt DemandedElts = VT.isVector()
616                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
617                            : APInt(1, 1);
618   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
619                               AssumeSingleUse);
620 }
621 
622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
623 // TODO: Under what circumstances can we create nodes? Constant folding?
624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
625     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
626     SelectionDAG &DAG, unsigned Depth) const {
627   // Limit search depth.
628   if (Depth >= SelectionDAG::MaxRecursionDepth)
629     return SDValue();
630 
631   // Ignore UNDEFs.
632   if (Op.isUndef())
633     return SDValue();
634 
635   // Not demanding any bits/elts from Op.
636   if (DemandedBits == 0 || DemandedElts == 0)
637     return DAG.getUNDEF(Op.getValueType());
638 
639   unsigned NumElts = DemandedElts.getBitWidth();
640   unsigned BitWidth = DemandedBits.getBitWidth();
641   KnownBits LHSKnown, RHSKnown;
642   switch (Op.getOpcode()) {
643   case ISD::BITCAST: {
644     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
645     EVT SrcVT = Src.getValueType();
646     EVT DstVT = Op.getValueType();
647     if (SrcVT == DstVT)
648       return Src;
649 
650     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
651     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
652     if (NumSrcEltBits == NumDstEltBits)
653       if (SDValue V = SimplifyMultipleUseDemandedBits(
654               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
655         return DAG.getBitcast(DstVT, V);
656 
657     // TODO - bigendian once we have test coverage.
658     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumDstEltBits / NumSrcEltBits;
661       unsigned NumSrcElts = SrcVT.getVectorNumElements();
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != Scale; ++i) {
665         unsigned Offset = i * NumSrcEltBits;
666         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
667         if (!Sub.isNullValue()) {
668           DemandedSrcBits |= Sub;
669           for (unsigned j = 0; j != NumElts; ++j)
670             if (DemandedElts[j])
671               DemandedSrcElts.setBit((j * Scale) + i);
672         }
673       }
674 
675       if (SDValue V = SimplifyMultipleUseDemandedBits(
676               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
677         return DAG.getBitcast(DstVT, V);
678     }
679 
680     // TODO - bigendian once we have test coverage.
681     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
682         DAG.getDataLayout().isLittleEndian()) {
683       unsigned Scale = NumSrcEltBits / NumDstEltBits;
684       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
685       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
686       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
687       for (unsigned i = 0; i != NumElts; ++i)
688         if (DemandedElts[i]) {
689           unsigned Offset = (i % Scale) * NumDstEltBits;
690           DemandedSrcBits.insertBits(DemandedBits, Offset);
691           DemandedSrcElts.setBit(i / Scale);
692         }
693 
694       if (SDValue V = SimplifyMultipleUseDemandedBits(
695               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
696         return DAG.getBitcast(DstVT, V);
697     }
698 
699     break;
700   }
701   case ISD::AND: {
702     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
703     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
704 
705     // If all of the demanded bits are known 1 on one side, return the other.
706     // These bits cannot contribute to the result of the 'and' in this
707     // context.
708     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
709       return Op.getOperand(0);
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
711       return Op.getOperand(1);
712     break;
713   }
714   case ISD::OR: {
715     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
716     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
717 
718     // If all of the demanded bits are known zero on one side, return the
719     // other.  These bits cannot contribute to the result of the 'or' in this
720     // context.
721     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
722       return Op.getOperand(0);
723     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
724       return Op.getOperand(1);
725     break;
726   }
727   case ISD::XOR: {
728     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
729     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
730 
731     // If all of the demanded bits are known zero on one side, return the
732     // other.
733     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
734       return Op.getOperand(0);
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
736       return Op.getOperand(1);
737     break;
738   }
739   case ISD::SHL: {
740     // If we are only demanding sign bits then we can use the shift source
741     // directly.
742     if (const APInt *MaxSA =
743             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
744       SDValue Op0 = Op.getOperand(0);
745       unsigned ShAmt = MaxSA->getZExtValue();
746       unsigned NumSignBits =
747           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
748       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
749       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
750         return Op0;
751     }
752     break;
753   }
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (DemandedBits.isSignMask() &&
762         Op0.getScalarValueSizeInBits() == BitWidth &&
763         getBooleanContents(Op0.getValueType()) ==
764             BooleanContent::ZeroOrNegativeOneBooleanContent) {
765       // If we're testing X < 0, then this compare isn't needed - just use X!
766       // FIXME: We're limiting to integer types here, but this should also work
767       // if we don't care about FP signed-zero. The use of SETLT with FP means
768       // that we don't care about NaNs.
769       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
770           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
771         return Op0;
772     }
773     break;
774   }
775   case ISD::SIGN_EXTEND_INREG: {
776     // If none of the extended bits are demanded, eliminate the sextinreg.
777     SDValue Op0 = Op.getOperand(0);
778     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
779     unsigned ExBits = ExVT.getScalarSizeInBits();
780     if (DemandedBits.getActiveBits() <= ExBits)
781       return Op0;
782     // If the input is already sign extended, just drop the extension.
783     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
784     if (NumSignBits >= (BitWidth - ExBits + 1))
785       return Op0;
786     break;
787   }
788   case ISD::ANY_EXTEND_VECTOR_INREG:
789   case ISD::SIGN_EXTEND_VECTOR_INREG:
790   case ISD::ZERO_EXTEND_VECTOR_INREG: {
791     // If we only want the lowest element and none of extended bits, then we can
792     // return the bitcasted source vector.
793     SDValue Src = Op.getOperand(0);
794     EVT SrcVT = Src.getValueType();
795     EVT DstVT = Op.getValueType();
796     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
797         DAG.getDataLayout().isLittleEndian() &&
798         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
799       return DAG.getBitcast(DstVT, Src);
800     }
801     break;
802   }
803   case ISD::INSERT_VECTOR_ELT: {
804     // If we don't demand the inserted element, return the base vector.
805     SDValue Vec = Op.getOperand(0);
806     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
807     EVT VecVT = Vec.getValueType();
808     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
809         !DemandedElts[CIdx->getZExtValue()])
810       return Vec;
811     break;
812   }
813   case ISD::INSERT_SUBVECTOR: {
814     // If we don't demand the inserted subvector, return the base vector.
815     SDValue Vec = Op.getOperand(0);
816     SDValue Sub = Op.getOperand(1);
817     uint64_t Idx = Op.getConstantOperandVal(2);
818     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
819     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
820       return Vec;
821     break;
822   }
823   case ISD::VECTOR_SHUFFLE: {
824     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
825 
826     // If all the demanded elts are from one operand and are inline,
827     // then we can use the operand directly.
828     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
829     for (unsigned i = 0; i != NumElts; ++i) {
830       int M = ShuffleMask[i];
831       if (M < 0 || !DemandedElts[i])
832         continue;
833       AllUndef = false;
834       IdentityLHS &= (M == (int)i);
835       IdentityRHS &= ((M - NumElts) == i);
836     }
837 
838     if (AllUndef)
839       return DAG.getUNDEF(Op.getValueType());
840     if (IdentityLHS)
841       return Op.getOperand(0);
842     if (IdentityRHS)
843       return Op.getOperand(1);
844     break;
845   }
846   default:
847     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
848       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
849               Op, DemandedBits, DemandedElts, DAG, Depth))
850         return V;
851     break;
852   }
853   return SDValue();
854 }
855 
856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
857     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
858     unsigned Depth) const {
859   EVT VT = Op.getValueType();
860   APInt DemandedElts = VT.isVector()
861                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
862                            : APInt(1, 1);
863   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
864                                          Depth);
865 }
866 
867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
868     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
869     unsigned Depth) const {
870   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
871   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
872                                          Depth);
873 }
874 
875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
876 /// result of Op are ever used downstream. If we can use this information to
877 /// simplify Op, create a new simplified DAG node and return true, returning the
878 /// original and new nodes in Old and New. Otherwise, analyze the expression and
879 /// return a mask of Known bits for the expression (used to simplify the
880 /// caller).  The Known bits may only be accurate for those bits in the
881 /// OriginalDemandedBits and OriginalDemandedElts.
882 bool TargetLowering::SimplifyDemandedBits(
883     SDValue Op, const APInt &OriginalDemandedBits,
884     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
885     unsigned Depth, bool AssumeSingleUse) const {
886   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
887   assert(Op.getScalarValueSizeInBits() == BitWidth &&
888          "Mask size mismatches value type size!");
889 
890   // Don't know anything.
891   Known = KnownBits(BitWidth);
892 
893   // TODO: We can probably do more work on calculating the known bits and
894   // simplifying the operations for scalable vectors, but for now we just
895   // bail out.
896   if (Op.getValueType().isScalableVector())
897     return false;
898 
899   unsigned NumElts = OriginalDemandedElts.getBitWidth();
900   assert((!Op.getValueType().isVector() ||
901           NumElts == Op.getValueType().getVectorNumElements()) &&
902          "Unexpected vector size");
903 
904   APInt DemandedBits = OriginalDemandedBits;
905   APInt DemandedElts = OriginalDemandedElts;
906   SDLoc dl(Op);
907   auto &DL = TLO.DAG.getDataLayout();
908 
909   // Undef operand.
910   if (Op.isUndef())
911     return false;
912 
913   if (Op.getOpcode() == ISD::Constant) {
914     // We know all of the bits for a constant!
915     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
916     return false;
917   }
918 
919   if (Op.getOpcode() == ISD::ConstantFP) {
920     // We know all of the bits for a floating point constant!
921     Known = KnownBits::makeConstant(
922         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
923     return false;
924   }
925 
926   // Other users may use these bits.
927   EVT VT = Op.getValueType();
928   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
929     if (Depth != 0) {
930       // If not at the root, Just compute the Known bits to
931       // simplify things downstream.
932       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
933       return false;
934     }
935     // If this is the root being simplified, allow it to have multiple uses,
936     // just set the DemandedBits/Elts to all bits.
937     DemandedBits = APInt::getAllOnesValue(BitWidth);
938     DemandedElts = APInt::getAllOnesValue(NumElts);
939   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
940     // Not demanding any bits/elts from Op.
941     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
942   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
943     // Limit search depth.
944     return false;
945   }
946 
947   KnownBits Known2;
948   switch (Op.getOpcode()) {
949   case ISD::TargetConstant:
950     llvm_unreachable("Can't simplify this node");
951   case ISD::SCALAR_TO_VECTOR: {
952     if (!DemandedElts[0])
953       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
954 
955     KnownBits SrcKnown;
956     SDValue Src = Op.getOperand(0);
957     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
958     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
959     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
960       return true;
961 
962     // Upper elements are undef, so only get the knownbits if we just demand
963     // the bottom element.
964     if (DemandedElts == 1)
965       Known = SrcKnown.anyextOrTrunc(BitWidth);
966     break;
967   }
968   case ISD::BUILD_VECTOR:
969     // Collect the known bits that are shared by every demanded element.
970     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
971     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
972     return false; // Don't fall through, will infinitely loop.
973   case ISD::LOAD: {
974     LoadSDNode *LD = cast<LoadSDNode>(Op);
975     if (getTargetConstantFromLoad(LD)) {
976       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
977       return false; // Don't fall through, will infinitely loop.
978     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
979       // If this is a ZEXTLoad and we are looking at the loaded value.
980       EVT MemVT = LD->getMemoryVT();
981       unsigned MemBits = MemVT.getScalarSizeInBits();
982       Known.Zero.setBitsFrom(MemBits);
983       return false; // Don't fall through, will infinitely loop.
984     }
985     break;
986   }
987   case ISD::INSERT_VECTOR_ELT: {
988     SDValue Vec = Op.getOperand(0);
989     SDValue Scl = Op.getOperand(1);
990     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
991     EVT VecVT = Vec.getValueType();
992 
993     // If index isn't constant, assume we need all vector elements AND the
994     // inserted element.
995     APInt DemandedVecElts(DemandedElts);
996     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
997       unsigned Idx = CIdx->getZExtValue();
998       DemandedVecElts.clearBit(Idx);
999 
1000       // Inserted element is not required.
1001       if (!DemandedElts[Idx])
1002         return TLO.CombineTo(Op, Vec);
1003     }
1004 
1005     KnownBits KnownScl;
1006     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1007     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1008     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1009       return true;
1010 
1011     Known = KnownScl.anyextOrTrunc(BitWidth);
1012 
1013     KnownBits KnownVec;
1014     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1015                              Depth + 1))
1016       return true;
1017 
1018     if (!!DemandedVecElts)
1019       Known = KnownBits::commonBits(Known, KnownVec);
1020 
1021     return false;
1022   }
1023   case ISD::INSERT_SUBVECTOR: {
1024     // Demand any elements from the subvector and the remainder from the src its
1025     // inserted into.
1026     SDValue Src = Op.getOperand(0);
1027     SDValue Sub = Op.getOperand(1);
1028     uint64_t Idx = Op.getConstantOperandVal(2);
1029     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1030     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1031     APInt DemandedSrcElts = DemandedElts;
1032     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1033 
1034     KnownBits KnownSub, KnownSrc;
1035     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1036                              Depth + 1))
1037       return true;
1038     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1039                              Depth + 1))
1040       return true;
1041 
1042     Known.Zero.setAllBits();
1043     Known.One.setAllBits();
1044     if (!!DemandedSubElts)
1045       Known = KnownBits::commonBits(Known, KnownSub);
1046     if (!!DemandedSrcElts)
1047       Known = KnownBits::commonBits(Known, KnownSrc);
1048 
1049     // Attempt to avoid multi-use src if we don't need anything from it.
1050     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1051         !DemandedSrcElts.isAllOnesValue()) {
1052       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1053           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1054       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1055           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1056       if (NewSub || NewSrc) {
1057         NewSub = NewSub ? NewSub : Sub;
1058         NewSrc = NewSrc ? NewSrc : Src;
1059         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1060                                         Op.getOperand(2));
1061         return TLO.CombineTo(Op, NewOp);
1062       }
1063     }
1064     break;
1065   }
1066   case ISD::EXTRACT_SUBVECTOR: {
1067     // Offset the demanded elts by the subvector index.
1068     SDValue Src = Op.getOperand(0);
1069     if (Src.getValueType().isScalableVector())
1070       break;
1071     uint64_t Idx = Op.getConstantOperandVal(1);
1072     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1073     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1074 
1075     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1076                              Depth + 1))
1077       return true;
1078 
1079     // Attempt to avoid multi-use src if we don't need anything from it.
1080     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1081       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1082           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1083       if (DemandedSrc) {
1084         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1085                                         Op.getOperand(1));
1086         return TLO.CombineTo(Op, NewOp);
1087       }
1088     }
1089     break;
1090   }
1091   case ISD::CONCAT_VECTORS: {
1092     Known.Zero.setAllBits();
1093     Known.One.setAllBits();
1094     EVT SubVT = Op.getOperand(0).getValueType();
1095     unsigned NumSubVecs = Op.getNumOperands();
1096     unsigned NumSubElts = SubVT.getVectorNumElements();
1097     for (unsigned i = 0; i != NumSubVecs; ++i) {
1098       APInt DemandedSubElts =
1099           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1100       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1101                                Known2, TLO, Depth + 1))
1102         return true;
1103       // Known bits are shared by every demanded subvector element.
1104       if (!!DemandedSubElts)
1105         Known = KnownBits::commonBits(Known, Known2);
1106     }
1107     break;
1108   }
1109   case ISD::VECTOR_SHUFFLE: {
1110     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1111 
1112     // Collect demanded elements from shuffle operands..
1113     APInt DemandedLHS(NumElts, 0);
1114     APInt DemandedRHS(NumElts, 0);
1115     for (unsigned i = 0; i != NumElts; ++i) {
1116       if (!DemandedElts[i])
1117         continue;
1118       int M = ShuffleMask[i];
1119       if (M < 0) {
1120         // For UNDEF elements, we don't know anything about the common state of
1121         // the shuffle result.
1122         DemandedLHS.clearAllBits();
1123         DemandedRHS.clearAllBits();
1124         break;
1125       }
1126       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1127       if (M < (int)NumElts)
1128         DemandedLHS.setBit(M);
1129       else
1130         DemandedRHS.setBit(M - NumElts);
1131     }
1132 
1133     if (!!DemandedLHS || !!DemandedRHS) {
1134       SDValue Op0 = Op.getOperand(0);
1135       SDValue Op1 = Op.getOperand(1);
1136 
1137       Known.Zero.setAllBits();
1138       Known.One.setAllBits();
1139       if (!!DemandedLHS) {
1140         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1141                                  Depth + 1))
1142           return true;
1143         Known = KnownBits::commonBits(Known, Known2);
1144       }
1145       if (!!DemandedRHS) {
1146         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1147                                  Depth + 1))
1148           return true;
1149         Known = KnownBits::commonBits(Known, Known2);
1150       }
1151 
1152       // Attempt to avoid multi-use ops if we don't need anything from them.
1153       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1154           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1155       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1156           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1157       if (DemandedOp0 || DemandedOp1) {
1158         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1159         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1160         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1161         return TLO.CombineTo(Op, NewOp);
1162       }
1163     }
1164     break;
1165   }
1166   case ISD::AND: {
1167     SDValue Op0 = Op.getOperand(0);
1168     SDValue Op1 = Op.getOperand(1);
1169 
1170     // If the RHS is a constant, check to see if the LHS would be zero without
1171     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1172     // simplify the LHS, here we're using information from the LHS to simplify
1173     // the RHS.
1174     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1175       // Do not increment Depth here; that can cause an infinite loop.
1176       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1177       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1178       if ((LHSKnown.Zero & DemandedBits) ==
1179           (~RHSC->getAPIntValue() & DemandedBits))
1180         return TLO.CombineTo(Op, Op0);
1181 
1182       // If any of the set bits in the RHS are known zero on the LHS, shrink
1183       // the constant.
1184       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1185                                  DemandedElts, TLO))
1186         return true;
1187 
1188       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1189       // constant, but if this 'and' is only clearing bits that were just set by
1190       // the xor, then this 'and' can be eliminated by shrinking the mask of
1191       // the xor. For example, for a 32-bit X:
1192       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1193       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1194           LHSKnown.One == ~RHSC->getAPIntValue()) {
1195         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1196         return TLO.CombineTo(Op, Xor);
1197       }
1198     }
1199 
1200     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1201                              Depth + 1))
1202       return true;
1203     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1204     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1205                              Known2, TLO, Depth + 1))
1206       return true;
1207     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1208 
1209     // Attempt to avoid multi-use ops if we don't need anything from them.
1210     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1211       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1212           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1213       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1214           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1215       if (DemandedOp0 || DemandedOp1) {
1216         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1217         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1218         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1219         return TLO.CombineTo(Op, NewOp);
1220       }
1221     }
1222 
1223     // If all of the demanded bits are known one on one side, return the other.
1224     // These bits cannot contribute to the result of the 'and'.
1225     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1226       return TLO.CombineTo(Op, Op0);
1227     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1228       return TLO.CombineTo(Op, Op1);
1229     // If all of the demanded bits in the inputs are known zeros, return zero.
1230     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1231       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1232     // If the RHS is a constant, see if we can simplify it.
1233     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1234                                TLO))
1235       return true;
1236     // If the operation can be done in a smaller type, do so.
1237     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1238       return true;
1239 
1240     Known &= Known2;
1241     break;
1242   }
1243   case ISD::OR: {
1244     SDValue Op0 = Op.getOperand(0);
1245     SDValue Op1 = Op.getOperand(1);
1246 
1247     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1248                              Depth + 1))
1249       return true;
1250     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1251     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1252                              Known2, TLO, Depth + 1))
1253       return true;
1254     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1255 
1256     // Attempt to avoid multi-use ops if we don't need anything from them.
1257     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1258       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1259           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1260       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1261           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1262       if (DemandedOp0 || DemandedOp1) {
1263         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1264         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1265         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1266         return TLO.CombineTo(Op, NewOp);
1267       }
1268     }
1269 
1270     // If all of the demanded bits are known zero on one side, return the other.
1271     // These bits cannot contribute to the result of the 'or'.
1272     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1273       return TLO.CombineTo(Op, Op0);
1274     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1275       return TLO.CombineTo(Op, Op1);
1276     // If the RHS is a constant, see if we can simplify it.
1277     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1278       return true;
1279     // If the operation can be done in a smaller type, do so.
1280     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1281       return true;
1282 
1283     Known |= Known2;
1284     break;
1285   }
1286   case ISD::XOR: {
1287     SDValue Op0 = Op.getOperand(0);
1288     SDValue Op1 = Op.getOperand(1);
1289 
1290     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1291                              Depth + 1))
1292       return true;
1293     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1294     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1295                              Depth + 1))
1296       return true;
1297     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1298 
1299     // Attempt to avoid multi-use ops if we don't need anything from them.
1300     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1301       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1302           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1303       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1304           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1305       if (DemandedOp0 || DemandedOp1) {
1306         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1307         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1308         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1309         return TLO.CombineTo(Op, NewOp);
1310       }
1311     }
1312 
1313     // If all of the demanded bits are known zero on one side, return the other.
1314     // These bits cannot contribute to the result of the 'xor'.
1315     if (DemandedBits.isSubsetOf(Known.Zero))
1316       return TLO.CombineTo(Op, Op0);
1317     if (DemandedBits.isSubsetOf(Known2.Zero))
1318       return TLO.CombineTo(Op, Op1);
1319     // If the operation can be done in a smaller type, do so.
1320     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1321       return true;
1322 
1323     // If all of the unknown bits are known to be zero on one side or the other
1324     // turn this into an *inclusive* or.
1325     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1326     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1327       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1328 
1329     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1330     if (C) {
1331       // If one side is a constant, and all of the set bits in the constant are
1332       // also known set on the other side, turn this into an AND, as we know
1333       // the bits will be cleared.
1334       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1335       // NB: it is okay if more bits are known than are requested
1336       if (C->getAPIntValue() == Known2.One) {
1337         SDValue ANDC =
1338             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1339         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1340       }
1341 
1342       // If the RHS is a constant, see if we can change it. Don't alter a -1
1343       // constant because that's a 'not' op, and that is better for combining
1344       // and codegen.
1345       if (!C->isAllOnesValue() &&
1346           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1347         // We're flipping all demanded bits. Flip the undemanded bits too.
1348         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1349         return TLO.CombineTo(Op, New);
1350       }
1351     }
1352 
1353     // If we can't turn this into a 'not', try to shrink the constant.
1354     if (!C || !C->isAllOnesValue())
1355       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1356         return true;
1357 
1358     Known ^= Known2;
1359     break;
1360   }
1361   case ISD::SELECT:
1362     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1363                              Depth + 1))
1364       return true;
1365     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1366                              Depth + 1))
1367       return true;
1368     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1369     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1370 
1371     // If the operands are constants, see if we can simplify them.
1372     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373       return true;
1374 
1375     // Only known if known in both the LHS and RHS.
1376     Known = KnownBits::commonBits(Known, Known2);
1377     break;
1378   case ISD::SELECT_CC:
1379     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SETCC: {
1396     SDValue Op0 = Op.getOperand(0);
1397     SDValue Op1 = Op.getOperand(1);
1398     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1399     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1400     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1401     // -1, we may be able to bypass the setcc.
1402     if (DemandedBits.isSignMask() &&
1403         Op0.getScalarValueSizeInBits() == BitWidth &&
1404         getBooleanContents(Op0.getValueType()) ==
1405             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1406       // If we're testing X < 0, then this compare isn't needed - just use X!
1407       // FIXME: We're limiting to integer types here, but this should also work
1408       // if we don't care about FP signed-zero. The use of SETLT with FP means
1409       // that we don't care about NaNs.
1410       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1411           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1412         return TLO.CombineTo(Op, Op0);
1413 
1414       // TODO: Should we check for other forms of sign-bit comparisons?
1415       // Examples: X <= -1, X >= 0
1416     }
1417     if (getBooleanContents(Op0.getValueType()) ==
1418             TargetLowering::ZeroOrOneBooleanContent &&
1419         BitWidth > 1)
1420       Known.Zero.setBitsFrom(1);
1421     break;
1422   }
1423   case ISD::SHL: {
1424     SDValue Op0 = Op.getOperand(0);
1425     SDValue Op1 = Op.getOperand(1);
1426     EVT ShiftVT = Op1.getValueType();
1427 
1428     if (const APInt *SA =
1429             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1430       unsigned ShAmt = SA->getZExtValue();
1431       if (ShAmt == 0)
1432         return TLO.CombineTo(Op, Op0);
1433 
1434       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1435       // single shift.  We can do this if the bottom bits (which are shifted
1436       // out) are never demanded.
1437       // TODO - support non-uniform vector amounts.
1438       if (Op0.getOpcode() == ISD::SRL) {
1439         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1440           if (const APInt *SA2 =
1441                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1442             unsigned C1 = SA2->getZExtValue();
1443             unsigned Opc = ISD::SHL;
1444             int Diff = ShAmt - C1;
1445             if (Diff < 0) {
1446               Diff = -Diff;
1447               Opc = ISD::SRL;
1448             }
1449             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1450             return TLO.CombineTo(
1451                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1452           }
1453         }
1454       }
1455 
1456       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1457       // are not demanded. This will likely allow the anyext to be folded away.
1458       // TODO - support non-uniform vector amounts.
1459       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1460         SDValue InnerOp = Op0.getOperand(0);
1461         EVT InnerVT = InnerOp.getValueType();
1462         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1463         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1464             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1465           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1466           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1467             ShTy = InnerVT;
1468           SDValue NarrowShl =
1469               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1470                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1471           return TLO.CombineTo(
1472               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1473         }
1474 
1475         // Repeat the SHL optimization above in cases where an extension
1476         // intervenes: (shl (anyext (shr x, c1)), c2) to
1477         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1478         // aren't demanded (as above) and that the shifted upper c1 bits of
1479         // x aren't demanded.
1480         // TODO - support non-uniform vector amounts.
1481         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1482             InnerOp.hasOneUse()) {
1483           if (const APInt *SA2 =
1484                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1485             unsigned InnerShAmt = SA2->getZExtValue();
1486             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1487                 DemandedBits.getActiveBits() <=
1488                     (InnerBits - InnerShAmt + ShAmt) &&
1489                 DemandedBits.countTrailingZeros() >= ShAmt) {
1490               SDValue NewSA =
1491                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1492               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1493                                                InnerOp.getOperand(0));
1494               return TLO.CombineTo(
1495                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1496             }
1497           }
1498         }
1499       }
1500 
1501       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1502       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1503                                Depth + 1))
1504         return true;
1505       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1506       Known.Zero <<= ShAmt;
1507       Known.One <<= ShAmt;
1508       // low bits known zero.
1509       Known.Zero.setLowBits(ShAmt);
1510 
1511       // Try shrinking the operation as long as the shift amount will still be
1512       // in range.
1513       if ((ShAmt < DemandedBits.getActiveBits()) &&
1514           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1515         return true;
1516     }
1517 
1518     // If we are only demanding sign bits then we can use the shift source
1519     // directly.
1520     if (const APInt *MaxSA =
1521             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1522       unsigned ShAmt = MaxSA->getZExtValue();
1523       unsigned NumSignBits =
1524           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1525       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1526       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1527         return TLO.CombineTo(Op, Op0);
1528     }
1529     break;
1530   }
1531   case ISD::SRL: {
1532     SDValue Op0 = Op.getOperand(0);
1533     SDValue Op1 = Op.getOperand(1);
1534     EVT ShiftVT = Op1.getValueType();
1535 
1536     if (const APInt *SA =
1537             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1538       unsigned ShAmt = SA->getZExtValue();
1539       if (ShAmt == 0)
1540         return TLO.CombineTo(Op, Op0);
1541 
1542       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1543       // single shift.  We can do this if the top bits (which are shifted out)
1544       // are never demanded.
1545       // TODO - support non-uniform vector amounts.
1546       if (Op0.getOpcode() == ISD::SHL) {
1547         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1548           if (const APInt *SA2 =
1549                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1550             unsigned C1 = SA2->getZExtValue();
1551             unsigned Opc = ISD::SRL;
1552             int Diff = ShAmt - C1;
1553             if (Diff < 0) {
1554               Diff = -Diff;
1555               Opc = ISD::SHL;
1556             }
1557             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1558             return TLO.CombineTo(
1559                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1560           }
1561         }
1562       }
1563 
1564       APInt InDemandedMask = (DemandedBits << ShAmt);
1565 
1566       // If the shift is exact, then it does demand the low bits (and knows that
1567       // they are zero).
1568       if (Op->getFlags().hasExact())
1569         InDemandedMask.setLowBits(ShAmt);
1570 
1571       // Compute the new bits that are at the top now.
1572       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1573                                Depth + 1))
1574         return true;
1575       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1576       Known.Zero.lshrInPlace(ShAmt);
1577       Known.One.lshrInPlace(ShAmt);
1578       // High bits known zero.
