1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Target/TargetMachine.h"
41 
42 #define DEBUG_TYPE "type-promotion"
43 #define PASS_NAME "Type Promotion"
44 
45 using namespace llvm;
46 
47 static cl::opt<bool>
48 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false),
49                  cl::desc("Disable type promotion pass"));
50 
51 // The goal of this pass is to enable more efficient code generation for
52 // operations on narrow types (i.e. types with < 32-bits) and this is a
53 // motivating IR code example:
54 //
55 //   define hidden i32 @cmp(i8 zeroext) {
56 //     %2 = add i8 %0, -49
57 //     %3 = icmp ult i8 %2, 3
58 //     ..
59 //   }
60 //
61 // The issue here is that i8 is type-legalized to i32 because i8 is not a
62 // legal type. Thus, arithmetic is done in integer-precision, but then the
63 // byte value is masked out as follows:
64 //
65 //   t19: i32 = add t4, Constant:i32<-49>
66 //     t24: i32 = and t19, Constant:i32<255>
67 //
68 // Consequently, we generate code like this:
69 //
70 //   subs  r0, #49
71 //   uxtb  r1, r0
72 //   cmp r1, #3
73 //
74 // This shows that masking out the byte value results in generation of
75 // the UXTB instruction. This is not optimal as r0 already contains the byte
76 // value we need, and so instead we can just generate:
77 //
78 //   sub.w r1, r0, #49
79 //   cmp r1, #3
80 //
81 // We achieve this by type promoting the IR to i32 like so for this example:
82 //
83 //   define i32 @cmp(i8 zeroext %c) {
84 //     %0 = zext i8 %c to i32
85 //     %c.off = add i32 %0, -49
86 //     %1 = icmp ult i32 %c.off, 3
87 //     ..
88 //   }
89 //
90 // For this to be valid and legal, we need to prove that the i32 add is
91 // producing the same value as the i8 addition, and that e.g. no overflow
92 // happens.
93 //
94 // A brief sketch of the algorithm and some terminology.
95 // We pattern match interesting IR patterns:
96 // - which have "sources": instructions producing narrow values (i8, i16), and
97 // - they have "sinks": instructions consuming these narrow values.
98 //
99 // We collect all instruction connecting sources and sinks in a worklist, so
100 // that we can mutate these instruction and perform type promotion when it is
101 // legal to do so.
102 
103 namespace {
104 class IRPromoter {
105   LLVMContext &Ctx;
106   IntegerType *OrigTy = nullptr;
107   unsigned PromotedWidth = 0;
108   SetVector<Value*> &Visited;
109   SetVector<Value*> &Sources;
110   SetVector<Instruction*> &Sinks;
111   SmallPtrSetImpl<Instruction *> &SafeWrap;
112   IntegerType *ExtTy = nullptr;
113   SmallPtrSet<Value*, 8> NewInsts;
114   SmallPtrSet<Instruction*, 4> InstsToRemove;
115   DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
116   SmallPtrSet<Value*, 8> Promoted;
117 
118   void ReplaceAllUsersOfWith(Value *From, Value *To);
119   void ExtendSources();
120   void ConvertTruncs();
121   void PromoteTree();
122   void TruncateSinks();
123   void Cleanup();
124 
125 public:
126   IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width,
127              SetVector<Value *> &visited, SetVector<Value *> &sources,
128              SetVector<Instruction *> &sinks,
129              SmallPtrSetImpl<Instruction *> &wrap)
130       : Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited),
131         Sources(sources), Sinks(sinks), SafeWrap(wrap) {
132     ExtTy = IntegerType::get(Ctx, PromotedWidth);
133     assert(OrigTy->getPrimitiveSizeInBits().getFixedSize() <
134                ExtTy->getPrimitiveSizeInBits().getFixedSize() &&
135            "Original type not smaller than extended type");
136   }
137 
138   void Mutate();
139 };
140 
141 class TypePromotion : public FunctionPass {
142   unsigned TypeSize = 0;
143   LLVMContext *Ctx = nullptr;
144   unsigned RegisterBitWidth = 0;
145   SmallPtrSet<Value*, 16> AllVisited;
146   SmallPtrSet<Instruction*, 8> SafeToPromote;
147   SmallPtrSet<Instruction *, 4> SafeWrap;
148 
149   // Does V have the same size result type as TypeSize.
