1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/BinaryFormat/ELF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/MemoryBuffer.h"
23 #include "llvm/TargetParser/Triple.h"
24 
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
28 
29 #define DEBUG_TYPE "dyld"
30 
31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32 
33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34   or32le(L, (Imm & 0xFFF) << 10);
35 }
36 
37 template <class T> static void write(bool isBE, void *P, T V) {
38   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
39 }
40 
41 static void write32AArch64Addr(void *L, uint64_t Imm) {
42   uint32_t ImmLo = (Imm & 0x3) << 29;
43   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
46 }
47 
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val, int Start, int End) {
51   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52   return (Val >> Start) & Mask;
53 }
54 
55 namespace {
56 
57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
59 
60   typedef typename ELFT::uint addr_type;
61 
62   DyldELFObject(ELFObjectFile<ELFT> &&Obj);
63 
64 public:
65   static Expected<std::unique_ptr<DyldELFObject>>
66   create(MemoryBufferRef Wrapper);
67 
68   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
69 
70   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
71 
72   // Methods for type inquiry through isa, cast and dyn_cast
73   static bool classof(const Binary *v) {
74     return (isa<ELFObjectFile<ELFT>>(v) &&
75             classof(cast<ELFObjectFile<ELFT>>(v)));
76   }
77   static bool classof(const ELFObjectFile<ELFT> *v) {
78     return v->isDyldType();
79   }
80 };
81 
82 
83 
84 // The MemoryBuffer passed into this constructor is just a wrapper around the
85 // actual memory.  Ultimately, the Binary parent class will take ownership of
86 // this MemoryBuffer object but not the underlying memory.
87 template <class ELFT>
88 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
89     : ELFObjectFile<ELFT>(std::move(Obj)) {
90   this->isDyldELFObject = true;
91 }
92 
93 template <class ELFT>
94 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
95 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
96   auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
97   if (auto E = Obj.takeError())
98     return std::move(E);
99   std::unique_ptr<DyldELFObject<ELFT>> Ret(
100       new DyldELFObject<ELFT>(std::move(*Obj)));
101   return std::move(Ret);
102 }
103 
104 template <class ELFT>
105 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
106                                                uint64_t Addr) {
107   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
108   Elf_Shdr *shdr =
109       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
110 
111   // This assumes the address passed in matches the target address bitness
112   // The template-based type cast handles everything else.
113   shdr->sh_addr = static_cast<addr_type>(Addr);
114 }
115 
116 template <class ELFT>
117 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
118                                               uint64_t Addr) {
119 
120   Elf_Sym *sym = const_cast<Elf_Sym *>(
121       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
122 
123   // This assumes the address passed in matches the target address bitness
124   // The template-based type cast handles everything else.
125   sym->st_value = static_cast<addr_type>(Addr);
126 }
127 
128 class LoadedELFObjectInfo final
129     : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
130                                     RuntimeDyld::LoadedObjectInfo> {
131 public:
132   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
133       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
134 
135   OwningBinary<ObjectFile>
136   getObjectForDebug(const ObjectFile &Obj) const override;
137 };
138 
139 template <typename ELFT>
140 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
141 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
142                       const LoadedELFObjectInfo &L) {
143   typedef typename ELFT::Shdr Elf_Shdr;
144   typedef typename ELFT::uint addr_type;
145 
146   Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
147       DyldELFObject<ELFT>::create(Buffer);
148   if (Error E = ObjOrErr.takeError())
149     return std::move(E);
150 
151   std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
152 
153   // Iterate over all sections in the object.
154   auto SI = SourceObject.section_begin();
155   for (const auto &Sec : Obj->sections()) {
156     Expected<StringRef> NameOrErr = Sec.getName();
157     if (!NameOrErr) {
158       consumeError(NameOrErr.takeError());
159       continue;
160     }
161 
162     if (*NameOrErr != "") {
163       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
164       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
165           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
166 
167       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
168         // This assumes that the address passed in matches the target address
169         // bitness. The template-based type cast handles everything else.
170         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
171       }
172     }
173     ++SI;
174   }
175 
176   return std::move(Obj);
177 }
178 
179 static OwningBinary<ObjectFile>
180 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
181   assert(Obj.isELF() && "Not an ELF object file.");
182 
183   std::unique_ptr<MemoryBuffer> Buffer =
184     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
185 
186   Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
187   handleAllErrors(DebugObj.takeError());
188   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
189     DebugObj =
190         createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
191   else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
192     DebugObj =
193         createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
194   else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
195     DebugObj =
196         createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
197   else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
198     DebugObj =
199         createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
200   else
201     llvm_unreachable("Unexpected ELF format");
202 
203   handleAllErrors(DebugObj.takeError());
204   return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
205 }
206 
207 OwningBinary<ObjectFile>
208 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
209   return createELFDebugObject(Obj, *this);
210 }
211 
212 } // anonymous namespace
213 
214 namespace llvm {
215 
216 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
217                                JITSymbolResolver &Resolver)
218     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
219 RuntimeDyldELF::~RuntimeDyldELF() = default;
220 
221 void RuntimeDyldELF::registerEHFrames() {
222   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
223     SID EHFrameSID = UnregisteredEHFrameSections[i];
224     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
225     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
226     size_t EHFrameSize = Sections[EHFrameSID].getSize();
227     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
228   }
229   UnregisteredEHFrameSections.clear();
230 }
231 
232 std::unique_ptr<RuntimeDyldELF>
233 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
234                              RuntimeDyld::MemoryManager &MemMgr,
235                              JITSymbolResolver &Resolver) {
236   switch (Arch) {
237   default:
238     return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
239   case Triple::mips:
240   case Triple::mipsel:
241   case Triple::mips64:
242   case Triple::mips64el:
243     return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
244   }
245 }
246 
247 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
248 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
249   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
250     return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
251   else {
252     HasError = true;
253     raw_string_ostream ErrStream(ErrorStr);
254     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
255     return nullptr;
256   }
257 }
258 
259 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
260                                              uint64_t Offset, uint64_t Value,
261                                              uint32_t Type, int64_t Addend,
262                                              uint64_t SymOffset) {
263   switch (Type) {
264   default:
265     report_fatal_error("Relocation type not implemented yet!");
266     break;
267   case ELF::R_X86_64_NONE:
268     break;
269   case ELF::R_X86_64_8: {
270     Value += Addend;
271     assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
272     uint8_t TruncatedAddr = (Value & 0xFF);
273     *Section.getAddressWithOffset(Offset) = TruncatedAddr;
274     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
275                       << format("%p\n", Section.getAddressWithOffset(Offset)));
276     break;
277   }
278   case ELF::R_X86_64_16: {
279     Value += Addend;
280     assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
281     uint16_t TruncatedAddr = (Value & 0xFFFF);
282     support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
283         TruncatedAddr;
284     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
285                       << format("%p\n", Section.getAddressWithOffset(Offset)));
286     break;
287   }
288   case ELF::R_X86_64_64: {
289     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
290         Value + Addend;
291     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
292                       << format("%p\n", Section.getAddressWithOffset(Offset)));
293     break;
294   }
295   case ELF::R_X86_64_32:
296   case ELF::R_X86_64_32S: {
297     Value += Addend;
298     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
299            (Type == ELF::R_X86_64_32S &&
300             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
301     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
302     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
303         TruncatedAddr;
304     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
305                       << format("%p\n", Section.getAddressWithOffset(Offset)));
306     break;
307   }
308   case ELF::R_X86_64_PC8: {
309     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
310     int64_t RealOffset = Value + Addend - FinalAddress;
311     assert(isInt<8>(RealOffset));
312     int8_t TruncOffset = (RealOffset & 0xFF);
313     Section.getAddress()[Offset] = TruncOffset;
314     break;
315   }
316   case ELF::R_X86_64_PC32: {
317     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
318     int64_t RealOffset = Value + Addend - FinalAddress;
319     assert(isInt<32>(RealOffset));
320     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
321     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
322         TruncOffset;
323     break;
324   }
325   case ELF::R_X86_64_PC64: {
326     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
327     int64_t RealOffset = Value + Addend - FinalAddress;
328     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
329         RealOffset;
330     LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
331                       << format("%p\n", FinalAddress));
332     break;
333   }
334   case ELF::R_X86_64_GOTOFF64: {
335     // Compute Value - GOTBase.
336     uint64_t GOTBase = 0;
337     for (const auto &Section : Sections) {
338       if (Section.getName() == ".got") {
339         GOTBase = Section.getLoadAddressWithOffset(0);
340         break;
341       }
342     }
343     assert(GOTBase != 0 && "missing GOT");
344     int64_t GOTOffset = Value - GOTBase + Addend;
345     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
346     break;
347   }
348   case ELF::R_X86_64_DTPMOD64: {
349     // We only have one DSO, so the module id is always 1.
350     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
351     break;
352   }
353   case ELF::R_X86_64_DTPOFF64:
354   case ELF::R_X86_64_TPOFF64: {
355     // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
356     // offset in the *initial* TLS block. Since we are statically linking, all
357     // TLS blocks already exist in the initial block, so resolve both
358     // relocations equally.
359     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
360         Value + Addend;
361     break;
362   }
363   case ELF::R_X86_64_DTPOFF32:
364   case ELF::R_X86_64_TPOFF32: {
365     // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
366     // be resolved equally.
367     int64_t RealValue = Value + Addend;
368     assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
369     int32_t TruncValue = RealValue;
370     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
371         TruncValue;
372     break;
373   }
374   }
375 }
376 
377 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
378                                           uint64_t Offset, uint32_t Value,
379                                           uint32_t Type, int32_t Addend) {
380   switch (Type) {
381   case ELF::R_386_32: {
382     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
383         Value + Addend;
384     break;
385   }
386   // Handle R_386_PLT32 like R_386_PC32 since it should be able to
387   // reach any 32 bit address.
388   case ELF::R_386_PLT32:
389   case ELF::R_386_PC32: {
390     uint32_t FinalAddress =
391         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
392     uint32_t RealOffset = Value + Addend - FinalAddress;
393     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
394         RealOffset;
395     break;
396   }
397   default:
398     // There are other relocation types, but it appears these are the
399     // only ones currently used by the LLVM ELF object writer
400     report_fatal_error("Relocation type not implemented yet!");
401     break;
402   }
403 }
404 
405 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
406                                               uint64_t Offset, uint64_t Value,
407                                               uint32_t Type, int64_t Addend) {
408   uint32_t *TargetPtr =
409       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
410   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
411   // Data should use target endian. Code should always use little endian.
