1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/BinaryFormat/Dwarf.h"
62 #include "llvm/IR/Argument.h"
63 #include "llvm/IR/Attributes.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallingConv.h"
67 #include "llvm/IR/Comdat.h"
68 #include "llvm/IR/Constant.h"
69 #include "llvm/IR/ConstantRange.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include "llvm/IR/DebugLoc.h"
74 #include "llvm/IR/DerivedTypes.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/IR/GlobalAlias.h"
78 #include "llvm/IR/GlobalValue.h"
79 #include "llvm/IR/GlobalVariable.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstVisitor.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/IntrinsicsAArch64.h"
88 #include "llvm/IR/IntrinsicsARM.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include <algorithm>
109 #include <cassert>
110 #include <cstdint>
111 #include <memory>
112 #include <string>
113 #include <utility>
114 
115 using namespace llvm;
116 
117 static cl::opt<bool> VerifyNoAliasScopeDomination(
118     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
119     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
120              "scopes are not dominating"));
121 
122 namespace llvm {
123 
124 struct VerifierSupport {
125   raw_ostream *OS;
126   const Module &M;
127   ModuleSlotTracker MST;
128   Triple TT;
129   const DataLayout &DL;
130   LLVMContext &Context;
131 
132   /// Track the brokenness of the module while recursively visiting.
133   bool Broken = false;
134   /// Broken debug info can be "recovered" from by stripping the debug info.
135   bool BrokenDebugInfo = false;
136   /// Whether to treat broken debug info as an error.
137   bool TreatBrokenDebugInfoAsError = true;
138 
139   explicit VerifierSupport(raw_ostream *OS, const Module &M)
140       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
141         Context(M.getContext()) {}
142 
143 private:
144   void Write(const Module *M) {
145     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
146   }
147 
148   void Write(const Value *V) {
149     if (V)
150       Write(*V);
151   }
152 
153   void Write(const Value &V) {
154     if (isa<Instruction>(V)) {
155       V.print(*OS, MST);
156       *OS << '\n';
157     } else {
158       V.printAsOperand(*OS, true, MST);
159       *OS << '\n';
160     }
161   }
162 
163   void Write(const Metadata *MD) {
164     if (!MD)
165       return;
166     MD->print(*OS, MST, &M);
167     *OS << '\n';
168   }
169 
170   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
171     Write(MD.get());
172   }
173 
174   void Write(const NamedMDNode *NMD) {
175     if (!NMD)
176       return;
177     NMD->print(*OS, MST);
178     *OS << '\n';
179   }
180 
181   void Write(Type *T) {
182     if (!T)
183       return;
184     *OS << ' ' << *T;
185   }
186 
187   void Write(const Comdat *C) {
188     if (!C)
189       return;
190     *OS << *C;
191   }
192 
193   void Write(const APInt *AI) {
194     if (!AI)
195       return;
196     *OS << *AI << '\n';
197   }
198 
199   void Write(const unsigned i) { *OS << i << '\n'; }
200 
201   // NOLINTNEXTLINE(readability-identifier-naming)
202   void Write(const Attribute *A) {
203     if (!A)
204       return;
205     *OS << A->getAsString() << '\n';
206   }
207 
208   // NOLINTNEXTLINE(readability-identifier-naming)
209   void Write(const AttributeSet *AS) {
210     if (!AS)
211       return;
212     *OS << AS->getAsString() << '\n';
213   }
214 
215   // NOLINTNEXTLINE(readability-identifier-naming)
216   void Write(const AttributeList *AL) {
217     if (!AL)
218       return;
219     AL->print(*OS);
220   }
221 
222   template <typename T> void Write(ArrayRef<T> Vs) {
223     for (const T &V : Vs)
224       Write(V);
225   }
226 
227   template <typename T1, typename... Ts>
228   void WriteTs(const T1 &V1, const Ts &... Vs) {
229     Write(V1);
230     WriteTs(Vs...);
231   }
232 
233   template <typename... Ts> void WriteTs() {}
234 
235 public:
236   /// A check failed, so printout out the condition and the message.
237   ///
238   /// This provides a nice place to put a breakpoint if you want to see why
239   /// something is not correct.
240   void CheckFailed(const Twine &Message) {
241     if (OS)
242       *OS << Message << '\n';
243     Broken = true;
244   }
245 
246   /// A check failed (with values to print).
247   ///
248   /// This calls the Message-only version so that the above is easier to set a
249   /// breakpoint on.
250   template <typename T1, typename... Ts>
251   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
252     CheckFailed(Message);
253     if (OS)
254       WriteTs(V1, Vs...);
255   }
256 
257   /// A debug info check failed.
258   void DebugInfoCheckFailed(const Twine &Message) {
259     if (OS)
260       *OS << Message << '\n';
261     Broken |= TreatBrokenDebugInfoAsError;
262     BrokenDebugInfo = true;
263   }
264 
265   /// A debug info check failed (with values to print).
266   template <typename T1, typename... Ts>
267   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
268                             const Ts &... Vs) {
269     DebugInfoCheckFailed(Message);
270     if (OS)
271       WriteTs(V1, Vs...);
272   }
273 };
274 
275 } // namespace llvm
276 
277 namespace {
278 
279 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
280   friend class InstVisitor<Verifier>;
281 
282   // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
283   // the alignment size should not exceed 2^15. Since encode(Align)
284   // would plus the shift value by 1, the alignment size should
285   // not exceed 2^14, otherwise it can NOT be properly lowered
286   // in backend.
287   static constexpr unsigned ParamMaxAlignment = 1 << 14;
288   DominatorTree DT;
289 
290   /// When verifying a basic block, keep track of all of the
291   /// instructions we have seen so far.
292   ///
293   /// This allows us to do efficient dominance checks for the case when an
294   /// instruction has an operand that is an instruction in the same block.
295   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
296 
297   /// Keep track of the metadata nodes that have been checked already.
298   SmallPtrSet<const Metadata *, 32> MDNodes;
299 
300   /// Keep track which DISubprogram is attached to which function.
301   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
302 
303   /// Track all DICompileUnits visited.
304   SmallPtrSet<const Metadata *, 2> CUVisited;
305 
306   /// The result type for a landingpad.
307   Type *LandingPadResultTy;
308 
309   /// Whether we've seen a call to @llvm.localescape in this function
310   /// already.
311   bool SawFrameEscape;
312 
313   /// Whether the current function has a DISubprogram attached to it.
314   bool HasDebugInfo = false;
315 
316   /// The current source language.
317   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
318 
319   /// Whether source was present on the first DIFile encountered in each CU.
320   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
321 
322   /// Stores the count of how many objects were passed to llvm.localescape for a
323   /// given function and the largest index passed to llvm.localrecover.
324   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
325 
326   // Maps catchswitches and cleanuppads that unwind to siblings to the
327   // terminators that indicate the unwind, used to detect cycles therein.
328   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
329 
330   /// Cache of constants visited in search of ConstantExprs.
331   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
332 
333   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
334   SmallVector<const Function *, 4> DeoptimizeDeclarations;
335 
336   /// Cache of attribute lists verified.
337   SmallPtrSet<const void *, 32> AttributeListsVisited;
338 
339   // Verify that this GlobalValue is only used in this module.
340   // This map is used to avoid visiting uses twice. We can arrive at a user
341   // twice, if they have multiple operands. In particular for very large
342   // constant expressions, we can arrive at a particular user many times.
343   SmallPtrSet<const Value *, 32> GlobalValueVisited;
344 
345   // Keeps track of duplicate function argument debug info.
346   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
347 
348   TBAAVerifier TBAAVerifyHelper;
349 
350   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
351 
352   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
353 
354 public:
355   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
356                     const Module &M)
357       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
358         SawFrameEscape(false), TBAAVerifyHelper(this) {
359     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
360   }
361 
362   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
363 
364   bool verify(const Function &F) {
365     assert(F.getParent() == &M &&
366            "An instance of this class only works with a specific module!");
367 
368     // First ensure the function is well-enough formed to compute dominance
369     // information, and directly compute a dominance tree. We don't rely on the
370     // pass manager to provide this as it isolates us from a potentially
371     // out-of-date dominator tree and makes it significantly more complex to run
372     // this code outside of a pass manager.
373     // FIXME: It's really gross that we have to cast away constness here.
374     if (!F.empty())
375       DT.recalculate(const_cast<Function &>(F));
376 
377     for (const BasicBlock &BB : F) {
378       if (!BB.empty() && BB.back().isTerminator())
379         continue;
380 
381       if (OS) {
382         *OS << "Basic Block in function '" << F.getName()
383             << "' does not have terminator!\n";
384         BB.printAsOperand(*OS, true, MST);
385         *OS << "\n";
386       }
387       return false;
388     }
389 
390     Broken = false;
391     // FIXME: We strip const here because the inst visitor strips const.
392     visit(const_cast<Function &>(F));
393     verifySiblingFuncletUnwinds();
394     InstsInThisBlock.clear();
395     DebugFnArgs.clear();
396     LandingPadResultTy = nullptr;
397     SawFrameEscape = false;
398     SiblingFuncletInfo.clear();
399     verifyNoAliasScopeDecl();
400     NoAliasScopeDecls.clear();
401 
402     return !Broken;
403   }
404 
405   /// Verify the module that this instance of \c Verifier was initialized with.
406   bool verify() {
407     Broken = false;
408 
409     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
410     for (const Function &F : M)
411       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
412         DeoptimizeDeclarations.push_back(&F);
413 
414     // Now that we've visited every function, verify that we never asked to
415     // recover a frame index that wasn't escaped.
416     verifyFrameRecoverIndices();
417     for (const GlobalVariable &GV : M.globals())
418       visitGlobalVariable(GV);
419 
420     for (const GlobalAlias &GA : M.aliases())
421       visitGlobalAlias(GA);
422 
423     for (const GlobalIFunc &GI : M.ifuncs())
424       visitGlobalIFunc(GI);
425 
426     for (const NamedMDNode &NMD : M.named_metadata())
427       visitNamedMDNode(NMD);
428 
429     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
430       visitComdat(SMEC.getValue());
431 
432     visitModuleFlags();
433     visitModuleIdents();
434     visitModuleCommandLines();
435 
436     verifyCompileUnits();
437 
438     verifyDeoptimizeCallingConvs();
439     DISubprogramAttachments.clear();
440     return !Broken;
441   }
442 
443 private:
444   /// Whether a metadata node is allowed to be, or contain, a DILocation.
445   enum class AreDebugLocsAllowed { No, Yes };
446 
447   // Verification methods...
448   void visitGlobalValue(const GlobalValue &GV);
449   void visitGlobalVariable(const GlobalVariable &GV);
450   void visitGlobalAlias(const GlobalAlias &GA);
451   void visitGlobalIFunc(const GlobalIFunc &GI);
452   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
453   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
454                            const GlobalAlias &A, const Constant &C);
455   void visitNamedMDNode(const NamedMDNode &NMD);
456   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
457   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
458   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
459   void visitComdat(const Comdat &C);
460   void visitModuleIdents();
461   void visitModuleCommandLines();
462   void visitModuleFlags();
463   void visitModuleFlag(const MDNode *Op,
464                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
465                        SmallVectorImpl<const MDNode *> &Requirements);
466   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
467   void visitFunction(const Function &F);
468   void visitBasicBlock(BasicBlock &BB);
469   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
470   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
471   void visitProfMetadata(Instruction &I, MDNode *MD);
472   void visitCallStackMetadata(MDNode *MD);
473   void visitMemProfMetadata(Instruction &I, MDNode *MD);
474   void visitCallsiteMetadata(Instruction &I, MDNode *MD);
475   void visitAnnotationMetadata(MDNode *Annotation);
476   void visitAliasScopeMetadata(const MDNode *MD);
477   void visitAliasScopeListMetadata(const MDNode *MD);
478   void visitAccessGroupMetadata(const MDNode *MD);
479 
480   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
481 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
482 #include "llvm/IR/Metadata.def"
483   void visitDIScope(const DIScope &N);
484   void visitDIVariable(const DIVariable &N);
485   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
486   void visitDITemplateParameter(const DITemplateParameter &N);
487 
488   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
489 
490   // InstVisitor overrides...
491   using InstVisitor<Verifier>::visit;
492   void visit(Instruction &I);
493 
494   void visitTruncInst(TruncInst &I);
495   void visitZExtInst(ZExtInst &I);
496   void visitSExtInst(SExtInst &I);
497   void visitFPTruncInst(FPTruncInst &I);
498   void visitFPExtInst(FPExtInst &I);
499   void visitFPToUIInst(FPToUIInst &I);
500   void visitFPToSIInst(FPToSIInst &I);
501   void visitUIToFPInst(UIToFPInst &I);
502   void visitSIToFPInst(SIToFPInst &I);
503   void visitIntToPtrInst(IntToPtrInst &I);
504   void visitPtrToIntInst(PtrToIntInst &I);
505   void visitBitCastInst(BitCastInst &I);
506   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
507   void visitPHINode(PHINode &PN);
508   void visitCallBase(CallBase &Call);
509   void visitUnaryOperator(UnaryOperator &U);
510   void visitBinaryOperator(BinaryOperator &B);
511   void visitICmpInst(ICmpInst &IC);
512   void visitFCmpInst(FCmpInst &FC);
513   void visitExtractElementInst(ExtractElementInst &EI);
514   void visitInsertElementInst(InsertElementInst &EI);
515   void visitShuffleVectorInst(ShuffleVectorInst &EI);
516   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
517   void visitCallInst(CallInst &CI);
518   void visitInvokeInst(InvokeInst &II);
519   void visitGetElementPtrInst(GetElementPtrInst &GEP);
520   void visitLoadInst(LoadInst &LI);
521   void visitStoreInst(StoreInst &SI);
522   void verifyDominatesUse(Instruction &I, unsigned i);
523   void visitInstruction(Instruction &I);
524   void visitTerminator(Instruction &I);
525   void visitBranchInst(BranchInst &BI);
526   void visitReturnInst(ReturnInst &RI);
527   void visitSwitchInst(SwitchInst &SI);
528   void visitIndirectBrInst(IndirectBrInst &BI);
529   void visitCallBrInst(CallBrInst &CBI);
530   void visitSelectInst(SelectInst &SI);
531   void visitUserOp1(Instruction &I);
532   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
533   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
534   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
535   void visitVPIntrinsic(VPIntrinsic &VPI);
536   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
537   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
538   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
539   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
540   void visitFenceInst(FenceInst &FI);
541   void visitAllocaInst(AllocaInst &AI);
542   void visitExtractValueInst(ExtractValueInst &EVI);
543   void visitInsertValueInst(InsertValueInst &IVI);
544   void visitEHPadPredecessors(Instruction &I);
545   void visitLandingPadInst(LandingPadInst &LPI);
546   void visitResumeInst(ResumeInst &RI);
547   void visitCatchPadInst(CatchPadInst &CPI);
548   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
549   void visitCleanupPadInst(CleanupPadInst &CPI);
550   void visitFuncletPadInst(FuncletPadInst &FPI);
551   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
552   void visitCleanupReturnInst(CleanupReturnInst &CRI);
553 
554   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
555   void verifySwiftErrorValue(const Value *SwiftErrorVal);
556   void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
557   void verifyMustTailCall(CallInst &CI);
558   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
559   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
560   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
561   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
562                                     const Value *V);
563   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
564                            const Value *V, bool IsIntrinsic, bool IsInlineAsm);
565   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
566 
567   void visitConstantExprsRecursively(const Constant *EntryC);
568   void visitConstantExpr(const ConstantExpr *CE);
569   void verifyInlineAsmCall(const CallBase &Call);
570   void verifyStatepoint(const CallBase &Call);
571   void verifyFrameRecoverIndices();
572   void verifySiblingFuncletUnwinds();
573 
574   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
575   template <typename ValueOrMetadata>
576   void verifyFragmentExpression(const DIVariable &V,
577                                 DIExpression::FragmentInfo Fragment,
578                                 ValueOrMetadata *Desc);
579   void verifyFnArgs(const DbgVariableIntrinsic &I);
580   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
581 
582   /// Module-level debug info verification...
583   void verifyCompileUnits();
584 
585   /// Module-level verification that all @llvm.experimental.deoptimize
586   /// declarations share the same calling convention.
587   void verifyDeoptimizeCallingConvs();
588 
589   void verifyAttachedCallBundle(const CallBase &Call,
590                                 const OperandBundleUse &BU);
591 
592   /// Verify all-or-nothing property of DIFile source attribute within a CU.
593   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
594 
595   /// Verify the llvm.experimental.noalias.scope.decl declarations
596   void verifyNoAliasScopeDecl();
597 };
598 
599 } // end anonymous namespace
600 
601 /// We know that cond should be true, if not print an error message.
602 #define Check(C, ...)                                                          \
603   do {                                                                         \
604     if (!(C)) {                                                                \
605       CheckFailed(__VA_ARGS__);                                                \
606       return;                                                                  \
607     }                                                                          \
608   } while (false)
609 
610 /// We know that a debug info condition should be true, if not print
611 /// an error message.
612 #define CheckDI(C, ...)                                                        \
613   do {                                                                         \
614     if (!(C)) {                                                                \
615       DebugInfoCheckFailed(__VA_ARGS__);                                       \
616       return;                                                                  \
617     }                                                                          \
618   } while (false)
619 
620 void Verifier::visit(Instruction &I) {
621   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
622     Check(I.getOperand(i) != nullptr, "Operand is null", &I);
623   InstVisitor<Verifier>::visit(I);
624 }
625 
626 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
627 static void forEachUser(const Value *User,
628                         SmallPtrSet<const Value *, 32> &Visited,
629                         llvm::function_ref<bool(const Value *)> Callback) {
630   if (!Visited.insert(User).second)
631     return;
632 
633   SmallVector<const Value *> WorkList;
634   append_range(WorkList, User->materialized_users());
635   while (!WorkList.empty()) {
636    const Value *Cur = WorkList.pop_back_val();
637     if (!Visited.insert(Cur).second)
638       continue;
639     if (Callback(Cur))
640       append_range(WorkList, Cur->materialized_users());
641   }
642 }
643 
644 void Verifier::visitGlobalValue(const GlobalValue &GV) {
645   Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
646         "Global is external, but doesn't have external or weak linkage!", &GV);
647 
648   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
649 
650     if (MaybeAlign A = GO->getAlign()) {
651       Check(A->value() <= Value::MaximumAlignment,
652             "huge alignment values are unsupported", GO);
653     }
654   }
655   Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
656         "Only global variables can have appending linkage!", &GV);
657 
658   if (GV.hasAppendingLinkage()) {
659     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
660     Check(GVar && GVar->getValueType()->isArrayTy(),
661           "Only global arrays can have appending linkage!", GVar);
662   }
663 
664   if (GV.isDeclarationForLinker())
665     Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
666 
667   if (GV.hasDLLImportStorageClass()) {
668     Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
669           &GV);
670 
671     Check((GV.isDeclaration() &&
672            (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
673               GV.hasAvailableExternallyLinkage(),
674           "Global is marked as dllimport, but not external", &GV);
675   }
676 
677   if (GV.isImplicitDSOLocal())
678     Check(GV.isDSOLocal(),
679           "GlobalValue with local linkage or non-default "
680           "visibility must be dso_local!",
681           &GV);
682 
683   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
684     if (const Instruction *I = dyn_cast<Instruction>(V)) {
685       if (!I->getParent() || !I->getParent()->getParent())
686         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
687                     I);
688       else if (I->getParent()->getParent()->getParent() != &M)
689         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
690                     I->getParent()->getParent(),
691                     I->getParent()->getParent()->getParent());
692       return false;
693     } else if (const Function *F = dyn_cast<Function>(V)) {
694       if (F->getParent() != &M)
695         CheckFailed("Global is used by function in a different module", &GV, &M,
696                     F, F->getParent());
697       return false;
698     }
699     return true;
700   });
701 }
702 
703 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
704   if (GV.hasInitializer()) {
705     Check(GV.getInitializer()->getType() == GV.getValueType(),
706           "Global variable initializer type does not match global "
707           "variable type!",
708           &GV);
709     // If the global has common linkage, it must have a zero initializer and
710     // cannot be constant.