150   bool EqualTypeSize(Value *V);
151   // Does V have the same size, or narrower, result type as TypeSize.
152   bool LessOrEqualTypeSize(Value *V);
153   // Does V have a result type that is wider than TypeSize.
154   bool GreaterThanTypeSize(Value *V);
155   // Does V have a result type that is narrower than TypeSize.
156   bool LessThanTypeSize(Value *V);
157   // Should V be a leaf in the promote tree?
158   bool isSource(Value *V);
159   // Should V be a root in the promotion tree?
160   bool isSink(Value *V);
161   // Should we change the result type of V? It will result in the users of V
162   // being visited.
163   bool shouldPromote(Value *V);
164   // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
165   // result won't affect the computation?
166   bool isSafeWrap(Instruction *I);
167   // Can V have its integer type promoted, or can the type be ignored.
168   bool isSupportedType(Value *V);
169   // Is V an instruction with a supported opcode or another value that we can
170   // handle, such as constants and basic blocks.
171   bool isSupportedValue(Value *V);
172   // Is V an instruction thats result can trivially promoted, or has safe
173   // wrapping.
174   bool isLegalToPromote(Value *V);
175   bool TryToPromote(Value *V, unsigned PromotedWidth);
176 
177 public:
178   static char ID;
179 
180   TypePromotion() : FunctionPass(ID) {}
181 
182   void getAnalysisUsage(AnalysisUsage &AU) const override {
183     AU.addRequired<TargetTransformInfoWrapperPass>();
184     AU.addRequired<TargetPassConfig>();
185     AU.setPreservesCFG();
186   }
187 
188   StringRef getPassName() const override { return PASS_NAME; }
189 
190   bool runOnFunction(Function &F) override;
191 };
192 
193 }
194 
195 static bool GenerateSignBits(Instruction *I) {
196   unsigned Opc = I->getOpcode();
197   return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
198          Opc == Instruction::SRem || Opc == Instruction::SExt;
199 }
200 
201 bool TypePromotion::EqualTypeSize(Value *V) {
202   return V->getType()->getScalarSizeInBits() == TypeSize;
203 }
204 
205 bool TypePromotion::LessOrEqualTypeSize(Value *V) {
206   return V->getType()->getScalarSizeInBits() <= TypeSize;
207 }
208 
209 bool TypePromotion::GreaterThanTypeSize(Value *V) {
210   return V->getType()->getScalarSizeInBits() > TypeSize;
211 }
212 
213 bool TypePromotion::LessThanTypeSize(Value *V) {
214   return V->getType()->getScalarSizeInBits() < TypeSize;
215 }
216 
217 /// Return true if the given value is a source in the use-def chain, producing
218 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
219 /// of the tree to i32. We guarantee that these won't populate the upper bits
220 /// of the register. ZExt on the loads will be free, and the same for call
221 /// return values because we only accept ones that guarantee a zeroext ret val.
222 /// Many arguments will have the zeroext attribute too, so those would be free
223 /// too.
224 bool TypePromotion::isSource(Value *V) {
225   if (!isa<IntegerType>(V->getType()))
226     return false;
227 
228   // TODO Allow zext to be sources.
229   if (isa<Argument>(V))
230     return true;
231   else if (isa<LoadInst>(V))
232     return true;
233   else if (isa<BitCastInst>(V))
234     return true;
235   else if (auto *Call = dyn_cast<CallInst>(V))
236     return Call->hasRetAttr(Attribute::AttrKind::ZExt);
237   else if (auto *Trunc = dyn_cast<TruncInst>(V))
238     return EqualTypeSize(Trunc);
239   return false;
240 }
241 
242 /// Return true if V will require any promoted values to be truncated for the
243 /// the IR to remain valid. We can't mutate the value type of these
244 /// instructions.
