1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 
33 using namespace llvm;
34 using namespace PatternMatch;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Constant Class
38 //===----------------------------------------------------------------------===//
39 
40 bool Constant::isNegativeZeroValue() const {
41   // Floating point values have an explicit -0.0 value.
42   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
43     return CFP->isZero() && CFP->isNegative();
44 
45   // Equivalent for a vector of -0.0's.
46   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
47     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
48       if (CV->getElementAsAPFloat(0).isNegZero())
49         return true;
50 
51   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55 
56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
57   if (getType()->isFPOrFPVectorTy())
58     return false;
59 
60   // Otherwise, just use +0.0.
61   return isNullValue();
62 }
63 
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67   // Floating point values have an explicit -0.0 value.
68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69     return CFP->isZero();
70 
71   // Equivalent for a vector of -0.0's.
72   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
73     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
74       if (CV->getElementAsAPFloat(0).isZero())
75         return true;
76 
77   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
78     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
79       if (SplatCFP && SplatCFP->isZero())
80         return true;
81 
82   // Otherwise, just use +0.0.
83   return isNullValue();
84 }
85 
86 bool Constant::isNullValue() const {
87   // 0 is null.
88   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
89     return CI->isZero();
90 
91   // +0.0 is null.
92   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
93     return CFP->isZero() && !CFP->isNegative();
94 
95   // constant zero is zero for aggregates, cpnull is null for pointers, none for
96   // tokens.
97   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
98          isa<ConstantTokenNone>(this);
99 }
100 
101 bool Constant::isAllOnesValue() const {
102   // Check for -1 integers
103   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
104     return CI->isMinusOne();
105 
106   // Check for FP which are bitcasted from -1 integers
107   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
108     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
109 
110   // Check for constant vectors which are splats of -1 values.
111   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
112     if (Constant *Splat = CV->getSplatValue())
113       return Splat->isAllOnesValue();
114 
115   // Check for constant vectors which are splats of -1 values.
116   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
117     if (CV->isSplat()) {
118       if (CV->getElementType()->isFloatingPointTy())
119         return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
120       return CV->getElementAsAPInt(0).isAllOnesValue();
121     }
122   }
123 
124   return false;
125 }
126 
127 bool Constant::isOneValue() const {
128   // Check for 1 integers
129   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
130     return CI->isOne();
131 
132   // Check for FP which are bitcasted from 1 integers
133   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
134     return CFP->getValueAPF().bitcastToAPInt().isOneValue();
135 
136   // Check for constant vectors which are splats of 1 values.
137   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
138     if (Constant *Splat = CV->getSplatValue())
139       return Splat->isOneValue();
140 
141   // Check for constant vectors which are splats of 1 values.
142   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
143     if (CV->isSplat()) {
144       if (CV->getElementType()->isFloatingPointTy())
145         return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
146       return CV->getElementAsAPInt(0).isOneValue();
147     }
148   }
149 
150   return false;
151 }
152 
153 bool Constant::isNotOneValue() const {
154   // Check for 1 integers
155   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
156     return !CI->isOneValue();
157 
158   // Check for FP which are bitcasted from 1 integers
159   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
160     return !CFP->getValueAPF().bitcastToAPInt().isOneValue();
161 
162   // Check that vectors don't contain 1
163   if (auto *VTy = dyn_cast<VectorType>(this->getType())) {
164     unsigned NumElts = VTy->getNumElements();
165     for (unsigned i = 0; i != NumElts; ++i) {
166       Constant *Elt = this->getAggregateElement(i);
167       if (!Elt || !Elt->isNotOneValue())
168         return false;
169     }
170     return true;
171   }
172 
173   // It *may* contain 1, we can't tell.
174   return false;
175 }
176 
177 bool Constant::isMinSignedValue() const {
178   // Check for INT_MIN integers
179   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
180     return CI->isMinValue(/*isSigned=*/true);
181 
182   // Check for FP which are bitcasted from INT_MIN integers
183   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
184     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
185 
186   // Check for constant vectors which are splats of INT_MIN values.
187   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
188     if (Constant *Splat = CV->getSplatValue())
189       return Splat->isMinSignedValue();
190 
191   // Check for constant vectors which are splats of INT_MIN values.
192   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
193     if (CV->isSplat()) {
194       if (CV->getElementType()->isFloatingPointTy())
195         return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
196       return CV->getElementAsAPInt(0).isMinSignedValue();
197     }
198   }
199 
200   return false;
201 }
202 
203 bool Constant::isNotMinSignedValue() const {
204   // Check for INT_MIN integers
205   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
206     return !CI->isMinValue(/*isSigned=*/true);
207 
208   // Check for FP which are bitcasted from INT_MIN integers
209   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
210     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
211 
212   // Check that vectors don't contain INT_MIN
213   if (auto *VTy = dyn_cast<VectorType>(this->getType())) {
214     unsigned NumElts = VTy->getNumElements();
215     for (unsigned i = 0; i != NumElts; ++i) {
216       Constant *Elt = this->getAggregateElement(i);
217       if (!Elt || !Elt->isNotMinSignedValue())
218         return false;
219     }
220     return true;
221   }
222 
223   // It *may* contain INT_MIN, we can't tell.
224   return false;
225 }
226 
227 bool Constant::isFiniteNonZeroFP() const {
228   if (auto *CFP = dyn_cast<ConstantFP>(this))
229     return CFP->getValueAPF().isFiniteNonZero();
230   auto *VTy = dyn_cast<VectorType>(getType());
231   if (!VTy)
232     return false;
233   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
234     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
235     if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
236       return false;
237   }
238   return true;
239 }
240 
241 bool Constant::isNormalFP() const {
242   if (auto *CFP = dyn_cast<ConstantFP>(this))
243     return CFP->getValueAPF().isNormal();
244   auto *VTy = dyn_cast<FixedVectorType>(getType());
245   if (!VTy)
246     return false;
247   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
248     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
249     if (!CFP || !CFP->getValueAPF().isNormal())
250       return false;
251   }
252   return true;
253 }
254 
255 bool Constant::hasExactInverseFP() const {
256   if (auto *CFP = dyn_cast<ConstantFP>(this))
257     return CFP->getValueAPF().getExactInverse(nullptr);
258   auto *VTy = dyn_cast<FixedVectorType>(getType());
259   if (!VTy)
260     return false;
261   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
262     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
263     if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
264       return false;
265   }
266   return true;
267 }
268 
269 bool Constant::isNaN() const {
270   if (auto *CFP = dyn_cast<ConstantFP>(this))
271     return CFP->isNaN();
272   auto *VTy = dyn_cast<FixedVectorType>(getType());
273   if (!VTy)
274     return false;
275   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
276     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
277     if (!CFP || !CFP->isNaN())
278       return false;
279   }
280   return true;
281 }
282 
283 bool Constant::isElementWiseEqual(Value *Y) const {
284   // Are they fully identical?
285   if (this == Y)
286     return true;
287 
288   // The input value must be a vector constant with the same type.
289   auto *VTy = dyn_cast<VectorType>(getType());
290   if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
291     return false;
292 
293   // TODO: Compare pointer constants?
294   if (!(VTy->getElementType()->isIntegerTy() ||
295         VTy->getElementType()->isFloatingPointTy()))
296     return false;
297 
298   // They may still be identical element-wise (if they have `undef`s).
299   // Bitcast to integer to allow exact bitwise comparison for all types.
300   Type *IntTy = VectorType::getInteger(VTy);
301   Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
302   Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
303   Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
304   return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
305 }
306 
307 bool Constant::containsUndefElement() const {
308   if (auto *VTy = dyn_cast<VectorType>(getType())) {
309     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
310       if (isa<UndefValue>(getAggregateElement(i)))
311         return true;
312   }
313 
314   return false;
315 }
316 
317 bool Constant::containsConstantExpression() const {
318   if (auto *VTy = dyn_cast<VectorType>(getType())) {
319     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
320       if (isa<ConstantExpr>(getAggregateElement(i)))
321         return true;
322   }
323 
324   return false;
325 }
326 
327 /// Constructor to create a '0' constant of arbitrary type.
328 Constant *Constant::getNullValue(Type *Ty) {
329   switch (Ty->getTypeID()) {
330   case Type::IntegerTyID:
331     return ConstantInt::get(Ty, 0);
332   case Type::HalfTyID:
333     return ConstantFP::get(Ty->getContext(),
334                            APFloat::getZero(APFloat::IEEEhalf()));
335   case Type::BFloatTyID:
336     return ConstantFP::get(Ty->getContext(),
337                            APFloat::getZero(APFloat::BFloat()));
338   case Type::FloatTyID:
339     return ConstantFP::get(Ty->getContext(),
340                            APFloat::getZero(APFloat::IEEEsingle()));
341   case Type::DoubleTyID:
342     return ConstantFP::get(Ty->getContext(),
343                            APFloat::getZero(APFloat::IEEEdouble()));
344   case Type::X86_FP80TyID:
345     return ConstantFP::get(Ty->getContext(),
346                            APFloat::getZero(APFloat::x87DoubleExtended()));
347   case Type::FP128TyID:
348     return ConstantFP::get(Ty->getContext(),
349                            APFloat::getZero(APFloat::IEEEquad()));
350   case Type::PPC_FP128TyID:
351     return ConstantFP::get(Ty->getContext(),
352                            APFloat(APFloat::PPCDoubleDouble(),
353                                    APInt::getNullValue(128)));
354   case Type::PointerTyID:
355     return ConstantPointerNull::get(cast<PointerType>(Ty));
356   case Type::StructTyID:
357   case Type::ArrayTyID:
358   case Type::FixedVectorTyID:
359   case Type::ScalableVectorTyID:
360     return ConstantAggregateZero::get(Ty);
361   case Type::TokenTyID:
362     return ConstantTokenNone::get(Ty->getContext());
363   default:
364     // Function, Label, or Opaque type?
365     llvm_unreachable("Cannot create a null constant of that type!");
366   }
367 }
368 
369 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
370   Type *ScalarTy = Ty->getScalarType();
371 
372   // Create the base integer constant.
373   Constant *C = ConstantInt::get(Ty->getContext(), V);
374 
375   // Convert an integer to a pointer, if necessary.
376   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
377     C = ConstantExpr::getIntToPtr(C, PTy);
378 
379   // Broadcast a scalar to a vector, if necessary.
380   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
381     C = ConstantVector::getSplat(VTy->getElementCount(), C);
382 
383   return C;
384 }
385 
386 Constant *Constant::getAllOnesValue(Type *Ty) {
387   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
388     return ConstantInt::get(Ty->getContext(),
389                             APInt::getAllOnesValue(ITy->getBitWidth()));
390 
391   if (Ty->isFloatingPointTy()) {
392     APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(),
393                                           Ty->getPrimitiveSizeInBits());
394     return ConstantFP::get(Ty->getContext(), FL);
395   }
396 
397   VectorType *VTy = cast<VectorType>(Ty);
398   return ConstantVector::getSplat(VTy->getElementCount(),
399                                   getAllOnesValue(VTy->getElementType()));
400 }
401 
402 Constant *Constant::getAggregateElement(unsigned Elt) const {
403   if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
404     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
405 
406   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
407     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
408 
409   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
410     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
411 
412   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
413     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
414                                        : nullptr;
415   return nullptr;
416 }
417 
418 Constant *Constant::getAggregateElement(Constant *Elt) const {
419   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
420   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
421     // Check if the constant fits into an uint64_t.
422     if (CI->getValue().getActiveBits() > 64)
423       return nullptr;
424     return getAggregateElement(CI->getZExtValue());
425   }
426   return nullptr;
427 }
428 
429 void Constant::destroyConstant() {
430   /// First call destroyConstantImpl on the subclass.  This gives the subclass
431   /// a chance to remove the constant from any maps/pools it's contained in.
432   switch (getValueID()) {
433   default:
434     llvm_unreachable("Not a constant!");
435 #define HANDLE_CONSTANT(Name)                                                  \
436   case Value::Name##Val:                                                       \
437     cast<Name>(this)->destroyConstantImpl();                                   \
438     break;
439 #include "llvm/IR/Value.def"
440   }
441 
442   // When a Constant is destroyed, there may be lingering
443   // references to the constant by other constants in the constant pool.  These
444   // constants are implicitly dependent on the module that is being deleted,
445   // but they don't know that.  Because we only find out when the CPV is
446   // deleted, we must now notify all of our users (that should only be
447   // Constants) that they are, in fact, invalid now and should be deleted.
448   //
449   while (!use_empty()) {
450     Value *V = user_back();
451 #ifndef NDEBUG // Only in -g mode...
