1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetOpcodes.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/Support/Allocator.h"
34 #include "llvm/Support/BlockFrequency.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <iterator>
41 #include <limits>
42 #include <tuple>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "regalloc"
47 
48 STATISTIC(NumFinished, "Number of splits finished");
49 STATISTIC(NumSimple,   "Number of splits that were simple");
50 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
51 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
52 
53 //===----------------------------------------------------------------------===//
54 //                     Last Insert Point Analysis
55 //===----------------------------------------------------------------------===//
56 
57 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
58                                          unsigned BBNum)
59     : LIS(lis), LastInsertPoint(BBNum) {}
60 
61 SlotIndex
62 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
63                                             const MachineBasicBlock &MBB) {
64   unsigned Num = MBB.getNumber();
65   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
66   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
67 
68   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
69   bool EHPadSuccessor = false;
70   for (const MachineBasicBlock *SMBB : MBB.successors()) {
71     if (SMBB->isEHPad()) {
72       ExceptionalSuccessors.push_back(SMBB);
73       EHPadSuccessor = true;
74     } else if (SMBB->isInlineAsmBrIndirectTarget())
75       ExceptionalSuccessors.push_back(SMBB);
76   }
77 
78   // Compute insert points on the first call. The pair is independent of the
79   // current live interval.
80   if (!LIP.first.isValid()) {
81     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
82     if (FirstTerm == MBB.end())
83       LIP.first = MBBEnd;
84     else
85       LIP.first = LIS.getInstructionIndex(*FirstTerm);
86 
87     // If there is a landing pad or inlineasm_br successor, also find the
88     // instruction. If there is no such instruction, we don't need to do
89     // anything special.  We assume there cannot be multiple instructions that
90     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
91     // assume that if there are any, they will be after any other call
92     // instructions in the block.
93     if (ExceptionalSuccessors.empty())
94       return LIP.first;
95     for (const MachineInstr &MI : llvm::reverse(MBB)) {
96       if ((EHPadSuccessor && MI.isCall()) ||
97           MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
98         LIP.second = LIS.getInstructionIndex(MI);
99         break;
100       }
101     }
102   }
103 
104   // If CurLI is live into a landing pad successor, move the last insert point
105   // back to the call that may throw.
106   if (!LIP.second)
107     return LIP.first;
108 
109   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
110         return LIS.isLiveInToMBB(CurLI, EHPad);
111       }))
112     return LIP.first;
113 
114   // Find the value leaving MBB.
115   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
116   if (!VNI)
117     return LIP.first;
118 
119   // The def of statepoint instruction is a gc relocation and it should be alive
120   // in landing pad. So we cannot split interval after statepoint instruction.
121   if (SlotIndex::isSameInstr(VNI->def, LIP.second))
122     if (auto *I = LIS.getInstructionFromIndex(LIP.second))
123       if (I->getOpcode() == TargetOpcode::STATEPOINT)
124         return LIP.second;
125 
126   // If the value leaving MBB was defined after the call in MBB, it can't
127   // really be live-in to the landing pad.  This can happen if the landing pad
128   // has a PHI, and this register is undef on the exceptional edge.
129   // <rdar://problem/10664933>
130   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
131     return LIP.first;
132 
133   // Value is properly live-in to the landing pad.
134   // Only allow inserts before the call.
135   return LIP.second;
136 }
137 
138 MachineBasicBlock::iterator
139 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
140                                             MachineBasicBlock &MBB) {
141   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
142   if (LIP == LIS.getMBBEndIdx(&MBB))
143     return MBB.end();
144   return LIS.getInstructionFromIndex(LIP);
145 }
146 
147 //===----------------------------------------------------------------------===//
148 //                                 Split Analysis
149 //===----------------------------------------------------------------------===//
150 
151 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
152                              const MachineLoopInfo &mli)
153     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
154       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
155 
156 void SplitAnalysis::clear() {
157   UseSlots.clear();
158   UseBlocks.clear();
159   ThroughBlocks.clear();
160   CurLI = nullptr;
161 }
162 
163 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
164 void SplitAnalysis::analyzeUses() {
165   assert(UseSlots.empty() && "Call clear first");
166 
167   // First get all the defs from the interval values. This provides the correct
168   // slots for early clobbers.
169   for (const VNInfo *VNI : CurLI->valnos)
170     if (!VNI->isPHIDef() && !VNI->isUnused())
171       UseSlots.push_back(VNI->def);
172 
173   // Get use slots form the use-def chain.
174   const MachineRegisterInfo &MRI = MF.getRegInfo();
175   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
176     if (!MO.isUndef())
177       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
178 
179   array_pod_sort(UseSlots.begin(), UseSlots.end());
180 
181   // Remove duplicates, keeping the smaller slot for each instruction.
182   // That is what we want for early clobbers.
183   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
184                              SlotIndex::isSameInstr),
185                  UseSlots.end());
186 
187   // Compute per-live block info.
188   calcLiveBlockInfo();
189 
190   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
191                     << UseBlocks.size() << " blocks, through "
192                     << NumThroughBlocks << " blocks.\n");
193 }
194 
195 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
196 /// where CurLI is live.
197 void SplitAnalysis::calcLiveBlockInfo() {
198   ThroughBlocks.resize(MF.getNumBlockIDs());
199   NumThroughBlocks = NumGapBlocks = 0;
200   if (CurLI->empty())
201     return;
202 
203   LiveInterval::const_iterator LVI = CurLI->begin();
204   LiveInterval::const_iterator LVE = CurLI->end();
205 
206   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
207   UseI = UseSlots.begin();
208   UseE = UseSlots.end();
209 
210   // Loop over basic blocks where CurLI is live.
211   MachineFunction::iterator MFI =
212       LIS.getMBBFromIndex(LVI->start)->getIterator();
213   while (true) {
214     BlockInfo BI;
215     BI.MBB = &*MFI;
216     SlotIndex Start, Stop;
217     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
218 
219     // If the block contains no uses, the range must be live through. At one
220     // point, RegisterCoalescer could create dangling ranges that ended
221     // mid-block.
222     if (UseI == UseE || *UseI >= Stop) {
223       ++NumThroughBlocks;
224       ThroughBlocks.set(BI.MBB->getNumber());
225       // The range shouldn't end mid-block if there are no uses. This shouldn't
226       // happen.
227       assert(LVI->end >= Stop && "range ends mid block with no uses");
228     } else {
229       // This block has uses. Find the first and last uses in the block.
230       BI.FirstInstr = *UseI;
231       assert(BI.FirstInstr >= Start);
232       do ++UseI;
233       while (UseI != UseE && *UseI < Stop);
234       BI.LastInstr = UseI[-1];
235       assert(BI.LastInstr < Stop);
236 
237       // LVI is the first live segment overlapping MBB.
238       BI.LiveIn = LVI->start <= Start;
239 
240       // When not live in, the first use should be a def.
241       if (!BI.LiveIn) {
242         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
243         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
244         BI.FirstDef = BI.FirstInstr;
245       }
246 
247       // Look for gaps in the live range.
248       BI.LiveOut = true;
249       while (LVI->end < Stop) {
250         SlotIndex LastStop = LVI->end;
251         if (++LVI == LVE || LVI->start >= Stop) {
252           BI.LiveOut = false;
253           BI.LastInstr = LastStop;
254           break;
255         }
256 
257         if (LastStop < LVI->start) {
258           // There is a gap in the live range. Create duplicate entries for the
259           // live-in snippet and the live-out snippet.
