1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsARM.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Target/TargetMachine.h"
44 
45 #define DEBUG_TYPE "type-promotion"
46 #define PASS_NAME "Type Promotion"
47 
48 using namespace llvm;
49 
50 static cl::opt<bool>
51 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false),
52                  cl::desc("Disable type promotion pass"));
53 
54 // The goal of this pass is to enable more efficient code generation for
55 // operations on narrow types (i.e. types with < 32-bits) and this is a
56 // motivating IR code example:
57 //
58 //   define hidden i32 @cmp(i8 zeroext) {
59 //     %2 = add i8 %0, -49
60 //     %3 = icmp ult i8 %2, 3
61 //     ..
62 //   }
63 //
64 // The issue here is that i8 is type-legalized to i32 because i8 is not a
65 // legal type. Thus, arithmetic is done in integer-precision, but then the
66 // byte value is masked out as follows:
67 //
68 //   t19: i32 = add t4, Constant:i32<-49>
69 //     t24: i32 = and t19, Constant:i32<255>
70 //
71 // Consequently, we generate code like this:
72 //
73 //   subs  r0, #49
74 //   uxtb  r1, r0
75 //   cmp r1, #3
76 //
77 // This shows that masking out the byte value results in generation of
78 // the UXTB instruction. This is not optimal as r0 already contains the byte
79 // value we need, and so instead we can just generate:
80 //
81 //   sub.w r1, r0, #49
82 //   cmp r1, #3
83 //
84 // We achieve this by type promoting the IR to i32 like so for this example:
85 //
86 //   define i32 @cmp(i8 zeroext %c) {
87 //     %0 = zext i8 %c to i32
88 //     %c.off = add i32 %0, -49
89 //     %1 = icmp ult i32 %c.off, 3
90 //     ..
91 //   }
92 //
93 // For this to be valid and legal, we need to prove that the i32 add is
94 // producing the same value as the i8 addition, and that e.g. no overflow
95 // happens.
96 //
97 // A brief sketch of the algorithm and some terminology.
98 // We pattern match interesting IR patterns:
99 // - which have "sources": instructions producing narrow values (i8, i16), and
100 // - they have "sinks": instructions consuming these narrow values.
101 //
102 // We collect all instruction connecting sources and sinks in a worklist, so
103 // that we can mutate these instruction and perform type promotion when it is
104 // legal to do so.
105 
106 namespace {
107 class IRPromoter {
108   LLVMContext &Ctx;
109   IntegerType *OrigTy = nullptr;
110   unsigned PromotedWidth = 0;
111   SetVector<Value*> &Visited;
112   SetVector<Value*> &Sources;
113   SetVector<Instruction*> &Sinks;
114   SmallVectorImpl<Instruction*> &SafeWrap;
115   IntegerType *ExtTy = nullptr;
116   SmallPtrSet<Value*, 8> NewInsts;
117   SmallPtrSet<Instruction*, 4> InstsToRemove;
118   DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
119   SmallPtrSet<Value*, 8> Promoted;
120 
121   void ReplaceAllUsersOfWith(Value *From, Value *To);
122   void PrepareWrappingAdds(void);
123   void ExtendSources(void);
124   void ConvertTruncs(void);
125   void PromoteTree(void);
126   void TruncateSinks(void);
127   void Cleanup(void);
128 
129 public:
130   IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width,
131              SetVector<Value*> &visited, SetVector<Value*> &sources,
132              SetVector<Instruction*> &sinks,
133              SmallVectorImpl<Instruction*> &wrap) :
134     Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited),
135     Sources(sources), Sinks(sinks), SafeWrap(wrap) {
136     ExtTy = IntegerType::get(Ctx, PromotedWidth);
137     assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits()
138            && "Original type not smaller than extended type");
139   }
140 
141   void Mutate();
142 };
143 
144 class TypePromotion : public FunctionPass {
145   unsigned TypeSize = 0;
146   LLVMContext *Ctx = nullptr;
147   unsigned RegisterBitWidth = 0;
148   SmallPtrSet<Value*, 16> AllVisited;
149   SmallPtrSet<Instruction*, 8> SafeToPromote;
150   SmallVector<Instruction*, 4> SafeWrap;
151 
152   // Does V have the same size result type as TypeSize.