452     if (!isa<Constant>(V)) {
453       dbgs() << "While deleting: " << *this
454              << "\n\nUse still stuck around after Def is destroyed: " << *V
455              << "\n\n";
456     }
457 #endif
458     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
459     cast<Constant>(V)->destroyConstant();
460 
461     // The constant should remove itself from our use list...
462     assert((use_empty() || user_back() != V) && "Constant not removed!");
463   }
464 
465   // Value has no outstanding references it is safe to delete it now...
466   deleteConstant(this);
467 }
468 
469 void llvm::deleteConstant(Constant *C) {
470   switch (C->getValueID()) {
471   case Constant::ConstantIntVal:
472     delete static_cast<ConstantInt *>(C);
473     break;
474   case Constant::ConstantFPVal:
475     delete static_cast<ConstantFP *>(C);
476     break;
477   case Constant::ConstantAggregateZeroVal:
478     delete static_cast<ConstantAggregateZero *>(C);
479     break;
480   case Constant::ConstantArrayVal:
481     delete static_cast<ConstantArray *>(C);
482     break;
483   case Constant::ConstantStructVal:
484     delete static_cast<ConstantStruct *>(C);
485     break;
486   case Constant::ConstantVectorVal:
487     delete static_cast<ConstantVector *>(C);
488     break;
489   case Constant::ConstantPointerNullVal:
490     delete static_cast<ConstantPointerNull *>(C);
491     break;
492   case Constant::ConstantDataArrayVal:
493     delete static_cast<ConstantDataArray *>(C);
494     break;
495   case Constant::ConstantDataVectorVal:
496     delete static_cast<ConstantDataVector *>(C);
497     break;
498   case Constant::ConstantTokenNoneVal:
499     delete static_cast<ConstantTokenNone *>(C);
500     break;
501   case Constant::BlockAddressVal:
502     delete static_cast<BlockAddress *>(C);
503     break;
504   case Constant::UndefValueVal:
505     delete static_cast<UndefValue *>(C);
506     break;
507   case Constant::ConstantExprVal:
508     if (isa<UnaryConstantExpr>(C))
509       delete static_cast<UnaryConstantExpr *>(C);
510     else if (isa<BinaryConstantExpr>(C))
511       delete static_cast<BinaryConstantExpr *>(C);
512     else if (isa<SelectConstantExpr>(C))
513       delete static_cast<SelectConstantExpr *>(C);
514     else if (isa<ExtractElementConstantExpr>(C))
515       delete static_cast<ExtractElementConstantExpr *>(C);
516     else if (isa<InsertElementConstantExpr>(C))
517       delete static_cast<InsertElementConstantExpr *>(C);
518     else if (isa<ShuffleVectorConstantExpr>(C))
519       delete static_cast<ShuffleVectorConstantExpr *>(C);
520     else if (isa<ExtractValueConstantExpr>(C))
521       delete static_cast<ExtractValueConstantExpr *>(C);
522     else if (isa<InsertValueConstantExpr>(C))
523       delete static_cast<InsertValueConstantExpr *>(C);
524     else if (isa<GetElementPtrConstantExpr>(C))
525       delete static_cast<GetElementPtrConstantExpr *>(C);
526     else if (isa<CompareConstantExpr>(C))
527       delete static_cast<CompareConstantExpr *>(C);
528     else
529       llvm_unreachable("Unexpected constant expr");
530     break;
531   default:
532     llvm_unreachable("Unexpected constant");
533   }
534 }
535 
536 static bool canTrapImpl(const Constant *C,
537                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
538   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
539   // The only thing that could possibly trap are constant exprs.
540   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
541   if (!CE)
542     return false;
543 
544   // ConstantExpr traps if any operands can trap.
545   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
546     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
547       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
548         return true;
549     }
550   }
551 
552   // Otherwise, only specific operations can trap.
553   switch (CE->getOpcode()) {
554   default:
555     return false;
556   case Instruction::UDiv:
557   case Instruction::SDiv:
558   case Instruction::URem:
559   case Instruction::SRem:
560     // Div and rem can trap if the RHS is not known to be non-zero.
561     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
562       return true;
563     return false;
564   }
565 }
566 
567 bool Constant::canTrap() const {
568   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
569   return canTrapImpl(this, NonTrappingOps);
570 }
571 
572 /// Check if C contains a GlobalValue for which Predicate is true.
573 static bool
574 ConstHasGlobalValuePredicate(const Constant *C,
575                              bool (*Predicate)(const GlobalValue *)) {
576   SmallPtrSet<const Constant *, 8> Visited;
577   SmallVector<const Constant *, 8> WorkList;
578   WorkList.push_back(C);
579   Visited.insert(C);
580 
581   while (!WorkList.empty()) {
582     const Constant *WorkItem = WorkList.pop_back_val();
583     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
584       if (Predicate(GV))
585         return true;
586     for (const Value *Op : WorkItem->operands()) {
587       const Constant *ConstOp = dyn_cast<Constant>(Op);
588       if (!ConstOp)
589         continue;
590       if (Visited.insert(ConstOp).second)
591         WorkList.push_back(ConstOp);
592     }
593   }
594   return false;
595 }
596 
597 bool Constant::isThreadDependent() const {
598   auto DLLImportPredicate = [](const GlobalValue *GV) {
599     return GV->isThreadLocal();
600   };
601   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
602 }
603 
604 bool Constant::isDLLImportDependent() const {
605   auto DLLImportPredicate = [](const GlobalValue *GV) {
606     return GV->hasDLLImportStorageClass();
607   };
608   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
609 }
610 
611 bool Constant::isConstantUsed() const {
612   for (const User *U : users()) {
613     const Constant *UC = dyn_cast<Constant>(U);
614     if (!UC || isa<GlobalValue>(UC))
615       return true;
616 
617     if (UC->isConstantUsed())
618       return true;
619   }
620   return false;
621 }
622 
623 bool Constant::needsRelocation() const {
624   if (isa<GlobalValue>(this))
625     return true; // Global reference.
626 
627   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
628     return BA->getFunction()->needsRelocation();
629 
630   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
631     if (CE->getOpcode() == Instruction::Sub) {
632       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
633       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
634       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
635           RHS->getOpcode() == Instruction::PtrToInt) {
636         Constant *LHSOp0 = LHS->getOperand(0);
637         Constant *RHSOp0 = RHS->getOperand(0);
638 
639         // While raw uses of blockaddress need to be relocated, differences
640         // between two of them don't when they are for labels in the same
641         // function.  This is a common idiom when creating a table for the
642         // indirect goto extension, so we handle it efficiently here.
643         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
644             cast<BlockAddress>(LHSOp0)->getFunction() ==
645                 cast<BlockAddress>(RHSOp0)->getFunction())
646           return false;
647 
648         // Relative pointers do not need to be dynamically relocated.
649         if (auto *LHSGV = dyn_cast<GlobalValue>(LHSOp0->stripPointerCasts()))
650           if (auto *RHSGV = dyn_cast<GlobalValue>(RHSOp0->stripPointerCasts()))
651             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
652               return false;
653       }
654     }
655   }
656 
657   bool Result = false;
658   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
659     Result |= cast<Constant>(getOperand(i))->needsRelocation();
660 
661   return Result;
662 }
663 
664 /// If the specified constantexpr is dead, remove it. This involves recursively
665 /// eliminating any dead users of the constantexpr.
666 static bool removeDeadUsersOfConstant(const Constant *C) {
667   if (isa<GlobalValue>(C)) return false; // Cannot remove this
668 
669   while (!C->use_empty()) {
670     const Constant *User = dyn_cast<Constant>(C->user_back());
671     if (!User) return false; // Non-constant usage;
672     if (!removeDeadUsersOfConstant(User))
673       return false; // Constant wasn't dead
674   }
675 
676   const_cast<Constant*>(C)->destroyConstant();
677   return true;
678 }
679 
680 
681 void Constant::removeDeadConstantUsers() const {
682   Value::const_user_iterator I = user_begin(), E = user_end();
683   Value::const_user_iterator LastNonDeadUser = E;
684   while (I != E) {
685     const Constant *User = dyn_cast<Constant>(*I);
686     if (!User) {
687       LastNonDeadUser = I;
688       ++I;
689       continue;
690     }
691 
692     if (!removeDeadUsersOfConstant(User)) {
693       // If the constant wasn't dead, remember that this was the last live use
694       // and move on to the next constant.
695       LastNonDeadUser = I;
696       ++I;
697       continue;
698     }
699 
700     // If the constant was dead, then the iterator is invalidated.
701     if (LastNonDeadUser == E)
702       I = user_begin();
703     else
704       I = std::next(LastNonDeadUser);
705   }
706 }
707 
708 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
709   assert(C && Replacement && "Expected non-nullptr constant arguments");
710   Type *Ty = C->getType();
711   if (match(C, m_Undef())) {
712     assert(Ty == Replacement->getType() && "Expected matching types");
713     return Replacement;
714   }
715 
716   // Don't know how to deal with this constant.
717   auto *VTy = dyn_cast<FixedVectorType>(Ty);
718   if (!VTy)
719     return C;
720 
721   unsigned NumElts = VTy->getNumElements();
722   SmallVector<Constant *, 32> NewC(NumElts);
723   for (unsigned i = 0; i != NumElts; ++i) {
724     Constant *EltC = C->getAggregateElement(i);
725     assert((!EltC || EltC->getType() == Replacement->getType()) &&
726            "Expected matching types");
727     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
728   }
729   return ConstantVector::get(NewC);
730 }
731 
732 
733 //===----------------------------------------------------------------------===//
734 //                                ConstantInt
735 //===----------------------------------------------------------------------===//
736 
737 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
738     : ConstantData(Ty, ConstantIntVal), Val(V) {
739   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
740 }
741 
742 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
743   LLVMContextImpl *pImpl = Context.pImpl;
744   if (!pImpl->TheTrueVal)
745     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
746   return pImpl->TheTrueVal;
747 }
748 
749 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
750   LLVMContextImpl *pImpl = Context.pImpl;
751   if (!pImpl->TheFalseVal)
752     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
753   return pImpl->TheFalseVal;
754 }
755 
756 Constant *ConstantInt::getTrue(Type *Ty) {
757   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
758   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
759   if (auto *VTy = dyn_cast<VectorType>(Ty))
760     return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
761   return TrueC;
762 }
763 
764 Constant *ConstantInt::getFalse(Type *Ty) {
765   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
766   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
767   if (auto *VTy = dyn_cast<VectorType>(Ty))
768     return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
769   return FalseC;
770 }
771 
772 // Get a ConstantInt from an APInt.
773 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
774   // get an existing value or the insertion position
775   LLVMContextImpl *pImpl = Context.pImpl;
776   std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
777   if (!Slot) {
778     // Get the corresponding integer type for the bit width of the value.
779     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
780     Slot.reset(new ConstantInt(ITy, V));
781   }
782   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
783   return Slot.get();
784 }
785 
786 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
787   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
788 
789   // For vectors, broadcast the value.
790   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
791     return ConstantVector::getSplat(VTy->getElementCount(), C);
792 
793   return C;
794 }
795 
796 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
797   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
798 }
799 
800 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
801   return get(Ty, V, true);
802 }
803 
804 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
805   return get(Ty, V, true);
806 }
807 
808 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
809   ConstantInt *C = get(Ty->getContext(), V);
810   assert(C->getType() == Ty->getScalarType() &&
811          "ConstantInt type doesn't match the type implied by its value!");
812 
813   // For vectors, broadcast the value.
814   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
815     return ConstantVector::getSplat(VTy->getElementCount(), C);
816 
817   return C;
818 }
819 
820 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
821   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
822 }
823 
824 /// Remove the constant from the constant table.
825 void ConstantInt::destroyConstantImpl() {
826   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
827 }
828 
829 //===----------------------------------------------------------------------===//
830 //                                ConstantFP
831 //===----------------------------------------------------------------------===//
832 
833 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
834   if (Ty->isHalfTy())
835     return &APFloat::IEEEhalf();
836   if (Ty->isBFloatTy())
837     return &APFloat::BFloat();
838   if (Ty->isFloatTy())
839     return &APFloat::IEEEsingle();
840   if (Ty->isDoubleTy())
841     return &APFloat::IEEEdouble();
842   if (Ty->isX86_FP80Ty())
843     return &APFloat::x87DoubleExtended();
844   else if (Ty->isFP128Ty())
845     return &APFloat::IEEEquad();
846 
847   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
848   return &APFloat::PPCDoubleDouble();
849 }
850 
851 Constant *ConstantFP::get(Type *Ty, double V) {
852   LLVMContext &Context = Ty->getContext();
853 
854   APFloat FV(V);
855   bool ignored;
856   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
857              APFloat::rmNearestTiesToEven, &ignored);
858   Constant *C = get(Context, FV);
859 
860   // For vectors, broadcast the value.