260           ++NumGapBlocks;
261 
262           // Push the Live-in part.
263           BI.LiveOut = false;
264           UseBlocks.push_back(BI);
265           UseBlocks.back().LastInstr = LastStop;
266 
267           // Set up BI for the live-out part.
268           BI.LiveIn = false;
269           BI.LiveOut = true;
270           BI.FirstInstr = BI.FirstDef = LVI->start;
271         }
272 
273         // A Segment that starts in the middle of the block must be a def.
274         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
275         if (!BI.FirstDef)
276           BI.FirstDef = LVI->start;
277       }
278 
279       UseBlocks.push_back(BI);
280 
281       // LVI is now at LVE or LVI->end >= Stop.
282       if (LVI == LVE)
283         break;
284     }
285 
286     // Live segment ends exactly at Stop. Move to the next segment.
287     if (LVI->end == Stop && ++LVI == LVE)
288       break;
289 
290     // Pick the next basic block.
291     if (LVI->start < Stop)
292       ++MFI;
293     else
294       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
295   }
296 
297   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
298 }
299 
300 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
301   if (cli->empty())
302     return 0;
303   LiveInterval *li = const_cast<LiveInterval*>(cli);
304   LiveInterval::iterator LVI = li->begin();
305   LiveInterval::iterator LVE = li->end();
306   unsigned Count = 0;
307 
308   // Loop over basic blocks where li is live.
309   MachineFunction::const_iterator MFI =
310       LIS.getMBBFromIndex(LVI->start)->getIterator();
311   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
312   while (true) {
313     ++Count;
314     LVI = li->advanceTo(LVI, Stop);
315     if (LVI == LVE)
316       return Count;
317     do {
318       ++MFI;
319       Stop = LIS.getMBBEndIdx(&*MFI);
320     } while (Stop <= LVI->start);
321   }
322 }
323 
324 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
325   Register OrigReg = VRM.getOriginal(CurLI->reg());
326   const LiveInterval &Orig = LIS.getInterval(OrigReg);
327   assert(!Orig.empty() && "Splitting empty interval?");
328   LiveInterval::const_iterator I = Orig.find(Idx);
329 
330   // Range containing Idx should begin at Idx.
331   if (I != Orig.end() && I->start <= Idx)
332     return I->start == Idx;
333 
334   // Range does not contain Idx, previous must end at Idx.
335   return I != Orig.begin() && (--I)->end == Idx;
336 }
337 
338 void SplitAnalysis::analyze(const LiveInterval *li) {
339   clear();
340   CurLI = li;
341   analyzeUses();
342 }
343 
344 //===----------------------------------------------------------------------===//
345 //                               Split Editor
346 //===----------------------------------------------------------------------===//
347 
348 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
349 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM,
350                          MachineDominatorTree &MDT,
351                          MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
352     : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
353       MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
354       TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
355       MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
356 
357 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
358   Edit = &LRE;
359   SpillMode = SM;
360   OpenIdx = 0;
361   RegAssign.clear();
362   Values.clear();
363 
364   // Reset the LiveIntervalCalc instances needed for this spill mode.
365   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
366                   &LIS.getVNInfoAllocator());
367   if (SpillMode)
368     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
369                     &LIS.getVNInfoAllocator());
370 
371   Edit->anyRematerializable();
372 }
373 
374 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
375 LLVM_DUMP_METHOD void SplitEditor::dump() const {
376   if (RegAssign.empty()) {
377     dbgs() << " empty\n";
378     return;
379   }
380 
381   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
382     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
383   dbgs() << '\n';
384 }
385 #endif
386 
387 /// Find a subrange corresponding to the exact lane mask @p LM in the live
388 /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
389 /// This function is used to find corresponding subranges between the
390 /// original interval and the new intervals.
391 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
392   for (auto &S : LI.subranges())
393     if (S.LaneMask == LM)
394       return S;
395   llvm_unreachable("SubRange for this mask not found");
396 }
397 
398 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
399                                                 LiveInterval &LI) {
400   return getSubrangeImpl(LM, LI);
401 }
402 
403 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
404                                                       const LiveInterval &LI) {
405   return getSubrangeImpl(LM, LI);
406 }
407 
408 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
409 /// in the live interval @p LI. The interval @p LI is assumed to contain such
410 /// a subrange.  This function is used to find corresponding subranges between
411 /// the original interval and the new intervals.
412 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
413                                                  const LiveInterval &LI) {
414   for (const LiveInterval::SubRange &S : LI.subranges())
415     if ((S.LaneMask & LM) == LM)
416       return S;
417   llvm_unreachable("SubRange for this mask not found");
418 }
419 
420 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
421   if (!LI.hasSubRanges()) {
422     LI.createDeadDef(VNI);
423     return;
424   }
425 
426   SlotIndex Def = VNI->def;
427   if (Original) {
428     // If we are transferring a def from the original interval, make sure
429     // to only update the subranges for which the original subranges had
430     // a def at this location.
431     for (LiveInterval::SubRange &S : LI.subranges()) {
432       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
433       VNInfo *PV = PS.getVNInfoAt(Def);
434       if (PV != nullptr && PV->def == Def)
435         S.createDeadDef(Def, LIS.getVNInfoAllocator());
436     }
437   } else {
438     // This is a new def: either from rematerialization, or from an inserted
439     // copy. Since rematerialization can regenerate a definition of a sub-
440     // register, we need to check which subranges need to be updated.
441     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
442     assert(DefMI != nullptr);
443     LaneBitmask LM;
444     for (const MachineOperand &DefOp : DefMI->defs()) {
445       Register R = DefOp.getReg();
446       if (R != LI.reg())
447         continue;
448       if (unsigned SR = DefOp.getSubReg())
449         LM |= TRI.getSubRegIndexLaneMask(SR);
450       else {
451         LM = MRI.getMaxLaneMaskForVReg(R);
452         break;
453       }
454     }
455     for (LiveInterval::SubRange &S : LI.subranges())
456       if ((S.LaneMask & LM).any())
457         S.createDeadDef(Def, LIS.getVNInfoAllocator());
458   }
459 }
460 
461 VNInfo *SplitEditor::defValue(unsigned RegIdx,
462                               const VNInfo *ParentVNI,
463                               SlotIndex Idx,
464                               bool Original) {
465   assert(ParentVNI && "Mapping  NULL value");
466   assert(Idx.isValid() && "Invalid SlotIndex");
467   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
468   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
469 
470   // Create a new value.
471   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
472 
473   bool Force = LI->hasSubRanges();
474   ValueForcePair FP(Force ? nullptr : VNI, Force);
475   // Use insert for lookup, so we can add missing values with a second lookup.
476   std::pair<ValueMap::iterator, bool> InsP =
477     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
478 
479   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
480   // forced. Keep it as a simple def without any liveness.
481   if (!Force && InsP.second)
482     return VNI;
483 
484   // If the previous value was a simple mapping, add liveness for it now.
485   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
486     addDeadDef(*LI, OldVNI, Original);
487 
488     // No longer a simple mapping.  Switch to a complex mapping. If the
489     // interval has subranges, make it a forced mapping.