153   bool EqualTypeSize(Value *V);
154   // Does V have the same size, or narrower, result type as TypeSize.
155   bool LessOrEqualTypeSize(Value *V);
156   // Does V have a result type that is wider than TypeSize.
157   bool GreaterThanTypeSize(Value *V);
158   // Does V have a result type that is narrower than TypeSize.
159   bool LessThanTypeSize(Value *V);
160   // Should V be a leaf in the promote tree?
161   bool isSource(Value *V);
162   // Should V be a root in the promotion tree?
163   bool isSink(Value *V);
164   // Should we change the result type of V? It will result in the users of V
165   // being visited.
166   bool shouldPromote(Value *V);
167   // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
168   // result won't affect the computation?
169   bool isSafeWrap(Instruction *I);
170   // Can V have its integer type promoted, or can the type be ignored.
171   bool isSupportedType(Value *V);
172   // Is V an instruction with a supported opcode or another value that we can
173   // handle, such as constants and basic blocks.
174   bool isSupportedValue(Value *V);
175   // Is V an instruction thats result can trivially promoted, or has safe
176   // wrapping.
177   bool isLegalToPromote(Value *V);
178   bool TryToPromote(Value *V, unsigned PromotedWidth);
179 
180 public:
181   static char ID;
182 
183   TypePromotion() : FunctionPass(ID) {}
184 
185   void getAnalysisUsage(AnalysisUsage &AU) const override {
186     AU.addRequired<TargetTransformInfoWrapperPass>();
187     AU.addRequired<TargetPassConfig>();
188   }
189 
190   StringRef getPassName() const override { return PASS_NAME; }
191 
192   bool runOnFunction(Function &F) override;
193 };
194 
195 }
196 
197 static bool GenerateSignBits(Value *V) {
198   if (!isa<Instruction>(V))
199     return false;
200 
201   unsigned Opc = cast<Instruction>(V)->getOpcode();
202   return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
203          Opc == Instruction::SRem || Opc == Instruction::SExt;
204 }
205 
206 bool TypePromotion::EqualTypeSize(Value *V) {
207   return V->getType()->getScalarSizeInBits() == TypeSize;
208 }
209 
210 bool TypePromotion::LessOrEqualTypeSize(Value *V) {
211   return V->getType()->getScalarSizeInBits() <= TypeSize;
212 }
213 
214 bool TypePromotion::GreaterThanTypeSize(Value *V) {
215   return V->getType()->getScalarSizeInBits() > TypeSize;
216 }
217 
218 bool TypePromotion::LessThanTypeSize(Value *V) {
219   return V->getType()->getScalarSizeInBits() < TypeSize;
220 }
221 
222 /// Return true if the given value is a source in the use-def chain, producing
223 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
224 /// of the tree to i32. We guarantee that these won't populate the upper bits
225 /// of the register. ZExt on the loads will be free, and the same for call
226 /// return values because we only accept ones that guarantee a zeroext ret val.
227 /// Many arguments will have the zeroext attribute too, so those would be free
228 /// too.
229 bool TypePromotion::isSource(Value *V) {
230   if (!isa<IntegerType>(V->getType()))
231     return false;
232 
233   // TODO Allow zext to be sources.
234   if (isa<Argument>(V))
235     return true;
236   else if (isa<LoadInst>(V))
237     return true;
238   else if (isa<BitCastInst>(V))
239     return true;
240   else if (auto *Call = dyn_cast<CallInst>(V))
241     return Call->hasRetAttr(Attribute::AttrKind::ZExt);
242   else if (auto *Trunc = dyn_cast<TruncInst>(V))
243     return EqualTypeSize(Trunc);
244   return false;
245 }
246 
247 /// Return true if V will require any promoted values to be truncated for the
248 /// the IR to remain valid. We can't mutate the value type of these
249 /// instructions.
250 bool TypePromotion::isSink(Value *V) {
251   // TODO The truncate also isn't actually necessary because we would already
252   // proved that the data value is kept within the range of the original data
253   // type.
