1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Run a sanity check on the IR to ensure that Safepoints - if they've been
10 // inserted - were inserted correctly.  In particular, look for use of
11 // non-relocated values after a safepoint.  It's primary use is to check the
12 // correctness of safepoint insertion immediately after insertion, but it can
13 // also be used to verify that later transforms have not found a way to break
14 // safepoint semenatics.
15 //
16 // In its current form, this verify checks a property which is sufficient, but
17 // not neccessary for correctness.  There are some cases where an unrelocated
18 // pointer can be used after the safepoint.  Consider this example:
19 //
20 //    a = ...
21 //    b = ...
22 //    (a',b') = safepoint(a,b)
23 //    c = cmp eq a b
24 //    br c, ..., ....
25 //
26 // Because it is valid to reorder 'c' above the safepoint, this is legal.  In
27 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
28 // idioms like this.  The verifier knows about these cases and avoids reporting
29 // false positives.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/IR/SafepointIRVerifier.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/SetOperations.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Statepoint.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Support/Allocator.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 
53 #define DEBUG_TYPE "safepoint-ir-verifier"
54 
55 using namespace llvm;
56 
57 /// This option is used for writing test cases.  Instead of crashing the program
58 /// when verification fails, report a message to the console (for FileCheck
59 /// usage) and continue execution as if nothing happened.
60 static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
61                                cl::init(false));
62 
63 namespace {
64 
65 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
66 /// of blocks unreachable from entry then propagates deadness using foldable
67 /// conditional branches without modifying CFG. So GVN does but it changes CFG
68 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
69 /// clean up dead blocks, but in some cases, like verification or loop passes
70 /// it's not possible.
71 class CFGDeadness {
72   const DominatorTree *DT = nullptr;
73   SetVector<const BasicBlock *> DeadBlocks;
74   SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
75 
76 public:
77   /// Return the edge that coresponds to the predecessor.
78   static const Use& getEdge(const_pred_iterator &PredIt) {
79     auto &PU = PredIt.getUse();
80     return PU.getUser()->getOperandUse(PU.getOperandNo());
81   }
82 
83   /// Return true if there is at least one live edge that corresponds to the
84   /// basic block InBB listed in the phi node.
85   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
86     assert(!isDeadBlock(InBB) && "block must be live");
87     const BasicBlock* BB = PN->getParent();
88     bool Listed = false;
89     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
90       if (InBB == *PredIt) {
91         if (!isDeadEdge(&getEdge(PredIt)))
92           return true;
93         Listed = true;
94       }
95     }
96     (void)Listed;
97     assert(Listed && "basic block is not found among incoming blocks");
98     return false;
99   }
100 
101 
102   bool isDeadBlock(const BasicBlock *BB) const {
103     return DeadBlocks.count(BB);
104   }
105 
106   bool isDeadEdge(const Use *U) const {
107     assert(cast<Instruction>(U->getUser())->isTerminator() &&
108            "edge must be operand of terminator");
109     assert(cast_or_null<BasicBlock>(U->get()) &&
110            "edge must refer to basic block");
111     assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) &&
112            "isDeadEdge() must be applied to edge from live block");
113     return DeadEdges.count(U);
114   }
115 
116   bool hasLiveIncomingEdges(const BasicBlock *BB) const {
117     // Check if all incoming edges are dead.
118     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
119       auto &PU = PredIt.getUse();
120       const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
121       if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
122         return true; // Found a live edge.
123     }
124     return false;
125   }
126 
127   void processFunction(const Function &F, const DominatorTree &DT) {
128     this->DT = &DT;
129 
130     // Start with all blocks unreachable from entry.
131     for (const BasicBlock &BB : F)
132       if (!DT.isReachableFromEntry(&BB))
133         DeadBlocks.insert(&BB);
134 
135     // Top-down walk of the dominator tree
136     ReversePostOrderTraversal<const Function *> RPOT(&F);
137     for (const BasicBlock *BB : RPOT) {
138       const Instruction *TI = BB->getTerminator();
139       assert(TI && "blocks must be well formed");
140 
141       // For conditional branches, we can perform simple conditional propagation on
142       // the condition value itself.
