1 //===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCJIT.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ExecutionEngine/GenericValue.h"
12 #include "llvm/ExecutionEngine/JITEventListener.h"
13 #include "llvm/ExecutionEngine/MCJIT.h"
14 #include "llvm/ExecutionEngine/ObjectCache.h"
15 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/LegacyPassManager.h"
20 #include "llvm/IR/Mangler.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/Object/Archive.h"
23 #include "llvm/Object/ObjectFile.h"
24 #include "llvm/Support/DynamicLibrary.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/SmallVectorMemoryBuffer.h"
28 #include <mutex>
29 
30 using namespace llvm;
31 
32 namespace {
33 
34 static struct RegisterJIT {
35   RegisterJIT() { MCJIT::Register(); }
36 } JITRegistrator;
37 
38 }
39 
40 extern "C" void LLVMLinkInMCJIT() {
41 }
42 
43 ExecutionEngine *
44 MCJIT::createJIT(std::unique_ptr<Module> M, std::string *ErrorStr,
45                  std::shared_ptr<MCJITMemoryManager> MemMgr,
46                  std::shared_ptr<LegacyJITSymbolResolver> Resolver,
47                  std::unique_ptr<TargetMachine> TM) {
48   // Try to register the program as a source of symbols to resolve against.
49   //
50   // FIXME: Don't do this here.
51   sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
52 
53   if (!MemMgr || !Resolver) {
54     auto RTDyldMM = std::make_shared<SectionMemoryManager>();
55     if (!MemMgr)
56       MemMgr = RTDyldMM;
57     if (!Resolver)
58       Resolver = RTDyldMM;
59   }
60 
61   return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
62                    std::move(Resolver));
63 }
64 
65 MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> TM,
66              std::shared_ptr<MCJITMemoryManager> MemMgr,
67              std::shared_ptr<LegacyJITSymbolResolver> Resolver)
68     : ExecutionEngine(TM->createDataLayout(), std::move(M)), TM(std::move(TM)),
69       Ctx(nullptr), MemMgr(std::move(MemMgr)),
70       Resolver(*this, std::move(Resolver)), Dyld(*this->MemMgr, this->Resolver),
71       ObjCache(nullptr) {
72   // FIXME: We are managing our modules, so we do not want the base class
73   // ExecutionEngine to manage them as well. To avoid double destruction
74   // of the first (and only) module added in ExecutionEngine constructor
75   // we remove it from EE and will destruct it ourselves.
76   //
77   // It may make sense to move our module manager (based on SmallStPtr) back
78   // into EE if the JIT and Interpreter can live with it.
79   // If so, additional functions: addModule, removeModule, FindFunctionNamed,
80   // runStaticConstructorsDestructors could be moved back to EE as well.
81   //
82   std::unique_ptr<Module> First = std::move(Modules[0]);
83   Modules.clear();
84 
85   if (First->getDataLayout().isDefault())
86     First->setDataLayout(getDataLayout());
87 
88   OwnedModules.addModule(std::move(First));
89   RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
90 }
91 
92 MCJIT::~MCJIT() {
93   std::lock_guard<sys::Mutex> locked(lock);
94 
95   Dyld.deregisterEHFrames();
96 
97   for (auto &Obj : LoadedObjects)
98     if (Obj)
99       notifyFreeingObject(*Obj);
100 
101   Archives.clear();
102 }
103 
104 void MCJIT::addModule(std::unique_ptr<Module> M) {
105   std::lock_guard<sys::Mutex> locked(lock);
106 
107   if (M->getDataLayout().isDefault())
108     M->setDataLayout(getDataLayout());
109 
110   OwnedModules.addModule(std::move(M));
111 }
112 
113 bool MCJIT::removeModule(Module *M) {
114   std::lock_guard<sys::Mutex> locked(lock);
115   return OwnedModules.removeModule(M);
116 }
117 
118 void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
119   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
120   if (Dyld.hasError())
121     report_fatal_error(Dyld.getErrorString());
122 
123   notifyObjectLoaded(*Obj, *L);
124 
125   LoadedObjects.push_back(std::move(Obj));
126 }
127 
128 void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
129   std::unique_ptr<object::ObjectFile> ObjFile;
130   std::unique_ptr<MemoryBuffer> MemBuf;
131   std::tie(ObjFile, MemBuf) = Obj.takeBinary();
132   addObjectFile(std::move(ObjFile));
133   Buffers.push_back(std::move(MemBuf));
134 }
135 
136 void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
137   Archives.push_back(std::move(A));
138 }
139 
140 void MCJIT::setObjectCache(ObjectCache* NewCache) {
141   std::lock_guard<sys::Mutex> locked(lock);
142   ObjCache = NewCache;
143 }
144 
145 std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
146   assert(M && "Can not emit a null module");
147 
148   std::lock_guard<sys::Mutex> locked(lock);
149 
150   // Materialize all globals in the module if they have not been
151   // materialized already.
