1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the common interface used by the various execution engine
10 // subclasses.
11 //
12 // FIXME: This file needs to be updated to support scalable vectors
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ExecutionEngine/GenericValue.h"
21 #include "llvm/ExecutionEngine/JITEventListener.h"
22 #include "llvm/ExecutionEngine/ObjectCache.h"
23 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Mangler.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Object/Archive.h"
32 #include "llvm/Object/ObjectFile.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DynamicLibrary.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Host.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include <cmath>
41 #include <cstring>
42 #include <mutex>
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "jit"
46 
47 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
48 STATISTIC(NumGlobals  , "Number of global vars initialized");
49 
50 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
51     std::unique_ptr<Module> M, std::string *ErrorStr,
52     std::shared_ptr<MCJITMemoryManager> MemMgr,
53     std::shared_ptr<LegacyJITSymbolResolver> Resolver,
54     std::unique_ptr<TargetMachine> TM) = nullptr;
55 
56 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)(
57     std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr,
58     std::shared_ptr<LegacyJITSymbolResolver> Resolver,
59     std::unique_ptr<TargetMachine> TM) = nullptr;
60 
61 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
62                                                 std::string *ErrorStr) =nullptr;
63 
64 void JITEventListener::anchor() {}
65 
66 void ObjectCache::anchor() {}
67 
68 void ExecutionEngine::Init(std::unique_ptr<Module> M) {
69   CompilingLazily         = false;
70   GVCompilationDisabled   = false;
71   SymbolSearchingDisabled = false;
72 
73   // IR module verification is enabled by default in debug builds, and disabled
74   // by default in release builds.
75 #ifndef NDEBUG
76   VerifyModules = true;
77 #else
78   VerifyModules = false;
79 #endif
80 
81   assert(M && "Module is null?");
82   Modules.push_back(std::move(M));
83 }
84 
85 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
86     : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
87   Init(std::move(M));
88 }
89 
90 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
91     : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
92   Init(std::move(M));
93 }
94 
95 ExecutionEngine::~ExecutionEngine() {
96   clearAllGlobalMappings();
97 }
98 
99 namespace {
100 /// Helper class which uses a value handler to automatically deletes the
101 /// memory block when the GlobalVariable is destroyed.
102 class GVMemoryBlock final : public CallbackVH {
103   GVMemoryBlock(const GlobalVariable *GV)
104     : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
105 
106 public:
107   /// Returns the address the GlobalVariable should be written into.  The
108   /// GVMemoryBlock object prefixes that.
109   static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
110     Type *ElTy = GV->getValueType();
111     size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
112     void *RawMemory = ::operator new(
113         alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize);
114     new(RawMemory) GVMemoryBlock(GV);
115     return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
116   }
117 
118   void deleted() override {
119     // We allocated with operator new and with some extra memory hanging off the
120     // end, so don't just delete this.  I'm not sure if this is actually
121     // required.
122     this->~GVMemoryBlock();
123     ::operator delete(this);
124   }
125 };
126 }  // anonymous namespace
127 
128 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
129   return GVMemoryBlock::Create(GV, getDataLayout());
130 }
131 
132 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
133   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
134 }
135 
136 void
137 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
138   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
139 }
140 
141 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
142   llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
143 }
144 
145 bool ExecutionEngine::removeModule(Module *M) {
146   for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
147     Module *Found = I->get();
148     if (Found == M) {
149       I->release();
150       Modules.erase(I);
151       clearGlobalMappingsFromModule(M);
152       return true;
153     }
154   }
155   return false;
156 }
157 
158 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
159   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
160     Function *F = Modules[i]->getFunction(FnName);
161     if (F && !F->isDeclaration())
162       return F;
163   }
164   return nullptr;
165 }
166 
167 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
168   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
169     GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
170     if (GV && !GV->isDeclaration())
171       return GV;
172   }
173   return nullptr;
174 }
175 
176 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
177   GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
178   uint64_t OldVal;
179 
180   // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
181   // GlobalAddressMap.
182   if (I == GlobalAddressMap.end())
183     OldVal = 0;
184   else {
185     GlobalAddressReverseMap.erase(I->second);
186     OldVal = I->second;
187     GlobalAddressMap.erase(I);
188   }
189 
190   return OldVal;
191 }
192 
193 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
194   assert(GV->hasName() && "Global must have name.");
195 
196   std::lock_guard<sys::Mutex> locked(lock);
197   SmallString<128> FullName;
198 
199   const DataLayout &DL =
200     GV->getParent()->getDataLayout().isDefault()
201       ? getDataLayout()
202       : GV->getParent()->getDataLayout();
203 
204   Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
205   return std::string(FullName.str());
206 }
207 
208 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
209   std::lock_guard<sys::Mutex> locked(lock);
210   addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
211 }
212 
213 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
214   std::lock_guard<sys::Mutex> locked(lock);
215 
216   assert(!Name.empty() && "Empty GlobalMapping symbol name!");
217 
218   LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
219   uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
220   assert((!CurVal || !Addr) && "GlobalMapping already established!");
221   CurVal = Addr;
222 
223   // If we are using the reverse mapping, add it too.