861   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
862     return ConstantVector::getSplat(VTy->getElementCount(), C);
863 
864   return C;
865 }
866 
867 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
868   ConstantFP *C = get(Ty->getContext(), V);
869   assert(C->getType() == Ty->getScalarType() &&
870          "ConstantFP type doesn't match the type implied by its value!");
871 
872   // For vectors, broadcast the value.
873   if (auto *VTy = dyn_cast<VectorType>(Ty))
874     return ConstantVector::getSplat(VTy->getElementCount(), C);
875 
876   return C;
877 }
878 
879 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
880   LLVMContext &Context = Ty->getContext();
881 
882   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
883   Constant *C = get(Context, FV);
884 
885   // For vectors, broadcast the value.
886   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
887     return ConstantVector::getSplat(VTy->getElementCount(), C);
888 
889   return C;
890 }
891 
892 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
893   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
894   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
895   Constant *C = get(Ty->getContext(), NaN);
896 
897   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
898     return ConstantVector::getSplat(VTy->getElementCount(), C);
899 
900   return C;
901 }
902 
903 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
904   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
905   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
906   Constant *C = get(Ty->getContext(), NaN);
907 
908   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
909     return ConstantVector::getSplat(VTy->getElementCount(), C);
910 
911   return C;
912 }
913 
914 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
915   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
916   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
917   Constant *C = get(Ty->getContext(), NaN);
918 
919   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
920     return ConstantVector::getSplat(VTy->getElementCount(), C);
921 
922   return C;
923 }
924 
925 Constant *ConstantFP::getNegativeZero(Type *Ty) {
926   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
927   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
928   Constant *C = get(Ty->getContext(), NegZero);
929 
930   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
931     return ConstantVector::getSplat(VTy->getElementCount(), C);
932 
933   return C;
934 }
935 
936 
937 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
938   if (Ty->isFPOrFPVectorTy())
939     return getNegativeZero(Ty);
940 
941   return Constant::getNullValue(Ty);
942 }
943 
944 
945 // ConstantFP accessors.
946 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
947   LLVMContextImpl* pImpl = Context.pImpl;
948 
949   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
950 
951   if (!Slot) {
952     Type *Ty;
953     if (&V.getSemantics() == &APFloat::IEEEhalf())
954       Ty = Type::getHalfTy(Context);
955     else if (&V.getSemantics() == &APFloat::BFloat())
956       Ty = Type::getBFloatTy(Context);
957     else if (&V.getSemantics() == &APFloat::IEEEsingle())
958       Ty = Type::getFloatTy(Context);
959     else if (&V.getSemantics() == &APFloat::IEEEdouble())
960       Ty = Type::getDoubleTy(Context);
961     else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
962       Ty = Type::getX86_FP80Ty(Context);
963     else if (&V.getSemantics() == &APFloat::IEEEquad())
964       Ty = Type::getFP128Ty(Context);
965     else {
966       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
967              "Unknown FP format");
968       Ty = Type::getPPC_FP128Ty(Context);
969     }
970     Slot.reset(new ConstantFP(Ty, V));
971   }
972 
973   return Slot.get();
974 }
975 
976 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
977   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
978   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
979 
980   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
981     return ConstantVector::getSplat(VTy->getElementCount(), C);
982 
983   return C;
984 }
985 
986 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
987     : ConstantData(Ty, ConstantFPVal), Val(V) {
988   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
989          "FP type Mismatch");
990 }
991 
992 bool ConstantFP::isExactlyValue(const APFloat &V) const {
993   return Val.bitwiseIsEqual(V);
994 }
995 
996 /// Remove the constant from the constant table.
997 void ConstantFP::destroyConstantImpl() {
998   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
999 }
1000 
1001 //===----------------------------------------------------------------------===//
1002 //                   ConstantAggregateZero Implementation
1003 //===----------------------------------------------------------------------===//
1004 
1005 Constant *ConstantAggregateZero::getSequentialElement() const {
1006   if (auto *AT = dyn_cast<ArrayType>(getType()))
1007     return Constant::getNullValue(AT->getElementType());
1008   return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1009 }
1010 
1011 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1012   return Constant::getNullValue(getType()->getStructElementType(Elt));
1013 }
1014 
1015 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1016   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1017     return getSequentialElement();
1018   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1019 }
1020 
1021 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1022   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1023     return getSequentialElement();
1024   return getStructElement(Idx);
1025 }
1026 
1027 unsigned ConstantAggregateZero::getNumElements() const {
1028   Type *Ty = getType();
1029   if (auto *AT = dyn_cast<ArrayType>(Ty))
1030     return AT->getNumElements();
1031   if (auto *VT = dyn_cast<VectorType>(Ty))
1032     return VT->getNumElements();
1033   return Ty->getStructNumElements();
1034 }
1035 
1036 //===----------------------------------------------------------------------===//
1037 //                         UndefValue Implementation
1038 //===----------------------------------------------------------------------===//
1039 
1040 UndefValue *UndefValue::getSequentialElement() const {
1041   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1042     return UndefValue::get(ATy->getElementType());
1043   return UndefValue::get(cast<VectorType>(getType())->getElementType());
1044 }
1045 
1046 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1047   return UndefValue::get(getType()->getStructElementType(Elt));
1048 }
1049 
1050 UndefValue *UndefValue::getElementValue(Constant *C) const {
1051   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1052     return getSequentialElement();
1053   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1054 }
1055 
1056 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1057   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1058     return getSequentialElement();
1059   return getStructElement(Idx);
1060 }
1061 
1062 unsigned UndefValue::getNumElements() const {
1063   Type *Ty = getType();
1064   if (auto *AT = dyn_cast<ArrayType>(Ty))
1065     return AT->getNumElements();
1066   if (auto *VT = dyn_cast<VectorType>(Ty))
1067     return VT->getNumElements();
1068   return Ty->getStructNumElements();
1069 }
1070 
1071 //===----------------------------------------------------------------------===//
1072 //                            ConstantXXX Classes
1073 //===----------------------------------------------------------------------===//
1074 
1075 template <typename ItTy, typename EltTy>
1076 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1077   for (; Start != End; ++Start)
1078     if (*Start != Elt)
1079       return false;
1080   return true;
1081 }
1082 
1083 template <typename SequentialTy, typename ElementTy>
1084 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1085   assert(!V.empty() && "Cannot get empty int sequence.");
1086 
1087   SmallVector<ElementTy, 16> Elts;
1088   for (Constant *C : V)
1089     if (auto *CI = dyn_cast<ConstantInt>(C))
1090       Elts.push_back(CI->getZExtValue());
1091     else
1092       return nullptr;
1093   return SequentialTy::get(V[0]->getContext(), Elts);
1094 }
1095 
1096 template <typename SequentialTy, typename ElementTy>
1097 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1098   assert(!V.empty() && "Cannot get empty FP sequence.");
1099 
1100   SmallVector<ElementTy, 16> Elts;
1101   for (Constant *C : V)
1102     if (auto *CFP = dyn_cast<ConstantFP>(C))
1103       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1104     else
1105       return nullptr;
1106   return SequentialTy::getFP(V[0]->getType(), Elts);
1107 }
1108 
1109 template <typename SequenceTy>
1110 static Constant *getSequenceIfElementsMatch(Constant *C,
1111                                             ArrayRef<Constant *> V) {
1112   // We speculatively build the elements here even if it turns out that there is
1113   // a constantexpr or something else weird, since it is so uncommon for that to
1114   // happen.
1115   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1116     if (CI->getType()->isIntegerTy(8))
1117       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1118     else if (CI->getType()->isIntegerTy(16))
1119       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1120     else if (CI->getType()->isIntegerTy(32))
1121       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1122     else if (CI->getType()->isIntegerTy(64))
1123       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1124   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1125     if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1126       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1127     else if (CFP->getType()->isFloatTy())
1128       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1129     else if (CFP->getType()->isDoubleTy())
1130       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1131   }
1132 
1133   return nullptr;
1134 }
1135 
1136 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1137                                      ArrayRef<Constant *> V)
1138     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1139                V.size()) {
1140   llvm::copy(V, op_begin());
1141 
1142   // Check that types match, unless this is an opaque struct.
1143   if (auto *ST = dyn_cast<StructType>(T)) {
1144     if (ST->isOpaque())
1145       return;
1146     for (unsigned I = 0, E = V.size(); I != E; ++I)
1147       assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1148              "Initializer for struct element doesn't match!");
1149   }
1150 }
1151 
1152 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1153     : ConstantAggregate(T, ConstantArrayVal, V) {
1154   assert(V.size() == T->getNumElements() &&
1155          "Invalid initializer for constant array");
1156 }
1157 
1158 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1159   if (Constant *C = getImpl(Ty, V))
1160     return C;
1161   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1162 }
1163 
1164 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1165   // Empty arrays are canonicalized to ConstantAggregateZero.
1166   if (V.empty())
1167     return ConstantAggregateZero::get(Ty);
1168 
1169   for (unsigned i = 0, e = V.size(); i != e; ++i) {
1170     assert(V[i]->getType() == Ty->getElementType() &&
1171            "Wrong type in array element initializer");
1172   }
1173 
1174   // If this is an all-zero array, return a ConstantAggregateZero object.  If
1175   // all undef, return an UndefValue, if "all simple", then return a
1176   // ConstantDataArray.
1177   Constant *C = V[0];
1178   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1179     return UndefValue::get(Ty);
1180 
1181   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1182     return ConstantAggregateZero::get(Ty);
1183 
1184   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1185   // the element type is compatible with ConstantDataVector.  If so, use it.
1186   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1187     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1188 
1189   // Otherwise, we really do want to create a ConstantArray.
1190   return nullptr;
1191 }
1192 
1193 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1194                                                ArrayRef<Constant*> V,
1195                                                bool Packed) {
1196   unsigned VecSize = V.size();
1197   SmallVector<Type*, 16> EltTypes(VecSize);
1198   for (unsigned i = 0; i != VecSize; ++i)
1199     EltTypes[i] = V[i]->getType();
1200 
1201   return StructType::get(Context, EltTypes, Packed);
1202 }
1203 
1204 
1205 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1206                                                bool Packed) {
1207   assert(!V.empty() &&
1208          "ConstantStruct::getTypeForElements cannot be called on empty list");
1209   return getTypeForElements(V[0]->getContext(), V, Packed);
1210 }
1211 
1212 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1213     : ConstantAggregate(T, ConstantStructVal, V) {
1214   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1215          "Invalid initializer for constant struct");
1216 }
1217 
1218 // ConstantStruct accessors.
1219 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1220   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1221          "Incorrect # elements specified to ConstantStruct::get");
1222 
1223   // Create a ConstantAggregateZero value if all elements are zeros.
1224   bool isZero = true;
1225   bool isUndef = false;
1226 
1227   if (!V.empty()) {
1228     isUndef = isa<UndefValue>(V[0]);
1229     isZero = V[0]->isNullValue();
1230     if (isUndef || isZero) {
1231       for (unsigned i = 0, e = V.size(); i != e; ++i) {
1232         if (!V[i]->isNullValue())
1233           isZero = false;
1234         if (!isa<UndefValue>(V[i]))
1235           isUndef = false;
1236       }
1237     }
1238   }
1239   if (isZero)
1240     return ConstantAggregateZero::get(ST);
1241   if (isUndef)
1242     return UndefValue::get(ST);
1243 
1244   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1245 }
1246 
1247 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1248     : ConstantAggregate(T, ConstantVectorVal, V) {
1249   assert(V.size() == T->getNumElements() &&
1250          "Invalid initializer for constant vector");
1251 }
1252 
1253 // ConstantVector accessors.
1254 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1255   if (Constant *C = getImpl(V))
1256     return C;
1257   auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1258   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1259 }
1260 
1261 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1262   assert(!V.empty() && "Vectors can't be empty");
1263   auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1264 
1265   // If this is an all-undef or all-zero vector, return a
1266   // ConstantAggregateZero or UndefValue.
1267   Constant *C = V[0];
1268   bool isZero = C->isNullValue();
1269   bool isUndef = isa<UndefValue>(C);
1270 
1271   if (isZero || isUndef) {
1272     for (unsigned i = 1, e = V.size(); i != e; ++i)
1273       if (V[i] != C) {
1274         isZero = isUndef = false;
1275         break;
1276       }
1277   }
1278 
1279   if (isZero)
1280     return ConstantAggregateZero::get(T);
1281   if (isUndef)
1282     return UndefValue::get(T);
1283 
1284   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1285   // the element type is compatible with ConstantDataVector.  If so, use it.