711     if (GV.hasCommonLinkage()) {
712       Check(GV.getInitializer()->isNullValue(),
713             "'common' global must have a zero initializer!", &GV);
714       Check(!GV.isConstant(), "'common' global may not be marked constant!",
715             &GV);
716       Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
717     }
718   }
719 
720   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
721                        GV.getName() == "llvm.global_dtors")) {
722     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
723           "invalid linkage for intrinsic global variable", &GV);
724     // Don't worry about emitting an error for it not being an array,
725     // visitGlobalValue will complain on appending non-array.
726     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
727       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
728       PointerType *FuncPtrTy =
729           FunctionType::get(Type::getVoidTy(Context), false)->
730           getPointerTo(DL.getProgramAddressSpace());
731       Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
732                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
733                 STy->getTypeAtIndex(1) == FuncPtrTy,
734             "wrong type for intrinsic global variable", &GV);
735       Check(STy->getNumElements() == 3,
736             "the third field of the element type is mandatory, "
737             "specify i8* null to migrate from the obsoleted 2-field form");
738       Type *ETy = STy->getTypeAtIndex(2);
739       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
740       Check(ETy->isPointerTy() &&
741                 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
742             "wrong type for intrinsic global variable", &GV);
743     }
744   }
745 
746   if (GV.hasName() && (GV.getName() == "llvm.used" ||
747                        GV.getName() == "llvm.compiler.used")) {
748     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
749           "invalid linkage for intrinsic global variable", &GV);
750     Type *GVType = GV.getValueType();
751     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
752       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
753       Check(PTy, "wrong type for intrinsic global variable", &GV);
754       if (GV.hasInitializer()) {
755         const Constant *Init = GV.getInitializer();
756         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
757         Check(InitArray, "wrong initalizer for intrinsic global variable",
758               Init);
759         for (Value *Op : InitArray->operands()) {
760           Value *V = Op->stripPointerCasts();
761           Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
762                     isa<GlobalAlias>(V),
763                 Twine("invalid ") + GV.getName() + " member", V);
764           Check(V->hasName(),
765                 Twine("members of ") + GV.getName() + " must be named", V);
766         }
767       }
768     }
769   }
770 
771   // Visit any debug info attachments.
772   SmallVector<MDNode *, 1> MDs;
773   GV.getMetadata(LLVMContext::MD_dbg, MDs);
774   for (auto *MD : MDs) {
775     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
776       visitDIGlobalVariableExpression(*GVE);
777     else
778       CheckDI(false, "!dbg attachment of global variable must be a "
779                      "DIGlobalVariableExpression");
780   }
781 
782   // Scalable vectors cannot be global variables, since we don't know
783   // the runtime size. If the global is an array containing scalable vectors,
784   // that will be caught by the isValidElementType methods in StructType or
785   // ArrayType instead.
786   Check(!isa<ScalableVectorType>(GV.getValueType()),
787         "Globals cannot contain scalable vectors", &GV);
788 
789   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
790     Check(!STy->containsScalableVectorType(),
791           "Globals cannot contain scalable vectors", &GV);
792 
793   if (!GV.hasInitializer()) {
794     visitGlobalValue(GV);
795     return;
796   }
797 
798   // Walk any aggregate initializers looking for bitcasts between address spaces
799   visitConstantExprsRecursively(GV.getInitializer());
800 
801   visitGlobalValue(GV);
802 }
803 
804 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
805   SmallPtrSet<const GlobalAlias*, 4> Visited;
806   Visited.insert(&GA);
807   visitAliaseeSubExpr(Visited, GA, C);
808 }
809 
810 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
811                                    const GlobalAlias &GA, const Constant &C) {
812   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
813     Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
814           &GA);
815 
816     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
817       Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
818 
819       Check(!GA2->isInterposable(),
820             "Alias cannot point to an interposable alias", &GA);
821     } else {
822       // Only continue verifying subexpressions of GlobalAliases.
823       // Do not recurse into global initializers.
824       return;
825     }
826   }
827 
828   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
829     visitConstantExprsRecursively(CE);
830 
831   for (const Use &U : C.operands()) {
832     Value *V = &*U;
833     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
834       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
835     else if (const auto *C2 = dyn_cast<Constant>(V))
836       visitAliaseeSubExpr(Visited, GA, *C2);
837   }
838 }
839 
840 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
841   Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
842         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
843         "weak_odr, or external linkage!",
844         &GA);
845   const Constant *Aliasee = GA.getAliasee();
846   Check(Aliasee, "Aliasee cannot be NULL!", &GA);
847   Check(GA.getType() == Aliasee->getType(),
848         "Alias and aliasee types should match!", &GA);
849 
850   Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
851         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
852 
853   visitAliaseeSubExpr(GA, *Aliasee);
854 
855   visitGlobalValue(GA);
856 }
857 
858 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
859   Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
860         "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
861         "weak_odr, or external linkage!",
862         &GI);
863   // Pierce through ConstantExprs and GlobalAliases and check that the resolver
864   // is a Function definition.
865   const Function *Resolver = GI.getResolverFunction();
866   Check(Resolver, "IFunc must have a Function resolver", &GI);
867   Check(!Resolver->isDeclarationForLinker(),
868         "IFunc resolver must be a definition", &GI);
869 
870   // Check that the immediate resolver operand (prior to any bitcasts) has the
871   // correct type.
872   const Type *ResolverTy = GI.getResolver()->getType();
873   const Type *ResolverFuncTy =
874       GlobalIFunc::getResolverFunctionType(GI.getValueType());
875   Check(ResolverTy == ResolverFuncTy->getPointerTo(),
876         "IFunc resolver has incorrect type", &GI);
877 }
878 
879 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
880   // There used to be various other llvm.dbg.* nodes, but we don't support
881   // upgrading them and we want to reserve the namespace for future uses.
882   if (NMD.getName().startswith("llvm.dbg."))
883     CheckDI(NMD.getName() == "llvm.dbg.cu",
884             "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
885   for (const MDNode *MD : NMD.operands()) {
886     if (NMD.getName() == "llvm.dbg.cu")
887       CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
888 
889     if (!MD)
890       continue;
891 
892     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
893   }
894 }
895 
896 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
897   // Only visit each node once.  Metadata can be mutually recursive, so this
898   // avoids infinite recursion here, as well as being an optimization.
899   if (!MDNodes.insert(&MD).second)
900     return;
901 
902   Check(&MD.getContext() == &Context,
903         "MDNode context does not match Module context!", &MD);
904 
905   switch (MD.getMetadataID()) {
906   default:
907     llvm_unreachable("Invalid MDNode subclass");
908   case Metadata::MDTupleKind:
909     break;
910 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
911   case Metadata::CLASS##Kind:                                                  \
912     visit##CLASS(cast<CLASS>(MD));                                             \
913     break;
914 #include "llvm/IR/Metadata.def"
915   }
916 
917   for (const Metadata *Op : MD.operands()) {
918     if (!Op)
919       continue;
920     Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
921           &MD, Op);
922     CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
923             "DILocation not allowed within this metadata node", &MD, Op);
924     if (auto *N = dyn_cast<MDNode>(Op)) {
925       visitMDNode(*N, AllowLocs);
926       continue;
927     }
928     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
929       visitValueAsMetadata(*V, nullptr);
930       continue;
931     }
932   }
933 
934   // Check these last, so we diagnose problems in operands first.
935   Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
936   Check(MD.isResolved(), "All nodes should be resolved!", &MD);
937 }
938 
939 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
940   Check(MD.getValue(), "Expected valid value", &MD);
941   Check(!MD.getValue()->getType()->isMetadataTy(),
942         "Unexpected metadata round-trip through values", &MD, MD.getValue());
943 
944   auto *L = dyn_cast<LocalAsMetadata>(&MD);
945   if (!L)
946     return;
947 
948   Check(F, "function-local metadata used outside a function", L);
949 
950   // If this was an instruction, bb, or argument, verify that it is in the
951   // function that we expect.
952   Function *ActualF = nullptr;
953   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
954     Check(I->getParent(), "function-local metadata not in basic block", L, I);
955     ActualF = I->getParent()->getParent();
956   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
957     ActualF = BB->getParent();
958   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
959     ActualF = A->getParent();
960   assert(ActualF && "Unimplemented function local metadata case!");
961 
962   Check(ActualF == F, "function-local metadata used in wrong function", L);
963 }
964 
965 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
966   Metadata *MD = MDV.getMetadata();
967   if (auto *N = dyn_cast<MDNode>(MD)) {
968     visitMDNode(*N, AreDebugLocsAllowed::No);
969     return;
970   }
971 
972   // Only visit each node once.  Metadata can be mutually recursive, so this
973   // avoids infinite recursion here, as well as being an optimization.
974   if (!MDNodes.insert(MD).second)
975     return;
976 
977   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
978     visitValueAsMetadata(*V, F);
979 }
980 
981 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
982 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
983 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
984 
985 void Verifier::visitDILocation(const DILocation &N) {
986   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
987           "location requires a valid scope", &N, N.getRawScope());
988   if (auto *IA = N.getRawInlinedAt())
989     CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
990   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
991     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
992 }
993 
994 void Verifier::visitGenericDINode(const GenericDINode &N) {
995   CheckDI(N.getTag(), "invalid tag", &N);
996 }
997 
998 void Verifier::visitDIScope(const DIScope &N) {
999   if (auto *F = N.getRawFile())
1000     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1001 }
1002 
1003 void Verifier::visitDISubrange(const DISubrange &N) {
1004   CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1005   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
1006   CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1007               N.getRawUpperBound(),
1008           "Subrange must contain count or upperBound", &N);
1009   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1010           "Subrange can have any one of count or upperBound", &N);
1011   auto *CBound = N.getRawCountNode();
1012   CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1013               isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1014           "Count must be signed constant or DIVariable or DIExpression", &N);
1015   auto Count = N.getCount();
1016   CheckDI(!Count || !Count.is<ConstantInt *>() ||
1017               Count.get<ConstantInt *>()->getSExtValue() >= -1,
1018           "invalid subrange count", &N);
1019   auto *LBound = N.getRawLowerBound();
1020   CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1021               isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1022           "LowerBound must be signed constant or DIVariable or DIExpression",
1023           &N);
1024   auto *UBound = N.getRawUpperBound();
1025   CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1026               isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1027           "UpperBound must be signed constant or DIVariable or DIExpression",
1028           &N);
1029   auto *Stride = N.getRawStride();
1030   CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1031               isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1032           "Stride must be signed constant or DIVariable or DIExpression", &N);
1033 }
1034 
1035 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1036   CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1037   CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1038           "GenericSubrange must contain count or upperBound", &N);
1039   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1040           "GenericSubrange can have any one of count or upperBound", &N);
1041   auto *CBound = N.getRawCountNode();
1042   CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1043           "Count must be signed constant or DIVariable or DIExpression", &N);
1044   auto *LBound = N.getRawLowerBound();
1045   CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1046   CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1047           "LowerBound must be signed constant or DIVariable or DIExpression",
1048           &N);
1049   auto *UBound = N.getRawUpperBound();
1050   CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1051           "UpperBound must be signed constant or DIVariable or DIExpression",
1052           &N);
1053   auto *Stride = N.getRawStride();
1054   CheckDI(Stride, "GenericSubrange must contain stride", &N);
1055   CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1056           "Stride must be signed constant or DIVariable or DIExpression", &N);
1057 }
1058 
1059 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1060   CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1061 }
1062 
1063 void Verifier::visitDIBasicType(const DIBasicType &N) {
1064   CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1065               N.getTag() == dwarf::DW_TAG_unspecified_type ||
1066               N.getTag() == dwarf::DW_TAG_string_type,
1067           "invalid tag", &N);
1068 }
1069 
1070 void Verifier::visitDIStringType(const DIStringType &N) {
1071   CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1072   CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1073           &N);
1074 }
1075 
1076 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1077   // Common scope checks.
1078   visitDIScope(N);
1079 
1080   CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1081               N.getTag() == dwarf::DW_TAG_pointer_type ||
1082               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1083               N.getTag() == dwarf::DW_TAG_reference_type ||
1084               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1085               N.getTag() == dwarf::DW_TAG_const_type ||
1086               N.getTag() == dwarf::DW_TAG_immutable_type ||
1087               N.getTag() == dwarf::DW_TAG_volatile_type ||
1088               N.getTag() == dwarf::DW_TAG_restrict_type ||
1089               N.getTag() == dwarf::DW_TAG_atomic_type ||
1090               N.getTag() == dwarf::DW_TAG_member ||
1091               N.getTag() == dwarf::DW_TAG_inheritance ||
1092               N.getTag() == dwarf::DW_TAG_friend ||
1093               N.getTag() == dwarf::DW_TAG_set_type,
1094           "invalid tag", &N);
1095   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1096     CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1097             N.getRawExtraData());
1098   }
1099 
1100   if (N.getTag() == dwarf::DW_TAG_set_type) {
1101     if (auto *T = N.getRawBaseType()) {
1102       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1103       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1104       CheckDI(
1105           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1106               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1107                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1108                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1109                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1110                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1111           "invalid set base type", &N, T);
1112     }
1113   }
1114 
1115   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1116   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1117           N.getRawBaseType());
1118 
1119   if (N.getDWARFAddressSpace()) {
1120     CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1121                 N.getTag() == dwarf::DW_TAG_reference_type ||
1122                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1123             "DWARF address space only applies to pointer or reference types",
1124             &N);
1125   }
1126 }
1127 
1128 /// Detect mutually exclusive flags.
1129 static bool hasConflictingReferenceFlags(unsigned Flags) {
1130   return ((Flags & DINode::FlagLValueReference) &&
1131           (Flags & DINode::FlagRValueReference)) ||
1132          ((Flags & DINode::FlagTypePassByValue) &&
1133           (Flags & DINode::FlagTypePassByReference));
1134 }
1135 
1136 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1137   auto *Params = dyn_cast<MDTuple>(&RawParams);
1138   CheckDI(Params, "invalid template params", &N, &RawParams);
1139   for (Metadata *Op : Params->operands()) {
1140     CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1141             &N, Params, Op);
1142   }
1143 }
1144 
1145 void Verifier::visitDICompositeType(const DICompositeType &N) {
1146   // Common scope checks.
1147   visitDIScope(N);
1148 
1149   CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1150               N.getTag() == dwarf::DW_TAG_structure_type ||
1151               N.getTag() == dwarf::DW_TAG_union_type ||
1152               N.getTag() == dwarf::DW_TAG_enumeration_type ||
1153               N.getTag() == dwarf::DW_TAG_class_type ||
1154               N.getTag() == dwarf::DW_TAG_variant_part ||
1155               N.getTag() == dwarf::DW_TAG_namelist,
1156           "invalid tag", &N);
1157 
1158   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1159   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1160           N.getRawBaseType());
1161 
1162   CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1163           "invalid composite elements", &N, N.getRawElements());
1164   CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1165           N.getRawVTableHolder());
1166   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1167           "invalid reference flags", &N);
1168   unsigned DIBlockByRefStruct = 1 << 4;
1169   CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1170           "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1171 
1172   if (N.isVector()) {
1173     const DINodeArray Elements = N.getElements();
1174     CheckDI(Elements.size() == 1 &&
1175                 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1176             "invalid vector, expected one element of type subrange", &N);
1177   }
1178 
1179   if (auto *Params = N.getRawTemplateParams())
1180     visitTemplateParams(N, *Params);
1181 
1182   if (auto *D = N.getRawDiscriminator()) {
1183     CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1184             "discriminator can only appear on variant part");
1185   }
1186 
1187   if (N.getRawDataLocation()) {
1188     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1189             "dataLocation can only appear in array type");
1190   }
1191 
1192   if (N.getRawAssociated()) {
1193     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1194             "associated can only appear in array type");
1195   }
1196 
1197   if (N.getRawAllocated()) {
1198     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1199             "allocated can only appear in array type");
1200   }
1201 
1202   if (N.getRawRank()) {
1203     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1204             "rank can only appear in array type");
1205   }
1206 }
1207 
1208 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1209   CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1210   if (auto *Types = N.getRawTypeArray()) {
1211     CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1212     for (Metadata *Ty : N.getTypeArray()->operands()) {
1213       CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1214     }
1215   }
1216   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1217           "invalid reference flags", &N);
1218 }
1219 
1220 void Verifier::visitDIFile(const DIFile &N) {
1221   CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1222   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1223   if (Checksum) {
1224     CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1225             "invalid checksum kind", &N);
1226     size_t Size;
1227     switch (Checksum->Kind) {
1228     case DIFile::CSK_MD5:
1229       Size = 32;
1230       break;
1231     case DIFile::CSK_SHA1:
1232       Size = 40;
1233       break;
1234     case DIFile::CSK_SHA256:
1235       Size = 64;
1236       break;
1237     }
1238     CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1239     CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1240             "invalid checksum", &N);
1241   }
1242 }
1243 
1244 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1245   CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1246   CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1247 
1248   // Don't bother verifying the compilation directory or producer string
1249   // as those could be empty.
1250   CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1251           N.getRawFile());
1252   CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1253           N.getFile());
1254 
1255   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1256 
1257   verifySourceDebugInfo(N, *N.getFile());
1258 
1259   CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1260           "invalid emission kind", &N);
1261 
1262   if (auto *Array = N.getRawEnumTypes()) {
1263     CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1264     for (Metadata *Op : N.getEnumTypes()->operands()) {
1265       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1266       CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1267               "invalid enum type", &N, N.getEnumTypes(), Op);
1268     }
1269   }
1270   if (auto *Array = N.getRawRetainedTypes()) {
1271     CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1272     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1273       CheckDI(
1274           Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1275                                      !cast<DISubprogram>(Op)->isDefinition())),
1276           "invalid retained type", &N, Op);
1277     }
1278   }
1279   if (auto *Array = N.getRawGlobalVariables()) {
1280     CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1281     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1282       CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1283               "invalid global variable ref", &N, Op);
1284     }
1285   }
1286   if (auto *Array = N.getRawImportedEntities()) {
1287     CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1288     for (Metadata *Op : N.getImportedEntities()->operands()) {
1289       CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1290               &N, Op);
1291     }
1292   }
1293   if (auto *Array = N.getRawMacros()) {
1294     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1295     for (Metadata *Op : N.getMacros()->operands()) {
1296       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1297     }
1298   }
1299   CUVisited.insert(&N);
1300 }
1301 
1302 void Verifier::visitDISubprogram(const DISubprogram &N) {
1303   CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1304   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1305   if (auto *F = N.getRawFile())
1306     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1307   else
1308     CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1309   if (auto *T = N.getRawType())
1310     CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1311   CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1312           N.getRawContainingType());
1313   if (auto *Params = N.getRawTemplateParams())
1314     visitTemplateParams(N, *Params);
1315   if (auto *S = N.getRawDeclaration())
1316     CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1317             "invalid subprogram declaration", &N, S);
1318   if (auto *RawNode = N.getRawRetainedNodes()) {
1319     auto *Node = dyn_cast<MDTuple>(RawNode);
1320     CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1321     for (Metadata *Op : Node->operands()) {
1322       CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1323               "invalid retained nodes, expected DILocalVariable or DILabel", &N,
1324               Node, Op);
1325     }
1326   }
1327   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1328           "invalid reference flags", &N);
1329 
1330   auto *Unit = N.getRawUnit();
1331   if (N.isDefinition()) {
1332     // Subprogram definitions (not part of the type hierarchy).