224   if (!EEState.getGlobalAddressReverseMap().empty()) {
225     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
226     assert((!V.empty() || !Name.empty()) &&
227            "GlobalMapping already established!");
228     V = std::string(Name);
229   }
230 }
231 
232 void ExecutionEngine::clearAllGlobalMappings() {
233   std::lock_guard<sys::Mutex> locked(lock);
234 
235   EEState.getGlobalAddressMap().clear();
236   EEState.getGlobalAddressReverseMap().clear();
237 }
238 
239 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
240   std::lock_guard<sys::Mutex> locked(lock);
241 
242   for (GlobalObject &GO : M->global_objects())
243     EEState.RemoveMapping(getMangledName(&GO));
244 }
245 
246 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
247                                               void *Addr) {
248   std::lock_guard<sys::Mutex> locked(lock);
249   return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
250 }
251 
252 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
253   std::lock_guard<sys::Mutex> locked(lock);
254 
255   ExecutionEngineState::GlobalAddressMapTy &Map =
256     EEState.getGlobalAddressMap();
257 
258   // Deleting from the mapping?
259   if (!Addr)
260     return EEState.RemoveMapping(Name);
261 
262   uint64_t &CurVal = Map[Name];
263   uint64_t OldVal = CurVal;
264 
265   if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
266     EEState.getGlobalAddressReverseMap().erase(CurVal);
267   CurVal = Addr;
268 
269   // If we are using the reverse mapping, add it too.
270   if (!EEState.getGlobalAddressReverseMap().empty()) {
271     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
272     assert((!V.empty() || !Name.empty()) &&
273            "GlobalMapping already established!");
274     V = std::string(Name);
275   }
276   return OldVal;
277 }
278 
279 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
280   std::lock_guard<sys::Mutex> locked(lock);
281   uint64_t Address = 0;
282   ExecutionEngineState::GlobalAddressMapTy::iterator I =
283     EEState.getGlobalAddressMap().find(S);
284   if (I != EEState.getGlobalAddressMap().end())
285     Address = I->second;
286   return Address;
287 }
288 
289 
290 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
291   std::lock_guard<sys::Mutex> locked(lock);
292   if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
293     return Address;
294   return nullptr;
295 }
296 
297 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
298   std::lock_guard<sys::Mutex> locked(lock);
299   return getPointerToGlobalIfAvailable(getMangledName(GV));
300 }
301 
302 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
303   std::lock_guard<sys::Mutex> locked(lock);
304 
305   // If we haven't computed the reverse mapping yet, do so first.
306   if (EEState.getGlobalAddressReverseMap().empty()) {
307     for (ExecutionEngineState::GlobalAddressMapTy::iterator
308            I = EEState.getGlobalAddressMap().begin(),
309            E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
310       StringRef Name = I->first();
311       uint64_t Addr = I->second;
312       EEState.getGlobalAddressReverseMap().insert(
313           std::make_pair(Addr, std::string(Name)));
314     }
315   }
316 
317   std::map<uint64_t, std::string>::iterator I =
318     EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
319 
320   if (I != EEState.getGlobalAddressReverseMap().end()) {
321     StringRef Name = I->second;
322     for (unsigned i = 0, e = Modules.size(); i != e; ++i)
323       if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
324         return GV;
325   }
326   return nullptr;
327 }
328 
329 namespace {
330 class ArgvArray {
331   std::unique_ptr<char[]> Array;
332   std::vector<std::unique_ptr<char[]>> Values;
333 public:
334   /// Turn a vector of strings into a nice argv style array of pointers to null
335   /// terminated strings.
336   void *reset(LLVMContext &C, ExecutionEngine *EE,
337               const std::vector<std::string> &InputArgv);
338 };
339 }  // anonymous namespace
340 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
341                        const std::vector<std::string> &InputArgv) {
342   Values.clear();  // Free the old contents.
343   Values.reserve(InputArgv.size());
344   unsigned PtrSize = EE->getDataLayout().getPointerSize();
345   Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
346 
347   LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
348   Type *SBytePtr = Type::getInt8PtrTy(C);
349 
350   for (unsigned i = 0; i != InputArgv.size(); ++i) {
351     unsigned Size = InputArgv[i].size()+1;
352     auto Dest = std::make_unique<char[]>(Size);
353     LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
354                       << "\n");
355 
356     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
357     Dest[Size-1] = 0;
358 
359     // Endian safe: Array[i] = (PointerTy)Dest;
360     EE->StoreValueToMemory(PTOGV(Dest.get()),
361                            (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
362     Values.push_back(std::move(Dest));
363   }
364 
365   // Null terminate it
366   EE->StoreValueToMemory(PTOGV(nullptr),
367                          (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
368                          SBytePtr);
369   return Array.get();
370 }
371 
372 void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
373                                                        bool isDtors) {
374   StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
375   GlobalVariable *GV = module.getNamedGlobal(Name);
376 
377   // If this global has internal linkage, or if it has a use, then it must be
378   // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
379   // this is the case, don't execute any of the global ctors, __main will do
380   // it.