152   cantFail(M->materializeAll());
153 
154   // This must be a module which has already been added but not loaded to this
155   // MCJIT instance, since these conditions are tested by our caller,
156   // generateCodeForModule.
157 
158   legacy::PassManager PM;
159 
160   // The RuntimeDyld will take ownership of this shortly
161   SmallVector<char, 4096> ObjBufferSV;
162   raw_svector_ostream ObjStream(ObjBufferSV);
163 
164   // Turn the machine code intermediate representation into bytes in memory
165   // that may be executed.
166   if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
167     report_fatal_error("Target does not support MC emission!");
168 
169   // Initialize passes.
170   PM.run(*M);
171   // Flush the output buffer to get the generated code into memory
172 
173   auto CompiledObjBuffer = std::make_unique<SmallVectorMemoryBuffer>(
174       std::move(ObjBufferSV), /*RequiresNullTerminator=*/false);
175 
176   // If we have an object cache, tell it about the new object.
177   // Note that we're using the compiled image, not the loaded image (as below).
178   if (ObjCache) {
179     // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
180     // to create a temporary object here and delete it after the call.
181     MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
182     ObjCache->notifyObjectCompiled(M, MB);
183   }
184 
185   return CompiledObjBuffer;
186 }
187 
188 void MCJIT::generateCodeForModule(Module *M) {
189   // Get a thread lock to make sure we aren't trying to load multiple times
190   std::lock_guard<sys::Mutex> locked(lock);
191 
192   // This must be a module which has already been added to this MCJIT instance.
193   assert(OwnedModules.ownsModule(M) &&
194          "MCJIT::generateCodeForModule: Unknown module.");
195 
196   // Re-compilation is not supported
197   if (OwnedModules.hasModuleBeenLoaded(M))
198     return;
199 
200   std::unique_ptr<MemoryBuffer> ObjectToLoad;
201   // Try to load the pre-compiled object from cache if possible
202   if (ObjCache)
203     ObjectToLoad = ObjCache->getObject(M);
204 
205   assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
206 
207   // If the cache did not contain a suitable object, compile the object
208   if (!ObjectToLoad) {
209     ObjectToLoad = emitObject(M);
210     assert(ObjectToLoad && "Compilation did not produce an object.");
211   }
212 
213   // Load the object into the dynamic linker.
214   // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
215   Expected<std::unique_ptr<object::ObjectFile>> LoadedObject =
216     object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
217   if (!LoadedObject) {
218     std::string Buf;
219     raw_string_ostream OS(Buf);
220     logAllUnhandledErrors(LoadedObject.takeError(), OS);
221     report_fatal_error(Twine(OS.str()));
222   }
223   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
224     Dyld.loadObject(*LoadedObject.get());
225 
226   if (Dyld.hasError())
227     report_fatal_error(Dyld.getErrorString());
228 
229   notifyObjectLoaded(*LoadedObject.get(), *L);
230 
231   Buffers.push_back(std::move(ObjectToLoad));
232   LoadedObjects.push_back(std::move(*LoadedObject));
233 
234   OwnedModules.markModuleAsLoaded(M);
235 }
236 
237 void MCJIT::finalizeLoadedModules() {
238   std::lock_guard<sys::Mutex> locked(lock);
239 
240   // Resolve any outstanding relocations.