1579       Known.Zero.setHighBits(ShAmt);
1580     }
1581     break;
1582   }
1583   case ISD::SRA: {
1584     SDValue Op0 = Op.getOperand(0);
1585     SDValue Op1 = Op.getOperand(1);
1586     EVT ShiftVT = Op1.getValueType();
1587 
1588     // If we only want bits that already match the signbit then we don't need
1589     // to shift.
1590     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1591     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1592         NumHiDemandedBits)
1593       return TLO.CombineTo(Op, Op0);
1594 
1595     // If this is an arithmetic shift right and only the low-bit is set, we can
1596     // always convert this into a logical shr, even if the shift amount is
1597     // variable.  The low bit of the shift cannot be an input sign bit unless
1598     // the shift amount is >= the size of the datatype, which is undefined.
1599     if (DemandedBits.isOneValue())
1600       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1601 
1602     if (const APInt *SA =
1603             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1604       unsigned ShAmt = SA->getZExtValue();
1605       if (ShAmt == 0)
1606         return TLO.CombineTo(Op, Op0);
1607 
1608       APInt InDemandedMask = (DemandedBits << ShAmt);
1609 
1610       // If the shift is exact, then it does demand the low bits (and knows that
1611       // they are zero).
1612       if (Op->getFlags().hasExact())
1613         InDemandedMask.setLowBits(ShAmt);
1614 
1615       // If any of the demanded bits are produced by the sign extension, we also
1616       // demand the input sign bit.
1617       if (DemandedBits.countLeadingZeros() < ShAmt)
1618         InDemandedMask.setSignBit();
1619 
1620       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1621                                Depth + 1))
1622         return true;
1623       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1624       Known.Zero.lshrInPlace(ShAmt);
1625       Known.One.lshrInPlace(ShAmt);
1626 
1627       // If the input sign bit is known to be zero, or if none of the top bits
1628       // are demanded, turn this into an unsigned shift right.
1629       if (Known.Zero[BitWidth - ShAmt - 1] ||
1630           DemandedBits.countLeadingZeros() >= ShAmt) {
1631         SDNodeFlags Flags;
1632         Flags.setExact(Op->getFlags().hasExact());
1633         return TLO.CombineTo(
1634             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1635       }
1636 
1637       int Log2 = DemandedBits.exactLogBase2();
1638       if (Log2 >= 0) {
1639         // The bit must come from the sign.
1640         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1641         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1642       }
1643 
1644       if (Known.One[BitWidth - ShAmt - 1])
1645         // New bits are known one.
1646         Known.One.setHighBits(ShAmt);
1647 
1648       // Attempt to avoid multi-use ops if we don't need anything from them.
1649       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1650         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1651             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1652         if (DemandedOp0) {
1653           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1654           return TLO.CombineTo(Op, NewOp);
1655         }
1656       }
1657     }
1658     break;
1659   }
1660   case ISD::FSHL:
1661   case ISD::FSHR: {
1662     SDValue Op0 = Op.getOperand(0);
1663     SDValue Op1 = Op.getOperand(1);
1664     SDValue Op2 = Op.getOperand(2);
1665     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1666 
1667     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1668       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1669 
1670       // For fshl, 0-shift returns the 1st arg.
1671       // For fshr, 0-shift returns the 2nd arg.
1672       if (Amt == 0) {
1673         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1674                                  Known, TLO, Depth + 1))
1675           return true;
1676         break;
1677       }
1678 
1679       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1680       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1681       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1682       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1683       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1684                                Depth + 1))
1685         return true;
1686       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1687                                Depth + 1))
1688         return true;
1689 
1690       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1691       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1692       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1693       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1694       Known.One |= Known2.One;
1695       Known.Zero |= Known2.Zero;
1696     }
1697 
1698     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1699     if (isPowerOf2_32(BitWidth)) {
1700       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1701       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1702                                Known2, TLO, Depth + 1))
1703         return true;
1704     }
1705     break;
1706   }
1707   case ISD::ROTL:
1708   case ISD::ROTR: {
1709     SDValue Op0 = Op.getOperand(0);
1710     SDValue Op1 = Op.getOperand(1);
1711 
1712     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1713     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1714       return TLO.CombineTo(Op, Op0);
1715 
1716     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1717     if (isPowerOf2_32(BitWidth)) {
1718       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1719       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1720                                Depth + 1))
1721         return true;
1722     }
1723     break;
1724   }
1725   case ISD::UMIN: {
1726     // Check if one arg is always less than (or equal) to the other arg.
1727     SDValue Op0 = Op.getOperand(0);
1728     SDValue Op1 = Op.getOperand(1);
1729     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1730     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1731     Known = KnownBits::umin(Known0, Known1);
1732     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1733       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1734     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1735       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1736     break;
1737   }
1738   case ISD::UMAX: {
1739     // Check if one arg is always greater than (or equal) to the other arg.
1740     SDValue Op0 = Op.getOperand(0);
1741     SDValue Op1 = Op.getOperand(1);
1742     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1743     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1744     Known = KnownBits::umax(Known0, Known1);
1745     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1746       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1747     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1748       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1749     break;
1750   }
1751   case ISD::BITREVERSE: {
1752     SDValue Src = Op.getOperand(0);
1753     APInt DemandedSrcBits = DemandedBits.reverseBits();
1754     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1755                              Depth + 1))
1756       return true;
1757     Known.One = Known2.One.reverseBits();
1758     Known.Zero = Known2.Zero.reverseBits();
1759     break;
1760   }
1761   case ISD::BSWAP: {
1762     SDValue Src = Op.getOperand(0);
1763     APInt DemandedSrcBits = DemandedBits.byteSwap();
1764     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1765                              Depth + 1))
1766       return true;
1767     Known.One = Known2.One.byteSwap();
1768     Known.Zero = Known2.Zero.byteSwap();
1769     break;
1770   }
1771   case ISD::CTPOP: {
1772     // If only 1 bit is demanded, replace with PARITY as long as we're before
1773     // op legalization.
1774     // FIXME: Limit to scalars for now.
1775     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1776       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1777                                                Op.getOperand(0)));
1778 
1779     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1780     break;
1781   }
1782   case ISD::SIGN_EXTEND_INREG: {
1783     SDValue Op0 = Op.getOperand(0);
1784     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1785     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1786 
1787     // If we only care about the highest bit, don't bother shifting right.
1788     if (DemandedBits.isSignMask()) {
1789       unsigned NumSignBits =
1790           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1791       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1792       // However if the input is already sign extended we expect the sign
1793       // extension to be dropped altogether later and do not simplify.
1794       if (!AlreadySignExtended) {
1795         // Compute the correct shift amount type, which must be getShiftAmountTy
1796         // for scalar types after legalization.
1797         EVT ShiftAmtTy = VT;
1798         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1799           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1800 
1801         SDValue ShiftAmt =
1802             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1803         return TLO.CombineTo(Op,
1804                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1805       }
1806     }
1807 
1808     // If none of the extended bits are demanded, eliminate the sextinreg.
1809     if (DemandedBits.getActiveBits() <= ExVTBits)
1810       return TLO.CombineTo(Op, Op0);
1811 
1812     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1813 
1814     // Since the sign extended bits are demanded, we know that the sign
1815     // bit is demanded.
1816     InputDemandedBits.setBit(ExVTBits - 1);
1817 
1818     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1819       return true;
1820     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1821 
1822     // If the sign bit of the input is known set or clear, then we know the
1823     // top bits of the result.
1824 
1825     // If the input sign bit is known zero, convert this into a zero extension.
1826     if (Known.Zero[ExVTBits - 1])
1827       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1828 
1829     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1830     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1831       Known.One.setBitsFrom(ExVTBits);
1832       Known.Zero &= Mask;
1833     } else { // Input sign bit unknown
1834       Known.Zero &= Mask;
1835       Known.One &= Mask;
1836     }
1837     break;
1838   }
1839   case ISD::BUILD_PAIR: {
1840     EVT HalfVT = Op.getOperand(0).getValueType();
1841     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1842 
1843     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1844     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1845 
1846     KnownBits KnownLo, KnownHi;
1847 
1848     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1849       return true;
1850 
1851     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1852       return true;
1853 
1854     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1855                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1856 
1857     Known.One = KnownLo.One.zext(BitWidth) |
1858                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1859     break;
1860   }
1861   case ISD::ZERO_EXTEND:
1862   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1863     SDValue Src = Op.getOperand(0);
1864     EVT SrcVT = Src.getValueType();
1865     unsigned InBits = SrcVT.getScalarSizeInBits();
1866     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1867     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1868 
1869     // If none of the top bits are demanded, convert this into an any_extend.
1870     if (DemandedBits.getActiveBits() <= InBits) {
1871       // If we only need the non-extended bits of the bottom element
1872       // then we can just bitcast to the result.
1873       if (IsVecInReg && DemandedElts == 1 &&
1874           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1875           TLO.DAG.getDataLayout().isLittleEndian())
1876         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1877 
1878       unsigned Opc =
1879           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1880       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1881         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1882     }
1883 
1884     APInt InDemandedBits = DemandedBits.trunc(InBits);
1885     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1886     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1887                              Depth + 1))
1888       return true;
1889     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1890     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1891     Known = Known.zext(BitWidth);
1892 
1893     // Attempt to avoid multi-use ops if we don't need anything from them.
1894     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1895             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1896       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1897     break;
1898   }
1899   case ISD::SIGN_EXTEND:
1900   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1901     SDValue Src = Op.getOperand(0);
1902     EVT SrcVT = Src.getValueType();
1903     unsigned InBits = SrcVT.getScalarSizeInBits();
1904     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1905     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1906 
1907     // If none of the top bits are demanded, convert this into an any_extend.
1908     if (DemandedBits.getActiveBits() <= InBits) {
1909       // If we only need the non-extended bits of the bottom element
1910       // then we can just bitcast to the result.
1911       if (IsVecInReg && DemandedElts == 1 &&
1912           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1913           TLO.DAG.getDataLayout().isLittleEndian())
1914         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1915 
1916       unsigned Opc =
1917           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1918       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1919         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1920     }
1921 
1922     APInt InDemandedBits = DemandedBits.trunc(InBits);
1923     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1924 
1925     // Since some of the sign extended bits are demanded, we know that the sign
1926     // bit is demanded.
1927     InDemandedBits.setBit(InBits - 1);
1928 
1929     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1930                              Depth + 1))
1931       return true;
1932     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1933     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1934 
1935     // If the sign bit is known one, the top bits match.
1936     Known = Known.sext(BitWidth);
1937 
1938     // If the sign bit is known zero, convert this to a zero extend.
1939     if (Known.isNonNegative()) {
1940       unsigned Opc =
1941           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1942       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1943         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1944     }
1945 
1946     // Attempt to avoid multi-use ops if we don't need anything from them.
1947     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1948             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1949       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1950     break;
1951   }
1952   case ISD::ANY_EXTEND:
1953   case ISD::ANY_EXTEND_VECTOR_INREG: {
1954     SDValue Src = Op.getOperand(0);
1955     EVT SrcVT = Src.getValueType();
1956     unsigned InBits = SrcVT.getScalarSizeInBits();
1957     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1958     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1959 
1960     // If we only need the bottom element then we can just bitcast.
1961     // TODO: Handle ANY_EXTEND?
1962     if (IsVecInReg && DemandedElts == 1 &&
1963         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1964         TLO.DAG.getDataLayout().isLittleEndian())
1965       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1966 
1967     APInt InDemandedBits = DemandedBits.trunc(InBits);
1968     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1969     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1970                              Depth + 1))
1971       return true;
1972     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1973     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1974     Known = Known.anyext(BitWidth);
1975 
1976     // Attempt to avoid multi-use ops if we don't need anything from them.
1977     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1978             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1979       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1980     break;
1981   }
1982   case ISD::TRUNCATE: {
1983     SDValue Src = Op.getOperand(0);
1984 
1985     // Simplify the input, using demanded bit information, and compute the known
1986     // zero/one bits live out.
1987     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1988     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1989     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
1990                              Depth + 1))
1991       return true;
1992     Known = Known.trunc(BitWidth);
1993 
1994     // Attempt to avoid multi-use ops if we don't need anything from them.
1995     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1996             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1997       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1998 
1999     // If the input is only used by this truncate, see if we can shrink it based
2000     // on the known demanded bits.
2001     if (Src.getNode()->hasOneUse()) {
2002       switch (Src.getOpcode()) {
2003       default:
2004         break;
2005       case ISD::SRL:
2006         // Shrink SRL by a constant if none of the high bits shifted in are
2007         // demanded.
2008         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2009           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2010           // undesirable.
2011           break;
2012 
2013         const APInt *ShAmtC =
2014             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2015         if (!ShAmtC || ShAmtC->uge(BitWidth))
2016           break;
2017         uint64_t ShVal = ShAmtC->getZExtValue();
2018 
2019         APInt HighBits =
2020             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2021         HighBits.lshrInPlace(ShVal);
2022         HighBits = HighBits.trunc(BitWidth);
2023 
2024         if (!(HighBits & DemandedBits)) {
2025           // None of the shifted in bits are needed.  Add a truncate of the
2026           // shift input, then shift it.
2027           SDValue NewShAmt = TLO.DAG.getConstant(
2028               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2029           SDValue NewTrunc =
2030               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2031           return TLO.CombineTo(
2032               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2033         }
2034         break;
2035       }
2036     }
2037 
2038     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2039     break;
2040   }
2041   case ISD::AssertZext: {
2042     // AssertZext demands all of the high bits, plus any of the low bits
2043     // demanded by its users.
2044     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2045     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2046     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2047                              TLO, Depth + 1))
2048       return true;
2049     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2050 
2051     Known.Zero |= ~InMask;
2052     break;
2053   }
2054   case ISD::EXTRACT_VECTOR_ELT: {
2055     SDValue Src = Op.getOperand(0);
2056     SDValue Idx = Op.getOperand(1);
2057     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2058     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2059 
2060     if (SrcEltCnt.isScalable())
2061       return false;
2062 
2063     // Demand the bits from every vector element without a constant index.
2064     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2065     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2066     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2067       if (CIdx->getAPIntValue().ult(NumSrcElts))
2068         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2069 
2070     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2071     // anything about the extended bits.
2072     APInt DemandedSrcBits = DemandedBits;
2073     if (BitWidth > EltBitWidth)
2074       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2075 
2076     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2077                              Depth + 1))
2078       return true;
2079 
2080     // Attempt to avoid multi-use ops if we don't need anything from them.
2081     if (!DemandedSrcBits.isAllOnesValue() ||
2082         !DemandedSrcElts.isAllOnesValue()) {
2083       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2084               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2085         SDValue NewOp =
2086             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2087         return TLO.CombineTo(Op, NewOp);
2088       }
2089     }
2090 
2091     Known = Known2;
2092     if (BitWidth > EltBitWidth)
2093       Known = Known.anyext(BitWidth);
2094     break;
2095   }
2096   case ISD::BITCAST: {
2097     SDValue Src = Op.getOperand(0);
2098     EVT SrcVT = Src.getValueType();
2099     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2100 
2101     // If this is an FP->Int bitcast and if the sign bit is the only
2102     // thing demanded, turn this into a FGETSIGN.
2103     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2104         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2105         SrcVT.isFloatingPoint()) {
2106       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2107       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2108       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2109           SrcVT != MVT::f128) {
2110         // Cannot eliminate/lower SHL for f128 yet.
2111         EVT Ty = OpVTLegal ? VT : MVT::i32;
2112         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2113         // place.  We expect the SHL to be eliminated by other optimizations.
2114         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2115         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2116         if (!OpVTLegal && OpVTSizeInBits > 32)
2117           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2118         unsigned ShVal = Op.getValueSizeInBits() - 1;
2119         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2120         return TLO.CombineTo(Op,
2121                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2122       }
2123     }
2124 
2125     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2126     // Demand the elt/bit if any of the original elts/bits are demanded.
2127     // TODO - bigendian once we have test coverage.
2128     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2129         TLO.DAG.getDataLayout().isLittleEndian()) {
2130       unsigned Scale = BitWidth / NumSrcEltBits;
2131       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2132       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2133       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2134       for (unsigned i = 0; i != Scale; ++i) {
2135         unsigned Offset = i * NumSrcEltBits;
2136         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2137         if (!Sub.isNullValue()) {
2138           DemandedSrcBits |= Sub;
2139           for (unsigned j = 0; j != NumElts; ++j)
2140             if (DemandedElts[j])
2141               DemandedSrcElts.setBit((j * Scale) + i);
2142         }
2143       }
2144 
2145       APInt KnownSrcUndef, KnownSrcZero;
2146       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2147                                      KnownSrcZero, TLO, Depth + 1))
2148         return true;
2149 
2150       KnownBits KnownSrcBits;
2151       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2152                                KnownSrcBits, TLO, Depth + 1))
2153         return true;
2154     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2155                TLO.DAG.getDataLayout().isLittleEndian()) {
2156       unsigned Scale = NumSrcEltBits / BitWidth;
2157       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2158       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2159       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2160       for (unsigned i = 0; i != NumElts; ++i)
2161         if (DemandedElts[i]) {
2162           unsigned Offset = (i % Scale) * BitWidth;
2163           DemandedSrcBits.insertBits(DemandedBits, Offset);
2164           DemandedSrcElts.setBit(i / Scale);
2165         }
2166 
2167       if (SrcVT.isVector()) {
2168         APInt KnownSrcUndef, KnownSrcZero;
2169         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2170                                        KnownSrcZero, TLO, Depth + 1))
2171           return true;
2172       }
2173 
2174       KnownBits KnownSrcBits;
2175       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2176                                KnownSrcBits, TLO, Depth + 1))
2177         return true;
2178     }
2179 
2180     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2181     // recursive call where Known may be useful to the caller.
2182     if (Depth > 0) {
2183       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2184       return false;
2185     }
2186     break;
2187   }
2188   case ISD::ADD:
2189   case ISD::MUL:
2190   case ISD::SUB: {
2191     // Add, Sub, and Mul don't demand any bits in positions beyond that
2192     // of the highest bit demanded of them.
2193     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2194     SDNodeFlags Flags = Op.getNode()->getFlags();
2195     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2196     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2197     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2198                              Depth + 1) ||
2199         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2200                              Depth + 1) ||
2201         // See if the operation should be performed at a smaller bit width.
2202         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2203       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2204         // Disable the nsw and nuw flags. We can no longer guarantee that we
2205         // won't wrap after simplification.
2206         Flags.setNoSignedWrap(false);
2207         Flags.setNoUnsignedWrap(false);
2208         SDValue NewOp =
2209             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2210         return TLO.CombineTo(Op, NewOp);
2211       }
2212       return true;
2213     }
2214 
2215     // Attempt to avoid multi-use ops if we don't need anything from them.
2216     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2217       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2218           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2219       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2220           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2221       if (DemandedOp0 || DemandedOp1) {
2222         Flags.setNoSignedWrap(false);
2223         Flags.setNoUnsignedWrap(false);
2224         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2225         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2226         SDValue NewOp =
2227             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2228         return TLO.CombineTo(Op, NewOp);
2229       }
2230     }
2231 
2232     // If we have a constant operand, we may be able to turn it into -1 if we
2233     // do not demand the high bits. This can make the constant smaller to
2234     // encode, allow more general folding, or match specialized instruction
2235     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2236     // is probably not useful (and could be detrimental).
2237     ConstantSDNode *C = isConstOrConstSplat(Op1);
2238     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2239     if (C && !C->isAllOnesValue() && !C->isOne() &&
2240         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2241       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2242       // Disable the nsw and nuw flags. We can no longer guarantee that we
2243       // won't wrap after simplification.
2244       Flags.setNoSignedWrap(false);
2245       Flags.setNoUnsignedWrap(false);
2246       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2247       return TLO.CombineTo(Op, NewOp);
2248     }
2249 
2250     LLVM_FALLTHROUGH;
2251   }
2252   default:
2253     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2254       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2255                                             Known, TLO, Depth))
2256         return true;
2257       break;
2258     }
2259 
2260     // Just use computeKnownBits to compute output bits.
2261     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2262     break;
2263   }
2264 
2265   // If we know the value of all of the demanded bits, return this as a
2266   // constant.
2267   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2268     // Avoid folding to a constant if any OpaqueConstant is involved.
2269     const SDNode *N = Op.getNode();
2270     for (SDNodeIterator I = SDNodeIterator::begin(N),
2271                         E = SDNodeIterator::end(N);
2272          I != E; ++I) {
2273       SDNode *Op = *I;
2274       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2275         if (C->isOpaque())
2276           return false;
2277     }
2278     if (VT.isInteger())
2279       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2280     if (VT.isFloatingPoint())
2281       return TLO.CombineTo(
2282           Op,
2283           TLO.DAG.getConstantFP(
2284               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2285   }
2286 
2287   return false;
2288 }
2289 
2290 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2291                                                 const APInt &DemandedElts,
2292                                                 APInt &KnownUndef,
2293                                                 APInt &KnownZero,
2294                                                 DAGCombinerInfo &DCI) const {
2295   SelectionDAG &DAG = DCI.DAG;
2296   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2297                         !DCI.isBeforeLegalizeOps());
2298 
2299   bool Simplified =
2300       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2301   if (Simplified) {
2302     DCI.AddToWorklist(Op.getNode());
2303     DCI.CommitTargetLoweringOpt(TLO);
2304   }
2305 
2306   return Simplified;
2307 }
2308 
2309 /// Given a vector binary operation and known undefined elements for each input
2310 /// operand, compute whether each element of the output is undefined.
2311 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2312                                          const APInt &UndefOp0,
2313                                          const APInt &UndefOp1) {
2314   EVT VT = BO.getValueType();
2315   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2316          "Vector binop only");
2317 
2318   EVT EltVT = VT.getVectorElementType();
2319   unsigned NumElts = VT.getVectorNumElements();
2320   assert(UndefOp0.getBitWidth() == NumElts &&
2321          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2322 
2323   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2324                                    const APInt &UndefVals) {
2325     if (UndefVals[Index])
2326       return DAG.getUNDEF(EltVT);
2327 
2328     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2329       // Try hard to make sure that the getNode() call is not creating temporary
2330       // nodes. Ignore opaque integers because they do not constant fold.
2331       SDValue Elt = BV->getOperand(Index);
2332       auto *C = dyn_cast<ConstantSDNode>(Elt);
2333       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2334         return Elt;
2335     }
2336 
2337     return SDValue();
2338   };
2339 
2340   APInt KnownUndef = APInt::getNullValue(NumElts);
2341   for (unsigned i = 0; i != NumElts; ++i) {
2342     // If both inputs for this element are either constant or undef and match
2343     // the element type, compute the constant/undef result for this element of
2344     // the vector.
2345     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2346     // not handle FP constants. The code within getNode() should be refactored
2347     // to avoid the danger of creating a bogus temporary node here.
2348     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2349     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2350     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2351       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2352         KnownUndef.setBit(i);
2353   }
2354   return KnownUndef;
2355 }
2356 
2357 bool TargetLowering::SimplifyDemandedVectorElts(
2358     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2359     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2360     bool AssumeSingleUse) const {
2361   EVT VT = Op.getValueType();
2362   unsigned Opcode = Op.getOpcode();
2363   APInt DemandedElts = OriginalDemandedElts;
2364   unsigned NumElts = DemandedElts.getBitWidth();
2365   assert(VT.isVector() && "Expected vector op");
2366 
2367   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2368 
2369   // TODO: For now we assume we know nothing about scalable vectors.
2370   if (VT.isScalableVector())
2371     return false;
2372 
2373   assert(VT.getVectorNumElements() == NumElts &&
2374          "Mask size mismatches value type element count!");
2375 
2376   // Undef operand.
2377   if (Op.isUndef()) {
2378     KnownUndef.setAllBits();
2379     return false;
2380   }
2381 
2382   // If Op has other users, assume that all elements are needed.
2383   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2384     DemandedElts.setAllBits();
2385 
2386   // Not demanding any elements from Op.
2387   if (DemandedElts == 0) {
2388     KnownUndef.setAllBits();
2389     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2390   }
2391 
2392   // Limit search depth.
2393   if (Depth >= SelectionDAG::MaxRecursionDepth)
2394     return false;
2395 
2396   SDLoc DL(Op);
2397   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2398 
2399   // Helper for demanding the specified elements and all the bits of both binary
2400   // operands.
2401   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2402     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2403                                                            TLO.DAG, Depth + 1);
2404     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2405                                                            TLO.DAG, Depth + 1);
2406     if (NewOp0 || NewOp1) {
2407       SDValue NewOp = TLO.DAG.getNode(
2408           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2409       return TLO.CombineTo(Op, NewOp);
2410     }
2411     return false;
2412   };
2413 
2414   switch (Opcode) {
2415   case ISD::SCALAR_TO_VECTOR: {
2416     if (!DemandedElts[0]) {
2417       KnownUndef.setAllBits();
2418       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2419     }
2420     KnownUndef.setHighBits(NumElts - 1);
2421     break;
2422   }
2423   case ISD::BITCAST: {
2424     SDValue Src = Op.getOperand(0);
2425     EVT SrcVT = Src.getValueType();
2426 
2427     // We only handle vectors here.
2428     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2429     if (!SrcVT.isVector())
2430       break;
2431 
2432     // Fast handling of 'identity' bitcasts.
2433     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2434     if (NumSrcElts == NumElts)
2435       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2436                                         KnownZero, TLO, Depth + 1);
2437 
2438     APInt SrcZero, SrcUndef;
2439     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2440 
2441     // Bitcast from 'large element' src vector to 'small element' vector, we
2442     // must demand a source element if any DemandedElt maps to it.
2443     if ((NumElts % NumSrcElts) == 0) {
2444       unsigned Scale = NumElts / NumSrcElts;
2445       for (unsigned i = 0; i != NumElts; ++i)
2446         if (DemandedElts[i])
2447           SrcDemandedElts.setBit(i / Scale);
2448 
2449       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2450                                      TLO, Depth + 1))
2451         return true;
2452 
2453       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2454       // of the large element.
2455       // TODO - bigendian once we have test coverage.
2456       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2457         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2458         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2459         for (unsigned i = 0; i != NumElts; ++i)
2460           if (DemandedElts[i]) {
2461             unsigned Ofs = (i % Scale) * EltSizeInBits;
2462             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2463           }
2464 
2465         KnownBits Known;
2466         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2467                                  TLO, Depth + 1))
2468           return true;
2469       }
2470 
2471       // If the src element is zero/undef then all the output elements will be -
2472       // only demanded elements are guaranteed to be correct.
2473       for (unsigned i = 0; i != NumSrcElts; ++i) {
2474         if (SrcDemandedElts[i]) {
2475           if (SrcZero[i])
2476             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2477           if (SrcUndef[i])
2478             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2479         }
2480       }
2481     }
2482 
2483     // Bitcast from 'small element' src vector to 'large element' vector, we
2484     // demand all smaller source elements covered by the larger demanded element
2485     // of this vector.
2486     if ((NumSrcElts % NumElts) == 0) {
2487       unsigned Scale = NumSrcElts / NumElts;
2488       for (unsigned i = 0; i != NumElts; ++i)
2489         if (DemandedElts[i])
2490           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2491 
2492       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2493                                      TLO, Depth + 1))
2494         return true;
2495 
2496       // If all the src elements covering an output element are zero/undef, then
2497       // the output element will be as well, assuming it was demanded.
2498       for (unsigned i = 0; i != NumElts; ++i) {
2499         if (DemandedElts[i]) {
2500           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2501             KnownZero.setBit(i);
2502           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2503             KnownUndef.setBit(i);
2504         }
2505       }
2506     }
2507     break;
2508   }
2509   case ISD::BUILD_VECTOR: {
2510     // Check all elements and simplify any unused elements with UNDEF.
2511     if (!DemandedElts.isAllOnesValue()) {
2512       // Don't simplify BROADCASTS.
2513       if (llvm::any_of(Op->op_values(),
2514                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2515         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2516         bool Updated = false;
2517         for (unsigned i = 0; i != NumElts; ++i) {
2518           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2519             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2520             KnownUndef.setBit(i);
2521             Updated = true;
2522           }
2523         }
2524         if (Updated)
2525           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2526       }
2527     }
2528     for (unsigned i = 0; i != NumElts; ++i) {
2529       SDValue SrcOp = Op.getOperand(i);
2530       if (SrcOp.isUndef()) {
2531         KnownUndef.setBit(i);
2532       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2533                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2534         KnownZero.setBit(i);
2535       }
2536     }
2537     break;
2538   }
2539   case ISD::CONCAT_VECTORS: {
2540     EVT SubVT = Op.getOperand(0).getValueType();
2541     unsigned NumSubVecs = Op.getNumOperands();
2542     unsigned NumSubElts = SubVT.getVectorNumElements();
2543     for (unsigned i = 0; i != NumSubVecs; ++i) {
2544       SDValue SubOp = Op.getOperand(i);
2545       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2546       APInt SubUndef, SubZero;
2547       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2548                                      Depth + 1))
2549         return true;
2550       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2551       KnownZero.insertBits(SubZero, i * NumSubElts);
2552     }
2553     break;
2554   }
2555   case ISD::INSERT_SUBVECTOR: {
2556     // Demand any elements from the subvector and the remainder from the src its
2557     // inserted into.