381   if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
382 
383   // Should be an array of '{ i32, void ()* }' structs.  The first value is
384   // the init priority, which we ignore.
385   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
386   if (!InitList)
387     return;
388   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
389     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
390     if (!CS) continue;
391 
392     Constant *FP = CS->getOperand(1);
393     if (FP->isNullValue())
394       continue;  // Found a sentinal value, ignore.
395 
396     // Strip off constant expression casts.
397     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
398       if (CE->isCast())
399         FP = CE->getOperand(0);
400 
401     // Execute the ctor/dtor function!
402     if (Function *F = dyn_cast<Function>(FP))
403       runFunction(F, None);
404 
405     // FIXME: It is marginally lame that we just do nothing here if we see an
406     // entry we don't recognize. It might not be unreasonable for the verifier
407     // to not even allow this and just assert here.
408   }
409 }
410 
411 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
412   // Execute global ctors/dtors for each module in the program.
413   for (std::unique_ptr<Module> &M : Modules)
414     runStaticConstructorsDestructors(*M, isDtors);
415 }
416 
417 #ifndef NDEBUG
418 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
419 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
420   unsigned PtrSize = EE->getDataLayout().getPointerSize();
421   for (unsigned i = 0; i < PtrSize; ++i)
422     if (*(i + (uint8_t*)Loc))
423       return false;
424   return true;
425 }
426 #endif
427 
428 int ExecutionEngine::runFunctionAsMain(Function *Fn,
429                                        const std::vector<std::string> &argv,
430                                        const char * const * envp) {
431   std::vector<GenericValue> GVArgs;
432   GenericValue GVArgc;
433   GVArgc.IntVal = APInt(32, argv.size());
434 
435   // Check main() type
436   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
437   FunctionType *FTy = Fn->getFunctionType();
438   Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
439 
440   // Check the argument types.
441   if (NumArgs > 3)
442     report_fatal_error("Invalid number of arguments of main() supplied");
443   if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
444     report_fatal_error("Invalid type for third argument of main() supplied");
445   if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
446     report_fatal_error("Invalid type for second argument of main() supplied");
447   if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
448     report_fatal_error("Invalid type for first argument of main() supplied");
449   if (!FTy->getReturnType()->isIntegerTy() &&
450       !FTy->getReturnType()->isVoidTy())
451     report_fatal_error("Invalid return type of main() supplied");
452 
453   ArgvArray CArgv;
454   ArgvArray CEnv;
455   if (NumArgs) {
456     GVArgs.push_back(GVArgc); // Arg #0 = argc.
457     if (NumArgs > 1) {
458       // Arg #1 = argv.
459       GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
460       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
461              "argv[0] was null after CreateArgv");
462       if (NumArgs > 2) {
463         std::vector<std::string> EnvVars;
464         for (unsigned i = 0; envp[i]; ++i)
465           EnvVars.emplace_back(envp[i]);
466         // Arg #2 = envp.
467         GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
468       }
469     }
470   }
471 
472   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
473 }
474 
475 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
476 
477 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
478     : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
479       OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr),
480       UseOrcMCJITReplacement(false) {
481 // IR module verification is enabled by default in debug builds, and disabled
482 // by default in release builds.
483 #ifndef NDEBUG
484   VerifyModules = true;
485 #else
486   VerifyModules = false;
487 #endif
488 }
489 
490 EngineBuilder::~EngineBuilder() = default;
491 
492 EngineBuilder &EngineBuilder::setMCJITMemoryManager(
493                                    std::unique_ptr<RTDyldMemoryManager> mcjmm) {
494   auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
495   MemMgr = SharedMM;
496   Resolver = SharedMM;
497   return *this;
498 }
499 
500 EngineBuilder&
501 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
502   MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
503   return *this;
504 }
505 
506 EngineBuilder &
507 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
508   Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
509   return *this;
510 }
511 
512 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
513   std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
514 
515   // Make sure we can resolve symbols in the program as well. The zero arg
516   // to the function tells DynamicLibrary to load the program, not a library.
517   if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
518     return nullptr;
519 
520   // If the user specified a memory manager but didn't specify which engine to
521   // create, we assume they only want the JIT, and we fail if they only want
522   // the interpreter.
523   if (MemMgr) {
524     if (WhichEngine & EngineKind::JIT)
525       WhichEngine = EngineKind::JIT;
526     else {
527       if (ErrorStr)
528         *ErrorStr = "Cannot create an interpreter with a memory manager.";
529       return nullptr;
530     }
531   }
532 
533   // Unless the interpreter was explicitly selected or the JIT is not linked,
534   // try making a JIT.
535   if ((WhichEngine & EngineKind::JIT) && TheTM) {
536     if (!TM->getTarget().hasJIT()) {
537       errs() << "WARNING: This target JIT is not designed for the host"
538              << " you are running.  If bad things happen, please choose"
539              << " a different -march switch.\n";
540     }
541 
542     ExecutionEngine *EE = nullptr;
543     if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) {
544       EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr),
545                                                     std::move(Resolver),
546                                                     std::move(TheTM));
547       EE->addModule(std::move(M));
548     } else if (ExecutionEngine::MCJITCtor)
549       EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
550                                       std::move(Resolver), std::move(TheTM));
551 
552     if (EE) {
553       EE->setVerifyModules(VerifyModules);
554       return EE;
555     }
556   }
557 
558   // If we can't make a JIT and we didn't request one specifically, try making
559   // an interpreter instead.