241   Dyld.resolveRelocations();
242 
243   // Check for Dyld error.
244   if (Dyld.hasError())
245     ErrMsg = Dyld.getErrorString().str();
246 
247   OwnedModules.markAllLoadedModulesAsFinalized();
248 
249   // Register EH frame data for any module we own which has been loaded
250   Dyld.registerEHFrames();
251 
252   // Set page permissions.
253   MemMgr->finalizeMemory();
254 }
255 
256 // FIXME: Rename this.
257 void MCJIT::finalizeObject() {
258   std::lock_guard<sys::Mutex> locked(lock);
259 
260   // Generate code for module is going to move objects out of the 'added' list,
261   // so we need to copy that out before using it:
262   SmallVector<Module*, 16> ModsToAdd;
263   for (auto M : OwnedModules.added())
264     ModsToAdd.push_back(M);
265 
266   for (auto M : ModsToAdd)
267     generateCodeForModule(M);
268 
269   finalizeLoadedModules();
270 }
271 
272 void MCJIT::finalizeModule(Module *M) {
273   std::lock_guard<sys::Mutex> locked(lock);
274 
275   // This must be a module which has already been added to this MCJIT instance.
276   assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
277 
278   // If the module hasn't been compiled, just do that.
279   if (!OwnedModules.hasModuleBeenLoaded(M))
280     generateCodeForModule(M);
281 
282   finalizeLoadedModules();
283 }
284 
285 JITSymbol MCJIT::findExistingSymbol(const std::string &Name) {
286   if (void *Addr = getPointerToGlobalIfAvailable(Name))
287     return JITSymbol(static_cast<uint64_t>(
288                          reinterpret_cast<uintptr_t>(Addr)),
289                      JITSymbolFlags::Exported);
290 
291   return Dyld.getSymbol(Name);
292 }
293 
294 Module *MCJIT::findModuleForSymbol(const std::string &Name,
295                                    bool CheckFunctionsOnly) {
296   StringRef DemangledName = Name;
297   if (DemangledName[0] == getDataLayout().getGlobalPrefix())
298     DemangledName = DemangledName.substr(1);
299 
300   std::lock_guard<sys::Mutex> locked(lock);
301 
302   // If it hasn't already been generated, see if it's in one of our modules.
303   for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
304                               E = OwnedModules.end_added();
305        I != E; ++I) {
306     Module *M = *I;
307     Function *F = M->getFunction(DemangledName);
308     if (F && !F->isDeclaration())
309       return M;
310     if (!CheckFunctionsOnly) {
311       GlobalVariable *G = M->getGlobalVariable(DemangledName);
312       if (G && !G->isDeclaration())
313         return M;
314       // FIXME: Do we need to worry about global aliases?
315     }
316   }
317   // We didn't find the symbol in any of our modules.
318   return nullptr;
319 }
320 
321 uint64_t MCJIT::getSymbolAddress(const std::string &Name,
322                                  bool CheckFunctionsOnly) {
323   std::string MangledName;
324   {
325     raw_string_ostream MangledNameStream(MangledName);
326     Mangler::getNameWithPrefix(MangledNameStream, Name, getDataLayout());
327   }
328   if (auto Sym = findSymbol(MangledName, CheckFunctionsOnly)) {
329     if (auto AddrOrErr = Sym.getAddress())
330       return *AddrOrErr;
331     else
332       report_fatal_error(AddrOrErr.takeError());
333   } else if (auto Err = Sym.takeError())
334     report_fatal_error(Sym.takeError());
335   return 0;
336 }
337 
338 JITSymbol MCJIT::findSymbol(const std::string &Name,
339                             bool CheckFunctionsOnly) {
340   std::lock_guard<sys::Mutex> locked(lock);
341 
342   // First, check to see if we already have this symbol.