412   bool isBE = Arch == Triple::aarch64_be;
413 
414   LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
415                     << format("%llx", Section.getAddressWithOffset(Offset))
416                     << " FinalAddress: 0x" << format("%llx", FinalAddress)
417                     << " Value: 0x" << format("%llx", Value) << " Type: 0x"
418                     << format("%x", Type) << " Addend: 0x"
419                     << format("%llx", Addend) << "\n");
420 
421   switch (Type) {
422   default:
423     report_fatal_error("Relocation type not implemented yet!");
424     break;
425   case ELF::R_AARCH64_NONE:
426     break;
427   case ELF::R_AARCH64_ABS16: {
428     uint64_t Result = Value + Addend;
429     assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) ||
430            (Result >> 16) == 0);
431     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
432     break;
433   }
434   case ELF::R_AARCH64_ABS32: {
435     uint64_t Result = Value + Addend;
436     assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) ||
437            (Result >> 32) == 0);
438     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
439     break;
440   }
441   case ELF::R_AARCH64_ABS64:
442     write(isBE, TargetPtr, Value + Addend);
443     break;
444   case ELF::R_AARCH64_PLT32: {
445     uint64_t Result = Value + Addend - FinalAddress;
446     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
447            static_cast<int64_t>(Result) <= INT32_MAX);
448     write(isBE, TargetPtr, static_cast<uint32_t>(Result));
449     break;
450   }
451   case ELF::R_AARCH64_PREL16: {
452     uint64_t Result = Value + Addend - FinalAddress;
453     assert(static_cast<int64_t>(Result) >= INT16_MIN &&
454            static_cast<int64_t>(Result) <= UINT16_MAX);
455     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
456     break;
457   }
458   case ELF::R_AARCH64_PREL32: {
459     uint64_t Result = Value + Addend - FinalAddress;
460     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
461            static_cast<int64_t>(Result) <= UINT32_MAX);
462     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
463     break;
464   }
465   case ELF::R_AARCH64_PREL64:
466     write(isBE, TargetPtr, Value + Addend - FinalAddress);
467     break;
468   case ELF::R_AARCH64_CONDBR19: {
469     uint64_t BranchImm = Value + Addend - FinalAddress;
470 
471     assert(isInt<21>(BranchImm));
472     *TargetPtr &= 0xff00001fU;
473     // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
474     or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
475     break;
476   }
477   case ELF::R_AARCH64_TSTBR14: {
478     uint64_t BranchImm = Value + Addend - FinalAddress;
479 
480     assert(isInt<16>(BranchImm));
481 
482     uint32_t RawInstr = *(support::little32_t *)TargetPtr;
483     *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU;
484 
485     // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
486     or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
487     break;
488   }
489   case ELF::R_AARCH64_CALL26: // fallthrough
490   case ELF::R_AARCH64_JUMP26: {
491     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
492     // calculation.
493     uint64_t BranchImm = Value + Addend - FinalAddress;
494 
495     // "Check that -2^27 <= result < 2^27".
496     assert(isInt<28>(BranchImm));
497     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
498     break;
499   }
500   case ELF::R_AARCH64_MOVW_UABS_G3:
501     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
502     break;
503   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
504     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
505     break;
506   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
507     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
508     break;
509   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
510     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
511     break;
512   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
513     // Operation: Page(S+A) - Page(P)
514     uint64_t Result =
515         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
516 
517     // Check that -2^32 <= X < 2^32
518     assert(isInt<33>(Result) && "overflow check failed for relocation");
519 
520     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
521     // from bits 32:12 of X.
522     write32AArch64Addr(TargetPtr, Result >> 12);
523     break;
524   }
525   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
526     // Operation: S + A
527     // Immediate goes in bits 21:10 of LD/ST instruction, taken
528     // from bits 11:0 of X
529     or32AArch64Imm(TargetPtr, Value + Addend);
530     break;
531   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
532     // Operation: S + A
533     // Immediate goes in bits 21:10 of LD/ST instruction, taken
534     // from bits 11:0 of X
535     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
536     break;
537   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
538     // Operation: S + A
539     // Immediate goes in bits 21:10 of LD/ST instruction, taken
540     // from bits 11:1 of X
541     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
542     break;
543   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
544     // Operation: S + A
545     // Immediate goes in bits 21:10 of LD/ST instruction, taken
546     // from bits 11:2 of X
547     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
548     break;
549   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
550     // Operation: S + A
551     // Immediate goes in bits 21:10 of LD/ST instruction, taken
552     // from bits 11:3 of X
553     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
554     break;
555   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
556     // Operation: S + A
557     // Immediate goes in bits 21:10 of LD/ST instruction, taken
558     // from bits 11:4 of X
559     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
560     break;
561   case ELF::R_AARCH64_LD_PREL_LO19: {
562     // Operation: S + A - P
563     uint64_t Result = Value + Addend - FinalAddress;
564 
565     // "Check that -2^20 <= result < 2^20".
566     assert(isInt<21>(Result));
567 
568     *TargetPtr &= 0xff00001fU;
569     // Immediate goes in bits 23:5 of LD imm instruction, taken
570     // from bits 20:2 of X
571     *TargetPtr |= ((Result & 0xffc) << (5 - 2));
572     break;
573   }
574   case ELF::R_AARCH64_ADR_PREL_LO21: {
575     // Operation: S + A - P
576     uint64_t Result = Value + Addend - FinalAddress;
577 
578     // "Check that -2^20 <= result < 2^20".
579     assert(isInt<21>(Result));
580 
581     *TargetPtr &= 0x9f00001fU;
582     // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
583     // from bits 20:0 of X
584     *TargetPtr |= ((Result & 0xffc) << (5 - 2));
585     *TargetPtr |= (Result & 0x3) << 29;
586     break;
587   }
588   }
589 }
590 
591 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
592                                           uint64_t Offset, uint32_t Value,
593                                           uint32_t Type, int32_t Addend) {
594   // TODO: Add Thumb relocations.
595   uint32_t *TargetPtr =
596       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
597   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
598   Value += Addend;
599 
600   LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
601                     << Section.getAddressWithOffset(Offset)
602                     << " FinalAddress: " << format("%p", FinalAddress)
603                     << " Value: " << format("%x", Value)
604                     << " Type: " << format("%x", Type)
605                     << " Addend: " << format("%x", Addend) << "\n");
606 
607   switch (Type) {
608   default:
609     llvm_unreachable("Not implemented relocation type!");
610 
611   case ELF::R_ARM_NONE:
612     break;
613     // Write a 31bit signed offset
614   case ELF::R_ARM_PREL31:
615     support::ulittle32_t::ref{TargetPtr} =
616         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
617         ((Value - FinalAddress) & ~0x80000000);
618     break;
619   case ELF::R_ARM_TARGET1:
620   case ELF::R_ARM_ABS32:
621     support::ulittle32_t::ref{TargetPtr} = Value;
622     break;
623     // Write first 16 bit of 32 bit value to the mov instruction.
624     // Last 4 bit should be shifted.
625   case ELF::R_ARM_MOVW_ABS_NC:
626   case ELF::R_ARM_MOVT_ABS:
627     if (Type == ELF::R_ARM_MOVW_ABS_NC)
628       Value = Value & 0xFFFF;
629     else if (Type == ELF::R_ARM_MOVT_ABS)
630       Value = (Value >> 16) & 0xFFFF;
631     support::ulittle32_t::ref{TargetPtr} =
632         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
633         (((Value >> 12) & 0xF) << 16);
634     break;
635     // Write 24 bit relative value to the branch instruction.
636   case ELF::R_ARM_PC24: // Fall through.
637   case ELF::R_ARM_CALL: // Fall through.
638   case ELF::R_ARM_JUMP24:
639     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
640     RelValue = (RelValue & 0x03FFFFFC) >> 2;
641     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
642     support::ulittle32_t::ref{TargetPtr} =
643         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
644     break;
645   }
646 }
647 
648 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
649   if (Arch == Triple::UnknownArch ||
650       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
651     IsMipsO32ABI = false;
652     IsMipsN32ABI = false;
653     IsMipsN64ABI = false;
654     return;
655   }
656   if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
657     unsigned AbiVariant = E->getPlatformFlags();
658     IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
659     IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
660   }
661   IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
662 }
663 
664 // Return the .TOC. section and offset.
665 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
666                                           ObjSectionToIDMap &LocalSections,
667                                           RelocationValueRef &Rel) {
668   // Set a default SectionID in case we do not find a TOC section below.
669   // This may happen for references to TOC base base (sym@toc, .odp
670   // relocation) without a .toc directive.  In this case just use the
671   // first section (which is usually the .odp) since the code won't
672   // reference the .toc base directly.
673   Rel.SymbolName = nullptr;
674   Rel.SectionID = 0;
675 
676   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
677   // order. The TOC starts where the first of these sections starts.
678   for (auto &Section : Obj.sections()) {
679     Expected<StringRef> NameOrErr = Section.getName();
680     if (!NameOrErr)
681       return NameOrErr.takeError();
682     StringRef SectionName = *NameOrErr;
683 
684     if (SectionName == ".got"
685         || SectionName == ".toc"
686         || SectionName == ".tocbss"
687         || SectionName == ".plt") {
688       if (auto SectionIDOrErr =
689             findOrEmitSection(Obj, Section, false, LocalSections))
690         Rel.SectionID = *SectionIDOrErr;
691       else
692         return SectionIDOrErr.takeError();
693       break;
694     }
695   }
696 
697   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
698   // thus permitting a full 64 Kbytes segment.
699   Rel.Addend = 0x8000;
700 
701   return Error::success();
702 }
703 
704 // Returns the sections and offset associated with the ODP entry referenced
705 // by Symbol.
706 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
707                                           ObjSectionToIDMap &LocalSections,
708                                           RelocationValueRef &Rel) {
709   // Get the ELF symbol value (st_value) to compare with Relocation offset in
710   // .opd entries
711   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
712        si != se; ++si) {
713 
714     Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
715     if (!RelSecOrErr)
716       report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
717 
718     section_iterator RelSecI = *RelSecOrErr;
719     if (RelSecI == Obj.section_end())
720       continue;
721 
722     Expected<StringRef> NameOrErr = RelSecI->getName();
723     if (!NameOrErr)
724       return NameOrErr.takeError();
725     StringRef RelSectionName = *NameOrErr;
726 
727     if (RelSectionName != ".opd")
728       continue;
729 
730     for (elf_relocation_iterator i = si->relocation_begin(),
731                                  e = si->relocation_end();
732          i != e;) {
733       // The R_PPC64_ADDR64 relocation indicates the first field
734       // of a .opd entry
735       uint64_t TypeFunc = i->getType();
736       if (TypeFunc != ELF::R_PPC64_ADDR64) {
737         ++i;
738         continue;
739       }
740 
741       uint64_t TargetSymbolOffset = i->getOffset();
742       symbol_iterator TargetSymbol = i->getSymbol();
743       int64_t Addend;
744       if (auto AddendOrErr = i->getAddend())
745         Addend = *AddendOrErr;
746       else
747         return AddendOrErr.takeError();
748 
749       ++i;
750       if (i == e)
751         break;
752 
753       // Just check if following relocation is a R_PPC64_TOC
754       uint64_t TypeTOC = i->getType();
755       if (TypeTOC != ELF::R_PPC64_TOC)
756         continue;
757 
758       // Finally compares the Symbol value and the target symbol offset
759       // to check if this .opd entry refers to the symbol the relocation
760       // points to.