560   if (WhichEngine & EngineKind::Interpreter) {
561     if (ExecutionEngine::InterpCtor)
562       return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
563     if (ErrorStr)
564       *ErrorStr = "Interpreter has not been linked in.";
565     return nullptr;
566   }
567 
568   if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
569     if (ErrorStr)
570       *ErrorStr = "JIT has not been linked in.";
571   }
572 
573   return nullptr;
574 }
575 
576 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
577   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
578     return getPointerToFunction(F);
579 
580   std::lock_guard<sys::Mutex> locked(lock);
581   if (void* P = getPointerToGlobalIfAvailable(GV))
582     return P;
583 
584   // Global variable might have been added since interpreter started.
585   if (GlobalVariable *GVar =
586           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
587     emitGlobalVariable(GVar);
588   else
589     llvm_unreachable("Global hasn't had an address allocated yet!");
590 
591   return getPointerToGlobalIfAvailable(GV);
592 }
593 
594 /// Converts a Constant* into a GenericValue, including handling of
595 /// ConstantExpr values.
596 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
597   // If its undefined, return the garbage.
598   if (isa<UndefValue>(C)) {
599     GenericValue Result;
600     switch (C->getType()->getTypeID()) {
601     default:
602       break;
603     case Type::IntegerTyID:
604     case Type::X86_FP80TyID:
605     case Type::FP128TyID:
606     case Type::PPC_FP128TyID:
607       // Although the value is undefined, we still have to construct an APInt
608       // with the correct bit width.
609       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
610       break;
611     case Type::StructTyID: {
612       // if the whole struct is 'undef' just reserve memory for the value.
613       if(StructType *STy = dyn_cast<StructType>(C->getType())) {
614         unsigned int elemNum = STy->getNumElements();
615         Result.AggregateVal.resize(elemNum);
616         for (unsigned int i = 0; i < elemNum; ++i) {
617           Type *ElemTy = STy->getElementType(i);
618           if (ElemTy->isIntegerTy())
619             Result.AggregateVal[i].IntVal =
620               APInt(ElemTy->getPrimitiveSizeInBits(), 0);
621           else if (ElemTy->isAggregateType()) {
622               const Constant *ElemUndef = UndefValue::get(ElemTy);
623               Result.AggregateVal[i] = getConstantValue(ElemUndef);
624             }
625           }
626         }
627       }
628       break;
629       case Type::ScalableVectorTyID:
630         report_fatal_error(
631             "Scalable vector support not yet implemented in ExecutionEngine");
632       case Type::FixedVectorTyID:
633         // if the whole vector is 'undef' just reserve memory for the value.
634         auto *VTy = cast<FixedVectorType>(C->getType());
635         Type *ElemTy = VTy->getElementType();
636         unsigned int elemNum = VTy->getNumElements();
637         Result.AggregateVal.resize(elemNum);
638         if (ElemTy->isIntegerTy())
639           for (unsigned int i = 0; i < elemNum; ++i)
640             Result.AggregateVal[i].IntVal =
641                 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
642         break;
643     }
644     return Result;
645   }
646 
647   // Otherwise, if the value is a ConstantExpr...
648   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
649     Constant *Op0 = CE->getOperand(0);
650     switch (CE->getOpcode()) {
651     case Instruction::GetElementPtr: {
652       // Compute the index
653       GenericValue Result = getConstantValue(Op0);
654       APInt Offset(DL.getPointerSizeInBits(), 0);
655       cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
656 
657       char* tmp = (char*) Result.PointerVal;
658       Result = PTOGV(tmp + Offset.getSExtValue());
659       return Result;
660     }
661     case Instruction::Trunc: {
662       GenericValue GV = getConstantValue(Op0);
663       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
664       GV.IntVal = GV.IntVal.trunc(BitWidth);
665       return GV;
666     }
667     case Instruction::ZExt: {
668       GenericValue GV = getConstantValue(Op0);
669       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
670       GV.IntVal = GV.IntVal.zext(BitWidth);
671       return GV;
672     }
673     case Instruction::SExt: {
674       GenericValue GV = getConstantValue(Op0);
675       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
676       GV.IntVal = GV.IntVal.sext(BitWidth);
677       return GV;
678     }
679     case Instruction::FPTrunc: {
680       // FIXME long double
681       GenericValue GV = getConstantValue(Op0);
682       GV.FloatVal = float(GV.DoubleVal);
683       return GV;
684     }
685     case Instruction::FPExt:{
686       // FIXME long double
687       GenericValue GV = getConstantValue(Op0);
688       GV.DoubleVal = double(GV.FloatVal);
689       return GV;
690     }
691     case Instruction::UIToFP: {
692       GenericValue GV = getConstantValue(Op0);
693       if (CE->getType()->isFloatTy())
694         GV.FloatVal = float(GV.IntVal.roundToDouble());
695       else if (CE->getType()->isDoubleTy())
696         GV.DoubleVal = GV.IntVal.roundToDouble();
697       else if (CE->getType()->isX86_FP80Ty()) {
698         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
699         (void)apf.convertFromAPInt(GV.IntVal,
700                                    false,
701                                    APFloat::rmNearestTiesToEven);
702         GV.IntVal = apf.bitcastToAPInt();
703       }
704       return GV;
705     }
706     case Instruction::SIToFP: {
707       GenericValue GV = getConstantValue(Op0);
708       if (CE->getType()->isFloatTy())