1333     CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1334     CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1335     CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1336     if (N.getFile())
1337       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1338   } else {
1339     // Subprogram declarations (part of the type hierarchy).
1340     CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1341   }
1342 
1343   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1344     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1345     CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1346     for (Metadata *Op : ThrownTypes->operands())
1347       CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1348               Op);
1349   }
1350 
1351   if (N.areAllCallsDescribed())
1352     CheckDI(N.isDefinition(),
1353             "DIFlagAllCallsDescribed must be attached to a definition");
1354 }
1355 
1356 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1357   CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1358   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1359           "invalid local scope", &N, N.getRawScope());
1360   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1361     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1362 }
1363 
1364 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1365   visitDILexicalBlockBase(N);
1366 
1367   CheckDI(N.getLine() || !N.getColumn(),
1368           "cannot have column info without line info", &N);
1369 }
1370 
1371 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1372   visitDILexicalBlockBase(N);
1373 }
1374 
1375 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1376   CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1377   if (auto *S = N.getRawScope())
1378     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1379   if (auto *S = N.getRawDecl())
1380     CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1381 }
1382 
1383 void Verifier::visitDINamespace(const DINamespace &N) {
1384   CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1385   if (auto *S = N.getRawScope())
1386     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1387 }
1388 
1389 void Verifier::visitDIMacro(const DIMacro &N) {
1390   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1391               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1392           "invalid macinfo type", &N);
1393   CheckDI(!N.getName().empty(), "anonymous macro", &N);
1394   if (!N.getValue().empty()) {
1395     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1396   }
1397 }
1398 
1399 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1400   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1401           "invalid macinfo type", &N);
1402   if (auto *F = N.getRawFile())
1403     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1404 
1405   if (auto *Array = N.getRawElements()) {
1406     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1407     for (Metadata *Op : N.getElements()->operands()) {
1408       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1409     }
1410   }
1411 }
1412 
1413 void Verifier::visitDIArgList(const DIArgList &N) {
1414   CheckDI(!N.getNumOperands(),
1415           "DIArgList should have no operands other than a list of "
1416           "ValueAsMetadata",
1417           &N);
1418 }
1419 
1420 void Verifier::visitDIModule(const DIModule &N) {
1421   CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1422   CheckDI(!N.getName().empty(), "anonymous module", &N);
1423 }
1424 
1425 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1426   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1427 }
1428 
1429 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1430   visitDITemplateParameter(N);
1431 
1432   CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1433           &N);
1434 }
1435 
1436 void Verifier::visitDITemplateValueParameter(
1437     const DITemplateValueParameter &N) {
1438   visitDITemplateParameter(N);
1439 
1440   CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1441               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1442               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1443           "invalid tag", &N);
1444 }
1445 
1446 void Verifier::visitDIVariable(const DIVariable &N) {
1447   if (auto *S = N.getRawScope())
1448     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1449   if (auto *F = N.getRawFile())
1450     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1451 }
1452 
1453 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1454   // Checks common to all variables.
1455   visitDIVariable(N);
1456 
1457   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1458   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1459   // Check only if the global variable is not an extern
1460   if (N.isDefinition())
1461     CheckDI(N.getType(), "missing global variable type", &N);
1462   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1463     CheckDI(isa<DIDerivedType>(Member),
1464             "invalid static data member declaration", &N, Member);
1465   }
1466 }
1467 
1468 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1469   // Checks common to all variables.
1470   visitDIVariable(N);
1471 
1472   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1473   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1474   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1475           "local variable requires a valid scope", &N, N.getRawScope());
1476   if (auto Ty = N.getType())
1477     CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1478 }
1479 
1480 void Verifier::visitDILabel(const DILabel &N) {
1481   if (auto *S = N.getRawScope())
1482     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1483   if (auto *F = N.getRawFile())
1484     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1485 
1486   CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1487   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1488           "label requires a valid scope", &N, N.getRawScope());
1489 }
1490 
1491 void Verifier::visitDIExpression(const DIExpression &N) {
1492   CheckDI(N.isValid(), "invalid expression", &N);
1493 }
1494 
1495 void Verifier::visitDIGlobalVariableExpression(
1496     const DIGlobalVariableExpression &GVE) {
1497   CheckDI(GVE.getVariable(), "missing variable");
1498   if (auto *Var = GVE.getVariable())
1499     visitDIGlobalVariable(*Var);
1500   if (auto *Expr = GVE.getExpression()) {
1501     visitDIExpression(*Expr);
1502     if (auto Fragment = Expr->getFragmentInfo())
1503       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1504   }
1505 }
1506 
1507 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1508   CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1509   if (auto *T = N.getRawType())
1510     CheckDI(isType(T), "invalid type ref", &N, T);
1511   if (auto *F = N.getRawFile())
1512     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1513 }
1514 
1515 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1516   CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1517               N.getTag() == dwarf::DW_TAG_imported_declaration,
1518           "invalid tag", &N);
1519   if (auto *S = N.getRawScope())
1520     CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1521   CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1522           N.getRawEntity());
1523 }
1524 
1525 void Verifier::visitComdat(const Comdat &C) {
1526   // In COFF the Module is invalid if the GlobalValue has private linkage.
1527   // Entities with private linkage don't have entries in the symbol table.
1528   if (TT.isOSBinFormatCOFF())
1529     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1530       Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1531             GV);
1532 }
1533 
1534 void Verifier::visitModuleIdents() {
1535   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1536   if (!Idents)
1537     return;
1538 
1539   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1540   // Scan each llvm.ident entry and make sure that this requirement is met.
1541   for (const MDNode *N : Idents->operands()) {
1542     Check(N->getNumOperands() == 1,
1543           "incorrect number of operands in llvm.ident metadata", N);
1544     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1545           ("invalid value for llvm.ident metadata entry operand"
1546            "(the operand should be a string)"),
1547           N->getOperand(0));
1548   }
1549 }
1550 
1551 void Verifier::visitModuleCommandLines() {
1552   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1553   if (!CommandLines)
1554     return;
1555 
1556   // llvm.commandline takes a list of metadata entry. Each entry has only one
1557   // string. Scan each llvm.commandline entry and make sure that this
1558   // requirement is met.
1559   for (const MDNode *N : CommandLines->operands()) {
1560     Check(N->getNumOperands() == 1,
1561           "incorrect number of operands in llvm.commandline metadata", N);
1562     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1563           ("invalid value for llvm.commandline metadata entry operand"
1564            "(the operand should be a string)"),
1565           N->getOperand(0));
1566   }
1567 }
1568 
1569 void Verifier::visitModuleFlags() {
1570   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1571   if (!Flags) return;
1572 
1573   // Scan each flag, and track the flags and requirements.
1574   DenseMap<const MDString*, const MDNode*> SeenIDs;
1575   SmallVector<const MDNode*, 16> Requirements;
1576   for (const MDNode *MDN : Flags->operands())
1577     visitModuleFlag(MDN, SeenIDs, Requirements);
1578 
1579   // Validate that the requirements in the module are valid.
1580   for (const MDNode *Requirement : Requirements) {
1581     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1582     const Metadata *ReqValue = Requirement->getOperand(1);
1583 
1584     const MDNode *Op = SeenIDs.lookup(Flag);
1585     if (!Op) {
1586       CheckFailed("invalid requirement on flag, flag is not present in module",
1587                   Flag);
1588       continue;
1589     }
1590 
1591     if (Op->getOperand(2) != ReqValue) {
1592       CheckFailed(("invalid requirement on flag, "
1593                    "flag does not have the required value"),
1594                   Flag);
1595       continue;
1596     }
1597   }
1598 }
1599 
1600 void
1601 Verifier::visitModuleFlag(const MDNode *Op,
1602                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1603                           SmallVectorImpl<const MDNode *> &Requirements) {
1604   // Each module flag should have three arguments, the merge behavior (a
1605   // constant int), the flag ID (an MDString), and the value.
1606   Check(Op->getNumOperands() == 3,
1607         "incorrect number of operands in module flag", Op);
1608   Module::ModFlagBehavior MFB;
1609   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1610     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1611           "invalid behavior operand in module flag (expected constant integer)",
1612           Op->getOperand(0));
1613     Check(false,
1614           "invalid behavior operand in module flag (unexpected constant)",
1615           Op->getOperand(0));
1616   }
1617   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1618   Check(ID, "invalid ID operand in module flag (expected metadata string)",
1619         Op->getOperand(1));
1620 
1621   // Check the values for behaviors with additional requirements.
1622   switch (MFB) {
1623   case Module::Error:
1624   case Module::Warning:
1625   case Module::Override:
1626     // These behavior types accept any value.
1627     break;
1628 
1629   case Module::Min: {
1630     auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1631     Check(V && V->getValue().isNonNegative(),
1632           "invalid value for 'min' module flag (expected constant non-negative "
1633           "integer)",
1634           Op->getOperand(2));
1635     break;
1636   }
1637 
1638   case Module::Max: {
1639     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1640           "invalid value for 'max' module flag (expected constant integer)",
1641           Op->getOperand(2));
1642     break;
1643   }
1644 
1645   case Module::Require: {
1646     // The value should itself be an MDNode with two operands, a flag ID (an
1647     // MDString), and a value.
1648     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1649     Check(Value && Value->getNumOperands() == 2,
1650           "invalid value for 'require' module flag (expected metadata pair)",
1651           Op->getOperand(2));
1652     Check(isa<MDString>(Value->getOperand(0)),
1653           ("invalid value for 'require' module flag "
1654            "(first value operand should be a string)"),
1655           Value->getOperand(0));
1656 
1657     // Append it to the list of requirements, to check once all module flags are
1658     // scanned.
1659     Requirements.push_back(Value);
1660     break;
1661   }
1662 
1663   case Module::Append:
1664   case Module::AppendUnique: {
1665     // These behavior types require the operand be an MDNode.
1666     Check(isa<MDNode>(Op->getOperand(2)),
1667           "invalid value for 'append'-type module flag "
1668           "(expected a metadata node)",
1669           Op->getOperand(2));
1670     break;
1671   }
1672   }
1673 
1674   // Unless this is a "requires" flag, check the ID is unique.
1675   if (MFB != Module::Require) {
1676     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1677     Check(Inserted,
1678           "module flag identifiers must be unique (or of 'require' type)", ID);
1679   }
1680 
1681   if (ID->getString() == "wchar_size") {
1682     ConstantInt *Value
1683       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1684     Check(Value, "wchar_size metadata requires constant integer argument");
1685   }
1686 
1687   if (ID->getString() == "Linker Options") {
1688     // If the llvm.linker.options named metadata exists, we assume that the
1689     // bitcode reader has upgraded the module flag. Otherwise the flag might
1690     // have been created by a client directly.
1691     Check(M.getNamedMetadata("llvm.linker.options"),
1692           "'Linker Options' named metadata no longer supported");
1693   }
1694 
1695   if (ID->getString() == "SemanticInterposition") {
1696     ConstantInt *Value =
1697         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1698     Check(Value,
1699           "SemanticInterposition metadata requires constant integer argument");
1700   }
1701 
1702   if (ID->getString() == "CG Profile") {
1703     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1704       visitModuleFlagCGProfileEntry(MDO);
1705   }
1706 }
1707 
1708 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1709   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1710     if (!FuncMDO)
1711       return;
1712     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1713     Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1714           "expected a Function or null", FuncMDO);
1715   };
1716   auto Node = dyn_cast_or_null<MDNode>(MDO);
1717   Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1718   CheckFunction(Node->getOperand(0));
1719   CheckFunction(Node->getOperand(1));
1720   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1721   Check(Count && Count->getType()->isIntegerTy(),
1722         "expected an integer constant", Node->getOperand(2));
1723 }
1724 
1725 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1726   for (Attribute A : Attrs) {
1727 
1728     if (A.isStringAttribute()) {
1729 #define GET_ATTR_NAMES
1730 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1731 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1732   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1733     auto V = A.getValueAsString();                                             \
1734     if (!(V.empty() || V == "true" || V == "false"))                           \
1735       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1736                   "");                                                         \
1737   }
1738 
1739 #include "llvm/IR/Attributes.inc"
1740       continue;
1741     }
1742 
1743     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1744       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1745                   V);
1746       return;
1747     }
1748   }
1749 }
1750 
1751 // VerifyParameterAttrs - Check the given attributes for an argument or return
1752 // value of the specified type.  The value V is printed in error messages.
1753 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1754                                     const Value *V) {
1755   if (!Attrs.hasAttributes())
1756     return;
1757 
1758   verifyAttributeTypes(Attrs, V);
1759 
1760   for (Attribute Attr : Attrs)
1761     Check(Attr.isStringAttribute() ||
1762               Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1763           "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1764           V);
1765 
1766   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1767     Check(Attrs.getNumAttributes() == 1,
1768           "Attribute 'immarg' is incompatible with other attributes", V);
1769   }
1770 
1771   // Check for mutually incompatible attributes.  Only inreg is compatible with
1772   // sret.
1773   unsigned AttrCount = 0;
1774   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1775   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1776   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1777   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1778                Attrs.hasAttribute(Attribute::InReg);
1779   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1780   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1781   Check(AttrCount <= 1,
1782         "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1783         "'byref', and 'sret' are incompatible!",
1784         V);
1785 
1786   Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1787           Attrs.hasAttribute(Attribute::ReadOnly)),
1788         "Attributes "
1789         "'inalloca and readonly' are incompatible!",
1790         V);
1791 
1792   Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1793           Attrs.hasAttribute(Attribute::Returned)),
1794         "Attributes "
1795         "'sret and returned' are incompatible!",
1796         V);
1797 
1798   Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1799           Attrs.hasAttribute(Attribute::SExt)),
1800         "Attributes "
1801         "'zeroext and signext' are incompatible!",
1802         V);
1803 
1804   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1805           Attrs.hasAttribute(Attribute::ReadOnly)),
1806         "Attributes "
1807         "'readnone and readonly' are incompatible!",
1808         V);
1809 
1810   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1811           Attrs.hasAttribute(Attribute::WriteOnly)),
1812         "Attributes "
1813         "'readnone and writeonly' are incompatible!",
1814         V);
1815 
1816   Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1817           Attrs.hasAttribute(Attribute::WriteOnly)),
1818         "Attributes "
1819         "'readonly and writeonly' are incompatible!",
1820         V);
1821 
1822   Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1823           Attrs.hasAttribute(Attribute::AlwaysInline)),
1824         "Attributes "
1825         "'noinline and alwaysinline' are incompatible!",
1826         V);
1827 
1828   AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1829   for (Attribute Attr : Attrs) {
1830     if (!Attr.isStringAttribute() &&
1831         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1832       CheckFailed("Attribute '" + Attr.getAsString() +
1833                   "' applied to incompatible type!", V);
1834       return;
1835     }
1836   }
1837 
1838   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1839     if (Attrs.hasAttribute(Attribute::ByVal)) {
1840       if (Attrs.hasAttribute(Attribute::Alignment)) {
1841         Align AttrAlign = Attrs.getAlignment().valueOrOne();
1842         Align MaxAlign(ParamMaxAlignment);
1843         Check(AttrAlign <= MaxAlign,
1844               "Attribute 'align' exceed the max size 2^14", V);
1845       }
1846       SmallPtrSet<Type *, 4> Visited;
1847       Check(Attrs.getByValType()->isSized(&Visited),
1848             "Attribute 'byval' does not support unsized types!", V);
1849     }
1850     if (Attrs.hasAttribute(Attribute::ByRef)) {
1851       SmallPtrSet<Type *, 4> Visited;
1852       Check(Attrs.getByRefType()->isSized(&Visited),
1853             "Attribute 'byref' does not support unsized types!", V);
1854     }
1855     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1856       SmallPtrSet<Type *, 4> Visited;
1857       Check(Attrs.getInAllocaType()->isSized(&Visited),
1858             "Attribute 'inalloca' does not support unsized types!", V);
1859     }
1860     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1861       SmallPtrSet<Type *, 4> Visited;
1862       Check(Attrs.getPreallocatedType()->isSized(&Visited),
1863             "Attribute 'preallocated' does not support unsized types!", V);
1864     }
1865     if (!PTy->isOpaque()) {
1866       if (!isa<PointerType>(PTy->getNonOpaquePointerElementType()))
1867         Check(!Attrs.hasAttribute(Attribute::SwiftError),
1868               "Attribute 'swifterror' only applies to parameters "
1869               "with pointer to pointer type!",
1870               V);
1871       if (Attrs.hasAttribute(Attribute::ByRef)) {
1872         Check(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(),
1873               "Attribute 'byref' type does not match parameter!", V);
1874       }
1875 
1876       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1877         Check(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(),
1878               "Attribute 'byval' type does not match parameter!", V);
1879       }
1880 
1881       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1882         Check(Attrs.getPreallocatedType() ==
1883                   PTy->getNonOpaquePointerElementType(),
1884               "Attribute 'preallocated' type does not match parameter!", V);
1885       }
1886 
1887       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1888         Check(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(),
1889               "Attribute 'inalloca' type does not match parameter!", V);
1890       }
1891 
1892       if (Attrs.hasAttribute(Attribute::ElementType)) {
1893         Check(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(),
1894               "Attribute 'elementtype' type does not match parameter!", V);
1895       }
1896     }
1897   }
1898 }
1899 
1900 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1901                                             const Value *V) {
1902   if (Attrs.hasFnAttr(Attr)) {
1903     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1904     unsigned N;
1905     if (S.getAsInteger(10, N))
1906       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1907   }
1908 }
1909 
1910 // Check parameter attributes against a function type.
1911 // The value V is printed in error messages.
1912 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1913                                    const Value *V, bool IsIntrinsic,
1914                                    bool IsInlineAsm) {
1915   if (Attrs.isEmpty())
1916     return;
1917 
1918   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1919     Check(Attrs.hasParentContext(Context),
1920           "Attribute list does not match Module context!", &Attrs, V);
1921     for (const auto &AttrSet : Attrs) {
1922       Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1923             "Attribute set does not match Module context!", &AttrSet, V);
1924       for (const auto &A : AttrSet) {
1925         Check(A.hasParentContext(Context),
1926               "Attribute does not match Module context!", &A, V);
1927       }
1928     }
1929   }
1930 
1931   bool SawNest = false;
1932   bool SawReturned = false;
1933   bool SawSRet = false;
1934   bool SawSwiftSelf = false;
1935   bool SawSwiftAsync = false;
1936   bool SawSwiftError = false;
1937 
1938   // Verify return value attributes.