761       if (Rel.Addend != (int64_t)TargetSymbolOffset)
762         continue;
763 
764       section_iterator TSI = Obj.section_end();
765       if (auto TSIOrErr = TargetSymbol->getSection())
766         TSI = *TSIOrErr;
767       else
768         return TSIOrErr.takeError();
769       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
770 
771       bool IsCode = TSI->isText();
772       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
773                                                   LocalSections))
774         Rel.SectionID = *SectionIDOrErr;
775       else
776         return SectionIDOrErr.takeError();
777       Rel.Addend = (intptr_t)Addend;
778       return Error::success();
779     }
780   }
781   llvm_unreachable("Attempting to get address of ODP entry!");
782 }
783 
784 // Relocation masks following the #lo(value), #hi(value), #ha(value),
785 // #higher(value), #highera(value), #highest(value), and #highesta(value)
786 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
787 // document.
788 
789 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
790 
791 static inline uint16_t applyPPChi(uint64_t value) {
792   return (value >> 16) & 0xffff;
793 }
794 
795 static inline uint16_t applyPPCha (uint64_t value) {
796   return ((value + 0x8000) >> 16) & 0xffff;
797 }
798 
799 static inline uint16_t applyPPChigher(uint64_t value) {
800   return (value >> 32) & 0xffff;
801 }
802 
803 static inline uint16_t applyPPChighera (uint64_t value) {
804   return ((value + 0x8000) >> 32) & 0xffff;
805 }
806 
807 static inline uint16_t applyPPChighest(uint64_t value) {
808   return (value >> 48) & 0xffff;
809 }
810 
811 static inline uint16_t applyPPChighesta (uint64_t value) {
812   return ((value + 0x8000) >> 48) & 0xffff;
813 }
814 
815 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
816                                             uint64_t Offset, uint64_t Value,
817                                             uint32_t Type, int64_t Addend) {
818   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
819   switch (Type) {
820   default:
821     report_fatal_error("Relocation type not implemented yet!");
822     break;
823   case ELF::R_PPC_ADDR16_LO:
824     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
825     break;
826   case ELF::R_PPC_ADDR16_HI:
827     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
828     break;
829   case ELF::R_PPC_ADDR16_HA:
830     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
831     break;
832   }
833 }
834 
835 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
836                                             uint64_t Offset, uint64_t Value,
837                                             uint32_t Type, int64_t Addend) {
838   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
839   switch (Type) {
840   default:
841     report_fatal_error("Relocation type not implemented yet!");
842     break;
843   case ELF::R_PPC64_ADDR16:
844     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
845     break;
846   case ELF::R_PPC64_ADDR16_DS:
847     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
848     break;
849   case ELF::R_PPC64_ADDR16_LO:
850     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
851     break;
852   case ELF::R_PPC64_ADDR16_LO_DS:
853     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
854     break;
855   case ELF::R_PPC64_ADDR16_HI:
856   case ELF::R_PPC64_ADDR16_HIGH:
857     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
858     break;
859   case ELF::R_PPC64_ADDR16_HA:
860   case ELF::R_PPC64_ADDR16_HIGHA:
861     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
862     break;
863   case ELF::R_PPC64_ADDR16_HIGHER:
864     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
865     break;
866   case ELF::R_PPC64_ADDR16_HIGHERA:
867     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
868     break;
869   case ELF::R_PPC64_ADDR16_HIGHEST:
870     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
871     break;
872   case ELF::R_PPC64_ADDR16_HIGHESTA:
873     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
874     break;
875   case ELF::R_PPC64_ADDR14: {
876     assert(((Value + Addend) & 3) == 0);
877     // Preserve the AA/LK bits in the branch instruction
878     uint8_t aalk = *(LocalAddress + 3);
879     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
880   } break;
881   case ELF::R_PPC64_REL16_LO: {
882     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
883     uint64_t Delta = Value - FinalAddress + Addend;
884     writeInt16BE(LocalAddress, applyPPClo(Delta));
885   } break;
886   case ELF::R_PPC64_REL16_HI: {
887     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
888     uint64_t Delta = Value - FinalAddress + Addend;
889     writeInt16BE(LocalAddress, applyPPChi(Delta));
890   } break;
891   case ELF::R_PPC64_REL16_HA: {
892     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
893     uint64_t Delta = Value - FinalAddress + Addend;
894     writeInt16BE(LocalAddress, applyPPCha(Delta));
895   } break;
896   case ELF::R_PPC64_ADDR32: {
897     int64_t Result = static_cast<int64_t>(Value + Addend);
898     if (SignExtend64<32>(Result) != Result)
899       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
900     writeInt32BE(LocalAddress, Result);
901   } break;
902   case ELF::R_PPC64_REL24: {
903     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
904     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
905     if (SignExtend64<26>(delta) != delta)
906       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
907     // We preserve bits other than LI field, i.e. PO and AA/LK fields.
908     uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
909     writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
910   } break;
911   case ELF::R_PPC64_REL32: {
912     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
913     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
914     if (SignExtend64<32>(delta) != delta)
915       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
916     writeInt32BE(LocalAddress, delta);
917   } break;
918   case ELF::R_PPC64_REL64: {
919     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
920     uint64_t Delta = Value - FinalAddress + Addend;
921     writeInt64BE(LocalAddress, Delta);
922   } break;
923   case ELF::R_PPC64_ADDR64:
924     writeInt64BE(LocalAddress, Value + Addend);
925     break;
926   }
927 }
928 
929 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
930                                               uint64_t Offset, uint64_t Value,
931                                               uint32_t Type, int64_t Addend) {
932   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
933   switch (Type) {
934   default:
935     report_fatal_error("Relocation type not implemented yet!");
936     break;
937   case ELF::R_390_PC16DBL:
938   case ELF::R_390_PLT16DBL: {
939     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
940     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
941     writeInt16BE(LocalAddress, Delta / 2);
942     break;
943   }
944   case ELF::R_390_PC32DBL:
945   case ELF::R_390_PLT32DBL: {
946     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
947     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
948     writeInt32BE(LocalAddress, Delta / 2);
949     break;
950   }
951   case ELF::R_390_PC16: {
952     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
953     assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
954     writeInt16BE(LocalAddress, Delta);
955     break;
956   }
957   case ELF::R_390_PC32: {
958     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
959     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
960     writeInt32BE(LocalAddress, Delta);
961     break;
962   }
963   case ELF::R_390_PC64: {
964     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
965     writeInt64BE(LocalAddress, Delta);
966     break;
967   }
968   case ELF::R_390_8:
969     *LocalAddress = (uint8_t)(Value + Addend);
970     break;
971   case ELF::R_390_16:
972     writeInt16BE(LocalAddress, Value + Addend);
973     break;
974   case ELF::R_390_32:
975     writeInt32BE(LocalAddress, Value + Addend);
976     break;
977   case ELF::R_390_64:
978     writeInt64BE(LocalAddress, Value + Addend);
979     break;
980   }
981 }
982 
983 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
984                                           uint64_t Offset, uint64_t Value,
985                                           uint32_t Type, int64_t Addend) {
986   bool isBE = Arch == Triple::bpfeb;
987 
988   switch (Type) {
989   default:
990     report_fatal_error("Relocation type not implemented yet!");
991     break;
992   case ELF::R_BPF_NONE:
993   case ELF::R_BPF_64_64:
994   case ELF::R_BPF_64_32:
995   case ELF::R_BPF_64_NODYLD32:
996     break;
997   case ELF::R_BPF_64_ABS64: {
998     write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
999     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
1000                       << format("%p\n", Section.getAddressWithOffset(Offset)));
1001     break;
1002   }
1003   case ELF::R_BPF_64_ABS32: {
1004     Value += Addend;
1005     assert(Value <= UINT32_MAX);
1006     write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1007     LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1008                       << format("%p\n", Section.getAddressWithOffset(Offset)));
1009     break;
1010   }
1011   }
1012 }
1013 
1014 // The target location for the relocation is described by RE.SectionID and
1015 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
1016 // SectionEntry has three members describing its location.
1017 // SectionEntry::Address is the address at which the section has been loaded
1018 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
1019 // address that the section will have in the target process.
1020 // SectionEntry::ObjAddress is the address of the bits for this section in the
1021 // original emitted object image (also in the current address space).
1022 //
1023 // Relocations will be applied as if the section were loaded at
1024 // SectionEntry::LoadAddress, but they will be applied at an address based
1025 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
1026 // Target memory contents if they are required for value calculations.
1027 //
1028 // The Value parameter here is the load address of the symbol for the
1029 // relocation to be applied.  For relocations which refer to symbols in the
1030 // current object Value will be the LoadAddress of the section in which
1031 // the symbol resides (RE.Addend provides additional information about the
1032 // symbol location).  For external symbols, Value will be the address of the
1033 // symbol in the target address space.
1034 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1035                                        uint64_t Value) {
1036   const SectionEntry &Section = Sections[RE.SectionID];
1037   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1038                            RE.SymOffset, RE.SectionID);
1039 }
1040 
1041 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1042                                        uint64_t Offset, uint64_t Value,
1043                                        uint32_t Type, int64_t Addend,
1044                                        uint64_t SymOffset, SID SectionID) {
1045   switch (Arch) {
1046   case Triple::x86_64:
1047     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1048     break;
1049   case Triple::x86:
1050     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1051                          (uint32_t)(Addend & 0xffffffffL));
1052     break;
1053   case Triple::aarch64:
1054   case Triple::aarch64_be:
1055     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1056     break;
1057   case Triple::arm: // Fall through.
1058   case Triple::armeb:
1059   case Triple::thumb:
1060   case Triple::thumbeb:
1061     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1062                          (uint32_t)(Addend & 0xffffffffL));
1063     break;
1064   case Triple::ppc: // Fall through.
1065   case Triple::ppcle:
1066     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1067     break;
1068   case Triple::ppc64: // Fall through.