143       const BranchInst *BI = dyn_cast<BranchInst>(TI);
144       if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
145         continue;
146 
147       // If a branch has two identical successors, we cannot declare either dead.
148       if (BI->getSuccessor(0) == BI->getSuccessor(1))
149         continue;
150 
151       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
152       if (!Cond)
153         continue;
154 
155       addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
156     }
157   }
158 
159 protected:
160   void addDeadBlock(const BasicBlock *BB) {
161     SmallVector<const BasicBlock *, 4> NewDead;
162     SmallSetVector<const BasicBlock *, 4> DF;
163 
164     NewDead.push_back(BB);
165     while (!NewDead.empty()) {
166       const BasicBlock *D = NewDead.pop_back_val();
167       if (isDeadBlock(D))
168         continue;
169 
170       // All blocks dominated by D are dead.
171       SmallVector<BasicBlock *, 8> Dom;
172       DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
173       // Do not need to mark all in and out edges dead
174       // because BB is marked dead and this is enough
175       // to run further.
176       DeadBlocks.insert(Dom.begin(), Dom.end());
177 
178       // Figure out the dominance-frontier(D).
179       for (BasicBlock *B : Dom)
180         for (BasicBlock *S : successors(B))
181           if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
182             NewDead.push_back(S);
183     }
184   }
185 
186   void addDeadEdge(const Use &DeadEdge) {
187     if (!DeadEdges.insert(&DeadEdge))
188       return;
189 
190     BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
191     if (hasLiveIncomingEdges(BB))
192       return;
193 
194     addDeadBlock(BB);
195   }
196 };
197 } // namespace
198 
199 static void Verify(const Function &F, const DominatorTree &DT,
200                    const CFGDeadness &CD);
201 
202 namespace llvm {
203 PreservedAnalyses SafepointIRVerifierPass::run(Function &F,
204                                                FunctionAnalysisManager &AM) {
205   const auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
206   CFGDeadness CD;
207   CD.processFunction(F, DT);
208   Verify(F, DT, CD);
209   return PreservedAnalyses::all();
210 }
211 } // namespace llvm
212 
213 namespace {
214 
215 struct SafepointIRVerifier : public FunctionPass {
216   static char ID; // Pass identification, replacement for typeid
217   SafepointIRVerifier() : FunctionPass(ID) {
218     initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
219   }
220 
221   bool runOnFunction(Function &F) override {
222     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
223     CFGDeadness CD;
224     CD.processFunction(F, DT);
225     Verify(F, DT, CD);
226     return false; // no modifications
227   }
228 
229   void getAnalysisUsage(AnalysisUsage &AU) const override {
230     AU.addRequiredID(DominatorTreeWrapperPass::ID);
231     AU.setPreservesAll();
232   }
233 
234   StringRef getPassName() const override { return "safepoint verifier"; }
235 };
236 } // namespace
237 
238 void llvm::verifySafepointIR(Function &F) {
239   SafepointIRVerifier pass;
240   pass.runOnFunction(F);
241 }
242 
243 char SafepointIRVerifier::ID = 0;
244 
245 FunctionPass *llvm::createSafepointIRVerifierPass() {
246   return new SafepointIRVerifier();
247 }
248 
249 INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
250                       "Safepoint IR Verifier", false, false)
251 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
252 INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
253                     "Safepoint IR Verifier", false, false)
254 
255 static bool isGCPointerType(Type *T) {
256   if (auto *PT = dyn_cast<PointerType>(T))
257     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
258     // GC managed heap.  We know that a pointer into this heap needs to be
259     // updated and that no other pointer does.