254 
255   // Sinks are:
256   // - points where the value in the register is being observed, such as an
257   //   icmp, switch or store.
258   // - points where value types have to match, such as calls and returns.
259   // - zext are included to ease the transformation and are generally removed
260   //   later on.
261   if (auto *Store = dyn_cast<StoreInst>(V))
262     return LessOrEqualTypeSize(Store->getValueOperand());
263   if (auto *Return = dyn_cast<ReturnInst>(V))
264     return LessOrEqualTypeSize(Return->getReturnValue());
265   if (auto *ZExt = dyn_cast<ZExtInst>(V))
266     return GreaterThanTypeSize(ZExt);
267   if (auto *Switch = dyn_cast<SwitchInst>(V))
268     return LessThanTypeSize(Switch->getCondition());
269   if (auto *ICmp = dyn_cast<ICmpInst>(V))
270     return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
271 
272   return isa<CallInst>(V);
273 }
274 
275 /// Return whether this instruction can safely wrap.
276 bool TypePromotion::isSafeWrap(Instruction *I) {
277   // We can support a, potentially, wrapping instruction (I) if:
278   // - It is only used by an unsigned icmp.
279   // - The icmp uses a constant.
280   // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
281   //   around zero to become a larger number than before.
282   // - The wrapping instruction (I) also uses a constant.
283   //
284   // We can then use the two constants to calculate whether the result would
285   // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
286   // just underflows the range, the icmp would give the same result whether the
287   // result has been truncated or not. We calculate this by:
288   // - Zero extending both constants, if needed, to 32-bits.
289   // - Take the absolute value of I's constant, adding this to the icmp const.
290   // - Check that this value is not out of range for small type. If it is, it
291   //   means that it has underflowed enough to wrap around the icmp constant.
292   //
293   // For example:
294   //
295   // %sub = sub i8 %a, 2
296   // %cmp = icmp ule i8 %sub, 254
297   //
298   // If %a = 0, %sub = -2 == FE == 254
299   // But if this is evalulated as a i32
300   // %sub = -2 == FF FF FF FE == 4294967294
301   // So the unsigned compares (i8 and i32) would not yield the same result.
302   //
303   // Another way to look at it is:
304   // %a - 2 <= 254
305   // %a + 2 <= 254 + 2
306   // %a <= 256
307   // And we can't represent 256 in the i8 format, so we don't support it.
308   //
309   // Whereas:
310   //
311   // %sub i8 %a, 1
312   // %cmp = icmp ule i8 %sub, 254
313   //
314   // If %a = 0, %sub = -1 == FF == 255
315   // As i32:
316   // %sub = -1 == FF FF FF FF == 4294967295
317   //
318   // In this case, the unsigned compare results would be the same and this
319   // would also be true for ult, uge and ugt:
320   // - (255 < 254) == (0xFFFFFFFF < 254) == false
321   // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
322   // - (255 > 254) == (0xFFFFFFFF > 254) == true
323   // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
324   //
325   // To demonstrate why we can't handle increasing values:
326   //
327   // %add = add i8 %a, 2
328   // %cmp = icmp ult i8 %add, 127
329   //
330   // If %a = 254, %add = 256 == (i8 1)
331   // As i32:
332   // %add = 256
333   //
334   // (1 < 127) != (256 < 127)
335 
336   unsigned Opc = I->getOpcode();
337   if (Opc != Instruction::Add && Opc != Instruction::Sub)
338     return false;
339 
340   if (!I->hasOneUse() ||
341       !isa<ICmpInst>(*I->user_begin()) ||
342       !isa<ConstantInt>(I->getOperand(1)))
343     return false;
344 
345   ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
346   bool NegImm = OverflowConst->isNegative();
347   bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
348                        ((Opc == Instruction::Add) && NegImm);
349   if (!IsDecreasing)
350     return false;
351 
352   // Don't support an icmp that deals with sign bits.
353   auto *CI = cast<ICmpInst>(*I->user_begin());
354   if (CI->isSigned() || CI->isEquality())
355     return false;
356 
357   ConstantInt *ICmpConst = nullptr;
358   if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
359     ICmpConst = Const;
360   else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
361     ICmpConst = Const;
362   else
363     return false;
364 
365   // Now check that the result can't wrap on itself.