1069   case Triple::ppc64le:
1070     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1071     break;
1072   case Triple::systemz:
1073     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1074     break;
1075   case Triple::bpfel:
1076   case Triple::bpfeb:
1077     resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1078     break;
1079   default:
1080     llvm_unreachable("Unsupported CPU type!");
1081   }
1082 }
1083 
1084 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1085   return (void *)(Sections[SectionID].getObjAddress() + Offset);
1086 }
1087 
1088 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1089   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1090   if (Value.SymbolName)
1091     addRelocationForSymbol(RE, Value.SymbolName);
1092   else
1093     addRelocationForSection(RE, Value.SectionID);
1094 }
1095 
1096 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1097                                                  bool IsLocal) const {
1098   switch (RelType) {
1099   case ELF::R_MICROMIPS_GOT16:
1100     if (IsLocal)
1101       return ELF::R_MICROMIPS_LO16;
1102     break;
1103   case ELF::R_MICROMIPS_HI16:
1104     return ELF::R_MICROMIPS_LO16;
1105   case ELF::R_MIPS_GOT16:
1106     if (IsLocal)
1107       return ELF::R_MIPS_LO16;
1108     break;
1109   case ELF::R_MIPS_HI16:
1110     return ELF::R_MIPS_LO16;
1111   case ELF::R_MIPS_PCHI16:
1112     return ELF::R_MIPS_PCLO16;
1113   default:
1114     break;
1115   }
1116   return ELF::R_MIPS_NONE;
1117 }
1118 
1119 // Sometimes we don't need to create thunk for a branch.
1120 // This typically happens when branch target is located
1121 // in the same object file. In such case target is either
1122 // a weak symbol or symbol in a different executable section.
1123 // This function checks if branch target is located in the
1124 // same object file and if distance between source and target
1125 // fits R_AARCH64_CALL26 relocation. If both conditions are
1126 // met, it emits direct jump to the target and returns true.
1127 // Otherwise false is returned and thunk is created.
1128 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1129     unsigned SectionID, relocation_iterator RelI,
1130     const RelocationValueRef &Value) {
1131   uint64_t Address;
1132   if (Value.SymbolName) {
1133     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1134 
1135     // Don't create direct branch for external symbols.
1136     if (Loc == GlobalSymbolTable.end())
1137       return false;
1138 
1139     const auto &SymInfo = Loc->second;
1140     Address =
1141         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1142             SymInfo.getOffset()));
1143   } else {
1144     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1145   }
1146   uint64_t Offset = RelI->getOffset();
1147   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1148 
1149   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1150   // If distance between source and target is out of range then we should
1151   // create thunk.
1152   if (!isInt<28>(Address + Value.Addend - SourceAddress))
1153     return false;
1154 
1155   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1156                     Value.Addend);
1157 
1158   return true;
1159 }
1160 
1161 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1162                                           const RelocationValueRef &Value,
1163                                           relocation_iterator RelI,
1164                                           StubMap &Stubs) {
1165 
1166   LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1167   SectionEntry &Section = Sections[SectionID];
1168 
1169   uint64_t Offset = RelI->getOffset();
1170   unsigned RelType = RelI->getType();
1171   // Look for an existing stub.
1172   StubMap::const_iterator i = Stubs.find(Value);
1173   if (i != Stubs.end()) {
1174     resolveRelocation(Section, Offset,
1175                       (uint64_t)Section.getAddressWithOffset(i->second),
1176                       RelType, 0);
1177     LLVM_DEBUG(dbgs() << " Stub function found\n");
1178   } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1179     // Create a new stub function.
1180     LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1181     Stubs[Value] = Section.getStubOffset();
1182     uint8_t *StubTargetAddr = createStubFunction(
1183         Section.getAddressWithOffset(Section.getStubOffset()));
1184 
1185     RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1186                               ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1187     RelocationEntry REmovk_g2(SectionID,
1188                               StubTargetAddr - Section.getAddress() + 4,
1189                               ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1190     RelocationEntry REmovk_g1(SectionID,
1191                               StubTargetAddr - Section.getAddress() + 8,
1192                               ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1193     RelocationEntry REmovk_g0(SectionID,
1194                               StubTargetAddr - Section.getAddress() + 12,
1195                               ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1196 
1197     if (Value.SymbolName) {
1198       addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1199       addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1200       addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1201       addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1202     } else {
1203       addRelocationForSection(REmovz_g3, Value.SectionID);
1204       addRelocationForSection(REmovk_g2, Value.SectionID);
1205       addRelocationForSection(REmovk_g1, Value.SectionID);
1206       addRelocationForSection(REmovk_g0, Value.SectionID);
1207     }
1208     resolveRelocation(Section, Offset,
1209                       reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1210                           Section.getStubOffset())),
1211                       RelType, 0);
1212     Section.advanceStubOffset(getMaxStubSize());
1213   }
1214 }
1215 
1216 Expected<relocation_iterator>
1217 RuntimeDyldELF::processRelocationRef(
1218     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1219     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1220   const auto &Obj = cast<ELFObjectFileBase>(O);
1221   uint64_t RelType = RelI->getType();
1222   int64_t Addend = 0;
1223   if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1224     Addend = *AddendOrErr;
1225   else
1226     consumeError(AddendOrErr.takeError());
1227   elf_symbol_iterator Symbol = RelI->getSymbol();
1228 
1229   // Obtain the symbol name which is referenced in the relocation
1230   StringRef TargetName;
1231   if (Symbol != Obj.symbol_end()) {
1232     if (auto TargetNameOrErr = Symbol->getName())
1233       TargetName = *TargetNameOrErr;
1234     else
1235       return TargetNameOrErr.takeError();
1236   }
1237   LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1238                     << " TargetName: " << TargetName << "\n");
1239   RelocationValueRef Value;
1240   // First search for the symbol in the local symbol table
1241   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1242 
1243   // Search for the symbol in the global symbol table
1244   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1245   if (Symbol != Obj.symbol_end()) {
1246     gsi = GlobalSymbolTable.find(TargetName.data());
1247     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1248     if (!SymTypeOrErr) {
1249       std::string Buf;
1250       raw_string_ostream OS(Buf);
1251       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1252       report_fatal_error(Twine(OS.str()));
1253     }
1254     SymType = *SymTypeOrErr;
1255   }
1256   if (gsi != GlobalSymbolTable.end()) {
1257     const auto &SymInfo = gsi->second;
1258     Value.SectionID = SymInfo.getSectionID();
1259     Value.Offset = SymInfo.getOffset();
1260     Value.Addend = SymInfo.getOffset() + Addend;
1261   } else {
1262     switch (SymType) {
1263     case SymbolRef::ST_Debug: {
1264       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1265       // and can be changed by another developers. Maybe best way is add
1266       // a new symbol type ST_Section to SymbolRef and use it.
1267       auto SectionOrErr = Symbol->getSection();
1268       if (!SectionOrErr) {
1269         std::string Buf;
1270         raw_string_ostream OS(Buf);
1271         logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1272         report_fatal_error(Twine(OS.str()));
1273       }
1274       section_iterator si = *SectionOrErr;
1275       if (si == Obj.section_end())
1276         llvm_unreachable("Symbol section not found, bad object file format!");
1277       LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1278       bool isCode = si->isText();
1279       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1280                                                   ObjSectionToID))
1281         Value.SectionID = *SectionIDOrErr;
1282       else
1283         return SectionIDOrErr.takeError();
1284       Value.Addend = Addend;
1285       break;
1286     }
1287     case SymbolRef::ST_Data:
1288     case SymbolRef::ST_Function:
1289     case SymbolRef::ST_Other:
1290     case SymbolRef::ST_Unknown: {
1291       Value.SymbolName = TargetName.data();
1292       Value.Addend = Addend;
1293 
1294       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1295       // will manifest here as a NULL symbol name.
1296       // We can set this as a valid (but empty) symbol name, and rely
1297       // on addRelocationForSymbol to handle this.
1298       if (!Value.SymbolName)
1299         Value.SymbolName = "";
1300       break;
1301     }
1302     default:
1303       llvm_unreachable("Unresolved symbol type!");
1304       break;
1305     }
1306   }
1307 
1308   uint64_t Offset = RelI->getOffset();
1309 
1310   LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1311                     << "\n");
1312   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1313     if ((RelType == ELF::R_AARCH64_CALL26 ||
1314          RelType == ELF::R_AARCH64_JUMP26) &&
1315         MemMgr.allowStubAllocation()) {
1316       resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1317     } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1318       // Create new GOT entry or find existing one. If GOT entry is
1319       // to be created, then we also emit ABS64 relocation for it.
1320       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1321       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1322                                  ELF::R_AARCH64_ADR_PREL_PG_HI21);
1323 
1324     } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1325       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1326       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1327                                  ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1328     } else {
1329       processSimpleRelocation(SectionID, Offset, RelType, Value);
1330     }
1331   } else if (Arch == Triple::arm) {
1332     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1333       RelType == ELF::R_ARM_JUMP24) {
1334       // This is an ARM branch relocation, need to use a stub function.
1335       LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1336       SectionEntry &Section = Sections[SectionID];
1337 
1338       // Look for an existing stub.
1339       StubMap::const_iterator i = Stubs.find(Value);
1340       if (i != Stubs.end()) {
1341         resolveRelocation(
1342             Section, Offset,
1343             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1344             RelType, 0);
1345         LLVM_DEBUG(dbgs() << " Stub function found\n");
1346       } else {
1347         // Create a new stub function.
1348         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1349         Stubs[Value] = Section.getStubOffset();
1350         uint8_t *StubTargetAddr = createStubFunction(
1351             Section.getAddressWithOffset(Section.getStubOffset()));
1352         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1353                            ELF::R_ARM_ABS32, Value.Addend);
1354         if (Value.SymbolName)
1355           addRelocationForSymbol(RE, Value.SymbolName);
1356         else
1357           addRelocationForSection(RE, Value.SectionID);
1358 
1359         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1360                                                Section.getAddressWithOffset(
1361                                                    Section.getStubOffset())),
1362                           RelType, 0);
1363         Section.advanceStubOffset(getMaxStubSize());
1364       }
1365     } else {
1366       uint32_t *Placeholder =
1367         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1368       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1369           RelType == ELF::R_ARM_ABS32) {
1370         Value.Addend += *Placeholder;
1371       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1372         // See ELF for ARM documentation
1373         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1374       }
1375       processSimpleRelocation(SectionID, Offset, RelType, Value);
1376     }
1377   } else if (IsMipsO32ABI) {
1378     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1379         computePlaceholderAddress(SectionID, Offset));
1380     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1381     if (RelType == ELF::R_MIPS_26) {
1382       // This is an Mips branch relocation, need to use a stub function.
1383       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1384       SectionEntry &Section = Sections[SectionID];
1385 
1386       // Extract the addend from the instruction.
1387       // We shift up by two since the Value will be down shifted again
1388       // when applying the relocation.
1389       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1390 
1391       Value.Addend += Addend;
1392 
1393       //  Look up for existing stub.