2558     SDValue Src = Op.getOperand(0);
2559     SDValue Sub = Op.getOperand(1);
2560     uint64_t Idx = Op.getConstantOperandVal(2);
2561     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2562     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2563     APInt DemandedSrcElts = DemandedElts;
2564     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2565 
2566     APInt SubUndef, SubZero;
2567     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2568                                    Depth + 1))
2569       return true;
2570 
2571     // If none of the src operand elements are demanded, replace it with undef.
2572     if (!DemandedSrcElts && !Src.isUndef())
2573       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2574                                                TLO.DAG.getUNDEF(VT), Sub,
2575                                                Op.getOperand(2)));
2576 
2577     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2578                                    TLO, Depth + 1))
2579       return true;
2580     KnownUndef.insertBits(SubUndef, Idx);
2581     KnownZero.insertBits(SubZero, Idx);
2582 
2583     // Attempt to avoid multi-use ops if we don't need anything from them.
2584     if (!DemandedSrcElts.isAllOnesValue() ||
2585         !DemandedSubElts.isAllOnesValue()) {
2586       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2587           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2588       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2589           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2590       if (NewSrc || NewSub) {
2591         NewSrc = NewSrc ? NewSrc : Src;
2592         NewSub = NewSub ? NewSub : Sub;
2593         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2594                                         NewSub, Op.getOperand(2));
2595         return TLO.CombineTo(Op, NewOp);
2596       }
2597     }
2598     break;
2599   }
2600   case ISD::EXTRACT_SUBVECTOR: {
2601     // Offset the demanded elts by the subvector index.
2602     SDValue Src = Op.getOperand(0);
2603     if (Src.getValueType().isScalableVector())
2604       break;
2605     uint64_t Idx = Op.getConstantOperandVal(1);
2606     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2607     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2608 
2609     APInt SrcUndef, SrcZero;
2610     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2611                                    Depth + 1))
2612       return true;
2613     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2614     KnownZero = SrcZero.extractBits(NumElts, Idx);
2615 
2616     // Attempt to avoid multi-use ops if we don't need anything from them.
2617     if (!DemandedElts.isAllOnesValue()) {
2618       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2619           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2620       if (NewSrc) {
2621         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2622                                         Op.getOperand(1));
2623         return TLO.CombineTo(Op, NewOp);
2624       }
2625     }
2626     break;
2627   }
2628   case ISD::INSERT_VECTOR_ELT: {
2629     SDValue Vec = Op.getOperand(0);
2630     SDValue Scl = Op.getOperand(1);
2631     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2632 
2633     // For a legal, constant insertion index, if we don't need this insertion
2634     // then strip it, else remove it from the demanded elts.
2635     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2636       unsigned Idx = CIdx->getZExtValue();
2637       if (!DemandedElts[Idx])
2638         return TLO.CombineTo(Op, Vec);
2639 
2640       APInt DemandedVecElts(DemandedElts);
2641       DemandedVecElts.clearBit(Idx);
2642       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2643                                      KnownZero, TLO, Depth + 1))
2644         return true;
2645 
2646       KnownUndef.setBitVal(Idx, Scl.isUndef());
2647 
2648       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2649       break;
2650     }
2651 
2652     APInt VecUndef, VecZero;
2653     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2654                                    Depth + 1))
2655       return true;
2656     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2657     break;
2658   }
2659   case ISD::VSELECT: {
2660     // Try to transform the select condition based on the current demanded
2661     // elements.
2662     // TODO: If a condition element is undef, we can choose from one arm of the
2663     //       select (and if one arm is undef, then we can propagate that to the
2664     //       result).
2665     // TODO - add support for constant vselect masks (see IR version of this).
2666     APInt UnusedUndef, UnusedZero;
2667     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2668                                    UnusedZero, TLO, Depth + 1))
2669       return true;
2670 
2671     // See if we can simplify either vselect operand.
2672     APInt DemandedLHS(DemandedElts);
2673     APInt DemandedRHS(DemandedElts);
2674     APInt UndefLHS, ZeroLHS;
2675     APInt UndefRHS, ZeroRHS;
2676     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2677                                    ZeroLHS, TLO, Depth + 1))
2678       return true;
2679     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2680                                    ZeroRHS, TLO, Depth + 1))
2681       return true;
2682 
2683     KnownUndef = UndefLHS & UndefRHS;
2684     KnownZero = ZeroLHS & ZeroRHS;
2685     break;
2686   }
2687   case ISD::VECTOR_SHUFFLE: {
2688     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2689 
2690     // Collect demanded elements from shuffle operands..
2691     APInt DemandedLHS(NumElts, 0);
2692     APInt DemandedRHS(NumElts, 0);
2693     for (unsigned i = 0; i != NumElts; ++i) {
2694       int M = ShuffleMask[i];
2695       if (M < 0 || !DemandedElts[i])
2696         continue;
2697       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2698       if (M < (int)NumElts)
2699         DemandedLHS.setBit(M);
2700       else
2701         DemandedRHS.setBit(M - NumElts);
2702     }
2703 
2704     // See if we can simplify either shuffle operand.
2705     APInt UndefLHS, ZeroLHS;
2706     APInt UndefRHS, ZeroRHS;
2707     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2708                                    ZeroLHS, TLO, Depth + 1))
2709       return true;
2710     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2711                                    ZeroRHS, TLO, Depth + 1))
2712       return true;
2713 
2714     // Simplify mask using undef elements from LHS/RHS.
2715     bool Updated = false;
2716     bool IdentityLHS = true, IdentityRHS = true;
2717     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2718     for (unsigned i = 0; i != NumElts; ++i) {
2719       int &M = NewMask[i];
2720       if (M < 0)
2721         continue;
2722       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2723           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2724         Updated = true;
2725         M = -1;
2726       }
2727       IdentityLHS &= (M < 0) || (M == (int)i);
2728       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2729     }
2730 
2731     // Update legal shuffle masks based on demanded elements if it won't reduce
2732     // to Identity which can cause premature removal of the shuffle mask.
2733     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2734       SDValue LegalShuffle =
2735           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2736                                   NewMask, TLO.DAG);
2737       if (LegalShuffle)
2738         return TLO.CombineTo(Op, LegalShuffle);
2739     }
2740 
2741     // Propagate undef/zero elements from LHS/RHS.
2742     for (unsigned i = 0; i != NumElts; ++i) {
2743       int M = ShuffleMask[i];
2744       if (M < 0) {
2745         KnownUndef.setBit(i);
2746       } else if (M < (int)NumElts) {
2747         if (UndefLHS[M])
2748           KnownUndef.setBit(i);
2749         if (ZeroLHS[M])
2750           KnownZero.setBit(i);
2751       } else {
2752         if (UndefRHS[M - NumElts])
2753           KnownUndef.setBit(i);
2754         if (ZeroRHS[M - NumElts])
2755           KnownZero.setBit(i);
2756       }
2757     }
2758     break;
2759   }
2760   case ISD::ANY_EXTEND_VECTOR_INREG:
2761   case ISD::SIGN_EXTEND_VECTOR_INREG:
2762   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2763     APInt SrcUndef, SrcZero;
2764     SDValue Src = Op.getOperand(0);
2765     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2766     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2767     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2768                                    Depth + 1))
2769       return true;
2770     KnownZero = SrcZero.zextOrTrunc(NumElts);
2771     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2772 
2773     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2774         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2775         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2776       // aext - if we just need the bottom element then we can bitcast.
2777       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2778     }
2779 
2780     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2781       // zext(undef) upper bits are guaranteed to be zero.
2782       if (DemandedElts.isSubsetOf(KnownUndef))
2783         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2784       KnownUndef.clearAllBits();
2785     }
2786     break;
2787   }
2788 
2789   // TODO: There are more binop opcodes that could be handled here - MIN,
2790   // MAX, saturated math, etc.
2791   case ISD::OR:
2792   case ISD::XOR:
2793   case ISD::ADD:
2794   case ISD::SUB:
2795   case ISD::FADD:
2796   case ISD::FSUB:
2797   case ISD::FMUL:
2798   case ISD::FDIV:
2799   case ISD::FREM: {
2800     SDValue Op0 = Op.getOperand(0);
2801     SDValue Op1 = Op.getOperand(1);
2802 
2803     APInt UndefRHS, ZeroRHS;
2804     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2805                                    Depth + 1))
2806       return true;
2807     APInt UndefLHS, ZeroLHS;
2808     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2809                                    Depth + 1))
2810       return true;
2811 
2812     KnownZero = ZeroLHS & ZeroRHS;
2813     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2814 
2815     // Attempt to avoid multi-use ops if we don't need anything from them.
2816     // TODO - use KnownUndef to relax the demandedelts?
2817     if (!DemandedElts.isAllOnesValue())
2818       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2819         return true;
2820     break;
2821   }
2822   case ISD::SHL:
2823   case ISD::SRL:
2824   case ISD::SRA:
2825   case ISD::ROTL:
2826   case ISD::ROTR: {
2827     SDValue Op0 = Op.getOperand(0);
2828     SDValue Op1 = Op.getOperand(1);
2829 
2830     APInt UndefRHS, ZeroRHS;
2831     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2832                                    Depth + 1))
2833       return true;
2834     APInt UndefLHS, ZeroLHS;
2835     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2836                                    Depth + 1))
2837       return true;
2838 
2839     KnownZero = ZeroLHS;
2840     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2841 
2842     // Attempt to avoid multi-use ops if we don't need anything from them.
2843     // TODO - use KnownUndef to relax the demandedelts?
2844     if (!DemandedElts.isAllOnesValue())
2845       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2846         return true;
2847     break;
2848   }
2849   case ISD::MUL:
2850   case ISD::AND: {
2851     SDValue Op0 = Op.getOperand(0);
2852     SDValue Op1 = Op.getOperand(1);
2853 
2854     APInt SrcUndef, SrcZero;
2855     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2856                                    Depth + 1))
2857       return true;
2858     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2859                                    TLO, Depth + 1))
2860       return true;
2861 
2862     // If either side has a zero element, then the result element is zero, even
2863     // if the other is an UNDEF.
2864     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2865     // and then handle 'and' nodes with the rest of the binop opcodes.
2866     KnownZero |= SrcZero;
2867     KnownUndef &= SrcUndef;
2868     KnownUndef &= ~KnownZero;
2869 
2870     // Attempt to avoid multi-use ops if we don't need anything from them.
2871     // TODO - use KnownUndef to relax the demandedelts?
2872     if (!DemandedElts.isAllOnesValue())
2873       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2874         return true;
2875     break;
2876   }
2877   case ISD::TRUNCATE:
2878   case ISD::SIGN_EXTEND:
2879   case ISD::ZERO_EXTEND:
2880     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2881                                    KnownZero, TLO, Depth + 1))
2882       return true;
2883 
2884     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2885       // zext(undef) upper bits are guaranteed to be zero.
2886       if (DemandedElts.isSubsetOf(KnownUndef))
2887         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2888       KnownUndef.clearAllBits();
2889     }
2890     break;
2891   default: {
2892     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2893       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2894                                                   KnownZero, TLO, Depth))
2895         return true;
2896     } else {
2897       KnownBits Known;
2898       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2899       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2900                                TLO, Depth, AssumeSingleUse))
2901         return true;
2902     }
2903     break;
2904   }
2905   }
2906   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2907 
2908   // Constant fold all undef cases.
2909   // TODO: Handle zero cases as well.
2910   if (DemandedElts.isSubsetOf(KnownUndef))
2911     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2912 
2913   return false;
2914 }
2915 
2916 /// Determine which of the bits specified in Mask are known to be either zero or
2917 /// one and return them in the Known.
2918 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2919                                                    KnownBits &Known,
2920                                                    const APInt &DemandedElts,
2921                                                    const SelectionDAG &DAG,
2922                                                    unsigned Depth) const {
2923   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2924           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2925           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2926           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2927          "Should use MaskedValueIsZero if you don't know whether Op"
2928          " is a target node!");
2929   Known.resetAll();
2930 }
2931 
2932 void TargetLowering::computeKnownBitsForTargetInstr(
2933     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2934     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2935     unsigned Depth) const {
2936   Known.resetAll();
2937 }
2938 
2939 void TargetLowering::computeKnownBitsForFrameIndex(
2940   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2941   // The low bits are known zero if the pointer is aligned.
2942   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2943 }
2944 
2945 Align TargetLowering::computeKnownAlignForTargetInstr(
2946   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2947   unsigned Depth) const {
2948   return Align(1);
2949 }
2950 
2951 /// This method can be implemented by targets that want to expose additional
2952 /// information about sign bits to the DAG Combiner.
2953 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2954                                                          const APInt &,
2955                                                          const SelectionDAG &,
2956                                                          unsigned Depth) const {
2957   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2958           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2959           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2960           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2961          "Should use ComputeNumSignBits if you don't know whether Op"
2962          " is a target node!");
2963   return 1;
2964 }
2965 
2966 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2967   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2968   const MachineRegisterInfo &MRI, unsigned Depth) const {
2969   return 1;
2970 }
2971 
2972 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2973     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2974     TargetLoweringOpt &TLO, unsigned Depth) const {
2975   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2976           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2977           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2978           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2979          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2980          " is a target node!");
2981   return false;
2982 }
2983 
2984 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2985     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2986     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2987   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2988           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2989           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2990           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2991          "Should use SimplifyDemandedBits if you don't know whether Op"
2992          " is a target node!");
2993   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2994   return false;
2995 }
2996 
2997 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2998     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2999     SelectionDAG &DAG, unsigned Depth) const {
3000   assert(
3001       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3002        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3003        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3004        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3005       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3006       " is a target node!");
3007   return SDValue();
3008 }
3009 
3010 SDValue
3011 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3012                                         SDValue N1, MutableArrayRef<int> Mask,
3013                                         SelectionDAG &DAG) const {
3014   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3015   if (!LegalMask) {
3016     std::swap(N0, N1);
3017     ShuffleVectorSDNode::commuteMask(Mask);
3018     LegalMask = isShuffleMaskLegal(Mask, VT);
3019   }
3020 
3021   if (!LegalMask)
3022     return SDValue();
3023 
3024   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3025 }
3026 
3027 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3028   return nullptr;
3029 }
3030 
3031 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3032                                                   const SelectionDAG &DAG,
3033                                                   bool SNaN,
3034                                                   unsigned Depth) const {
3035   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3036           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3037           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3038           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3039          "Should use isKnownNeverNaN if you don't know whether Op"
3040          " is a target node!");
3041   return false;
3042 }
3043 
3044 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3045 // work with truncating build vectors and vectors with elements of less than
3046 // 8 bits.
3047 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3048   if (!N)
3049     return false;
3050 
3051   APInt CVal;
3052   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3053     CVal = CN->getAPIntValue();
3054   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3055     auto *CN = BV->getConstantSplatNode();
3056     if (!CN)
3057       return false;
3058 
3059     // If this is a truncating build vector, truncate the splat value.
3060     // Otherwise, we may fail to match the expected values below.
3061     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3062     CVal = CN->getAPIntValue();
3063     if (BVEltWidth < CVal.getBitWidth())
3064       CVal = CVal.trunc(BVEltWidth);
3065   } else {
3066     return false;
3067   }
3068 
3069   switch (getBooleanContents(N->getValueType(0))) {
3070   case UndefinedBooleanContent:
3071     return CVal[0];
3072   case ZeroOrOneBooleanContent:
3073     return CVal.isOneValue();
3074   case ZeroOrNegativeOneBooleanContent:
3075     return CVal.isAllOnesValue();
3076   }
3077 
3078   llvm_unreachable("Invalid boolean contents");
3079 }
3080 
3081 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3082   if (!N)
3083     return false;
3084 
3085   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3086   if (!CN) {
3087     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3088     if (!BV)
3089       return false;
3090 
3091     // Only interested in constant splats, we don't care about undef
3092     // elements in identifying boolean constants and getConstantSplatNode
3093     // returns NULL if all ops are undef;
3094     CN = BV->getConstantSplatNode();
3095     if (!CN)
3096       return false;
3097   }
3098 
3099   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3100     return !CN->getAPIntValue()[0];
3101 
3102   return CN->isNullValue();
3103 }
3104 
3105 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3106                                        bool SExt) const {
3107   if (VT == MVT::i1)
3108     return N->isOne();
3109 
3110   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3111   switch (Cnt) {
3112   case TargetLowering::ZeroOrOneBooleanContent:
3113     // An extended value of 1 is always true, unless its original type is i1,
3114     // in which case it will be sign extended to -1.
3115     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3116   case TargetLowering::UndefinedBooleanContent:
3117   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3118     return N->isAllOnesValue() && SExt;
3119   }
3120   llvm_unreachable("Unexpected enumeration.");
3121 }
3122 
3123 /// This helper function of SimplifySetCC tries to optimize the comparison when
3124 /// either operand of the SetCC node is a bitwise-and instruction.
3125 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3126                                          ISD::CondCode Cond, const SDLoc &DL,
3127                                          DAGCombinerInfo &DCI) const {
3128   // Match these patterns in any of their permutations:
3129   // (X & Y) == Y
3130   // (X & Y) != Y
3131   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3132     std::swap(N0, N1);
3133 
3134   EVT OpVT = N0.getValueType();
3135   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3136       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3137     return SDValue();
3138 
3139   SDValue X, Y;
3140   if (N0.getOperand(0) == N1) {
3141     X = N0.getOperand(1);
3142     Y = N0.getOperand(0);
3143   } else if (N0.getOperand(1) == N1) {
3144     X = N0.getOperand(0);
3145     Y = N0.getOperand(1);
3146   } else {
3147     return SDValue();
3148   }
3149 
3150   SelectionDAG &DAG = DCI.DAG;
3151   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3152   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3153     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3154     // Note that where Y is variable and is known to have at most one bit set
3155     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3156     // equivalent when Y == 0.
3157     assert(OpVT.isInteger());
3158     Cond = ISD::getSetCCInverse(Cond, OpVT);
3159     if (DCI.isBeforeLegalizeOps() ||
3160         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3161       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3162   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3163     // If the target supports an 'and-not' or 'and-complement' logic operation,
3164     // try to use that to make a comparison operation more efficient.
3165     // But don't do this transform if the mask is a single bit because there are
3166     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3167     // 'rlwinm' on PPC).
3168 
3169     // Bail out if the compare operand that we want to turn into a zero is
3170     // already a zero (otherwise, infinite loop).
3171     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3172     if (YConst && YConst->isNullValue())
3173       return SDValue();
3174 
3175     // Transform this into: ~X & Y == 0.
3176     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3177     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3178     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3179   }
3180 
3181   return SDValue();
3182 }
3183 
3184 /// There are multiple IR patterns that could be checking whether certain
3185 /// truncation of a signed number would be lossy or not. The pattern which is
3186 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3187 /// We are looking for the following pattern: (KeptBits is a constant)
3188 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3189 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3190 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3191 /// We will unfold it into the natural trunc+sext pattern:
3192 ///   ((%x << C) a>> C) dstcond %x
3193 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3194 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3195     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3196     const SDLoc &DL) const {
3197   // We must be comparing with a constant.
3198   ConstantSDNode *C1;
3199   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3200     return SDValue();
3201 
3202   // N0 should be:  add %x, (1 << (KeptBits-1))
3203   if (N0->getOpcode() != ISD::ADD)
3204     return SDValue();
3205 
3206   // And we must be 'add'ing a constant.
3207   ConstantSDNode *C01;
3208   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3209     return SDValue();
3210 
3211   SDValue X = N0->getOperand(0);
3212   EVT XVT = X.getValueType();
3213 
3214   // Validate constants ...
3215 
3216   APInt I1 = C1->getAPIntValue();
3217 
3218   ISD::CondCode NewCond;
3219   if (Cond == ISD::CondCode::SETULT) {
3220     NewCond = ISD::CondCode::SETEQ;
3221   } else if (Cond == ISD::CondCode::SETULE) {
3222     NewCond = ISD::CondCode::SETEQ;
3223     // But need to 'canonicalize' the constant.
3224     I1 += 1;
3225   } else if (Cond == ISD::CondCode::SETUGT) {
3226     NewCond = ISD::CondCode::SETNE;
3227     // But need to 'canonicalize' the constant.
3228     I1 += 1;
3229   } else if (Cond == ISD::CondCode::SETUGE) {
3230     NewCond = ISD::CondCode::SETNE;
3231   } else
3232     return SDValue();
3233 
3234   APInt I01 = C01->getAPIntValue();
3235 
3236   auto checkConstants = [&I1, &I01]() -> bool {
3237     // Both of them must be power-of-two, and the constant from setcc is bigger.
3238     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3239   };
3240 
3241   if (checkConstants()) {
3242     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3243   } else {
3244     // What if we invert constants? (and the target predicate)
3245     I1.negate();
3246     I01.negate();
3247     assert(XVT.isInteger());
3248     NewCond = getSetCCInverse(NewCond, XVT);
3249     if (!checkConstants())
3250       return SDValue();
3251     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3252   }
3253 
3254   // They are power-of-two, so which bit is set?
3255   const unsigned KeptBits = I1.logBase2();
3256   const unsigned KeptBitsMinusOne = I01.logBase2();
3257 
3258   // Magic!
3259   if (KeptBits != (KeptBitsMinusOne + 1))
3260     return SDValue();
3261   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3262 
3263   // We don't want to do this in every single case.
3264   SelectionDAG &DAG = DCI.DAG;
3265   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3266           XVT, KeptBits))
3267     return SDValue();
3268 
3269   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3270   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3271 
3272   // Unfold into:  ((%x << C) a>> C) cond %x
3273   // Where 'cond' will be either 'eq' or 'ne'.
3274   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3275   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3276   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3277   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3278 
3279   return T2;
3280 }
3281 
3282 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3283 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3284     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3285     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3286   assert(isConstOrConstSplat(N1C) &&
3287          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3288          "Should be a comparison with 0.");
3289   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3290          "Valid only for [in]equality comparisons.");
3291 
3292   unsigned NewShiftOpcode;
3293   SDValue X, C, Y;
3294 
3295   SelectionDAG &DAG = DCI.DAG;
3296   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3297 
3298   // Look for '(C l>>/<< Y)'.
3299   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3300     // The shift should be one-use.
3301     if (!V.hasOneUse())
3302       return false;
3303     unsigned OldShiftOpcode = V.getOpcode();
3304     switch (OldShiftOpcode) {
3305     case ISD::SHL:
3306       NewShiftOpcode = ISD::SRL;
3307       break;
3308     case ISD::SRL:
3309       NewShiftOpcode = ISD::SHL;
3310       break;
3311     default:
3312       return false; // must be a logical shift.
3313     }
3314     // We should be shifting a constant.
3315     // FIXME: best to use isConstantOrConstantVector().
3316     C = V.getOperand(0);
3317     ConstantSDNode *CC =
3318         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3319     if (!CC)
3320       return false;
3321     Y = V.getOperand(1);
3322 
3323     ConstantSDNode *XC =
3324         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3325     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3326         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3327   };
3328 
3329   // LHS of comparison should be an one-use 'and'.
3330   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3331     return SDValue();
3332 
3333   X = N0.getOperand(0);
3334   SDValue Mask = N0.getOperand(1);
3335 
3336   // 'and' is commutative!
3337   if (!Match(Mask)) {
3338     std::swap(X, Mask);
3339     if (!Match(Mask))
3340       return SDValue();
3341   }
3342 
3343   EVT VT = X.getValueType();
3344 
3345   // Produce:
3346   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3347   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3348   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3349   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3350   return T2;
3351 }
3352 
3353 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3354 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3355 /// handle the commuted versions of these patterns.
3356 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3357                                            ISD::CondCode Cond, const SDLoc &DL,
3358                                            DAGCombinerInfo &DCI) const {
3359   unsigned BOpcode = N0.getOpcode();
3360   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3361          "Unexpected binop");
3362   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3363 
3364   // (X + Y) == X --> Y == 0
3365   // (X - Y) == X --> Y == 0
3366   // (X ^ Y) == X --> Y == 0
3367   SelectionDAG &DAG = DCI.DAG;
3368   EVT OpVT = N0.getValueType();
3369   SDValue X = N0.getOperand(0);
3370   SDValue Y = N0.getOperand(1);
3371   if (X == N1)
3372     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3373 
3374   if (Y != N1)
3375     return SDValue();
3376 
3377   // (X + Y) == Y --> X == 0
3378   // (X ^ Y) == Y --> X == 0
3379   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3380     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3381 
3382   // The shift would not be valid if the operands are boolean (i1).
3383   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3384     return SDValue();
3385 
3386   // (X - Y) == Y --> X == Y << 1
3387   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3388                                  !DCI.isBeforeLegalize());
3389   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3390   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3391   if (!DCI.isCalledByLegalizer())
3392     DCI.AddToWorklist(YShl1.getNode());
3393   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3394 }
3395 
3396 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3397                                       SDValue N0, const APInt &C1,
3398                                       ISD::CondCode Cond, const SDLoc &dl,
3399                                       SelectionDAG &DAG) {
3400   // Look through truncs that don't change the value of a ctpop.
3401   // FIXME: Add vector support? Need to be careful with setcc result type below.
3402   SDValue CTPOP = N0;
3403   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3404       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3405     CTPOP = N0.getOperand(0);
3406 
3407   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3408     return SDValue();
3409 
3410   EVT CTVT = CTPOP.getValueType();
3411   SDValue CTOp = CTPOP.getOperand(0);
3412 
3413   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3414   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3415   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3416     return SDValue();
3417 
3418   // (ctpop x) u< 2 -> (x & x-1) == 0
3419   // (ctpop x) u> 1 -> (x & x-1) != 0
3420   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3421     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3422     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3423       return SDValue();
3424     if (C1 == 0 && (Cond == ISD::SETULT))
3425       return SDValue(); // This is handled elsewhere.
3426 
3427     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3428 
3429     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3430     SDValue Result = CTOp;
3431     for (unsigned i = 0; i < Passes; i++) {
3432       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3433       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3434     }
3435     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3436     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3437   }
3438 
3439   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3440   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3441     // For scalars, keep CTPOP if it is legal or custom.
3442     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3443       return SDValue();
3444     // This is based on X86's custom lowering for CTPOP which produces more
3445     // instructions than the expansion here.
3446 
3447     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3448     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3449     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3450     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3451     assert(CTVT.isInteger());
3452     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3453     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3454     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3455     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3456     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3457     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3458     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3459   }
3460 
3461   return SDValue();
3462 }
3463 
3464 /// Try to simplify a setcc built with the specified operands and cc. If it is
3465 /// unable to simplify it, return a null SDValue.
3466 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3467                                       ISD::CondCode Cond, bool foldBooleans,
3468                                       DAGCombinerInfo &DCI,
3469                                       const SDLoc &dl) const {
3470   SelectionDAG &DAG = DCI.DAG;
3471   const DataLayout &Layout = DAG.getDataLayout();
3472   EVT OpVT = N0.getValueType();
3473 
3474   // Constant fold or commute setcc.
3475   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3476     return Fold;
3477 
3478   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3479   // TODO: Handle non-splat vector constants. All undef causes trouble.
3480   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3481   // infinite loop here when we encounter one.
3482   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3483   if (isConstOrConstSplat(N0) &&
3484       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3485       (DCI.isBeforeLegalizeOps() ||
3486        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3487     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3488 
3489   // If we have a subtract with the same 2 non-constant operands as this setcc
3490   // -- but in reverse order -- then try to commute the operands of this setcc
3491   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3492   // instruction on some targets.
3493   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3494       (DCI.isBeforeLegalizeOps() ||
3495        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3496       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3497       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3498     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3499 
3500   if (auto *N1C = isConstOrConstSplat(N1)) {
3501     const APInt &C1 = N1C->getAPIntValue();
3502 
3503     // Optimize some CTPOP cases.
3504     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3505       return V;
3506 
3507     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3508     // equality comparison, then we're just comparing whether X itself is
3509     // zero.
3510     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3511         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3512         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3513       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3514         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3515             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3516           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3517             // (srl (ctlz x), 5) == 0  -> X != 0
3518             // (srl (ctlz x), 5) != 1  -> X != 0
3519             Cond = ISD::SETNE;
3520           } else {
3521             // (srl (ctlz x), 5) != 0  -> X == 0
3522             // (srl (ctlz x), 5) == 1  -> X == 0
3523             Cond = ISD::SETEQ;
3524           }
3525           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3526           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3527                               Cond);
3528         }
3529       }
3530     }
3531   }
3532 
3533   // FIXME: Support vectors.