366   APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
367     ICmpConst->getValue().zext(32) : ICmpConst->getValue();
368 
369   Total += OverflowConst->getValue().getBitWidth() < 32 ?
370     OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
371 
372   APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize);
373 
374   if (Total.getBitWidth() > Max.getBitWidth()) {
375     if (Total.ugt(Max.zext(Total.getBitWidth())))
376       return false;
377   } else if (Max.getBitWidth() > Total.getBitWidth()) {
378     if (Total.zext(Max.getBitWidth()).ugt(Max))
379       return false;
380   } else if (Total.ugt(Max))
381     return false;
382 
383   LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for "
384              << *I << "\n");
385   SafeWrap.push_back(I);
386   return true;
387 }
388 
389 bool TypePromotion::shouldPromote(Value *V) {
390   if (!isa<IntegerType>(V->getType()) || isSink(V))
391     return false;
392 
393   if (isSource(V))
394     return true;
395 
396   auto *I = dyn_cast<Instruction>(V);
397   if (!I)
398     return false;
399 
400   if (isa<ICmpInst>(I))
401     return false;
402 
403   return true;
404 }
405 
406 /// Return whether we can safely mutate V's type to ExtTy without having to be
407 /// concerned with zero extending or truncation.
408 static bool isPromotedResultSafe(Value *V) {
409   if (GenerateSignBits(V))
410     return false;
411 
412   if (!isa<Instruction>(V))
413     return true;
414 
415   if (!isa<OverflowingBinaryOperator>(V))
416     return true;
417 
418   return cast<Instruction>(V)->hasNoUnsignedWrap();
419 }
420 
421 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
422   SmallVector<Instruction*, 4> Users;
423   Instruction *InstTo = dyn_cast<Instruction>(To);
424   bool ReplacedAll = true;
425 
426   LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
427              << "\n");
428 
429   for (Use &U : From->uses()) {
430     auto *User = cast<Instruction>(U.getUser());
431     if (InstTo && User->isIdenticalTo(InstTo)) {
432       ReplacedAll = false;
433       continue;
434     }
435     Users.push_back(User);
436   }
437 
438   for (auto *U : Users)
439     U->replaceUsesOfWith(From, To);
440 
441   if (ReplacedAll)
442     if (auto *I = dyn_cast<Instruction>(From))
443       InstsToRemove.insert(I);
444 }
445 
446 void IRPromoter::PrepareWrappingAdds() {
447   LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n");
448   IRBuilder<> Builder{Ctx};
449 
450   // For adds that safely wrap and use a negative immediate as operand 1, we
451   // create an equivalent instruction using a positive immediate.
452   // That positive immediate can then be zext along with all the other
453   // immediates later.
454   for (auto *I : SafeWrap) {
455     if (I->getOpcode() != Instruction::Add)
456       continue;
457 
458     LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n");
459     assert((isa<ConstantInt>(I->getOperand(1)) &&
460             cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
461            "Wrapping should have a negative immediate as the second operand");
462 
463     auto Const = cast<ConstantInt>(I->getOperand(1));
464     auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
465     Builder.SetInsertPoint(I);
466     Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
467     if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
468       NewInst->copyIRFlags(I);
469       NewInsts.insert(NewInst);
470     }
471     InstsToRemove.insert(I);
472     I->replaceAllUsesWith(NewVal);
473     LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n");
474   }
475   for (auto *I : NewInsts)
476     Visited.insert(I);
477 }
478 
479 void IRPromoter::ExtendSources() {
480   IRBuilder<> Builder{Ctx};
481 
482   auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
483     assert(V->getType() != ExtTy && "zext already extends to i32");
484     LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
485     Builder.SetInsertPoint(InsertPt);
486     if (auto *I = dyn_cast<Instruction>(V))
487       Builder.SetCurrentDebugLocation(I->getDebugLoc());
488 
489     Value *ZExt = Builder.CreateZExt(V, ExtTy);
490     if (auto *I = dyn_cast<Instruction>(ZExt)) {
491       if (isa<Argument>(V))
492         I->moveBefore(InsertPt);
493       else
494         I->moveAfter(InsertPt);
495       NewInsts.insert(I);
496     }
497 
498     ReplaceAllUsersOfWith(V, ZExt);
499   };
500 
501   // Now, insert extending instructions between the sources and their users.