245 bool TypePromotion::isSink(Value *V) {
246   // TODO The truncate also isn't actually necessary because we would already
247   // proved that the data value is kept within the range of the original data
248   // type.
249 
250   // Sinks are:
251   // - points where the value in the register is being observed, such as an
252   //   icmp, switch or store.
253   // - points where value types have to match, such as calls and returns.
254   // - zext are included to ease the transformation and are generally removed
255   //   later on.
256   if (auto *Store = dyn_cast<StoreInst>(V))
257     return LessOrEqualTypeSize(Store->getValueOperand());
258   if (auto *Return = dyn_cast<ReturnInst>(V))
259     return LessOrEqualTypeSize(Return->getReturnValue());
260   if (auto *ZExt = dyn_cast<ZExtInst>(V))
261     return GreaterThanTypeSize(ZExt);
262   if (auto *Switch = dyn_cast<SwitchInst>(V))
263     return LessThanTypeSize(Switch->getCondition());
264   if (auto *ICmp = dyn_cast<ICmpInst>(V))
265     return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
266 
267   return isa<CallInst>(V);
268 }
269 
270 /// Return whether this instruction can safely wrap.
271 bool TypePromotion::isSafeWrap(Instruction *I) {
272   // We can support a, potentially, wrapping instruction (I) if:
273   // - It is only used by an unsigned icmp.
274   // - The icmp uses a constant.
275   // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
276   //   around zero to become a larger number than before.
277   // - The wrapping instruction (I) also uses a constant.
278   //
279   // We can then use the two constants to calculate whether the result would
280   // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
281   // just underflows the range, the icmp would give the same result whether the
282   // result has been truncated or not. We calculate this by:
283   // - Zero extending both constants, if needed, to RegisterBitWidth.
284   // - Take the absolute value of I's constant, adding this to the icmp const.
285   // - Check that this value is not out of range for small type. If it is, it
286   //   means that it has underflowed enough to wrap around the icmp constant.
287   //
288   // For example:
289   //
290   // %sub = sub i8 %a, 2
291   // %cmp = icmp ule i8 %sub, 254
292   //
293   // If %a = 0, %sub = -2 == FE == 254
294   // But if this is evalulated as a i32
295   // %sub = -2 == FF FF FF FE == 4294967294
296   // So the unsigned compares (i8 and i32) would not yield the same result.
297   //
298   // Another way to look at it is:
299   // %a - 2 <= 254
300   // %a + 2 <= 254 + 2
301   // %a <= 256
302   // And we can't represent 256 in the i8 format, so we don't support it.
303   //
304   // Whereas:
305   //
306   // %sub i8 %a, 1
307   // %cmp = icmp ule i8 %sub, 254
308   //
309   // If %a = 0, %sub = -1 == FF == 255
310   // As i32:
311   // %sub = -1 == FF FF FF FF == 4294967295
312   //
313   // In this case, the unsigned compare results would be the same and this
314   // would also be true for ult, uge and ugt:
315   // - (255 < 254) == (0xFFFFFFFF < 254) == false
316   // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
317   // - (255 > 254) == (0xFFFFFFFF > 254) == true
318   // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
319   //
320   // To demonstrate why we can't handle increasing values:
321   //
322   // %add = add i8 %a, 2
323   // %cmp = icmp ult i8 %add, 127
324   //
325   // If %a = 254, %add = 256 == (i8 1)
326   // As i32:
327   // %add = 256
328   //
329   // (1 < 127) != (256 < 127)
330 
331   unsigned Opc = I->getOpcode();
332   if (Opc != Instruction::Add && Opc != Instruction::Sub)
333     return false;
334 
335   if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) ||
336       !isa<ConstantInt>(I->getOperand(1)))
337     return false;
338 
339   // Don't support an icmp that deals with sign bits.