1939   AttributeSet RetAttrs = Attrs.getRetAttrs();
1940   for (Attribute RetAttr : RetAttrs)
1941     Check(RetAttr.isStringAttribute() ||
1942               Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1943           "Attribute '" + RetAttr.getAsString() +
1944               "' does not apply to function return values",
1945           V);
1946 
1947   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1948 
1949   // Verify parameter attributes.
1950   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1951     Type *Ty = FT->getParamType(i);
1952     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
1953 
1954     if (!IsIntrinsic) {
1955       Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1956             "immarg attribute only applies to intrinsics", V);
1957       if (!IsInlineAsm)
1958         Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
1959               "Attribute 'elementtype' can only be applied to intrinsics"
1960               " and inline asm.",
1961               V);
1962     }
1963 
1964     verifyParameterAttrs(ArgAttrs, Ty, V);
1965 
1966     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1967       Check(!SawNest, "More than one parameter has attribute nest!", V);
1968       SawNest = true;
1969     }
1970 
1971     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1972       Check(!SawReturned, "More than one parameter has attribute returned!", V);
1973       Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1974             "Incompatible argument and return types for 'returned' attribute",
1975             V);
1976       SawReturned = true;
1977     }
1978 
1979     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1980       Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1981       Check(i == 0 || i == 1,
1982             "Attribute 'sret' is not on first or second parameter!", V);
1983       SawSRet = true;
1984     }
1985 
1986     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1987       Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1988       SawSwiftSelf = true;
1989     }
1990 
1991     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1992       Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1993       SawSwiftAsync = true;
1994     }
1995 
1996     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1997       Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
1998       SawSwiftError = true;
1999     }
2000 
2001     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2002       Check(i == FT->getNumParams() - 1,
2003             "inalloca isn't on the last parameter!", V);
2004     }
2005   }
2006 
2007   if (!Attrs.hasFnAttrs())
2008     return;
2009 
2010   verifyAttributeTypes(Attrs.getFnAttrs(), V);
2011   for (Attribute FnAttr : Attrs.getFnAttrs())
2012     Check(FnAttr.isStringAttribute() ||
2013               Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2014           "Attribute '" + FnAttr.getAsString() +
2015               "' does not apply to functions!",
2016           V);
2017 
2018   Check(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2019           Attrs.hasFnAttr(Attribute::ReadOnly)),
2020         "Attributes 'readnone and readonly' are incompatible!", V);
2021 
2022   Check(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2023           Attrs.hasFnAttr(Attribute::WriteOnly)),
2024         "Attributes 'readnone and writeonly' are incompatible!", V);
2025 
2026   Check(!(Attrs.hasFnAttr(Attribute::ReadOnly) &&
2027           Attrs.hasFnAttr(Attribute::WriteOnly)),
2028         "Attributes 'readonly and writeonly' are incompatible!", V);
2029 
2030   Check(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2031           Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)),
2032         "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
2033         "incompatible!",
2034         V);
2035 
2036   Check(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2037           Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)),
2038         "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
2039 
2040   Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2041           Attrs.hasFnAttr(Attribute::AlwaysInline)),
2042         "Attributes 'noinline and alwaysinline' are incompatible!", V);
2043 
2044   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2045     Check(Attrs.hasFnAttr(Attribute::NoInline),
2046           "Attribute 'optnone' requires 'noinline'!", V);
2047 
2048     Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2049           "Attributes 'optsize and optnone' are incompatible!", V);
2050 
2051     Check(!Attrs.hasFnAttr(Attribute::MinSize),
2052           "Attributes 'minsize and optnone' are incompatible!", V);
2053   }
2054 
2055   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2056     const GlobalValue *GV = cast<GlobalValue>(V);
2057     Check(GV->hasGlobalUnnamedAddr(),
2058           "Attribute 'jumptable' requires 'unnamed_addr'", V);
2059   }
2060 
2061   if (Attrs.hasFnAttr(Attribute::AllocSize)) {
2062     std::pair<unsigned, Optional<unsigned>> Args =
2063         Attrs.getFnAttrs().getAllocSizeArgs();
2064 
2065     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2066       if (ParamNo >= FT->getNumParams()) {
2067         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2068         return false;
2069       }
2070 
2071       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2072         CheckFailed("'allocsize' " + Name +
2073                         " argument must refer to an integer parameter",
2074                     V);
2075         return false;
2076       }
2077 
2078       return true;
2079     };
2080 
2081     if (!CheckParam("element size", Args.first))
2082       return;
2083 
2084     if (Args.second && !CheckParam("number of elements", *Args.second))
2085       return;
2086   }
2087 
2088   if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2089     AllocFnKind K = Attrs.getAllocKind();
2090     AllocFnKind Type =
2091         K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2092     if (!is_contained(
2093             {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2094             Type))
2095       CheckFailed(
2096           "'allockind()' requires exactly one of alloc, realloc, and free");
2097     if ((Type == AllocFnKind::Free) &&
2098         ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2099                AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2100       CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2101                   "or aligned modifiers.");
2102     AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2103     if ((K & ZeroedUninit) == ZeroedUninit)
2104       CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2105   }
2106 
2107   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2108     unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2109     if (VScaleMin == 0)
2110       CheckFailed("'vscale_range' minimum must be greater than 0", V);
2111 
2112     Optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2113     if (VScaleMax && VScaleMin > VScaleMax)
2114       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2115   }
2116 
2117   if (Attrs.hasFnAttr("frame-pointer")) {
2118     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2119     if (FP != "all" && FP != "non-leaf" && FP != "none")
2120       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2121   }
2122 
2123   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2124   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2125   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2126 }
2127 
2128 void Verifier::verifyFunctionMetadata(
2129     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2130   for (const auto &Pair : MDs) {
2131     if (Pair.first == LLVMContext::MD_prof) {
2132       MDNode *MD = Pair.second;
2133       Check(MD->getNumOperands() >= 2,
2134             "!prof annotations should have no less than 2 operands", MD);
2135 
2136       // Check first operand.
2137       Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2138             MD);
2139       Check(isa<MDString>(MD->getOperand(0)),
2140             "expected string with name of the !prof annotation", MD);
2141       MDString *MDS = cast<MDString>(MD->getOperand(0));
2142       StringRef ProfName = MDS->getString();
2143       Check(ProfName.equals("function_entry_count") ||
2144                 ProfName.equals("synthetic_function_entry_count"),
2145             "first operand should be 'function_entry_count'"
2146             " or 'synthetic_function_entry_count'",
2147             MD);
2148 
2149       // Check second operand.
2150       Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2151             MD);
2152       Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2153             "expected integer argument to function_entry_count", MD);
2154     }
2155   }
2156 }
2157 
2158 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2159   if (!ConstantExprVisited.insert(EntryC).second)
2160     return;
2161 
2162   SmallVector<const Constant *, 16> Stack;
2163   Stack.push_back(EntryC);
2164 
2165   while (!Stack.empty()) {
2166     const Constant *C = Stack.pop_back_val();
2167 
2168     // Check this constant expression.
2169     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2170       visitConstantExpr(CE);
2171 
2172     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2173       // Global Values get visited separately, but we do need to make sure
2174       // that the global value is in the correct module
2175       Check(GV->getParent() == &M, "Referencing global in another module!",
2176             EntryC, &M, GV, GV->getParent());
2177       continue;
2178     }
2179 
2180     // Visit all sub-expressions.
2181     for (const Use &U : C->operands()) {
2182       const auto *OpC = dyn_cast<Constant>(U);
2183       if (!OpC)
2184         continue;
2185       if (!ConstantExprVisited.insert(OpC).second)
2186         continue;
2187       Stack.push_back(OpC);
2188     }
2189   }
2190 }
2191 
2192 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2193   if (CE->getOpcode() == Instruction::BitCast)
2194     Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2195                                 CE->getType()),
2196           "Invalid bitcast", CE);
2197 }
2198 
2199 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2200   // There shouldn't be more attribute sets than there are parameters plus the
2201   // function and return value.
2202   return Attrs.getNumAttrSets() <= Params + 2;
2203 }
2204 
2205 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2206   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2207   unsigned ArgNo = 0;
2208   unsigned LabelNo = 0;
2209   for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2210     if (CI.Type == InlineAsm::isLabel) {
2211       ++LabelNo;
2212       continue;
2213     }
2214 
2215     // Only deal with constraints that correspond to call arguments.
2216     if (!CI.hasArg())
2217       continue;
2218 
2219     if (CI.isIndirect) {
2220       const Value *Arg = Call.getArgOperand(ArgNo);
2221       Check(Arg->getType()->isPointerTy(),
2222             "Operand for indirect constraint must have pointer type", &Call);
2223 
2224       Check(Call.getParamElementType(ArgNo),
2225             "Operand for indirect constraint must have elementtype attribute",
2226             &Call);
2227     } else {
2228       Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2229             "Elementtype attribute can only be applied for indirect "
2230             "constraints",
2231             &Call);
2232     }
2233 
2234     ArgNo++;
2235   }
2236 
2237   if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2238     Check(LabelNo == CallBr->getNumIndirectDests(),
2239           "Number of label constraints does not match number of callbr dests",
2240           &Call);
2241   } else {
2242     Check(LabelNo == 0, "Label constraints can only be used with callbr",
2243           &Call);
2244   }
2245 }
2246 
2247 /// Verify that statepoint intrinsic is well formed.
2248 void Verifier::verifyStatepoint(const CallBase &Call) {
2249   assert(Call.getCalledFunction() &&
2250          Call.getCalledFunction()->getIntrinsicID() ==
2251              Intrinsic::experimental_gc_statepoint);
2252 
2253   Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2254             !Call.onlyAccessesArgMemory(),
2255         "gc.statepoint must read and write all memory to preserve "
2256         "reordering restrictions required by safepoint semantics",
2257         Call);
2258 
2259   const int64_t NumPatchBytes =
2260       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2261   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2262   Check(NumPatchBytes >= 0,
2263         "gc.statepoint number of patchable bytes must be "
2264         "positive",
2265         Call);
2266 
2267   Type *TargetElemType = Call.getParamElementType(2);
2268   Check(TargetElemType,
2269         "gc.statepoint callee argument must have elementtype attribute", Call);
2270   FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2271   Check(TargetFuncType,
2272         "gc.statepoint callee elementtype must be function type", Call);
2273 
2274   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2275   Check(NumCallArgs >= 0,
2276         "gc.statepoint number of arguments to underlying call "
2277         "must be positive",
2278         Call);
2279   const int NumParams = (int)TargetFuncType->getNumParams();
2280   if (TargetFuncType->isVarArg()) {
2281     Check(NumCallArgs >= NumParams,
2282           "gc.statepoint mismatch in number of vararg call args", Call);
2283 
2284     // TODO: Remove this limitation
2285     Check(TargetFuncType->getReturnType()->isVoidTy(),
2286           "gc.statepoint doesn't support wrapping non-void "
2287           "vararg functions yet",
2288           Call);
2289   } else
2290     Check(NumCallArgs == NumParams,
2291           "gc.statepoint mismatch in number of call args", Call);
2292 
2293   const uint64_t Flags
2294     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2295   Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2296         "unknown flag used in gc.statepoint flags argument", Call);
2297 
2298   // Verify that the types of the call parameter arguments match
2299   // the type of the wrapped callee.
2300   AttributeList Attrs = Call.getAttributes();
2301   for (int i = 0; i < NumParams; i++) {
2302     Type *ParamType = TargetFuncType->getParamType(i);
2303     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2304     Check(ArgType == ParamType,
2305           "gc.statepoint call argument does not match wrapped "
2306           "function type",
2307           Call);
2308 
2309     if (TargetFuncType->isVarArg()) {
2310       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2311       Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2312             "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2313     }
2314   }
2315 
2316   const int EndCallArgsInx = 4 + NumCallArgs;
2317 
2318   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2319   Check(isa<ConstantInt>(NumTransitionArgsV),
2320         "gc.statepoint number of transition arguments "
2321         "must be constant integer",
2322         Call);
2323   const int NumTransitionArgs =
2324       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2325   Check(NumTransitionArgs == 0,
2326         "gc.statepoint w/inline transition bundle is deprecated", Call);
2327   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2328 
2329   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2330   Check(isa<ConstantInt>(NumDeoptArgsV),
2331         "gc.statepoint number of deoptimization arguments "
2332         "must be constant integer",
2333         Call);
2334   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2335   Check(NumDeoptArgs == 0,
2336         "gc.statepoint w/inline deopt operands is deprecated", Call);
2337 
2338   const int ExpectedNumArgs = 7 + NumCallArgs;
2339   Check(ExpectedNumArgs == (int)Call.arg_size(),
2340         "gc.statepoint too many arguments", Call);
2341 
2342   // Check that the only uses of this gc.statepoint are gc.result or
2343   // gc.relocate calls which are tied to this statepoint and thus part
2344   // of the same statepoint sequence
2345   for (const User *U : Call.users()) {
2346     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2347     Check(UserCall, "illegal use of statepoint token", Call, U);
2348     if (!UserCall)
2349       continue;
2350     Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2351           "gc.result or gc.relocate are the only value uses "
2352           "of a gc.statepoint",
2353           Call, U);
2354     if (isa<GCResultInst>(UserCall)) {
2355       Check(UserCall->getArgOperand(0) == &Call,
2356             "gc.result connected to wrong gc.statepoint", Call, UserCall);
2357     } else if (isa<GCRelocateInst>(Call)) {
2358       Check(UserCall->getArgOperand(0) == &Call,
2359             "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2360     }
2361   }
2362 
2363   // Note: It is legal for a single derived pointer to be listed multiple
2364   // times.  It's non-optimal, but it is legal.  It can also happen after
2365   // insertion if we strip a bitcast away.
2366   // Note: It is really tempting to check that each base is relocated and
2367   // that a derived pointer is never reused as a base pointer.  This turns
2368   // out to be problematic since optimizations run after safepoint insertion
2369   // can recognize equality properties that the insertion logic doesn't know
2370   // about.  See example statepoint.ll in the verifier subdirectory
2371 }
2372 
2373 void Verifier::verifyFrameRecoverIndices() {
2374   for (auto &Counts : FrameEscapeInfo) {
2375     Function *F = Counts.first;
2376     unsigned EscapedObjectCount = Counts.second.first;
2377     unsigned MaxRecoveredIndex = Counts.second.second;
2378     Check(MaxRecoveredIndex <= EscapedObjectCount,
2379           "all indices passed to llvm.localrecover must be less than the "
2380           "number of arguments passed to llvm.localescape in the parent "
2381           "function",
2382           F);
2383   }
2384 }
2385 
2386 static Instruction *getSuccPad(Instruction *Terminator) {
2387   BasicBlock *UnwindDest;
2388   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2389     UnwindDest = II->getUnwindDest();
2390   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2391     UnwindDest = CSI->getUnwindDest();
2392   else
2393     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2394   return UnwindDest->getFirstNonPHI();
2395 }
2396 
2397 void Verifier::verifySiblingFuncletUnwinds() {
2398   SmallPtrSet<Instruction *, 8> Visited;
2399   SmallPtrSet<Instruction *, 8> Active;
2400   for (const auto &Pair : SiblingFuncletInfo) {
2401     Instruction *PredPad = Pair.first;
2402     if (Visited.count(PredPad))
2403       continue;
2404     Active.insert(PredPad);
2405     Instruction *Terminator = Pair.second;
2406     do {
2407       Instruction *SuccPad = getSuccPad(Terminator);
2408       if (Active.count(SuccPad)) {
2409         // Found a cycle; report error
2410         Instruction *CyclePad = SuccPad;
2411         SmallVector<Instruction *, 8> CycleNodes;
2412         do {
2413           CycleNodes.push_back(CyclePad);
2414           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2415           if (CycleTerminator != CyclePad)
2416             CycleNodes.push_back(CycleTerminator);
2417           CyclePad = getSuccPad(CycleTerminator);
2418         } while (CyclePad != SuccPad);
2419         Check(false, "EH pads can't handle each other's exceptions",
2420               ArrayRef<Instruction *>(CycleNodes));
2421       }
2422       // Don't re-walk a node we've already checked
2423       if (!Visited.insert(SuccPad).second)
2424         break;
2425       // Walk to this successor if it has a map entry.
2426       PredPad = SuccPad;
2427       auto TermI = SiblingFuncletInfo.find(PredPad);
2428       if (TermI == SiblingFuncletInfo.end())
2429         break;
2430       Terminator = TermI->second;
2431       Active.insert(PredPad);
2432     } while (true);
2433     // Each node only has one successor, so we've walked all the active
2434     // nodes' successors.
2435     Active.clear();
2436   }
2437 }
2438 
2439 // visitFunction - Verify that a function is ok.
2440 //
2441 void Verifier::visitFunction(const Function &F) {
2442   visitGlobalValue(F);
2443 
2444   // Check function arguments.
2445   FunctionType *FT = F.getFunctionType();
2446   unsigned NumArgs = F.arg_size();
2447 
2448   Check(&Context == &F.getContext(),
2449         "Function context does not match Module context!", &F);
2450 
2451   Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2452   Check(FT->getNumParams() == NumArgs,
2453         "# formal arguments must match # of arguments for function type!", &F,
2454         FT);
2455   Check(F.getReturnType()->isFirstClassType() ||
2456             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2457         "Functions cannot return aggregate values!", &F);
2458 
2459   Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2460         "Invalid struct return type!", &F);
2461 
2462   AttributeList Attrs = F.getAttributes();
2463 
2464   Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2465         "Attribute after last parameter!", &F);
2466 
2467   bool IsIntrinsic = F.isIntrinsic();
2468 
2469   // Check function attributes.
2470   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2471 
2472   // On function declarations/definitions, we do not support the builtin
2473   // attribute. We do not check this in VerifyFunctionAttrs since that is
2474   // checking for Attributes that can/can not ever be on functions.
2475   Check(!Attrs.hasFnAttr(Attribute::Builtin),
2476         "Attribute 'builtin' can only be applied to a callsite.", &F);
2477 
2478   Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2479         "Attribute 'elementtype' can only be applied to a callsite.", &F);
2480 
2481   // Check that this function meets the restrictions on this calling convention.
2482   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2483   // restrictions can be lifted.
2484   switch (F.getCallingConv()) {
2485   default:
2486   case CallingConv::C:
2487     break;
2488   case CallingConv::X86_INTR: {
2489     Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2490           "Calling convention parameter requires byval", &F);
2491     break;
2492   }
2493   case CallingConv::AMDGPU_KERNEL:
2494   case CallingConv::SPIR_KERNEL:
2495     Check(F.getReturnType()->isVoidTy(),
2496           "Calling convention requires void return type", &F);
2497     LLVM_FALLTHROUGH;
2498   case CallingConv::AMDGPU_VS:
2499   case CallingConv::AMDGPU_HS:
2500   case CallingConv::AMDGPU_GS:
2501   case CallingConv::AMDGPU_PS:
2502   case CallingConv::AMDGPU_CS:
2503     Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2504     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2505       const unsigned StackAS = DL.getAllocaAddrSpace();
2506       unsigned i = 0;
2507       for (const Argument &Arg : F.args()) {
2508         Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2509               "Calling convention disallows byval", &F);
2510         Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2511               "Calling convention disallows preallocated", &F);
2512         Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2513               "Calling convention disallows inalloca", &F);
2514 
2515         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2516           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2517           // value here.