1394       StubMap::const_iterator i = Stubs.find(Value);
1395       if (i != Stubs.end()) {
1396         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1397         addRelocationForSection(RE, SectionID);
1398         LLVM_DEBUG(dbgs() << " Stub function found\n");
1399       } else {
1400         // Create a new stub function.
1401         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1402         Stubs[Value] = Section.getStubOffset();
1403 
1404         unsigned AbiVariant = Obj.getPlatformFlags();
1405 
1406         uint8_t *StubTargetAddr = createStubFunction(
1407             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1408 
1409         // Creating Hi and Lo relocations for the filled stub instructions.
1410         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1411                              ELF::R_MIPS_HI16, Value.Addend);
1412         RelocationEntry RELo(SectionID,
1413                              StubTargetAddr - Section.getAddress() + 4,
1414                              ELF::R_MIPS_LO16, Value.Addend);
1415 
1416         if (Value.SymbolName) {
1417           addRelocationForSymbol(REHi, Value.SymbolName);
1418           addRelocationForSymbol(RELo, Value.SymbolName);
1419         } else {
1420           addRelocationForSection(REHi, Value.SectionID);
1421           addRelocationForSection(RELo, Value.SectionID);
1422         }
1423 
1424         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1425         addRelocationForSection(RE, SectionID);
1426         Section.advanceStubOffset(getMaxStubSize());
1427       }
1428     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1429       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1430       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1431       PendingRelocs.push_back(std::make_pair(Value, RE));
1432     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1433       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1434       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1435         const RelocationValueRef &MatchingValue = I->first;
1436         RelocationEntry &Reloc = I->second;
1437         if (MatchingValue == Value &&
1438             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1439             SectionID == Reloc.SectionID) {
1440           Reloc.Addend += Addend;
1441           if (Value.SymbolName)
1442             addRelocationForSymbol(Reloc, Value.SymbolName);
1443           else
1444             addRelocationForSection(Reloc, Value.SectionID);
1445           I = PendingRelocs.erase(I);
1446         } else
1447           ++I;
1448       }
1449       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1450       if (Value.SymbolName)
1451         addRelocationForSymbol(RE, Value.SymbolName);
1452       else
1453         addRelocationForSection(RE, Value.SectionID);
1454     } else {
1455       if (RelType == ELF::R_MIPS_32)
1456         Value.Addend += Opcode;
1457       else if (RelType == ELF::R_MIPS_PC16)
1458         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1459       else if (RelType == ELF::R_MIPS_PC19_S2)
1460         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1461       else if (RelType == ELF::R_MIPS_PC21_S2)
1462         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1463       else if (RelType == ELF::R_MIPS_PC26_S2)
1464         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1465       processSimpleRelocation(SectionID, Offset, RelType, Value);
1466     }
1467   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1468     uint32_t r_type = RelType & 0xff;
1469     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1470     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1471         || r_type == ELF::R_MIPS_GOT_DISP) {
1472       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1473       if (i != GOTSymbolOffsets.end())
1474         RE.SymOffset = i->second;
1475       else {
1476         RE.SymOffset = allocateGOTEntries(1);
1477         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1478       }
1479       if (Value.SymbolName)
1480         addRelocationForSymbol(RE, Value.SymbolName);
1481       else
1482         addRelocationForSection(RE, Value.SectionID);
1483     } else if (RelType == ELF::R_MIPS_26) {
1484       // This is an Mips branch relocation, need to use a stub function.
1485       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1486       SectionEntry &Section = Sections[SectionID];
1487 
1488       //  Look up for existing stub.
1489       StubMap::const_iterator i = Stubs.find(Value);
1490       if (i != Stubs.end()) {
1491         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1492         addRelocationForSection(RE, SectionID);
1493         LLVM_DEBUG(dbgs() << " Stub function found\n");
1494       } else {
1495         // Create a new stub function.
1496         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1497         Stubs[Value] = Section.getStubOffset();
1498 
1499         unsigned AbiVariant = Obj.getPlatformFlags();
1500 
1501         uint8_t *StubTargetAddr = createStubFunction(
1502             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1503 
1504         if (IsMipsN32ABI) {
1505           // Creating Hi and Lo relocations for the filled stub instructions.
1506           RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1507                                ELF::R_MIPS_HI16, Value.Addend);
1508           RelocationEntry RELo(SectionID,
1509                                StubTargetAddr - Section.getAddress() + 4,
1510                                ELF::R_MIPS_LO16, Value.Addend);
1511           if (Value.SymbolName) {
1512             addRelocationForSymbol(REHi, Value.SymbolName);
1513             addRelocationForSymbol(RELo, Value.SymbolName);
1514           } else {
1515             addRelocationForSection(REHi, Value.SectionID);
1516             addRelocationForSection(RELo, Value.SectionID);
1517           }
1518         } else {
1519           // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1520           // instructions.
1521           RelocationEntry REHighest(SectionID,
1522                                     StubTargetAddr - Section.getAddress(),
1523                                     ELF::R_MIPS_HIGHEST, Value.Addend);
1524           RelocationEntry REHigher(SectionID,
1525                                    StubTargetAddr - Section.getAddress() + 4,
1526                                    ELF::R_MIPS_HIGHER, Value.Addend);
1527           RelocationEntry REHi(SectionID,
1528                                StubTargetAddr - Section.getAddress() + 12,
1529                                ELF::R_MIPS_HI16, Value.Addend);
1530           RelocationEntry RELo(SectionID,
1531                                StubTargetAddr - Section.getAddress() + 20,
1532                                ELF::R_MIPS_LO16, Value.Addend);
1533           if (Value.SymbolName) {
1534             addRelocationForSymbol(REHighest, Value.SymbolName);
1535             addRelocationForSymbol(REHigher, Value.SymbolName);
1536             addRelocationForSymbol(REHi, Value.SymbolName);
1537             addRelocationForSymbol(RELo, Value.SymbolName);
1538           } else {
1539             addRelocationForSection(REHighest, Value.SectionID);
1540             addRelocationForSection(REHigher, Value.SectionID);
1541             addRelocationForSection(REHi, Value.SectionID);
1542             addRelocationForSection(RELo, Value.SectionID);
1543           }
1544         }
1545         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1546         addRelocationForSection(RE, SectionID);
1547         Section.advanceStubOffset(getMaxStubSize());
1548       }
1549     } else {
1550       processSimpleRelocation(SectionID, Offset, RelType, Value);
1551     }
1552 
1553   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1554     if (RelType == ELF::R_PPC64_REL24) {
1555       // Determine ABI variant in use for this object.
1556       unsigned AbiVariant = Obj.getPlatformFlags();
1557       AbiVariant &= ELF::EF_PPC64_ABI;
1558       // A PPC branch relocation will need a stub function if the target is
1559       // an external symbol (either Value.SymbolName is set, or SymType is
1560       // Symbol::ST_Unknown) or if the target address is not within the
1561       // signed 24-bits branch address.
1562       SectionEntry &Section = Sections[SectionID];
1563       uint8_t *Target = Section.getAddressWithOffset(Offset);
1564       bool RangeOverflow = false;
1565       bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1566       if (!IsExtern) {
1567         if (AbiVariant != 2) {
1568           // In the ELFv1 ABI, a function call may point to the .opd entry,
1569           // so the final symbol value is calculated based on the relocation
1570           // values in the .opd section.
1571           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1572             return std::move(Err);
1573         } else {
1574           // In the ELFv2 ABI, a function symbol may provide a local entry
1575           // point, which must be used for direct calls.
1576           if (Value.SectionID == SectionID){
1577             uint8_t SymOther = Symbol->getOther();
1578             Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1579           }
1580         }
1581         uint8_t *RelocTarget =
1582             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1583         int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1584         // If it is within 26-bits branch range, just set the branch target
1585         if (SignExtend64<26>(delta) != delta) {
1586           RangeOverflow = true;
1587         } else if ((AbiVariant != 2) ||
1588                    (AbiVariant == 2  && Value.SectionID == SectionID)) {
1589           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1590           addRelocationForSection(RE, Value.SectionID);
1591         }
1592       }
1593       if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1594           RangeOverflow) {
1595         // It is an external symbol (either Value.SymbolName is set, or
1596         // SymType is SymbolRef::ST_Unknown) or out of range.
1597         StubMap::const_iterator i = Stubs.find(Value);
1598         if (i != Stubs.end()) {
1599           // Symbol function stub already created, just relocate to it
1600           resolveRelocation(Section, Offset,
1601                             reinterpret_cast<uint64_t>(
1602                                 Section.getAddressWithOffset(i->second)),
1603                             RelType, 0);
1604           LLVM_DEBUG(dbgs() << " Stub function found\n");
1605         } else {
1606           // Create a new stub function.
1607           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1608           Stubs[Value] = Section.getStubOffset();
1609           uint8_t *StubTargetAddr = createStubFunction(
1610               Section.getAddressWithOffset(Section.getStubOffset()),
1611               AbiVariant);
1612           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1613                              ELF::R_PPC64_ADDR64, Value.Addend);
1614 
1615           // Generates the 64-bits address loads as exemplified in section
1616           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1617           // apply to the low part of the instructions, so we have to update
1618           // the offset according to the target endianness.
1619           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1620           if (!IsTargetLittleEndian)
1621             StubRelocOffset += 2;
1622 
1623           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1624                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1625           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1626                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1627           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1628                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1629           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1630                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1631 
1632           if (Value.SymbolName) {
1633             addRelocationForSymbol(REhst, Value.SymbolName);
1634             addRelocationForSymbol(REhr, Value.SymbolName);
1635             addRelocationForSymbol(REh, Value.SymbolName);
1636             addRelocationForSymbol(REl, Value.SymbolName);
1637           } else {
1638             addRelocationForSection(REhst, Value.SectionID);
1639             addRelocationForSection(REhr, Value.SectionID);
1640             addRelocationForSection(REh, Value.SectionID);
1641             addRelocationForSection(REl, Value.SectionID);
1642           }
1643 
1644           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1645                                                  Section.getAddressWithOffset(
1646                                                      Section.getStubOffset())),
1647                             RelType, 0);
1648           Section.advanceStubOffset(getMaxStubSize());
1649         }
1650         if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1651           // Restore the TOC for external calls
1652           if (AbiVariant == 2)
1653             writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1654           else
1655             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1656         }
1657       }
1658     } else if (RelType == ELF::R_PPC64_TOC16 ||
1659                RelType == ELF::R_PPC64_TOC16_DS ||
1660                RelType == ELF::R_PPC64_TOC16_LO ||
1661                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1662                RelType == ELF::R_PPC64_TOC16_HI ||
1663                RelType == ELF::R_PPC64_TOC16_HA) {
1664       // These relocations are supposed to subtract the TOC address from
1665       // the final value.  This does not fit cleanly into the RuntimeDyld
1666       // scheme, since there may be *two* sections involved in determining
1667       // the relocation value (the section of the symbol referred to by the
1668       // relocation, and the TOC section associated with the current module).