490     InsP.first->second = ValueForcePair(nullptr, Force);
491   }
492 
493   // This is a complex mapping, add liveness for VNI
494   addDeadDef(*LI, VNI, Original);
495   return VNI;
496 }
497 
498 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
499   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
500   VNInfo *VNI = VFP.getPointer();
501 
502   // ParentVNI was either unmapped or already complex mapped. Either way, just
503   // set the force bit.
504   if (!VNI) {
505     VFP.setInt(true);
506     return;
507   }
508 
509   // This was previously a single mapping. Make sure the old def is represented
510   // by a trivial live range.
511   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
512 
513   // Mark as complex mapped, forced.
514   VFP = ValueForcePair(nullptr, true);
515 }
516 
517 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
518     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
519     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
520   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
521   bool FirstCopy = !Def.isValid();
522   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
523       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
524               | getInternalReadRegState(!FirstCopy), SubIdx)
525       .addReg(FromReg, 0, SubIdx);
526 
527   SlotIndexes &Indexes = *LIS.getSlotIndexes();
528   if (FirstCopy) {
529     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
530   } else {
531     CopyMI->bundleWithPred();
532   }
533   return Def;
534 }
535 
536 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
537     LaneBitmask LaneMask, MachineBasicBlock &MBB,
538     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
539   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
540   SlotIndexes &Indexes = *LIS.getSlotIndexes();
541   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
542     // The full vreg is copied.
543     MachineInstr *CopyMI =
544         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
545     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
546   }
547 
548   // Only a subset of lanes needs to be copied. The following is a simple
549   // heuristic to construct a sequence of COPYs. We could add a target
550   // specific callback if this turns out to be suboptimal.
551   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
552 
553   // First pass: Try to find a perfectly matching subregister index. If none
554   // exists find the one covering the most lanemask bits.
555   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
556   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
557 
558   SmallVector<unsigned, 8> SubIndexes;
559 
560   // Abort if we cannot possibly implement the COPY with the given indexes.
561   if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
562     report_fatal_error("Impossible to implement partial COPY");
563 
564   SlotIndex Def;
565   for (unsigned BestIdx : SubIndexes) {
566     Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
567                                 DestLI, Late, Def);
568   }
569 
570   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
571   DestLI.refineSubRanges(
572       Allocator, LaneMask,
573       [Def, &Allocator](LiveInterval::SubRange &SR) {
574         SR.createDeadDef(Def, Allocator);
575       },
576       Indexes, TRI);
577 
578   return Def;
579 }
580 
581 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
582                                    SlotIndex UseIdx, MachineBasicBlock &MBB,
583                                    MachineBasicBlock::iterator I) {
584   SlotIndex Def;
585   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
586 
587   // We may be trying to avoid interference that ends at a deleted instruction,
588   // so always begin RegIdx 0 early and all others late.
589   bool Late = RegIdx != 0;
590 
591   // Attempt cheap-as-a-copy rematerialization.
592   Register Original = VRM.getOriginal(Edit->get(RegIdx));
593   LiveInterval &OrigLI = LIS.getInterval(Original);
594   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
595 
596   Register Reg = LI->reg();
597   bool DidRemat = false;
598   if (OrigVNI) {
599     LiveRangeEdit::Remat RM(ParentVNI);
600     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
601     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
602       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
603       ++NumRemats;
604       DidRemat = true;
605     }
606   }
607   if (!DidRemat) {
608     LaneBitmask LaneMask;
609     if (OrigLI.hasSubRanges()) {
610       LaneMask = LaneBitmask::getNone();
611       for (LiveInterval::SubRange &S : OrigLI.subranges()) {
612         if (S.liveAt(UseIdx))
613           LaneMask |= S.LaneMask;
614       }
615     } else {
616       LaneMask = LaneBitmask::getAll();
617     }
618 
619     if (LaneMask.none()) {
620       const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
621       MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
622       SlotIndexes &Indexes = *LIS.getSlotIndexes();
623       Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
624     } else {
625       ++NumCopies;
626       Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
627     }
628   }
629 
630   // Define the value in Reg.
631   return defValue(RegIdx, ParentVNI, Def, false);
632 }
633 
634 /// Create a new virtual register and live interval.
635 unsigned SplitEditor::openIntv() {
636   // Create the complement as index 0.
637   if (Edit->empty())
638     Edit->createEmptyInterval();
639 
640   // Create the open interval.
641   OpenIdx = Edit->size();
642   Edit->createEmptyInterval();
643   return OpenIdx;
644 }
645 
646 void SplitEditor::selectIntv(unsigned Idx) {
647   assert(Idx != 0 && "Cannot select the complement interval");
648   assert(Idx < Edit->size() && "Can only select previously opened interval");
649   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
650   OpenIdx = Idx;
651 }
652 
653 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
654   assert(OpenIdx && "openIntv not called before enterIntvBefore");
655   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
656   Idx = Idx.getBaseIndex();
657   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
658   if (!ParentVNI) {
659     LLVM_DEBUG(dbgs() << ": not live\n");
660     return Idx;
661   }
662   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
663   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
664   assert(MI && "enterIntvBefore called with invalid index");
665 
666   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
667   return VNI->def;
668 }
669 
670 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
671   assert(OpenIdx && "openIntv not called before enterIntvAfter");
672   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
673   Idx = Idx.getBoundaryIndex();
674   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
675   if (!ParentVNI) {
676     LLVM_DEBUG(dbgs() << ": not live\n");
677     return Idx;
678   }
679   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
680   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
681   assert(MI && "enterIntvAfter called with invalid index");
682 
683   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
684                               std::next(MachineBasicBlock::iterator(MI)));
685   return VNI->def;
686 }
687 
688 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
689   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
690   SlotIndex End = LIS.getMBBEndIdx(&MBB);
691   SlotIndex Last = End.getPrevSlot();
692   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
693                     << Last);
694   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
695   if (!ParentVNI) {
696     LLVM_DEBUG(dbgs() << ": not live\n");
697     return End;
698   }
699   SlotIndex LSP = SA.getLastSplitPoint(&MBB);
700   if (LSP < Last) {
701     // It could be that the use after LSP is a def, and thus the ParentVNI
702     // just selected starts at that def.  For this case to exist, the def
703     // must be part of a tied def/use pair (as otherwise we'd have split
704     // distinct live ranges into individual live intervals), and thus we
705     // can insert the def into the VNI of the use and the tied def/use
706     // pair can live in the resulting interval.
707     Last = LSP;
708     ParentVNI = Edit->getParent().getVNInfoAt(Last);
709     if (!ParentVNI) {
710       // undef use --> undef tied def
711       LLVM_DEBUG(dbgs() << ": tied use not live\n");
712       return End;
713     }
714   }
715 
716   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
717   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
718                               SA.getLastSplitPointIter(&MBB));
719   RegAssign.insert(VNI->def, End, OpenIdx);
720   LLVM_DEBUG(dump());
721   return VNI->def;
722 }
723 
724 /// useIntv - indicate that all instructions in MBB should use OpenLI.
725 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
726   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
727 }
728 
729 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
730   assert(OpenIdx && "openIntv not called before useIntv");
731   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
732   RegAssign.insert(Start, End, OpenIdx);
733   LLVM_DEBUG(dump());
734 }
735 
736 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
737   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
738   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
739 
740   // The interval must be live beyond the instruction at Idx.