260     return (1 == PT->getAddressSpace());
261   return false;
262 }
263 
264 static bool containsGCPtrType(Type *Ty) {
265   if (isGCPointerType(Ty))
266     return true;
267   if (VectorType *VT = dyn_cast<VectorType>(Ty))
268     return isGCPointerType(VT->getScalarType());
269   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
270     return containsGCPtrType(AT->getElementType());
271   if (StructType *ST = dyn_cast<StructType>(Ty))
272     return llvm::any_of(ST->elements(), containsGCPtrType);
273   return false;
274 }
275 
276 // Debugging aid -- prints a [Begin, End) range of values.
277 template<typename IteratorTy>
278 static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
279   OS << "[ ";
280   while (Begin != End) {
281     OS << **Begin << " ";
282     ++Begin;
283   }
284   OS << "]";
285 }
286 
287 /// The verifier algorithm is phrased in terms of availability.  The set of
288 /// values "available" at a given point in the control flow graph is the set of
289 /// correctly relocated value at that point, and is a subset of the set of
290 /// definitions dominating that point.
291 
292 using AvailableValueSet = DenseSet<const Value *>;
293 
294 /// State we compute and track per basic block.
295 struct BasicBlockState {
296   // Set of values available coming in, before the phi nodes
297   AvailableValueSet AvailableIn;
298 
299   // Set of values available going out
300   AvailableValueSet AvailableOut;
301 
302   // AvailableOut minus AvailableIn.
303   // All elements are Instructions
304   AvailableValueSet Contribution;
305 
306   // True if this block contains a safepoint and thus AvailableIn does not
307   // contribute to AvailableOut.
308   bool Cleared = false;
309 };
310 
311 /// A given derived pointer can have multiple base pointers through phi/selects.
312 /// This type indicates when the base pointer is exclusively constant
313 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
314 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
315 /// NonConstant.
316 enum BaseType {
317   NonConstant = 1, // Base pointers is not exclusively constant.
318   ExclusivelyNull,
319   ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
320                           // set of constants, but they are not exclusively
321                           // null.
322 };
323 
324 /// Return the baseType for Val which states whether Val is exclusively
325 /// derived from constant/null, or not exclusively derived from constant.
326 /// Val is exclusively derived off a constant base when all operands of phi and
327 /// selects are derived off a constant base.
328 static enum BaseType getBaseType(const Value *Val) {
329 
330   SmallVector<const Value *, 32> Worklist;
331   DenseSet<const Value *> Visited;
332   bool isExclusivelyDerivedFromNull = true;
333   Worklist.push_back(Val);
334   // Strip through all the bitcasts and geps to get base pointer. Also check for
335   // the exclusive value when there can be multiple base pointers (through phis
336   // or selects).
337   while(!Worklist.empty()) {
338     const Value *V = Worklist.pop_back_val();
339     if (!Visited.insert(V).second)
340       continue;
341 
342     if (const auto *CI = dyn_cast<CastInst>(V)) {
343       Worklist.push_back(CI->stripPointerCasts());
344       continue;
345     }
346     if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
347       Worklist.push_back(GEP->getPointerOperand());
348       continue;
349     }
350     // Push all the incoming values of phi node into the worklist for
351     // processing.
352     if (const auto *PN = dyn_cast<PHINode>(V)) {
353       append_range(Worklist, PN->incoming_values());
354       continue;
355     }
356     if (const auto *SI = dyn_cast<SelectInst>(V)) {
357       // Push in the true and false values
358       Worklist.push_back(SI->getTrueValue());
359       Worklist.push_back(SI->getFalseValue());
360       continue;
361     }
362     if (isa<Constant>(V)) {
363       // We found at least one base pointer which is non-null, so this derived
364       // pointer is not exclusively derived from null.
365       if (V != Constant::getNullValue(V->getType()))
366         isExclusivelyDerivedFromNull = false;
367       // Continue processing the remaining values to make sure it's exclusively
368       // constant.