1286   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1287     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1288 
1289   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1290   // the operand list contains a ConstantExpr or something else strange.
1291   return nullptr;
1292 }
1293 
1294 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1295   if (!EC.Scalable) {
1296     // If this splat is compatible with ConstantDataVector, use it instead of
1297     // ConstantVector.
1298     if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1299         ConstantDataSequential::isElementTypeCompatible(V->getType()))
1300       return ConstantDataVector::getSplat(EC.Min, V);
1301 
1302     SmallVector<Constant *, 32> Elts(EC.Min, V);
1303     return get(Elts);
1304   }
1305 
1306   Type *VTy = VectorType::get(V->getType(), EC);
1307 
1308   if (V->isNullValue())
1309     return ConstantAggregateZero::get(VTy);
1310   else if (isa<UndefValue>(V))
1311     return UndefValue::get(VTy);
1312 
1313   Type *I32Ty = Type::getInt32Ty(VTy->getContext());
1314 
1315   // Move scalar into vector.
1316   Constant *UndefV = UndefValue::get(VTy);
1317   V = ConstantExpr::getInsertElement(UndefV, V, ConstantInt::get(I32Ty, 0));
1318   // Build shuffle mask to perform the splat.
1319   SmallVector<int, 8> Zeros(EC.Min, 0);
1320   // Splat.
1321   return ConstantExpr::getShuffleVector(V, UndefV, Zeros);
1322 }
1323 
1324 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1325   LLVMContextImpl *pImpl = Context.pImpl;
1326   if (!pImpl->TheNoneToken)
1327     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1328   return pImpl->TheNoneToken.get();
1329 }
1330 
1331 /// Remove the constant from the constant table.
1332 void ConstantTokenNone::destroyConstantImpl() {
1333   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1334 }
1335 
1336 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1337 // can't be inline because we don't want to #include Instruction.h into
1338 // Constant.h
1339 bool ConstantExpr::isCast() const {
1340   return Instruction::isCast(getOpcode());
1341 }
1342 
1343 bool ConstantExpr::isCompare() const {
1344   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1345 }
1346 
1347 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1348   if (getOpcode() != Instruction::GetElementPtr) return false;
1349 
1350   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1351   User::const_op_iterator OI = std::next(this->op_begin());
1352 
1353   // The remaining indices may be compile-time known integers within the bounds
1354   // of the corresponding notional static array types.
1355   for (; GEPI != E; ++GEPI, ++OI) {
1356     if (isa<UndefValue>(*OI))
1357       continue;
1358     auto *CI = dyn_cast<ConstantInt>(*OI);
1359     if (!CI || (GEPI.isBoundedSequential() &&
1360                 (CI->getValue().getActiveBits() > 64 ||
1361                  CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1362       return false;
1363   }
1364 
1365   // All the indices checked out.
1366   return true;
1367 }
1368 
1369 bool ConstantExpr::hasIndices() const {
1370   return getOpcode() == Instruction::ExtractValue ||
1371          getOpcode() == Instruction::InsertValue;
1372 }
1373 
1374 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1375   if (const ExtractValueConstantExpr *EVCE =
1376         dyn_cast<ExtractValueConstantExpr>(this))
1377     return EVCE->Indices;
1378 
1379   return cast<InsertValueConstantExpr>(this)->Indices;
1380 }
1381 
1382 unsigned ConstantExpr::getPredicate() const {
1383   return cast<CompareConstantExpr>(this)->predicate;
1384 }
1385 
1386 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1387   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1388 }
1389 
1390 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1391   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1392 }
1393 
1394 Constant *
1395 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1396   assert(Op->getType() == getOperand(OpNo)->getType() &&
1397          "Replacing operand with value of different type!");
1398   if (getOperand(OpNo) == Op)
1399     return const_cast<ConstantExpr*>(this);
1400 
1401   SmallVector<Constant*, 8> NewOps;
1402   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1403     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1404 
1405   return getWithOperands(NewOps);
1406 }
1407 
1408 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1409                                         bool OnlyIfReduced, Type *SrcTy) const {
1410   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1411 
1412   // If no operands changed return self.
1413   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1414     return const_cast<ConstantExpr*>(this);
1415 
1416   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1417   switch (getOpcode()) {
1418   case Instruction::Trunc:
1419   case Instruction::ZExt:
1420   case Instruction::SExt:
1421   case Instruction::FPTrunc:
1422   case Instruction::FPExt:
1423   case Instruction::UIToFP:
1424   case Instruction::SIToFP:
1425   case Instruction::FPToUI:
1426   case Instruction::FPToSI:
1427   case Instruction::PtrToInt:
1428   case Instruction::IntToPtr:
1429   case Instruction::BitCast:
1430   case Instruction::AddrSpaceCast:
1431     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1432   case Instruction::Select:
1433     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1434   case Instruction::InsertElement:
1435     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1436                                           OnlyIfReducedTy);
1437   case Instruction::ExtractElement:
1438     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1439   case Instruction::InsertValue:
1440     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1441                                         OnlyIfReducedTy);
1442   case Instruction::ExtractValue:
1443     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1444   case Instruction::ShuffleVector:
1445     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1446                                           OnlyIfReducedTy);
1447   case Instruction::GetElementPtr: {
1448     auto *GEPO = cast<GEPOperator>(this);
1449     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1450     return ConstantExpr::getGetElementPtr(
1451         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1452         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1453   }
1454   case Instruction::ICmp:
1455   case Instruction::FCmp:
1456     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1457                                     OnlyIfReducedTy);
1458   default:
1459     assert(getNumOperands() == 2 && "Must be binary operator?");
1460     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1461                              OnlyIfReducedTy);
1462   }
1463 }
1464 
1465 
1466 //===----------------------------------------------------------------------===//
1467 //                      isValueValidForType implementations
1468 
1469 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1470   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1471   if (Ty->isIntegerTy(1))
1472     return Val == 0 || Val == 1;
1473   return isUIntN(NumBits, Val);
1474 }
1475 
1476 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1477   unsigned NumBits = Ty->getIntegerBitWidth();
1478   if (Ty->isIntegerTy(1))
1479     return Val == 0 || Val == 1 || Val == -1;
1480   return isIntN(NumBits, Val);
1481 }
1482 
1483 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1484   // convert modifies in place, so make a copy.
1485   APFloat Val2 = APFloat(Val);
1486   bool losesInfo;
1487   switch (Ty->getTypeID()) {
1488   default:
1489     return false;         // These can't be represented as floating point!
1490 
1491   // FIXME rounding mode needs to be more flexible
1492   case Type::HalfTyID: {
1493     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1494       return true;
1495     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1496     return !losesInfo;
1497   }
1498   case Type::BFloatTyID: {
1499     if (&Val2.getSemantics() == &APFloat::BFloat())
1500       return true;
1501     Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1502     return !losesInfo;
1503   }
1504   case Type::FloatTyID: {
1505     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1506       return true;
1507     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1508     return !losesInfo;
1509   }
1510   case Type::DoubleTyID: {
1511     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1512         &Val2.getSemantics() == &APFloat::BFloat() ||
1513         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1514         &Val2.getSemantics() == &APFloat::IEEEdouble())
1515       return true;
1516     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1517     return !losesInfo;
1518   }
1519   case Type::X86_FP80TyID:
1520     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1521            &Val2.getSemantics() == &APFloat::BFloat() ||
1522            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1523            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1524            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1525   case Type::FP128TyID:
1526     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1527            &Val2.getSemantics() == &APFloat::BFloat() ||
1528            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1529            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1530            &Val2.getSemantics() == &APFloat::IEEEquad();
1531   case Type::PPC_FP128TyID:
1532     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1533            &Val2.getSemantics() == &APFloat::BFloat() ||
1534            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1535            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1536            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1537   }
1538 }
1539 
1540 
1541 //===----------------------------------------------------------------------===//
1542 //                      Factory Function Implementation
1543 
1544 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1545   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1546          "Cannot create an aggregate zero of non-aggregate type!");
1547 
1548   std::unique_ptr<ConstantAggregateZero> &Entry =
1549       Ty->getContext().pImpl->CAZConstants[Ty];
1550   if (!Entry)
1551     Entry.reset(new ConstantAggregateZero(Ty));
1552 
1553   return Entry.get();
1554 }
1555 
1556 /// Remove the constant from the constant table.
1557 void ConstantAggregateZero::destroyConstantImpl() {
1558   getContext().pImpl->CAZConstants.erase(getType());
1559 }
1560 
1561 /// Remove the constant from the constant table.
1562 void ConstantArray::destroyConstantImpl() {
1563   getType()->getContext().pImpl->ArrayConstants.remove(this);
1564 }
1565 
1566 
1567 //---- ConstantStruct::get() implementation...
1568 //
1569 
1570 /// Remove the constant from the constant table.
1571 void ConstantStruct::destroyConstantImpl() {
1572   getType()->getContext().pImpl->StructConstants.remove(this);
1573 }
1574 
1575 /// Remove the constant from the constant table.
1576 void ConstantVector::destroyConstantImpl() {
1577   getType()->getContext().pImpl->VectorConstants.remove(this);
1578 }
1579 
1580 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1581   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1582   if (isa<ConstantAggregateZero>(this))
1583     return getNullValue(cast<VectorType>(getType())->getElementType());
1584   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1585     return CV->getSplatValue();
1586   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1587     return CV->getSplatValue(AllowUndefs);
1588 
1589   // Check if this is a constant expression splat of the form returned by
1590   // ConstantVector::getSplat()
1591   const auto *Shuf = dyn_cast<ConstantExpr>(this);
1592   if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1593       isa<UndefValue>(Shuf->getOperand(1))) {
1594 
1595     const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1596     if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1597         isa<UndefValue>(IElt->getOperand(0))) {
1598 
1599       ArrayRef<int> Mask = Shuf->getShuffleMask();
1600       Constant *SplatVal = IElt->getOperand(1);
1601       ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1602 
1603       if (Index && Index->getValue() == 0 &&
1604           std::all_of(Mask.begin(), Mask.end(), [](int I) { return I == 0; }))
1605         return SplatVal;
1606     }
1607   }
1608 
1609   return nullptr;
1610 }
1611 
1612 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1613   // Check out first element.
1614   Constant *Elt = getOperand(0);
1615   // Then make sure all remaining elements point to the same value.
1616   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1617     Constant *OpC = getOperand(I);
1618     if (OpC == Elt)
1619       continue;
1620 
1621     // Strict mode: any mismatch is not a splat.
1622     if (!AllowUndefs)
1623       return nullptr;
1624 
1625     // Allow undefs mode: ignore undefined elements.
1626     if (isa<UndefValue>(OpC))
1627       continue;
1628 
1629     // If we do not have a defined element yet, use the current operand.
1630     if (isa<UndefValue>(Elt))
1631       Elt = OpC;
1632 
1633     if (OpC != Elt)
1634       return nullptr;
1635   }
1636   return Elt;
1637 }
1638 
1639 const APInt &Constant::getUniqueInteger() const {
1640   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1641     return CI->getValue();
1642   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1643   const Constant *C = this->getAggregateElement(0U);
1644   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1645   return cast<ConstantInt>(C)->getValue();
1646 }
1647 
1648 //---- ConstantPointerNull::get() implementation.
1649 //
1650 
1651 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1652   std::unique_ptr<ConstantPointerNull> &Entry =
1653       Ty->getContext().pImpl->CPNConstants[Ty];
1654   if (!Entry)
1655     Entry.reset(new ConstantPointerNull(Ty));
1656 
1657   return Entry.get();
1658 }
1659 
1660 /// Remove the constant from the constant table.
1661 void ConstantPointerNull::destroyConstantImpl() {
1662   getContext().pImpl->CPNConstants.erase(getType());
1663 }
1664 
1665 UndefValue *UndefValue::get(Type *Ty) {
1666   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1667   if (!Entry)
1668     Entry.reset(new UndefValue(Ty));
1669 
1670   return Entry.get();
1671 }
1672 
1673 /// Remove the constant from the constant table.
1674 void UndefValue::destroyConstantImpl() {
1675   // Free the constant and any dangling references to it.