340   auto *CI = cast<ICmpInst>(*I->user_begin());
341   if (CI->isSigned() || CI->isEquality())
342     return false;
343 
344   ConstantInt *ICmpConstant = nullptr;
345   if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
346     ICmpConstant = Const;
347   else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
348     ICmpConstant = Const;
349   else
350     return false;
351 
352   const APInt &ICmpConst = ICmpConstant->getValue();
353   APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue();
354   if (Opc == Instruction::Sub)
355     OverflowConst = -OverflowConst;
356   if (!OverflowConst.isNonPositive())
357     return false;
358 
359   // Using C1 = OverflowConst and C2 = ICmpConst, we can use either prove that:
360   //   zext(x) + sext(C1) <u zext(C2)  if C1 < 0 and C1 >s C2
361   //   zext(x) + sext(C1) <u sext(C2)  if C1 < 0 and C1 <=s C2
362   if (OverflowConst.sgt(ICmpConst)) {
363     LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
364                       << "const of " << *I << "\n");
365     SafeWrap.insert(I);
366     return true;
367   } else {
368     LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
369                       << "const of " << *I << " and " << *CI << "\n");
370     SafeWrap.insert(I);
371     SafeWrap.insert(CI);
372     return true;
373   }
374   return false;
375 }
376 
377 bool TypePromotion::shouldPromote(Value *V) {
378   if (!isa<IntegerType>(V->getType()) || isSink(V))
379     return false;
380 
381   if (isSource(V))
382     return true;
383 
384   auto *I = dyn_cast<Instruction>(V);
385   if (!I)
386     return false;
387 
388   if (isa<ICmpInst>(I))
389     return false;
390 
391   return true;
392 }
393 
394 /// Return whether we can safely mutate V's type to ExtTy without having to be
395 /// concerned with zero extending or truncation.
396 static bool isPromotedResultSafe(Instruction *I) {
397   if (GenerateSignBits(I))
398     return false;
399 
400   if (!isa<OverflowingBinaryOperator>(I))
401     return true;
402 
403   return I->hasNoUnsignedWrap();
404 }
405 
406 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
407   SmallVector<Instruction*, 4> Users;
408   Instruction *InstTo = dyn_cast<Instruction>(To);
409   bool ReplacedAll = true;
410 
411   LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
412                     << "\n");
413 
414   for (Use &U : From->uses()) {
415     auto *User = cast<Instruction>(U.getUser());
416     if (InstTo && User->isIdenticalTo(InstTo)) {
417       ReplacedAll = false;
418       continue;
419     }
420     Users.push_back(User);
421   }
422 
423   for (auto *U : Users)
424     U->replaceUsesOfWith(From, To);
425 
426   if (ReplacedAll)
427     if (auto *I = dyn_cast<Instruction>(From))
428       InstsToRemove.insert(I);
429 }
430 
431 void IRPromoter::ExtendSources() {
432   IRBuilder<> Builder{Ctx};
433 
434   auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
435     assert(V->getType() != ExtTy && "zext already extends to i32");
436     LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
437     Builder.SetInsertPoint(InsertPt);
438     if (auto *I = dyn_cast<Instruction>(V))
439       Builder.SetCurrentDebugLocation(I->getDebugLoc());
440 
441     Value *ZExt = Builder.CreateZExt(V, ExtTy);
442     if (auto *I = dyn_cast<Instruction>(ZExt)) {
443       if (isa<Argument>(V))
444         I->moveBefore(InsertPt);
445       else
446         I->moveAfter(InsertPt);
447       NewInsts.insert(I);
448     }
449 
450     ReplaceAllUsersOfWith(V, ZExt);
451   };
452 
453   // Now, insert extending instructions between the sources and their users.