1669       //
1670       // Fortunately, these relocations are currently only ever generated
1671       // referring to symbols that themselves reside in the TOC, which means
1672       // that the two sections are actually the same.  Thus they cancel out
1673       // and we can immediately resolve the relocation right now.
1674       switch (RelType) {
1675       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1676       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1677       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1678       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1679       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1680       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1681       default: llvm_unreachable("Wrong relocation type.");
1682       }
1683 
1684       RelocationValueRef TOCValue;
1685       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1686         return std::move(Err);
1687       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1688         llvm_unreachable("Unsupported TOC relocation.");
1689       Value.Addend -= TOCValue.Addend;
1690       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1691     } else {
1692       // There are two ways to refer to the TOC address directly: either
1693       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1694       // ignored), or via any relocation that refers to the magic ".TOC."
1695       // symbols (in which case the addend is respected).
1696       if (RelType == ELF::R_PPC64_TOC) {
1697         RelType = ELF::R_PPC64_ADDR64;
1698         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1699           return std::move(Err);
1700       } else if (TargetName == ".TOC.") {
1701         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1702           return std::move(Err);
1703         Value.Addend += Addend;
1704       }
1705 
1706       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1707 
1708       if (Value.SymbolName)
1709         addRelocationForSymbol(RE, Value.SymbolName);
1710       else
1711         addRelocationForSection(RE, Value.SectionID);
1712     }
1713   } else if (Arch == Triple::systemz &&
1714              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1715     // Create function stubs for both PLT and GOT references, regardless of
1716     // whether the GOT reference is to data or code.  The stub contains the
1717     // full address of the symbol, as needed by GOT references, and the
1718     // executable part only adds an overhead of 8 bytes.
1719     //
1720     // We could try to conserve space by allocating the code and data
1721     // parts of the stub separately.  However, as things stand, we allocate
1722     // a stub for every relocation, so using a GOT in JIT code should be
1723     // no less space efficient than using an explicit constant pool.
1724     LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1725     SectionEntry &Section = Sections[SectionID];
1726 
1727     // Look for an existing stub.
1728     StubMap::const_iterator i = Stubs.find(Value);
1729     uintptr_t StubAddress;
1730     if (i != Stubs.end()) {
1731       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1732       LLVM_DEBUG(dbgs() << " Stub function found\n");
1733     } else {
1734       // Create a new stub function.
1735       LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1736 
1737       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1738       StubAddress =
1739           alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
1740       unsigned StubOffset = StubAddress - BaseAddress;
1741 
1742       Stubs[Value] = StubOffset;
1743       createStubFunction((uint8_t *)StubAddress);
1744       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1745                          Value.Offset);
1746       if (Value.SymbolName)
1747         addRelocationForSymbol(RE, Value.SymbolName);
1748       else
1749         addRelocationForSection(RE, Value.SectionID);
1750       Section.advanceStubOffset(getMaxStubSize());
1751     }
1752 
1753     if (RelType == ELF::R_390_GOTENT)
1754       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1755                         Addend);
1756     else
1757       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1758   } else if (Arch == Triple::x86_64) {
1759     if (RelType == ELF::R_X86_64_PLT32) {
1760       // The way the PLT relocations normally work is that the linker allocates
1761       // the
1762       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1763       // entry will then jump to an address provided by the GOT.  On first call,
1764       // the
1765       // GOT address will point back into PLT code that resolves the symbol. After
1766       // the first call, the GOT entry points to the actual function.
1767       //
1768       // For local functions we're ignoring all of that here and just replacing
1769       // the PLT32 relocation type with PC32, which will translate the relocation
1770       // into a PC-relative call directly to the function. For external symbols we
1771       // can't be sure the function will be within 2^32 bytes of the call site, so
1772       // we need to create a stub, which calls into the GOT.  This case is
1773       // equivalent to the usual PLT implementation except that we use the stub
1774       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1775       // rather than allocating a PLT section.
1776       if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1777         // This is a call to an external function.
1778         // Look for an existing stub.
1779         SectionEntry *Section = &Sections[SectionID];
1780         StubMap::const_iterator i = Stubs.find(Value);
1781         uintptr_t StubAddress;
1782         if (i != Stubs.end()) {
1783           StubAddress = uintptr_t(Section->getAddress()) + i->second;
1784           LLVM_DEBUG(dbgs() << " Stub function found\n");
1785         } else {
1786           // Create a new stub function (equivalent to a PLT entry).
1787           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1788 
1789           uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1790           StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
1791                                 getStubAlignment());
1792           unsigned StubOffset = StubAddress - BaseAddress;
1793           Stubs[Value] = StubOffset;
1794           createStubFunction((uint8_t *)StubAddress);
1795 
1796           // Bump our stub offset counter
1797           Section->advanceStubOffset(getMaxStubSize());
1798 
1799           // Allocate a GOT Entry
1800           uint64_t GOTOffset = allocateGOTEntries(1);
1801           // This potentially creates a new Section which potentially
1802           // invalidates the Section pointer, so reload it.
1803           Section = &Sections[SectionID];
1804 
1805           // The load of the GOT address has an addend of -4
1806           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1807                                      ELF::R_X86_64_PC32);
1808 
1809           // Fill in the value of the symbol we're targeting into the GOT
1810           addRelocationForSymbol(
1811               computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1812               Value.SymbolName);
1813         }
1814 
1815         // Make the target call a call into the stub table.
1816         resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1817                           Addend);
1818       } else {
1819         Value.Addend += support::ulittle32_t::ref(
1820             computePlaceholderAddress(SectionID, Offset));
1821         processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1822       }
1823     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1824                RelType == ELF::R_X86_64_GOTPCRELX ||
1825                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1826       uint64_t GOTOffset = allocateGOTEntries(1);
1827       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1828                                  ELF::R_X86_64_PC32);
1829 
1830       // Fill in the value of the symbol we're targeting into the GOT
1831       RelocationEntry RE =
1832           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1833       if (Value.SymbolName)
1834         addRelocationForSymbol(RE, Value.SymbolName);
1835       else
1836         addRelocationForSection(RE, Value.SectionID);
1837     } else if (RelType == ELF::R_X86_64_GOT64) {
1838       // Fill in a 64-bit GOT offset.
1839       uint64_t GOTOffset = allocateGOTEntries(1);
1840       resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1841                         ELF::R_X86_64_64, 0);
1842 
1843       // Fill in the value of the symbol we're targeting into the GOT
1844       RelocationEntry RE =
1845           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1846       if (Value.SymbolName)
1847         addRelocationForSymbol(RE, Value.SymbolName);
1848       else
1849         addRelocationForSection(RE, Value.SectionID);
1850     } else if (RelType == ELF::R_X86_64_GOTPC32) {
1851       // Materialize the address of the base of the GOT relative to the PC.
1852       // This doesn't create a GOT entry, but it does mean we need a GOT
1853       // section.
1854       (void)allocateGOTEntries(0);
1855       resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1856     } else if (RelType == ELF::R_X86_64_GOTPC64) {
1857       (void)allocateGOTEntries(0);
1858       resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1859     } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1860       // GOTOFF relocations ultimately require a section difference relocation.
1861       (void)allocateGOTEntries(0);
1862       processSimpleRelocation(SectionID, Offset, RelType, Value);
1863     } else if (RelType == ELF::R_X86_64_PC32) {
1864       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1865       processSimpleRelocation(SectionID, Offset, RelType, Value);
1866     } else if (RelType == ELF::R_X86_64_PC64) {
1867       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1868       processSimpleRelocation(SectionID, Offset, RelType, Value);
1869     } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1870       processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1871     } else if (RelType == ELF::R_X86_64_TLSGD ||
1872                RelType == ELF::R_X86_64_TLSLD) {
1873       // The next relocation must be the relocation for __tls_get_addr.
1874       ++RelI;
1875       auto &GetAddrRelocation = *RelI;
1876       processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1877                                  GetAddrRelocation);
1878     } else {
1879       processSimpleRelocation(SectionID, Offset, RelType, Value);
1880     }
1881   } else {
1882     if (Arch == Triple::x86) {
1883       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1884     }
1885     processSimpleRelocation(SectionID, Offset, RelType, Value);
1886   }
1887   return ++RelI;
1888 }
1889 
1890 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1891                                                      uint64_t Offset,
1892                                                      RelocationValueRef Value,
1893                                                      int64_t Addend) {
1894   // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1895   // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1896   // only mentions one optimization even though there are two different
1897   // code sequences for the Initial Exec TLS Model. We match the code to
1898   // find out which one was used.
1899 
1900   // A possible TLS code sequence and its replacement
1901   struct CodeSequence {
1902     // The expected code sequence
1903     ArrayRef<uint8_t> ExpectedCodeSequence;
1904     // The negative offset of the GOTTPOFF relocation to the beginning of
1905     // the sequence
1906     uint64_t TLSSequenceOffset;
1907     // The new code sequence
1908     ArrayRef<uint8_t> NewCodeSequence;
1909     // The offset of the new TPOFF relocation
1910     uint64_t TpoffRelocationOffset;
1911   };
1912 
1913   std::array<CodeSequence, 2> CodeSequences;
1914 
1915   // Initial Exec Code Model Sequence
1916   {
1917     static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1918         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1919         0x00,                                    // mov %fs:0, %rax
1920         0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1921                                                  // %rax
1922     };
1923     CodeSequences[0].ExpectedCodeSequence =
1924         ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1925     CodeSequences[0].TLSSequenceOffset = 12;
1926 
1927     static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1928         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1929         0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1930     };
1931     CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1932     CodeSequences[0].TpoffRelocationOffset = 12;
1933   }
1934 
1935   // Initial Exec Code Model Sequence, II
1936   {
1937     static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1938         0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1939         0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00  // mov %fs:(%rax), %rax
1940     };
1941     CodeSequences[1].ExpectedCodeSequence =
1942         ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1943     CodeSequences[1].TLSSequenceOffset = 3;
1944 
1945     static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1946         0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00,             // 6 byte nop
1947         0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1948     };
1949     CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1950     CodeSequences[1].TpoffRelocationOffset = 10;
1951   }
1952 
1953   bool Resolved = false;
1954   auto &Section = Sections[SectionID];
1955   for (const auto &C : CodeSequences) {
1956     assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1957            "Old and new code sequences must have the same size");
1958 
1959     if (Offset < C.TLSSequenceOffset ||
1960         (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1961             Section.getSize()) {
1962       // This can't be a matching sequence as it doesn't fit in the current
1963       // section
1964       continue;
1965     }
1966 
1967     auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1968     auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1969     if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1970         C.ExpectedCodeSequence) {
1971       continue;
1972     }
1973 
1974     memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1975 
1976     // The original GOTTPOFF relocation has an addend as it is PC relative,
1977     // so it needs to be corrected. The TPOFF32 relocation is used as an
1978     // absolute value (which is an offset from %fs:0), so remove the addend
1979     // again.