502   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
503   for (auto V : Sources) {
504     LLVM_DEBUG(dbgs() << " - " << *V << "\n");
505     if (auto *I = dyn_cast<Instruction>(V))
506       InsertZExt(I, I);
507     else if (auto *Arg = dyn_cast<Argument>(V)) {
508       BasicBlock &BB = Arg->getParent()->front();
509       InsertZExt(Arg, &*BB.getFirstInsertionPt());
510     } else {
511       llvm_unreachable("unhandled source that needs extending");
512     }
513     Promoted.insert(V);
514   }
515 }
516 
517 void IRPromoter::PromoteTree() {
518   LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
519 
520   IRBuilder<> Builder{Ctx};
521 
522   // Mutate the types of the instructions within the tree. Here we handle
523   // constant operands.
524   for (auto *V : Visited) {
525     if (Sources.count(V))
526       continue;
527 
528     auto *I = cast<Instruction>(V);
529     if (Sinks.count(I))
530       continue;
531 
532     for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
533       Value *Op = I->getOperand(i);
534       if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
535         continue;
536 
537       if (auto *Const = dyn_cast<ConstantInt>(Op)) {
538         Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
539         I->setOperand(i, NewConst);
540       } else if (isa<UndefValue>(Op))
541         I->setOperand(i, UndefValue::get(ExtTy));
542     }
543 
544     // Mutate the result type, unless this is an icmp.
545     if (!isa<ICmpInst>(I)) {
546       I->mutateType(ExtTy);
547       Promoted.insert(I);
548     }
549   }
550 }
551 
552 void IRPromoter::TruncateSinks() {
553   LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
554 
555   IRBuilder<> Builder{Ctx};
556 
557   auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
558     if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
559       return nullptr;
560 
561     if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
562       return nullptr;
563 
564     LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
565                << *V << "\n");
566     Builder.SetInsertPoint(cast<Instruction>(V));
567     auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
568     if (Trunc)
569       NewInsts.insert(Trunc);
570     return Trunc;
571   };
572 
573   // Fix up any stores or returns that use the results of the promoted
574   // chain.
575   for (auto I : Sinks) {
576     LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
577 
578     // Handle calls separately as we need to iterate over arg operands.
579     if (auto *Call = dyn_cast<CallInst>(I)) {
580       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
581         Value *Arg = Call->getArgOperand(i);
582         Type *Ty = TruncTysMap[Call][i];
583         if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
584           Trunc->moveBefore(Call);
585           Call->setArgOperand(i, Trunc);
586         }
587       }
588       continue;
589     }
590 
591     // Special case switches because we need to truncate the condition.
592     if (auto *Switch = dyn_cast<SwitchInst>(I)) {
593       Type *Ty = TruncTysMap[Switch][0];
594       if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
595         Trunc->moveBefore(Switch);
596         Switch->setCondition(Trunc);
597       }
598       continue;
599     }
600 
601     // Now handle the others.
602     for (unsigned i = 0; i < I->getNumOperands(); ++i) {
603       Type *Ty = TruncTysMap[I][i];
604       if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
605         Trunc->moveBefore(I);
606         I->setOperand(i, Trunc);
607       }
608     }
609   }
610 }
611 
612 void IRPromoter::Cleanup() {
613   LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
614   // Some zexts will now have become redundant, along with their trunc
615   // operands, so remove them
616   for (auto V : Visited) {
617     if (!isa<ZExtInst>(V))
618       continue;
619 
620     auto ZExt = cast<ZExtInst>(V);
621     if (ZExt->getDestTy() != ExtTy)
622       continue;
623 
624     Value *Src = ZExt->getOperand(0);
625     if (ZExt->getSrcTy() == ZExt->getDestTy()) {
626       LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
627                  << "\n");
628       ReplaceAllUsersOfWith(ZExt, Src);
629       continue;
630     }
631 
632     // Unless they produce a value that is narrower than ExtTy, we can
633     // replace the result of the zext with the input of a newly inserted
634     // trunc.