3534   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3535     const APInt &C1 = N1C->getAPIntValue();
3536 
3537     // (zext x) == C --> x == (trunc C)
3538     // (sext x) == C --> x == (trunc C)
3539     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3540         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3541       unsigned MinBits = N0.getValueSizeInBits();
3542       SDValue PreExt;
3543       bool Signed = false;
3544       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3545         // ZExt
3546         MinBits = N0->getOperand(0).getValueSizeInBits();
3547         PreExt = N0->getOperand(0);
3548       } else if (N0->getOpcode() == ISD::AND) {
3549         // DAGCombine turns costly ZExts into ANDs
3550         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3551           if ((C->getAPIntValue()+1).isPowerOf2()) {
3552             MinBits = C->getAPIntValue().countTrailingOnes();
3553             PreExt = N0->getOperand(0);
3554           }
3555       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3556         // SExt
3557         MinBits = N0->getOperand(0).getValueSizeInBits();
3558         PreExt = N0->getOperand(0);
3559         Signed = true;
3560       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3561         // ZEXTLOAD / SEXTLOAD
3562         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3563           MinBits = LN0->getMemoryVT().getSizeInBits();
3564           PreExt = N0;
3565         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3566           Signed = true;
3567           MinBits = LN0->getMemoryVT().getSizeInBits();
3568           PreExt = N0;
3569         }
3570       }
3571 
3572       // Figure out how many bits we need to preserve this constant.
3573       unsigned ReqdBits = Signed ?
3574         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3575         C1.getActiveBits();
3576 
3577       // Make sure we're not losing bits from the constant.
3578       if (MinBits > 0 &&
3579           MinBits < C1.getBitWidth() &&
3580           MinBits >= ReqdBits) {
3581         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3582         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3583           // Will get folded away.
3584           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3585           if (MinBits == 1 && C1 == 1)
3586             // Invert the condition.
3587             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3588                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3589           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3590           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3591         }
3592 
3593         // If truncating the setcc operands is not desirable, we can still
3594         // simplify the expression in some cases:
3595         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3596         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3597         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3598         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3599         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3600         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3601         SDValue TopSetCC = N0->getOperand(0);
3602         unsigned N0Opc = N0->getOpcode();
3603         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3604         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3605             TopSetCC.getOpcode() == ISD::SETCC &&
3606             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3607             (isConstFalseVal(N1C) ||
3608              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3609 
3610           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3611                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3612 
3613           if (!Inverse)
3614             return TopSetCC;
3615 
3616           ISD::CondCode InvCond = ISD::getSetCCInverse(
3617               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3618               TopSetCC.getOperand(0).getValueType());
3619           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3620                                       TopSetCC.getOperand(1),
3621                                       InvCond);
3622         }
3623       }
3624     }
3625 
3626     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3627     // equality or unsigned, and all 1 bits of the const are in the same
3628     // partial word, see if we can shorten the load.
3629     if (DCI.isBeforeLegalize() &&
3630         !ISD::isSignedIntSetCC(Cond) &&
3631         N0.getOpcode() == ISD::AND && C1 == 0 &&
3632         N0.getNode()->hasOneUse() &&
3633         isa<LoadSDNode>(N0.getOperand(0)) &&
3634         N0.getOperand(0).getNode()->hasOneUse() &&
3635         isa<ConstantSDNode>(N0.getOperand(1))) {
3636       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3637       APInt bestMask;
3638       unsigned bestWidth = 0, bestOffset = 0;
3639       if (Lod->isSimple() && Lod->isUnindexed()) {
3640         unsigned origWidth = N0.getValueSizeInBits();
3641         unsigned maskWidth = origWidth;
3642         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3643         // 8 bits, but have to be careful...
3644         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3645           origWidth = Lod->getMemoryVT().getSizeInBits();
3646         const APInt &Mask = N0.getConstantOperandAPInt(1);
3647         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3648           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3649           for (unsigned offset=0; offset<origWidth/width; offset++) {
3650             if (Mask.isSubsetOf(newMask)) {
3651               if (Layout.isLittleEndian())
3652                 bestOffset = (uint64_t)offset * (width/8);
3653               else
3654                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3655               bestMask = Mask.lshr(offset * (width/8) * 8);
3656               bestWidth = width;
3657               break;
3658             }
3659             newMask <<= width;
3660           }
3661         }
3662       }
3663       if (bestWidth) {
3664         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3665         if (newVT.isRound() &&
3666             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3667           SDValue Ptr = Lod->getBasePtr();
3668           if (bestOffset != 0)
3669             Ptr =
3670                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3671           SDValue NewLoad =
3672               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3673                           Lod->getPointerInfo().getWithOffset(bestOffset),
3674                           Lod->getOriginalAlign());
3675           return DAG.getSetCC(dl, VT,
3676                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3677                                       DAG.getConstant(bestMask.trunc(bestWidth),
3678                                                       dl, newVT)),
3679                               DAG.getConstant(0LL, dl, newVT), Cond);
3680         }
3681       }
3682     }
3683 
3684     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3685     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3686       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3687 
3688       // If the comparison constant has bits in the upper part, the
3689       // zero-extended value could never match.
3690       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3691                                               C1.getBitWidth() - InSize))) {
3692         switch (Cond) {
3693         case ISD::SETUGT:
3694         case ISD::SETUGE:
3695         case ISD::SETEQ:
3696           return DAG.getConstant(0, dl, VT);
3697         case ISD::SETULT:
3698         case ISD::SETULE:
3699         case ISD::SETNE:
3700           return DAG.getConstant(1, dl, VT);
3701         case ISD::SETGT:
3702         case ISD::SETGE:
3703           // True if the sign bit of C1 is set.
3704           return DAG.getConstant(C1.isNegative(), dl, VT);
3705         case ISD::SETLT:
3706         case ISD::SETLE:
3707           // True if the sign bit of C1 isn't set.
3708           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3709         default:
3710           break;
3711         }
3712       }
3713 
3714       // Otherwise, we can perform the comparison with the low bits.
3715       switch (Cond) {
3716       case ISD::SETEQ:
3717       case ISD::SETNE:
3718       case ISD::SETUGT:
3719       case ISD::SETUGE:
3720       case ISD::SETULT:
3721       case ISD::SETULE: {
3722         EVT newVT = N0.getOperand(0).getValueType();
3723         if (DCI.isBeforeLegalizeOps() ||
3724             (isOperationLegal(ISD::SETCC, newVT) &&
3725              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3726           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3727           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3728 
3729           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3730                                           NewConst, Cond);
3731           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3732         }
3733         break;
3734       }
3735       default:
3736         break; // todo, be more careful with signed comparisons
3737       }
3738     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3739                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3740                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3741                                       OpVT)) {
3742       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3743       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3744       EVT ExtDstTy = N0.getValueType();
3745       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3746 
3747       // If the constant doesn't fit into the number of bits for the source of
3748       // the sign extension, it is impossible for both sides to be equal.
3749       if (C1.getMinSignedBits() > ExtSrcTyBits)
3750         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3751 
3752       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3753              ExtDstTy != ExtSrcTy && "Unexpected types!");
3754       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3755       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3756                                    DAG.getConstant(Imm, dl, ExtDstTy));
3757       if (!DCI.isCalledByLegalizer())
3758         DCI.AddToWorklist(ZextOp.getNode());
3759       // Otherwise, make this a use of a zext.
3760       return DAG.getSetCC(dl, VT, ZextOp,
3761                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3762     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3763                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3764       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3765       if (N0.getOpcode() == ISD::SETCC &&
3766           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3767           (N0.getValueType() == MVT::i1 ||
3768            getBooleanContents(N0.getOperand(0).getValueType()) ==
3769                        ZeroOrOneBooleanContent)) {
3770         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3771         if (TrueWhenTrue)
3772           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3773         // Invert the condition.
3774         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3775         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3776         if (DCI.isBeforeLegalizeOps() ||
3777             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3778           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3779       }
3780 
3781       if ((N0.getOpcode() == ISD::XOR ||
3782            (N0.getOpcode() == ISD::AND &&
3783             N0.getOperand(0).getOpcode() == ISD::XOR &&
3784             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3785           isOneConstant(N0.getOperand(1))) {
3786         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3787         // can only do this if the top bits are known zero.
3788         unsigned BitWidth = N0.getValueSizeInBits();
3789         if (DAG.MaskedValueIsZero(N0,
3790                                   APInt::getHighBitsSet(BitWidth,
3791                                                         BitWidth-1))) {
3792           // Okay, get the un-inverted input value.
3793           SDValue Val;
3794           if (N0.getOpcode() == ISD::XOR) {
3795             Val = N0.getOperand(0);
3796           } else {
3797             assert(N0.getOpcode() == ISD::AND &&
3798                     N0.getOperand(0).getOpcode() == ISD::XOR);
3799             // ((X^1)&1)^1 -> X & 1
3800             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3801                               N0.getOperand(0).getOperand(0),
3802                               N0.getOperand(1));
3803           }
3804 
3805           return DAG.getSetCC(dl, VT, Val, N1,
3806                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3807         }
3808       } else if (N1C->isOne()) {
3809         SDValue Op0 = N0;
3810         if (Op0.getOpcode() == ISD::TRUNCATE)
3811           Op0 = Op0.getOperand(0);
3812 
3813         if ((Op0.getOpcode() == ISD::XOR) &&
3814             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3815             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3816           SDValue XorLHS = Op0.getOperand(0);
3817           SDValue XorRHS = Op0.getOperand(1);
3818           // Ensure that the input setccs return an i1 type or 0/1 value.
3819           if (Op0.getValueType() == MVT::i1 ||
3820               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3821                       ZeroOrOneBooleanContent &&
3822                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3823                         ZeroOrOneBooleanContent)) {
3824             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3825             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3826             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3827           }
3828         }
3829         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3830           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3831           if (Op0.getValueType().bitsGT(VT))
3832             Op0 = DAG.getNode(ISD::AND, dl, VT,
3833                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3834                           DAG.getConstant(1, dl, VT));
3835           else if (Op0.getValueType().bitsLT(VT))
3836             Op0 = DAG.getNode(ISD::AND, dl, VT,
3837                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3838                         DAG.getConstant(1, dl, VT));
3839 
3840           return DAG.getSetCC(dl, VT, Op0,
3841                               DAG.getConstant(0, dl, Op0.getValueType()),
3842                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3843         }
3844         if (Op0.getOpcode() == ISD::AssertZext &&
3845             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3846           return DAG.getSetCC(dl, VT, Op0,
3847                               DAG.getConstant(0, dl, Op0.getValueType()),
3848                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3849       }
3850     }
3851 
3852     // Given:
3853     //   icmp eq/ne (urem %x, %y), 0
3854     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3855     //   icmp eq/ne %x, 0
3856     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3857         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3858       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3859       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3860       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3861         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3862     }
3863 
3864     if (SDValue V =
3865             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3866       return V;
3867   }
3868 
3869   // These simplifications apply to splat vectors as well.
3870   // TODO: Handle more splat vector cases.
3871   if (auto *N1C = isConstOrConstSplat(N1)) {
3872     const APInt &C1 = N1C->getAPIntValue();
3873 
3874     APInt MinVal, MaxVal;
3875     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3876     if (ISD::isSignedIntSetCC(Cond)) {
3877       MinVal = APInt::getSignedMinValue(OperandBitSize);
3878       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3879     } else {
3880       MinVal = APInt::getMinValue(OperandBitSize);
3881       MaxVal = APInt::getMaxValue(OperandBitSize);
3882     }
3883 
3884     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3885     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3886       // X >= MIN --> true
3887       if (C1 == MinVal)
3888         return DAG.getBoolConstant(true, dl, VT, OpVT);
3889 
3890       if (!VT.isVector()) { // TODO: Support this for vectors.
3891         // X >= C0 --> X > (C0 - 1)
3892         APInt C = C1 - 1;
3893         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3894         if ((DCI.isBeforeLegalizeOps() ||
3895              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3896             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3897                                   isLegalICmpImmediate(C.getSExtValue())))) {
3898           return DAG.getSetCC(dl, VT, N0,
3899                               DAG.getConstant(C, dl, N1.getValueType()),
3900                               NewCC);
3901         }
3902       }
3903     }
3904 
3905     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3906       // X <= MAX --> true
3907       if (C1 == MaxVal)
3908         return DAG.getBoolConstant(true, dl, VT, OpVT);
3909 
3910       // X <= C0 --> X < (C0 + 1)
3911       if (!VT.isVector()) { // TODO: Support this for vectors.
3912         APInt C = C1 + 1;
3913         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3914         if ((DCI.isBeforeLegalizeOps() ||
3915              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3916             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3917                                   isLegalICmpImmediate(C.getSExtValue())))) {
3918           return DAG.getSetCC(dl, VT, N0,
3919                               DAG.getConstant(C, dl, N1.getValueType()),
3920                               NewCC);
3921         }
3922       }
3923     }
3924 
3925     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3926       if (C1 == MinVal)
3927         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3928 
3929       // TODO: Support this for vectors after legalize ops.
3930       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3931         // Canonicalize setlt X, Max --> setne X, Max
3932         if (C1 == MaxVal)
3933           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3934 
3935         // If we have setult X, 1, turn it into seteq X, 0
3936         if (C1 == MinVal+1)
3937           return DAG.getSetCC(dl, VT, N0,
3938                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3939                               ISD::SETEQ);
3940       }
3941     }
3942 
3943     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3944       if (C1 == MaxVal)
3945         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3946 
3947       // TODO: Support this for vectors after legalize ops.
3948       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3949         // Canonicalize setgt X, Min --> setne X, Min
3950         if (C1 == MinVal)
3951           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3952 
3953         // If we have setugt X, Max-1, turn it into seteq X, Max
3954         if (C1 == MaxVal-1)
3955           return DAG.getSetCC(dl, VT, N0,
3956                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3957                               ISD::SETEQ);
3958       }
3959     }
3960 
3961     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3962       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3963       if (C1.isNullValue())
3964         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3965                 VT, N0, N1, Cond, DCI, dl))
3966           return CC;
3967 
3968       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
3969       // For example, when high 32-bits of i64 X are known clear:
3970       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
3971       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
3972       bool CmpZero = N1C->getAPIntValue().isNullValue();
3973       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
3974       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
3975         // Match or(lo,shl(hi,bw/2)) pattern.
3976         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
3977           unsigned EltBits = V.getScalarValueSizeInBits();
3978           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
3979             return false;
3980           SDValue LHS = V.getOperand(0);
3981           SDValue RHS = V.getOperand(1);
3982           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
3983           // Unshifted element must have zero upperbits.
3984           if (RHS.getOpcode() == ISD::SHL &&
3985               isa<ConstantSDNode>(RHS.getOperand(1)) &&
3986               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3987               DAG.MaskedValueIsZero(LHS, HiBits)) {
3988             Lo = LHS;
3989             Hi = RHS.getOperand(0);
3990             return true;
3991           }
3992           if (LHS.getOpcode() == ISD::SHL &&
3993               isa<ConstantSDNode>(LHS.getOperand(1)) &&
3994               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3995               DAG.MaskedValueIsZero(RHS, HiBits)) {
3996             Lo = RHS;
3997             Hi = LHS.getOperand(0);
3998             return true;
3999           }
4000           return false;
4001         };
4002 
4003         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4004           unsigned EltBits = N0.getScalarValueSizeInBits();
4005           unsigned HalfBits = EltBits / 2;
4006           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4007           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4008           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4009           SDValue NewN0 =
4010               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4011           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4012           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4013         };
4014 
4015         SDValue Lo, Hi;
4016         if (IsConcat(N0, Lo, Hi))
4017           return MergeConcat(Lo, Hi);
4018 
4019         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4020           SDValue Lo0, Lo1, Hi0, Hi1;
4021           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4022               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4023             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4024                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4025           }
4026         }
4027       }
4028     }
4029 
4030     // If we have "setcc X, C0", check to see if we can shrink the immediate
4031     // by changing cc.
4032     // TODO: Support this for vectors after legalize ops.
4033     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4034       // SETUGT X, SINTMAX  -> SETLT X, 0
4035       // SETUGE X, SINTMIN -> SETLT X, 0
4036       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4037           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4038         return DAG.getSetCC(dl, VT, N0,
4039                             DAG.getConstant(0, dl, N1.getValueType()),
4040                             ISD::SETLT);
4041 
4042       // SETULT X, SINTMIN  -> SETGT X, -1
4043       // SETULE X, SINTMAX  -> SETGT X, -1
4044       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4045           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4046         return DAG.getSetCC(dl, VT, N0,
4047                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4048                             ISD::SETGT);
4049     }
4050   }
4051 
4052   // Back to non-vector simplifications.
4053   // TODO: Can we do these for vector splats?
4054   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4055     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4056     const APInt &C1 = N1C->getAPIntValue();
4057     EVT ShValTy = N0.getValueType();
4058 
4059     // Fold bit comparisons when we can. This will result in an
4060     // incorrect value when boolean false is negative one, unless
4061     // the bitsize is 1 in which case the false value is the same
4062     // in practice regardless of the representation.
4063     if ((VT.getSizeInBits() == 1 ||
4064          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4065         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4066         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4067         N0.getOpcode() == ISD::AND) {
4068       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4069         EVT ShiftTy =
4070             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4071         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4072           // Perform the xform if the AND RHS is a single bit.
4073           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4074           if (AndRHS->getAPIntValue().isPowerOf2() &&
4075               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4076             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4077                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4078                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4079           }
4080         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4081           // (X & 8) == 8  -->  (X & 8) >> 3
4082           // Perform the xform if C1 is a single bit.
4083           unsigned ShCt = C1.logBase2();
4084           if (C1.isPowerOf2() &&
4085               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4086             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4087                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4088                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4089           }
4090         }
4091       }
4092     }
4093 
4094     if (C1.getMinSignedBits() <= 64 &&
4095         !isLegalICmpImmediate(C1.getSExtValue())) {
4096       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4097       // (X & -256) == 256 -> (X >> 8) == 1
4098       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4099           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4100         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4101           const APInt &AndRHSC = AndRHS->getAPIntValue();
4102           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4103             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4104             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4105               SDValue Shift =
4106                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4107                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4108               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4109               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4110             }
4111           }
4112         }
4113       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4114                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4115         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4116         // X <  0x100000000 -> (X >> 32) <  1
4117         // X >= 0x100000000 -> (X >> 32) >= 1
4118         // X <= 0x0ffffffff -> (X >> 32) <  1
4119         // X >  0x0ffffffff -> (X >> 32) >= 1
4120         unsigned ShiftBits;
4121         APInt NewC = C1;
4122         ISD::CondCode NewCond = Cond;
4123         if (AdjOne) {
4124           ShiftBits = C1.countTrailingOnes();
4125           NewC = NewC + 1;
4126           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4127         } else {
4128           ShiftBits = C1.countTrailingZeros();
4129         }
4130         NewC.lshrInPlace(ShiftBits);
4131         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4132             isLegalICmpImmediate(NewC.getSExtValue()) &&
4133             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4134           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4135                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4136           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4137           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4138         }
4139       }
4140     }
4141   }
4142 
4143   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4144     auto *CFP = cast<ConstantFPSDNode>(N1);
4145     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4146 
4147     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4148     // constant if knowing that the operand is non-nan is enough.  We prefer to
4149     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4150     // materialize 0.0.
4151     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4152       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4153 
4154     // setcc (fneg x), C -> setcc swap(pred) x, -C
4155     if (N0.getOpcode() == ISD::FNEG) {
4156       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4157       if (DCI.isBeforeLegalizeOps() ||
4158           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4159         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4160         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4161       }
4162     }
4163 
4164     // If the condition is not legal, see if we can find an equivalent one
4165     // which is legal.
4166     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4167       // If the comparison was an awkward floating-point == or != and one of
4168       // the comparison operands is infinity or negative infinity, convert the
4169       // condition to a less-awkward <= or >=.
4170       if (CFP->getValueAPF().isInfinity()) {
4171         bool IsNegInf = CFP->getValueAPF().isNegative();
4172         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4173         switch (Cond) {
4174         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4175         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4176         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4177         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4178         default: break;
4179         }
4180         if (NewCond != ISD::SETCC_INVALID &&
4181             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4182           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4183       }
4184     }
4185   }
4186 
4187   if (N0 == N1) {
4188     // The sext(setcc()) => setcc() optimization relies on the appropriate
4189     // constant being emitted.
4190     assert(!N0.getValueType().isInteger() &&
4191            "Integer types should be handled by FoldSetCC");
4192 
4193     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4194     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4195     if (UOF == 2) // FP operators that are undefined on NaNs.
4196       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4197     if (UOF == unsigned(EqTrue))
4198       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4199     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4200     // if it is not already.
4201     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4202     if (NewCond != Cond &&
4203         (DCI.isBeforeLegalizeOps() ||
4204                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4205       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4206   }
4207 
4208   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4209       N0.getValueType().isInteger()) {
4210     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4211         N0.getOpcode() == ISD::XOR) {
4212       // Simplify (X+Y) == (X+Z) -->  Y == Z
4213       if (N0.getOpcode() == N1.getOpcode()) {
4214         if (N0.getOperand(0) == N1.getOperand(0))
4215           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4216         if (N0.getOperand(1) == N1.getOperand(1))
4217           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4218         if (isCommutativeBinOp(N0.getOpcode())) {
4219           // If X op Y == Y op X, try other combinations.
4220           if (N0.getOperand(0) == N1.getOperand(1))
4221             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4222                                 Cond);
4223           if (N0.getOperand(1) == N1.getOperand(0))
4224             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4225                                 Cond);
4226         }
4227       }
4228 
4229       // If RHS is a legal immediate value for a compare instruction, we need
4230       // to be careful about increasing register pressure needlessly.
4231       bool LegalRHSImm = false;
4232 
4233       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4234         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4235           // Turn (X+C1) == C2 --> X == C2-C1
4236           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4237             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4238                                 DAG.getConstant(RHSC->getAPIntValue()-
4239                                                 LHSR->getAPIntValue(),
4240                                 dl, N0.getValueType()), Cond);
4241           }
4242 
4243           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4244           if (N0.getOpcode() == ISD::XOR)
4245             // If we know that all of the inverted bits are zero, don't bother
4246             // performing the inversion.
4247             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4248               return
4249                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4250                              DAG.getConstant(LHSR->getAPIntValue() ^
4251                                                RHSC->getAPIntValue(),
4252                                              dl, N0.getValueType()),
4253                              Cond);
4254         }
4255 
4256         // Turn (C1-X) == C2 --> X == C1-C2
4257         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4258           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4259             return
4260               DAG.getSetCC(dl, VT, N0.getOperand(1),
4261                            DAG.getConstant(SUBC->getAPIntValue() -
4262                                              RHSC->getAPIntValue(),
4263                                            dl, N0.getValueType()),
4264                            Cond);
4265           }
4266         }
4267 
4268         // Could RHSC fold directly into a compare?
4269         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4270           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4271       }
4272 
4273       // (X+Y) == X --> Y == 0 and similar folds.
4274       // Don't do this if X is an immediate that can fold into a cmp
4275       // instruction and X+Y has other uses. It could be an induction variable
4276       // chain, and the transform would increase register pressure.
4277       if (!LegalRHSImm || N0.hasOneUse())
4278         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4279           return V;
4280     }
4281 
4282     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4283         N1.getOpcode() == ISD::XOR)
4284       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4285         return V;
4286 
4287     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4288       return V;
4289   }
4290 
4291   // Fold remainder of division by a constant.
4292   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4293       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4294     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4295 
4296     // When division is cheap or optimizing for minimum size,
4297     // fall through to DIVREM creation by skipping this fold.
4298     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4299       if (N0.getOpcode() == ISD::UREM) {
4300         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4301           return Folded;
4302       } else if (N0.getOpcode() == ISD::SREM) {
4303         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4304           return Folded;
4305       }
4306     }
4307   }
4308 
4309   // Fold away ALL boolean setcc's.
4310   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4311     SDValue Temp;
4312     switch (Cond) {
4313     default: llvm_unreachable("Unknown integer setcc!");
4314     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4315       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4316       N0 = DAG.getNOT(dl, Temp, OpVT);
4317       if (!DCI.isCalledByLegalizer())
4318         DCI.AddToWorklist(Temp.getNode());
4319       break;
4320     case ISD::SETNE:  // X != Y   -->  (X^Y)
4321       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4322       break;
4323     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4324     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4325       Temp = DAG.getNOT(dl, N0, OpVT);
4326       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4327       if (!DCI.isCalledByLegalizer())
4328         DCI.AddToWorklist(Temp.getNode());
4329       break;
4330     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4331     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4332       Temp = DAG.getNOT(dl, N1, OpVT);
4333       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4334       if (!DCI.isCalledByLegalizer())
4335         DCI.AddToWorklist(Temp.getNode());
4336       break;
4337     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4338     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4339       Temp = DAG.getNOT(dl, N0, OpVT);
4340       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4341       if (!DCI.isCalledByLegalizer())
4342         DCI.AddToWorklist(Temp.getNode());
4343       break;
4344     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4345     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4346       Temp = DAG.getNOT(dl, N1, OpVT);
4347       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4348       break;
4349     }
4350     if (VT.getScalarType() != MVT::i1) {
4351       if (!DCI.isCalledByLegalizer())
4352         DCI.AddToWorklist(N0.getNode());
4353       // FIXME: If running after legalize, we probably can't do this.
4354       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4355       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4356     }
4357     return N0;
4358   }
4359 
4360   // Could not fold it.
4361   return SDValue();
4362 }
4363 
4364 /// Returns true (and the GlobalValue and the offset) if the node is a
4365 /// GlobalAddress + offset.
4366 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4367                                     int64_t &Offset) const {
4368 
4369   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4370 
4371   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4372     GA = GASD->getGlobal();
4373     Offset += GASD->getOffset();
4374     return true;
4375   }
4376 
4377   if (N->getOpcode() == ISD::ADD) {
4378     SDValue N1 = N->getOperand(0);
4379     SDValue N2 = N->getOperand(1);
4380     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4381       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4382         Offset += V->getSExtValue();
4383         return true;
4384       }
4385     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4386       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4387         Offset += V->getSExtValue();
4388         return true;
4389       }
4390     }
4391   }
4392 
4393   return false;
4394 }
4395 
4396 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4397                                           DAGCombinerInfo &DCI) const {
4398   // Default implementation: no optimization.
4399   return SDValue();
4400 }
4401 
4402 //===----------------------------------------------------------------------===//
4403 //  Inline Assembler Implementation Methods
4404 //===----------------------------------------------------------------------===//
4405 
4406 TargetLowering::ConstraintType
4407 TargetLowering::getConstraintType(StringRef Constraint) const {
4408   unsigned S = Constraint.size();
4409 
4410   if (S == 1) {
4411     switch (Constraint[0]) {
4412     default: break;
4413     case 'r':
4414       return C_RegisterClass;
4415     case 'm': // memory
4416     case 'o': // offsetable
4417     case 'V': // not offsetable
4418       return C_Memory;
4419     case 'n': // Simple Integer
4420     case 'E': // Floating Point Constant
4421     case 'F': // Floating Point Constant
4422       return C_Immediate;
4423     case 'i': // Simple Integer or Relocatable Constant
4424     case 's': // Relocatable Constant
4425     case 'p': // Address.
4426     case 'X': // Allow ANY value.
4427     case 'I': // Target registers.
4428     case 'J':
4429     case 'K':
4430     case 'L':
4431     case 'M':
4432     case 'N':
4433     case 'O':
4434     case 'P':
4435     case '<':
4436     case '>':
4437       return C_Other;
4438     }
4439   }
4440 
4441   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4442     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4443       return C_Memory;
4444     return C_Register;
4445   }
4446   return C_Unknown;
4447 }
4448 
4449 /// Try to replace an X constraint, which matches anything, with another that
4450 /// has more specific requirements based on the type of the corresponding
4451 /// operand.
4452 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4453   if (ConstraintVT.isInteger())
4454     return "r";
4455   if (ConstraintVT.isFloatingPoint())
4456     return "f"; // works for many targets
4457   return nullptr;
4458 }
4459 
4460 SDValue TargetLowering::LowerAsmOutputForConstraint(
4461     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4462     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4463   return SDValue();
4464 }
4465 
4466 /// Lower the specified operand into the Ops vector.
4467 /// If it is invalid, don't add anything to Ops.
4468 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4469                                                   std::string &Constraint,
4470                                                   std::vector<SDValue> &Ops,
4471                                                   SelectionDAG &DAG) const {
4472 
4473   if (Constraint.length() > 1) return;
4474 
4475   char ConstraintLetter = Constraint[0];
4476   switch (ConstraintLetter) {
4477   default: break;
4478   case 'X':     // Allows any operand; labels (basic block) use this.