1980     RelocationEntry RE(SectionID,
1981                        TLSSequenceStartOffset + C.TpoffRelocationOffset,
1982                        ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1983 
1984     if (Value.SymbolName)
1985       addRelocationForSymbol(RE, Value.SymbolName);
1986     else
1987       addRelocationForSection(RE, Value.SectionID);
1988 
1989     Resolved = true;
1990     break;
1991   }
1992 
1993   if (!Resolved) {
1994     // The GOTTPOFF relocation was not used in one of the sequences
1995     // described in the spec, so we can't optimize it to a TPOFF
1996     // relocation.
1997     uint64_t GOTOffset = allocateGOTEntries(1);
1998     resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1999                                ELF::R_X86_64_PC32);
2000     RelocationEntry RE =
2001         computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
2002     if (Value.SymbolName)
2003       addRelocationForSymbol(RE, Value.SymbolName);
2004     else
2005       addRelocationForSection(RE, Value.SectionID);
2006   }
2007 }
2008 
2009 void RuntimeDyldELF::processX86_64TLSRelocation(
2010     unsigned SectionID, uint64_t Offset, uint64_t RelType,
2011     RelocationValueRef Value, int64_t Addend,
2012     const RelocationRef &GetAddrRelocation) {
2013   // Since we are statically linking and have no additional DSOs, we can resolve
2014   // the relocation directly without using __tls_get_addr.
2015   // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2016   // to replace it with the Local Exec relocation variant.
2017 
2018   // Find out whether the code was compiled with the large or small memory
2019   // model. For this we look at the next relocation which is the relocation
2020   // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2021   // small code model, with a 64 bit relocation it's the large code model.
2022   bool IsSmallCodeModel;
2023   // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2024   bool IsGOTPCRel = false;
2025 
2026   switch (GetAddrRelocation.getType()) {
2027   case ELF::R_X86_64_GOTPCREL:
2028   case ELF::R_X86_64_REX_GOTPCRELX:
2029   case ELF::R_X86_64_GOTPCRELX:
2030     IsGOTPCRel = true;
2031     [[fallthrough]];
2032   case ELF::R_X86_64_PLT32:
2033     IsSmallCodeModel = true;
2034     break;
2035   case ELF::R_X86_64_PLTOFF64:
2036     IsSmallCodeModel = false;
2037     break;
2038   default:
2039     report_fatal_error(
2040         "invalid TLS relocations for General/Local Dynamic TLS Model: "
2041         "expected PLT or GOT relocation for __tls_get_addr function");
2042   }
2043 
2044   // The negative offset to the start of the TLS code sequence relative to
2045   // the offset of the TLSGD/TLSLD relocation
2046   uint64_t TLSSequenceOffset;
2047   // The expected start of the code sequence
2048   ArrayRef<uint8_t> ExpectedCodeSequence;
2049   // The new TLS code sequence that will replace the existing code
2050   ArrayRef<uint8_t> NewCodeSequence;
2051 
2052   if (RelType == ELF::R_X86_64_TLSGD) {
2053     // The offset of the new TPOFF32 relocation (offset starting from the
2054     // beginning of the whole TLS sequence)
2055     uint64_t TpoffRelocOffset;
2056 
2057     if (IsSmallCodeModel) {
2058       if (!IsGOTPCRel) {
2059         static const std::initializer_list<uint8_t> CodeSequence = {
2060             0x66, // data16 (no-op prefix)
2061             0x48, 0x8d, 0x3d, 0x00, 0x00,
2062             0x00, 0x00,                  // lea <disp32>(%rip), %rdi
2063             0x66, 0x66,                  // two data16 prefixes
2064             0x48,                        // rex64 (no-op prefix)
2065             0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2066         };
2067         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2068         TLSSequenceOffset = 4;
2069       } else {
2070         // This code sequence is not described in the TLS spec but gcc
2071         // generates it sometimes.
2072         static const std::initializer_list<uint8_t> CodeSequence = {
2073             0x66, // data16 (no-op prefix)
2074             0x48, 0x8d, 0x3d, 0x00, 0x00,
2075             0x00, 0x00, // lea <disp32>(%rip), %rdi
2076             0x66,       // data16 prefix (no-op prefix)
2077             0x48,       // rex64 (no-op prefix)
2078             0xff, 0x15, 0x00, 0x00, 0x00,
2079             0x00 // call *__tls_get_addr@gotpcrel(%rip)
2080         };
2081         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2082         TLSSequenceOffset = 4;
2083       }
2084 
2085       // The replacement code for the small code model. It's the same for
2086       // both sequences.
2087       static const std::initializer_list<uint8_t> SmallSequence = {
2088           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2089           0x00,                                    // mov %fs:0, %rax
2090           0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2091                                                    // %rax
2092       };
2093       NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2094       TpoffRelocOffset = 12;
2095     } else {
2096       static const std::initializer_list<uint8_t> CodeSequence = {
2097           0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2098                                                     // %rdi
2099           0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2100           0x00,             // movabs $__tls_get_addr@pltoff, %rax
2101           0x48, 0x01, 0xd8, // add %rbx, %rax
2102           0xff, 0xd0        // call *%rax
2103       };
2104       ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2105       TLSSequenceOffset = 3;
2106 
2107       // The replacement code for the large code model
2108       static const std::initializer_list<uint8_t> LargeSequence = {
2109           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2110           0x00,                                     // mov %fs:0, %rax
2111           0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2112                                                     // %rax
2113           0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00        // nopw 0x0(%rax,%rax,1)
2114       };
2115       NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2116       TpoffRelocOffset = 12;
2117     }
2118 
2119     // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2120     // The new TPOFF32 relocations is used as an absolute offset from
2121     // %fs:0, so remove the TLSGD/TLSLD addend again.
2122     RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2123                        ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2124     if (Value.SymbolName)
2125       addRelocationForSymbol(RE, Value.SymbolName);
2126     else
2127       addRelocationForSection(RE, Value.SectionID);
2128   } else if (RelType == ELF::R_X86_64_TLSLD) {
2129     if (IsSmallCodeModel) {
2130       if (!IsGOTPCRel) {
2131         static const std::initializer_list<uint8_t> CodeSequence = {
2132             0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2133             0x00, 0xe8, 0x00, 0x00, 0x00, 0x00  // call __tls_get_addr@plt
2134         };
2135         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2136         TLSSequenceOffset = 3;
2137 
2138         // The replacement code for the small code model
2139         static const std::initializer_list<uint8_t> SmallSequence = {
2140             0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2141             0x64, 0x48, 0x8b, 0x04, 0x25,
2142             0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2143         };
2144         NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2145       } else {
2146         // This code sequence is not described in the TLS spec but gcc
2147         // generates it sometimes.
2148         static const std::initializer_list<uint8_t> CodeSequence = {
2149             0x48, 0x8d, 0x3d, 0x00,
2150             0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2151             0xff, 0x15, 0x00, 0x00,
2152             0x00, 0x00 // call
2153                        // *__tls_get_addr@gotpcrel(%rip)
2154         };
2155         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2156         TLSSequenceOffset = 3;
2157 
2158         // The replacement is code is just like above but it needs to be
2159         // one byte longer.
2160         static const std::initializer_list<uint8_t> SmallSequence = {
2161             0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2162             0x64, 0x48, 0x8b, 0x04, 0x25,
2163             0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2164         };
2165         NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2166       }
2167     } else {
2168       // This is the same sequence as for the TLSGD sequence with the large
2169       // memory model above
2170       static const std::initializer_list<uint8_t> CodeSequence = {
2171           0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2172                                                     // %rdi
2173           0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2174           0x48,       // movabs $__tls_get_addr@pltoff, %rax
2175           0x01, 0xd8, // add %rbx, %rax
2176           0xff, 0xd0  // call *%rax
2177       };
2178       ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2179       TLSSequenceOffset = 3;
2180 
2181       // The replacement code for the large code model
2182       static const std::initializer_list<uint8_t> LargeSequence = {
2183           0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2184           0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2185           0x00,                                                // 10 byte nop
2186           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2187       };
2188       NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2189     }
2190   } else {
2191     llvm_unreachable("both TLS relocations handled above");
2192   }
2193 
2194   assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2195          "Old and new code sequences must have the same size");
2196 
2197   auto &Section = Sections[SectionID];
2198   if (Offset < TLSSequenceOffset ||
2199       (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2200           Section.getSize()) {
2201     report_fatal_error("unexpected end of section in TLS sequence");
2202   }
2203 
2204   auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2205   if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2206       ExpectedCodeSequence) {
2207     report_fatal_error(
2208         "invalid TLS sequence for Global/Local Dynamic TLS Model");
2209   }
2210 
2211   memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2212 }
2213 
2214 size_t RuntimeDyldELF::getGOTEntrySize() {
2215   // We don't use the GOT in all of these cases, but it's essentially free
2216   // to put them all here.
2217   size_t Result = 0;
2218   switch (Arch) {
2219   case Triple::x86_64:
2220   case Triple::aarch64:
2221   case Triple::aarch64_be:
2222   case Triple::ppc64:
2223   case Triple::ppc64le:
2224   case Triple::systemz:
2225     Result = sizeof(uint64_t);
2226     break;
2227   case Triple::x86:
2228   case Triple::arm:
2229   case Triple::thumb:
2230     Result = sizeof(uint32_t);
2231     break;
2232   case Triple::mips:
2233   case Triple::mipsel:
2234   case Triple::mips64:
2235   case Triple::mips64el:
2236     if (IsMipsO32ABI || IsMipsN32ABI)
2237       Result = sizeof(uint32_t);
2238     else if (IsMipsN64ABI)
2239       Result = sizeof(uint64_t);
2240     else
2241       llvm_unreachable("Mips ABI not handled");
2242     break;
2243   default:
2244     llvm_unreachable("Unsupported CPU type!");
2245   }
2246   return Result;
2247 }
2248 
2249 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2250   if (GOTSectionID == 0) {
2251     GOTSectionID = Sections.size();
2252     // Reserve a section id. We'll allocate the section later
2253     // once we know the total size
2254     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2255   }
2256   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2257   CurrentGOTIndex += no;
2258   return StartOffset;
2259 }
2260 
2261 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2262                                              unsigned GOTRelType) {
2263   auto E = GOTOffsetMap.insert({Value, 0});
2264   if (E.second) {
2265     uint64_t GOTOffset = allocateGOTEntries(1);
2266 
2267     // Create relocation for newly created GOT entry
2268     RelocationEntry RE =
2269         computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2270     if (Value.SymbolName)
2271       addRelocationForSymbol(RE, Value.SymbolName);
2272     else
2273       addRelocationForSection(RE, Value.SectionID);
2274 
2275     E.first->second = GOTOffset;
2276   }
2277 
2278   return E.first->second;
2279 }
2280 
2281 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2282                                                 uint64_t Offset,
2283                                                 uint64_t GOTOffset,
2284                                                 uint32_t Type) {
2285   // Fill in the relative address of the GOT Entry into the stub
2286   RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2287   addRelocationForSection(GOTRE, GOTSectionID);
2288 }
2289 
2290 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2291                                                    uint64_t SymbolOffset,
2292                                                    uint32_t Type) {
2293   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2294 }
2295 
2296 void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
2297   // This should never return an error as `processNewSymbol` wouldn't have been
2298   // called if getFlags() returned an error before.