635     if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
636         Src->getType() == OrigTy) {
637       auto *Trunc = cast<TruncInst>(Src);
638       assert(Trunc->getOperand(0)->getType() == ExtTy &&
639              "expected inserted trunc to be operating on i32");
640       ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
641     }
642   }
643 
644   for (auto *I : InstsToRemove) {
645     LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
646     I->dropAllReferences();
647     I->eraseFromParent();
648   }
649 }
650 
651 void IRPromoter::ConvertTruncs() {
652   LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
653   IRBuilder<> Builder{Ctx};
654 
655   for (auto *V : Visited) {
656     if (!isa<TruncInst>(V) || Sources.count(V))
657       continue;
658 
659     auto *Trunc = cast<TruncInst>(V);
660     Builder.SetInsertPoint(Trunc);
661     IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
662     IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
663 
664     unsigned NumBits = DestTy->getScalarSizeInBits();
665     ConstantInt *Mask =
666       ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
667     Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
668 
669     if (auto *I = dyn_cast<Instruction>(Masked))
670       NewInsts.insert(I);
671 
672     ReplaceAllUsersOfWith(Trunc, Masked);
673   }
674 }
675 
676 void IRPromoter::Mutate() {
677   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
678              << OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n");
679 
680   // Cache original types of the values that will likely need truncating
681   for (auto *I : Sinks) {
682     if (auto *Call = dyn_cast<CallInst>(I)) {
683       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
684         Value *Arg = Call->getArgOperand(i);
685         TruncTysMap[Call].push_back(Arg->getType());
686       }
687     } else if (auto *Switch = dyn_cast<SwitchInst>(I))
688       TruncTysMap[I].push_back(Switch->getCondition()->getType());
689     else {
690       for (unsigned i = 0; i < I->getNumOperands(); ++i)
691         TruncTysMap[I].push_back(I->getOperand(i)->getType());
692     }
693   }
694   for (auto *V : Visited) {
695     if (!isa<TruncInst>(V) || Sources.count(V))
696       continue;
697     auto *Trunc = cast<TruncInst>(V);
698     TruncTysMap[Trunc].push_back(Trunc->getDestTy());
699   }
700 
701   // Convert adds using negative immediates to equivalent instructions that use
702   // positive constants.
703   PrepareWrappingAdds();
704 
705   // Insert zext instructions between sources and their users.
706   ExtendSources();
707 
708   // Promote visited instructions, mutating their types in place.
709   PromoteTree();
710 
711   // Convert any truncs, that aren't sources, into AND masks.
712   ConvertTruncs();
713 
714   // Insert trunc instructions for use by calls, stores etc...
715   TruncateSinks();
716 
717   // Finally, remove unecessary zexts and truncs, delete old instructions and
718   // clear the data structures.
719   Cleanup();
720 
721   LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
722 }
723 
724 /// We disallow booleans to make life easier when dealing with icmps but allow
725 /// any other integer that fits in a scalar register. Void types are accepted
726 /// so we can handle switches.
727 bool TypePromotion::isSupportedType(Value *V) {
728   Type *Ty = V->getType();
729 
730   // Allow voids and pointers, these won't be promoted.
731   if (Ty->isVoidTy() || Ty->isPointerTy())
732     return true;
733 
734   if (!isa<IntegerType>(Ty) ||
735       cast<IntegerType>(Ty)->getBitWidth() == 1 ||
736       cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
737     return false;
738 
739   return LessOrEqualTypeSize(V);
740 }
741 
742 /// We accept most instructions, as well as Arguments and ConstantInsts. We
743 /// Disallow casts other than zext and truncs and only allow calls if their
744 /// return value is zeroext. We don't allow opcodes that can introduce sign
745 /// bits.