741   SlotIndex Boundary = Idx.getBoundaryIndex();
742   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
743   if (!ParentVNI) {
744     LLVM_DEBUG(dbgs() << ": not live\n");
745     return Boundary.getNextSlot();
746   }
747   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
748   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
749   assert(MI && "No instruction at index");
750 
751   // In spill mode, make live ranges as short as possible by inserting the copy
752   // before MI.  This is only possible if that instruction doesn't redefine the
753   // value.  The inserted COPY is not a kill, and we don't need to recompute
754   // the source live range.  The spiller also won't try to hoist this copy.
755   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
756       MI->readsVirtualRegister(Edit->getReg())) {
757     forceRecompute(0, *ParentVNI);
758     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
759     return Idx;
760   }
761 
762   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
763                               std::next(MachineBasicBlock::iterator(MI)));
764   return VNI->def;
765 }
766 
767 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
768   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
769   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
770 
771   // The interval must be live into the instruction at Idx.
772   Idx = Idx.getBaseIndex();
773   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
774   if (!ParentVNI) {
775     LLVM_DEBUG(dbgs() << ": not live\n");
776     return Idx.getNextSlot();
777   }
778   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
779 
780   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
781   assert(MI && "No instruction at index");
782   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
783   return VNI->def;
784 }
785 
786 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
787   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
788   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
789   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
790                     << Start);
791 
792   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
793   if (!ParentVNI) {
794     LLVM_DEBUG(dbgs() << ": not live\n");
795     return Start;
796   }
797 
798   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
799                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
800   RegAssign.insert(Start, VNI->def, OpenIdx);
801   LLVM_DEBUG(dump());
802   return VNI->def;
803 }
804 
805 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
806   return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
807     return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
808   });
809 }
810 
811 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
812   assert(OpenIdx && "openIntv not called before overlapIntv");
813   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
814   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
815          "Parent changes value in extended range");
816   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
817          "Range cannot span basic blocks");
818 
819   // The complement interval will be extended as needed by LICalc.extend().
820   if (ParentVNI)
821     forceRecompute(0, *ParentVNI);
822 
823   // If the last use is tied to a def, we can't mark it as live for the
824   // interval which includes only the use.  That would cause the tied pair
825   // to end up in two different intervals.
826   if (auto *MI = LIS.getInstructionFromIndex(End))
827     if (hasTiedUseOf(*MI, Edit->getReg())) {
828       LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
829       return;
830     }
831 
832   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
833   RegAssign.insert(Start, End, OpenIdx);
834   LLVM_DEBUG(dump());
835 }
836 
837 //===----------------------------------------------------------------------===//
838 //                                  Spill modes
839 //===----------------------------------------------------------------------===//
840 
841 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
842   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
843   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
844   RegAssignMap::iterator AssignI;
845   AssignI.setMap(RegAssign);
846 
847   for (const VNInfo *C : Copies) {
848     SlotIndex Def = C->def;
849     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
850     assert(MI && "No instruction for back-copy");
851 
852     MachineBasicBlock *MBB = MI->getParent();
853     MachineBasicBlock::iterator MBBI(MI);
854     bool AtBegin;
855     do AtBegin = MBBI == MBB->begin();
856     while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
857 
858     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
859     LIS.removeVRegDefAt(*LI, Def);
860     LIS.RemoveMachineInstrFromMaps(*MI);
861     MI->eraseFromParent();
862 
863     // Adjust RegAssign if a register assignment is killed at Def. We want to
864     // avoid calculating the live range of the source register if possible.
865     AssignI.find(Def.getPrevSlot());
866     if (!AssignI.valid() || AssignI.start() >= Def)
867       continue;
868     // If MI doesn't kill the assigned register, just leave it.
869     if (AssignI.stop() != Def)
870       continue;
871     unsigned RegIdx = AssignI.value();
872     // We could hoist back-copy right after another back-copy. As a result
873     // MMBI points to copy instruction which is actually dead now.
874     // We cannot set its stop to MBBI which will be the same as start and
875     // interval does not support that.
876     SlotIndex Kill =
877         AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
878     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
879         Kill <= AssignI.start()) {
880       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
881                         << '\n');
882       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
883     } else {
884       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
885       AssignI.setStop(Kill);
886     }
887   }
888 }
889 
890 MachineBasicBlock*
891 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
892                                   MachineBasicBlock *DefMBB) {
893   if (MBB == DefMBB)
894     return MBB;
895   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
896 
897   const MachineLoopInfo &Loops = SA.Loops;
898   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
899   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
900 
901   // Best candidate so far.
902   MachineBasicBlock *BestMBB = MBB;
903   unsigned BestDepth = std::numeric_limits<unsigned>::max();
904 
905   while (true) {
906     const MachineLoop *Loop = Loops.getLoopFor(MBB);
907 
908     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
909     // higher frequency by definition.
910     if (!Loop) {
911       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
912                         << " dominates " << printMBBReference(*MBB)
913                         << " at depth 0\n");
914       return MBB;
915     }
916 
917     // We'll never be able to exit the DefLoop.
918     if (Loop == DefLoop) {
919       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
920                         << " dominates " << printMBBReference(*MBB)
921                         << " in the same loop\n");
922       return MBB;
923     }
924 
925     // Least busy dominator seen so far.
926     unsigned Depth = Loop->getLoopDepth();
927     if (Depth < BestDepth) {
928       BestMBB = MBB;
929       BestDepth = Depth;
930       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
931                         << " dominates " << printMBBReference(*MBB)
932                         << " at depth " << Depth << '\n');
933     }
934 
935     // Leave loop by going to the immediate dominator of the loop header.
936     // This is a bigger stride than simply walking up the dominator tree.
937     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
938 
939     // Too far up the dominator tree?
940     if (!IDom || !MDT.dominates(DefDomNode, IDom))
941       return BestMBB;
942 
943     MBB = IDom->getBlock();
944   }
945 }
946 
947 void SplitEditor::computeRedundantBackCopies(
948     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
949   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
950   const LiveInterval *Parent = &Edit->getParent();
951   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
952   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
953 
954   // Aggregate VNIs having the same value as ParentVNI.
955   for (VNInfo *VNI : LI->valnos) {
956     if (VNI->isUnused())
957       continue;
958     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
959     EqualVNs[ParentVNI->id].insert(VNI);
960   }
961 
962   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
963   // redundant VNIs to BackCopies.
964   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
965     const VNInfo *ParentVNI = Parent->getValNumInfo(i);
966     if (!NotToHoistSet.count(ParentVNI->id))
967       continue;
968     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
969     SmallPtrSetIterator<VNInfo *> It2 = It1;
970     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
971       It2 = It1;
972       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
973         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
974           continue;
975 
976         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
977         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
978         if (MBB1 == MBB2) {
979           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
980         } else if (MDT.dominates(MBB1, MBB2)) {
981           DominatedVNIs.insert(*It2);
982         } else if (MDT.dominates(MBB2, MBB1)) {
983           DominatedVNIs.insert(*It1);
984         }
985       }
986     }
987     if (!DominatedVNIs.empty()) {
988       forceRecompute(0, *ParentVNI);
989       append_range(BackCopies, DominatedVNIs);
990       DominatedVNIs.clear();
991     }
992   }
993 }
994 
995 /// For SM_Size mode, find a common dominator for all the back-copies for
996 /// the same ParentVNI and hoist the backcopies to the dominator BB.