343   if (auto Sym = findExistingSymbol(Name))
344     return Sym;
345 
346   for (object::OwningBinary<object::Archive> &OB : Archives) {
347     object::Archive *A = OB.getBinary();
348     // Look for our symbols in each Archive
349     auto OptionalChildOrErr = A->findSym(Name);
350     if (!OptionalChildOrErr)
351       report_fatal_error(OptionalChildOrErr.takeError());
352     auto &OptionalChild = *OptionalChildOrErr;
353     if (OptionalChild) {
354       // FIXME: Support nested archives?
355       Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
356           OptionalChild->getAsBinary();
357       if (!ChildBinOrErr) {
358         // TODO: Actually report errors helpfully.
359         consumeError(ChildBinOrErr.takeError());
360         continue;
361       }
362       std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
363       if (ChildBin->isObject()) {
364         std::unique_ptr<object::ObjectFile> OF(
365             static_cast<object::ObjectFile *>(ChildBin.release()));
366         // This causes the object file to be loaded.
367         addObjectFile(std::move(OF));
368         // The address should be here now.
369         if (auto Sym = findExistingSymbol(Name))
370           return Sym;
371       }
372     }
373   }
374 
375   // If it hasn't already been generated, see if it's in one of our modules.
376   Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
377   if (M) {
378     generateCodeForModule(M);
379 
380     // Check the RuntimeDyld table again, it should be there now.
381     return findExistingSymbol(Name);
382   }
383 
384   // If a LazyFunctionCreator is installed, use it to get/create the function.
385   // FIXME: Should we instead have a LazySymbolCreator callback?
386   if (LazyFunctionCreator) {
387     auto Addr = static_cast<uint64_t>(
388                   reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
389     return JITSymbol(Addr, JITSymbolFlags::Exported);
390   }
391 
392   return nullptr;
393 }
394 
395 uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
396   std::lock_guard<sys::Mutex> locked(lock);
397   uint64_t Result = getSymbolAddress(Name, false);
398   if (Result != 0)
399     finalizeLoadedModules();
400   return Result;
401 }
402 
403 uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
404   std::lock_guard<sys::Mutex> locked(lock);
405   uint64_t Result = getSymbolAddress(Name, true);
406   if (Result != 0)
407     finalizeLoadedModules();
408   return Result;
409 }
410 
411 // Deprecated.  Use getFunctionAddress instead.
412 void *MCJIT::getPointerToFunction(Function *F) {
413   std::lock_guard<sys::Mutex> locked(lock);
414 
415   Mangler Mang;
416   SmallString<128> Name;
417   TM->getNameWithPrefix(Name, F, Mang);
418 
419   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
420     bool AbortOnFailure = !F->hasExternalWeakLinkage();
421     void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
422     updateGlobalMapping(F, Addr);
423     return Addr;
424   }
425 
426   Module *M = F->getParent();
427   bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
428 
429   // Make sure the relevant module has been compiled and loaded.
430   if (HasBeenAddedButNotLoaded)
431     generateCodeForModule(M);
432   else if (!OwnedModules.hasModuleBeenLoaded(M)) {
433     // If this function doesn't belong to one of our modules, we're done.
434     // FIXME: Asking for the pointer to a function that hasn't been registered,
435     //        and isn't a declaration (which is handled above) should probably
436     //        be an assertion.
437     return nullptr;
438   }
439 
440   // FIXME: Should the Dyld be retaining module information? Probably not.
441   //
442   // This is the accessor for the target address, so make sure to check the
443   // load address of the symbol, not the local address.
444   return (void*)Dyld.getSymbol(Name).getAddress();
445 }
446 
447 void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
448     bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
449   for (; I != E; ++I) {
450     ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
451   }
452 }
453 
454 void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
455   // Execute global ctors/dtors for each module in the program.