746 bool TypePromotion::isSupportedValue(Value *V) {
747   if (auto *I = dyn_cast<Instruction>(V)) {
748     switch (I->getOpcode()) {
749     default:
750       return isa<BinaryOperator>(I) && isSupportedType(I) &&
751              !GenerateSignBits(I);
752     case Instruction::GetElementPtr:
753     case Instruction::Store:
754     case Instruction::Br:
755     case Instruction::Switch:
756       return true;
757     case Instruction::PHI:
758     case Instruction::Select:
759     case Instruction::Ret:
760     case Instruction::Load:
761     case Instruction::Trunc:
762     case Instruction::BitCast:
763       return isSupportedType(I);
764     case Instruction::ZExt:
765       return isSupportedType(I->getOperand(0));
766     case Instruction::ICmp:
767       // Now that we allow small types than TypeSize, only allow icmp of
768       // TypeSize because they will require a trunc to be legalised.
769       // TODO: Allow icmp of smaller types, and calculate at the end
770       // whether the transform would be beneficial.
771       if (isa<PointerType>(I->getOperand(0)->getType()))
772         return true;
773       return EqualTypeSize(I->getOperand(0));
774     case Instruction::Call: {
775       // Special cases for calls as we need to check for zeroext
776       // TODO We should accept calls even if they don't have zeroext, as they
777       // can still be sinks.
778       auto *Call = cast<CallInst>(I);
779       return isSupportedType(Call) &&
780              Call->hasRetAttr(Attribute::AttrKind::ZExt);
781     }
782     }
783   } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
784     return isSupportedType(V);
785   } else if (isa<Argument>(V))
786     return isSupportedType(V);
787 
788   return isa<BasicBlock>(V);
789 }
790 
791 /// Check that the type of V would be promoted and that the original type is
792 /// smaller than the targeted promoted type. Check that we're not trying to
793 /// promote something larger than our base 'TypeSize' type.
794 bool TypePromotion::isLegalToPromote(Value *V) {
795 
796   auto *I = dyn_cast<Instruction>(V);
797   if (!I)
798     return true;
799 
800   if (SafeToPromote.count(I))
801    return true;
802 
803   if (isPromotedResultSafe(V) || isSafeWrap(I)) {
804     SafeToPromote.insert(I);
805     return true;
806   }
807   return false;
808 }
809 
810 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
811   Type *OrigTy = V->getType();
812   TypeSize = OrigTy->getPrimitiveSizeInBits();
813   SafeToPromote.clear();
814   SafeWrap.clear();
815 
816   if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
817     return false;
818 
819   LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
820              << TypeSize << " bits to " << PromotedWidth << "\n");
821 
822   SetVector<Value*> WorkList;
823   SetVector<Value*> Sources;
824   SetVector<Instruction*> Sinks;
825   SetVector<Value*> CurrentVisited;
826   WorkList.insert(V);
827 
828   // Return true if V was added to the worklist as a supported instruction,
829   // if it was already visited, or if we don't need to explore it (e.g.
830   // pointer values and GEPs), and false otherwise.
831   auto AddLegalInst = [&](Value *V) {
832     if (CurrentVisited.count(V))
833       return true;
834 
835     // Ignore GEPs because they don't need promoting and the constant indices
836     // will prevent the transformation.
837     if (isa<GetElementPtrInst>(V))
838       return true;
839 
840     if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
841       LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
842       return false;
843     }
844 
845     WorkList.insert(V);
846     return true;
847   };
848 
849   // Iterate through, and add to, a tree of operands and users in the use-def.
850   while (!WorkList.empty()) {
851     Value *V = WorkList.pop_back_val();
852     if (CurrentVisited.count(V))
853       continue;
854 
855     // Ignore non-instructions, other than arguments.
856     if (!isa<Instruction>(V) && !isSource(V))
857       continue;
858 
859     // If we've already visited this value from somewhere, bail now because
860     // the tree has already been explored.
861     // TODO: This could limit the transform, ie if we try to promote something
862     // from an i8 and fail first, before trying an i16.
863     if (AllVisited.count(V))
864       return false;
865 
866     CurrentVisited.insert(V);
867     AllVisited.insert(V);
868 
869     // Calls can be both sources and sinks.