4479     if (Op.getOpcode() == ISD::BasicBlock ||
4480         Op.getOpcode() == ISD::TargetBlockAddress) {
4481       Ops.push_back(Op);
4482       return;
4483     }
4484     LLVM_FALLTHROUGH;
4485   case 'i':    // Simple Integer or Relocatable Constant
4486   case 'n':    // Simple Integer
4487   case 's': {  // Relocatable Constant
4488 
4489     GlobalAddressSDNode *GA;
4490     ConstantSDNode *C;
4491     BlockAddressSDNode *BA;
4492     uint64_t Offset = 0;
4493 
4494     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4495     // etc., since getelementpointer is variadic. We can't use
4496     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4497     // while in this case the GA may be furthest from the root node which is
4498     // likely an ISD::ADD.
4499     while (1) {
4500       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4501         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4502                                                  GA->getValueType(0),
4503                                                  Offset + GA->getOffset()));
4504         return;
4505       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4506                  ConstraintLetter != 's') {
4507         // gcc prints these as sign extended.  Sign extend value to 64 bits
4508         // now; without this it would get ZExt'd later in
4509         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4510         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4511         BooleanContent BCont = getBooleanContents(MVT::i64);
4512         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4513                                       : ISD::SIGN_EXTEND;
4514         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4515                                                     : C->getSExtValue();
4516         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4517                                             SDLoc(C), MVT::i64));
4518         return;
4519       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4520                  ConstraintLetter != 'n') {
4521         Ops.push_back(DAG.getTargetBlockAddress(
4522             BA->getBlockAddress(), BA->getValueType(0),
4523             Offset + BA->getOffset(), BA->getTargetFlags()));
4524         return;
4525       } else {
4526         const unsigned OpCode = Op.getOpcode();
4527         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4528           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4529             Op = Op.getOperand(1);
4530           // Subtraction is not commutative.
4531           else if (OpCode == ISD::ADD &&
4532                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4533             Op = Op.getOperand(0);
4534           else
4535             return;
4536           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4537           continue;
4538         }
4539       }
4540       return;
4541     }
4542     break;
4543   }
4544   }
4545 }
4546 
4547 std::pair<unsigned, const TargetRegisterClass *>
4548 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4549                                              StringRef Constraint,
4550                                              MVT VT) const {
4551   if (Constraint.empty() || Constraint[0] != '{')
4552     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4553   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4554 
4555   // Remove the braces from around the name.
4556   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4557 
4558   std::pair<unsigned, const TargetRegisterClass *> R =
4559       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4560 
4561   // Figure out which register class contains this reg.
4562   for (const TargetRegisterClass *RC : RI->regclasses()) {
4563     // If none of the value types for this register class are valid, we
4564     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4565     if (!isLegalRC(*RI, *RC))
4566       continue;
4567 
4568     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4569          I != E; ++I) {
4570       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4571         std::pair<unsigned, const TargetRegisterClass *> S =
4572             std::make_pair(*I, RC);
4573 
4574         // If this register class has the requested value type, return it,
4575         // otherwise keep searching and return the first class found
4576         // if no other is found which explicitly has the requested type.
4577         if (RI->isTypeLegalForClass(*RC, VT))
4578           return S;
4579         if (!R.second)
4580           R = S;
4581       }
4582     }
4583   }
4584 
4585   return R;
4586 }
4587 
4588 //===----------------------------------------------------------------------===//
4589 // Constraint Selection.
4590 
4591 /// Return true of this is an input operand that is a matching constraint like
4592 /// "4".
4593 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4594   assert(!ConstraintCode.empty() && "No known constraint!");
4595   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4596 }
4597 
4598 /// If this is an input matching constraint, this method returns the output
4599 /// operand it matches.
4600 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4601   assert(!ConstraintCode.empty() && "No known constraint!");
4602   return atoi(ConstraintCode.c_str());
4603 }
4604 
4605 /// Split up the constraint string from the inline assembly value into the
4606 /// specific constraints and their prefixes, and also tie in the associated
4607 /// operand values.
4608 /// If this returns an empty vector, and if the constraint string itself
4609 /// isn't empty, there was an error parsing.
4610 TargetLowering::AsmOperandInfoVector
4611 TargetLowering::ParseConstraints(const DataLayout &DL,
4612                                  const TargetRegisterInfo *TRI,
4613                                  const CallBase &Call) const {
4614   /// Information about all of the constraints.
4615   AsmOperandInfoVector ConstraintOperands;
4616   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4617   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4618 
4619   // Do a prepass over the constraints, canonicalizing them, and building up the
4620   // ConstraintOperands list.
4621   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4622   unsigned ResNo = 0; // ResNo - The result number of the next output.
4623 
4624   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4625     ConstraintOperands.emplace_back(std::move(CI));
4626     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4627 
4628     // Update multiple alternative constraint count.
4629     if (OpInfo.multipleAlternatives.size() > maCount)
4630       maCount = OpInfo.multipleAlternatives.size();
4631 
4632     OpInfo.ConstraintVT = MVT::Other;
4633 
4634     // Compute the value type for each operand.
4635     switch (OpInfo.Type) {
4636     case InlineAsm::isOutput:
4637       // Indirect outputs just consume an argument.
4638       if (OpInfo.isIndirect) {
4639         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4640         break;
4641       }
4642 
4643       // The return value of the call is this value.  As such, there is no
4644       // corresponding argument.
4645       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4646       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4647         OpInfo.ConstraintVT =
4648             getSimpleValueType(DL, STy->getElementType(ResNo));
4649       } else {
4650         assert(ResNo == 0 && "Asm only has one result!");
4651         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4652       }
4653       ++ResNo;
4654       break;
4655     case InlineAsm::isInput:
4656       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4657       break;
4658     case InlineAsm::isClobber:
4659       // Nothing to do.
4660       break;
4661     }
4662 
4663     if (OpInfo.CallOperandVal) {
4664       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4665       if (OpInfo.isIndirect) {
4666         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4667         if (!PtrTy)
4668           report_fatal_error("Indirect operand for inline asm not a pointer!");
4669         OpTy = PtrTy->getElementType();
4670       }
4671 
4672       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4673       if (StructType *STy = dyn_cast<StructType>(OpTy))
4674         if (STy->getNumElements() == 1)
4675           OpTy = STy->getElementType(0);
4676 
4677       // If OpTy is not a single value, it may be a struct/union that we
4678       // can tile with integers.
4679       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4680         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4681         switch (BitSize) {
4682         default: break;
4683         case 1:
4684         case 8:
4685         case 16:
4686         case 32:
4687         case 64:
4688         case 128:
4689           OpInfo.ConstraintVT =
4690               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4691           break;
4692         }
4693       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4694         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4695         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4696       } else {
4697         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4698       }
4699     }
4700   }
4701 
4702   // If we have multiple alternative constraints, select the best alternative.
4703   if (!ConstraintOperands.empty()) {
4704     if (maCount) {
4705       unsigned bestMAIndex = 0;
4706       int bestWeight = -1;
4707       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4708       int weight = -1;
4709       unsigned maIndex;
4710       // Compute the sums of the weights for each alternative, keeping track
4711       // of the best (highest weight) one so far.
4712       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4713         int weightSum = 0;
4714         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4715              cIndex != eIndex; ++cIndex) {
4716           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4717           if (OpInfo.Type == InlineAsm::isClobber)
4718             continue;
4719 
4720           // If this is an output operand with a matching input operand,
4721           // look up the matching input. If their types mismatch, e.g. one
4722           // is an integer, the other is floating point, or their sizes are
4723           // different, flag it as an maCantMatch.
4724           if (OpInfo.hasMatchingInput()) {
4725             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4726             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4727               if ((OpInfo.ConstraintVT.isInteger() !=
4728                    Input.ConstraintVT.isInteger()) ||
4729                   (OpInfo.ConstraintVT.getSizeInBits() !=
4730                    Input.ConstraintVT.getSizeInBits())) {
4731                 weightSum = -1; // Can't match.
4732                 break;
4733               }
4734             }
4735           }
4736           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4737           if (weight == -1) {
4738             weightSum = -1;
4739             break;
4740           }
4741           weightSum += weight;
4742         }
4743         // Update best.
4744         if (weightSum > bestWeight) {
4745           bestWeight = weightSum;
4746           bestMAIndex = maIndex;
4747         }
4748       }
4749 
4750       // Now select chosen alternative in each constraint.
4751       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4752            cIndex != eIndex; ++cIndex) {
4753         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4754         if (cInfo.Type == InlineAsm::isClobber)
4755           continue;
4756         cInfo.selectAlternative(bestMAIndex);
4757       }
4758     }
4759   }
4760 
4761   // Check and hook up tied operands, choose constraint code to use.
4762   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4763        cIndex != eIndex; ++cIndex) {
4764     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4765 
4766     // If this is an output operand with a matching input operand, look up the
4767     // matching input. If their types mismatch, e.g. one is an integer, the
4768     // other is floating point, or their sizes are different, flag it as an
4769     // error.
4770     if (OpInfo.hasMatchingInput()) {
4771       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4772 
4773       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4774         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4775             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4776                                          OpInfo.ConstraintVT);
4777         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4778             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4779                                          Input.ConstraintVT);
4780         if ((OpInfo.ConstraintVT.isInteger() !=
4781              Input.ConstraintVT.isInteger()) ||
4782             (MatchRC.second != InputRC.second)) {
4783           report_fatal_error("Unsupported asm: input constraint"
4784                              " with a matching output constraint of"
4785                              " incompatible type!");
4786         }
4787       }
4788     }
4789   }
4790 
4791   return ConstraintOperands;
4792 }
4793 
4794 /// Return an integer indicating how general CT is.
4795 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4796   switch (CT) {
4797   case TargetLowering::C_Immediate:
4798   case TargetLowering::C_Other:
4799   case TargetLowering::C_Unknown:
4800     return 0;
4801   case TargetLowering::C_Register:
4802     return 1;
4803   case TargetLowering::C_RegisterClass:
4804     return 2;
4805   case TargetLowering::C_Memory:
4806     return 3;
4807   }
4808   llvm_unreachable("Invalid constraint type");
4809 }
4810 
4811 /// Examine constraint type and operand type and determine a weight value.
4812 /// This object must already have been set up with the operand type
4813 /// and the current alternative constraint selected.
4814 TargetLowering::ConstraintWeight
4815   TargetLowering::getMultipleConstraintMatchWeight(
4816     AsmOperandInfo &info, int maIndex) const {
4817   InlineAsm::ConstraintCodeVector *rCodes;
4818   if (maIndex >= (int)info.multipleAlternatives.size())
4819     rCodes = &info.Codes;
4820   else
4821     rCodes = &info.multipleAlternatives[maIndex].Codes;
4822   ConstraintWeight BestWeight = CW_Invalid;
4823 
4824   // Loop over the options, keeping track of the most general one.
4825   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4826     ConstraintWeight weight =
4827       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4828     if (weight > BestWeight)
4829       BestWeight = weight;
4830   }
4831 
4832   return BestWeight;
4833 }
4834 
4835 /// Examine constraint type and operand type and determine a weight value.
4836 /// This object must already have been set up with the operand type
4837 /// and the current alternative constraint selected.
4838 TargetLowering::ConstraintWeight
4839   TargetLowering::getSingleConstraintMatchWeight(
4840     AsmOperandInfo &info, const char *constraint) const {
4841   ConstraintWeight weight = CW_Invalid;
4842   Value *CallOperandVal = info.CallOperandVal;
4843     // If we don't have a value, we can't do a match,
4844     // but allow it at the lowest weight.
4845   if (!CallOperandVal)
4846     return CW_Default;
4847   // Look at the constraint type.
4848   switch (*constraint) {
4849     case 'i': // immediate integer.
4850     case 'n': // immediate integer with a known value.
4851       if (isa<ConstantInt>(CallOperandVal))
4852         weight = CW_Constant;
4853       break;
4854     case 's': // non-explicit intregal immediate.
4855       if (isa<GlobalValue>(CallOperandVal))
4856         weight = CW_Constant;
4857       break;
4858     case 'E': // immediate float if host format.
4859     case 'F': // immediate float.
4860       if (isa<ConstantFP>(CallOperandVal))
4861         weight = CW_Constant;
4862       break;
4863     case '<': // memory operand with autodecrement.
4864     case '>': // memory operand with autoincrement.
4865     case 'm': // memory operand.
4866     case 'o': // offsettable memory operand
4867     case 'V': // non-offsettable memory operand
4868       weight = CW_Memory;
4869       break;
4870     case 'r': // general register.
4871     case 'g': // general register, memory operand or immediate integer.
4872               // note: Clang converts "g" to "imr".
4873       if (CallOperandVal->getType()->isIntegerTy())
4874         weight = CW_Register;
4875       break;
4876     case 'X': // any operand.
4877   default:
4878     weight = CW_Default;
4879     break;
4880   }
4881   return weight;
4882 }
4883 
4884 /// If there are multiple different constraints that we could pick for this
4885 /// operand (e.g. "imr") try to pick the 'best' one.
4886 /// This is somewhat tricky: constraints fall into four classes:
4887 ///    Other         -> immediates and magic values
4888 ///    Register      -> one specific register
4889 ///    RegisterClass -> a group of regs
4890 ///    Memory        -> memory
4891 /// Ideally, we would pick the most specific constraint possible: if we have
4892 /// something that fits into a register, we would pick it.  The problem here
4893 /// is that if we have something that could either be in a register or in
4894 /// memory that use of the register could cause selection of *other*
4895 /// operands to fail: they might only succeed if we pick memory.  Because of
4896 /// this the heuristic we use is:
4897 ///
4898 ///  1) If there is an 'other' constraint, and if the operand is valid for
4899 ///     that constraint, use it.  This makes us take advantage of 'i'
4900 ///     constraints when available.
4901 ///  2) Otherwise, pick the most general constraint present.  This prefers
4902 ///     'm' over 'r', for example.
4903 ///
4904 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4905                              const TargetLowering &TLI,
4906                              SDValue Op, SelectionDAG *DAG) {
4907   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4908   unsigned BestIdx = 0;
4909   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4910   int BestGenerality = -1;
4911 
4912   // Loop over the options, keeping track of the most general one.
4913   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4914     TargetLowering::ConstraintType CType =
4915       TLI.getConstraintType(OpInfo.Codes[i]);
4916 
4917     // Indirect 'other' or 'immediate' constraints are not allowed.
4918     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4919                                CType == TargetLowering::C_Register ||
4920                                CType == TargetLowering::C_RegisterClass))
4921       continue;
4922 
4923     // If this is an 'other' or 'immediate' constraint, see if the operand is
4924     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4925     // the operand is an integer in the range [0..31] we want to use I (saving a
4926     // load of a register), otherwise we must use 'r'.
4927     if ((CType == TargetLowering::C_Other ||
4928          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4929       assert(OpInfo.Codes[i].size() == 1 &&
4930              "Unhandled multi-letter 'other' constraint");
4931       std::vector<SDValue> ResultOps;
4932       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4933                                        ResultOps, *DAG);
4934       if (!ResultOps.empty()) {
4935         BestType = CType;
4936         BestIdx = i;
4937         break;
4938       }
4939     }
4940 
4941     // Things with matching constraints can only be registers, per gcc
4942     // documentation.  This mainly affects "g" constraints.
4943     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4944       continue;
4945 
4946     // This constraint letter is more general than the previous one, use it.
4947     int Generality = getConstraintGenerality(CType);
4948     if (Generality > BestGenerality) {
4949       BestType = CType;
4950       BestIdx = i;
4951       BestGenerality = Generality;
4952     }
4953   }
4954 
4955   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4956   OpInfo.ConstraintType = BestType;
4957 }
4958 
4959 /// Determines the constraint code and constraint type to use for the specific
4960 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4961 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4962                                             SDValue Op,
4963                                             SelectionDAG *DAG) const {
4964   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4965 
4966   // Single-letter constraints ('r') are very common.
4967   if (OpInfo.Codes.size() == 1) {
4968     OpInfo.ConstraintCode = OpInfo.Codes[0];
4969     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4970   } else {
4971     ChooseConstraint(OpInfo, *this, Op, DAG);
4972   }
4973 
4974   // 'X' matches anything.
4975   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4976     // Labels and constants are handled elsewhere ('X' is the only thing
4977     // that matches labels).  For Functions, the type here is the type of
4978     // the result, which is not what we want to look at; leave them alone.
4979     Value *v = OpInfo.CallOperandVal;
4980     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4981       OpInfo.CallOperandVal = v;
4982       return;
4983     }
4984 
4985     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4986       return;
4987 
4988     // Otherwise, try to resolve it to something we know about by looking at
4989     // the actual operand type.
4990     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4991       OpInfo.ConstraintCode = Repl;
4992       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4993     }
4994   }
4995 }
4996 
4997 /// Given an exact SDIV by a constant, create a multiplication
4998 /// with the multiplicative inverse of the constant.
4999 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5000                               const SDLoc &dl, SelectionDAG &DAG,
5001                               SmallVectorImpl<SDNode *> &Created) {
5002   SDValue Op0 = N->getOperand(0);
5003   SDValue Op1 = N->getOperand(1);
5004   EVT VT = N->getValueType(0);
5005   EVT SVT = VT.getScalarType();
5006   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5007   EVT ShSVT = ShVT.getScalarType();
5008 
5009   bool UseSRA = false;
5010   SmallVector<SDValue, 16> Shifts, Factors;
5011 
5012   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5013     if (C->isNullValue())
5014       return false;
5015     APInt Divisor = C->getAPIntValue();
5016     unsigned Shift = Divisor.countTrailingZeros();
5017     if (Shift) {
5018       Divisor.ashrInPlace(Shift);
5019       UseSRA = true;
5020     }
5021     // Calculate the multiplicative inverse, using Newton's method.
5022     APInt t;
5023     APInt Factor = Divisor;
5024     while ((t = Divisor * Factor) != 1)
5025       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5026     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5027     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5028     return true;
5029   };
5030 
5031   // Collect all magic values from the build vector.
5032   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5033     return SDValue();
5034 
5035   SDValue Shift, Factor;
5036   if (VT.isFixedLengthVector()) {
5037     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5038     Factor = DAG.getBuildVector(VT, dl, Factors);
5039   } else if (VT.isScalableVector()) {
5040     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5041            "Expected matchUnaryPredicate to return one element for scalable "
5042            "vectors");
5043     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5044     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5045   } else {
5046     Shift = Shifts[0];
5047     Factor = Factors[0];
5048   }
5049 
5050   SDValue Res = Op0;
5051 
5052   // Shift the value upfront if it is even, so the LSB is one.
5053   if (UseSRA) {
5054     // TODO: For UDIV use SRL instead of SRA.
5055     SDNodeFlags Flags;
5056     Flags.setExact(true);
5057     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5058     Created.push_back(Res.getNode());
5059   }
5060 
5061   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5062 }
5063 
5064 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5065                               SelectionDAG &DAG,
5066                               SmallVectorImpl<SDNode *> &Created) const {
5067   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5069   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5070     return SDValue(N, 0); // Lower SDIV as SDIV
5071   return SDValue();
5072 }
5073 
5074 /// Given an ISD::SDIV node expressing a divide by constant,
5075 /// return a DAG expression to select that will generate the same value by
5076 /// multiplying by a magic number.
5077 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5078 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5079                                   bool IsAfterLegalization,
5080                                   SmallVectorImpl<SDNode *> &Created) const {
5081   SDLoc dl(N);
5082   EVT VT = N->getValueType(0);
5083   EVT SVT = VT.getScalarType();
5084   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5085   EVT ShSVT = ShVT.getScalarType();
5086   unsigned EltBits = VT.getScalarSizeInBits();
5087 
5088   // Check to see if we can do this.
5089   // FIXME: We should be more aggressive here.
5090   if (!isTypeLegal(VT))
5091     return SDValue();
5092 
5093   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5094   if (N->getFlags().hasExact())
5095     return BuildExactSDIV(*this, N, dl, DAG, Created);
5096 
5097   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5098 
5099   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5100     if (C->isNullValue())
5101       return false;
5102 
5103     const APInt &Divisor = C->getAPIntValue();
5104     APInt::ms magics = Divisor.magic();
5105     int NumeratorFactor = 0;
5106     int ShiftMask = -1;
5107 
5108     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5109       // If d is +1/-1, we just multiply the numerator by +1/-1.
5110       NumeratorFactor = Divisor.getSExtValue();
5111       magics.m = 0;
5112       magics.s = 0;
5113       ShiftMask = 0;
5114     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5115       // If d > 0 and m < 0, add the numerator.
5116       NumeratorFactor = 1;
5117     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5118       // If d < 0 and m > 0, subtract the numerator.
5119       NumeratorFactor = -1;
5120     }
5121 
5122     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5123     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5124     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5125     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5126     return true;
5127   };
5128 
5129   SDValue N0 = N->getOperand(0);
5130   SDValue N1 = N->getOperand(1);
5131 
5132   // Collect the shifts / magic values from each element.
5133   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5134     return SDValue();
5135 
5136   SDValue MagicFactor, Factor, Shift, ShiftMask;
5137   if (VT.isFixedLengthVector()) {
5138     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5139     Factor = DAG.getBuildVector(VT, dl, Factors);
5140     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5141     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5142   } else if (VT.isScalableVector()) {
5143     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5144            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5145            "Expected matchUnaryPredicate to return one element for scalable "
5146            "vectors");
5147     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5148     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5149     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5150     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5151   } else {
5152     MagicFactor = MagicFactors[0];
5153     Factor = Factors[0];
5154     Shift = Shifts[0];
5155     ShiftMask = ShiftMasks[0];
5156   }
5157 
5158   // Multiply the numerator (operand 0) by the magic value.
5159   // FIXME: We should support doing a MUL in a wider type.
5160   SDValue Q;
5161   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
5162                           : isOperationLegalOrCustom(ISD::MULHS, VT))
5163     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
5164   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
5165                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5166     SDValue LoHi =
5167         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
5168     Q = SDValue(LoHi.getNode(), 1);
5169   } else
5170     return SDValue(); // No mulhs or equivalent.
5171   Created.push_back(Q.getNode());
5172 
5173   // (Optionally) Add/subtract the numerator using Factor.
5174   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5175   Created.push_back(Factor.getNode());
5176   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5177   Created.push_back(Q.getNode());
5178 
5179   // Shift right algebraic by shift value.
5180   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5181   Created.push_back(Q.getNode());
5182 
5183   // Extract the sign bit, mask it and add it to the quotient.
5184   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5185   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5186   Created.push_back(T.getNode());
5187   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5188   Created.push_back(T.getNode());
5189   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5190 }
5191 
5192 /// Given an ISD::UDIV node expressing a divide by constant,
5193 /// return a DAG expression to select that will generate the same value by
5194 /// multiplying by a magic number.
5195 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5196 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5197                                   bool IsAfterLegalization,
5198                                   SmallVectorImpl<SDNode *> &Created) const {
5199   SDLoc dl(N);
5200   EVT VT = N->getValueType(0);
5201   EVT SVT = VT.getScalarType();
5202   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5203   EVT ShSVT = ShVT.getScalarType();
5204   unsigned EltBits = VT.getScalarSizeInBits();
5205 
5206   // Check to see if we can do this.
5207   // FIXME: We should be more aggressive here.
5208   if (!isTypeLegal(VT))
5209     return SDValue();
5210 
5211   bool UseNPQ = false;
5212   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5213 
5214   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5215     if (C->isNullValue())
5216       return false;
5217     // FIXME: We should use a narrower constant when the upper
5218     // bits are known to be zero.
5219     APInt Divisor = C->getAPIntValue();
5220     APInt::mu magics = Divisor.magicu();
5221     unsigned PreShift = 0, PostShift = 0;
5222 
5223     // If the divisor is even, we can avoid using the expensive fixup by
5224     // shifting the divided value upfront.
5225     if (magics.a != 0 && !Divisor[0]) {
5226       PreShift = Divisor.countTrailingZeros();
5227       // Get magic number for the shifted divisor.
5228       magics = Divisor.lshr(PreShift).magicu(PreShift);
5229       assert(magics.a == 0 && "Should use cheap fixup now");
5230     }
5231 
5232     APInt Magic = magics.m;
5233 
5234     unsigned SelNPQ;
5235     if (magics.a == 0 || Divisor.isOneValue()) {
5236       assert(magics.s < Divisor.getBitWidth() &&
5237              "We shouldn't generate an undefined shift!");
5238       PostShift = magics.s;
5239       SelNPQ = false;
5240     } else {
5241       PostShift = magics.s - 1;
5242       SelNPQ = true;
5243     }
5244 
5245     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5246     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5247     NPQFactors.push_back(
5248         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5249                                : APInt::getNullValue(EltBits),
5250                         dl, SVT));
5251     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5252     UseNPQ |= SelNPQ;
5253     return true;
5254   };
5255 
5256   SDValue N0 = N->getOperand(0);
5257   SDValue N1 = N->getOperand(1);
5258 
5259   // Collect the shifts/magic values from each element.
5260   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5261     return SDValue();
5262 
5263   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5264   if (VT.isFixedLengthVector()) {
5265     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5266     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5267     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5268     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5269   } else if (VT.isScalableVector()) {
5270     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5271            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5272            "Expected matchUnaryPredicate to return one for scalable vectors");
5273     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5274     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5275     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5276     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5277   } else {
5278     PreShift = PreShifts[0];
5279     MagicFactor = MagicFactors[0];
5280     PostShift = PostShifts[0];
5281   }
5282 
5283   SDValue Q = N0;
5284   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5285   Created.push_back(Q.getNode());
5286 
5287   // FIXME: We should support doing a MUL in a wider type.
5288   auto GetMULHU = [&](SDValue X, SDValue Y) {
5289     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5290                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5291       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5292     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5293                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5294       SDValue LoHi =
5295           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5296       return SDValue(LoHi.getNode(), 1);
5297     }
5298     return SDValue(); // No mulhu or equivalent
5299   };
5300 
5301   // Multiply the numerator (operand 0) by the magic value.
5302   Q = GetMULHU(Q, MagicFactor);
5303   if (!Q)
5304     return SDValue();
5305 
5306   Created.push_back(Q.getNode());
5307 
5308   if (UseNPQ) {
5309     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5310     Created.push_back(NPQ.getNode());
5311 
5312     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5313     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5314     if (VT.isVector())
5315       NPQ = GetMULHU(NPQ, NPQFactor);
5316     else
5317       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5318 
5319     Created.push_back(NPQ.getNode());
5320 
5321     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5322     Created.push_back(Q.getNode());
5323   }
5324 
5325   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5326   Created.push_back(Q.getNode());
5327 
5328   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5329 
5330   SDValue One = DAG.getConstant(1, dl, VT);
5331   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5332   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5333 }
5334 
5335 /// If all values in Values that *don't* match the predicate are same 'splat'
5336 /// value, then replace all values with that splat value.
5337 /// Else, if AlternativeReplacement was provided, then replace all values that
5338 /// do match predicate with AlternativeReplacement value.
5339 static void
5340 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5341                           std::function<bool(SDValue)> Predicate,
5342                           SDValue AlternativeReplacement = SDValue()) {
5343   SDValue Replacement;
5344   // Is there a value for which the Predicate does *NOT* match? What is it?
5345   auto SplatValue = llvm::find_if_not(Values, Predicate);
5346   if (SplatValue != Values.end()) {
5347     // Does Values consist only of SplatValue's and values matching Predicate?
5348     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5349           return Value == *SplatValue || Predicate(Value);
5350         })) // Then we shall replace values matching predicate with SplatValue.
5351       Replacement = *SplatValue;
5352   }
5353   if (!Replacement) {
5354     // Oops, we did not find the "baseline" splat value.
5355     if (!AlternativeReplacement)
5356       return; // Nothing to do.
5357     // Let's replace with provided value then.
5358     Replacement = AlternativeReplacement;
5359   }
5360   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5361 }
5362 
5363 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5364 /// where the divisor is constant and the comparison target is zero,
5365 /// return a DAG expression that will generate the same comparison result
5366 /// using only multiplications, additions and shifts/rotations.
5367 /// Ref: "Hacker's Delight" 10-17.
5368 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5369                                         SDValue CompTargetNode,
5370                                         ISD::CondCode Cond,
5371                                         DAGCombinerInfo &DCI,
5372                                         const SDLoc &DL) const {
5373   SmallVector<SDNode *, 5> Built;
5374   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5375                                          DCI, DL, Built)) {
5376     for (SDNode *N : Built)
5377       DCI.AddToWorklist(N);
5378     return Folded;
5379   }
5380 
5381   return SDValue();
5382 }
5383 
5384 SDValue
5385 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5386                                   SDValue CompTargetNode, ISD::CondCode Cond,
5387                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5388                                   SmallVectorImpl<SDNode *> &Created) const {
5389   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5390   // - D must be constant, with D = D0 * 2^K where D0 is odd
5391   // - P is the multiplicative inverse of D0 modulo 2^W
5392   // - Q = floor(((2^W) - 1) / D)
5393   // where W is the width of the common type of N and D.