997 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
998 /// to do the hoisting, simply remove the dominated backcopies for the same
999 /// ParentVNI.
1000 void SplitEditor::hoistCopies() {
1001   // Get the complement interval, always RegIdx 0.
1002   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1003   const LiveInterval *Parent = &Edit->getParent();
1004 
1005   // Track the nearest common dominator for all back-copies for each ParentVNI,
1006   // indexed by ParentVNI->id.
1007   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1008   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1009   // The total cost of all the back-copies for each ParentVNI.
1010   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1011   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1012   // for Speed.
1013   DenseSet<unsigned> NotToHoistSet;
1014 
1015   // Find the nearest common dominator for parent values with multiple
1016   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1017   for (VNInfo *VNI : LI->valnos) {
1018     if (VNI->isUnused())
1019       continue;
1020     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1021     assert(ParentVNI && "Parent not live at complement def");
1022 
1023     // Don't hoist remats.  The complement is probably going to disappear
1024     // completely anyway.
1025     if (Edit->didRematerialize(ParentVNI))
1026       continue;
1027 
1028     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1029 
1030     DomPair &Dom = NearestDom[ParentVNI->id];
1031 
1032     // Keep directly defined parent values.  This is either a PHI or an
1033     // instruction in the complement range.  All other copies of ParentVNI
1034     // should be eliminated.
1035     if (VNI->def == ParentVNI->def) {
1036       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1037       Dom = DomPair(ValMBB, VNI->def);
1038       continue;
1039     }
1040     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1041     // single back-copy.
1042     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1043       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1044       continue;
1045     }
1046 
1047     if (!Dom.first) {
1048       // First time we see ParentVNI.  VNI dominates itself.
1049       Dom = DomPair(ValMBB, VNI->def);
1050     } else if (Dom.first == ValMBB) {
1051       // Two defs in the same block.  Pick the earlier def.
1052       if (!Dom.second.isValid() || VNI->def < Dom.second)
1053         Dom.second = VNI->def;
1054     } else {
1055       // Different basic blocks. Check if one dominates.
1056       MachineBasicBlock *Near =
1057         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1058       if (Near == ValMBB)
1059         // Def ValMBB dominates.
1060         Dom = DomPair(ValMBB, VNI->def);
1061       else if (Near != Dom.first)
1062         // None dominate. Hoist to common dominator, need new def.
1063         Dom = DomPair(Near, SlotIndex());
1064       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1065     }
1066 
1067     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1068                       << VNI->def << " for parent " << ParentVNI->id << '@'
1069                       << ParentVNI->def << " hoist to "
1070                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1071                       << '\n');
1072   }
1073 
1074   // Insert the hoisted copies.
1075   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1076     DomPair &Dom = NearestDom[i];
1077     if (!Dom.first || Dom.second.isValid())
1078       continue;
1079     // This value needs a hoisted copy inserted at the end of Dom.first.
1080     const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1081     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1082     // Get a less loopy dominator than Dom.first.
1083     Dom.first = findShallowDominator(Dom.first, DefMBB);
1084     if (SpillMode == SM_Speed &&
1085         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1086       NotToHoistSet.insert(ParentVNI->id);
1087       continue;
1088     }
1089     SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1090     if (LSP <= ParentVNI->def) {
1091       NotToHoistSet.insert(ParentVNI->id);
1092       continue;
1093     }
1094     Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1095                                SA.getLastSplitPointIter(Dom.first))->def;
1096   }
1097 
1098   // Remove redundant back-copies that are now known to be dominated by another
1099   // def with the same value.
1100   SmallVector<VNInfo*, 8> BackCopies;
1101   for (VNInfo *VNI : LI->valnos) {
1102     if (VNI->isUnused())
1103       continue;
1104     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1105     const DomPair &Dom = NearestDom[ParentVNI->id];
1106     if (!Dom.first || Dom.second == VNI->def ||
1107         NotToHoistSet.count(ParentVNI->id))
1108       continue;
1109     BackCopies.push_back(VNI);
1110     forceRecompute(0, *ParentVNI);
1111   }
1112 
1113   // If it is not beneficial to hoist all the BackCopies, simply remove
1114   // redundant BackCopies in speed mode.
1115   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1116     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1117 
1118   removeBackCopies(BackCopies);
1119 }
1120 
1121 /// transferValues - Transfer all possible values to the new live ranges.
1122 /// Values that were rematerialized are left alone, they need LICalc.extend().
1123 bool SplitEditor::transferValues() {
1124   bool Skipped = false;
1125   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1126   for (const LiveRange::Segment &S : Edit->getParent()) {
1127     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1128     VNInfo *ParentVNI = S.valno;
1129     // RegAssign has holes where RegIdx 0 should be used.
1130     SlotIndex Start = S.start;
1131     AssignI.advanceTo(Start);
1132     do {
1133       unsigned RegIdx;
1134       SlotIndex End = S.end;
1135       if (!AssignI.valid()) {
1136         RegIdx = 0;
1137       } else if (AssignI.start() <= Start) {
1138         RegIdx = AssignI.value();
1139         if (AssignI.stop() < End) {
1140           End = AssignI.stop();
1141           ++AssignI;
1142         }
1143       } else {
1144         RegIdx = 0;
1145         End = std::min(End, AssignI.start());
1146       }
1147 
1148       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1149       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1150                         << printReg(Edit->get(RegIdx)) << ')');
1151       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1152 
1153       // Check for a simply defined value that can be blitted directly.
1154       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1155       if (VNInfo *VNI = VFP.getPointer()) {
1156         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1157         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1158         Start = End;
1159         continue;
1160       }
1161 
1162       // Skip values with forced recomputation.
1163       if (VFP.getInt()) {
1164         LLVM_DEBUG(dbgs() << "(recalc)");
1165         Skipped = true;
1166         Start = End;
1167         continue;
1168       }
1169 
1170       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1171 
1172       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1173       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1174       // LiveInBlocks.
1175       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1176       SlotIndex BlockStart, BlockEnd;
1177       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1178 
1179       // The first block may be live-in, or it may have its own def.
1180       if (Start != BlockStart) {
1181         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1182         assert(VNI && "Missing def for complex mapped value");
1183         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1184         // MBB has its own def. Is it also live-out?
1185         if (BlockEnd <= End)
1186           LIC.setLiveOutValue(&*MBB, VNI);
1187 
1188         // Skip to the next block for live-in.
1189         ++MBB;
1190         BlockStart = BlockEnd;
1191       }
1192 
1193       // Handle the live-in blocks covered by [Start;End).
1194       assert(Start <= BlockStart && "Expected live-in block");
1195       while (BlockStart < End) {
1196         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1197         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1198         if (BlockStart == ParentVNI->def) {
1199           // This block has the def of a parent PHI, so it isn't live-in.
1200           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1201           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1202           assert(VNI && "Missing def for complex mapped parent PHI");
1203           if (End >= BlockEnd)
1204             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1205         } else {
1206           // This block needs a live-in value.  The last block covered may not
1207           // be live-out.