369       continue;
370     }
371     // At this point, we know that the base pointer is not exclusively
372     // constant.
373     return BaseType::NonConstant;
374   }
375   // Now, we know that the base pointer is exclusively constant, but we need to
376   // differentiate between exclusive null constant and non-null constant.
377   return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
378                                       : BaseType::ExclusivelySomeConstant;
379 }
380 
381 static bool isNotExclusivelyConstantDerived(const Value *V) {
382   return getBaseType(V) == BaseType::NonConstant;
383 }
384 
385 namespace {
386 class InstructionVerifier;
387 
388 /// Builds BasicBlockState for each BB of the function.
389 /// It can traverse function for verification and provides all required
390 /// information.
391 ///
392 /// GC pointer may be in one of three states: relocated, unrelocated and
393 /// poisoned.
394 /// Relocated pointer may be used without any restrictions.
395 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
396 /// or returned. Unrelocated pointer may be safely compared against another
397 /// unrelocated pointer or against a pointer exclusively derived from null.
398 /// Poisoned pointers are produced when we somehow derive pointer from relocated
399 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
400 /// used in a very limited number of situations. Currently the only way to use
401 /// it is comparison against constant exclusively derived from null. All
402 /// limitations arise due to their undefined state: this pointers should be
403 /// treated as relocated and unrelocated simultaneously.
404 /// Rules of deriving:
405 /// R + U = P - that's where the poisoned pointers come from
406 /// P + X = P
407 /// U + U = U
408 /// R + R = R
409 /// X + C = X
410 /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
411 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
412 /// nothing (in case when "+" is unary operation).
413 /// Deriving of pointers by itself is always safe.
414 /// NOTE: when we are making decision on the status of instruction's result:
415 /// a) for phi we need to check status of each input *at the end of
416 ///    corresponding predecessor BB*.
417 /// b) for other instructions we need to check status of each input *at the
418 ///    current point*.
419 ///
420 /// FIXME: This works fairly well except one case
421 ///     bb1:
422 ///     p = *some GC-ptr def*
423 ///     p1 = gep p, offset
424 ///         /     |
425 ///        /      |
426 ///    bb2:       |
427 ///    safepoint  |
428 ///        \      |
429 ///         \     |
430 ///      bb3:
431 ///      p2 = phi [p, bb2] [p1, bb1]
432 ///      p3 = phi [p, bb2] [p, bb1]
433 ///      here p and p1 is unrelocated
434 ///           p2 and p3 is poisoned (though they shouldn't be)
435 ///
436 /// This leads to some weird results:
437 ///      cmp eq p, p2 - illegal instruction (false-positive)
438 ///      cmp eq p1, p2 - illegal instruction (false-positive)
439 ///      cmp eq p, p3 - illegal instruction (false-positive)
440 ///      cmp eq p, p1 - ok
441 /// To fix this we need to introduce conception of generations and be able to
442 /// check if two values belong to one generation or not. This way p2 will be
443 /// considered to be unrelocated and no false alarm will happen.
444 class GCPtrTracker {
445   const Function &F;
446   const CFGDeadness &CD;
447   SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
448   DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
449   // This set contains defs of unrelocated pointers that are proved to be legal
450   // and don't need verification.
451   DenseSet<const Instruction *> ValidUnrelocatedDefs;
452   // This set contains poisoned defs. They can be safely ignored during
453   // verification too.
454   DenseSet<const Value *> PoisonedDefs;
455 
456 public:
457   GCPtrTracker(const Function &F, const DominatorTree &DT,
458                const CFGDeadness &CD);
459 
460   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
461     return CD.hasLiveIncomingEdge(PN, InBB);
462   }
463 
464   BasicBlockState *getBasicBlockState(const BasicBlock *BB);
465   const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
466 
467   bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
468 
469   /// Traverse each BB of the function and call
470   /// InstructionVerifier::verifyInstruction for each possibly invalid
471   /// instruction.