2299   auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());
2300 
2301   if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2302     if (IFuncStubSectionID == 0) {
2303       // Create a dummy section for the ifunc stubs. It will be actually
2304       // allocated in finalizeLoad() below.
2305       IFuncStubSectionID = Sections.size();
2306       Sections.push_back(
2307           SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2308       // First 64B are reserverd for the IFunc resolver
2309       IFuncStubOffset = 64;
2310     }
2311 
2312     IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
2313     // Modify the symbol so that it points to the ifunc stub instead of to the
2314     // resolver function.
2315     Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2316                               Symbol.getFlags());
2317     IFuncStubOffset += getMaxIFuncStubSize();
2318   }
2319 }
2320 
2321 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
2322                                   ObjSectionToIDMap &SectionMap) {
2323   if (IsMipsO32ABI)
2324     if (!PendingRelocs.empty())
2325       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2326 
2327   // Create the IFunc stubs if necessary. This must be done before processing
2328   // the GOT entries, as the IFunc stubs may create some.
2329   if (IFuncStubSectionID != 0) {
2330     uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
2331         IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
2332     if (!IFuncStubsAddr)
2333       return make_error<RuntimeDyldError>(
2334           "Unable to allocate memory for IFunc stubs!");
2335     Sections[IFuncStubSectionID] =
2336         SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2337                      IFuncStubOffset, 0);
2338 
2339     createIFuncResolver(IFuncStubsAddr);
2340 
2341     LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2342                       << IFuncStubSectionID << " Addr: "
2343                       << Sections[IFuncStubSectionID].getAddress() << '\n');
2344     for (auto &IFuncStub : IFuncStubs) {
2345       auto &Symbol = IFuncStub.OriginalSymbol;
2346       LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
2347                         << " Offset: " << format("%p", Symbol.getOffset())
2348                         << " IFuncStubOffset: "
2349                         << format("%p\n", IFuncStub.StubOffset));
2350       createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2351                       Symbol.getSectionID(), Symbol.getOffset());
2352     }
2353 
2354     IFuncStubSectionID = 0;
2355     IFuncStubOffset = 0;
2356     IFuncStubs.clear();
2357   }
2358 
2359   // If necessary, allocate the global offset table
2360   if (GOTSectionID != 0) {
2361     // Allocate memory for the section
2362     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2363     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2364                                                GOTSectionID, ".got", false);
2365     if (!Addr)
2366       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2367 
2368     Sections[GOTSectionID] =
2369         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2370 
2371     // For now, initialize all GOT entries to zero.  We'll fill them in as
2372     // needed when GOT-based relocations are applied.
2373     memset(Addr, 0, TotalSize);
2374     if (IsMipsN32ABI || IsMipsN64ABI) {
2375       // To correctly resolve Mips GOT relocations, we need a mapping from
2376       // object's sections to GOTs.
2377       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2378            SI != SE; ++SI) {
2379         if (SI->relocation_begin() != SI->relocation_end()) {
2380           Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2381           if (!RelSecOrErr)
2382             return make_error<RuntimeDyldError>(
2383                 toString(RelSecOrErr.takeError()));
2384 
2385           section_iterator RelocatedSection = *RelSecOrErr;
2386           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2387           assert(i != SectionMap.end());
2388           SectionToGOTMap[i->second] = GOTSectionID;
2389         }
2390       }
2391       GOTSymbolOffsets.clear();
2392     }
2393   }
2394 
2395   // Look for and record the EH frame section.
2396   ObjSectionToIDMap::iterator i, e;
2397   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2398     const SectionRef &Section = i->first;
2399 
2400     StringRef Name;
2401     Expected<StringRef> NameOrErr = Section.getName();
2402     if (NameOrErr)
2403       Name = *NameOrErr;
2404     else
2405       consumeError(NameOrErr.takeError());
2406 
2407     if (Name == ".eh_frame") {
2408       UnregisteredEHFrameSections.push_back(i->second);
2409       break;
2410     }
2411   }
2412 
2413   GOTOffsetMap.clear();
2414   GOTSectionID = 0;
2415   CurrentGOTIndex = 0;
2416 
2417   return Error::success();
2418 }
2419 
2420 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
2421   return Obj.isELF();
2422 }
2423 
2424 void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
2425   if (Arch == Triple::x86_64) {
2426     // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2427     // (see createIFuncStub() for details)
2428     // The following code first saves all registers that contain the original
2429     // function arguments as those registers are not saved by the resolver
2430     // function. %r11 is saved as well so that the GOT2 entry can be updated
2431     // afterwards. Then it calls the actual IFunc resolver function whose
2432     // address is stored in GOT2. After the resolver function returns, all
2433     // saved registers are restored and the return value is written to GOT1.
2434     // Finally, jump to the now resolved function.
2435     // clang-format off
2436     const uint8_t StubCode[] = {
2437         0x57,                   // push %rdi
2438         0x56,                   // push %rsi
2439         0x52,                   // push %rdx
2440         0x51,                   // push %rcx
2441         0x41, 0x50,             // push %r8
2442         0x41, 0x51,             // push %r9
2443         0x41, 0x53,             // push %r11
2444         0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2445         0x41, 0x5b,             // pop %r11
2446         0x41, 0x59,             // pop %r9
2447         0x41, 0x58,             // pop %r8
2448         0x59,                   // pop %rcx
2449         0x5a,                   // pop %rdx
2450         0x5e,                   // pop %rsi
2451         0x5f,                   // pop %rdi
2452         0x49, 0x89, 0x03,       // mov %rax,(%r11)
2453         0xff, 0xe0              // jmp *%rax
2454     };
2455     // clang-format on
2456     static_assert(sizeof(StubCode) <= 64,
2457                   "maximum size of the IFunc resolver is 64B");
2458     memcpy(Addr, StubCode, sizeof(StubCode));
2459   } else {
2460     report_fatal_error(
2461         "IFunc resolver is not supported for target architecture");
2462   }
2463 }
2464 
2465 void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
2466                                      uint64_t IFuncResolverOffset,
2467                                      uint64_t IFuncStubOffset,
2468                                      unsigned IFuncSectionID,
2469                                      uint64_t IFuncOffset) {
2470   auto &IFuncStubSection = Sections[IFuncStubSectionID];
2471   auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2472 
2473   if (Arch == Triple::x86_64) {
2474     // The first instruction loads a PC-relative address into %r11 which is a
2475     // GOT entry for this stub. This initially contains the address to the
2476     // IFunc resolver. We can use %r11 here as it's caller saved but not used
2477     // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2478     // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2479     // entry.
2480     //
2481     // The next instruction just jumps to the address contained in the GOT
2482     // entry. As mentioned above, we do this two-step jump by first setting
2483     // %r11 so that the IFunc resolver has access to it.
2484     //
2485     // The IFunc resolver of course also needs to know the actual address of
2486     // the actual IFunc resolver function. This will be stored in a GOT entry
2487     // right next to the first one for this stub. So, the IFunc resolver will
2488     // be able to call it with %r11+8.
2489     //
2490     // In total, two adjacent GOT entries (+relocation) and one additional
2491     // relocation are required:
2492     // GOT1: Address of the IFunc resolver.
2493     // GOT2: Address of the IFunc resolver function.
2494     // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2495     uint64_t GOT1 = allocateGOTEntries(2);
2496     uint64_t GOT2 = GOT1 + getGOTEntrySize();
2497 
2498     RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2499                         IFuncResolverOffset, {});
2500     addRelocationForSection(RE1, IFuncStubSectionID);
2501     RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2502     addRelocationForSection(RE2, IFuncSectionID);
2503 
2504     const uint8_t StubCode[] = {
2505         0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2506         0x41, 0xff, 0x23                          // jmpq *(%r11)
2507     };
2508     assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
2509            "IFunc stub size must not exceed getMaxIFuncStubSize()");
2510     memcpy(Addr, StubCode, sizeof(StubCode));
2511 
2512     // The PC-relative value starts 4 bytes from the end of the leaq
2513     // instruction, so the addend is -4.
2514     resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2515                                GOT1 - 4, ELF::R_X86_64_PC32);
2516   } else {
2517     report_fatal_error("IFunc stub is not supported for target architecture");
2518   }
2519 }
2520 
2521 unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2522   if (Arch == Triple::x86_64) {
2523     return 10;
2524   }
2525   return 0;
2526 }
2527 
2528 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2529   unsigned RelTy = R.getType();
2530   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
2531     return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2532            RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2533 
2534   if (Arch == Triple::x86_64)
2535     return RelTy == ELF::R_X86_64_GOTPCREL ||
2536            RelTy == ELF::R_X86_64_GOTPCRELX ||
2537            RelTy == ELF::R_X86_64_GOT64 ||
2538            RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2539   return false;
2540 }
2541 
2542 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2543   if (Arch != Triple::x86_64)
2544     return true;  // Conservative answer
2545 
2546   switch (R.getType()) {
2547   default:
2548     return true;  // Conservative answer
2549 
2550 
2551   case ELF::R_X86_64_GOTPCREL:
2552   case ELF::R_X86_64_GOTPCRELX:
2553   case ELF::R_X86_64_REX_GOTPCRELX:
2554   case ELF::R_X86_64_GOTPC64:
2555   case ELF::R_X86_64_GOT64:
2556   case ELF::R_X86_64_GOTOFF64:
2557   case ELF::R_X86_64_PC32:
2558   case ELF::R_X86_64_PC64:
2559   case ELF::R_X86_64_64:
2560     // We know that these reloation types won't need a stub function.  This list
2561     // can be extended as needed.
2562     return false;
2563   }
2564 }
2565 
2566 } // namespace llvm
2567