2518           Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2519                 "Calling convention disallows stack byref", &F);
2520         }
2521 
2522         ++i;
2523       }
2524     }
2525 
2526     LLVM_FALLTHROUGH;
2527   case CallingConv::Fast:
2528   case CallingConv::Cold:
2529   case CallingConv::Intel_OCL_BI:
2530   case CallingConv::PTX_Kernel:
2531   case CallingConv::PTX_Device:
2532     Check(!F.isVarArg(),
2533           "Calling convention does not support varargs or "
2534           "perfect forwarding!",
2535           &F);
2536     break;
2537   }
2538 
2539   // Check that the argument values match the function type for this function...
2540   unsigned i = 0;
2541   for (const Argument &Arg : F.args()) {
2542     Check(Arg.getType() == FT->getParamType(i),
2543           "Argument value does not match function argument type!", &Arg,
2544           FT->getParamType(i));
2545     Check(Arg.getType()->isFirstClassType(),
2546           "Function arguments must have first-class types!", &Arg);
2547     if (!IsIntrinsic) {
2548       Check(!Arg.getType()->isMetadataTy(),
2549             "Function takes metadata but isn't an intrinsic", &Arg, &F);
2550       Check(!Arg.getType()->isTokenTy(),
2551             "Function takes token but isn't an intrinsic", &Arg, &F);
2552       Check(!Arg.getType()->isX86_AMXTy(),
2553             "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2554     }
2555 
2556     // Check that swifterror argument is only used by loads and stores.
2557     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2558       verifySwiftErrorValue(&Arg);
2559     }
2560     ++i;
2561   }
2562 
2563   if (!IsIntrinsic) {
2564     Check(!F.getReturnType()->isTokenTy(),
2565           "Function returns a token but isn't an intrinsic", &F);
2566     Check(!F.getReturnType()->isX86_AMXTy(),
2567           "Function returns a x86_amx but isn't an intrinsic", &F);
2568   }
2569 
2570   // Get the function metadata attachments.
2571   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2572   F.getAllMetadata(MDs);
2573   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2574   verifyFunctionMetadata(MDs);
2575 
2576   // Check validity of the personality function
2577   if (F.hasPersonalityFn()) {
2578     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2579     if (Per)
2580       Check(Per->getParent() == F.getParent(),
2581             "Referencing personality function in another module!", &F,
2582             F.getParent(), Per, Per->getParent());
2583   }
2584 
2585   if (F.isMaterializable()) {
2586     // Function has a body somewhere we can't see.
2587     Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2588           MDs.empty() ? nullptr : MDs.front().second);
2589   } else if (F.isDeclaration()) {
2590     for (const auto &I : MDs) {
2591       // This is used for call site debug information.
2592       CheckDI(I.first != LLVMContext::MD_dbg ||
2593                   !cast<DISubprogram>(I.second)->isDistinct(),
2594               "function declaration may only have a unique !dbg attachment",
2595               &F);
2596       Check(I.first != LLVMContext::MD_prof,
2597             "function declaration may not have a !prof attachment", &F);
2598 
2599       // Verify the metadata itself.
2600       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2601     }
2602     Check(!F.hasPersonalityFn(),
2603           "Function declaration shouldn't have a personality routine", &F);
2604   } else {
2605     // Verify that this function (which has a body) is not named "llvm.*".  It
2606     // is not legal to define intrinsics.
2607     Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2608 
2609     // Check the entry node
2610     const BasicBlock *Entry = &F.getEntryBlock();
2611     Check(pred_empty(Entry),
2612           "Entry block to function must not have predecessors!", Entry);
2613 
2614     // The address of the entry block cannot be taken, unless it is dead.
2615     if (Entry->hasAddressTaken()) {
2616       Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2617             "blockaddress may not be used with the entry block!", Entry);
2618     }
2619 
2620     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2621     // Visit metadata attachments.
2622     for (const auto &I : MDs) {
2623       // Verify that the attachment is legal.
2624       auto AllowLocs = AreDebugLocsAllowed::No;
2625       switch (I.first) {
2626       default:
2627         break;
2628       case LLVMContext::MD_dbg: {
2629         ++NumDebugAttachments;
2630         CheckDI(NumDebugAttachments == 1,
2631                 "function must have a single !dbg attachment", &F, I.second);
2632         CheckDI(isa<DISubprogram>(I.second),
2633                 "function !dbg attachment must be a subprogram", &F, I.second);
2634         CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2635                 "function definition may only have a distinct !dbg attachment",
2636                 &F);
2637 
2638         auto *SP = cast<DISubprogram>(I.second);
2639         const Function *&AttachedTo = DISubprogramAttachments[SP];
2640         CheckDI(!AttachedTo || AttachedTo == &F,
2641                 "DISubprogram attached to more than one function", SP, &F);
2642         AttachedTo = &F;
2643         AllowLocs = AreDebugLocsAllowed::Yes;
2644         break;
2645       }
2646       case LLVMContext::MD_prof:
2647         ++NumProfAttachments;
2648         Check(NumProfAttachments == 1,
2649               "function must have a single !prof attachment", &F, I.second);
2650         break;
2651       }
2652 
2653       // Verify the metadata itself.
2654       visitMDNode(*I.second, AllowLocs);
2655     }
2656   }
2657 
2658   // If this function is actually an intrinsic, verify that it is only used in
2659   // direct call/invokes, never having its "address taken".
2660   // Only do this if the module is materialized, otherwise we don't have all the
2661   // uses.
2662   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2663     const User *U;
2664     if (F.hasAddressTaken(&U, false, true, false,
2665                           /*IgnoreARCAttachedCall=*/true))
2666       Check(false, "Invalid user of intrinsic instruction!", U);
2667   }
2668 
2669   // Check intrinsics' signatures.
2670   switch (F.getIntrinsicID()) {
2671   case Intrinsic::experimental_gc_get_pointer_base: {
2672     FunctionType *FT = F.getFunctionType();
2673     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2674     Check(isa<PointerType>(F.getReturnType()),
2675           "gc.get.pointer.base must return a pointer", F);
2676     Check(FT->getParamType(0) == F.getReturnType(),
2677           "gc.get.pointer.base operand and result must be of the same type", F);
2678     break;
2679   }
2680   case Intrinsic::experimental_gc_get_pointer_offset: {
2681     FunctionType *FT = F.getFunctionType();
2682     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2683     Check(isa<PointerType>(FT->getParamType(0)),
2684           "gc.get.pointer.offset operand must be a pointer", F);
2685     Check(F.getReturnType()->isIntegerTy(),
2686           "gc.get.pointer.offset must return integer", F);
2687     break;
2688   }
2689   }
2690 
2691   auto *N = F.getSubprogram();
2692   HasDebugInfo = (N != nullptr);
2693   if (!HasDebugInfo)
2694     return;
2695 
2696   // Check that all !dbg attachments lead to back to N.
2697   //
2698   // FIXME: Check this incrementally while visiting !dbg attachments.
2699   // FIXME: Only check when N is the canonical subprogram for F.
2700   SmallPtrSet<const MDNode *, 32> Seen;
2701   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2702     // Be careful about using DILocation here since we might be dealing with
2703     // broken code (this is the Verifier after all).
2704     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2705     if (!DL)
2706       return;
2707     if (!Seen.insert(DL).second)
2708       return;
2709 
2710     Metadata *Parent = DL->getRawScope();
2711     CheckDI(Parent && isa<DILocalScope>(Parent),
2712             "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2713 
2714     DILocalScope *Scope = DL->getInlinedAtScope();
2715     Check(Scope, "Failed to find DILocalScope", DL);
2716 
2717     if (!Seen.insert(Scope).second)
2718       return;
2719 
2720     DISubprogram *SP = Scope->getSubprogram();
2721 
2722     // Scope and SP could be the same MDNode and we don't want to skip
2723     // validation in that case
2724     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2725       return;
2726 
2727     CheckDI(SP->describes(&F),
2728             "!dbg attachment points at wrong subprogram for function", N, &F,
2729             &I, DL, Scope, SP);
2730   };
2731   for (auto &BB : F)
2732     for (auto &I : BB) {
2733       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2734       // The llvm.loop annotations also contain two DILocations.
2735       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2736         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2737           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2738       if (BrokenDebugInfo)
2739         return;
2740     }
2741 }
2742 
2743 // verifyBasicBlock - Verify that a basic block is well formed...
2744 //
2745 void Verifier::visitBasicBlock(BasicBlock &BB) {
2746   InstsInThisBlock.clear();
2747 
2748   // Ensure that basic blocks have terminators!
2749   Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2750 
2751   // Check constraints that this basic block imposes on all of the PHI nodes in
2752   // it.
2753   if (isa<PHINode>(BB.front())) {
2754     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2755     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2756     llvm::sort(Preds);
2757     for (const PHINode &PN : BB.phis()) {
2758       Check(PN.getNumIncomingValues() == Preds.size(),
2759             "PHINode should have one entry for each predecessor of its "
2760             "parent basic block!",
2761             &PN);
2762 
2763       // Get and sort all incoming values in the PHI node...
2764       Values.clear();
2765       Values.reserve(PN.getNumIncomingValues());
2766       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2767         Values.push_back(
2768             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2769       llvm::sort(Values);
2770 
2771       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2772         // Check to make sure that if there is more than one entry for a
2773         // particular basic block in this PHI node, that the incoming values are
2774         // all identical.
2775         //
2776         Check(i == 0 || Values[i].first != Values[i - 1].first ||
2777                   Values[i].second == Values[i - 1].second,
2778               "PHI node has multiple entries for the same basic block with "
2779               "different incoming values!",
2780               &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2781 
2782         // Check to make sure that the predecessors and PHI node entries are
2783         // matched up.
2784         Check(Values[i].first == Preds[i],
2785               "PHI node entries do not match predecessors!", &PN,
2786               Values[i].first, Preds[i]);
2787       }
2788     }
2789   }
2790 
2791   // Check that all instructions have their parent pointers set up correctly.
2792   for (auto &I : BB)
2793   {
2794     Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2795   }
2796 }
2797 
2798 void Verifier::visitTerminator(Instruction &I) {
2799   // Ensure that terminators only exist at the end of the basic block.
2800   Check(&I == I.getParent()->getTerminator(),
2801         "Terminator found in the middle of a basic block!", I.getParent());
2802   visitInstruction(I);
2803 }
2804 
2805 void Verifier::visitBranchInst(BranchInst &BI) {
2806   if (BI.isConditional()) {
2807     Check(BI.getCondition()->getType()->isIntegerTy(1),
2808           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2809   }
2810   visitTerminator(BI);
2811 }
2812 
2813 void Verifier::visitReturnInst(ReturnInst &RI) {
2814   Function *F = RI.getParent()->getParent();
2815   unsigned N = RI.getNumOperands();
2816   if (F->getReturnType()->isVoidTy())
2817     Check(N == 0,
2818           "Found return instr that returns non-void in Function of void "
2819           "return type!",
2820           &RI, F->getReturnType());
2821   else
2822     Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2823           "Function return type does not match operand "
2824           "type of return inst!",
2825           &RI, F->getReturnType());
2826 
2827   // Check to make sure that the return value has necessary properties for
2828   // terminators...
2829   visitTerminator(RI);
2830 }
2831 
2832 void Verifier::visitSwitchInst(SwitchInst &SI) {
2833   Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2834   // Check to make sure that all of the constants in the switch instruction
2835   // have the same type as the switched-on value.
2836   Type *SwitchTy = SI.getCondition()->getType();
2837   SmallPtrSet<ConstantInt*, 32> Constants;
2838   for (auto &Case : SI.cases()) {
2839     Check(Case.getCaseValue()->getType() == SwitchTy,
2840           "Switch constants must all be same type as switch value!", &SI);
2841     Check(Constants.insert(Case.getCaseValue()).second,
2842           "Duplicate integer as switch case", &SI, Case.getCaseValue());
2843   }
2844 
2845   visitTerminator(SI);
2846 }
2847 
2848 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2849   Check(BI.getAddress()->getType()->isPointerTy(),
2850         "Indirectbr operand must have pointer type!", &BI);
2851   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2852     Check(BI.getDestination(i)->getType()->isLabelTy(),
2853           "Indirectbr destinations must all have pointer type!", &BI);
2854 
2855   visitTerminator(BI);
2856 }
2857 
2858 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2859   Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
2860   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2861   Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2862 
2863   verifyInlineAsmCall(CBI);
2864   visitTerminator(CBI);
2865 }
2866 
2867 void Verifier::visitSelectInst(SelectInst &SI) {
2868   Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2869                                         SI.getOperand(2)),
2870         "Invalid operands for select instruction!", &SI);
2871 
2872   Check(SI.getTrueValue()->getType() == SI.getType(),
2873         "Select values must have same type as select instruction!", &SI);
2874   visitInstruction(SI);
2875 }
2876 
2877 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2878 /// a pass, if any exist, it's an error.
2879 ///
2880 void Verifier::visitUserOp1(Instruction &I) {
2881   Check(false, "User-defined operators should not live outside of a pass!", &I);
2882 }
2883 
2884 void Verifier::visitTruncInst(TruncInst &I) {
2885   // Get the source and destination types
2886   Type *SrcTy = I.getOperand(0)->getType();
2887   Type *DestTy = I.getType();
2888 
2889   // Get the size of the types in bits, we'll need this later
2890   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2891   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2892 
2893   Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2894   Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2895   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2896         "trunc source and destination must both be a vector or neither", &I);
2897   Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2898 
2899   visitInstruction(I);
2900 }
2901 
2902 void Verifier::visitZExtInst(ZExtInst &I) {
2903   // Get the source and destination types
2904   Type *SrcTy = I.getOperand(0)->getType();
2905   Type *DestTy = I.getType();
2906 
2907   // Get the size of the types in bits, we'll need this later
2908   Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2909   Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2910   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2911         "zext source and destination must both be a vector or neither", &I);
2912   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2913   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2914 
2915   Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2916 
2917   visitInstruction(I);
2918 }
2919 
2920 void Verifier::visitSExtInst(SExtInst &I) {
2921   // Get the source and destination types
2922   Type *SrcTy = I.getOperand(0)->getType();
2923   Type *DestTy = I.getType();
2924 
2925   // Get the size of the types in bits, we'll need this later
2926   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2927   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2928 
2929   Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2930   Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2931   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2932         "sext source and destination must both be a vector or neither", &I);
2933   Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2934 
2935   visitInstruction(I);
2936 }
2937 
2938 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2939   // Get the source and destination types
2940   Type *SrcTy = I.getOperand(0)->getType();
2941   Type *DestTy = I.getType();
2942   // Get the size of the types in bits, we'll need this later
2943   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2944   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2945 
2946   Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2947   Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2948   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2949         "fptrunc source and destination must both be a vector or neither", &I);
2950   Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2951 
2952   visitInstruction(I);
2953 }
2954 
2955 void Verifier::visitFPExtInst(FPExtInst &I) {
2956   // Get the source and destination types
2957   Type *SrcTy = I.getOperand(0)->getType();
2958   Type *DestTy = I.getType();
2959 
2960   // Get the size of the types in bits, we'll need this later
2961   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2962   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2963 
2964   Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2965   Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2966   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2967         "fpext source and destination must both be a vector or neither", &I);
2968   Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2969 
2970   visitInstruction(I);
2971 }
2972 
2973 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2974   // Get the source and destination types
2975   Type *SrcTy = I.getOperand(0)->getType();
2976   Type *DestTy = I.getType();
2977 
2978   bool SrcVec = SrcTy->isVectorTy();
2979   bool DstVec = DestTy->isVectorTy();
2980 
2981   Check(SrcVec == DstVec,
2982         "UIToFP source and dest must both be vector or scalar", &I);
2983   Check(SrcTy->isIntOrIntVectorTy(),
2984         "UIToFP source must be integer or integer vector", &I);
2985   Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2986         &I);
2987 
2988   if (SrcVec && DstVec)
2989     Check(cast<VectorType>(SrcTy)->getElementCount() ==
2990               cast<VectorType>(DestTy)->getElementCount(),
2991           "UIToFP source and dest vector length mismatch", &I);
2992 
2993   visitInstruction(I);
2994 }
2995 
2996 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2997   // Get the source and destination types
2998   Type *SrcTy = I.getOperand(0)->getType();
2999   Type *DestTy = I.getType();
3000 
3001   bool SrcVec = SrcTy->isVectorTy();
3002   bool DstVec = DestTy->isVectorTy();
3003 
3004   Check(SrcVec == DstVec,
3005         "SIToFP source and dest must both be vector or scalar", &I);
3006   Check(SrcTy->isIntOrIntVectorTy(),
3007         "SIToFP source must be integer or integer vector", &I);
3008   Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3009         &I);
3010 
3011   if (SrcVec && DstVec)
3012     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3013               cast<VectorType>(DestTy)->getElementCount(),
3014           "SIToFP source and dest vector length mismatch", &I);
3015 
3016   visitInstruction(I);
3017 }
3018 
3019 void Verifier::visitFPToUIInst(FPToUIInst &I) {
3020   // Get the source and destination types
3021   Type *SrcTy = I.getOperand(0)->getType();
3022   Type *DestTy = I.getType();
3023 
3024   bool SrcVec = SrcTy->isVectorTy();
3025   bool DstVec = DestTy->isVectorTy();
3026 
3027   Check(SrcVec == DstVec,
3028         "FPToUI source and dest must both be vector or scalar", &I);
3029   Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3030   Check(DestTy->isIntOrIntVectorTy(),
3031         "FPToUI result must be integer or integer vector", &I);
3032 
3033   if (SrcVec && DstVec)
3034     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3035               cast<VectorType>(DestTy)->getElementCount(),
3036           "FPToUI source and dest vector length mismatch", &I);
3037 
3038   visitInstruction(I);
3039 }
3040 
3041 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3042   // Get the source and destination types
3043   Type *SrcTy = I.getOperand(0)->getType();
3044   Type *DestTy = I.getType();
3045 
3046   bool SrcVec = SrcTy->isVectorTy();
3047   bool DstVec = DestTy->isVectorTy();
3048 
3049   Check(SrcVec == DstVec,
3050         "FPToSI source and dest must both be vector or scalar", &I);
3051   Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3052   Check(DestTy->isIntOrIntVectorTy(),
3053         "FPToSI result must be integer or integer vector", &I);
3054 
3055   if (SrcVec && DstVec)
3056     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3057               cast<VectorType>(DestTy)->getElementCount(),
3058           "FPToSI source and dest vector length mismatch", &I);
3059 
3060   visitInstruction(I);
3061 }
3062 
3063 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3064   // Get the source and destination types
3065   Type *SrcTy = I.getOperand(0)->getType();
3066   Type *DestTy = I.getType();
3067 
3068   Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3069 
3070   Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3071   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3072         &I);
3073 
3074   if (SrcTy->isVectorTy()) {
3075     auto *VSrc = cast<VectorType>(SrcTy);
3076     auto *VDest = cast<VectorType>(DestTy);
3077     Check(VSrc->getElementCount() == VDest->getElementCount(),
3078           "PtrToInt Vector width mismatch", &I);
3079   }
3080 
3081   visitInstruction(I);
3082 }
3083 
3084 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3085   // Get the source and destination types
3086   Type *SrcTy = I.getOperand(0)->getType();
3087   Type *DestTy = I.getType();
3088 
3089   Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3090   Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3091 
3092   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3093         &I);
3094   if (SrcTy->isVectorTy()) {
3095     auto *VSrc = cast<VectorType>(SrcTy);
3096     auto *VDest = cast<VectorType>(DestTy);
3097     Check(VSrc->getElementCount() == VDest->getElementCount(),
3098           "IntToPtr Vector width mismatch", &I);
3099   }
3100   visitInstruction(I);
3101 }
3102 
3103 void Verifier::visitBitCastInst(BitCastInst &I) {
3104   Check(
3105       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3106       "Invalid bitcast", &I);
3107   visitInstruction(I);
3108 }
3109 
3110 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3111   Type *SrcTy = I.getOperand(0)->getType();
3112   Type *DestTy = I.getType();
3113 
3114   Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3115         &I);
3116   Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3117         &I);
3118   Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3119         "AddrSpaceCast must be between different address spaces", &I);
3120   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3121     Check(SrcVTy->getElementCount() ==
3122               cast<VectorType>(DestTy)->getElementCount(),
3123           "AddrSpaceCast vector pointer number of elements mismatch", &I);
3124   visitInstruction(I);
3125 }
3126 
3127 /// visitPHINode - Ensure that a PHI node is well formed.