870     if (isSink(V))
871       Sinks.insert(cast<Instruction>(V));
872 
873     if (isSource(V))
874       Sources.insert(V);
875 
876     if (!isSink(V) && !isSource(V)) {
877       if (auto *I = dyn_cast<Instruction>(V)) {
878         // Visit operands of any instruction visited.
879         for (auto &U : I->operands()) {
880           if (!AddLegalInst(U))
881             return false;
882         }
883       }
884     }
885 
886     // Don't visit users of a node which isn't going to be mutated unless its a
887     // source.
888     if (isSource(V) || shouldPromote(V)) {
889       for (Use &U : V->uses()) {
890         if (!AddLegalInst(U.getUser()))
891           return false;
892       }
893     }
894   }
895 
896   LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
897              for (auto *I : CurrentVisited)
898                I->dump();
899              );
900 
901   unsigned ToPromote = 0;
902   unsigned NonFreeArgs = 0;
903   SmallPtrSet<BasicBlock*, 4> Blocks;
904   for (auto *V : CurrentVisited) {
905     if (auto *I = dyn_cast<Instruction>(V))
906       Blocks.insert(I->getParent());
907 
908     if (Sources.count(V)) {
909       if (auto *Arg = dyn_cast<Argument>(V))
910         if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
911           ++NonFreeArgs;
912       continue;
913     }
914 
915     if (Sinks.count(cast<Instruction>(V)))
916       continue;
917      ++ToPromote;
918    }
919 
920   // DAG optimizations should be able to handle these cases better, especially
921   // for function arguments.
922   if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
923     return false;
924 
925   if (ToPromote < 2)
926     return false;
927 
928   IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth,
929                       CurrentVisited, Sources, Sinks, SafeWrap);
930   Promoter.Mutate();
931   return true;
932 }
933 
934 bool TypePromotion::runOnFunction(Function &F) {
935   if (skipFunction(F) || DisablePromotion)
936     return false;
937 
938   LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
939 
940   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
941   if (!TPC)
942     return false;
943 
944   AllVisited.clear();
945   SafeToPromote.clear();
946   SafeWrap.clear();
947   bool MadeChange = false;
948   const DataLayout &DL = F.getParent()->getDataLayout();
949   const TargetMachine &TM = TPC->getTM<TargetMachine>();
950   const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
951   const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
952   const TargetTransformInfo &TII =
953     getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
954   RegisterBitWidth = TII.getRegisterBitWidth(false);
955   Ctx = &F.getParent()->getContext();
956 
957   // Search up from icmps to try to promote their operands.
958   for (BasicBlock &BB : F) {
959     for (auto &I : BB) {
960       if (AllVisited.count(&I))
961         continue;
962 
963       if (!isa<ICmpInst>(&I))
964         continue;
965 
966       auto *ICmp = cast<ICmpInst>(&I);
967       // Skip signed or pointer compares
968       if (ICmp->isSigned() ||
969           !isa<IntegerType>(ICmp->getOperand(0)->getType()))
970         continue;
971 
972       LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
973 
974       for (auto &Op : ICmp->operands()) {
975         if (auto *I = dyn_cast<Instruction>(Op)) {
976           EVT SrcVT = TLI->getValueType(DL, I->getType());
977           if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
978             break;
979 
980           if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
981               TargetLowering::TypePromoteInteger)
982             break;
983 
984           EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
985           if (RegisterBitWidth < PromotedVT.getSizeInBits()) {
986             LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
987                        << "for promoted type\n");
988             break;
989           }
990 
991           MadeChange |= TryToPromote(I, PromotedVT.getSizeInBits());
992           break;
993         }
994       }
995     }
996     LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
997                 dbgs() << F;
998                 report_fatal_error("Broken function after type promotion");
999                });
1000   }
1001   if (MadeChange)
1002     LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
1003 
1004   AllVisited.clear();
1005   SafeToPromote.clear();
1006   SafeWrap.clear();
1007 
1008   return MadeChange;
1009 }
1010 
1011 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1012 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1013 
1014 char TypePromotion::ID = 0;
1015 
1016 FunctionPass *llvm::createTypePromotionPass() {
1017   return new TypePromotion();
1018 }
1019