454   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
455   for (auto V : Sources) {
456     LLVM_DEBUG(dbgs() << " - " << *V << "\n");
457     if (auto *I = dyn_cast<Instruction>(V))
458       InsertZExt(I, I);
459     else if (auto *Arg = dyn_cast<Argument>(V)) {
460       BasicBlock &BB = Arg->getParent()->front();
461       InsertZExt(Arg, &*BB.getFirstInsertionPt());
462     } else {
463       llvm_unreachable("unhandled source that needs extending");
464     }
465     Promoted.insert(V);
466   }
467 }
468 
469 void IRPromoter::PromoteTree() {
470   LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
471 
472   // Mutate the types of the instructions within the tree. Here we handle
473   // constant operands.
474   for (auto *V : Visited) {
475     if (Sources.count(V))
476       continue;
477 
478     auto *I = cast<Instruction>(V);
479     if (Sinks.count(I))
480       continue;
481 
482     for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
483       Value *Op = I->getOperand(i);
484       if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
485         continue;
486 
487       if (auto *Const = dyn_cast<ConstantInt>(Op)) {
488         Constant *NewConst = SafeWrap.contains(I)
489                                  ? ConstantExpr::getSExt(Const, ExtTy)
490                                  : ConstantExpr::getZExt(Const, ExtTy);
491         I->setOperand(i, NewConst);
492       } else if (isa<UndefValue>(Op))
493         I->setOperand(i, UndefValue::get(ExtTy));
494     }
495 
496     // Mutate the result type, unless this is an icmp or switch.
497     if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) {
498       I->mutateType(ExtTy);
499       Promoted.insert(I);
500     }
501   }
502 }
503 
504 void IRPromoter::TruncateSinks() {
505   LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
506 
507   IRBuilder<> Builder{Ctx};
508 
509   auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
510     if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
511       return nullptr;
512 
513     if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
514       return nullptr;
515 
516     LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
517                << *V << "\n");
518     Builder.SetInsertPoint(cast<Instruction>(V));
519     auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
520     if (Trunc)
521       NewInsts.insert(Trunc);
522     return Trunc;
523   };
524 
525   // Fix up any stores or returns that use the results of the promoted
526   // chain.
527   for (auto I : Sinks) {
528     LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
529 
530     // Handle calls separately as we need to iterate over arg operands.
531     if (auto *Call = dyn_cast<CallInst>(I)) {
532       for (unsigned i = 0; i < Call->arg_size(); ++i) {
533         Value *Arg = Call->getArgOperand(i);
534         Type *Ty = TruncTysMap[Call][i];
535         if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
536           Trunc->moveBefore(Call);
537           Call->setArgOperand(i, Trunc);
538         }
539       }
540       continue;
541     }
542 
543     // Special case switches because we need to truncate the condition.
544     if (auto *Switch = dyn_cast<SwitchInst>(I)) {
545       Type *Ty = TruncTysMap[Switch][0];
546       if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
547         Trunc->moveBefore(Switch);
548         Switch->setCondition(Trunc);
549       }
550       continue;
551     }
552 
553     // Now handle the others.
554     for (unsigned i = 0; i < I->getNumOperands(); ++i) {
555       Type *Ty = TruncTysMap[I][i];
556       if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
557         Trunc->moveBefore(I);
558         I->setOperand(i, Trunc);
559       }
560     }
561   }
562 }
563 
564 void IRPromoter::Cleanup() {
565   LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
566   // Some zexts will now have become redundant, along with their trunc
567   // operands, so remove them
568   for (auto V : Visited) {
569     if (!isa<ZExtInst>(V))
570       continue;
571 
572     auto ZExt = cast<ZExtInst>(V);
573     if (ZExt->getDestTy() != ExtTy)
574       continue;
575 
576     Value *Src = ZExt->getOperand(0);
577     if (ZExt->getSrcTy() == ZExt->getDestTy()) {
578       LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
579                  << "\n");
580       ReplaceAllUsersOfWith(ZExt, Src);
581       continue;
582     }
583 
584     // Unless they produce a value that is narrower than ExtTy, we can
585     // replace the result of the zext with the input of a newly inserted
586     // trunc.