3128 ///
3129 void Verifier::visitPHINode(PHINode &PN) {
3130   // Ensure that the PHI nodes are all grouped together at the top of the block.
3131   // This can be tested by checking whether the instruction before this is
3132   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3133   // then there is some other instruction before a PHI.
3134   Check(&PN == &PN.getParent()->front() ||
3135             isa<PHINode>(--BasicBlock::iterator(&PN)),
3136         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3137 
3138   // Check that a PHI doesn't yield a Token.
3139   Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3140 
3141   // Check that all of the values of the PHI node have the same type as the
3142   // result, and that the incoming blocks are really basic blocks.
3143   for (Value *IncValue : PN.incoming_values()) {
3144     Check(PN.getType() == IncValue->getType(),
3145           "PHI node operands are not the same type as the result!", &PN);
3146   }
3147 
3148   // All other PHI node constraints are checked in the visitBasicBlock method.
3149 
3150   visitInstruction(PN);
3151 }
3152 
3153 void Verifier::visitCallBase(CallBase &Call) {
3154   Check(Call.getCalledOperand()->getType()->isPointerTy(),
3155         "Called function must be a pointer!", Call);
3156   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3157 
3158   Check(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3159         "Called function is not the same type as the call!", Call);
3160 
3161   FunctionType *FTy = Call.getFunctionType();
3162 
3163   // Verify that the correct number of arguments are being passed
3164   if (FTy->isVarArg())
3165     Check(Call.arg_size() >= FTy->getNumParams(),
3166           "Called function requires more parameters than were provided!", Call);
3167   else
3168     Check(Call.arg_size() == FTy->getNumParams(),
3169           "Incorrect number of arguments passed to called function!", Call);
3170 
3171   // Verify that all arguments to the call match the function type.
3172   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3173     Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3174           "Call parameter type does not match function signature!",
3175           Call.getArgOperand(i), FTy->getParamType(i), Call);
3176 
3177   AttributeList Attrs = Call.getAttributes();
3178 
3179   Check(verifyAttributeCount(Attrs, Call.arg_size()),
3180         "Attribute after last parameter!", Call);
3181 
3182   auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3183     if (!Ty->isSized())
3184       return;
3185     Align ABIAlign = DL.getABITypeAlign(Ty);
3186     Align MaxAlign(ParamMaxAlignment);
3187     Check(ABIAlign <= MaxAlign,
3188           "Incorrect alignment of " + Message + " to called function!", Call);
3189   };
3190 
3191   VerifyTypeAlign(FTy->getReturnType(), "return type");
3192   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3193     Type *Ty = FTy->getParamType(i);
3194     VerifyTypeAlign(Ty, "argument passed");
3195   }
3196 
3197   Function *Callee =
3198       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3199   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3200   if (IsIntrinsic)
3201     Check(Callee->getValueType() == FTy,
3202           "Intrinsic called with incompatible signature", Call);
3203 
3204   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3205     // Don't allow speculatable on call sites, unless the underlying function
3206     // declaration is also speculatable.
3207     Check(Callee && Callee->isSpeculatable(),
3208           "speculatable attribute may not apply to call sites", Call);
3209   }
3210 
3211   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3212     Check(Call.getCalledFunction()->getIntrinsicID() ==
3213               Intrinsic::call_preallocated_arg,
3214           "preallocated as a call site attribute can only be on "
3215           "llvm.call.preallocated.arg");
3216   }
3217 
3218   // Verify call attributes.
3219   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3220 
3221   // Conservatively check the inalloca argument.
3222   // We have a bug if we can find that there is an underlying alloca without
3223   // inalloca.
3224   if (Call.hasInAllocaArgument()) {
3225     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3226     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3227       Check(AI->isUsedWithInAlloca(),
3228             "inalloca argument for call has mismatched alloca", AI, Call);
3229   }
3230 
3231   // For each argument of the callsite, if it has the swifterror argument,
3232   // make sure the underlying alloca/parameter it comes from has a swifterror as
3233   // well.
3234   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3235     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3236       Value *SwiftErrorArg = Call.getArgOperand(i);
3237       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3238         Check(AI->isSwiftError(),
3239               "swifterror argument for call has mismatched alloca", AI, Call);
3240         continue;
3241       }
3242       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3243       Check(ArgI, "swifterror argument should come from an alloca or parameter",
3244             SwiftErrorArg, Call);
3245       Check(ArgI->hasSwiftErrorAttr(),
3246             "swifterror argument for call has mismatched parameter", ArgI,
3247             Call);
3248     }
3249 
3250     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3251       // Don't allow immarg on call sites, unless the underlying declaration
3252       // also has the matching immarg.
3253       Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3254             "immarg may not apply only to call sites", Call.getArgOperand(i),
3255             Call);
3256     }
3257 
3258     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3259       Value *ArgVal = Call.getArgOperand(i);
3260       Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3261             "immarg operand has non-immediate parameter", ArgVal, Call);
3262     }
3263 
3264     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3265       Value *ArgVal = Call.getArgOperand(i);
3266       bool hasOB =
3267           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3268       bool isMustTail = Call.isMustTailCall();
3269       Check(hasOB != isMustTail,
3270             "preallocated operand either requires a preallocated bundle or "
3271             "the call to be musttail (but not both)",
3272             ArgVal, Call);
3273     }
3274   }
3275 
3276   if (FTy->isVarArg()) {
3277     // FIXME? is 'nest' even legal here?
3278     bool SawNest = false;
3279     bool SawReturned = false;
3280 
3281     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3282       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3283         SawNest = true;
3284       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3285         SawReturned = true;
3286     }
3287 
3288     // Check attributes on the varargs part.
3289     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3290       Type *Ty = Call.getArgOperand(Idx)->getType();
3291       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3292       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3293 
3294       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3295         Check(!SawNest, "More than one parameter has attribute nest!", Call);
3296         SawNest = true;
3297       }
3298 
3299       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3300         Check(!SawReturned, "More than one parameter has attribute returned!",
3301               Call);
3302         Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3303               "Incompatible argument and return types for 'returned' "
3304               "attribute",
3305               Call);
3306         SawReturned = true;
3307       }
3308 
3309       // Statepoint intrinsic is vararg but the wrapped function may be not.
3310       // Allow sret here and check the wrapped function in verifyStatepoint.
3311       if (!Call.getCalledFunction() ||
3312           Call.getCalledFunction()->getIntrinsicID() !=
3313               Intrinsic::experimental_gc_statepoint)
3314         Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3315               "Attribute 'sret' cannot be used for vararg call arguments!",
3316               Call);
3317 
3318       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3319         Check(Idx == Call.arg_size() - 1,
3320               "inalloca isn't on the last argument!", Call);
3321     }
3322   }
3323 
3324   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3325   if (!IsIntrinsic) {
3326     for (Type *ParamTy : FTy->params()) {
3327       Check(!ParamTy->isMetadataTy(),
3328             "Function has metadata parameter but isn't an intrinsic", Call);
3329       Check(!ParamTy->isTokenTy(),
3330             "Function has token parameter but isn't an intrinsic", Call);
3331     }
3332   }
3333 
3334   // Verify that indirect calls don't return tokens.
3335   if (!Call.getCalledFunction()) {
3336     Check(!FTy->getReturnType()->isTokenTy(),
3337           "Return type cannot be token for indirect call!");
3338     Check(!FTy->getReturnType()->isX86_AMXTy(),
3339           "Return type cannot be x86_amx for indirect call!");
3340   }
3341 
3342   if (Function *F = Call.getCalledFunction())
3343     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3344       visitIntrinsicCall(ID, Call);
3345 
3346   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3347   // most one "gc-transition", at most one "cfguardtarget", at most one
3348   // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3349   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3350        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3351        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3352        FoundPtrauthBundle = false,
3353        FoundAttachedCallBundle = false;
3354   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3355     OperandBundleUse BU = Call.getOperandBundleAt(i);
3356     uint32_t Tag = BU.getTagID();
3357     if (Tag == LLVMContext::OB_deopt) {
3358       Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3359       FoundDeoptBundle = true;
3360     } else if (Tag == LLVMContext::OB_gc_transition) {
3361       Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3362             Call);
3363       FoundGCTransitionBundle = true;
3364     } else if (Tag == LLVMContext::OB_funclet) {
3365       Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3366       FoundFuncletBundle = true;
3367       Check(BU.Inputs.size() == 1,
3368             "Expected exactly one funclet bundle operand", Call);
3369       Check(isa<FuncletPadInst>(BU.Inputs.front()),
3370             "Funclet bundle operands should correspond to a FuncletPadInst",
3371             Call);
3372     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3373       Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3374             Call);
3375       FoundCFGuardTargetBundle = true;
3376       Check(BU.Inputs.size() == 1,
3377             "Expected exactly one cfguardtarget bundle operand", Call);
3378     } else if (Tag == LLVMContext::OB_ptrauth) {
3379       Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3380       FoundPtrauthBundle = true;
3381       Check(BU.Inputs.size() == 2,
3382             "Expected exactly two ptrauth bundle operands", Call);
3383       Check(isa<ConstantInt>(BU.Inputs[0]) &&
3384                 BU.Inputs[0]->getType()->isIntegerTy(32),
3385             "Ptrauth bundle key operand must be an i32 constant", Call);
3386       Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3387             "Ptrauth bundle discriminator operand must be an i64", Call);
3388     } else if (Tag == LLVMContext::OB_preallocated) {
3389       Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3390             Call);
3391       FoundPreallocatedBundle = true;
3392       Check(BU.Inputs.size() == 1,
3393             "Expected exactly one preallocated bundle operand", Call);
3394       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3395       Check(Input &&
3396                 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3397             "\"preallocated\" argument must be a token from "
3398             "llvm.call.preallocated.setup",
3399             Call);
3400     } else if (Tag == LLVMContext::OB_gc_live) {
3401       Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3402       FoundGCLiveBundle = true;
3403     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3404       Check(!FoundAttachedCallBundle,
3405             "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3406       FoundAttachedCallBundle = true;
3407       verifyAttachedCallBundle(Call, BU);
3408     }
3409   }
3410 
3411   // Verify that callee and callsite agree on whether to use pointer auth.
3412   Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3413         "Direct call cannot have a ptrauth bundle", Call);
3414 
3415   // Verify that each inlinable callsite of a debug-info-bearing function in a
3416   // debug-info-bearing function has a debug location attached to it. Failure to
3417   // do so causes assertion failures when the inliner sets up inline scope info.
3418   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3419       Call.getCalledFunction()->getSubprogram())
3420     CheckDI(Call.getDebugLoc(),
3421             "inlinable function call in a function with "
3422             "debug info must have a !dbg location",
3423             Call);
3424 
3425   if (Call.isInlineAsm())
3426     verifyInlineAsmCall(Call);
3427 
3428   visitInstruction(Call);
3429 }
3430 
3431 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3432                                          StringRef Context) {
3433   Check(!Attrs.contains(Attribute::InAlloca),
3434         Twine("inalloca attribute not allowed in ") + Context);
3435   Check(!Attrs.contains(Attribute::InReg),
3436         Twine("inreg attribute not allowed in ") + Context);
3437   Check(!Attrs.contains(Attribute::SwiftError),
3438         Twine("swifterror attribute not allowed in ") + Context);
3439   Check(!Attrs.contains(Attribute::Preallocated),
3440         Twine("preallocated attribute not allowed in ") + Context);
3441   Check(!Attrs.contains(Attribute::ByRef),
3442         Twine("byref attribute not allowed in ") + Context);
3443 }
3444 
3445 /// Two types are "congruent" if they are identical, or if they are both pointer
3446 /// types with different pointee types and the same address space.
3447 static bool isTypeCongruent(Type *L, Type *R) {
3448   if (L == R)
3449     return true;
3450   PointerType *PL = dyn_cast<PointerType>(L);
3451   PointerType *PR = dyn_cast<PointerType>(R);
3452   if (!PL || !PR)
3453     return false;
3454   return PL->getAddressSpace() == PR->getAddressSpace();
3455 }
3456 
3457 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3458   static const Attribute::AttrKind ABIAttrs[] = {
3459       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3460       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3461       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3462       Attribute::ByRef};
3463   AttrBuilder Copy(C);
3464   for (auto AK : ABIAttrs) {
3465     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3466     if (Attr.isValid())
3467       Copy.addAttribute(Attr);
3468   }
3469 
3470   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3471   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3472       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3473        Attrs.hasParamAttr(I, Attribute::ByRef)))
3474     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3475   return Copy;
3476 }
3477 
3478 void Verifier::verifyMustTailCall(CallInst &CI) {
3479   Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3480 
3481   Function *F = CI.getParent()->getParent();
3482   FunctionType *CallerTy = F->getFunctionType();
3483   FunctionType *CalleeTy = CI.getFunctionType();
3484   Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3485         "cannot guarantee tail call due to mismatched varargs", &CI);
3486   Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3487         "cannot guarantee tail call due to mismatched return types", &CI);
3488 
3489   // - The calling conventions of the caller and callee must match.
3490   Check(F->getCallingConv() == CI.getCallingConv(),
3491         "cannot guarantee tail call due to mismatched calling conv", &CI);
3492 
3493   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3494   //   or a pointer bitcast followed by a ret instruction.
3495   // - The ret instruction must return the (possibly bitcasted) value
3496   //   produced by the call or void.
3497   Value *RetVal = &CI;
3498   Instruction *Next = CI.getNextNode();
3499 
3500   // Handle the optional bitcast.
3501   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3502     Check(BI->getOperand(0) == RetVal,
3503           "bitcast following musttail call must use the call", BI);
3504     RetVal = BI;
3505     Next = BI->getNextNode();
3506   }
3507 
3508   // Check the return.
3509   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3510   Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3511   Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3512             isa<UndefValue>(Ret->getReturnValue()),
3513         "musttail call result must be returned", Ret);
3514 
3515   AttributeList CallerAttrs = F->getAttributes();
3516   AttributeList CalleeAttrs = CI.getAttributes();
3517   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3518       CI.getCallingConv() == CallingConv::Tail) {
3519     StringRef CCName =
3520         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3521 
3522     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3523     //   are allowed in swifttailcc call
3524     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3525       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3526       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3527       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3528     }
3529     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3530       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3531       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3532       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3533     }
3534     // - Varargs functions are not allowed
3535     Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3536                                      " tail call for varargs function");
3537     return;
3538   }
3539 
3540   // - The caller and callee prototypes must match.  Pointer types of
3541   //   parameters or return types may differ in pointee type, but not
3542   //   address space.
3543   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3544     Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3545           "cannot guarantee tail call due to mismatched parameter counts", &CI);
3546     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3547       Check(
3548           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3549           "cannot guarantee tail call due to mismatched parameter types", &CI);
3550     }
3551   }
3552 
3553   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3554   //   returned, preallocated, and inalloca, must match.
3555   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3556     AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3557     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3558     Check(CallerABIAttrs == CalleeABIAttrs,
3559           "cannot guarantee tail call due to mismatched ABI impacting "
3560           "function attributes",
3561           &CI, CI.getOperand(I));
3562   }
3563 }
3564 
3565 void Verifier::visitCallInst(CallInst &CI) {
3566   visitCallBase(CI);
3567 
3568   if (CI.isMustTailCall())
3569     verifyMustTailCall(CI);
3570 }
3571 
3572 void Verifier::visitInvokeInst(InvokeInst &II) {
3573   visitCallBase(II);
3574 
3575   // Verify that the first non-PHI instruction of the unwind destination is an
3576   // exception handling instruction.
3577   Check(
3578       II.getUnwindDest()->isEHPad(),
3579       "The unwind destination does not have an exception handling instruction!",
3580       &II);
3581 
3582   visitTerminator(II);
3583 }
3584 
3585 /// visitUnaryOperator - Check the argument to the unary operator.
3586 ///
3587 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3588   Check(U.getType() == U.getOperand(0)->getType(),
3589         "Unary operators must have same type for"
3590         "operands and result!",
3591         &U);
3592 
3593   switch (U.getOpcode()) {
3594   // Check that floating-point arithmetic operators are only used with
3595   // floating-point operands.
3596   case Instruction::FNeg:
3597     Check(U.getType()->isFPOrFPVectorTy(),
3598           "FNeg operator only works with float types!", &U);
3599     break;
3600   default:
3601     llvm_unreachable("Unknown UnaryOperator opcode!");
3602   }
3603 
3604   visitInstruction(U);
3605 }
3606 
3607 /// visitBinaryOperator - Check that both arguments to the binary operator are
3608 /// of the same type!
3609 ///
3610 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3611   Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3612         "Both operands to a binary operator are not of the same type!", &B);
3613 
3614   switch (B.getOpcode()) {
3615   // Check that integer arithmetic operators are only used with
3616   // integral operands.
3617   case Instruction::Add:
3618   case Instruction::Sub:
3619   case Instruction::Mul:
3620   case Instruction::SDiv:
3621   case Instruction::UDiv:
3622   case Instruction::SRem:
3623   case Instruction::URem:
3624     Check(B.getType()->isIntOrIntVectorTy(),
3625           "Integer arithmetic operators only work with integral types!", &B);
3626     Check(B.getType() == B.getOperand(0)->getType(),
3627           "Integer arithmetic operators must have same type "
3628           "for operands and result!",
3629           &B);
3630     break;
3631   // Check that floating-point arithmetic operators are only used with
3632   // floating-point operands.
3633   case Instruction::FAdd:
3634   case Instruction::FSub:
3635   case Instruction::FMul:
3636   case Instruction::FDiv:
3637   case Instruction::FRem:
3638     Check(B.getType()->isFPOrFPVectorTy(),
3639           "Floating-point arithmetic operators only work with "
3640           "floating-point types!",
3641           &B);
3642     Check(B.getType() == B.getOperand(0)->getType(),
3643           "Floating-point arithmetic operators must have same type "
3644           "for operands and result!",
3645           &B);
3646     break;
3647   // Check that logical operators are only used with integral operands.