1208           if (End < BlockEnd)
1209             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1210           else {
1211             // Live-through, and we don't know the value.
1212             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1213             LIC.setLiveOutValue(&*MBB, nullptr);
1214           }
1215         }
1216         BlockStart = BlockEnd;
1217         ++MBB;
1218       }
1219       Start = End;
1220     } while (Start != S.end);
1221     LLVM_DEBUG(dbgs() << '\n');
1222   }
1223 
1224   LICalc[0].calculateValues();
1225   if (SpillMode)
1226     LICalc[1].calculateValues();
1227 
1228   return Skipped;
1229 }
1230 
1231 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1232   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1233   if (Seg == nullptr)
1234     return true;
1235   if (Seg->end != Def.getDeadSlot())
1236     return false;
1237   // This is a dead PHI. Remove it.
1238   LR.removeSegment(*Seg, true);
1239   return true;
1240 }
1241 
1242 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1243                                  LiveRange &LR, LaneBitmask LM,
1244                                  ArrayRef<SlotIndex> Undefs) {
1245   for (MachineBasicBlock *P : B.predecessors()) {
1246     SlotIndex End = LIS.getMBBEndIdx(P);
1247     SlotIndex LastUse = End.getPrevSlot();
1248     // The predecessor may not have a live-out value. That is OK, like an
1249     // undef PHI operand.
1250     const LiveInterval &PLI = Edit->getParent();
1251     // Need the cast because the inputs to ?: would otherwise be deemed
1252     // "incompatible": SubRange vs LiveInterval.
1253     const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1254                                      : static_cast<const LiveRange &>(PLI);
1255     if (PSR.liveAt(LastUse))
1256       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1257   }
1258 }
1259 
1260 void SplitEditor::extendPHIKillRanges() {
1261   // Extend live ranges to be live-out for successor PHI values.
1262 
1263   // Visit each PHI def slot in the parent live interval. If the def is dead,
1264   // remove it. Otherwise, extend the live interval to reach the end indexes
1265   // of all predecessor blocks.
1266 
1267   const LiveInterval &ParentLI = Edit->getParent();
1268   for (const VNInfo *V : ParentLI.valnos) {
1269     if (V->isUnused() || !V->isPHIDef())
1270       continue;
1271 
1272     unsigned RegIdx = RegAssign.lookup(V->def);
1273     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1274     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1275     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1276     if (!removeDeadSegment(V->def, LI))
1277       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1278   }
1279 
1280   SmallVector<SlotIndex, 4> Undefs;
1281   LiveIntervalCalc SubLIC;
1282 
1283   for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1284     for (const VNInfo *V : PS.valnos) {
1285       if (V->isUnused() || !V->isPHIDef())
1286         continue;
1287       unsigned RegIdx = RegAssign.lookup(V->def);
1288       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1289       LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1290       if (removeDeadSegment(V->def, S))
1291         continue;
1292 
1293       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1294       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1295                    &LIS.getVNInfoAllocator());
1296       Undefs.clear();
1297       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1298       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1299     }
1300   }
1301 }
1302 
1303 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1304 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1305   struct ExtPoint {
1306     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1307       : MO(O), RegIdx(R), Next(N) {}
1308 
1309     MachineOperand MO;
1310     unsigned RegIdx;
1311     SlotIndex Next;
1312   };
1313 
1314   SmallVector<ExtPoint,4> ExtPoints;
1315 
1316   for (MachineOperand &MO :
1317        llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1318     MachineInstr *MI = MO.getParent();
1319     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1320     if (MI->isDebugValue()) {
1321       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1322       MO.setReg(0);
1323       continue;
1324     }
1325 
1326     // <undef> operands don't really read the register, so it doesn't matter
1327     // which register we choose.  When the use operand is tied to a def, we must
1328     // use the same register as the def, so just do that always.
1329     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1330     if (MO.isDef() || MO.isUndef())
1331       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1332 
1333     // Rewrite to the mapped register at Idx.
1334     unsigned RegIdx = RegAssign.lookup(Idx);
1335     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1336     MO.setReg(LI.reg());
1337     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1338                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1339 
1340     // Extend liveness to Idx if the instruction reads reg.
1341     if (!ExtendRanges || MO.isUndef())
1342       continue;
1343 
1344     // Skip instructions that don't read Reg.
1345     if (MO.isDef()) {
1346       if (!MO.getSubReg() && !MO.isEarlyClobber())
1347         continue;
1348       // We may want to extend a live range for a partial redef, or for a use
1349       // tied to an early clobber.
1350       if (!Edit->getParent().liveAt(Idx.getPrevSlot()))
1351         continue;
1352     } else {
1353       assert(MO.isUse());
1354       bool IsEarlyClobber = false;
1355       if (MO.isTied()) {
1356         // We want to extend a live range into `e` slot rather than `r` slot if
1357         // tied-def is early clobber, because the `e` slot already contained
1358         // in the live range of early-clobber tied-def operand, give an example
1359         // here:
1360         //  0  %0 = ...
1361         // 16  early-clobber %0 = Op %0 (tied-def 0), ...
1362         // 32  ... = Op %0
1363         // Before extend:
1364         //   %0 = [0r, 0d) [16e, 32d)
1365         // The point we want to extend is 0d to 16e not 16r in this case, but if
1366         // we use 16r here we will extend nothing because that already contained
1367         // in [16e, 32d).
1368         unsigned OpIdx = MO.getOperandNo();
1369         unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1370         const MachineOperand &DefOp = MI->getOperand(DefOpIdx);
1371         IsEarlyClobber = DefOp.isEarlyClobber();
1372       }
1373 
1374       Idx = Idx.getRegSlot(IsEarlyClobber);
1375     }
1376 
1377     SlotIndex Next = Idx;
1378     if (LI.hasSubRanges()) {
1379       // We have to delay extending subranges until we have seen all operands
1380       // defining the register. This is because a <def,read-undef> operand
1381       // will create an "undef" point, and we cannot extend any subranges
1382       // until all of them have been accounted for.
1383       if (MO.isUse())
1384         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1385     } else {
1386       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1387       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1388     }
1389   }
1390 
1391   for (ExtPoint &EP : ExtPoints) {
1392     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1393     assert(LI.hasSubRanges());
1394 
1395     LiveIntervalCalc SubLIC;
1396     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1397     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1398                               : MRI.getMaxLaneMaskForVReg(Reg);
1399     for (LiveInterval::SubRange &S : LI.subranges()) {
1400       if ((S.LaneMask & LM).none())
1401         continue;
1402       // The problem here can be that the new register may have been created
1403       // for a partially defined original register. For example:
1404       //   %0:subreg_hireg<def,read-undef> = ...
1405       //   ...
1406       //   %1 = COPY %0
1407       if (S.empty())
1408         continue;
1409       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1410                    &LIS.getVNInfoAllocator());
1411       SmallVector<SlotIndex, 4> Undefs;
1412       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1413       SubLIC.extend(S, EP.Next, 0, Undefs);
1414     }
1415   }
1416 
1417   for (Register R : *Edit) {
1418     LiveInterval &LI = LIS.getInterval(R);
1419     if (!LI.hasSubRanges())
1420       continue;
1421     LI.clear();
1422     LI.removeEmptySubRanges();
1423     LIS.constructMainRangeFromSubranges(LI);
1424   }
1425 }
1426 
1427 void SplitEditor::deleteRematVictims() {
1428   SmallVector<MachineInstr*, 8> Dead;
1429   for (const Register &R : *Edit) {
1430     LiveInterval *LI = &LIS.getInterval(R);
1431     for (const LiveRange::Segment &S : LI->segments) {
1432       // Dead defs end at the dead slot.