709         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
710       else if (CE->getType()->isDoubleTy())
711         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
712       else if (CE->getType()->isX86_FP80Ty()) {
713         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
714         (void)apf.convertFromAPInt(GV.IntVal,
715                                    true,
716                                    APFloat::rmNearestTiesToEven);
717         GV.IntVal = apf.bitcastToAPInt();
718       }
719       return GV;
720     }
721     case Instruction::FPToUI: // double->APInt conversion handles sign
722     case Instruction::FPToSI: {
723       GenericValue GV = getConstantValue(Op0);
724       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
725       if (Op0->getType()->isFloatTy())
726         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
727       else if (Op0->getType()->isDoubleTy())
728         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
729       else if (Op0->getType()->isX86_FP80Ty()) {
730         APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
731         uint64_t v;
732         bool ignored;
733         (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth,
734                                    CE->getOpcode()==Instruction::FPToSI,
735                                    APFloat::rmTowardZero, &ignored);
736         GV.IntVal = v; // endian?
737       }
738       return GV;
739     }
740     case Instruction::PtrToInt: {
741       GenericValue GV = getConstantValue(Op0);
742       uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
743       assert(PtrWidth <= 64 && "Bad pointer width");
744       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
745       uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
746       GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
747       return GV;
748     }
749     case Instruction::IntToPtr: {
750       GenericValue GV = getConstantValue(Op0);
751       uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
752       GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
753       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
754       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
755       return GV;
756     }
757     case Instruction::BitCast: {
758       GenericValue GV = getConstantValue(Op0);
759       Type* DestTy = CE->getType();
760       switch (Op0->getType()->getTypeID()) {
761         default: llvm_unreachable("Invalid bitcast operand");
762         case Type::IntegerTyID:
763           assert(DestTy->isFloatingPointTy() && "invalid bitcast");
764           if (DestTy->isFloatTy())
765             GV.FloatVal = GV.IntVal.bitsToFloat();
766           else if (DestTy->isDoubleTy())
767             GV.DoubleVal = GV.IntVal.bitsToDouble();
768           break;
769         case Type::FloatTyID:
770           assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
771           GV.IntVal = APInt::floatToBits(GV.FloatVal);
772           break;
773         case Type::DoubleTyID:
774           assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
775           GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
776           break;
777         case Type::PointerTyID:
778           assert(DestTy->isPointerTy() && "Invalid bitcast");
779           break; // getConstantValue(Op0)  above already converted it
780       }
781       return GV;
782     }
783     case Instruction::Add:
784     case Instruction::FAdd:
785     case Instruction::Sub:
786     case Instruction::FSub:
787     case Instruction::Mul:
788     case Instruction::FMul:
789     case Instruction::UDiv:
790     case Instruction::SDiv:
791     case Instruction::URem:
792     case Instruction::SRem:
793     case Instruction::And:
794     case Instruction::Or:
795     case Instruction::Xor: {
796       GenericValue LHS = getConstantValue(Op0);
797       GenericValue RHS = getConstantValue(CE->getOperand(1));
798       GenericValue GV;
799       switch (CE->getOperand(0)->getType()->getTypeID()) {
800       default: llvm_unreachable("Bad add type!");
801       case Type::IntegerTyID:
802         switch (CE->getOpcode()) {
803           default: llvm_unreachable("Invalid integer opcode");
804           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
805           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
806           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
807           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
808           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
809           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
810           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
811           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
812           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
813           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
814         }
815         break;
816       case Type::FloatTyID:
817         switch (CE->getOpcode()) {
818           default: llvm_unreachable("Invalid float opcode");
819           case Instruction::FAdd:
820             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
821           case Instruction::FSub:
822             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
823           case Instruction::FMul:
824             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
825           case Instruction::FDiv:
826             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
827           case Instruction::FRem:
828             GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
829         }
830         break;
831       case Type::DoubleTyID:
832         switch (CE->getOpcode()) {
833           default: llvm_unreachable("Invalid double opcode");
834           case Instruction::FAdd:
835             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
836           case Instruction::FSub:
837             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
838           case Instruction::FMul:
839             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
840           case Instruction::FDiv:
841             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
842           case Instruction::FRem:
843             GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
844         }
845         break;
846       case Type::X86_FP80TyID:
847       case Type::PPC_FP128TyID:
848       case Type::FP128TyID: {
849         const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
850         APFloat apfLHS = APFloat(Sem, LHS.IntVal);
851         switch (CE->getOpcode()) {
852           default: llvm_unreachable("Invalid long double opcode");
853           case Instruction::FAdd:
854             apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
855             GV.IntVal = apfLHS.bitcastToAPInt();
856             break;
857           case Instruction::FSub:
858             apfLHS.subtract(APFloat(Sem, RHS.IntVal),
859                             APFloat::rmNearestTiesToEven);
860             GV.IntVal = apfLHS.bitcastToAPInt();
861             break;
862           case Instruction::FMul:
863             apfLHS.multiply(APFloat(Sem, RHS.IntVal),
864                             APFloat::rmNearestTiesToEven);
865             GV.IntVal = apfLHS.bitcastToAPInt();
866             break;
867           case Instruction::FDiv:
868             apfLHS.divide(APFloat(Sem, RHS.IntVal),
869                           APFloat::rmNearestTiesToEven);
870             GV.IntVal = apfLHS.bitcastToAPInt();
871             break;
872           case Instruction::FRem:
873             apfLHS.mod(APFloat(Sem, RHS.IntVal));
874             GV.IntVal = apfLHS.bitcastToAPInt();
875             break;
876           }
877         }
878         break;
879       }
880       return GV;
881     }
882     default:
883       break;
884     }
885 
886     SmallString<256> Msg;
887     raw_svector_ostream OS(Msg);
888     OS << "ConstantExpr not handled: " << *CE;
889     report_fatal_error(OS.str());
890   }
891 
892   // Otherwise, we have a simple constant.
893   GenericValue Result;
894   switch (C->getType()->getTypeID()) {
895   case Type::FloatTyID:
896     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
897     break;
898   case Type::DoubleTyID:
899     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
900     break;
901   case Type::X86_FP80TyID:
902   case Type::FP128TyID:
903   case Type::PPC_FP128TyID:
904     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
905     break;
906   case Type::IntegerTyID:
907     Result.IntVal = cast<ConstantInt>(C)->getValue();
908     break;
909   case Type::PointerTyID:
910     while (auto *A = dyn_cast<GlobalAlias>(C)) {
911       C = A->getAliasee();
912     }
913     if (isa<ConstantPointerNull>(C))
914       Result.PointerVal = nullptr;
915     else if (const Function *F = dyn_cast<Function>(C))
916       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
917     else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
918       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
919     else
920       llvm_unreachable("Unknown constant pointer type!");
921     break;
922   case Type::ScalableVectorTyID:
923     report_fatal_error(
924         "Scalable vector support not yet implemented in ExecutionEngine");
925   case Type::FixedVectorTyID: {
926     unsigned elemNum;
927     Type* ElemTy;
928     const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
929     const ConstantVector *CV = dyn_cast<ConstantVector>(C);
930     const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
931 
932     if (CDV) {
933         elemNum = CDV->getNumElements();
934         ElemTy = CDV->getElementType();
935     } else if (CV || CAZ) {
936       auto *VTy = cast<FixedVectorType>(C->getType());
937       elemNum = VTy->getNumElements();
938       ElemTy = VTy->getElementType();
939     } else {
940         llvm_unreachable("Unknown constant vector type!");
941     }
942 
943     Result.AggregateVal.resize(elemNum);
944     // Check if vector holds floats.
945     if(ElemTy->isFloatTy()) {
946       if (CAZ) {
947         GenericValue floatZero;
948         floatZero.FloatVal = 0.f;
949         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
950                   floatZero);
951         break;
952       }
953       if(CV) {
954         for (unsigned i = 0; i < elemNum; ++i)
955           if (!isa<UndefValue>(CV->getOperand(i)))
956             Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
957               CV->getOperand(i))->getValueAPF().convertToFloat();
958         break;
959       }
960       if(CDV)
961         for (unsigned i = 0; i < elemNum; ++i)
962           Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
963 
964       break;
965     }
966     // Check if vector holds doubles.
967     if (ElemTy->isDoubleTy()) {
968       if (CAZ) {
969         GenericValue doubleZero;
970         doubleZero.DoubleVal = 0.0;
971         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
972                   doubleZero);
973         break;
974       }
975       if(CV) {
976         for (unsigned i = 0; i < elemNum; ++i)
977           if (!isa<UndefValue>(CV->getOperand(i)))
978             Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
979               CV->getOperand(i))->getValueAPF().convertToDouble();
980         break;
981       }
982       if(CDV)
983         for (unsigned i = 0; i < elemNum; ++i)
984           Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
985 
986       break;
987     }
988     // Check if vector holds integers.