456   runStaticConstructorsDestructorsInModulePtrSet(
457       isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
458   runStaticConstructorsDestructorsInModulePtrSet(
459       isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
460   runStaticConstructorsDestructorsInModulePtrSet(
461       isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
462 }
463 
464 Function *MCJIT::FindFunctionNamedInModulePtrSet(StringRef FnName,
465                                                  ModulePtrSet::iterator I,
466                                                  ModulePtrSet::iterator E) {
467   for (; I != E; ++I) {
468     Function *F = (*I)->getFunction(FnName);
469     if (F && !F->isDeclaration())
470       return F;
471   }
472   return nullptr;
473 }
474 
475 GlobalVariable *MCJIT::FindGlobalVariableNamedInModulePtrSet(StringRef Name,
476                                                              bool AllowInternal,
477                                                              ModulePtrSet::iterator I,
478                                                              ModulePtrSet::iterator E) {
479   for (; I != E; ++I) {
480     GlobalVariable *GV = (*I)->getGlobalVariable(Name, AllowInternal);
481     if (GV && !GV->isDeclaration())
482       return GV;
483   }
484   return nullptr;
485 }
486 
487 
488 Function *MCJIT::FindFunctionNamed(StringRef FnName) {
489   Function *F = FindFunctionNamedInModulePtrSet(
490       FnName, OwnedModules.begin_added(), OwnedModules.end_added());
491   if (!F)
492     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
493                                         OwnedModules.end_loaded());
494   if (!F)
495     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
496                                         OwnedModules.end_finalized());
497   return F;
498 }
499 
500 GlobalVariable *MCJIT::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
501   GlobalVariable *GV = FindGlobalVariableNamedInModulePtrSet(
502       Name, AllowInternal, OwnedModules.begin_added(), OwnedModules.end_added());
503   if (!GV)
504     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_loaded(),
505                                         OwnedModules.end_loaded());
506   if (!GV)
507     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_finalized(),
508                                         OwnedModules.end_finalized());
509   return GV;
510 }
511 
512 GenericValue MCJIT::runFunction(Function *F, ArrayRef<GenericValue> ArgValues) {
513   assert(F && "Function *F was null at entry to run()");
514 
515   void *FPtr = getPointerToFunction(F);
516   finalizeModule(F->getParent());
517   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
518   FunctionType *FTy = F->getFunctionType();
519   Type *RetTy = FTy->getReturnType();
520 
521   assert((FTy->getNumParams() == ArgValues.size() ||
522           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
523          "Wrong number of arguments passed into function!");
524   assert(FTy->getNumParams() == ArgValues.size() &&
525          "This doesn't support passing arguments through varargs (yet)!");
526 
527   // Handle some common cases first.  These cases correspond to common `main'
528   // prototypes.
529   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
530     switch (ArgValues.size()) {
531     case 3:
532       if (FTy->getParamType(0)->isIntegerTy(32) &&
533           FTy->getParamType(1)->isPointerTy() &&
534           FTy->getParamType(2)->isPointerTy()) {
535         int (*PF)(int, char **, const char **) =
536           (int(*)(int, char **, const char **))(intptr_t)FPtr;
537 
538         // Call the function.
539         GenericValue rv;
540         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
541                                  (char **)GVTOP(ArgValues[1]),
542                                  (const char **)GVTOP(ArgValues[2])));
543         return rv;
544       }
545       break;
546     case 2:
547       if (FTy->getParamType(0)->isIntegerTy(32) &&
548           FTy->getParamType(1)->isPointerTy()) {
549         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
550 
551         // Call the function.
552         GenericValue rv;
553         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
554                                  (char **)GVTOP(ArgValues[1])));
555         return rv;
556       }
557       break;
558     case 1:
559       if (FTy->getNumParams() == 1 &&
560           FTy->getParamType(0)->isIntegerTy(32)) {
561         GenericValue rv;
562         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
563         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
564         return rv;
565       }
566       break;
567     }
568   }
569 
570   // Handle cases where no arguments are passed first.