5394   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5395          "Only applicable for (in)equality comparisons.");
5396 
5397   SelectionDAG &DAG = DCI.DAG;
5398 
5399   EVT VT = REMNode.getValueType();
5400   EVT SVT = VT.getScalarType();
5401   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5402   EVT ShSVT = ShVT.getScalarType();
5403 
5404   // If MUL is unavailable, we cannot proceed in any case.
5405   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5406     return SDValue();
5407 
5408   bool ComparingWithAllZeros = true;
5409   bool AllComparisonsWithNonZerosAreTautological = true;
5410   bool HadTautologicalLanes = false;
5411   bool AllLanesAreTautological = true;
5412   bool HadEvenDivisor = false;
5413   bool AllDivisorsArePowerOfTwo = true;
5414   bool HadTautologicalInvertedLanes = false;
5415   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5416 
5417   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5418     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5419     if (CDiv->isNullValue())
5420       return false;
5421 
5422     const APInt &D = CDiv->getAPIntValue();
5423     const APInt &Cmp = CCmp->getAPIntValue();
5424 
5425     ComparingWithAllZeros &= Cmp.isNullValue();
5426 
5427     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5428     // if C2 is not less than C1, the comparison is always false.
5429     // But we will only be able to produce the comparison that will give the
5430     // opposive tautological answer. So this lane would need to be fixed up.
5431     bool TautologicalInvertedLane = D.ule(Cmp);
5432     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5433 
5434     // If all lanes are tautological (either all divisors are ones, or divisor
5435     // is not greater than the constant we are comparing with),
5436     // we will prefer to avoid the fold.
5437     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5438     HadTautologicalLanes |= TautologicalLane;
5439     AllLanesAreTautological &= TautologicalLane;
5440 
5441     // If we are comparing with non-zero, we need'll need  to subtract said
5442     // comparison value from the LHS. But there is no point in doing that if
5443     // every lane where we are comparing with non-zero is tautological..
5444     if (!Cmp.isNullValue())
5445       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5446 
5447     // Decompose D into D0 * 2^K
5448     unsigned K = D.countTrailingZeros();
5449     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5450     APInt D0 = D.lshr(K);
5451 
5452     // D is even if it has trailing zeros.
5453     HadEvenDivisor |= (K != 0);
5454     // D is a power-of-two if D0 is one.
5455     // If all divisors are power-of-two, we will prefer to avoid the fold.
5456     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5457 
5458     // P = inv(D0, 2^W)
5459     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5460     unsigned W = D.getBitWidth();
5461     APInt P = D0.zext(W + 1)
5462                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5463                   .trunc(W);
5464     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5465     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5466 
5467     // Q = floor((2^W - 1) u/ D)
5468     // R = ((2^W - 1) u% D)
5469     APInt Q, R;
5470     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5471 
5472     // If we are comparing with zero, then that comparison constant is okay,
5473     // else it may need to be one less than that.
5474     if (Cmp.ugt(R))
5475       Q -= 1;
5476 
5477     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5478            "We are expecting that K is always less than all-ones for ShSVT");
5479 
5480     // If the lane is tautological the result can be constant-folded.
5481     if (TautologicalLane) {
5482       // Set P and K amount to a bogus values so we can try to splat them.
5483       P = 0;
5484       K = -1;
5485       // And ensure that comparison constant is tautological,
5486       // it will always compare true/false.
5487       Q = -1;
5488     }
5489 
5490     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5491     KAmts.push_back(
5492         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5493     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5494     return true;
5495   };
5496 
5497   SDValue N = REMNode.getOperand(0);
5498   SDValue D = REMNode.getOperand(1);
5499 
5500   // Collect the values from each element.
5501   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5502     return SDValue();
5503 
5504   // If all lanes are tautological, the result can be constant-folded.
5505   if (AllLanesAreTautological)
5506     return SDValue();
5507 
5508   // If this is a urem by a powers-of-two, avoid the fold since it can be
5509   // best implemented as a bit test.
5510   if (AllDivisorsArePowerOfTwo)
5511     return SDValue();
5512 
5513   SDValue PVal, KVal, QVal;
5514   if (VT.isVector()) {
5515     if (HadTautologicalLanes) {
5516       // Try to turn PAmts into a splat, since we don't care about the values
5517       // that are currently '0'. If we can't, just keep '0'`s.
5518       turnVectorIntoSplatVector(PAmts, isNullConstant);
5519       // Try to turn KAmts into a splat, since we don't care about the values
5520       // that are currently '-1'. If we can't, change them to '0'`s.
5521       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5522                                 DAG.getConstant(0, DL, ShSVT));
5523     }
5524 
5525     PVal = DAG.getBuildVector(VT, DL, PAmts);
5526     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5527     QVal = DAG.getBuildVector(VT, DL, QAmts);
5528   } else {
5529     PVal = PAmts[0];
5530     KVal = KAmts[0];
5531     QVal = QAmts[0];
5532   }
5533 
5534   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5535     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5536       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5537     assert(CompTargetNode.getValueType() == N.getValueType() &&
5538            "Expecting that the types on LHS and RHS of comparisons match.");
5539     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5540   }
5541 
5542   // (mul N, P)
5543   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5544   Created.push_back(Op0.getNode());
5545 
5546   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5547   // divisors as a performance improvement, since rotating by 0 is a no-op.
5548   if (HadEvenDivisor) {
5549     // We need ROTR to do this.
5550     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5551       return SDValue();
5552     SDNodeFlags Flags;
5553     Flags.setExact(true);
5554     // UREM: (rotr (mul N, P), K)
5555     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5556     Created.push_back(Op0.getNode());
5557   }
5558 
5559   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5560   SDValue NewCC =
5561       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5562                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5563   if (!HadTautologicalInvertedLanes)
5564     return NewCC;
5565 
5566   // If any lanes previously compared always-false, the NewCC will give
5567   // always-true result for them, so we need to fixup those lanes.
5568   // Or the other way around for inequality predicate.
5569   assert(VT.isVector() && "Can/should only get here for vectors.");
5570   Created.push_back(NewCC.getNode());
5571 
5572   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5573   // if C2 is not less than C1, the comparison is always false.
5574   // But we have produced the comparison that will give the
5575   // opposive tautological answer. So these lanes would need to be fixed up.
5576   SDValue TautologicalInvertedChannels =
5577       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5578   Created.push_back(TautologicalInvertedChannels.getNode());
5579 
5580   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5581     // If we have a vector select, let's replace the comparison results in the
5582     // affected lanes with the correct tautological result.
5583     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5584                                               DL, SETCCVT, SETCCVT);
5585     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5586                        Replacement, NewCC);
5587   }
5588 
5589   // Else, we can just invert the comparison result in the appropriate lanes.
5590   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5591     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5592                        TautologicalInvertedChannels);
5593 
5594   return SDValue(); // Don't know how to lower.
5595 }
5596 
5597 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5598 /// where the divisor is constant and the comparison target is zero,
5599 /// return a DAG expression that will generate the same comparison result
5600 /// using only multiplications, additions and shifts/rotations.
5601 /// Ref: "Hacker's Delight" 10-17.
5602 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5603                                         SDValue CompTargetNode,
5604                                         ISD::CondCode Cond,
5605                                         DAGCombinerInfo &DCI,
5606                                         const SDLoc &DL) const {
5607   SmallVector<SDNode *, 7> Built;
5608   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5609                                          DCI, DL, Built)) {
5610     assert(Built.size() <= 7 && "Max size prediction failed.");
5611     for (SDNode *N : Built)
5612       DCI.AddToWorklist(N);
5613     return Folded;
5614   }
5615 
5616   return SDValue();
5617 }
5618 
5619 SDValue
5620 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5621                                   SDValue CompTargetNode, ISD::CondCode Cond,
5622                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5623                                   SmallVectorImpl<SDNode *> &Created) const {
5624   // Fold:
5625   //   (seteq/ne (srem N, D), 0)
5626   // To:
5627   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5628   //
5629   // - D must be constant, with D = D0 * 2^K where D0 is odd
5630   // - P is the multiplicative inverse of D0 modulo 2^W
5631   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5632   // - Q = floor((2 * A) / (2^K))
5633   // where W is the width of the common type of N and D.
5634   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5635          "Only applicable for (in)equality comparisons.");
5636 
5637   SelectionDAG &DAG = DCI.DAG;
5638 
5639   EVT VT = REMNode.getValueType();
5640   EVT SVT = VT.getScalarType();
5641   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5642   EVT ShSVT = ShVT.getScalarType();
5643 
5644   // If MUL is unavailable, we cannot proceed in any case.
5645   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5646     return SDValue();
5647 
5648   // TODO: Could support comparing with non-zero too.
5649   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5650   if (!CompTarget || !CompTarget->isNullValue())
5651     return SDValue();
5652 
5653   bool HadIntMinDivisor = false;
5654   bool HadOneDivisor = false;
5655   bool AllDivisorsAreOnes = true;
5656   bool HadEvenDivisor = false;
5657   bool NeedToApplyOffset = false;
5658   bool AllDivisorsArePowerOfTwo = true;
5659   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5660 
5661   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5662     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5663     if (C->isNullValue())
5664       return false;
5665 
5666     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5667 
5668     // WARNING: this fold is only valid for positive divisors!
5669     APInt D = C->getAPIntValue();
5670     if (D.isNegative())
5671       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5672 
5673     HadIntMinDivisor |= D.isMinSignedValue();
5674 
5675     // If all divisors are ones, we will prefer to avoid the fold.
5676     HadOneDivisor |= D.isOneValue();
5677     AllDivisorsAreOnes &= D.isOneValue();
5678 
5679     // Decompose D into D0 * 2^K
5680     unsigned K = D.countTrailingZeros();
5681     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5682     APInt D0 = D.lshr(K);
5683 
5684     if (!D.isMinSignedValue()) {
5685       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5686       // we don't care about this lane in this fold, we'll special-handle it.
5687       HadEvenDivisor |= (K != 0);
5688     }
5689 
5690     // D is a power-of-two if D0 is one. This includes INT_MIN.
5691     // If all divisors are power-of-two, we will prefer to avoid the fold.
5692     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5693 
5694     // P = inv(D0, 2^W)
5695     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5696     unsigned W = D.getBitWidth();
5697     APInt P = D0.zext(W + 1)
5698                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5699                   .trunc(W);
5700     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5701     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5702 
5703     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5704     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5705     A.clearLowBits(K);
5706 
5707     if (!D.isMinSignedValue()) {
5708       // If divisor INT_MIN, then we don't care about this lane in this fold,
5709       // we'll special-handle it.
5710       NeedToApplyOffset |= A != 0;
5711     }
5712 
5713     // Q = floor((2 * A) / (2^K))
5714     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5715 
5716     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5717            "We are expecting that A is always less than all-ones for SVT");
5718     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5719            "We are expecting that K is always less than all-ones for ShSVT");
5720 
5721     // If the divisor is 1 the result can be constant-folded. Likewise, we
5722     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5723     if (D.isOneValue()) {
5724       // Set P, A and K to a bogus values so we can try to splat them.
5725       P = 0;
5726       A = -1;
5727       K = -1;
5728 
5729       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5730       Q = -1;
5731     }
5732 
5733     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5734     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5735     KAmts.push_back(
5736         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5737     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5738     return true;
5739   };
5740 
5741   SDValue N = REMNode.getOperand(0);
5742   SDValue D = REMNode.getOperand(1);
5743 
5744   // Collect the values from each element.
5745   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5746     return SDValue();
5747 
5748   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5749   if (AllDivisorsAreOnes)
5750     return SDValue();
5751 
5752   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5753   // since it can be best implemented as a bit test.
5754   if (AllDivisorsArePowerOfTwo)
5755     return SDValue();
5756 
5757   SDValue PVal, AVal, KVal, QVal;
5758   if (VT.isFixedLengthVector()) {
5759     if (HadOneDivisor) {
5760       // Try to turn PAmts into a splat, since we don't care about the values
5761       // that are currently '0'. If we can't, just keep '0'`s.
5762       turnVectorIntoSplatVector(PAmts, isNullConstant);
5763       // Try to turn AAmts into a splat, since we don't care about the
5764       // values that are currently '-1'. If we can't, change them to '0'`s.
5765       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5766                                 DAG.getConstant(0, DL, SVT));
5767       // Try to turn KAmts into a splat, since we don't care about the values
5768       // that are currently '-1'. If we can't, change them to '0'`s.
5769       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5770                                 DAG.getConstant(0, DL, ShSVT));
5771     }
5772 
5773     PVal = DAG.getBuildVector(VT, DL, PAmts);
5774     AVal = DAG.getBuildVector(VT, DL, AAmts);
5775     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5776     QVal = DAG.getBuildVector(VT, DL, QAmts);
5777   } else if (VT.isScalableVector()) {
5778     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5779            QAmts.size() == 1 &&
5780            "Expected matchUnaryPredicate to return one element for scalable "
5781            "vectors");
5782     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5783     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5784     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5785     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5786   } else {
5787     PVal = PAmts[0];
5788     AVal = AAmts[0];
5789     KVal = KAmts[0];
5790     QVal = QAmts[0];
5791   }
5792 
5793   // (mul N, P)
5794   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5795   Created.push_back(Op0.getNode());
5796 
5797   if (NeedToApplyOffset) {
5798     // We need ADD to do this.
5799     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5800       return SDValue();
5801 
5802     // (add (mul N, P), A)
5803     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5804     Created.push_back(Op0.getNode());
5805   }
5806 
5807   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5808   // divisors as a performance improvement, since rotating by 0 is a no-op.
5809   if (HadEvenDivisor) {
5810     // We need ROTR to do this.
5811     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5812       return SDValue();
5813     SDNodeFlags Flags;
5814     Flags.setExact(true);
5815     // SREM: (rotr (add (mul N, P), A), K)
5816     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5817     Created.push_back(Op0.getNode());
5818   }
5819 
5820   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5821   SDValue Fold =
5822       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5823                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5824 
5825   // If we didn't have lanes with INT_MIN divisor, then we're done.
5826   if (!HadIntMinDivisor)
5827     return Fold;
5828 
5829   // That fold is only valid for positive divisors. Which effectively means,
5830   // it is invalid for INT_MIN divisors. So if we have such a lane,
5831   // we must fix-up results for said lanes.
5832   assert(VT.isVector() && "Can/should only get here for vectors.");
5833 
5834   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5835       !isOperationLegalOrCustom(ISD::AND, VT) ||
5836       !isOperationLegalOrCustom(Cond, VT) ||
5837       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5838     return SDValue();
5839 
5840   Created.push_back(Fold.getNode());
5841 
5842   SDValue IntMin = DAG.getConstant(
5843       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5844   SDValue IntMax = DAG.getConstant(
5845       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5846   SDValue Zero =
5847       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5848 
5849   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5850   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5851   Created.push_back(DivisorIsIntMin.getNode());
5852 
5853   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5854   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5855   Created.push_back(Masked.getNode());
5856   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5857   Created.push_back(MaskedIsZero.getNode());
5858 
5859   // To produce final result we need to blend 2 vectors: 'SetCC' and
5860   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5861   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5862   // constant-folded, select can get lowered to a shuffle with constant mask.
5863   SDValue Blended =
5864       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5865 
5866   return Blended;
5867 }
5868 
5869 bool TargetLowering::
5870 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5871   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5872     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5873                                 "be a constant integer");
5874     return true;
5875   }
5876 
5877   return false;
5878 }
5879 
5880 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5881                                          const DenormalMode &Mode) const {
5882   SDLoc DL(Op);
5883   EVT VT = Op.getValueType();
5884   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5885   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5886   // Testing it with denormal inputs to avoid wrong estimate.
5887   if (Mode.Input == DenormalMode::IEEE) {
5888     // This is specifically a check for the handling of denormal inputs,
5889     // not the result.
5890 
5891     // Test = fabs(X) < SmallestNormal
5892     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
5893     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
5894     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
5895     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
5896     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
5897   }
5898   // Test = X == 0.0
5899   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
5900 }
5901 
5902 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5903                                              bool LegalOps, bool OptForSize,
5904                                              NegatibleCost &Cost,
5905                                              unsigned Depth) const {
5906   // fneg is removable even if it has multiple uses.
5907   if (Op.getOpcode() == ISD::FNEG) {
5908     Cost = NegatibleCost::Cheaper;
5909     return Op.getOperand(0);
5910   }
5911 
5912   // Don't recurse exponentially.
5913   if (Depth > SelectionDAG::MaxRecursionDepth)
5914     return SDValue();
5915 
5916   // Pre-increment recursion depth for use in recursive calls.
5917   ++Depth;
5918   const SDNodeFlags Flags = Op->getFlags();
5919   const TargetOptions &Options = DAG.getTarget().Options;
5920   EVT VT = Op.getValueType();
5921   unsigned Opcode = Op.getOpcode();
5922 
5923   // Don't allow anything with multiple uses unless we know it is free.
5924   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5925     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5926                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5927     if (!IsFreeExtend)
5928       return SDValue();
5929   }
5930 
5931   auto RemoveDeadNode = [&](SDValue N) {
5932     if (N && N.getNode()->use_empty())
5933       DAG.RemoveDeadNode(N.getNode());
5934   };
5935 
5936   SDLoc DL(Op);
5937 
5938   // Because getNegatedExpression can delete nodes we need a handle to keep
5939   // temporary nodes alive in case the recursion manages to create an identical
5940   // node.
5941   std::list<HandleSDNode> Handles;
5942 
5943   switch (Opcode) {
5944   case ISD::ConstantFP: {
5945     // Don't invert constant FP values after legalization unless the target says
5946     // the negated constant is legal.
5947     bool IsOpLegal =
5948         isOperationLegal(ISD::ConstantFP, VT) ||
5949         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5950                      OptForSize);
5951 
5952     if (LegalOps && !IsOpLegal)
5953       break;
5954 
5955     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5956     V.changeSign();
5957     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5958 
5959     // If we already have the use of the negated floating constant, it is free
5960     // to negate it even it has multiple uses.
5961     if (!Op.hasOneUse() && CFP.use_empty())
5962       break;
5963     Cost = NegatibleCost::Neutral;
5964     return CFP;
5965   }
5966   case ISD::BUILD_VECTOR: {
5967     // Only permit BUILD_VECTOR of constants.
5968     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5969           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5970         }))
5971       break;
5972 
5973     bool IsOpLegal =
5974         (isOperationLegal(ISD::ConstantFP, VT) &&
5975          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5976         llvm::all_of(Op->op_values(), [&](SDValue N) {
5977           return N.isUndef() ||
5978                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5979                               OptForSize);
5980         });
5981 
5982     if (LegalOps && !IsOpLegal)
5983       break;
5984 
5985     SmallVector<SDValue, 4> Ops;
5986     for (SDValue C : Op->op_values()) {
5987       if (C.isUndef()) {
5988         Ops.push_back(C);
5989         continue;
5990       }
5991       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5992       V.changeSign();
5993       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5994     }
5995     Cost = NegatibleCost::Neutral;
5996     return DAG.getBuildVector(VT, DL, Ops);
5997   }
5998   case ISD::FADD: {
5999     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6000       break;
6001 
6002     // After operation legalization, it might not be legal to create new FSUBs.
6003     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6004       break;
6005     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6006 
6007     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6008     NegatibleCost CostX = NegatibleCost::Expensive;
6009     SDValue NegX =
6010         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6011     // Prevent this node from being deleted by the next call.
6012     if (NegX)
6013       Handles.emplace_back(NegX);
6014 
6015     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6016     NegatibleCost CostY = NegatibleCost::Expensive;
6017     SDValue NegY =
6018         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6019 
6020     // We're done with the handles.
6021     Handles.clear();
6022 
6023     // Negate the X if its cost is less or equal than Y.
6024     if (NegX && (CostX <= CostY)) {
6025       Cost = CostX;
6026       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6027       if (NegY != N)
6028         RemoveDeadNode(NegY);
6029       return N;
6030     }
6031 
6032     // Negate the Y if it is not expensive.
6033     if (NegY) {
6034       Cost = CostY;
6035       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6036       if (NegX != N)
6037         RemoveDeadNode(NegX);
6038       return N;
6039     }
6040     break;
6041   }
6042   case ISD::FSUB: {
6043     // We can't turn -(A-B) into B-A when we honor signed zeros.
6044     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6045       break;
6046 
6047     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6048     // fold (fneg (fsub 0, Y)) -> Y
6049     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6050       if (C->isZero()) {
6051         Cost = NegatibleCost::Cheaper;
6052         return Y;
6053       }
6054 
6055     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6056     Cost = NegatibleCost::Neutral;
6057     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6058   }
6059   case ISD::FMUL:
6060   case ISD::FDIV: {
6061     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6062 
6063     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6064     NegatibleCost CostX = NegatibleCost::Expensive;
6065     SDValue NegX =
6066         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6067     // Prevent this node from being deleted by the next call.
6068     if (NegX)
6069       Handles.emplace_back(NegX);
6070 
6071     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6072     NegatibleCost CostY = NegatibleCost::Expensive;
6073     SDValue NegY =
6074         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6075 
6076     // We're done with the handles.
6077     Handles.clear();
6078 
6079     // Negate the X if its cost is less or equal than Y.
6080     if (NegX && (CostX <= CostY)) {
6081       Cost = CostX;
6082       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6083       if (NegY != N)
6084         RemoveDeadNode(NegY);
6085       return N;
6086     }
6087 
6088     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6089     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6090       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6091         break;
6092 
6093     // Negate the Y if it is not expensive.
6094     if (NegY) {
6095       Cost = CostY;
6096       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6097       if (NegX != N)
6098         RemoveDeadNode(NegX);
6099       return N;
6100     }
6101     break;
6102   }
6103   case ISD::FMA:
6104   case ISD::FMAD: {
6105     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6106       break;
6107 
6108     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6109     NegatibleCost CostZ = NegatibleCost::Expensive;
6110     SDValue NegZ =
6111         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6112     // Give up if fail to negate the Z.
6113     if (!NegZ)
6114       break;
6115 
6116     // Prevent this node from being deleted by the next two calls.
6117     Handles.emplace_back(NegZ);
6118 
6119     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6120     NegatibleCost CostX = NegatibleCost::Expensive;
6121     SDValue NegX =
6122         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6123     // Prevent this node from being deleted by the next call.
6124     if (NegX)
6125       Handles.emplace_back(NegX);
6126 
6127     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6128     NegatibleCost CostY = NegatibleCost::Expensive;
6129     SDValue NegY =
6130         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6131 
6132     // We're done with the handles.
6133     Handles.clear();
6134 
6135     // Negate the X if its cost is less or equal than Y.
6136     if (NegX && (CostX <= CostY)) {
6137       Cost = std::min(CostX, CostZ);
6138       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6139       if (NegY != N)
6140         RemoveDeadNode(NegY);
6141       return N;
6142     }
6143 
6144     // Negate the Y if it is not expensive.
6145     if (NegY) {
6146       Cost = std::min(CostY, CostZ);
6147       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6148       if (NegX != N)
6149         RemoveDeadNode(NegX);
6150       return N;
6151     }
6152     break;
6153   }
6154 
6155   case ISD::FP_EXTEND:
6156   case ISD::FSIN:
6157     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6158                                             OptForSize, Cost, Depth))
6159       return DAG.getNode(Opcode, DL, VT, NegV);
6160     break;
6161   case ISD::FP_ROUND:
6162     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6163                                             OptForSize, Cost, Depth))
6164       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6165     break;
6166   }
6167 
6168   return SDValue();
6169 }
6170 
6171 //===----------------------------------------------------------------------===//
6172 // Legalization Utilities
6173 //===----------------------------------------------------------------------===//
6174 
6175 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6176                                     SDValue LHS, SDValue RHS,
6177                                     SmallVectorImpl<SDValue> &Result,
6178                                     EVT HiLoVT, SelectionDAG &DAG,
6179                                     MulExpansionKind Kind, SDValue LL,
6180                                     SDValue LH, SDValue RL, SDValue RH) const {
6181   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6182          Opcode == ISD::SMUL_LOHI);
6183 
6184   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6185                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6186   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6187                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6188   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6189                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6190   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6191                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6192 
6193   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6194     return false;
6195 
6196   unsigned OuterBitSize = VT.getScalarSizeInBits();
6197   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6198 
6199   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6200   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6201          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6202 
6203   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6204   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6205                           bool Signed) -> bool {
6206     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6207       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6208       Hi = SDValue(Lo.getNode(), 1);
6209       return true;
6210     }
6211     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6212       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6213       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6214       return true;
6215     }
6216     return false;
6217   };
6218 
6219   SDValue Lo, Hi;
6220 
6221   if (!LL.getNode() && !RL.getNode() &&
6222       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6223     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6224     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6225   }
6226 
6227   if (!LL.getNode())
6228     return false;
6229 
6230   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6231   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6232       DAG.MaskedValueIsZero(RHS, HighMask)) {
6233     // The inputs are both zero-extended.
6234     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6235       Result.push_back(Lo);
6236       Result.push_back(Hi);
6237       if (Opcode != ISD::MUL) {
6238         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6239         Result.push_back(Zero);
6240         Result.push_back(Zero);
6241       }
6242       return true;
6243     }
6244   }
6245 
6246   if (!VT.isVector() && Opcode == ISD::MUL &&
6247       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6248       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6249     // The input values are both sign-extended.
6250     // TODO non-MUL case?
6251     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6252       Result.push_back(Lo);
6253       Result.push_back(Hi);
6254       return true;
6255     }
6256   }
6257 
6258   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6259   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6260   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6261     // FIXME getShiftAmountTy does not always return a sensible result when VT
6262     // is an illegal type, and so the type may be too small to fit the shift
6263     // amount. Override it with i32. The shift will have to be legalized.
6264     ShiftAmountTy = MVT::i32;
6265   }
6266   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6267 
6268   if (!LH.getNode() && !RH.getNode() &&
6269       isOperationLegalOrCustom(ISD::SRL, VT) &&
6270       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6271     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6272     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6273     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6274     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6275   }
6276 
6277   if (!LH.getNode())
6278     return false;
6279 
6280   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6281     return false;
6282 
6283   Result.push_back(Lo);
6284 
6285   if (Opcode == ISD::MUL) {
6286     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6287     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6288     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6289     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6290     Result.push_back(Hi);
6291     return true;
6292   }
6293 
6294   // Compute the full width result.
6295   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6296     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6297     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6298     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6299     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6300   };
6301 
6302   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6303   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6304     return false;
6305 
6306   // This is effectively the add part of a multiply-add of half-sized operands,
6307   // so it cannot overflow.
6308   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6309 
6310   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6311     return false;
6312 
6313   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6314   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6315 
6316   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6317                   isOperationLegalOrCustom(ISD::ADDE, VT));
6318   if (UseGlue)
6319     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6320                        Merge(Lo, Hi));
6321   else
6322     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6323                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6324 
6325   SDValue Carry = Next.getValue(1);
6326   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6327   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6328 
6329   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6330     return false;
6331 
6332   if (UseGlue)
6333     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6334                      Carry);
6335   else
6336     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6337                      Zero, Carry);
6338 
6339   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6340 
6341   if (Opcode == ISD::SMUL_LOHI) {
6342     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6343                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6344     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6345 
6346     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6347                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6348     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6349   }
6350 
6351   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6352   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6353   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6354   return true;
6355 }
6356 
6357 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6358                                SelectionDAG &DAG, MulExpansionKind Kind,
6359                                SDValue LL, SDValue LH, SDValue RL,
6360                                SDValue RH) const {
6361   SmallVector<SDValue, 2> Result;
6362   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6363                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6364                            DAG, Kind, LL, LH, RL, RH);
6365   if (Ok) {
6366     assert(Result.size() == 2);
6367     Lo = Result[0];
6368     Hi = Result[1];
6369   }
6370   return Ok;
6371 }
6372 
6373 // Check that (every element of) Z is undef or not an exact multiple of BW.
6374 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6375   return ISD::matchUnaryPredicate(
6376       Z,
6377       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6378       true);
6379 }
6380 
6381 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6382                                        SelectionDAG &DAG) const {
6383   EVT VT = Node->getValueType(0);
6384 
6385   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6386                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6387                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6388                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6389     return false;
6390 
6391   SDValue X = Node->getOperand(0);
6392   SDValue Y = Node->getOperand(1);
6393   SDValue Z = Node->getOperand(2);
6394 
6395   unsigned BW = VT.getScalarSizeInBits();
6396   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6397   SDLoc DL(SDValue(Node, 0));
6398 
6399   EVT ShVT = Z.getValueType();
6400 
6401   // If a funnel shift in the other direction is more supported, use it.