1676   getContext().pImpl->UVConstants.erase(getType());
1677 }
1678 
1679 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1680   assert(BB->getParent() && "Block must have a parent");
1681   return get(BB->getParent(), BB);
1682 }
1683 
1684 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1685   BlockAddress *&BA =
1686     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1687   if (!BA)
1688     BA = new BlockAddress(F, BB);
1689 
1690   assert(BA->getFunction() == F && "Basic block moved between functions");
1691   return BA;
1692 }
1693 
1694 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1695 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1696            &Op<0>(), 2) {
1697   setOperand(0, F);
1698   setOperand(1, BB);
1699   BB->AdjustBlockAddressRefCount(1);
1700 }
1701 
1702 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1703   if (!BB->hasAddressTaken())
1704     return nullptr;
1705 
1706   const Function *F = BB->getParent();
1707   assert(F && "Block must have a parent");
1708   BlockAddress *BA =
1709       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1710   assert(BA && "Refcount and block address map disagree!");
1711   return BA;
1712 }
1713 
1714 /// Remove the constant from the constant table.
1715 void BlockAddress::destroyConstantImpl() {
1716   getFunction()->getType()->getContext().pImpl
1717     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1718   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1719 }
1720 
1721 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1722   // This could be replacing either the Basic Block or the Function.  In either
1723   // case, we have to remove the map entry.
1724   Function *NewF = getFunction();
1725   BasicBlock *NewBB = getBasicBlock();
1726 
1727   if (From == NewF)
1728     NewF = cast<Function>(To->stripPointerCasts());
1729   else {
1730     assert(From == NewBB && "From does not match any operand");
1731     NewBB = cast<BasicBlock>(To);
1732   }
1733 
1734   // See if the 'new' entry already exists, if not, just update this in place
1735   // and return early.
1736   BlockAddress *&NewBA =
1737     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1738   if (NewBA)
1739     return NewBA;
1740 
1741   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1742 
1743   // Remove the old entry, this can't cause the map to rehash (just a
1744   // tombstone will get added).
1745   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1746                                                           getBasicBlock()));
1747   NewBA = this;
1748   setOperand(0, NewF);
1749   setOperand(1, NewBB);
1750   getBasicBlock()->AdjustBlockAddressRefCount(1);
1751 
1752   // If we just want to keep the existing value, then return null.
1753   // Callers know that this means we shouldn't delete this value.
1754   return nullptr;
1755 }
1756 
1757 //---- ConstantExpr::get() implementations.
1758 //
1759 
1760 /// This is a utility function to handle folding of casts and lookup of the
1761 /// cast in the ExprConstants map. It is used by the various get* methods below.
1762 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1763                                bool OnlyIfReduced = false) {
1764   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1765   // Fold a few common cases
1766   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1767     return FC;
1768 
1769   if (OnlyIfReduced)
1770     return nullptr;
1771 
1772   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1773 
1774   // Look up the constant in the table first to ensure uniqueness.
1775   ConstantExprKeyType Key(opc, C);
1776 
1777   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1778 }
1779 
1780 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1781                                 bool OnlyIfReduced) {
1782   Instruction::CastOps opc = Instruction::CastOps(oc);
1783   assert(Instruction::isCast(opc) && "opcode out of range");
1784   assert(C && Ty && "Null arguments to getCast");
1785   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1786 
1787   switch (opc) {
1788   default:
1789     llvm_unreachable("Invalid cast opcode");
1790   case Instruction::Trunc:
1791     return getTrunc(C, Ty, OnlyIfReduced);
1792   case Instruction::ZExt:
1793     return getZExt(C, Ty, OnlyIfReduced);
1794   case Instruction::SExt:
1795     return getSExt(C, Ty, OnlyIfReduced);
1796   case Instruction::FPTrunc:
1797     return getFPTrunc(C, Ty, OnlyIfReduced);
1798   case Instruction::FPExt:
1799     return getFPExtend(C, Ty, OnlyIfReduced);
1800   case Instruction::UIToFP:
1801     return getUIToFP(C, Ty, OnlyIfReduced);
1802   case Instruction::SIToFP:
1803     return getSIToFP(C, Ty, OnlyIfReduced);
1804   case Instruction::FPToUI:
1805     return getFPToUI(C, Ty, OnlyIfReduced);
1806   case Instruction::FPToSI:
1807     return getFPToSI(C, Ty, OnlyIfReduced);
1808   case Instruction::PtrToInt:
1809     return getPtrToInt(C, Ty, OnlyIfReduced);
1810   case Instruction::IntToPtr:
1811     return getIntToPtr(C, Ty, OnlyIfReduced);
1812   case Instruction::BitCast:
1813     return getBitCast(C, Ty, OnlyIfReduced);
1814   case Instruction::AddrSpaceCast:
1815     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1816   }
1817 }
1818 
1819 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1820   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1821     return getBitCast(C, Ty);
1822   return getZExt(C, Ty);
1823 }
1824 
1825 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1826   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1827     return getBitCast(C, Ty);
1828   return getSExt(C, Ty);
1829 }
1830 
1831 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1832   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1833     return getBitCast(C, Ty);
1834   return getTrunc(C, Ty);
1835 }
1836 
1837 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1838   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1839   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1840           "Invalid cast");
1841 
1842   if (Ty->isIntOrIntVectorTy())
1843     return getPtrToInt(S, Ty);
1844 
1845   unsigned SrcAS = S->getType()->getPointerAddressSpace();
1846   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1847     return getAddrSpaceCast(S, Ty);
1848 
1849   return getBitCast(S, Ty);
1850 }
1851 
1852 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1853                                                          Type *Ty) {
1854   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1855   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1856 
1857   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1858     return getAddrSpaceCast(S, Ty);
1859 
1860   return getBitCast(S, Ty);
1861 }
1862 
1863 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
1864   assert(C->getType()->isIntOrIntVectorTy() &&
1865          Ty->isIntOrIntVectorTy() && "Invalid cast");
1866   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1867   unsigned DstBits = Ty->getScalarSizeInBits();
1868   Instruction::CastOps opcode =
1869     (SrcBits == DstBits ? Instruction::BitCast :
1870      (SrcBits > DstBits ? Instruction::Trunc :
1871       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1872   return getCast(opcode, C, Ty);
1873 }
1874 
1875 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1876   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1877          "Invalid cast");
1878   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1879   unsigned DstBits = Ty->getScalarSizeInBits();
1880   if (SrcBits == DstBits)
1881     return C; // Avoid a useless cast
1882   Instruction::CastOps opcode =
1883     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1884   return getCast(opcode, C, Ty);
1885 }
1886 
1887 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1888 #ifndef NDEBUG
1889   bool fromVec = isa<VectorType>(C->getType());
1890   bool toVec = isa<VectorType>(Ty);
1891 #endif
1892   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1893   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1894   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1895   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1896          "SrcTy must be larger than DestTy for Trunc!");
1897 
1898   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1899 }
1900 
1901 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1902 #ifndef NDEBUG
1903   bool fromVec = isa<VectorType>(C->getType());
1904   bool toVec = isa<VectorType>(Ty);
1905 #endif
1906   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1907   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1908   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1909   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1910          "SrcTy must be smaller than DestTy for SExt!");
1911 
1912   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1913 }
1914 
1915 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1916 #ifndef NDEBUG
1917   bool fromVec = isa<VectorType>(C->getType());
1918   bool toVec = isa<VectorType>(Ty);
1919 #endif
1920   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1921   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1922   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1923   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1924          "SrcTy must be smaller than DestTy for ZExt!");
1925 
1926   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1927 }
1928 
1929 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1930 #ifndef NDEBUG
1931   bool fromVec = isa<VectorType>(C->getType());
1932   bool toVec = isa<VectorType>(Ty);
1933 #endif
1934   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1935   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1936          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1937          "This is an illegal floating point truncation!");
1938   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1939 }
1940 
1941 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1942 #ifndef NDEBUG
1943   bool fromVec = isa<VectorType>(C->getType());
1944   bool toVec = isa<VectorType>(Ty);
1945 #endif
1946   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1947   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1948          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1949          "This is an illegal floating point extension!");
1950   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1951 }
1952 
1953 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1954 #ifndef NDEBUG
1955   bool fromVec = isa<VectorType>(C->getType());
1956   bool toVec = isa<VectorType>(Ty);
1957 #endif
1958   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1959   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1960          "This is an illegal uint to floating point cast!");
1961   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1962 }
1963 
1964 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1965 #ifndef NDEBUG
1966   bool fromVec = isa<VectorType>(C->getType());
1967   bool toVec = isa<VectorType>(Ty);
1968 #endif
1969   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1970   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1971          "This is an illegal sint to floating point cast!");
1972   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1973 }
1974 
1975 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1976 #ifndef NDEBUG
1977   bool fromVec = isa<VectorType>(C->getType());
1978   bool toVec = isa<VectorType>(Ty);
1979 #endif
1980   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1981   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1982          "This is an illegal floating point to uint cast!");
1983   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1984 }
1985 
1986 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1987 #ifndef NDEBUG
1988   bool fromVec = isa<VectorType>(C->getType());
1989   bool toVec = isa<VectorType>(Ty);
1990 #endif
1991   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1992   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1993          "This is an illegal floating point to sint cast!");
1994   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1995 }
1996 
1997 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1998                                     bool OnlyIfReduced) {
1999   assert(C->getType()->isPtrOrPtrVectorTy() &&
2000          "PtrToInt source must be pointer or pointer vector");
2001   assert(DstTy->isIntOrIntVectorTy() &&
2002          "PtrToInt destination must be integer or integer vector");
2003   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2004   if (isa<VectorType>(C->getType()))
2005     assert(cast<VectorType>(C->getType())->getNumElements() ==
2006                cast<VectorType>(DstTy)->getNumElements() &&
2007            "Invalid cast between a different number of vector elements");
2008   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2009 }
2010 
2011 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2012                                     bool OnlyIfReduced) {
2013   assert(C->getType()->isIntOrIntVectorTy() &&
2014          "IntToPtr source must be integer or integer vector");
2015   assert(DstTy->isPtrOrPtrVectorTy() &&
2016          "IntToPtr destination must be a pointer or pointer vector");
2017   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2018   if (isa<VectorType>(C->getType()))
2019     assert(cast<VectorType>(C->getType())->getNumElements() ==
2020                cast<VectorType>(DstTy)->getNumElements() &&
2021            "Invalid cast between a different number of vector elements");
2022   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2023 }
2024 
2025 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2026                                    bool OnlyIfReduced) {
2027   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
2028          "Invalid constantexpr bitcast!");
2029 
2030   // It is common to ask for a bitcast of a value to its own type, handle this
2031   // speedily.
2032   if (C->getType() == DstTy) return C;
2033 
2034   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2035 }
2036 
2037 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2038                                          bool OnlyIfReduced) {
2039   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
2040          "Invalid constantexpr addrspacecast!");
2041 
2042   // Canonicalize addrspacecasts between different pointer types by first
2043   // bitcasting the pointer type and then converting the address space.
2044   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
2045   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
2046   Type *DstElemTy = DstScalarTy->getElementType();
2047   if (SrcScalarTy->getElementType() != DstElemTy) {
2048     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
2049     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
2050       // Handle vectors of pointers.
2051       MidTy = FixedVectorType::get(MidTy, VT->getNumElements());
2052     }
2053     C = getBitCast(C, MidTy);
2054   }
2055   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2056 }
2057 
2058 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
2059                             Type *OnlyIfReducedTy) {
2060   // Check the operands for consistency first.
2061   assert(Instruction::isUnaryOp(Opcode) &&
2062          "Invalid opcode in unary constant expression");
2063 
2064 #ifndef NDEBUG
2065   switch (Opcode) {
2066   case Instruction::FNeg:
2067     assert(C->getType()->isFPOrFPVectorTy() &&
2068            "Tried to create a floating-point operation on a "
2069            "non-floating-point type!");
2070     break;
2071   default:
2072     break;
2073   }
2074 #endif
2075 
2076   if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
2077     return FC;
2078 
2079   if (OnlyIfReducedTy == C->getType())
2080     return nullptr;
2081 
2082   Constant *ArgVec[] = { C };
2083   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2084 
2085   LLVMContextImpl *pImpl = C->getContext().pImpl;
2086   return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
2087 }
2088 
2089 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2090                             unsigned Flags, Type *OnlyIfReducedTy) {
2091   // Check the operands for consistency first.