472   /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
473   /// in order to prohibit further usages of GCPtrTracker as it'll be in
474   /// inconsistent state.
475   static void verifyFunction(GCPtrTracker &&Tracker,
476                              InstructionVerifier &Verifier);
477 
478   /// Returns true for reachable and live blocks.
479   bool isMapped(const BasicBlock *BB) const {
480     return BlockMap.find(BB) != BlockMap.end();
481   }
482 
483 private:
484   /// Returns true if the instruction may be safely skipped during verification.
485   bool instructionMayBeSkipped(const Instruction *I) const;
486 
487   /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
488   /// each of them until it converges.
489   void recalculateBBsStates();
490 
491   /// Remove from Contribution all defs that legally produce unrelocated
492   /// pointers and saves them to ValidUnrelocatedDefs.
493   /// Though Contribution should belong to BBS it is passed separately with
494   /// different const-modifier in order to emphasize (and guarantee) that only
495   /// Contribution will be changed.
496   /// Returns true if Contribution was changed otherwise false.
497   bool removeValidUnrelocatedDefs(const BasicBlock *BB,
498                                   const BasicBlockState *BBS,
499                                   AvailableValueSet &Contribution);
500 
501   /// Gather all the definitions dominating the start of BB into Result. This is
502   /// simply the defs introduced by every dominating basic block and the
503   /// function arguments.
504   void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
505                             const DominatorTree &DT);
506 
507   /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
508   /// which is the BasicBlockState for BB.
509   /// ContributionChanged is set when the verifier runs for the first time
510   /// (in this case Contribution was changed from 'empty' to its initial state)
511   /// or when Contribution of this BB was changed since last computation.
512   static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
513                             bool ContributionChanged);
514 
515   /// Model the effect of an instruction on the set of available values.
516   static void transferInstruction(const Instruction &I, bool &Cleared,
517                                   AvailableValueSet &Available);
518 };
519 
520 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
521 /// instruction (which uses heap reference) is legal or not, given our safepoint
522 /// semantics.
523 class InstructionVerifier {
524   bool AnyInvalidUses = false;
525 
526 public:
527   void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
528                          const AvailableValueSet &AvailableSet);
529 
530   bool hasAnyInvalidUses() const { return AnyInvalidUses; }
531 
532 private:
533   void reportInvalidUse(const Value &V, const Instruction &I);
534 };
535 } // end anonymous namespace
536 
537 GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
538                            const CFGDeadness &CD) : F(F), CD(CD) {
539   // Calculate Contribution of each live BB.
540   // Allocate BB states for live blocks.
541   for (const BasicBlock &BB : F)
542     if (!CD.isDeadBlock(&BB)) {
543       BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
544       for (const auto &I : BB)
545         transferInstruction(I, BBS->Cleared, BBS->Contribution);
546       BlockMap[&BB] = BBS;
547     }
548 
549   // Initialize AvailableIn/Out sets of each BB using only information about
550   // dominating BBs.
551   for (auto &BBI : BlockMap) {
552     gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
553     transferBlock(BBI.first, *BBI.second, true);
554   }
555 
556   // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
557   // sets of each BB until it converges. If any def is proved to be an
558   // unrelocated pointer, it will be removed from all BBSs.
559   recalculateBBsStates();
560 }
561 
562 BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
563   return BlockMap.lookup(BB);
564 }
565 
566 const BasicBlockState *GCPtrTracker::getBasicBlockState(
567     const BasicBlock *BB) const {
568   return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
569 }
570 
571 bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
572   // Poisoned defs are skipped since they are always safe by itself by
573   // definition (for details see comment to this class).
574   return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
575 }
576 
577 void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
578                                   InstructionVerifier &Verifier) {
579   // We need RPO here to a) report always the first error b) report errors in
580   // same order from run to run.
581   ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
582   for (const BasicBlock *BB : RPOT) {
583     BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
584     if (!BBS)
585       continue;
586 
587     // We destructively modify AvailableIn as we traverse the block instruction
588     // by instruction.