6402   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6403   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6404       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6405     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6406       // fshl X, Y, Z -> fshr X, Y, -Z
6407       // fshr X, Y, Z -> fshl X, Y, -Z
6408       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6409       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6410     } else {
6411       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6412       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6413       SDValue One = DAG.getConstant(1, DL, ShVT);
6414       if (IsFSHL) {
6415         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6416         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6417       } else {
6418         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6419         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6420       }
6421       Z = DAG.getNOT(DL, Z, ShVT);
6422     }
6423     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6424     return true;
6425   }
6426 
6427   SDValue ShX, ShY;
6428   SDValue ShAmt, InvShAmt;
6429   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6430     // fshl: X << C | Y >> (BW - C)
6431     // fshr: X << (BW - C) | Y >> C
6432     // where C = Z % BW is not zero
6433     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6434     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6435     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6436     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6437     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6438   } else {
6439     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6440     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6441     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6442     if (isPowerOf2_32(BW)) {
6443       // Z % BW -> Z & (BW - 1)
6444       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6445       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6446       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6447     } else {
6448       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6449       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6450       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6451     }
6452 
6453     SDValue One = DAG.getConstant(1, DL, ShVT);
6454     if (IsFSHL) {
6455       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6456       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6457       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6458     } else {
6459       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6460       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6461       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6462     }
6463   }
6464   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6465   return true;
6466 }
6467 
6468 // TODO: Merge with expandFunnelShift.
6469 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6470                                SDValue &Result, SelectionDAG &DAG) const {
6471   EVT VT = Node->getValueType(0);
6472   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6473   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6474   SDValue Op0 = Node->getOperand(0);
6475   SDValue Op1 = Node->getOperand(1);
6476   SDLoc DL(SDValue(Node, 0));
6477 
6478   EVT ShVT = Op1.getValueType();
6479   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6480 
6481   // If a rotate in the other direction is supported, use it.
6482   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6483   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6484     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6485     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6486     return true;
6487   }
6488 
6489   if (!AllowVectorOps && VT.isVector() &&
6490       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6491        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6492        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6493        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6494        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6495     return false;
6496 
6497   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6498   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6499   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6500   SDValue ShVal;
6501   SDValue HsVal;
6502   if (isPowerOf2_32(EltSizeInBits)) {
6503     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6504     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6505     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6506     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6507     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6508     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6509     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6510   } else {
6511     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6512     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6513     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6514     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6515     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6516     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6517     SDValue One = DAG.getConstant(1, DL, ShVT);
6518     HsVal =
6519         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6520   }
6521   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6522   return true;
6523 }
6524 
6525 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6526                                       SelectionDAG &DAG) const {
6527   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6528   SDValue Src = Node->getOperand(OpNo);
6529   EVT SrcVT = Src.getValueType();
6530   EVT DstVT = Node->getValueType(0);
6531   SDLoc dl(SDValue(Node, 0));
6532 
6533   // FIXME: Only f32 to i64 conversions are supported.
6534   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6535     return false;
6536 
6537   if (Node->isStrictFPOpcode())
6538     // When a NaN is converted to an integer a trap is allowed. We can't
6539     // use this expansion here because it would eliminate that trap. Other
6540     // traps are also allowed and cannot be eliminated. See
6541     // IEEE 754-2008 sec 5.8.
6542     return false;
6543 
6544   // Expand f32 -> i64 conversion
6545   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6546   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6547   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6548   EVT IntVT = SrcVT.changeTypeToInteger();
6549   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6550 
6551   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6552   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6553   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6554   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6555   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6556   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6557 
6558   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6559 
6560   SDValue ExponentBits = DAG.getNode(
6561       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6562       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6563   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6564 
6565   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6566                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6567                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6568   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6569 
6570   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6571                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6572                           DAG.getConstant(0x00800000, dl, IntVT));
6573 
6574   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6575 
6576   R = DAG.getSelectCC(
6577       dl, Exponent, ExponentLoBit,
6578       DAG.getNode(ISD::SHL, dl, DstVT, R,
6579                   DAG.getZExtOrTrunc(
6580                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6581                       dl, IntShVT)),
6582       DAG.getNode(ISD::SRL, dl, DstVT, R,
6583                   DAG.getZExtOrTrunc(
6584                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6585                       dl, IntShVT)),
6586       ISD::SETGT);
6587 
6588   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6589                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6590 
6591   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6592                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6593   return true;
6594 }
6595 
6596 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6597                                       SDValue &Chain,
6598                                       SelectionDAG &DAG) const {
6599   SDLoc dl(SDValue(Node, 0));
6600   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6601   SDValue Src = Node->getOperand(OpNo);
6602 
6603   EVT SrcVT = Src.getValueType();
6604   EVT DstVT = Node->getValueType(0);
6605   EVT SetCCVT =
6606       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6607   EVT DstSetCCVT =
6608       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6609 
6610   // Only expand vector types if we have the appropriate vector bit operations.
6611   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6612                                                    ISD::FP_TO_SINT;
6613   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6614                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6615     return false;
6616 
6617   // If the maximum float value is smaller then the signed integer range,
6618   // the destination signmask can't be represented by the float, so we can
6619   // just use FP_TO_SINT directly.
6620   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6621   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6622   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6623   if (APFloat::opOverflow &
6624       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6625     if (Node->isStrictFPOpcode()) {
6626       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6627                            { Node->getOperand(0), Src });
6628       Chain = Result.getValue(1);
6629     } else
6630       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6631     return true;
6632   }
6633 
6634   // Don't expand it if there isn't cheap fsub instruction.
6635   if (!isOperationLegalOrCustom(
6636           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6637     return false;
6638 
6639   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6640   SDValue Sel;
6641 
6642   if (Node->isStrictFPOpcode()) {
6643     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6644                        Node->getOperand(0), /*IsSignaling*/ true);
6645     Chain = Sel.getValue(1);
6646   } else {
6647     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6648   }
6649 
6650   bool Strict = Node->isStrictFPOpcode() ||
6651                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6652 
6653   if (Strict) {
6654     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6655     // signmask then offset (the result of which should be fully representable).
6656     // Sel = Src < 0x8000000000000000
6657     // FltOfs = select Sel, 0, 0x8000000000000000
6658     // IntOfs = select Sel, 0, 0x8000000000000000
6659     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6660 
6661     // TODO: Should any fast-math-flags be set for the FSUB?
6662     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6663                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6664     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6665     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6666                                    DAG.getConstant(0, dl, DstVT),
6667                                    DAG.getConstant(SignMask, dl, DstVT));
6668     SDValue SInt;
6669     if (Node->isStrictFPOpcode()) {
6670       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6671                                 { Chain, Src, FltOfs });
6672       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6673                          { Val.getValue(1), Val });
6674       Chain = SInt.getValue(1);
6675     } else {
6676       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6677       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6678     }
6679     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6680   } else {
6681     // Expand based on maximum range of FP_TO_SINT:
6682     // True = fp_to_sint(Src)
6683     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6684     // Result = select (Src < 0x8000000000000000), True, False
6685 
6686     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6687     // TODO: Should any fast-math-flags be set for the FSUB?
6688     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6689                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6690     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6691                         DAG.getConstant(SignMask, dl, DstVT));
6692     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6693     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6694   }
6695   return true;
6696 }
6697 
6698 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6699                                       SDValue &Chain,
6700                                       SelectionDAG &DAG) const {
6701   // This transform is not correct for converting 0 when rounding mode is set
6702   // to round toward negative infinity which will produce -0.0. So disable under
6703   // strictfp.
6704   if (Node->isStrictFPOpcode())
6705     return false;
6706 
6707   SDValue Src = Node->getOperand(0);
6708   EVT SrcVT = Src.getValueType();
6709   EVT DstVT = Node->getValueType(0);
6710 
6711   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6712     return false;
6713 
6714   // Only expand vector types if we have the appropriate vector bit operations.
6715   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6716                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6717                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6718                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6719                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6720     return false;
6721 
6722   SDLoc dl(SDValue(Node, 0));
6723   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6724 
6725   // Implementation of unsigned i64 to f64 following the algorithm in
6726   // __floatundidf in compiler_rt.  This implementation performs rounding
6727   // correctly in all rounding modes with the exception of converting 0
6728   // when rounding toward negative infinity. In that case the fsub will produce
6729   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6730   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6731   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6732       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6733   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6734   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6735   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6736 
6737   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6738   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6739   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6740   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6741   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6742   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6743   SDValue HiSub =
6744       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6745   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6746   return true;
6747 }
6748 
6749 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6750                                               SelectionDAG &DAG) const {
6751   SDLoc dl(Node);
6752   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6753     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6754   EVT VT = Node->getValueType(0);
6755 
6756   if (VT.isScalableVector())
6757     report_fatal_error(
6758         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6759 
6760   if (isOperationLegalOrCustom(NewOp, VT)) {
6761     SDValue Quiet0 = Node->getOperand(0);
6762     SDValue Quiet1 = Node->getOperand(1);
6763 
6764     if (!Node->getFlags().hasNoNaNs()) {
6765       // Insert canonicalizes if it's possible we need to quiet to get correct
6766       // sNaN behavior.
6767       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6768         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6769                              Node->getFlags());
6770       }
6771       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6772         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6773                              Node->getFlags());
6774       }
6775     }
6776 
6777     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6778   }
6779 
6780   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6781   // instead if there are no NaNs.
6782   if (Node->getFlags().hasNoNaNs()) {
6783     unsigned IEEE2018Op =
6784         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6785     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6786       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6787                          Node->getOperand(1), Node->getFlags());
6788     }
6789   }
6790 
6791   // If none of the above worked, but there are no NaNs, then expand to
6792   // a compare/select sequence.  This is required for correctness since
6793   // InstCombine might have canonicalized a fcmp+select sequence to a
6794   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6795   // expansion to libcall, we might introduce a link-time dependency
6796   // on libm into a file that originally did not have one.
6797   if (Node->getFlags().hasNoNaNs()) {
6798     ISD::CondCode Pred =
6799         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6800     SDValue Op1 = Node->getOperand(0);
6801     SDValue Op2 = Node->getOperand(1);
6802     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6803     // Copy FMF flags, but always set the no-signed-zeros flag
6804     // as this is implied by the FMINNUM/FMAXNUM semantics.
6805     SDNodeFlags Flags = Node->getFlags();
6806     Flags.setNoSignedZeros(true);
6807     SelCC->setFlags(Flags);
6808     return SelCC;
6809   }
6810 
6811   return SDValue();
6812 }
6813 
6814 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6815                                  SelectionDAG &DAG) const {
6816   SDLoc dl(Node);
6817   EVT VT = Node->getValueType(0);
6818   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6819   SDValue Op = Node->getOperand(0);
6820   unsigned Len = VT.getScalarSizeInBits();
6821   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6822 
6823   // TODO: Add support for irregular type lengths.
6824   if (!(Len <= 128 && Len % 8 == 0))
6825     return false;
6826 
6827   // Only expand vector types if we have the appropriate vector bit operations.
6828   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6829                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6830                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6831                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6832                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6833     return false;
6834 
6835   // This is the "best" algorithm from
6836   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6837   SDValue Mask55 =
6838       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6839   SDValue Mask33 =
6840       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6841   SDValue Mask0F =
6842       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6843   SDValue Mask01 =
6844       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6845 
6846   // v = v - ((v >> 1) & 0x55555555...)
6847   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6848                    DAG.getNode(ISD::AND, dl, VT,
6849                                DAG.getNode(ISD::SRL, dl, VT, Op,
6850                                            DAG.getConstant(1, dl, ShVT)),
6851                                Mask55));
6852   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6853   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6854                    DAG.getNode(ISD::AND, dl, VT,
6855                                DAG.getNode(ISD::SRL, dl, VT, Op,
6856                                            DAG.getConstant(2, dl, ShVT)),
6857                                Mask33));
6858   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6859   Op = DAG.getNode(ISD::AND, dl, VT,
6860                    DAG.getNode(ISD::ADD, dl, VT, Op,
6861                                DAG.getNode(ISD::SRL, dl, VT, Op,
6862                                            DAG.getConstant(4, dl, ShVT))),
6863                    Mask0F);
6864   // v = (v * 0x01010101...) >> (Len - 8)
6865   if (Len > 8)
6866     Op =
6867         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6868                     DAG.getConstant(Len - 8, dl, ShVT));
6869 
6870   Result = Op;
6871   return true;
6872 }
6873 
6874 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6875                                 SelectionDAG &DAG) const {
6876   SDLoc dl(Node);
6877   EVT VT = Node->getValueType(0);
6878   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6879   SDValue Op = Node->getOperand(0);
6880   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6881 
6882   // If the non-ZERO_UNDEF version is supported we can use that instead.
6883   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6884       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6885     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6886     return true;
6887   }
6888 
6889   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6890   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6891     EVT SetCCVT =
6892         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6893     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6894     SDValue Zero = DAG.getConstant(0, dl, VT);
6895     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6896     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6897                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6898     return true;
6899   }
6900 
6901   // Only expand vector types if we have the appropriate vector bit operations.
6902   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6903                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6904                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6905                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6906     return false;
6907 
6908   // for now, we do this:
6909   // x = x | (x >> 1);
6910   // x = x | (x >> 2);
6911   // ...
6912   // x = x | (x >>16);
6913   // x = x | (x >>32); // for 64-bit input
6914   // return popcount(~x);
6915   //
6916   // Ref: "Hacker's Delight" by Henry Warren
6917   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6918     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6919     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6920                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6921   }
6922   Op = DAG.getNOT(dl, Op, VT);
6923   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6924   return true;
6925 }
6926 
6927 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6928                                 SelectionDAG &DAG) const {
6929   SDLoc dl(Node);
6930   EVT VT = Node->getValueType(0);
6931   SDValue Op = Node->getOperand(0);
6932   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6933 
6934   // If the non-ZERO_UNDEF version is supported we can use that instead.
6935   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6936       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6937     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6938     return true;
6939   }
6940 
6941   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6942   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6943     EVT SetCCVT =
6944         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6945     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6946     SDValue Zero = DAG.getConstant(0, dl, VT);
6947     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6948     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6949                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6950     return true;
6951   }
6952 
6953   // Only expand vector types if we have the appropriate vector bit operations.
6954   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6955                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6956                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6957                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6958                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6959                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6960     return false;
6961 
6962   // for now, we use: { return popcount(~x & (x - 1)); }
6963   // unless the target has ctlz but not ctpop, in which case we use:
6964   // { return 32 - nlz(~x & (x-1)); }
6965   // Ref: "Hacker's Delight" by Henry Warren
6966   SDValue Tmp = DAG.getNode(
6967       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6968       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6969 
6970   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6971   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6972     Result =
6973         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6974                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6975     return true;
6976   }
6977 
6978   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6979   return true;
6980 }
6981 
6982 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6983                                SelectionDAG &DAG, bool IsNegative) const {
6984   SDLoc dl(N);
6985   EVT VT = N->getValueType(0);
6986   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6987   SDValue Op = N->getOperand(0);
6988 
6989   // abs(x) -> smax(x,sub(0,x))
6990   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
6991       isOperationLegal(ISD::SMAX, VT)) {
6992     SDValue Zero = DAG.getConstant(0, dl, VT);
6993     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
6994                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6995     return true;
6996   }
6997 
6998   // abs(x) -> umin(x,sub(0,x))
6999   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7000       isOperationLegal(ISD::UMIN, VT)) {
7001     SDValue Zero = DAG.getConstant(0, dl, VT);
7002     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7003                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7004     return true;
7005   }
7006 
7007   // 0 - abs(x) -> smin(x, sub(0,x))
7008   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7009       isOperationLegal(ISD::SMIN, VT)) {
7010     SDValue Zero = DAG.getConstant(0, dl, VT);
7011     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7012                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7013     return true;
7014   }
7015 
7016   // Only expand vector types if we have the appropriate vector operations.
7017   if (VT.isVector() &&
7018       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7019        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7020        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7021        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7022     return false;
7023 
7024   SDValue Shift =
7025       DAG.getNode(ISD::SRA, dl, VT, Op,
7026                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7027   if (!IsNegative) {
7028     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7029     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7030   } else {
7031     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7032     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7033     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7034   }
7035   return true;
7036 }
7037 
7038 std::pair<SDValue, SDValue>
7039 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7040                                     SelectionDAG &DAG) const {
7041   SDLoc SL(LD);
7042   SDValue Chain = LD->getChain();
7043   SDValue BasePTR = LD->getBasePtr();
7044   EVT SrcVT = LD->getMemoryVT();
7045   EVT DstVT = LD->getValueType(0);
7046   ISD::LoadExtType ExtType = LD->getExtensionType();
7047 
7048   if (SrcVT.isScalableVector())
7049     report_fatal_error("Cannot scalarize scalable vector loads");
7050 
7051   unsigned NumElem = SrcVT.getVectorNumElements();
7052 
7053   EVT SrcEltVT = SrcVT.getScalarType();
7054   EVT DstEltVT = DstVT.getScalarType();
7055 
7056   // A vector must always be stored in memory as-is, i.e. without any padding
7057   // between the elements, since various code depend on it, e.g. in the
7058   // handling of a bitcast of a vector type to int, which may be done with a
7059   // vector store followed by an integer load. A vector that does not have
7060   // elements that are byte-sized must therefore be stored as an integer
7061   // built out of the extracted vector elements.
7062   if (!SrcEltVT.isByteSized()) {
7063     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7064     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7065 
7066     unsigned NumSrcBits = SrcVT.getSizeInBits();
7067     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7068 
7069     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7070     SDValue SrcEltBitMask = DAG.getConstant(
7071         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7072 
7073     // Load the whole vector and avoid masking off the top bits as it makes
7074     // the codegen worse.
7075     SDValue Load =
7076         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7077                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7078                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7079 
7080     SmallVector<SDValue, 8> Vals;
7081     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7082       unsigned ShiftIntoIdx =
7083           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7084       SDValue ShiftAmount =
7085           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7086                                      LoadVT, SL, /*LegalTypes=*/false);
7087       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7088       SDValue Elt =
7089           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7090       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7091 
7092       if (ExtType != ISD::NON_EXTLOAD) {
7093         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7094         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7095       }
7096 
7097       Vals.push_back(Scalar);
7098     }
7099 
7100     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7101     return std::make_pair(Value, Load.getValue(1));
7102   }
7103 
7104   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7105   assert(SrcEltVT.isByteSized());
7106 
7107   SmallVector<SDValue, 8> Vals;
7108   SmallVector<SDValue, 8> LoadChains;
7109 
7110   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7111     SDValue ScalarLoad =
7112         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7113                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7114                        SrcEltVT, LD->getOriginalAlign(),
7115                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7116 
7117     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7118 
7119     Vals.push_back(ScalarLoad.getValue(0));
7120     LoadChains.push_back(ScalarLoad.getValue(1));
7121   }
7122 
7123   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7124   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7125 
7126   return std::make_pair(Value, NewChain);
7127 }
7128 
7129 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7130                                              SelectionDAG &DAG) const {
7131   SDLoc SL(ST);
7132 
7133   SDValue Chain = ST->getChain();
7134   SDValue BasePtr = ST->getBasePtr();
7135   SDValue Value = ST->getValue();
7136   EVT StVT = ST->getMemoryVT();
7137 
7138   if (StVT.isScalableVector())
7139     report_fatal_error("Cannot scalarize scalable vector stores");
7140 
7141   // The type of the data we want to save
7142   EVT RegVT = Value.getValueType();
7143   EVT RegSclVT = RegVT.getScalarType();
7144 
7145   // The type of data as saved in memory.
7146   EVT MemSclVT = StVT.getScalarType();
7147 
7148   unsigned NumElem = StVT.getVectorNumElements();
7149 
7150   // A vector must always be stored in memory as-is, i.e. without any padding
7151   // between the elements, since various code depend on it, e.g. in the
7152   // handling of a bitcast of a vector type to int, which may be done with a
7153   // vector store followed by an integer load. A vector that does not have
7154   // elements that are byte-sized must therefore be stored as an integer
7155   // built out of the extracted vector elements.
7156   if (!MemSclVT.isByteSized()) {
7157     unsigned NumBits = StVT.getSizeInBits();
7158     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7159 
7160     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7161 
7162     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7163       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7164                                 DAG.getVectorIdxConstant(Idx, SL));
7165       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7166       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7167       unsigned ShiftIntoIdx =
7168           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7169       SDValue ShiftAmount =
7170           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7171       SDValue ShiftedElt =
7172           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7173       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7174     }
7175 
7176     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7177                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7178                         ST->getAAInfo());
7179   }
7180 
7181   // Store Stride in bytes
7182   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7183   assert(Stride && "Zero stride!");
7184   // Extract each of the elements from the original vector and save them into
7185   // memory individually.
7186   SmallVector<SDValue, 8> Stores;
7187   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7188     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7189                               DAG.getVectorIdxConstant(Idx, SL));
7190 
7191     SDValue Ptr =
7192         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7193 
7194     // This scalar TruncStore may be illegal, but we legalize it later.
7195     SDValue Store = DAG.getTruncStore(
7196         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7197         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7198         ST->getAAInfo());
7199 
7200     Stores.push_back(Store);
7201   }
7202 
7203   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7204 }
7205 
7206 std::pair<SDValue, SDValue>
7207 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7208   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7209          "unaligned indexed loads not implemented!");
7210   SDValue Chain = LD->getChain();
7211   SDValue Ptr = LD->getBasePtr();
7212   EVT VT = LD->getValueType(0);
7213   EVT LoadedVT = LD->getMemoryVT();
7214   SDLoc dl(LD);
7215   auto &MF = DAG.getMachineFunction();
7216 
7217   if (VT.isFloatingPoint() || VT.isVector()) {
7218     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7219     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7220       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7221           LoadedVT.isVector()) {
7222         // Scalarize the load and let the individual components be handled.
7223         return scalarizeVectorLoad(LD, DAG);
7224       }
7225 
7226       // Expand to a (misaligned) integer load of the same size,
7227       // then bitconvert to floating point or vector.
7228       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7229                                     LD->getMemOperand());
7230       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7231       if (LoadedVT != VT)
7232         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7233                              ISD::ANY_EXTEND, dl, VT, Result);
7234 
7235       return std::make_pair(Result, newLoad.getValue(1));
7236     }
7237 
7238     // Copy the value to a (aligned) stack slot using (unaligned) integer
7239     // loads and stores, then do a (aligned) load from the stack slot.
7240     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7241     unsigned LoadedBytes = LoadedVT.getStoreSize();
7242     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7243     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7244 
7245     // Make sure the stack slot is also aligned for the register type.
7246     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7247     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7248     SmallVector<SDValue, 8> Stores;
7249     SDValue StackPtr = StackBase;
7250     unsigned Offset = 0;
7251 
7252     EVT PtrVT = Ptr.getValueType();
7253     EVT StackPtrVT = StackPtr.getValueType();
7254 
7255     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7256     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7257 
7258     // Do all but one copies using the full register width.
7259     for (unsigned i = 1; i < NumRegs; i++) {
7260       // Load one integer register's worth from the original location.
7261       SDValue Load = DAG.getLoad(
7262           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7263           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7264           LD->getAAInfo());
7265       // Follow the load with a store to the stack slot.  Remember the store.
7266       Stores.push_back(DAG.getStore(
7267           Load.getValue(1), dl, Load, StackPtr,
7268           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7269       // Increment the pointers.
7270       Offset += RegBytes;
7271 
7272       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7273       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7274     }
7275 
7276     // The last copy may be partial.  Do an extending load.
7277     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7278                                   8 * (LoadedBytes - Offset));
7279     SDValue Load =
7280         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7281                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7282                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7283                        LD->getAAInfo());
7284     // Follow the load with a store to the stack slot.  Remember the store.
7285     // On big-endian machines this requires a truncating store to ensure
7286     // that the bits end up in the right place.
7287     Stores.push_back(DAG.getTruncStore(
7288         Load.getValue(1), dl, Load, StackPtr,
7289         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7290 
7291     // The order of the stores doesn't matter - say it with a TokenFactor.
7292     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7293 
7294     // Finally, perform the original load only redirected to the stack slot.
7295     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7296                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7297                           LoadedVT);
7298 
7299     // Callers expect a MERGE_VALUES node.
7300     return std::make_pair(Load, TF);
7301   }
7302 
7303   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7304          "Unaligned load of unsupported type.");
7305 
7306   // Compute the new VT that is half the size of the old one.  This is an
7307   // integer MVT.
7308   unsigned NumBits = LoadedVT.getSizeInBits();
7309   EVT NewLoadedVT;
7310   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7311   NumBits >>= 1;
7312 
7313   Align Alignment = LD->getOriginalAlign();
7314   unsigned IncrementSize = NumBits / 8;
7315   ISD::LoadExtType HiExtType = LD->getExtensionType();
7316 
7317   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7318   if (HiExtType == ISD::NON_EXTLOAD)
7319     HiExtType = ISD::ZEXTLOAD;
7320 
7321   // Load the value in two parts
7322   SDValue Lo, Hi;
7323   if (DAG.getDataLayout().isLittleEndian()) {
7324     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7325                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7326                         LD->getAAInfo());
7327 
7328     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7329     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7330                         LD->getPointerInfo().getWithOffset(IncrementSize),
7331                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7332                         LD->getAAInfo());
7333   } else {
7334     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7335                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7336                         LD->getAAInfo());
7337 
7338     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7339     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7340                         LD->getPointerInfo().getWithOffset(IncrementSize),
7341                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7342                         LD->getAAInfo());
7343   }
7344 
7345   // aggregate the two parts
7346   SDValue ShiftAmount =
7347       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7348                                                     DAG.getDataLayout()));
7349   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7350   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7351 
7352   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7353                              Hi.getValue(1));
7354 
7355   return std::make_pair(Result, TF);
7356 }
7357 
7358 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7359                                              SelectionDAG &DAG) const {
7360   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7361          "unaligned indexed stores not implemented!");
7362   SDValue Chain = ST->getChain();
7363   SDValue Ptr = ST->getBasePtr();
7364   SDValue Val = ST->getValue();
7365   EVT VT = Val.getValueType();
7366   Align Alignment = ST->getOriginalAlign();
7367   auto &MF = DAG.getMachineFunction();
7368   EVT StoreMemVT = ST->getMemoryVT();
7369 
7370   SDLoc dl(ST);
7371   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7372     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7373     if (isTypeLegal(intVT)) {
7374       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7375           StoreMemVT.isVector()) {
7376         // Scalarize the store and let the individual components be handled.
7377         SDValue Result = scalarizeVectorStore(ST, DAG);
7378         return Result;
7379       }
7380       // Expand to a bitconvert of the value to the integer type of the
7381       // same size, then a (misaligned) int store.
7382       // FIXME: Does not handle truncating floating point stores!
7383       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7384       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7385                             Alignment, ST->getMemOperand()->getFlags());
7386       return Result;
7387     }
7388     // Do a (aligned) store to a stack slot, then copy from the stack slot
7389     // to the final destination using (unaligned) integer loads and stores.
7390     MVT RegVT = getRegisterType(
7391         *DAG.getContext(),
7392         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7393     EVT PtrVT = Ptr.getValueType();
7394     unsigned StoredBytes = StoreMemVT.getStoreSize();
7395     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7396     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7397 
7398     // Make sure the stack slot is also aligned for the register type.
7399     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7400     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7401 
7402     // Perform the original store, only redirected to the stack slot.
7403     SDValue Store = DAG.getTruncStore(
7404         Chain, dl, Val, StackPtr,
7405         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7406 
7407     EVT StackPtrVT = StackPtr.getValueType();
7408 
7409     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7410     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7411     SmallVector<SDValue, 8> Stores;
7412     unsigned Offset = 0;
7413 
7414     // Do all but one copies using the full register width.
7415     for (unsigned i = 1; i < NumRegs; i++) {
7416       // Load one integer register's worth from the stack slot.
7417       SDValue Load = DAG.getLoad(
7418           RegVT, dl, Store, StackPtr,
7419           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7420       // Store it to the final location.  Remember the store.
7421       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7422                                     ST->getPointerInfo().getWithOffset(Offset),
7423                                     ST->getOriginalAlign(),
7424                                     ST->getMemOperand()->getFlags()));
7425       // Increment the pointers.
7426       Offset += RegBytes;
7427       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7428       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7429     }
7430 
7431     // The last store may be partial.  Do a truncating store.  On big-endian
7432     // machines this requires an extending load from the stack slot to ensure
7433     // that the bits are in the right place.
7434     EVT LoadMemVT =
7435         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7436 
7437     // Load from the stack slot.
7438     SDValue Load = DAG.getExtLoad(
7439         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7440         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7441 
7442     Stores.push_back(
7443         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7444                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7445                           ST->getOriginalAlign(),
7446                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7447     // The order of the stores doesn't matter - say it with a TokenFactor.
7448     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7449     return Result;
7450   }
7451 
7452   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7453          "Unaligned store of unknown type.");
7454   // Get the half-size VT
7455   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7456   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7457   unsigned IncrementSize = NumBits / 8;
7458 
7459   // Divide the stored value in two parts.