587     if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
588         Src->getType() == OrigTy) {
589       auto *Trunc = cast<TruncInst>(Src);
590       assert(Trunc->getOperand(0)->getType() == ExtTy &&
591              "expected inserted trunc to be operating on i32");
592       ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
593     }
594   }
595 
596   for (auto *I : InstsToRemove) {
597     LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
598     I->dropAllReferences();
599     I->eraseFromParent();
600   }
601 }
602 
603 void IRPromoter::ConvertTruncs() {
604   LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
605   IRBuilder<> Builder{Ctx};
606 
607   for (auto *V : Visited) {
608     if (!isa<TruncInst>(V) || Sources.count(V))
609       continue;
610 
611     auto *Trunc = cast<TruncInst>(V);
612     Builder.SetInsertPoint(Trunc);
613     IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
614     IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
615 
616     unsigned NumBits = DestTy->getScalarSizeInBits();
617     ConstantInt *Mask =
618       ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
619     Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
620 
621     if (auto *I = dyn_cast<Instruction>(Masked))
622       NewInsts.insert(I);
623 
624     ReplaceAllUsersOfWith(Trunc, Masked);
625   }
626 }
627 
628 void IRPromoter::Mutate() {
629   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
630              << OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n");
631 
632   // Cache original types of the values that will likely need truncating
633   for (auto *I : Sinks) {
634     if (auto *Call = dyn_cast<CallInst>(I)) {
635       for (Value *Arg : Call->args())
636         TruncTysMap[Call].push_back(Arg->getType());
637     } else if (auto *Switch = dyn_cast<SwitchInst>(I))
638       TruncTysMap[I].push_back(Switch->getCondition()->getType());
639     else {
640       for (unsigned i = 0; i < I->getNumOperands(); ++i)
641         TruncTysMap[I].push_back(I->getOperand(i)->getType());
642     }
643   }
644   for (auto *V : Visited) {
645     if (!isa<TruncInst>(V) || Sources.count(V))
646       continue;
647     auto *Trunc = cast<TruncInst>(V);
648     TruncTysMap[Trunc].push_back(Trunc->getDestTy());
649   }
650 
651   // Insert zext instructions between sources and their users.
652   ExtendSources();
653 
654   // Promote visited instructions, mutating their types in place.
655   PromoteTree();
656 
657   // Convert any truncs, that aren't sources, into AND masks.
658   ConvertTruncs();
659 
660   // Insert trunc instructions for use by calls, stores etc...
661   TruncateSinks();
662 
663   // Finally, remove unecessary zexts and truncs, delete old instructions and
664   // clear the data structures.
665   Cleanup();
666 
667   LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
668 }
669 
670 /// We disallow booleans to make life easier when dealing with icmps but allow
671 /// any other integer that fits in a scalar register. Void types are accepted
672 /// so we can handle switches.
673 bool TypePromotion::isSupportedType(Value *V) {
674   Type *Ty = V->getType();
675 
676   // Allow voids and pointers, these won't be promoted.
677   if (Ty->isVoidTy() || Ty->isPointerTy())
678     return true;
679 
680   if (!isa<IntegerType>(Ty) ||
681       cast<IntegerType>(Ty)->getBitWidth() == 1 ||
682       cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
683     return false;
684 
685   return LessOrEqualTypeSize(V);
686 }
687 
688 /// We accept most instructions, as well as Arguments and ConstantInsts. We
689 /// Disallow casts other than zext and truncs and only allow calls if their
690 /// return value is zeroext. We don't allow opcodes that can introduce sign
691 /// bits.