2092   assert(Instruction::isBinaryOp(Opcode) &&
2093          "Invalid opcode in binary constant expression");
2094   assert(C1->getType() == C2->getType() &&
2095          "Operand types in binary constant expression should match");
2096 
2097 #ifndef NDEBUG
2098   switch (Opcode) {
2099   case Instruction::Add:
2100   case Instruction::Sub:
2101   case Instruction::Mul:
2102   case Instruction::UDiv:
2103   case Instruction::SDiv:
2104   case Instruction::URem:
2105   case Instruction::SRem:
2106     assert(C1->getType()->isIntOrIntVectorTy() &&
2107            "Tried to create an integer operation on a non-integer type!");
2108     break;
2109   case Instruction::FAdd:
2110   case Instruction::FSub:
2111   case Instruction::FMul:
2112   case Instruction::FDiv:
2113   case Instruction::FRem:
2114     assert(C1->getType()->isFPOrFPVectorTy() &&
2115            "Tried to create a floating-point operation on a "
2116            "non-floating-point type!");
2117     break;
2118   case Instruction::And:
2119   case Instruction::Or:
2120   case Instruction::Xor:
2121     assert(C1->getType()->isIntOrIntVectorTy() &&
2122            "Tried to create a logical operation on a non-integral type!");
2123     break;
2124   case Instruction::Shl:
2125   case Instruction::LShr:
2126   case Instruction::AShr:
2127     assert(C1->getType()->isIntOrIntVectorTy() &&
2128            "Tried to create a shift operation on a non-integer type!");
2129     break;
2130   default:
2131     break;
2132   }
2133 #endif
2134 
2135   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2136     return FC;
2137 
2138   if (OnlyIfReducedTy == C1->getType())
2139     return nullptr;
2140 
2141   Constant *ArgVec[] = { C1, C2 };
2142   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2143 
2144   LLVMContextImpl *pImpl = C1->getContext().pImpl;
2145   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2146 }
2147 
2148 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2149   // sizeof is implemented as: (i64) gep (Ty*)null, 1
2150   // Note that a non-inbounds gep is used, as null isn't within any object.
2151   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2152   Constant *GEP = getGetElementPtr(
2153       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2154   return getPtrToInt(GEP,
2155                      Type::getInt64Ty(Ty->getContext()));
2156 }
2157 
2158 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2159   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2160   // Note that a non-inbounds gep is used, as null isn't within any object.
2161   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2162   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
2163   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2164   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2165   Constant *Indices[2] = { Zero, One };
2166   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2167   return getPtrToInt(GEP,
2168                      Type::getInt64Ty(Ty->getContext()));
2169 }
2170 
2171 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
2172   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
2173                                            FieldNo));
2174 }
2175 
2176 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
2177   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
2178   // Note that a non-inbounds gep is used, as null isn't within any object.
2179   Constant *GEPIdx[] = {
2180     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
2181     FieldNo
2182   };
2183   Constant *GEP = getGetElementPtr(
2184       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2185   return getPtrToInt(GEP,
2186                      Type::getInt64Ty(Ty->getContext()));
2187 }
2188 
2189 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2190                                    Constant *C2, bool OnlyIfReduced) {
2191   assert(C1->getType() == C2->getType() && "Op types should be identical!");
2192 
2193   switch (Predicate) {
2194   default: llvm_unreachable("Invalid CmpInst predicate");
2195   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2196   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2197   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2198   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2199   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2200   case CmpInst::FCMP_TRUE:
2201     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2202 
2203   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
2204   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2205   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2206   case CmpInst::ICMP_SLE:
2207     return getICmp(Predicate, C1, C2, OnlyIfReduced);
2208   }
2209 }
2210 
2211 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2212                                   Type *OnlyIfReducedTy) {
2213   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2214 
2215   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2216     return SC;        // Fold common cases
2217 
2218   if (OnlyIfReducedTy == V1->getType())
2219     return nullptr;
2220 
2221   Constant *ArgVec[] = { C, V1, V2 };
2222   ConstantExprKeyType Key(Instruction::Select, ArgVec);
2223 
2224   LLVMContextImpl *pImpl = C->getContext().pImpl;
2225   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2226 }
2227 
2228 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2229                                          ArrayRef<Value *> Idxs, bool InBounds,
2230                                          Optional<unsigned> InRangeIndex,
2231                                          Type *OnlyIfReducedTy) {
2232   if (!Ty)
2233     Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
2234   else
2235     assert(Ty ==
2236            cast<PointerType>(C->getType()->getScalarType())->getElementType());
2237 
2238   if (Constant *FC =
2239           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2240     return FC;          // Fold a few common cases.
2241 
2242   // Get the result type of the getelementptr!
2243   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2244   assert(DestTy && "GEP indices invalid!");
2245   unsigned AS = C->getType()->getPointerAddressSpace();
2246   Type *ReqTy = DestTy->getPointerTo(AS);
2247 
2248   ElementCount EltCount = {0, false};
2249   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2250     EltCount = VecTy->getElementCount();
2251   else
2252     for (auto Idx : Idxs)
2253       if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType()))
2254         EltCount = VecTy->getElementCount();
2255 
2256   if (EltCount.Min != 0)
2257     ReqTy = VectorType::get(ReqTy, EltCount);
2258 
2259   if (OnlyIfReducedTy == ReqTy)
2260     return nullptr;
2261 
2262   // Look up the constant in the table first to ensure uniqueness
2263   std::vector<Constant*> ArgVec;
2264   ArgVec.reserve(1 + Idxs.size());
2265   ArgVec.push_back(C);
2266   auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2267   for (; GTI != GTE; ++GTI) {
2268     auto *Idx = cast<Constant>(GTI.getOperand());
2269     assert(
2270         (!isa<VectorType>(Idx->getType()) ||
2271          cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2272         "getelementptr index type missmatch");
2273 
2274     if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2275       Idx = Idx->getSplatValue();
2276     } else if (GTI.isSequential() && EltCount.Min != 0 &&
2277                !Idx->getType()->isVectorTy()) {
2278       Idx = ConstantVector::getSplat(EltCount, Idx);
2279     }
2280     ArgVec.push_back(Idx);
2281   }
2282 
2283   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2284   if (InRangeIndex && *InRangeIndex < 63)
2285     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2286   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2287                                 SubClassOptionalData, None, None, Ty);
2288 
2289   LLVMContextImpl *pImpl = C->getContext().pImpl;
2290   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2291 }
2292 
2293 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2294                                 Constant *RHS, bool OnlyIfReduced) {
2295   assert(LHS->getType() == RHS->getType());
2296   assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2297          "Invalid ICmp Predicate");
2298 
2299   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2300     return FC;          // Fold a few common cases...
2301 
2302   if (OnlyIfReduced)
2303     return nullptr;
2304 
2305   // Look up the constant in the table first to ensure uniqueness
2306   Constant *ArgVec[] = { LHS, RHS };
2307   // Get the key type with both the opcode and predicate
2308   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2309 
2310   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2311   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2312     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2313 
2314   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2315   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2316 }
2317 
2318 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2319                                 Constant *RHS, bool OnlyIfReduced) {
2320   assert(LHS->getType() == RHS->getType());
2321   assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2322          "Invalid FCmp Predicate");
2323 
2324   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2325     return FC;          // Fold a few common cases...
2326 
2327   if (OnlyIfReduced)
2328     return nullptr;
2329 
2330   // Look up the constant in the table first to ensure uniqueness
2331   Constant *ArgVec[] = { LHS, RHS };
2332   // Get the key type with both the opcode and predicate
2333   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2334 
2335   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2336   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2337     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2338 
2339   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2340   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2341 }
2342 
2343 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2344                                           Type *OnlyIfReducedTy) {
2345   assert(Val->getType()->isVectorTy() &&
2346          "Tried to create extractelement operation on non-vector type!");
2347   assert(Idx->getType()->isIntegerTy() &&
2348          "Extractelement index must be an integer type!");
2349 
2350   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2351     return FC;          // Fold a few common cases.
2352 
2353   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2354   if (OnlyIfReducedTy == ReqTy)
2355     return nullptr;
2356 
2357   // Look up the constant in the table first to ensure uniqueness
2358   Constant *ArgVec[] = { Val, Idx };
2359   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2360 
2361   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2362   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2363 }
2364 
2365 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2366                                          Constant *Idx, Type *OnlyIfReducedTy) {
2367   assert(Val->getType()->isVectorTy() &&
2368          "Tried to create insertelement operation on non-vector type!");
2369   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2370          "Insertelement types must match!");
2371   assert(Idx->getType()->isIntegerTy() &&
2372          "Insertelement index must be i32 type!");
2373 
2374   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2375     return FC;          // Fold a few common cases.
2376 
2377   if (OnlyIfReducedTy == Val->getType())
2378     return nullptr;
2379 
2380   // Look up the constant in the table first to ensure uniqueness
2381   Constant *ArgVec[] = { Val, Elt, Idx };
2382   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2383 
2384   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2385   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2386 }
2387 
2388 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2389                                          ArrayRef<int> Mask,
2390                                          Type *OnlyIfReducedTy) {
2391   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2392          "Invalid shuffle vector constant expr operands!");
2393 
2394   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2395     return FC;          // Fold a few common cases.
2396 
2397   unsigned NElts = Mask.size();
2398   auto V1VTy = cast<VectorType>(V1->getType());
2399   Type *EltTy = V1VTy->getElementType();
2400   bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2401   Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2402 
2403   if (OnlyIfReducedTy == ShufTy)
2404     return nullptr;
2405 
2406   // Look up the constant in the table first to ensure uniqueness
2407   Constant *ArgVec[] = {V1, V2};
2408   ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask);
2409 
2410   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2411   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2412 }
2413 
2414 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2415                                        ArrayRef<unsigned> Idxs,
2416                                        Type *OnlyIfReducedTy) {
2417   assert(Agg->getType()->isFirstClassType() &&
2418          "Non-first-class type for constant insertvalue expression");
2419 
2420   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2421                                           Idxs) == Val->getType() &&
2422          "insertvalue indices invalid!");
2423   Type *ReqTy = Val->getType();
2424 
2425   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2426     return FC;
2427 
2428   if (OnlyIfReducedTy == ReqTy)
2429     return nullptr;
2430 
2431   Constant *ArgVec[] = { Agg, Val };
2432   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2433 
2434   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2435   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2436 }
2437 
2438 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2439                                         Type *OnlyIfReducedTy) {
2440   assert(Agg->getType()->isFirstClassType() &&
2441          "Tried to create extractelement operation on non-first-class type!");
2442 
2443   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2444   (void)ReqTy;
2445   assert(ReqTy && "extractvalue indices invalid!");
2446 
2447   assert(Agg->getType()->isFirstClassType() &&
2448          "Non-first-class type for constant extractvalue expression");
2449   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2450     return FC;
2451 
2452   if (OnlyIfReducedTy == ReqTy)
2453     return nullptr;
2454 
2455   Constant *ArgVec[] = { Agg };
2456   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2457 
2458   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2459   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2460 }
2461 
2462 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2463   assert(C->getType()->isIntOrIntVectorTy() &&
2464          "Cannot NEG a nonintegral value!");
2465   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2466                 C, HasNUW, HasNSW);
2467 }
2468 
2469 Constant *ConstantExpr::getFNeg(Constant *C) {
2470   assert(C->getType()->isFPOrFPVectorTy() &&
2471          "Cannot FNEG a non-floating-point value!");
2472   return get(Instruction::FNeg, C);
2473 }
2474 
2475 Constant *ConstantExpr::getNot(Constant *C) {
2476   assert(C->getType()->isIntOrIntVectorTy() &&
2477          "Cannot NOT a nonintegral value!");
2478   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2479 }
2480 
2481 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2482                                bool HasNUW, bool HasNSW) {
2483   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2484                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2485   return get(Instruction::Add, C1, C2, Flags);
2486 }
2487 
2488 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2489   return get(Instruction::FAdd, C1, C2);
2490 }
2491 
2492 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2493                                bool HasNUW, bool HasNSW) {
2494   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2495                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2496   return get(Instruction::Sub, C1, C2, Flags);
2497 }
2498 
2499 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2500   return get(Instruction::FSub, C1, C2);
2501 }
2502 
2503 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2504                                bool HasNUW, bool HasNSW) {
2505   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2506                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2507   return get(Instruction::Mul, C1, C2, Flags);
2508 }
2509 
2510 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2511   return get(Instruction::FMul, C1, C2);
2512 }
2513 
2514 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2515   return get(Instruction::UDiv, C1, C2,
2516              isExact ? PossiblyExactOperator::IsExact : 0);
2517 }
2518 
2519 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2520   return get(Instruction::SDiv, C1, C2,
2521              isExact ? PossiblyExactOperator::IsExact : 0);
2522 }
2523 
2524 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2525   return get(Instruction::FDiv, C1, C2);
2526 }
2527 
2528 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2529   return get(Instruction::URem, C1, C2);
2530 }
2531 
2532 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2533   return get(Instruction::SRem, C1, C2);
2534 }
2535 
2536 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2537   return get(Instruction::FRem, C1, C2);
2538 }
2539 
2540 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2541   return get(Instruction::And, C1, C2);
2542 }
2543 
2544 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2545   return get(Instruction::Or, C1, C2);
2546 }
2547 
2548 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2549   return get(Instruction::Xor, C1, C2);
2550 }
2551 
2552 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2553                                bool HasNUW, bool HasNSW) {
2554   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2555                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2556   return get(Instruction::Shl, C1, C2, Flags);
2557 }
2558 
2559 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2560   return get(Instruction::LShr, C1, C2,
2561              isExact ? PossiblyExactOperator::IsExact : 0);
2562 }
2563 
2564 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2565   return get(Instruction::AShr, C1, C2,
2566              isExact ? PossiblyExactOperator::IsExact : 0);
2567 }
2568 
2569 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2570                                          bool AllowRHSConstant) {
2571   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2572 
2573   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2574   if (Instruction::isCommutative(Opcode)) {
2575     switch (Opcode) {
2576       case Instruction::Add: // X + 0 = X
2577       case Instruction::Or:  // X | 0 = X
2578       case Instruction::Xor: // X ^ 0 = X
2579         return Constant::getNullValue(Ty);
2580       case Instruction::Mul: // X * 1 = X
2581         return ConstantInt::get(Ty, 1);
2582       case Instruction::And: // X & -1 = X
2583         return Constant::getAllOnesValue(Ty);
2584       case Instruction::FAdd: // X + -0.0 = X
2585         // TODO: If the fadd has 'nsz', should we return +0.0?