7460   SDValue ShiftAmount = DAG.getConstant(
7461       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7462   SDValue Lo = Val;
7463   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7464 
7465   // Store the two parts
7466   SDValue Store1, Store2;
7467   Store1 = DAG.getTruncStore(Chain, dl,
7468                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7469                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7470                              ST->getMemOperand()->getFlags());
7471 
7472   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7473   Store2 = DAG.getTruncStore(
7474       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7475       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7476       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7477 
7478   SDValue Result =
7479       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7480   return Result;
7481 }
7482 
7483 SDValue
7484 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7485                                        const SDLoc &DL, EVT DataVT,
7486                                        SelectionDAG &DAG,
7487                                        bool IsCompressedMemory) const {
7488   SDValue Increment;
7489   EVT AddrVT = Addr.getValueType();
7490   EVT MaskVT = Mask.getValueType();
7491   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7492          "Incompatible types of Data and Mask");
7493   if (IsCompressedMemory) {
7494     if (DataVT.isScalableVector())
7495       report_fatal_error(
7496           "Cannot currently handle compressed memory with scalable vectors");
7497     // Incrementing the pointer according to number of '1's in the mask.
7498     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7499     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7500     if (MaskIntVT.getSizeInBits() < 32) {
7501       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7502       MaskIntVT = MVT::i32;
7503     }
7504 
7505     // Count '1's with POPCNT.
7506     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7507     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7508     // Scale is an element size in bytes.
7509     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7510                                     AddrVT);
7511     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7512   } else if (DataVT.isScalableVector()) {
7513     Increment = DAG.getVScale(DL, AddrVT,
7514                               APInt(AddrVT.getFixedSizeInBits(),
7515                                     DataVT.getStoreSize().getKnownMinSize()));
7516   } else
7517     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7518 
7519   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7520 }
7521 
7522 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7523                                        SDValue Idx,
7524                                        EVT VecVT,
7525                                        const SDLoc &dl) {
7526   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7527     return Idx;
7528 
7529   EVT IdxVT = Idx.getValueType();
7530   unsigned NElts = VecVT.getVectorMinNumElements();
7531   if (VecVT.isScalableVector()) {
7532     SDValue VS = DAG.getVScale(dl, IdxVT,
7533                                APInt(IdxVT.getFixedSizeInBits(),
7534                                      NElts));
7535     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7536                               DAG.getConstant(1, dl, IdxVT));
7537 
7538     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7539   } else {
7540     if (isPowerOf2_32(NElts)) {
7541       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7542                                        Log2_32(NElts));
7543       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7544                          DAG.getConstant(Imm, dl, IdxVT));
7545     }
7546   }
7547 
7548   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7549                      DAG.getConstant(NElts - 1, dl, IdxVT));
7550 }
7551 
7552 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7553                                                 SDValue VecPtr, EVT VecVT,
7554                                                 SDValue Index) const {
7555   SDLoc dl(Index);
7556   // Make sure the index type is big enough to compute in.
7557   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7558 
7559   EVT EltVT = VecVT.getVectorElementType();
7560 
7561   // Calculate the element offset and add it to the pointer.
7562   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7563   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7564          "Converting bits to bytes lost precision");
7565 
7566   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7567 
7568   EVT IdxVT = Index.getValueType();
7569 
7570   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7571                       DAG.getConstant(EltSize, dl, IdxVT));
7572   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7573 }
7574 
7575 //===----------------------------------------------------------------------===//
7576 // Implementation of Emulated TLS Model
7577 //===----------------------------------------------------------------------===//
7578 
7579 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7580                                                 SelectionDAG &DAG) const {
7581   // Access to address of TLS varialbe xyz is lowered to a function call:
7582   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7583   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7584   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7585   SDLoc dl(GA);
7586 
7587   ArgListTy Args;
7588   ArgListEntry Entry;
7589   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7590   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7591   StringRef EmuTlsVarName(NameString);
7592   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7593   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7594   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7595   Entry.Ty = VoidPtrType;
7596   Args.push_back(Entry);
7597 
7598   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7599 
7600   TargetLowering::CallLoweringInfo CLI(DAG);
7601   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7602   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7603   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7604 
7605   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7606   // At last for X86 targets, maybe good for other targets too?
7607   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7608   MFI.setAdjustsStack(true); // Is this only for X86 target?
7609   MFI.setHasCalls(true);
7610 
7611   assert((GA->getOffset() == 0) &&
7612          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7613   return CallResult.first;
7614 }
7615 
7616 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7617                                                 SelectionDAG &DAG) const {
7618   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7619   if (!isCtlzFast())
7620     return SDValue();
7621   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7622   SDLoc dl(Op);
7623   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7624     if (C->isNullValue() && CC == ISD::SETEQ) {
7625       EVT VT = Op.getOperand(0).getValueType();
7626       SDValue Zext = Op.getOperand(0);
7627       if (VT.bitsLT(MVT::i32)) {
7628         VT = MVT::i32;
7629         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7630       }
7631       unsigned Log2b = Log2_32(VT.getSizeInBits());
7632       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7633       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7634                                 DAG.getConstant(Log2b, dl, MVT::i32));
7635       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7636     }
7637   }
7638   return SDValue();
7639 }
7640 
7641 // Convert redundant addressing modes (e.g. scaling is redundant
7642 // when accessing bytes).
7643 ISD::MemIndexType
7644 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7645                                       SDValue Offsets) const {
7646   bool IsScaledIndex =
7647       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7648   bool IsSignedIndex =
7649       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7650 
7651   // Scaling is unimportant for bytes, canonicalize to unscaled.
7652   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7653     IsScaledIndex = false;
7654     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7655   }
7656 
7657   return IndexType;
7658 }
7659 
7660 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7661   SDValue Op0 = Node->getOperand(0);
7662   SDValue Op1 = Node->getOperand(1);
7663   EVT VT = Op0.getValueType();
7664   unsigned Opcode = Node->getOpcode();
7665   SDLoc DL(Node);
7666 
7667   // umin(x,y) -> sub(x,usubsat(x,y))
7668   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7669       isOperationLegal(ISD::USUBSAT, VT)) {
7670     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7671                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7672   }
7673 
7674   // umax(x,y) -> add(x,usubsat(y,x))
7675   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7676       isOperationLegal(ISD::USUBSAT, VT)) {
7677     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7678                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7679   }
7680 
7681   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7682   ISD::CondCode CC;
7683   switch (Opcode) {
7684   default: llvm_unreachable("How did we get here?");
7685   case ISD::SMAX: CC = ISD::SETGT; break;
7686   case ISD::SMIN: CC = ISD::SETLT; break;
7687   case ISD::UMAX: CC = ISD::SETUGT; break;
7688   case ISD::UMIN: CC = ISD::SETULT; break;
7689   }
7690 
7691   // FIXME: Should really try to split the vector in case it's legal on a
7692   // subvector.
7693   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7694     return DAG.UnrollVectorOp(Node);
7695 
7696   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7697   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7698 }
7699 
7700 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7701   unsigned Opcode = Node->getOpcode();
7702   SDValue LHS = Node->getOperand(0);
7703   SDValue RHS = Node->getOperand(1);
7704   EVT VT = LHS.getValueType();
7705   SDLoc dl(Node);
7706 
7707   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7708   assert(VT.isInteger() && "Expected operands to be integers");
7709 
7710   // usub.sat(a, b) -> umax(a, b) - b
7711   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
7712     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7713     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7714   }
7715 
7716   // uadd.sat(a, b) -> umin(a, ~b) + b
7717   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
7718     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7719     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7720     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7721   }
7722 
7723   unsigned OverflowOp;
7724   switch (Opcode) {
7725   case ISD::SADDSAT:
7726     OverflowOp = ISD::SADDO;
7727     break;
7728   case ISD::UADDSAT:
7729     OverflowOp = ISD::UADDO;
7730     break;
7731   case ISD::SSUBSAT:
7732     OverflowOp = ISD::SSUBO;
7733     break;
7734   case ISD::USUBSAT:
7735     OverflowOp = ISD::USUBO;
7736     break;
7737   default:
7738     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7739                      "addition or subtraction node.");
7740   }
7741 
7742   // FIXME: Should really try to split the vector in case it's legal on a
7743   // subvector.
7744   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7745     return DAG.UnrollVectorOp(Node);
7746 
7747   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7748   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7749   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7750                                LHS, RHS);
7751   SDValue SumDiff = Result.getValue(0);
7752   SDValue Overflow = Result.getValue(1);
7753   SDValue Zero = DAG.getConstant(0, dl, VT);
7754   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7755 
7756   if (Opcode == ISD::UADDSAT) {
7757     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7758       // (LHS + RHS) | OverflowMask
7759       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7760       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7761     }
7762     // Overflow ? 0xffff.... : (LHS + RHS)
7763     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7764   } else if (Opcode == ISD::USUBSAT) {
7765     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7766       // (LHS - RHS) & ~OverflowMask
7767       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7768       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7769       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7770     }
7771     // Overflow ? 0 : (LHS - RHS)
7772     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7773   } else {
7774     // SatMax -> Overflow && SumDiff < 0
7775     // SatMin -> Overflow && SumDiff >= 0
7776     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7777     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7778     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7779     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7780     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7781     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7782     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7783   }
7784 }
7785 
7786 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7787   unsigned Opcode = Node->getOpcode();
7788   bool IsSigned = Opcode == ISD::SSHLSAT;
7789   SDValue LHS = Node->getOperand(0);
7790   SDValue RHS = Node->getOperand(1);
7791   EVT VT = LHS.getValueType();
7792   SDLoc dl(Node);
7793 
7794   assert((Node->getOpcode() == ISD::SSHLSAT ||
7795           Node->getOpcode() == ISD::USHLSAT) &&
7796           "Expected a SHLSAT opcode");
7797   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7798   assert(VT.isInteger() && "Expected operands to be integers");
7799 
7800   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7801 
7802   unsigned BW = VT.getScalarSizeInBits();
7803   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7804   SDValue Orig =
7805       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7806 
7807   SDValue SatVal;
7808   if (IsSigned) {
7809     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
7810     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
7811     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
7812                              SatMin, SatMax, ISD::SETLT);
7813   } else {
7814     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
7815   }
7816   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
7817 
7818   return Result;
7819 }
7820 
7821 SDValue
7822 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7823   assert((Node->getOpcode() == ISD::SMULFIX ||
7824           Node->getOpcode() == ISD::UMULFIX ||
7825           Node->getOpcode() == ISD::SMULFIXSAT ||
7826           Node->getOpcode() == ISD::UMULFIXSAT) &&
7827          "Expected a fixed point multiplication opcode");
7828 
7829   SDLoc dl(Node);
7830   SDValue LHS = Node->getOperand(0);
7831   SDValue RHS = Node->getOperand(1);
7832   EVT VT = LHS.getValueType();
7833   unsigned Scale = Node->getConstantOperandVal(2);
7834   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7835                      Node->getOpcode() == ISD::UMULFIXSAT);
7836   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7837                  Node->getOpcode() == ISD::SMULFIXSAT);
7838   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7839   unsigned VTSize = VT.getScalarSizeInBits();
7840 
7841   if (!Scale) {
7842     // [us]mul.fix(a, b, 0) -> mul(a, b)
7843     if (!Saturating) {
7844       if (isOperationLegalOrCustom(ISD::MUL, VT))
7845         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7846     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7847       SDValue Result =
7848           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7849       SDValue Product = Result.getValue(0);
7850       SDValue Overflow = Result.getValue(1);
7851       SDValue Zero = DAG.getConstant(0, dl, VT);
7852 
7853       APInt MinVal = APInt::getSignedMinValue(VTSize);
7854       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7855       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7856       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7857       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7858       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7859       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7860     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7861       SDValue Result =
7862           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7863       SDValue Product = Result.getValue(0);
7864       SDValue Overflow = Result.getValue(1);
7865 
7866       APInt MaxVal = APInt::getMaxValue(VTSize);
7867       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7868       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7869     }
7870   }
7871 
7872   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7873          "Expected scale to be less than the number of bits if signed or at "
7874          "most the number of bits if unsigned.");
7875   assert(LHS.getValueType() == RHS.getValueType() &&
7876          "Expected both operands to be the same type");
7877 
7878   // Get the upper and lower bits of the result.
7879   SDValue Lo, Hi;
7880   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7881   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7882   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7883     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7884     Lo = Result.getValue(0);
7885     Hi = Result.getValue(1);
7886   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7887     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7888     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7889   } else if (VT.isVector()) {
7890     return SDValue();
7891   } else {
7892     report_fatal_error("Unable to expand fixed point multiplication.");
7893   }
7894 
7895   if (Scale == VTSize)
7896     // Result is just the top half since we'd be shifting by the width of the
7897     // operand. Overflow impossible so this works for both UMULFIX and
7898     // UMULFIXSAT.
7899     return Hi;
7900 
7901   // The result will need to be shifted right by the scale since both operands
7902   // are scaled. The result is given to us in 2 halves, so we only want part of
7903   // both in the result.
7904   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7905   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7906                                DAG.getConstant(Scale, dl, ShiftTy));
7907   if (!Saturating)
7908     return Result;
7909 
7910   if (!Signed) {
7911     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7912     // widened multiplication) aren't all zeroes.
7913 
7914     // Saturate to max if ((Hi >> Scale) != 0),
7915     // which is the same as if (Hi > ((1 << Scale) - 1))
7916     APInt MaxVal = APInt::getMaxValue(VTSize);
7917     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7918                                       dl, VT);
7919     Result = DAG.getSelectCC(dl, Hi, LowMask,
7920                              DAG.getConstant(MaxVal, dl, VT), Result,
7921                              ISD::SETUGT);
7922 
7923     return Result;
7924   }
7925 
7926   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7927   // widened multiplication) aren't all ones or all zeroes.
7928 
7929   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7930   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7931 
7932   if (Scale == 0) {
7933     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7934                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7935     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7936     // Saturated to SatMin if wide product is negative, and SatMax if wide
7937     // product is positive ...
7938     SDValue Zero = DAG.getConstant(0, dl, VT);
7939     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7940                                                ISD::SETLT);
7941     // ... but only if we overflowed.
7942     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7943   }
7944 
7945   //  We handled Scale==0 above so all the bits to examine is in Hi.
7946 
7947   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7948   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7949   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7950                                     dl, VT);
7951   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7952   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7953   // which is the same as if (HI < (-1 << (Scale - 1))
7954   SDValue HighMask =
7955       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7956                       dl, VT);
7957   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7958   return Result;
7959 }
7960 
7961 SDValue
7962 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7963                                     SDValue LHS, SDValue RHS,
7964                                     unsigned Scale, SelectionDAG &DAG) const {
7965   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7966           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7967          "Expected a fixed point division opcode");
7968 
7969   EVT VT = LHS.getValueType();
7970   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7971   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7972   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7973 
7974   // If there is enough room in the type to upscale the LHS or downscale the
7975   // RHS before the division, we can perform it in this type without having to
7976   // resize. For signed operations, the LHS headroom is the number of
7977   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7978   // The headroom for the RHS is the number of trailing zeroes.
7979   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7980                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7981   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7982 
7983   // For signed saturating operations, we need to be able to detect true integer
7984   // division overflow; that is, when you have MIN / -EPS. However, this
7985   // is undefined behavior and if we emit divisions that could take such
7986   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7987   // example).
7988   // Avoid this by requiring an extra bit so that we never get this case.
7989   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7990   // signed saturating division, we need to emit a whopping 32-bit division.
7991   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7992     return SDValue();
7993 
7994   unsigned LHSShift = std::min(LHSLead, Scale);
7995   unsigned RHSShift = Scale - LHSShift;
7996 
7997   // At this point, we know that if we shift the LHS up by LHSShift and the
7998   // RHS down by RHSShift, we can emit a regular division with a final scaling
7999   // factor of Scale.
8000 
8001   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8002   if (LHSShift)
8003     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8004                       DAG.getConstant(LHSShift, dl, ShiftTy));
8005   if (RHSShift)
8006     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8007                       DAG.getConstant(RHSShift, dl, ShiftTy));
8008 
8009   SDValue Quot;
8010   if (Signed) {
8011     // For signed operations, if the resulting quotient is negative and the
8012     // remainder is nonzero, subtract 1 from the quotient to round towards
8013     // negative infinity.
8014     SDValue Rem;
8015     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8016     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8017     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8018     if (isTypeLegal(VT) &&
8019         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8020       Quot = DAG.getNode(ISD::SDIVREM, dl,
8021                          DAG.getVTList(VT, VT),
8022                          LHS, RHS);
8023       Rem = Quot.getValue(1);
8024       Quot = Quot.getValue(0);
8025     } else {
8026       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8027                          LHS, RHS);
8028       Rem = DAG.getNode(ISD::SREM, dl, VT,
8029                         LHS, RHS);
8030     }
8031     SDValue Zero = DAG.getConstant(0, dl, VT);
8032     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8033     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8034     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8035     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8036     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8037                                DAG.getConstant(1, dl, VT));
8038     Quot = DAG.getSelect(dl, VT,
8039                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8040                          Sub1, Quot);
8041   } else
8042     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8043                        LHS, RHS);
8044 
8045   return Quot;
8046 }
8047 
8048 void TargetLowering::expandUADDSUBO(
8049     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8050   SDLoc dl(Node);
8051   SDValue LHS = Node->getOperand(0);
8052   SDValue RHS = Node->getOperand(1);
8053   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8054 
8055   // If ADD/SUBCARRY is legal, use that instead.
8056   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8057   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8058     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8059     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8060                                     { LHS, RHS, CarryIn });
8061     Result = SDValue(NodeCarry.getNode(), 0);
8062     Overflow = SDValue(NodeCarry.getNode(), 1);
8063     return;
8064   }
8065 
8066   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8067                             LHS.getValueType(), LHS, RHS);
8068 
8069   EVT ResultType = Node->getValueType(1);
8070   EVT SetCCType = getSetCCResultType(
8071       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8072   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8073   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8074   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8075 }
8076 
8077 void TargetLowering::expandSADDSUBO(
8078     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8079   SDLoc dl(Node);
8080   SDValue LHS = Node->getOperand(0);
8081   SDValue RHS = Node->getOperand(1);
8082   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8083 
8084   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8085                             LHS.getValueType(), LHS, RHS);
8086 
8087   EVT ResultType = Node->getValueType(1);
8088   EVT OType = getSetCCResultType(
8089       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8090 
8091   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8092   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8093   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8094     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8095     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8096     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8097     return;
8098   }
8099 
8100   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8101 
8102   // For an addition, the result should be less than one of the operands (LHS)
8103   // if and only if the other operand (RHS) is negative, otherwise there will
8104   // be overflow.
8105   // For a subtraction, the result should be less than one of the operands
8106   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8107   // otherwise there will be overflow.
8108   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8109   SDValue ConditionRHS =
8110       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8111 
8112   Overflow = DAG.getBoolExtOrTrunc(
8113       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8114       ResultType, ResultType);
8115 }
8116 
8117 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8118                                 SDValue &Overflow, SelectionDAG &DAG) const {
8119   SDLoc dl(Node);
8120   EVT VT = Node->getValueType(0);
8121   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8122   SDValue LHS = Node->getOperand(0);
8123   SDValue RHS = Node->getOperand(1);
8124   bool isSigned = Node->getOpcode() == ISD::SMULO;
8125 
8126   // For power-of-two multiplications we can use a simpler shift expansion.
8127   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8128     const APInt &C = RHSC->getAPIntValue();
8129     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8130     if (C.isPowerOf2()) {
8131       // smulo(x, signed_min) is same as umulo(x, signed_min).
8132       bool UseArithShift = isSigned && !C.isMinSignedValue();
8133       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8134       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8135       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8136       Overflow = DAG.getSetCC(dl, SetCCVT,
8137           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8138                       dl, VT, Result, ShiftAmt),
8139           LHS, ISD::SETNE);
8140       return true;
8141     }
8142   }
8143 
8144   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8145   if (VT.isVector())
8146     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8147                               VT.getVectorNumElements());
8148 
8149   SDValue BottomHalf;
8150   SDValue TopHalf;
8151   static const unsigned Ops[2][3] =
8152       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8153         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8154   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8155     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8156     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8157   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8158     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8159                              RHS);
8160     TopHalf = BottomHalf.getValue(1);
8161   } else if (isTypeLegal(WideVT)) {
8162     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8163     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8164     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8165     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8166     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8167         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8168     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8169                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8170   } else {
8171     if (VT.isVector())
8172       return false;
8173 
8174     // We can fall back to a libcall with an illegal type for the MUL if we
8175     // have a libcall big enough.
8176     // Also, we can fall back to a division in some cases, but that's a big
8177     // performance hit in the general case.
8178     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8179     if (WideVT == MVT::i16)
8180       LC = RTLIB::MUL_I16;
8181     else if (WideVT == MVT::i32)
8182       LC = RTLIB::MUL_I32;
8183     else if (WideVT == MVT::i64)
8184       LC = RTLIB::MUL_I64;
8185     else if (WideVT == MVT::i128)
8186       LC = RTLIB::MUL_I128;
8187     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8188 
8189     SDValue HiLHS;
8190     SDValue HiRHS;
8191     if (isSigned) {
8192       // The high part is obtained by SRA'ing all but one of the bits of low
8193       // part.
8194       unsigned LoSize = VT.getFixedSizeInBits();
8195       HiLHS =
8196           DAG.getNode(ISD::SRA, dl, VT, LHS,
8197                       DAG.getConstant(LoSize - 1, dl,
8198                                       getPointerTy(DAG.getDataLayout())));
8199       HiRHS =
8200           DAG.getNode(ISD::SRA, dl, VT, RHS,
8201                       DAG.getConstant(LoSize - 1, dl,
8202                                       getPointerTy(DAG.getDataLayout())));
8203     } else {
8204         HiLHS = DAG.getConstant(0, dl, VT);
8205         HiRHS = DAG.getConstant(0, dl, VT);
8206     }
8207 
8208     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8209     // pre-lowered to the correct types. This all depends upon WideVT not
8210     // being a legal type for the architecture and thus has to be split to
8211     // two arguments.
8212     SDValue Ret;
8213     TargetLowering::MakeLibCallOptions CallOptions;
8214     CallOptions.setSExt(isSigned);
8215     CallOptions.setIsPostTypeLegalization(true);
8216     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8217       // Halves of WideVT are packed into registers in different order
8218       // depending on platform endianness. This is usually handled by
8219       // the C calling convention, but we can't defer to it in
8220       // the legalizer.
8221       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8222       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8223     } else {
8224       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8225       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8226     }
8227     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8228            "Ret value is a collection of constituent nodes holding result.");
8229     if (DAG.getDataLayout().isLittleEndian()) {
8230       // Same as above.
8231       BottomHalf = Ret.getOperand(0);
8232       TopHalf = Ret.getOperand(1);
8233     } else {
8234       BottomHalf = Ret.getOperand(1);
8235       TopHalf = Ret.getOperand(0);
8236     }
8237   }
8238 
8239   Result = BottomHalf;
8240   if (isSigned) {
8241     SDValue ShiftAmt = DAG.getConstant(
8242         VT.getScalarSizeInBits() - 1, dl,
8243         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8244     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8245     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8246   } else {
8247     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8248                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8249   }
8250 
8251   // Truncate the result if SetCC returns a larger type than needed.
8252   EVT RType = Node->getValueType(1);
8253   if (RType.bitsLT(Overflow.getValueType()))
8254     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8255 
8256   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8257          "Unexpected result type for S/UMULO legalization");
8258   return true;
8259 }
8260 
8261 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8262   SDLoc dl(Node);
8263   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8264   SDValue Op = Node->getOperand(0);
8265   EVT VT = Op.getValueType();
8266 
8267   if (VT.isScalableVector())
8268     report_fatal_error(
8269         "Expanding reductions for scalable vectors is undefined.");
8270 
8271   // Try to use a shuffle reduction for power of two vectors.
8272   if (VT.isPow2VectorType()) {
8273     while (VT.getVectorNumElements() > 1) {
8274       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8275       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8276         break;
8277 
8278       SDValue Lo, Hi;
8279       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8280       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8281       VT = HalfVT;
8282     }
8283   }
8284 
8285   EVT EltVT = VT.getVectorElementType();
8286   unsigned NumElts = VT.getVectorNumElements();
8287 
8288   SmallVector<SDValue, 8> Ops;
8289   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8290 
8291   SDValue Res = Ops[0];
8292   for (unsigned i = 1; i < NumElts; i++)
8293     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8294 
8295   // Result type may be wider than element type.
8296   if (EltVT != Node->getValueType(0))
8297     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8298   return Res;
8299 }
8300 
8301 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8302   SDLoc dl(Node);
8303   SDValue AccOp = Node->getOperand(0);
8304   SDValue VecOp = Node->getOperand(1);
8305   SDNodeFlags Flags = Node->getFlags();
8306 
8307   EVT VT = VecOp.getValueType();
8308   EVT EltVT = VT.getVectorElementType();
8309 
8310   if (VT.isScalableVector())
8311     report_fatal_error(
8312         "Expanding reductions for scalable vectors is undefined.");
8313 
8314   unsigned NumElts = VT.getVectorNumElements();
8315 
8316   SmallVector<SDValue, 8> Ops;
8317   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8318 
8319   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8320 
8321   SDValue Res = AccOp;
8322   for (unsigned i = 0; i < NumElts; i++)
8323     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8324 
8325   return Res;
8326 }
8327 
8328 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8329                                SelectionDAG &DAG) const {
8330   EVT VT = Node->getValueType(0);
8331   SDLoc dl(Node);
8332   bool isSigned = Node->getOpcode() == ISD::SREM;
8333   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8334   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8335   SDValue Dividend = Node->getOperand(0);
8336   SDValue Divisor = Node->getOperand(1);
8337   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8338     SDVTList VTs = DAG.getVTList(VT, VT);
8339     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8340     return true;
8341   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
8342     // X % Y -> X-X/Y*Y
8343     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8344     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8345     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8346     return true;
8347   }
8348   return false;
8349 }
8350 
8351 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8352                                             SelectionDAG &DAG) const {
8353   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8354   SDLoc dl(SDValue(Node, 0));
8355   SDValue Src = Node->getOperand(0);
8356 
8357   // DstVT is the result type, while SatVT is the size to which we saturate
8358   EVT SrcVT = Src.getValueType();
8359   EVT DstVT = Node->getValueType(0);
8360 
8361   unsigned SatWidth = Node->getConstantOperandVal(1);
8362   unsigned DstWidth = DstVT.getScalarSizeInBits();
8363   assert(SatWidth <= DstWidth &&
8364          "Expected saturation width smaller than result width");
8365 
8366   // Determine minimum and maximum integer values and their corresponding
8367   // floating-point values.
8368   APInt MinInt, MaxInt;
8369   if (IsSigned) {
8370     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8371     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8372   } else {
8373     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8374     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8375   }
8376 
8377   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8378   // libcall emission cannot handle this. Large result types will fail.
8379   if (SrcVT == MVT::f16) {
8380     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8381     SrcVT = Src.getValueType();
8382   }
8383 
8384   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8385   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8386 
8387   APFloat::opStatus MinStatus =
8388       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8389   APFloat::opStatus MaxStatus =
8390       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8391   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8392                              !(MaxStatus & APFloat::opStatus::opInexact);
8393 
8394   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8395   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8396 
8397   // If the integer bounds are exactly representable as floats and min/max are
8398   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8399   // of comparisons and selects.
8400   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8401                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8402   if (AreExactFloatBounds && MinMaxLegal) {
8403     SDValue Clamped = Src;
8404 
8405     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8406     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8407     // Clamp by MaxFloat from above. NaN cannot occur.
8408     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8409     // Convert clamped value to integer.
8410     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8411                                   dl, DstVT, Clamped);
8412 
8413     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8414     // which will cast to zero.
8415     if (!IsSigned)
8416       return FpToInt;
8417 
8418     // Otherwise, select 0 if Src is NaN.
8419     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8420     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8421                            ISD::CondCode::SETUO);
8422   }
8423 
8424   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8425   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8426 
8427   // Result of direct conversion. The assumption here is that the operation is
8428   // non-trapping and it's fine to apply it to an out-of-range value if we
8429   // select it away later.
8430   SDValue FpToInt =
8431       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8432 
8433   SDValue Select = FpToInt;
8434 
8435   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8436   // MinInt if Src is NaN.
8437   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8438                            ISD::CondCode::SETULT);
8439   // If Src OGT MaxFloat, select MaxInt.
8440   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8441                            ISD::CondCode::SETOGT);
8442 
8443   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8444   // is already zero.
8445   if (!IsSigned)
8446     return Select;
8447 
8448   // Otherwise, select 0 if Src is NaN.
8449   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8450   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8451 }
8452