692 bool TypePromotion::isSupportedValue(Value *V) {
693   if (auto *I = dyn_cast<Instruction>(V)) {
694     switch (I->getOpcode()) {
695     default:
696       return isa<BinaryOperator>(I) && isSupportedType(I) &&
697              !GenerateSignBits(I);
698     case Instruction::GetElementPtr:
699     case Instruction::Store:
700     case Instruction::Br:
701     case Instruction::Switch:
702       return true;
703     case Instruction::PHI:
704     case Instruction::Select:
705     case Instruction::Ret:
706     case Instruction::Load:
707     case Instruction::Trunc:
708     case Instruction::BitCast:
709       return isSupportedType(I);
710     case Instruction::ZExt:
711       return isSupportedType(I->getOperand(0));
712     case Instruction::ICmp:
713       // Now that we allow small types than TypeSize, only allow icmp of
714       // TypeSize because they will require a trunc to be legalised.
715       // TODO: Allow icmp of smaller types, and calculate at the end
716       // whether the transform would be beneficial.
717       if (isa<PointerType>(I->getOperand(0)->getType()))
718         return true;
719       return EqualTypeSize(I->getOperand(0));
720     case Instruction::Call: {
721       // Special cases for calls as we need to check for zeroext
722       // TODO We should accept calls even if they don't have zeroext, as they
723       // can still be sinks.
724       auto *Call = cast<CallInst>(I);
725       return isSupportedType(Call) &&
726              Call->hasRetAttr(Attribute::AttrKind::ZExt);
727     }
728     }
729   } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
730     return isSupportedType(V);
731   } else if (isa<Argument>(V))
732     return isSupportedType(V);
733 
734   return isa<BasicBlock>(V);
735 }
736 
737 /// Check that the type of V would be promoted and that the original type is
738 /// smaller than the targeted promoted type. Check that we're not trying to
739 /// promote something larger than our base 'TypeSize' type.
740 bool TypePromotion::isLegalToPromote(Value *V) {
741 
742   auto *I = dyn_cast<Instruction>(V);
743   if (!I)
744     return true;
745 
746   if (SafeToPromote.count(I))
747    return true;
748 
749   if (isPromotedResultSafe(I) || isSafeWrap(I)) {
750     SafeToPromote.insert(I);
751     return true;
752   }
753   return false;
754 }
755 
756 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
757   Type *OrigTy = V->getType();
758   TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize();
759   SafeToPromote.clear();
760   SafeWrap.clear();
761 
762   if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
763     return false;
764 
765   LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
766                     << TypeSize << " bits to " << PromotedWidth << "\n");
767 
768   SetVector<Value*> WorkList;
769   SetVector<Value*> Sources;
770   SetVector<Instruction*> Sinks;
771   SetVector<Value*> CurrentVisited;
772   WorkList.insert(V);
773 
774   // Return true if V was added to the worklist as a supported instruction,
775   // if it was already visited, or if we don't need to explore it (e.g.
776   // pointer values and GEPs), and false otherwise.
777   auto AddLegalInst = [&](Value *V) {
778     if (CurrentVisited.count(V))
779       return true;
780 
781     // Ignore GEPs because they don't need promoting and the constant indices
782     // will prevent the transformation.
783     if (isa<GetElementPtrInst>(V))
784       return true;
785 
786     if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
787       LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
788       return false;
789     }
790 
791     WorkList.insert(V);
792     return true;
793   };
794 
795   // Iterate through, and add to, a tree of operands and users in the use-def.
796   while (!WorkList.empty()) {
797     Value *V = WorkList.pop_back_val();
798     if (CurrentVisited.count(V))
799       continue;
800 
801     // Ignore non-instructions, other than arguments.
802     if (!isa<Instruction>(V) && !isSource(V))
803       continue;
804 
805     // If we've already visited this value from somewhere, bail now because
806     // the tree has already been explored.
807     // TODO: This could limit the transform, ie if we try to promote something
808     // from an i8 and fail first, before trying an i16.
809     if (AllVisited.count(V))
810       return false;
811 
812     CurrentVisited.insert(V);
813     AllVisited.insert(V);
814 
815     // Calls can be both sources and sinks.