2586         return ConstantFP::getNegativeZero(Ty);
2587       case Instruction::FMul: // X * 1.0 = X
2588         return ConstantFP::get(Ty, 1.0);
2589       default:
2590         llvm_unreachable("Every commutative binop has an identity constant");
2591     }
2592   }
2593 
2594   // Non-commutative opcodes: AllowRHSConstant must be set.
2595   if (!AllowRHSConstant)
2596     return nullptr;
2597 
2598   switch (Opcode) {
2599     case Instruction::Sub:  // X - 0 = X
2600     case Instruction::Shl:  // X << 0 = X
2601     case Instruction::LShr: // X >>u 0 = X
2602     case Instruction::AShr: // X >> 0 = X
2603     case Instruction::FSub: // X - 0.0 = X
2604       return Constant::getNullValue(Ty);
2605     case Instruction::SDiv: // X / 1 = X
2606     case Instruction::UDiv: // X /u 1 = X
2607       return ConstantInt::get(Ty, 1);
2608     case Instruction::FDiv: // X / 1.0 = X
2609       return ConstantFP::get(Ty, 1.0);
2610     default:
2611       return nullptr;
2612   }
2613 }
2614 
2615 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2616   switch (Opcode) {
2617   default:
2618     // Doesn't have an absorber.
2619     return nullptr;
2620 
2621   case Instruction::Or:
2622     return Constant::getAllOnesValue(Ty);
2623 
2624   case Instruction::And:
2625   case Instruction::Mul:
2626     return Constant::getNullValue(Ty);
2627   }
2628 }
2629 
2630 /// Remove the constant from the constant table.
2631 void ConstantExpr::destroyConstantImpl() {
2632   getType()->getContext().pImpl->ExprConstants.remove(this);
2633 }
2634 
2635 const char *ConstantExpr::getOpcodeName() const {
2636   return Instruction::getOpcodeName(getOpcode());
2637 }
2638 
2639 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2640     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2641     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2642                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2643                        (IdxList.size() + 1),
2644                    IdxList.size() + 1),
2645       SrcElementTy(SrcElementTy),
2646       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2647   Op<0>() = C;
2648   Use *OperandList = getOperandList();
2649   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2650     OperandList[i+1] = IdxList[i];
2651 }
2652 
2653 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2654   return SrcElementTy;
2655 }
2656 
2657 Type *GetElementPtrConstantExpr::getResultElementType() const {
2658   return ResElementTy;
2659 }
2660 
2661 //===----------------------------------------------------------------------===//
2662 //                       ConstantData* implementations
2663 
2664 Type *ConstantDataSequential::getElementType() const {
2665   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2666     return ATy->getElementType();
2667   return cast<VectorType>(getType())->getElementType();
2668 }
2669 
2670 StringRef ConstantDataSequential::getRawDataValues() const {
2671   return StringRef(DataElements, getNumElements()*getElementByteSize());
2672 }
2673 
2674 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2675   if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2676     return true;
2677   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2678     switch (IT->getBitWidth()) {
2679     case 8:
2680     case 16:
2681     case 32:
2682     case 64:
2683       return true;
2684     default: break;
2685     }
2686   }
2687   return false;
2688 }
2689 
2690 unsigned ConstantDataSequential::getNumElements() const {
2691   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2692     return AT->getNumElements();
2693   return cast<VectorType>(getType())->getNumElements();
2694 }
2695 
2696 
2697 uint64_t ConstantDataSequential::getElementByteSize() const {
2698   return getElementType()->getPrimitiveSizeInBits()/8;
2699 }
2700 
2701 /// Return the start of the specified element.
2702 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2703   assert(Elt < getNumElements() && "Invalid Elt");
2704   return DataElements+Elt*getElementByteSize();
2705 }
2706 
2707 
2708 /// Return true if the array is empty or all zeros.
2709 static bool isAllZeros(StringRef Arr) {
2710   for (char I : Arr)
2711     if (I != 0)
2712       return false;
2713   return true;
2714 }
2715 
2716 /// This is the underlying implementation of all of the
2717 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2718 /// the correct element type.  We take the bytes in as a StringRef because
2719 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2720 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2721 #ifndef NDEBUG
2722   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2723     assert(isElementTypeCompatible(ATy->getElementType()));
2724   else
2725     assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2726 #endif
2727   // If the elements are all zero or there are no elements, return a CAZ, which
2728   // is more dense and canonical.
2729   if (isAllZeros(Elements))
2730     return ConstantAggregateZero::get(Ty);
2731 
2732   // Do a lookup to see if we have already formed one of these.
2733   auto &Slot =
2734       *Ty->getContext()
2735            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2736            .first;
2737 
2738   // The bucket can point to a linked list of different CDS's that have the same
2739   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2740   // of i8, or a 1-element array of i32.  They'll both end up in the same
2741   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2742   ConstantDataSequential **Entry = &Slot.second;
2743   for (ConstantDataSequential *Node = *Entry; Node;
2744        Entry = &Node->Next, Node = *Entry)
2745     if (Node->getType() == Ty)
2746       return Node;
2747 
2748   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2749   // and return it.
2750   if (isa<ArrayType>(Ty))
2751     return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2752 
2753   assert(isa<VectorType>(Ty));
2754   return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2755 }
2756 
2757 void ConstantDataSequential::destroyConstantImpl() {
2758   // Remove the constant from the StringMap.
2759   StringMap<ConstantDataSequential*> &CDSConstants =
2760     getType()->getContext().pImpl->CDSConstants;
2761 
2762   StringMap<ConstantDataSequential*>::iterator Slot =
2763     CDSConstants.find(getRawDataValues());
2764 
2765   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2766 
2767   ConstantDataSequential **Entry = &Slot->getValue();
2768 
2769   // Remove the entry from the hash table.
2770   if (!(*Entry)->Next) {
2771     // If there is only one value in the bucket (common case) it must be this
2772     // entry, and removing the entry should remove the bucket completely.
2773     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2774     getContext().pImpl->CDSConstants.erase(Slot);
2775   } else {
2776     // Otherwise, there are multiple entries linked off the bucket, unlink the
2777     // node we care about but keep the bucket around.
2778     for (ConstantDataSequential *Node = *Entry; ;
2779          Entry = &Node->Next, Node = *Entry) {
2780       assert(Node && "Didn't find entry in its uniquing hash table!");
2781       // If we found our entry, unlink it from the list and we're done.
2782       if (Node == this) {
2783         *Entry = Node->Next;
2784         break;
2785       }
2786     }
2787   }
2788 
2789   // If we were part of a list, make sure that we don't delete the list that is
2790   // still owned by the uniquing map.
2791   Next = nullptr;
2792 }
2793 
2794 /// getFP() constructors - Return a constant of array type with a float
2795 /// element type taken from argument `ElementType', and count taken from
2796 /// argument `Elts'.  The amount of bits of the contained type must match the
2797 /// number of bits of the type contained in the passed in ArrayRef.
2798 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
2799 /// that this can return a ConstantAggregateZero object.
2800 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
2801   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2802          "Element type is not a 16-bit float type");
2803   Type *Ty = ArrayType::get(ElementType, Elts.size());
2804   const char *Data = reinterpret_cast<const char *>(Elts.data());
2805   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2806 }
2807 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
2808   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
2809   Type *Ty = ArrayType::get(ElementType, Elts.size());
2810   const char *Data = reinterpret_cast<const char *>(Elts.data());
2811   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2812 }
2813 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
2814   assert(ElementType->isDoubleTy() &&
2815          "Element type is not a 64-bit float type");
2816   Type *Ty = ArrayType::get(ElementType, Elts.size());
2817   const char *Data = reinterpret_cast<const char *>(Elts.data());
2818   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2819 }
2820 
2821 Constant *ConstantDataArray::getString(LLVMContext &Context,
2822                                        StringRef Str, bool AddNull) {
2823   if (!AddNull) {
2824     const uint8_t *Data = Str.bytes_begin();
2825     return get(Context, makeArrayRef(Data, Str.size()));
2826   }
2827 
2828   SmallVector<uint8_t, 64> ElementVals;
2829   ElementVals.append(Str.begin(), Str.end());
2830   ElementVals.push_back(0);
2831   return get(Context, ElementVals);
2832 }
2833 
2834 /// get() constructors - Return a constant with vector type with an element
2835 /// count and element type matching the ArrayRef passed in.  Note that this
2836 /// can return a ConstantAggregateZero object.
2837 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2838   auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
2839   const char *Data = reinterpret_cast<const char *>(Elts.data());
2840   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
2841 }
2842 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2843   auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
2844   const char *Data = reinterpret_cast<const char *>(Elts.data());
2845   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2846 }
2847 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2848   auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
2849   const char *Data = reinterpret_cast<const char *>(Elts.data());
2850   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2851 }
2852 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2853   auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
2854   const char *Data = reinterpret_cast<const char *>(Elts.data());
2855   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2856 }
2857 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2858   auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
2859   const char *Data = reinterpret_cast<const char *>(Elts.data());
2860   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2861 }
2862 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2863   auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
2864   const char *Data = reinterpret_cast<const char *>(Elts.data());
2865   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2866 }
2867 
2868 /// getFP() constructors - Return a constant of vector type with a float
2869 /// element type taken from argument `ElementType', and count taken from
2870 /// argument `Elts'.  The amount of bits of the contained type must match the
2871 /// number of bits of the type contained in the passed in ArrayRef.
2872 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
2873 /// that this can return a ConstantAggregateZero object.
2874 Constant *ConstantDataVector::getFP(Type *ElementType,
2875                                     ArrayRef<uint16_t> Elts) {
2876   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2877          "Element type is not a 16-bit float type");
2878   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2879   const char *Data = reinterpret_cast<const char *>(Elts.data());
2880   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2881 }
2882 Constant *ConstantDataVector::getFP(Type *ElementType,
2883                                     ArrayRef<uint32_t> Elts) {
2884   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
2885   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2886   const char *Data = reinterpret_cast<const char *>(Elts.data());
2887   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2888 }
2889 Constant *ConstantDataVector::getFP(Type *ElementType,
2890                                     ArrayRef<uint64_t> Elts) {
2891   assert(ElementType->isDoubleTy() &&
2892          "Element type is not a 64-bit float type");
2893   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2894   const char *Data = reinterpret_cast<const char *>(Elts.data());
2895   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2896 }
2897 
2898 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2899   assert(isElementTypeCompatible(V->getType()) &&
2900          "Element type not compatible with ConstantData");
2901   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2902     if (CI->getType()->isIntegerTy(8)) {
2903       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2904       return get(V->getContext(), Elts);
2905     }
2906     if (CI->getType()->isIntegerTy(16)) {
2907       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2908       return get(V->getContext(), Elts);
2909     }
2910     if (CI->getType()->isIntegerTy(32)) {
2911       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2912       return get(V->getContext(), Elts);
2913     }
2914     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2915     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2916     return get(V->getContext(), Elts);
2917   }
2918 
2919   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2920     if (CFP->getType()->isHalfTy()) {
2921       SmallVector<uint16_t, 16> Elts(
2922           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2923       return getFP(V->getType(), Elts);
2924     }
2925     if (CFP->getType()->isBFloatTy()) {
2926       SmallVector<uint16_t, 16> Elts(
2927           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2928       return getFP(V->getType(), Elts);
2929     }
2930     if (CFP->getType()->isFloatTy()) {
2931       SmallVector<uint32_t, 16> Elts(
2932           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2933       return getFP(V->getType(), Elts);
2934     }
2935     if (CFP->getType()->isDoubleTy()) {
2936       SmallVector<uint64_t, 16> Elts(
2937           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2938       return getFP(V->getType(), Elts);
2939     }
2940   }
2941   return ConstantVector::getSplat({NumElts, false}, V);
2942 }
2943 
2944 
2945 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2946   assert(isa<IntegerType>(getElementType()) &&
2947          "Accessor can only be used when element is an integer");
2948   const char *EltPtr = getElementPointer(Elt);
2949 
2950   // The data is stored in host byte order, make sure to cast back to the right
2951   // type to load with the right endianness.