1433       if (S.end != S.valno->def.getDeadSlot())
1434         continue;
1435       if (S.valno->isPHIDef())
1436         continue;
1437       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1438       assert(MI && "Missing instruction for dead def");
1439       MI->addRegisterDead(LI->reg(), &TRI);
1440 
1441       if (!MI->allDefsAreDead())
1442         continue;
1443 
1444       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1445       Dead.push_back(MI);
1446     }
1447   }
1448 
1449   if (Dead.empty())
1450     return;
1451 
1452   Edit->eliminateDeadDefs(Dead, std::nullopt);
1453 }
1454 
1455 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1456   // Fast-path for common case.
1457   if (!ParentVNI.isPHIDef()) {
1458     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1459       forceRecompute(I, ParentVNI);
1460     return;
1461   }
1462 
1463   // Trace value through phis.
1464   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1465   SmallVector<const VNInfo *, 4> WorkList;
1466   Visited.insert(&ParentVNI);
1467   WorkList.push_back(&ParentVNI);
1468 
1469   const LiveInterval &ParentLI = Edit->getParent();
1470   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1471   do {
1472     const VNInfo &VNI = *WorkList.back();
1473     WorkList.pop_back();
1474     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1475       forceRecompute(I, VNI);
1476     if (!VNI.isPHIDef())
1477       continue;
1478 
1479     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1480     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1481       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1482       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1483       assert(PredVNI && "Value available in PhiVNI predecessor");
1484       if (Visited.insert(PredVNI).second)
1485         WorkList.push_back(PredVNI);
1486     }
1487   } while(!WorkList.empty());
1488 }
1489 
1490 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1491   ++NumFinished;
1492 
1493   // At this point, the live intervals in Edit contain VNInfos corresponding to
1494   // the inserted copies.
1495 
1496   // Add the original defs from the parent interval.
1497   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1498     if (ParentVNI->isUnused())
1499       continue;
1500     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1501     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1502 
1503     // Force rematted values to be recomputed everywhere.
1504     // The new live ranges may be truncated.
1505     if (Edit->didRematerialize(ParentVNI))
1506       forceRecomputeVNI(*ParentVNI);
1507   }
1508 
1509   // Hoist back-copies to the complement interval when in spill mode.
1510   switch (SpillMode) {
1511   case SM_Partition:
1512     // Leave all back-copies as is.
1513     break;
1514   case SM_Size:
1515   case SM_Speed:
1516     // hoistCopies will behave differently between size and speed.
1517     hoistCopies();
1518   }
1519 
1520   // Transfer the simply mapped values, check if any are skipped.
1521   bool Skipped = transferValues();
1522 
1523   // Rewrite virtual registers, possibly extending ranges.
1524   rewriteAssigned(Skipped);
1525 
1526   if (Skipped)
1527     extendPHIKillRanges();
1528   else
1529     ++NumSimple;
1530 
1531   // Delete defs that were rematted everywhere.
1532   if (Skipped)
1533     deleteRematVictims();
1534 
1535   // Get rid of unused values and set phi-kill flags.
1536   for (Register Reg : *Edit) {
1537     LiveInterval &LI = LIS.getInterval(Reg);
1538     LI.removeEmptySubRanges();
1539     LI.RenumberValues();
1540   }
1541 
1542   // Provide a reverse mapping from original indices to Edit ranges.
1543   if (LRMap) {
1544     auto Seq = llvm::seq<unsigned>(0, Edit->size());
1545     LRMap->assign(Seq.begin(), Seq.end());
1546   }
1547 
1548   // Now check if any registers were separated into multiple components.
1549   ConnectedVNInfoEqClasses ConEQ(LIS);
1550   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1551     // Don't use iterators, they are invalidated by create() below.
1552     Register VReg = Edit->get(i);
1553     LiveInterval &LI = LIS.getInterval(VReg);
1554     SmallVector<LiveInterval*, 8> SplitLIs;
1555     LIS.splitSeparateComponents(LI, SplitLIs);
1556     Register Original = VRM.getOriginal(VReg);
1557     for (LiveInterval *SplitLI : SplitLIs)
1558       VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1559 
1560     // The new intervals all map back to i.
1561     if (LRMap)
1562       LRMap->resize(Edit->size(), i);
1563   }
1564 
1565   // Calculate spill weight and allocation hints for new intervals.
1566   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1567 
1568   assert(!LRMap || LRMap->size() == Edit->size());
1569 }
1570 
1571 //===----------------------------------------------------------------------===//
1572 //                            Single Block Splitting
1573 //===----------------------------------------------------------------------===//
1574 
1575 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1576                                            bool SingleInstrs) const {
1577   // Always split for multiple instructions.
1578   if (!BI.isOneInstr())
1579     return true;
1580   // Don't split for single instructions unless explicitly requested.
1581   if (!SingleInstrs)
1582     return false;
1583   // Splitting a live-through range always makes progress.
1584   if (BI.LiveIn && BI.LiveOut)
1585     return true;
1586   // No point in isolating a copy. It has no register class constraints.
1587   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1588     return false;
1589   // Finally, don't isolate an end point that was created by earlier splits.
1590   return isOriginalEndpoint(BI.FirstInstr);
1591 }
1592 
1593 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1594   openIntv();
1595   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1596   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1597     LastSplitPoint));
1598   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1599     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1600   } else {
1601       // The last use is after the last valid split point.
1602     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1603     useIntv(SegStart, SegStop);
1604     overlapIntv(SegStop, BI.LastInstr);
1605   }
1606 }
1607 
1608 //===----------------------------------------------------------------------===//
1609 //                    Global Live Range Splitting Support
1610 //===----------------------------------------------------------------------===//
1611 
1612 // These methods support a method of global live range splitting that uses a
1613 // global algorithm to decide intervals for CFG edges. They will insert split
1614 // points and color intervals in basic blocks while avoiding interference.
1615 //
1616 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1617 // are on the stack.
1618 
1619 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1620                                         unsigned IntvIn, SlotIndex LeaveBefore,
1621                                         unsigned IntvOut, SlotIndex EnterAfter){
1622   SlotIndex Start, Stop;
1623   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1624 
1625   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1626                     << ") intf " << LeaveBefore << '-' << EnterAfter
1627                     << ", live-through " << IntvIn << " -> " << IntvOut);
1628 
1629   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1630 
1631   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1632   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1633   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1634 
1635   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1636 
1637   if (!IntvOut) {
1638     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1639     //
1640     //        <<<<<<<<<    Possible LeaveBefore interference.
1641     //    |-----------|    Live through.
1642     //    -____________    Spill on entry.
1643     //
1644     selectIntv(IntvIn);
1645     SlotIndex Idx = leaveIntvAtTop(*MBB);
1646     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1647     (void)Idx;
1648     return;
1649   }
1650 
1651   if (!IntvIn) {
1652     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1653     //
1654     //    >>>>>>>          Possible EnterAfter interference.