989     if (ElemTy->isIntegerTy()) {
990       if (CAZ) {
991         GenericValue intZero;
992         intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
993         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
994                   intZero);
995         break;
996       }
997       if(CV) {
998         for (unsigned i = 0; i < elemNum; ++i)
999           if (!isa<UndefValue>(CV->getOperand(i)))
1000             Result.AggregateVal[i].IntVal = cast<ConstantInt>(
1001                                             CV->getOperand(i))->getValue();
1002           else {
1003             Result.AggregateVal[i].IntVal =
1004               APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
1005           }
1006         break;
1007       }
1008       if(CDV)
1009         for (unsigned i = 0; i < elemNum; ++i)
1010           Result.AggregateVal[i].IntVal = APInt(
1011             CDV->getElementType()->getPrimitiveSizeInBits(),
1012             CDV->getElementAsInteger(i));
1013 
1014       break;
1015     }
1016     llvm_unreachable("Unknown constant pointer type!");
1017   } break;
1018 
1019   default:
1020     SmallString<256> Msg;
1021     raw_svector_ostream OS(Msg);
1022     OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1023     report_fatal_error(OS.str());
1024   }
1025 
1026   return Result;
1027 }
1028 
1029 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1030                                          GenericValue *Ptr, Type *Ty) {
1031   const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1032 
1033   switch (Ty->getTypeID()) {
1034   default:
1035     dbgs() << "Cannot store value of type " << *Ty << "!\n";
1036     break;
1037   case Type::IntegerTyID:
1038     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1039     break;
1040   case Type::FloatTyID:
1041     *((float*)Ptr) = Val.FloatVal;
1042     break;
1043   case Type::DoubleTyID:
1044     *((double*)Ptr) = Val.DoubleVal;
1045     break;
1046   case Type::X86_FP80TyID:
1047     memcpy(Ptr, Val.IntVal.getRawData(), 10);
1048     break;
1049   case Type::PointerTyID:
1050     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1051     if (StoreBytes != sizeof(PointerTy))
1052       memset(&(Ptr->PointerVal), 0, StoreBytes);
1053 
1054     *((PointerTy*)Ptr) = Val.PointerVal;
1055     break;
1056   case Type::FixedVectorTyID:
1057   case Type::ScalableVectorTyID:
1058     for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1059       if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1060         *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1061       if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1062         *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1063       if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1064         unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1065         StoreIntToMemory(Val.AggregateVal[i].IntVal,
1066           (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1067       }
1068     }
1069     break;
1070   }
1071 
1072   if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1073     // Host and target are different endian - reverse the stored bytes.
1074     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1075 }
1076 
1077 /// FIXME: document
1078 ///
1079 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1080                                           GenericValue *Ptr,
1081                                           Type *Ty) {
1082   const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1083 
1084   switch (Ty->getTypeID()) {
1085   case Type::IntegerTyID:
1086     // An APInt with all words initially zero.
1087     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1088     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1089     break;
1090   case Type::FloatTyID:
1091     Result.FloatVal = *((float*)Ptr);
1092     break;
1093   case Type::DoubleTyID:
1094     Result.DoubleVal = *((double*)Ptr);
1095     break;
1096   case Type::PointerTyID:
1097     Result.PointerVal = *((PointerTy*)Ptr);
1098     break;
1099   case Type::X86_FP80TyID: {
1100     // This is endian dependent, but it will only work on x86 anyway.
1101     // FIXME: Will not trap if loading a signaling NaN.
1102     uint64_t y[2];
1103     memcpy(y, Ptr, 10);
1104     Result.IntVal = APInt(80, y);
1105     break;
1106   }
1107   case Type::ScalableVectorTyID:
1108     report_fatal_error(
1109         "Scalable vector support not yet implemented in ExecutionEngine");
1110   case Type::FixedVectorTyID: {
1111     auto *VT = cast<FixedVectorType>(Ty);
1112     Type *ElemT = VT->getElementType();
1113     const unsigned numElems = VT->getNumElements();
1114     if (ElemT->isFloatTy()) {
1115       Result.AggregateVal.resize(numElems);
1116       for (unsigned i = 0; i < numElems; ++i)
1117         Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1118     }
1119     if (ElemT->isDoubleTy()) {
1120       Result.AggregateVal.resize(numElems);
1121       for (unsigned i = 0; i < numElems; ++i)
1122         Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1123     }
1124     if (ElemT->isIntegerTy()) {
1125       GenericValue intZero;
1126       const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1127       intZero.IntVal = APInt(elemBitWidth, 0);
1128       Result.AggregateVal.resize(numElems, intZero);
1129       for (unsigned i = 0; i < numElems; ++i)
1130         LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1131           (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1132     }
1133   break;
1134   }
1135   default:
1136     SmallString<256> Msg;
1137     raw_svector_ostream OS(Msg);
1138     OS << "Cannot load value of type " << *Ty << "!";
1139     report_fatal_error(OS.str());
1140   }
1141 }
1142 
1143 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1144   LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1145   LLVM_DEBUG(Init->dump());
1146   if (isa<UndefValue>(Init))
1147     return;
1148 
1149   if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1150     unsigned ElementSize =
1151         getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1152     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1153       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1154     return;
1155   }
1156 
1157   if (isa<ConstantAggregateZero>(Init)) {
1158     memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1159     return;
1160   }
1161 
1162   if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1163     unsigned ElementSize =
1164         getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1165     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1166       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1167     return;
1168   }
1169 
1170   if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1171     const StructLayout *SL =
1172         getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1173     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1174       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1175     return;
1176   }
1177 
1178   if (const ConstantDataSequential *CDS =
1179                dyn_cast<ConstantDataSequential>(Init)) {
1180     // CDS is already laid out in host memory order.