2952   switch (getElementType()->getIntegerBitWidth()) {
2953   default: llvm_unreachable("Invalid bitwidth for CDS");
2954   case 8:
2955     return *reinterpret_cast<const uint8_t *>(EltPtr);
2956   case 16:
2957     return *reinterpret_cast<const uint16_t *>(EltPtr);
2958   case 32:
2959     return *reinterpret_cast<const uint32_t *>(EltPtr);
2960   case 64:
2961     return *reinterpret_cast<const uint64_t *>(EltPtr);
2962   }
2963 }
2964 
2965 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
2966   assert(isa<IntegerType>(getElementType()) &&
2967          "Accessor can only be used when element is an integer");
2968   const char *EltPtr = getElementPointer(Elt);
2969 
2970   // The data is stored in host byte order, make sure to cast back to the right
2971   // type to load with the right endianness.
2972   switch (getElementType()->getIntegerBitWidth()) {
2973   default: llvm_unreachable("Invalid bitwidth for CDS");
2974   case 8: {
2975     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
2976     return APInt(8, EltVal);
2977   }
2978   case 16: {
2979     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2980     return APInt(16, EltVal);
2981   }
2982   case 32: {
2983     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2984     return APInt(32, EltVal);
2985   }
2986   case 64: {
2987     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2988     return APInt(64, EltVal);
2989   }
2990   }
2991 }
2992 
2993 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2994   const char *EltPtr = getElementPointer(Elt);
2995 
2996   switch (getElementType()->getTypeID()) {
2997   default:
2998     llvm_unreachable("Accessor can only be used when element is float/double!");
2999   case Type::HalfTyID: {
3000     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3001     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
3002   }
3003   case Type::BFloatTyID: {
3004     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3005     return APFloat(APFloat::BFloat(), APInt(16, EltVal));
3006   }
3007   case Type::FloatTyID: {
3008     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3009     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
3010   }
3011   case Type::DoubleTyID: {
3012     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3013     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
3014   }
3015   }
3016 }
3017 
3018 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
3019   assert(getElementType()->isFloatTy() &&
3020          "Accessor can only be used when element is a 'float'");
3021   return *reinterpret_cast<const float *>(getElementPointer(Elt));
3022 }
3023 
3024 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
3025   assert(getElementType()->isDoubleTy() &&
3026          "Accessor can only be used when element is a 'float'");
3027   return *reinterpret_cast<const double *>(getElementPointer(Elt));
3028 }
3029 
3030 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3031   if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3032       getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3033     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3034 
3035   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3036 }
3037 
3038 bool ConstantDataSequential::isString(unsigned CharSize) const {
3039   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3040 }
3041 
3042 bool ConstantDataSequential::isCString() const {
3043   if (!isString())
3044     return false;
3045 
3046   StringRef Str = getAsString();
3047 
3048   // The last value must be nul.
3049   if (Str.back() != 0) return false;
3050 
3051   // Other elements must be non-nul.
3052   return Str.drop_back().find(0) == StringRef::npos;
3053 }
3054 
3055 bool ConstantDataVector::isSplatData() const {
3056   const char *Base = getRawDataValues().data();
3057 
3058   // Compare elements 1+ to the 0'th element.
3059   unsigned EltSize = getElementByteSize();
3060   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3061     if (memcmp(Base, Base+i*EltSize, EltSize))
3062       return false;
3063 
3064   return true;
3065 }
3066 
3067 bool ConstantDataVector::isSplat() const {
3068   if (!IsSplatSet) {
3069     IsSplatSet = true;
3070     IsSplat = isSplatData();
3071   }
3072   return IsSplat;
3073 }
3074 
3075 Constant *ConstantDataVector::getSplatValue() const {
3076   // If they're all the same, return the 0th one as a representative.
3077   return isSplat() ? getElementAsConstant(0) : nullptr;
3078 }
3079 
3080 //===----------------------------------------------------------------------===//
3081 //                handleOperandChange implementations
3082 
3083 /// Update this constant array to change uses of
3084 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
3085 /// etc.
3086 ///
3087 /// Note that we intentionally replace all uses of From with To here.  Consider
3088 /// a large array that uses 'From' 1000 times.  By handling this case all here,
3089 /// ConstantArray::handleOperandChange is only invoked once, and that
3090 /// single invocation handles all 1000 uses.  Handling them one at a time would
3091 /// work, but would be really slow because it would have to unique each updated
3092 /// array instance.
3093 ///
3094 void Constant::handleOperandChange(Value *From, Value *To) {
3095   Value *Replacement = nullptr;
3096   switch (getValueID()) {
3097   default:
3098     llvm_unreachable("Not a constant!");
3099 #define HANDLE_CONSTANT(Name)                                                  \
3100   case Value::Name##Val:                                                       \
3101     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
3102     break;
3103 #include "llvm/IR/Value.def"
3104   }
3105 
3106   // If handleOperandChangeImpl returned nullptr, then it handled
3107   // replacing itself and we don't want to delete or replace anything else here.
3108   if (!Replacement)
3109     return;
3110 
3111   // I do need to replace this with an existing value.
3112   assert(Replacement != this && "I didn't contain From!");
3113 
3114   // Everyone using this now uses the replacement.
3115   replaceAllUsesWith(Replacement);
3116 
3117   // Delete the old constant!
3118   destroyConstant();
3119 }
3120 
3121 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3122   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3123   Constant *ToC = cast<Constant>(To);
3124 
3125   SmallVector<Constant*, 8> Values;
3126   Values.reserve(getNumOperands());  // Build replacement array.
3127 
3128   // Fill values with the modified operands of the constant array.  Also,
3129   // compute whether this turns into an all-zeros array.
3130   unsigned NumUpdated = 0;
3131 
3132   // Keep track of whether all the values in the array are "ToC".
3133   bool AllSame = true;
3134   Use *OperandList = getOperandList();
3135   unsigned OperandNo = 0;
3136   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3137     Constant *Val = cast<Constant>(O->get());
3138     if (Val == From) {
3139       OperandNo = (O - OperandList);
3140       Val = ToC;
3141       ++NumUpdated;
3142     }
3143     Values.push_back(Val);
3144     AllSame &= Val == ToC;
3145   }
3146 
3147   if (AllSame && ToC->isNullValue())
3148     return ConstantAggregateZero::get(getType());
3149 
3150   if (AllSame && isa<UndefValue>(ToC))
3151     return UndefValue::get(getType());
3152 
3153   // Check for any other type of constant-folding.
3154   if (Constant *C = getImpl(getType(), Values))
3155     return C;
3156 
3157   // Update to the new value.
3158   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3159       Values, this, From, ToC, NumUpdated, OperandNo);
3160 }
3161 
3162 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3163   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3164   Constant *ToC = cast<Constant>(To);
3165 
3166   Use *OperandList = getOperandList();
3167 
3168   SmallVector<Constant*, 8> Values;
3169   Values.reserve(getNumOperands());  // Build replacement struct.
3170 
3171   // Fill values with the modified operands of the constant struct.  Also,
3172   // compute whether this turns into an all-zeros struct.
3173   unsigned NumUpdated = 0;
3174   bool AllSame = true;
3175   unsigned OperandNo = 0;
3176   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3177     Constant *Val = cast<Constant>(O->get());
3178     if (Val == From) {
3179       OperandNo = (O - OperandList);
3180       Val = ToC;
3181       ++NumUpdated;
3182     }
3183     Values.push_back(Val);
3184     AllSame &= Val == ToC;
3185   }
3186 
3187   if (AllSame && ToC->isNullValue())
3188     return ConstantAggregateZero::get(getType());
3189 
3190   if (AllSame && isa<UndefValue>(ToC))
3191     return UndefValue::get(getType());
3192 
3193   // Update to the new value.
3194   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3195       Values, this, From, ToC, NumUpdated, OperandNo);
3196 }
3197 
3198 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3199   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3200   Constant *ToC = cast<Constant>(To);
3201 
3202   SmallVector<Constant*, 8> Values;
3203   Values.reserve(getNumOperands());  // Build replacement array...
3204   unsigned NumUpdated = 0;
3205   unsigned OperandNo = 0;
3206   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3207     Constant *Val = getOperand(i);
3208     if (Val == From) {
3209       OperandNo = i;
3210       ++NumUpdated;
3211       Val = ToC;
3212     }
3213     Values.push_back(Val);
3214   }
3215 
3216   if (Constant *C = getImpl(Values))
3217     return C;
3218 
3219   // Update to the new value.
3220   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3221       Values, this, From, ToC, NumUpdated, OperandNo);
3222 }
3223 
3224 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3225   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3226   Constant *To = cast<Constant>(ToV);
3227 
3228   SmallVector<Constant*, 8> NewOps;
3229   unsigned NumUpdated = 0;
3230   unsigned OperandNo = 0;
3231   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3232     Constant *Op = getOperand(i);
3233     if (Op == From) {
3234       OperandNo = i;
3235       ++NumUpdated;
3236       Op = To;
3237     }
3238     NewOps.push_back(Op);
3239   }
3240   assert(NumUpdated && "I didn't contain From!");
3241 
3242   if (Constant *C = getWithOperands(NewOps, getType(), true))
3243     return C;
3244 
3245   // Update to the new value.
3246   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3247       NewOps, this, From, To, NumUpdated, OperandNo);
3248 }
3249 
3250 Instruction *ConstantExpr::getAsInstruction() const {
3251   SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
3252   ArrayRef<Value*> Ops(ValueOperands);
3253 
3254   switch (getOpcode()) {
3255   case Instruction::Trunc:
3256   case Instruction::ZExt:
3257   case Instruction::SExt:
3258   case Instruction::FPTrunc:
3259   case Instruction::FPExt:
3260   case Instruction::UIToFP:
3261   case Instruction::SIToFP:
3262   case Instruction::FPToUI:
3263   case Instruction::FPToSI:
3264   case Instruction::PtrToInt:
3265   case Instruction::IntToPtr:
3266   case Instruction::BitCast:
3267   case Instruction::AddrSpaceCast:
3268     return CastInst::Create((Instruction::CastOps)getOpcode(),
3269                             Ops[0], getType());
3270   case Instruction::Select:
3271     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3272   case Instruction::InsertElement:
3273     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3274   case Instruction::ExtractElement:
3275     return ExtractElementInst::Create(Ops[0], Ops[1]);
3276   case Instruction::InsertValue:
3277     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3278   case Instruction::ExtractValue:
3279     return ExtractValueInst::Create(Ops[0], getIndices());
3280   case Instruction::ShuffleVector:
3281     return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask());
3282 
3283   case Instruction::GetElementPtr: {
3284     const auto *GO = cast<GEPOperator>(this);
3285     if (GO->isInBounds())
3286       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3287                                                Ops[0], Ops.slice(1));
3288     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3289                                      Ops.slice(1));
3290   }
3291   case Instruction::ICmp:
3292   case Instruction::FCmp:
3293     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3294                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3295   case Instruction::FNeg:
3296     return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
3297   default:
3298     assert(getNumOperands() == 2 && "Must be binary operator?");
3299     BinaryOperator *BO =
3300       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3301                              Ops[0], Ops[1]);
3302     if (isa<OverflowingBinaryOperator>(BO)) {
3303       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3304                                OverflowingBinaryOperator::NoUnsignedWrap);
3305       BO->setHasNoSignedWrap(SubclassOptionalData &
3306                              OverflowingBinaryOperator::NoSignedWrap);
3307     }
3308     if (isa<PossiblyExactOperator>(BO))
3309       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3310     return BO;
3311   }
3312 }
3313