816     if (isSink(V))
817       Sinks.insert(cast<Instruction>(V));
818 
819     if (isSource(V))
820       Sources.insert(V);
821 
822     if (!isSink(V) && !isSource(V)) {
823       if (auto *I = dyn_cast<Instruction>(V)) {
824         // Visit operands of any instruction visited.
825         for (auto &U : I->operands()) {
826           if (!AddLegalInst(U))
827             return false;
828         }
829       }
830     }
831 
832     // Don't visit users of a node which isn't going to be mutated unless its a
833     // source.
834     if (isSource(V) || shouldPromote(V)) {
835       for (Use &U : V->uses()) {
836         if (!AddLegalInst(U.getUser()))
837           return false;
838       }
839     }
840   }
841 
842   LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
843              for (auto *I : CurrentVisited)
844                I->dump();
845              );
846 
847   unsigned ToPromote = 0;
848   unsigned NonFreeArgs = 0;
849   SmallPtrSet<BasicBlock*, 4> Blocks;
850   for (auto *V : CurrentVisited) {
851     if (auto *I = dyn_cast<Instruction>(V))
852       Blocks.insert(I->getParent());
853 
854     if (Sources.count(V)) {
855       if (auto *Arg = dyn_cast<Argument>(V))
856         if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
857           ++NonFreeArgs;
858       continue;
859     }
860 
861     if (Sinks.count(cast<Instruction>(V)))
862       continue;
863      ++ToPromote;
864    }
865 
866   // DAG optimizations should be able to handle these cases better, especially
867   // for function arguments.
868   if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
869     return false;
870 
871   IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth,
872                       CurrentVisited, Sources, Sinks, SafeWrap);
873   Promoter.Mutate();
874   return true;
875 }
876 
877 bool TypePromotion::runOnFunction(Function &F) {
878   if (skipFunction(F) || DisablePromotion)
879     return false;
880 
881   LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
882 
883   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
884   if (!TPC)
885     return false;
886 
887   AllVisited.clear();
888   SafeToPromote.clear();
889   SafeWrap.clear();
890   bool MadeChange = false;
891   const DataLayout &DL = F.getParent()->getDataLayout();
892   const TargetMachine &TM = TPC->getTM<TargetMachine>();
893   const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
894   const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
895   const TargetTransformInfo &TII =
896     getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
897   RegisterBitWidth =
898       TII.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedSize();
899   Ctx = &F.getParent()->getContext();
900 
901   // Search up from icmps to try to promote their operands.
902   for (BasicBlock &BB : F) {
903     for (auto &I : BB) {
904       if (AllVisited.count(&I))
905         continue;
906 
907       if (!isa<ICmpInst>(&I))
908         continue;
909 
910       auto *ICmp = cast<ICmpInst>(&I);
911       // Skip signed or pointer compares
912       if (ICmp->isSigned() ||
913           !isa<IntegerType>(ICmp->getOperand(0)->getType()))
914         continue;
915 
916       LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
917 
918       for (auto &Op : ICmp->operands()) {
919         if (auto *I = dyn_cast<Instruction>(Op)) {
920           EVT SrcVT = TLI->getValueType(DL, I->getType());
921           if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
922             break;
923 
924           if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
925               TargetLowering::TypePromoteInteger)
926             break;
927           EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
928           if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
929             LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
930                        << "for promoted type\n");
931             break;
932           }
933 
934           MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits());
935           break;
936         }
937       }
938     }
939     LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
940                 dbgs() << F;
941                 report_fatal_error("Broken function after type promotion");
942                });
943   }
944   if (MadeChange)
945     LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
946 
947   AllVisited.clear();
948   SafeToPromote.clear();
949   SafeWrap.clear();
950 
951   return MadeChange;
952 }
953 
954 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
955 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
956 
957 char TypePromotion::ID = 0;
958 
959 FunctionPass *llvm::createTypePromotionPass() {
960   return new TypePromotion();
961 }
962