1181     StringRef Data = CDS->getRawDataValues();
1182     memcpy(Addr, Data.data(), Data.size());
1183     return;
1184   }
1185 
1186   if (Init->getType()->isFirstClassType()) {
1187     GenericValue Val = getConstantValue(Init);
1188     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1189     return;
1190   }
1191 
1192   LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1193   llvm_unreachable("Unknown constant type to initialize memory with!");
1194 }
1195 
1196 /// EmitGlobals - Emit all of the global variables to memory, storing their
1197 /// addresses into GlobalAddress.  This must make sure to copy the contents of
1198 /// their initializers into the memory.
1199 void ExecutionEngine::emitGlobals() {
1200   // Loop over all of the global variables in the program, allocating the memory
1201   // to hold them.  If there is more than one module, do a prepass over globals
1202   // to figure out how the different modules should link together.
1203   std::map<std::pair<std::string, Type*>,
1204            const GlobalValue*> LinkedGlobalsMap;
1205 
1206   if (Modules.size() != 1) {
1207     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1208       Module &M = *Modules[m];
1209       for (const auto &GV : M.globals()) {
1210         if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1211             GV.hasAppendingLinkage() || !GV.hasName())
1212           continue;// Ignore external globals and globals with internal linkage.
1213 
1214         const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
1215             std::string(GV.getName()), GV.getType())];
1216 
1217         // If this is the first time we've seen this global, it is the canonical
1218         // version.
1219         if (!GVEntry) {
1220           GVEntry = &GV;
1221           continue;
1222         }
1223 
1224         // If the existing global is strong, never replace it.
1225         if (GVEntry->hasExternalLinkage())
1226           continue;
1227 
1228         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1229         // symbol.  FIXME is this right for common?
1230         if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1231           GVEntry = &GV;
1232       }
1233     }
1234   }
1235 
1236   std::vector<const GlobalValue*> NonCanonicalGlobals;
1237   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1238     Module &M = *Modules[m];
1239     for (const auto &GV : M.globals()) {
1240       // In the multi-module case, see what this global maps to.
1241       if (!LinkedGlobalsMap.empty()) {
1242         if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1243                 std::string(GV.getName()), GV.getType())]) {
1244           // If something else is the canonical global, ignore this one.
1245           if (GVEntry != &GV) {
1246             NonCanonicalGlobals.push_back(&GV);
1247             continue;
1248           }
1249         }
1250       }
1251 
1252       if (!GV.isDeclaration()) {
1253         addGlobalMapping(&GV, getMemoryForGV(&GV));
1254       } else {
1255         // External variable reference. Try to use the dynamic loader to
1256         // get a pointer to it.
1257         if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
1258                 std::string(GV.getName())))
1259           addGlobalMapping(&GV, SymAddr);
1260         else {
1261           report_fatal_error("Could not resolve external global address: "
1262                             +GV.getName());
1263         }
1264       }
1265     }
1266 
1267     // If there are multiple modules, map the non-canonical globals to their
1268     // canonical location.
1269     if (!NonCanonicalGlobals.empty()) {
1270       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1271         const GlobalValue *GV = NonCanonicalGlobals[i];
1272         const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
1273             std::string(GV->getName()), GV->getType())];
1274         void *Ptr = getPointerToGlobalIfAvailable(CGV);
1275         assert(Ptr && "Canonical global wasn't codegen'd!");
1276         addGlobalMapping(GV, Ptr);
1277       }
1278     }
1279 
1280     // Now that all of the globals are set up in memory, loop through them all
1281     // and initialize their contents.
1282     for (const auto &GV : M.globals()) {
1283       if (!GV.isDeclaration()) {
1284         if (!LinkedGlobalsMap.empty()) {
1285           if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1286                   std::string(GV.getName()), GV.getType())])
1287             if (GVEntry != &GV)  // Not the canonical variable.
1288               continue;
1289         }
1290         emitGlobalVariable(&GV);
1291       }
1292     }
1293   }
1294 }
1295 
1296 // EmitGlobalVariable - This method emits the specified global variable to the
1297 // address specified in GlobalAddresses, or allocates new memory if it's not
1298 // already in the map.
1299 void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) {
1300   void *GA = getPointerToGlobalIfAvailable(GV);
1301 
1302   if (!GA) {
1303     // If it's not already specified, allocate memory for the global.
1304     GA = getMemoryForGV(GV);
1305 
1306     // If we failed to allocate memory for this global, return.
1307     if (!GA) return;
1308 
1309     addGlobalMapping(GV, GA);
1310   }
1311 
1312   // Don't initialize if it's thread local, let the client do it.
1313   if (!GV->isThreadLocal())
1314     InitializeMemory(GV->getInitializer(), GA);
1315 
1316   Type *ElTy = GV->getValueType();
1317   size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1318   NumInitBytes += (unsigned)GVSize;
1319   ++NumGlobals;
1320 }
1321