1655     //    |-----------|    Live through.
1656     //    ___________--    Reload on exit.
1657     //
1658     selectIntv(IntvOut);
1659     SlotIndex Idx = enterIntvAtEnd(*MBB);
1660     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1661     (void)Idx;
1662     return;
1663   }
1664 
1665   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1666     LLVM_DEBUG(dbgs() << ", straight through.\n");
1667     //
1668     //    |-----------|    Live through.
1669     //    -------------    Straight through, same intv, no interference.
1670     //
1671     selectIntv(IntvOut);
1672     useIntv(Start, Stop);
1673     return;
1674   }
1675 
1676   // We cannot legally insert splits after LSP.
1677   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1678   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1679 
1680   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1681                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1682     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1683     //
1684     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1685     //    |-----------|    Live through.
1686     //    ------=======    Switch intervals between interference.
1687     //
1688     selectIntv(IntvOut);
1689     SlotIndex Idx;
1690     if (LeaveBefore && LeaveBefore < LSP) {
1691       Idx = enterIntvBefore(LeaveBefore);
1692       useIntv(Idx, Stop);
1693     } else {
1694       Idx = enterIntvAtEnd(*MBB);
1695     }
1696     selectIntv(IntvIn);
1697     useIntv(Start, Idx);
1698     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1699     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1700     return;
1701   }
1702 
1703   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1704   //
1705   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1706   //    |-----------|    Live through.
1707   //    ==---------==    Switch intervals before/after interference.
1708   //
1709   assert(LeaveBefore <= EnterAfter && "Missed case");
1710 
1711   selectIntv(IntvOut);
1712   SlotIndex Idx = enterIntvAfter(EnterAfter);
1713   useIntv(Idx, Stop);
1714   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1715 
1716   selectIntv(IntvIn);
1717   Idx = leaveIntvBefore(LeaveBefore);
1718   useIntv(Start, Idx);
1719   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1720 }
1721 
1722 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1723                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1724   SlotIndex Start, Stop;
1725   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1726 
1727   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1728                     << Stop << "), uses " << BI.FirstInstr << '-'
1729                     << BI.LastInstr << ", reg-in " << IntvIn
1730                     << ", leave before " << LeaveBefore
1731                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1732 
1733   assert(IntvIn && "Must have register in");
1734   assert(BI.LiveIn && "Must be live-in");
1735   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1736 
1737   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1738     LLVM_DEBUG(dbgs() << " before interference.\n");
1739     //
1740     //               <<<    Interference after kill.
1741     //     |---o---x   |    Killed in block.
1742     //     =========        Use IntvIn everywhere.
1743     //
1744     selectIntv(IntvIn);
1745     useIntv(Start, BI.LastInstr);
1746     return;
1747   }
1748 
1749   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1750 
1751   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1752     //
1753     //               <<<    Possible interference after last use.
1754     //     |---o---o---|    Live-out on stack.
1755     //     =========____    Leave IntvIn after last use.
1756     //
1757     //                 <    Interference after last use.
1758     //     |---o---o--o|    Live-out on stack, late last use.
1759     //     ============     Copy to stack after LSP, overlap IntvIn.
1760     //            \_____    Stack interval is live-out.
1761     //
1762     if (BI.LastInstr < LSP) {
1763       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1764       selectIntv(IntvIn);
1765       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1766       useIntv(Start, Idx);
1767       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1768     } else {
1769       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1770       selectIntv(IntvIn);
1771       SlotIndex Idx = leaveIntvBefore(LSP);
1772       overlapIntv(Idx, BI.LastInstr);
1773       useIntv(Start, Idx);
1774       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1775     }
1776     return;
1777   }
1778 
1779   // The interference is overlapping somewhere we wanted to use IntvIn. That
1780   // means we need to create a local interval that can be allocated a
1781   // different register.
1782   unsigned LocalIntv = openIntv();
1783   (void)LocalIntv;
1784   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1785 
1786   if (!BI.LiveOut || BI.LastInstr < LSP) {
1787     //
1788     //           <<<<<<<    Interference overlapping uses.
1789     //     |---o---o---|    Live-out on stack.
1790     //     =====----____    Leave IntvIn before interference, then spill.
1791     //
1792     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1793     SlotIndex From = enterIntvBefore(LeaveBefore);
1794     useIntv(From, To);
1795     selectIntv(IntvIn);
1796     useIntv(Start, From);
1797     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1798     return;
1799   }
1800 
1801   //           <<<<<<<    Interference overlapping uses.
1802   //     |---o---o--o|    Live-out on stack, late last use.
1803   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1804   //            \_____    Stack interval is live-out.
1805   //
1806   SlotIndex To = leaveIntvBefore(LSP);
1807   overlapIntv(To, BI.LastInstr);
1808   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1809   useIntv(From, To);
1810   selectIntv(IntvIn);
1811   useIntv(Start, From);
1812   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1813 }
1814 
1815 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1816                                    unsigned IntvOut, SlotIndex EnterAfter) {
1817   SlotIndex Start, Stop;
1818   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1819 
1820   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1821                     << Stop << "), uses " << BI.FirstInstr << '-'
1822                     << BI.LastInstr << ", reg-out " << IntvOut
1823                     << ", enter after " << EnterAfter
1824                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1825 
1826   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1827 
1828   assert(IntvOut && "Must have register out");
1829   assert(BI.LiveOut && "Must be live-out");
1830   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1831 
1832   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1833     LLVM_DEBUG(dbgs() << " after interference.\n");
1834     //
1835     //    >>>>             Interference before def.
1836     //    |   o---o---|    Defined in block.
1837     //        =========    Use IntvOut everywhere.
1838     //
1839     selectIntv(IntvOut);
1840     useIntv(BI.FirstInstr, Stop);
1841     return;
1842   }
1843 
1844   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1845     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1846     //
1847     //    >>>>             Interference before def.
1848     //    |---o---o---|    Live-through, stack-in.
1849     //    ____=========    Enter IntvOut before first use.
1850     //
1851     selectIntv(IntvOut);
1852     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1853     useIntv(Idx, Stop);
1854     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1855     return;
1856   }
1857 
1858   // The interference is overlapping somewhere we wanted to use IntvOut. That
1859   // means we need to create a local interval that can be allocated a
1860   // different register.
1861   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1862   //
1863   //    >>>>>>>          Interference overlapping uses.
1864   //    |---o---o---|    Live-through, stack-in.
1865   //    ____---======    Create local interval for interference range.
1866   //
1867   selectIntv(IntvOut);
1868   SlotIndex Idx = enterIntvAfter(EnterAfter);
1869   useIntv(Idx, Stop);
1870   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1871 
1872   openIntv();
1873   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1874   useIntv(From, Idx);
1875 }
1876 
1877 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1878   OS << "{" << printMBBReference(*MBB) << ", "
1879      << "uses " << FirstInstr << " to " << LastInstr << ", "
1880      << "1st def " << FirstDef << ", "
1881      << (LiveIn ? "live in" : "dead in") << ", "
1882      << (LiveOut ? "live out" : "dead out") << "}";
1883 }
1884 
1885 void SplitAnalysis::BlockInfo::dump() const {
1886   print(dbgs());
1887   dbgs() << "\n";
1888 }
1889