3648   case Instruction::And:
3649   case Instruction::Or:
3650   case Instruction::Xor:
3651     Check(B.getType()->isIntOrIntVectorTy(),
3652           "Logical operators only work with integral types!", &B);
3653     Check(B.getType() == B.getOperand(0)->getType(),
3654           "Logical operators must have same type for operands and result!", &B);
3655     break;
3656   case Instruction::Shl:
3657   case Instruction::LShr:
3658   case Instruction::AShr:
3659     Check(B.getType()->isIntOrIntVectorTy(),
3660           "Shifts only work with integral types!", &B);
3661     Check(B.getType() == B.getOperand(0)->getType(),
3662           "Shift return type must be same as operands!", &B);
3663     break;
3664   default:
3665     llvm_unreachable("Unknown BinaryOperator opcode!");
3666   }
3667 
3668   visitInstruction(B);
3669 }
3670 
3671 void Verifier::visitICmpInst(ICmpInst &IC) {
3672   // Check that the operands are the same type
3673   Type *Op0Ty = IC.getOperand(0)->getType();
3674   Type *Op1Ty = IC.getOperand(1)->getType();
3675   Check(Op0Ty == Op1Ty,
3676         "Both operands to ICmp instruction are not of the same type!", &IC);
3677   // Check that the operands are the right type
3678   Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3679         "Invalid operand types for ICmp instruction", &IC);
3680   // Check that the predicate is valid.
3681   Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3682 
3683   visitInstruction(IC);
3684 }
3685 
3686 void Verifier::visitFCmpInst(FCmpInst &FC) {
3687   // Check that the operands are the same type
3688   Type *Op0Ty = FC.getOperand(0)->getType();
3689   Type *Op1Ty = FC.getOperand(1)->getType();
3690   Check(Op0Ty == Op1Ty,
3691         "Both operands to FCmp instruction are not of the same type!", &FC);
3692   // Check that the operands are the right type
3693   Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3694         &FC);
3695   // Check that the predicate is valid.
3696   Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3697 
3698   visitInstruction(FC);
3699 }
3700 
3701 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3702   Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3703         "Invalid extractelement operands!", &EI);
3704   visitInstruction(EI);
3705 }
3706 
3707 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3708   Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3709                                            IE.getOperand(2)),
3710         "Invalid insertelement operands!", &IE);
3711   visitInstruction(IE);
3712 }
3713 
3714 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3715   Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3716                                            SV.getShuffleMask()),
3717         "Invalid shufflevector operands!", &SV);
3718   visitInstruction(SV);
3719 }
3720 
3721 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3722   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3723 
3724   Check(isa<PointerType>(TargetTy),
3725         "GEP base pointer is not a vector or a vector of pointers", &GEP);
3726   Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3727 
3728   SmallVector<Value *, 16> Idxs(GEP.indices());
3729   Check(
3730       all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
3731       "GEP indexes must be integers", &GEP);
3732   Type *ElTy =
3733       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3734   Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3735 
3736   Check(GEP.getType()->isPtrOrPtrVectorTy() &&
3737             GEP.getResultElementType() == ElTy,
3738         "GEP is not of right type for indices!", &GEP, ElTy);
3739 
3740   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3741     // Additional checks for vector GEPs.
3742     ElementCount GEPWidth = GEPVTy->getElementCount();
3743     if (GEP.getPointerOperandType()->isVectorTy())
3744       Check(
3745           GEPWidth ==
3746               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3747           "Vector GEP result width doesn't match operand's", &GEP);
3748     for (Value *Idx : Idxs) {
3749       Type *IndexTy = Idx->getType();
3750       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3751         ElementCount IndexWidth = IndexVTy->getElementCount();
3752         Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3753       }
3754       Check(IndexTy->isIntOrIntVectorTy(),
3755             "All GEP indices should be of integer type");
3756     }
3757   }
3758 
3759   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3760     Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
3761           "GEP address space doesn't match type", &GEP);
3762   }
3763 
3764   visitInstruction(GEP);
3765 }
3766 
3767 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3768   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3769 }
3770 
3771 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3772   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3773          "precondition violation");
3774 
3775   unsigned NumOperands = Range->getNumOperands();
3776   Check(NumOperands % 2 == 0, "Unfinished range!", Range);
3777   unsigned NumRanges = NumOperands / 2;
3778   Check(NumRanges >= 1, "It should have at least one range!", Range);
3779 
3780   ConstantRange LastRange(1, true); // Dummy initial value
3781   for (unsigned i = 0; i < NumRanges; ++i) {
3782     ConstantInt *Low =
3783         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3784     Check(Low, "The lower limit must be an integer!", Low);
3785     ConstantInt *High =
3786         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3787     Check(High, "The upper limit must be an integer!", High);
3788     Check(High->getType() == Low->getType() && High->getType() == Ty,
3789           "Range types must match instruction type!", &I);
3790 
3791     APInt HighV = High->getValue();
3792     APInt LowV = Low->getValue();
3793     ConstantRange CurRange(LowV, HighV);
3794     Check(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3795           "Range must not be empty!", Range);
3796     if (i != 0) {
3797       Check(CurRange.intersectWith(LastRange).isEmptySet(),
3798             "Intervals are overlapping", Range);
3799       Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3800             Range);
3801       Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3802             Range);
3803     }
3804     LastRange = ConstantRange(LowV, HighV);
3805   }
3806   if (NumRanges > 2) {
3807     APInt FirstLow =
3808         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3809     APInt FirstHigh =
3810         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3811     ConstantRange FirstRange(FirstLow, FirstHigh);
3812     Check(FirstRange.intersectWith(LastRange).isEmptySet(),
3813           "Intervals are overlapping", Range);
3814     Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3815           Range);
3816   }
3817 }
3818 
3819 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3820   unsigned Size = DL.getTypeSizeInBits(Ty);
3821   Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3822   Check(!(Size & (Size - 1)),
3823         "atomic memory access' operand must have a power-of-two size", Ty, I);
3824 }
3825 
3826 void Verifier::visitLoadInst(LoadInst &LI) {
3827   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3828   Check(PTy, "Load operand must be a pointer.", &LI);
3829   Type *ElTy = LI.getType();
3830   if (MaybeAlign A = LI.getAlign()) {
3831     Check(A->value() <= Value::MaximumAlignment,
3832           "huge alignment values are unsupported", &LI);
3833   }
3834   Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3835   if (LI.isAtomic()) {
3836     Check(LI.getOrdering() != AtomicOrdering::Release &&
3837               LI.getOrdering() != AtomicOrdering::AcquireRelease,
3838           "Load cannot have Release ordering", &LI);
3839     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3840           "atomic load operand must have integer, pointer, or floating point "
3841           "type!",
3842           ElTy, &LI);
3843     checkAtomicMemAccessSize(ElTy, &LI);
3844   } else {
3845     Check(LI.getSyncScopeID() == SyncScope::System,
3846           "Non-atomic load cannot have SynchronizationScope specified", &LI);
3847   }
3848 
3849   visitInstruction(LI);
3850 }
3851 
3852 void Verifier::visitStoreInst(StoreInst &SI) {
3853   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3854   Check(PTy, "Store operand must be a pointer.", &SI);
3855   Type *ElTy = SI.getOperand(0)->getType();
3856   Check(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3857         "Stored value type does not match pointer operand type!", &SI, ElTy);
3858   if (MaybeAlign A = SI.getAlign()) {
3859     Check(A->value() <= Value::MaximumAlignment,
3860           "huge alignment values are unsupported", &SI);
3861   }
3862   Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3863   if (SI.isAtomic()) {
3864     Check(SI.getOrdering() != AtomicOrdering::Acquire &&
3865               SI.getOrdering() != AtomicOrdering::AcquireRelease,
3866           "Store cannot have Acquire ordering", &SI);
3867     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3868           "atomic store operand must have integer, pointer, or floating point "
3869           "type!",
3870           ElTy, &SI);
3871     checkAtomicMemAccessSize(ElTy, &SI);
3872   } else {
3873     Check(SI.getSyncScopeID() == SyncScope::System,
3874           "Non-atomic store cannot have SynchronizationScope specified", &SI);
3875   }
3876   visitInstruction(SI);
3877 }
3878 
3879 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3880 void Verifier::verifySwiftErrorCall(CallBase &Call,
3881                                     const Value *SwiftErrorVal) {
3882   for (const auto &I : llvm::enumerate(Call.args())) {
3883     if (I.value() == SwiftErrorVal) {
3884       Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3885             "swifterror value when used in a callsite should be marked "
3886             "with swifterror attribute",
3887             SwiftErrorVal, Call);
3888     }
3889   }
3890 }
3891 
3892 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3893   // Check that swifterror value is only used by loads, stores, or as
3894   // a swifterror argument.
3895   for (const User *U : SwiftErrorVal->users()) {
3896     Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3897               isa<InvokeInst>(U),
3898           "swifterror value can only be loaded and stored from, or "
3899           "as a swifterror argument!",
3900           SwiftErrorVal, U);
3901     // If it is used by a store, check it is the second operand.
3902     if (auto StoreI = dyn_cast<StoreInst>(U))
3903       Check(StoreI->getOperand(1) == SwiftErrorVal,
3904             "swifterror value should be the second operand when used "
3905             "by stores",
3906             SwiftErrorVal, U);
3907     if (auto *Call = dyn_cast<CallBase>(U))
3908       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3909   }
3910 }
3911 
3912 void Verifier::visitAllocaInst(AllocaInst &AI) {
3913   SmallPtrSet<Type*, 4> Visited;
3914   Check(AI.getAllocatedType()->isSized(&Visited),
3915         "Cannot allocate unsized type", &AI);
3916   Check(AI.getArraySize()->getType()->isIntegerTy(),
3917         "Alloca array size must have integer type", &AI);
3918   if (MaybeAlign A = AI.getAlign()) {
3919     Check(A->value() <= Value::MaximumAlignment,
3920           "huge alignment values are unsupported", &AI);
3921   }
3922 
3923   if (AI.isSwiftError()) {
3924     Check(AI.getAllocatedType()->isPointerTy(),
3925           "swifterror alloca must have pointer type", &AI);
3926     Check(!AI.isArrayAllocation(),
3927           "swifterror alloca must not be array allocation", &AI);
3928     verifySwiftErrorValue(&AI);
3929   }
3930 
3931   visitInstruction(AI);
3932 }
3933 
3934 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3935   Type *ElTy = CXI.getOperand(1)->getType();
3936   Check(ElTy->isIntOrPtrTy(),
3937         "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3938   checkAtomicMemAccessSize(ElTy, &CXI);
3939   visitInstruction(CXI);
3940 }
3941 
3942 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3943   Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
3944         "atomicrmw instructions cannot be unordered.", &RMWI);
3945   auto Op = RMWI.getOperation();
3946   Type *ElTy = RMWI.getOperand(1)->getType();
3947   if (Op == AtomicRMWInst::Xchg) {
3948     Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
3949               ElTy->isPointerTy(),
3950           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
3951               " operand must have integer or floating point type!",
3952           &RMWI, ElTy);
3953   } else if (AtomicRMWInst::isFPOperation(Op)) {
3954     Check(ElTy->isFloatingPointTy(),
3955           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
3956               " operand must have floating point type!",
3957           &RMWI, ElTy);
3958   } else {
3959     Check(ElTy->isIntegerTy(),
3960           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
3961               " operand must have integer type!",
3962           &RMWI, ElTy);
3963   }
3964   checkAtomicMemAccessSize(ElTy, &RMWI);
3965   Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3966         "Invalid binary operation!", &RMWI);
3967   visitInstruction(RMWI);
3968 }
3969 
3970 void Verifier::visitFenceInst(FenceInst &FI) {
3971   const AtomicOrdering Ordering = FI.getOrdering();
3972   Check(Ordering == AtomicOrdering::Acquire ||
3973             Ordering == AtomicOrdering::Release ||
3974             Ordering == AtomicOrdering::AcquireRelease ||
3975             Ordering == AtomicOrdering::SequentiallyConsistent,
3976         "fence instructions may only have acquire, release, acq_rel, or "
3977         "seq_cst ordering.",
3978         &FI);
3979   visitInstruction(FI);
3980 }
3981 
3982 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3983   Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3984                                          EVI.getIndices()) == EVI.getType(),
3985         "Invalid ExtractValueInst operands!", &EVI);
3986 
3987   visitInstruction(EVI);
3988 }
3989 
3990 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3991   Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3992                                          IVI.getIndices()) ==
3993             IVI.getOperand(1)->getType(),
3994         "Invalid InsertValueInst operands!", &IVI);
3995 
3996   visitInstruction(IVI);
3997 }
3998 
3999 static Value *getParentPad(Value *EHPad) {
4000   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4001     return FPI->getParentPad();
4002 
4003   return cast<CatchSwitchInst>(EHPad)->getParentPad();
4004 }
4005 
4006 void Verifier::visitEHPadPredecessors(Instruction &I) {
4007   assert(I.isEHPad());
4008 
4009   BasicBlock *BB = I.getParent();
4010   Function *F = BB->getParent();
4011 
4012   Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4013 
4014   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4015     // The landingpad instruction defines its parent as a landing pad block. The
4016     // landing pad block may be branched to only by the unwind edge of an
4017     // invoke.
4018     for (BasicBlock *PredBB : predecessors(BB)) {
4019       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4020       Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4021             "Block containing LandingPadInst must be jumped to "
4022             "only by the unwind edge of an invoke.",
4023             LPI);
4024     }
4025     return;
4026   }
4027   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4028     if (!pred_empty(BB))
4029       Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4030             "Block containg CatchPadInst must be jumped to "
4031             "only by its catchswitch.",
4032             CPI);
4033     Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4034           "Catchswitch cannot unwind to one of its catchpads",
4035           CPI->getCatchSwitch(), CPI);
4036     return;
4037   }
4038 
4039   // Verify that each pred has a legal terminator with a legal to/from EH
4040   // pad relationship.
4041   Instruction *ToPad = &I;
4042   Value *ToPadParent = getParentPad(ToPad);
4043   for (BasicBlock *PredBB : predecessors(BB)) {
4044     Instruction *TI = PredBB->getTerminator();
4045     Value *FromPad;
4046     if (auto *II = dyn_cast<InvokeInst>(TI)) {
4047       Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4048             "EH pad must be jumped to via an unwind edge", ToPad, II);
4049       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4050         FromPad = Bundle->Inputs[0];
4051       else
4052         FromPad = ConstantTokenNone::get(II->getContext());
4053     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4054       FromPad = CRI->getOperand(0);
4055       Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4056     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4057       FromPad = CSI;
4058     } else {
4059       Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4060     }
4061 
4062     // The edge may exit from zero or more nested pads.
4063     SmallSet<Value *, 8> Seen;
4064     for (;; FromPad = getParentPad(FromPad)) {
4065       Check(FromPad != ToPad,
4066             "EH pad cannot handle exceptions raised within it", FromPad, TI);
4067       if (FromPad == ToPadParent) {
4068         // This is a legal unwind edge.
4069         break;
4070       }
4071       Check(!isa<ConstantTokenNone>(FromPad),
4072             "A single unwind edge may only enter one EH pad", TI);
4073       Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4074             FromPad);
4075 
4076       // This will be diagnosed on the corresponding instruction already. We
4077       // need the extra check here to make sure getParentPad() works.
4078       Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4079             "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4080     }
4081   }
4082 }
4083 
4084 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4085   // The landingpad instruction is ill-formed if it doesn't have any clauses and
4086   // isn't a cleanup.
4087   Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4088         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4089 
4090   visitEHPadPredecessors(LPI);
4091 
4092   if (!LandingPadResultTy)
4093     LandingPadResultTy = LPI.getType();
4094   else
4095     Check(LandingPadResultTy == LPI.getType(),
4096           "The landingpad instruction should have a consistent result type "
4097           "inside a function.",
4098           &LPI);
4099 
4100   Function *F = LPI.getParent()->getParent();
4101   Check(F->hasPersonalityFn(),
4102         "LandingPadInst needs to be in a function with a personality.", &LPI);
4103 
4104   // The landingpad instruction must be the first non-PHI instruction in the
4105   // block.
4106   Check(LPI.getParent()->getLandingPadInst() == &LPI,
4107         "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4108 
4109   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4110     Constant *Clause = LPI.getClause(i);
4111     if (LPI.isCatch(i)) {
4112       Check(isa<PointerType>(Clause->getType()),
4113             "Catch operand does not have pointer type!", &LPI);
4114     } else {
4115       Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4116       Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4117             "Filter operand is not an array of constants!", &LPI);
4118     }
4119   }
4120 
4121   visitInstruction(LPI);
4122 }
4123 
4124 void Verifier::visitResumeInst(ResumeInst &RI) {
4125   Check(RI.getFunction()->hasPersonalityFn(),
4126         "ResumeInst needs to be in a function with a personality.", &RI);
4127 
4128   if (!LandingPadResultTy)
4129     LandingPadResultTy = RI.getValue()->getType();
4130   else
4131     Check(LandingPadResultTy == RI.getValue()->getType(),
4132           "The resume instruction should have a consistent result type "
4133           "inside a function.",
4134           &RI);
4135 
4136   visitTerminator(RI);
4137 }
4138 
4139 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4140   BasicBlock *BB = CPI.getParent();
4141 
4142   Function *F = BB->getParent();
4143   Check(F->hasPersonalityFn(),
4144         "CatchPadInst needs to be in a function with a personality.", &CPI);
4145 
4146   Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4147         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4148         CPI.getParentPad());
4149 
4150   // The catchpad instruction must be the first non-PHI instruction in the
4151   // block.
4152   Check(BB->getFirstNonPHI() == &CPI,
4153         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4154 
4155   visitEHPadPredecessors(CPI);
4156   visitFuncletPadInst(CPI);
4157 }
4158 
4159 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4160   Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4161         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4162         CatchReturn.getOperand(0));
4163 
4164   visitTerminator(CatchReturn);
4165 }
4166 
4167 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4168   BasicBlock *BB = CPI.getParent();
4169 
4170   Function *F = BB->getParent();
4171   Check(F->hasPersonalityFn(),
4172         "CleanupPadInst needs to be in a function with a personality.", &CPI);
4173 
4174   // The cleanuppad instruction must be the first non-PHI instruction in the
4175   // block.
4176   Check(BB->getFirstNonPHI() == &CPI,
4177         "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4178 
4179   auto *ParentPad = CPI.getParentPad();
4180   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4181         "CleanupPadInst has an invalid parent.", &CPI);
4182 
4183   visitEHPadPredecessors(CPI);
4184   visitFuncletPadInst(CPI);
4185 }
4186 
4187 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4188   User *FirstUser = nullptr;
4189   Value *FirstUnwindPad = nullptr;
4190   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4191   SmallSet<FuncletPadInst *, 8> Seen;
4192 
4193   while (!Worklist.empty()) {
4194     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4195     Check(Seen.insert(CurrentPad).second,
4196           "FuncletPadInst must not be nested within itself", CurrentPad);
4197     Value *UnresolvedAncestorPad = nullptr;
4198     for (User *U : CurrentPad->users()) {
4199       BasicBlock *UnwindDest;
4200       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4201         UnwindDest = CRI->getUnwindDest();
4202       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4203         // We allow catchswitch unwind to caller to nest
4204         // within an outer pad that unwinds somewhere else,
4205         // because catchswitch doesn't have a nounwind variant.