571   if (ArgValues.empty()) {
572     GenericValue rv;
573     switch (RetTy->getTypeID()) {
574     default: llvm_unreachable("Unknown return type for function call!");
575     case Type::IntegerTyID: {
576       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
577       if (BitWidth == 1)
578         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
579       else if (BitWidth <= 8)
580         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
581       else if (BitWidth <= 16)
582         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
583       else if (BitWidth <= 32)
584         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
585       else if (BitWidth <= 64)
586         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
587       else
588         llvm_unreachable("Integer types > 64 bits not supported");
589       return rv;
590     }
591     case Type::VoidTyID:
592       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
593       return rv;
594     case Type::FloatTyID:
595       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
596       return rv;
597     case Type::DoubleTyID:
598       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
599       return rv;
600     case Type::X86_FP80TyID:
601     case Type::FP128TyID:
602     case Type::PPC_FP128TyID:
603       llvm_unreachable("long double not supported yet");
604     case Type::PointerTyID:
605       return PTOGV(((void*(*)())(intptr_t)FPtr)());
606     }
607   }
608 
609   report_fatal_error("MCJIT::runFunction does not support full-featured "
610                      "argument passing. Please use "
611                      "ExecutionEngine::getFunctionAddress and cast the result "
612                      "to the desired function pointer type.");
613 }
614 
615 void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
616   if (!isSymbolSearchingDisabled()) {
617     if (auto Sym = Resolver.findSymbol(std::string(Name))) {
618       if (auto AddrOrErr = Sym.getAddress())
619         return reinterpret_cast<void*>(
620                  static_cast<uintptr_t>(*AddrOrErr));
621     } else if (auto Err = Sym.takeError())
622       report_fatal_error(std::move(Err));
623   }
624 
625   /// If a LazyFunctionCreator is installed, use it to get/create the function.
626   if (LazyFunctionCreator)
627     if (void *RP = LazyFunctionCreator(std::string(Name)))
628       return RP;
629 
630   if (AbortOnFailure) {
631     report_fatal_error("Program used external function '"+Name+
632                        "' which could not be resolved!");
633   }
634   return nullptr;
635 }
636 
637 void MCJIT::RegisterJITEventListener(JITEventListener *L) {
638   if (!L)
639     return;
640   std::lock_guard<sys::Mutex> locked(lock);
641   EventListeners.push_back(L);
642 }
643 
644 void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
645   if (!L)
646     return;
647   std::lock_guard<sys::Mutex> locked(lock);
648   auto I = find(reverse(EventListeners), L);
649   if (I != EventListeners.rend()) {
650     std::swap(*I, EventListeners.back());
651     EventListeners.pop_back();
652   }
653 }
654 
655 void MCJIT::notifyObjectLoaded(const object::ObjectFile &Obj,
656                                const RuntimeDyld::LoadedObjectInfo &L) {
657   uint64_t Key =
658       static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
659   std::lock_guard<sys::Mutex> locked(lock);
660   MemMgr->notifyObjectLoaded(this, Obj);
661   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
662     EventListeners[I]->notifyObjectLoaded(Key, Obj, L);
663   }
664 }
665 
666 void MCJIT::notifyFreeingObject(const object::ObjectFile &Obj) {
667   uint64_t Key =
668       static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
669   std::lock_guard<sys::Mutex> locked(lock);
670   for (JITEventListener *L : EventListeners)
671     L->notifyFreeingObject(Key);
672 }
673 
674 JITSymbol
675 LinkingSymbolResolver::findSymbol(const std::string &Name) {
676   auto Result = ParentEngine.findSymbol(Name, false);
677   if (Result)
678     return Result;
679   if (ParentEngine.isSymbolSearchingDisabled())
680     return nullptr;
681   return ClientResolver->findSymbol(Name);
682 }
683 
684 void LinkingSymbolResolver::anchor() {}
685