589     AvailableValueSet &AvailableSet = BBS->AvailableIn;
590     for (const Instruction &I : *BB) {
591       if (Tracker.instructionMayBeSkipped(&I))
592         continue; // This instruction shouldn't be added to AvailableSet.
593 
594       Verifier.verifyInstruction(&Tracker, I, AvailableSet);
595 
596       // Model the effect of current instruction on AvailableSet to keep the set
597       // relevant at each point of BB.
598       bool Cleared = false;
599       transferInstruction(I, Cleared, AvailableSet);
600       (void)Cleared;
601     }
602   }
603 }
604 
605 void GCPtrTracker::recalculateBBsStates() {
606   SetVector<const BasicBlock *> Worklist;
607   // TODO: This order is suboptimal, it's better to replace it with priority
608   // queue where priority is RPO number of BB.
609   for (auto &BBI : BlockMap)
610     Worklist.insert(BBI.first);
611 
612   // This loop iterates the AvailableIn/Out sets until it converges.
613   // The AvailableIn and AvailableOut sets decrease as we iterate.
614   while (!Worklist.empty()) {
615     const BasicBlock *BB = Worklist.pop_back_val();
616     BasicBlockState *BBS = getBasicBlockState(BB);
617     if (!BBS)
618       continue; // Ignore dead successors.
619 
620     size_t OldInCount = BBS->AvailableIn.size();
621     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
622       const BasicBlock *PBB = *PredIt;
623       BasicBlockState *PBBS = getBasicBlockState(PBB);
624       if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
625         set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
626     }
627 
628     assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
629 
630     bool InputsChanged = OldInCount != BBS->AvailableIn.size();
631     bool ContributionChanged =
632         removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
633     if (!InputsChanged && !ContributionChanged)
634       continue;
635 
636     size_t OldOutCount = BBS->AvailableOut.size();
637     transferBlock(BB, *BBS, ContributionChanged);
638     if (OldOutCount != BBS->AvailableOut.size()) {
639       assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
640       Worklist.insert(succ_begin(BB), succ_end(BB));
641     }
642   }
643 }
644 
645 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
646                                               const BasicBlockState *BBS,
647                                               AvailableValueSet &Contribution) {
648   assert(&BBS->Contribution == &Contribution &&
649          "Passed Contribution should be from the passed BasicBlockState!");
650   AvailableValueSet AvailableSet = BBS->AvailableIn;
651   bool ContributionChanged = false;
652   // For explanation why instructions are processed this way see
653   // "Rules of deriving" in the comment to this class.
654   for (const Instruction &I : *BB) {
655     bool ValidUnrelocatedPointerDef = false;
656     bool PoisonedPointerDef = false;
657     // TODO: `select` instructions should be handled here too.
658     if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
659       if (containsGCPtrType(PN->getType())) {
660         // If both is true, output is poisoned.
661         bool HasRelocatedInputs = false;
662         bool HasUnrelocatedInputs = false;
663         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
664           const BasicBlock *InBB = PN->getIncomingBlock(i);
665           if (!isMapped(InBB) ||
666               !CD.hasLiveIncomingEdge(PN, InBB))
667             continue; // Skip dead block or dead edge.
668 
669           const Value *InValue = PN->getIncomingValue(i);
670 
671           if (isNotExclusivelyConstantDerived(InValue)) {
672             if (isValuePoisoned(InValue)) {
673               // If any of inputs is poisoned, output is always poisoned too.
674               HasRelocatedInputs = true;
675               HasUnrelocatedInputs = true;
676               break;
677             }
678             if (BlockMap[InBB]->AvailableOut.count(InValue))
679               HasRelocatedInputs = true;
680             else
681               HasUnrelocatedInputs = true;
682           }
683         }
684         if (HasUnrelocatedInputs) {
685           if (HasRelocatedInputs)
686             PoisonedPointerDef = true;
687           else
688             ValidUnrelocatedPointerDef = true;
689         }
690       }
691     } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
692                containsGCPtrType(I.getType())) {
693       // GEP/bitcast of unrelocated pointer is legal by itself but this def
694       // shouldn't appear in any AvailableSet.
695       for (const Value *V : I.operands())
696         if (containsGCPtrType(V->getType()) &&
697             isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
698           if (isValuePoisoned(V))
699             PoisonedPointerDef = true;
700           else
701             ValidUnrelocatedPointerDef = true;
702           break;
703         }
704     }
705     assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
706            "Value cannot be both unrelocated and poisoned!");
707     if (ValidUnrelocatedPointerDef) {
708       // Remove def of unrelocated pointer from Contribution of this BB and
709       // trigger update of all its successors.
710       Contribution.erase(&I);
711       PoisonedDefs.erase(&I);
712       ValidUnrelocatedDefs.insert(&I);
713       LLVM_DEBUG(dbgs() << "Removing urelocated " << I
714                         << " from Contribution of " << BB->getName() << "\n");
715       ContributionChanged = true;
716     } else if (PoisonedPointerDef) {
717       // Mark pointer as poisoned, remove its def from Contribution and trigger
718       // update of all successors.
719       Contribution.erase(&I);
720       PoisonedDefs.insert(&I);
721       LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
722                         << BB->getName() << "\n");
723       ContributionChanged = true;
724     } else {
725       bool Cleared = false;
726       transferInstruction(I, Cleared, AvailableSet);
727       (void)Cleared;
728     }
729   }
730   return ContributionChanged;
731 }
732 
733 void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
734                                         AvailableValueSet &Result,
735                                         const DominatorTree &DT) {
736   DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
737 
738   assert(DTN && "Unreachable blocks are ignored");
739   while (DTN->getIDom()) {
740     DTN = DTN->getIDom();
741     auto BBS = getBasicBlockState(DTN->getBlock());
742     assert(BBS && "immediate dominator cannot be dead for a live block");
743     const auto &Defs = BBS->Contribution;
744     Result.insert(Defs.begin(), Defs.end());
745     // If this block is 'Cleared', then nothing LiveIn to this block can be
746     // available after this block completes.  Note: This turns out to be
747     // really important for reducing memory consuption of the initial available
748     // sets and thus peak memory usage by this verifier.
749     if (BBS->Cleared)
750       return;
751   }
752 
753   for (const Argument &A : BB->getParent()->args())
754     if (containsGCPtrType(A.getType()))
755       Result.insert(&A);
756 }
757 
758 void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
759                                  bool ContributionChanged) {
760   const AvailableValueSet &AvailableIn = BBS.AvailableIn;
761   AvailableValueSet &AvailableOut = BBS.AvailableOut;
762 
763   if (BBS.Cleared) {
764     // AvailableOut will change only when Contribution changed.
765     if (ContributionChanged)
766       AvailableOut = BBS.Contribution;
767   } else {
768     // Otherwise, we need to reduce the AvailableOut set by things which are no
769     // longer in our AvailableIn
770     AvailableValueSet Temp = BBS.Contribution;
771     set_union(Temp, AvailableIn);
772     AvailableOut = std::move(Temp);
773   }
774 
775   LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
776              PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
777              dbgs() << " to ";
778              PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
779              dbgs() << "\n";);
780 }
781 
782 void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
783                                        AvailableValueSet &Available) {
784   if (isa<GCStatepointInst>(I)) {
785     Cleared = true;
786     Available.clear();
787   } else if (containsGCPtrType(I.getType()))
788     Available.insert(&I);
789 }
790 
791 void InstructionVerifier::verifyInstruction(
792     const GCPtrTracker *Tracker, const Instruction &I,
793     const AvailableValueSet &AvailableSet) {
794   if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
795     if (containsGCPtrType(PN->getType()))
796       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
797         const BasicBlock *InBB = PN->getIncomingBlock(i);
798         const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
799         if (!InBBS ||
800             !Tracker->hasLiveIncomingEdge(PN, InBB))
801           continue; // Skip dead block or dead edge.
802 
803         const Value *InValue = PN->getIncomingValue(i);
804 
805         if (isNotExclusivelyConstantDerived(InValue) &&
806             !InBBS->AvailableOut.count(InValue))
807           reportInvalidUse(*InValue, *PN);
808       }
809   } else if (isa<CmpInst>(I) &&
810              containsGCPtrType(I.getOperand(0)->getType())) {
811     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
812     enum BaseType baseTyLHS = getBaseType(LHS),
813                   baseTyRHS = getBaseType(RHS);
814 
815     // Returns true if LHS and RHS are unrelocated pointers and they are
816     // valid unrelocated uses.
817     auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
818                                    &LHS, &RHS] () {
819         // A cmp instruction has valid unrelocated pointer operands only if
820         // both operands are unrelocated pointers.
821         // In the comparison between two pointers, if one is an unrelocated
822         // use, the other *should be* an unrelocated use, for this
823         // instruction to contain valid unrelocated uses. This unrelocated
824         // use can be a null constant as well, or another unrelocated
825         // pointer.
826         if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
827           return false;
828         // Constant pointers (that are not exclusively null) may have
829         // meaning in different VMs, so we cannot reorder the compare
830         // against constant pointers before the safepoint. In other words,
831         // comparison of an unrelocated use against a non-null constant
832         // maybe invalid.
833         if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
834              baseTyRHS == BaseType::NonConstant) ||
835             (baseTyLHS == BaseType::NonConstant &&
836              baseTyRHS == BaseType::ExclusivelySomeConstant))
837           return false;
838 
839         // If one of pointers is poisoned and other is not exclusively derived
840         // from null it is an invalid expression: it produces poisoned result
841         // and unless we want to track all defs (not only gc pointers) the only
842         // option is to prohibit such instructions.
843         if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
844             (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
845             return false;
846 
847         // All other cases are valid cases enumerated below:
848         // 1. Comparison between an exclusively derived null pointer and a
849         // constant base pointer.
850         // 2. Comparison between an exclusively derived null pointer and a
851         // non-constant unrelocated base pointer.
852         // 3. Comparison between 2 unrelocated pointers.
853         // 4. Comparison between a pointer exclusively derived from null and a
854         // non-constant poisoned pointer.
855         return true;
856     };
857     if (!hasValidUnrelocatedUse()) {
858       // Print out all non-constant derived pointers that are unrelocated
859       // uses, which are invalid.
860       if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
861         reportInvalidUse(*LHS, I);
862       if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
863         reportInvalidUse(*RHS, I);
864     }
865   } else {
866     for (const Value *V : I.operands())
867       if (containsGCPtrType(V->getType()) &&
868           isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
869         reportInvalidUse(*V, I);
870   }
871 }
872 
873 void InstructionVerifier::reportInvalidUse(const Value &V,
874                                            const Instruction &I) {
875   errs() << "Illegal use of unrelocated value found!\n";
876   errs() << "Def: " << V << "\n";
877   errs() << "Use: " << I << "\n";
878   if (!PrintOnly)
879     abort();
880   AnyInvalidUses = true;
881 }
882 
883 static void Verify(const Function &F, const DominatorTree &DT,
884                    const CFGDeadness &CD) {
885   LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
886                     << "\n");
887   if (PrintOnly)
888     dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
889 
890   GCPtrTracker Tracker(F, DT, CD);
891 
892   // We now have all the information we need to decide if the use of a heap
893   // reference is legal or not, given our safepoint semantics.
894 
895   InstructionVerifier Verifier;
896   GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
897 
898   if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
899     dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
900            << "\n";
901   }
902 }
903