4206         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4207         if (CSI->unwindsToCaller())
4208           continue;
4209         UnwindDest = CSI->getUnwindDest();
4210       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4211         UnwindDest = II->getUnwindDest();
4212       } else if (isa<CallInst>(U)) {
4213         // Calls which don't unwind may be found inside funclet
4214         // pads that unwind somewhere else.  We don't *require*
4215         // such calls to be annotated nounwind.
4216         continue;
4217       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4218         // The unwind dest for a cleanup can only be found by
4219         // recursive search.  Add it to the worklist, and we'll
4220         // search for its first use that determines where it unwinds.
4221         Worklist.push_back(CPI);
4222         continue;
4223       } else {
4224         Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4225         continue;
4226       }
4227 
4228       Value *UnwindPad;
4229       bool ExitsFPI;
4230       if (UnwindDest) {
4231         UnwindPad = UnwindDest->getFirstNonPHI();
4232         if (!cast<Instruction>(UnwindPad)->isEHPad())
4233           continue;
4234         Value *UnwindParent = getParentPad(UnwindPad);
4235         // Ignore unwind edges that don't exit CurrentPad.
4236         if (UnwindParent == CurrentPad)
4237           continue;
4238         // Determine whether the original funclet pad is exited,
4239         // and if we are scanning nested pads determine how many
4240         // of them are exited so we can stop searching their
4241         // children.
4242         Value *ExitedPad = CurrentPad;
4243         ExitsFPI = false;
4244         do {
4245           if (ExitedPad == &FPI) {
4246             ExitsFPI = true;
4247             // Now we can resolve any ancestors of CurrentPad up to
4248             // FPI, but not including FPI since we need to make sure
4249             // to check all direct users of FPI for consistency.
4250             UnresolvedAncestorPad = &FPI;
4251             break;
4252           }
4253           Value *ExitedParent = getParentPad(ExitedPad);
4254           if (ExitedParent == UnwindParent) {
4255             // ExitedPad is the ancestor-most pad which this unwind
4256             // edge exits, so we can resolve up to it, meaning that
4257             // ExitedParent is the first ancestor still unresolved.
4258             UnresolvedAncestorPad = ExitedParent;
4259             break;
4260           }
4261           ExitedPad = ExitedParent;
4262         } while (!isa<ConstantTokenNone>(ExitedPad));
4263       } else {
4264         // Unwinding to caller exits all pads.
4265         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4266         ExitsFPI = true;
4267         UnresolvedAncestorPad = &FPI;
4268       }
4269 
4270       if (ExitsFPI) {
4271         // This unwind edge exits FPI.  Make sure it agrees with other
4272         // such edges.
4273         if (FirstUser) {
4274           Check(UnwindPad == FirstUnwindPad,
4275                 "Unwind edges out of a funclet "
4276                 "pad must have the same unwind "
4277                 "dest",
4278                 &FPI, U, FirstUser);
4279         } else {
4280           FirstUser = U;
4281           FirstUnwindPad = UnwindPad;
4282           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4283           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4284               getParentPad(UnwindPad) == getParentPad(&FPI))
4285             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4286         }
4287       }
4288       // Make sure we visit all uses of FPI, but for nested pads stop as
4289       // soon as we know where they unwind to.
4290       if (CurrentPad != &FPI)
4291         break;
4292     }
4293     if (UnresolvedAncestorPad) {
4294       if (CurrentPad == UnresolvedAncestorPad) {
4295         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4296         // we've found an unwind edge that exits it, because we need to verify
4297         // all direct uses of FPI.
4298         assert(CurrentPad == &FPI);
4299         continue;
4300       }
4301       // Pop off the worklist any nested pads that we've found an unwind
4302       // destination for.  The pads on the worklist are the uncles,
4303       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4304       // for all ancestors of CurrentPad up to but not including
4305       // UnresolvedAncestorPad.
4306       Value *ResolvedPad = CurrentPad;
4307       while (!Worklist.empty()) {
4308         Value *UnclePad = Worklist.back();
4309         Value *AncestorPad = getParentPad(UnclePad);
4310         // Walk ResolvedPad up the ancestor list until we either find the
4311         // uncle's parent or the last resolved ancestor.
4312         while (ResolvedPad != AncestorPad) {
4313           Value *ResolvedParent = getParentPad(ResolvedPad);
4314           if (ResolvedParent == UnresolvedAncestorPad) {
4315             break;
4316           }
4317           ResolvedPad = ResolvedParent;
4318         }
4319         // If the resolved ancestor search didn't find the uncle's parent,
4320         // then the uncle is not yet resolved.
4321         if (ResolvedPad != AncestorPad)
4322           break;
4323         // This uncle is resolved, so pop it from the worklist.
4324         Worklist.pop_back();
4325       }
4326     }
4327   }
4328 
4329   if (FirstUnwindPad) {
4330     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4331       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4332       Value *SwitchUnwindPad;
4333       if (SwitchUnwindDest)
4334         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4335       else
4336         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4337       Check(SwitchUnwindPad == FirstUnwindPad,
4338             "Unwind edges out of a catch must have the same unwind dest as "
4339             "the parent catchswitch",
4340             &FPI, FirstUser, CatchSwitch);
4341     }
4342   }
4343 
4344   visitInstruction(FPI);
4345 }
4346 
4347 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4348   BasicBlock *BB = CatchSwitch.getParent();
4349 
4350   Function *F = BB->getParent();
4351   Check(F->hasPersonalityFn(),
4352         "CatchSwitchInst needs to be in a function with a personality.",
4353         &CatchSwitch);
4354 
4355   // The catchswitch instruction must be the first non-PHI instruction in the
4356   // block.
4357   Check(BB->getFirstNonPHI() == &CatchSwitch,
4358         "CatchSwitchInst not the first non-PHI instruction in the block.",
4359         &CatchSwitch);
4360 
4361   auto *ParentPad = CatchSwitch.getParentPad();
4362   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4363         "CatchSwitchInst has an invalid parent.", ParentPad);
4364 
4365   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4366     Instruction *I = UnwindDest->getFirstNonPHI();
4367     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4368           "CatchSwitchInst must unwind to an EH block which is not a "
4369           "landingpad.",
4370           &CatchSwitch);
4371 
4372     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4373     if (getParentPad(I) == ParentPad)
4374       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4375   }
4376 
4377   Check(CatchSwitch.getNumHandlers() != 0,
4378         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4379 
4380   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4381     Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4382           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4383   }
4384 
4385   visitEHPadPredecessors(CatchSwitch);
4386   visitTerminator(CatchSwitch);
4387 }
4388 
4389 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4390   Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4391         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4392         CRI.getOperand(0));
4393 
4394   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4395     Instruction *I = UnwindDest->getFirstNonPHI();
4396     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4397           "CleanupReturnInst must unwind to an EH block which is not a "
4398           "landingpad.",
4399           &CRI);
4400   }
4401 
4402   visitTerminator(CRI);
4403 }
4404 
4405 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4406   Instruction *Op = cast<Instruction>(I.getOperand(i));
4407   // If the we have an invalid invoke, don't try to compute the dominance.
4408   // We already reject it in the invoke specific checks and the dominance
4409   // computation doesn't handle multiple edges.
4410   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4411     if (II->getNormalDest() == II->getUnwindDest())
4412       return;
4413   }
4414 
4415   // Quick check whether the def has already been encountered in the same block.
4416   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4417   // uses are defined to happen on the incoming edge, not at the instruction.
4418   //
4419   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4420   // wrapping an SSA value, assert that we've already encountered it.  See
4421   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4422   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4423     return;
4424 
4425   const Use &U = I.getOperandUse(i);
4426   Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4427 }
4428 
4429 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4430   Check(I.getType()->isPointerTy(),
4431         "dereferenceable, dereferenceable_or_null "
4432         "apply only to pointer types",
4433         &I);
4434   Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4435         "dereferenceable, dereferenceable_or_null apply only to load"
4436         " and inttoptr instructions, use attributes for calls or invokes",
4437         &I);
4438   Check(MD->getNumOperands() == 1,
4439         "dereferenceable, dereferenceable_or_null "
4440         "take one operand!",
4441         &I);
4442   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4443   Check(CI && CI->getType()->isIntegerTy(64),
4444         "dereferenceable, "
4445         "dereferenceable_or_null metadata value must be an i64!",
4446         &I);
4447 }
4448 
4449 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4450   Check(MD->getNumOperands() >= 2,
4451         "!prof annotations should have no less than 2 operands", MD);
4452 
4453   // Check first operand.
4454   Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4455   Check(isa<MDString>(MD->getOperand(0)),
4456         "expected string with name of the !prof annotation", MD);
4457   MDString *MDS = cast<MDString>(MD->getOperand(0));
4458   StringRef ProfName = MDS->getString();
4459 
4460   // Check consistency of !prof branch_weights metadata.
4461   if (ProfName.equals("branch_weights")) {
4462     if (isa<InvokeInst>(&I)) {
4463       Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4464             "Wrong number of InvokeInst branch_weights operands", MD);
4465     } else {
4466       unsigned ExpectedNumOperands = 0;
4467       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4468         ExpectedNumOperands = BI->getNumSuccessors();
4469       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4470         ExpectedNumOperands = SI->getNumSuccessors();
4471       else if (isa<CallInst>(&I))
4472         ExpectedNumOperands = 1;
4473       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4474         ExpectedNumOperands = IBI->getNumDestinations();
4475       else if (isa<SelectInst>(&I))
4476         ExpectedNumOperands = 2;
4477       else
4478         CheckFailed("!prof branch_weights are not allowed for this instruction",
4479                     MD);
4480 
4481       Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4482             "Wrong number of operands", MD);
4483     }
4484     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4485       auto &MDO = MD->getOperand(i);
4486       Check(MDO, "second operand should not be null", MD);
4487       Check(mdconst::dyn_extract<ConstantInt>(MDO),
4488             "!prof brunch_weights operand is not a const int");
4489     }
4490   }
4491 }
4492 
4493 void Verifier::visitCallStackMetadata(MDNode *MD) {
4494   // Call stack metadata should consist of a list of at least 1 constant int
4495   // (representing a hash of the location).
4496   Check(MD->getNumOperands() >= 1,
4497         "call stack metadata should have at least 1 operand", MD);
4498 
4499   for (const auto &Op : MD->operands())
4500     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4501           "call stack metadata operand should be constant integer", Op);
4502 }
4503 
4504 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4505   Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4506   Check(MD->getNumOperands() >= 1,
4507         "!memprof annotations should have at least 1 metadata operand "
4508         "(MemInfoBlock)",
4509         MD);
4510 
4511   // Check each MIB
4512   for (auto &MIBOp : MD->operands()) {
4513     MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4514     // The first operand of an MIB should be the call stack metadata.
4515     // There rest of the operands should be MDString tags, and there should be
4516     // at least one.
4517     Check(MIB->getNumOperands() >= 2,
4518           "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4519 
4520     // Check call stack metadata (first operand).
4521     Check(MIB->getOperand(0) != nullptr,
4522           "!memprof MemInfoBlock first operand should not be null", MIB);
4523     Check(isa<MDNode>(MIB->getOperand(0)),
4524           "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4525     MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
4526     visitCallStackMetadata(StackMD);
4527 
4528     // Check that remaining operands are MDString.
4529     Check(std::all_of(MIB->op_begin() + 1, MIB->op_end(),
4530                       [](const MDOperand &Op) { return isa<MDString>(Op); }),
4531           "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
4532   }
4533 }
4534 
4535 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4536   Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4537   // Verify the partial callstack annotated from memprof profiles. This callsite
4538   // is a part of a profiled allocation callstack.
4539   visitCallStackMetadata(MD);
4540 }
4541 
4542 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4543   Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4544   Check(Annotation->getNumOperands() >= 1,
4545         "annotation must have at least one operand");
4546   for (const MDOperand &Op : Annotation->operands())
4547     Check(isa<MDString>(Op.get()), "operands must be strings");
4548 }
4549 
4550 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4551   unsigned NumOps = MD->getNumOperands();
4552   Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4553         MD);
4554   Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4555         "first scope operand must be self-referential or string", MD);
4556   if (NumOps == 3)
4557     Check(isa<MDString>(MD->getOperand(2)),
4558           "third scope operand must be string (if used)", MD);
4559 
4560   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4561   Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4562 
4563   unsigned NumDomainOps = Domain->getNumOperands();
4564   Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4565         "domain must have one or two operands", Domain);
4566   Check(Domain->getOperand(0).get() == Domain ||
4567             isa<MDString>(Domain->getOperand(0)),
4568         "first domain operand must be self-referential or string", Domain);
4569   if (NumDomainOps == 2)
4570     Check(isa<MDString>(Domain->getOperand(1)),
4571           "second domain operand must be string (if used)", Domain);
4572 }
4573 
4574 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4575   for (const MDOperand &Op : MD->operands()) {
4576     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4577     Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4578     visitAliasScopeMetadata(OpMD);
4579   }
4580 }
4581 
4582 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4583   auto IsValidAccessScope = [](const MDNode *MD) {
4584     return MD->getNumOperands() == 0 && MD->isDistinct();
4585   };
4586 
4587   // It must be either an access scope itself...
4588   if (IsValidAccessScope(MD))
4589     return;
4590 
4591   // ...or a list of access scopes.
4592   for (const MDOperand &Op : MD->operands()) {
4593     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4594     Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4595     Check(IsValidAccessScope(OpMD),
4596           "Access scope list contains invalid access scope", MD);
4597   }
4598 }
4599 
4600 /// verifyInstruction - Verify that an instruction is well formed.
4601 ///
4602 void Verifier::visitInstruction(Instruction &I) {
4603   BasicBlock *BB = I.getParent();
4604   Check(BB, "Instruction not embedded in basic block!", &I);
4605 
4606   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4607     for (User *U : I.users()) {
4608       Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4609             "Only PHI nodes may reference their own value!", &I);
4610     }
4611   }
4612 
4613   // Check that void typed values don't have names
4614   Check(!I.getType()->isVoidTy() || !I.hasName(),
4615         "Instruction has a name, but provides a void value!", &I);
4616 
4617   // Check that the return value of the instruction is either void or a legal
4618   // value type.
4619   Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4620         "Instruction returns a non-scalar type!", &I);
4621 
4622   // Check that the instruction doesn't produce metadata. Calls are already
4623   // checked against the callee type.
4624   Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4625         "Invalid use of metadata!", &I);
4626 
4627   // Check that all uses of the instruction, if they are instructions
4628   // themselves, actually have parent basic blocks.  If the use is not an
4629   // instruction, it is an error!
4630   for (Use &U : I.uses()) {
4631     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4632       Check(Used->getParent() != nullptr,
4633             "Instruction referencing"
4634             " instruction not embedded in a basic block!",
4635             &I, Used);
4636     else {
4637       CheckFailed("Use of instruction is not an instruction!", U);
4638       return;
4639     }
4640   }
4641 
4642   // Get a pointer to the call base of the instruction if it is some form of
4643   // call.
4644   const CallBase *CBI = dyn_cast<CallBase>(&I);
4645 
4646   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4647     Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4648 
4649     // Check to make sure that only first-class-values are operands to
4650     // instructions.
4651     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4652       Check(false, "Instruction operands must be first-class values!", &I);
4653     }
4654 
4655     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4656       // This code checks whether the function is used as the operand of a
4657       // clang_arc_attachedcall operand bundle.
4658       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4659                                       int Idx) {
4660         return CBI && CBI->isOperandBundleOfType(
4661                           LLVMContext::OB_clang_arc_attachedcall, Idx);
4662       };
4663 
4664       // Check to make sure that the "address of" an intrinsic function is never
4665       // taken. Ignore cases where the address of the intrinsic function is used
4666       // as the argument of operand bundle "clang.arc.attachedcall" as those
4667       // cases are handled in verifyAttachedCallBundle.
4668       Check((!F->isIntrinsic() ||
4669              (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4670              IsAttachedCallOperand(F, CBI, i)),
4671             "Cannot take the address of an intrinsic!", &I);
4672       Check(!F->isIntrinsic() || isa<CallInst>(I) ||
4673                 F->getIntrinsicID() == Intrinsic::donothing ||
4674                 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4675                 F->getIntrinsicID() == Intrinsic::seh_try_end ||
4676                 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4677                 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4678                 F->getIntrinsicID() == Intrinsic::coro_resume ||
4679                 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4680                 F->getIntrinsicID() ==
4681                     Intrinsic::experimental_patchpoint_void ||
4682                 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4683                 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4684                 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4685                 IsAttachedCallOperand(F, CBI, i),
4686             "Cannot invoke an intrinsic other than donothing, patchpoint, "
4687             "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4688             &I);
4689       Check(F->getParent() == &M, "Referencing function in another module!", &I,
4690             &M, F, F->getParent());
4691     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4692       Check(OpBB->getParent() == BB->getParent(),
4693             "Referring to a basic block in another function!", &I);
4694     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4695       Check(OpArg->getParent() == BB->getParent(),
4696             "Referring to an argument in another function!", &I);
4697     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4698       Check(GV->getParent() == &M, "Referencing global in another module!", &I,
4699             &M, GV, GV->getParent());
4700     } else if (isa<Instruction>(I.getOperand(i))) {
4701       verifyDominatesUse(I, i);
4702     } else if (isa<InlineAsm>(I.getOperand(i))) {
4703       Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4704             "Cannot take the address of an inline asm!", &I);
4705     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4706       if (CE->getType()->isPtrOrPtrVectorTy()) {
4707         // If we have a ConstantExpr pointer, we need to see if it came from an
4708         // illegal bitcast.
4709         visitConstantExprsRecursively(CE);
4710       }
4711     }
4712   }
4713 
4714   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4715     Check(I.getType()->isFPOrFPVectorTy(),
4716           "fpmath requires a floating point result!", &I);
4717     Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4718     if (ConstantFP *CFP0 =
4719             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4720       const APFloat &Accuracy = CFP0->getValueAPF();
4721       Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4722             "fpmath accuracy must have float type", &I);
4723       Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4724             "fpmath accuracy not a positive number!", &I);
4725     } else {
4726       Check(false, "invalid fpmath accuracy!", &I);
4727     }
4728   }
4729 
4730   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4731     Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4732           "Ranges are only for loads, calls and invokes!", &I);
4733     visitRangeMetadata(I, Range, I.getType());
4734   }
4735 
4736   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4737     Check(isa<LoadInst>(I) || isa<StoreInst>(I),
4738           "invariant.group metadata is only for loads and stores", &I);
4739   }
4740 
4741   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4742     Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4743           &I);
4744     Check(isa<LoadInst>(I),
4745           "nonnull applies only to load instructions, use attributes"
4746           " for calls or invokes",
4747           &I);
4748   }
4749 
4750   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4751     visitDereferenceableMetadata(I, MD);
4752 
4753   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4754     visitDereferenceableMetadata(I, MD);
4755 
4756   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4757     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4758 
4759   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4760     visitAliasScopeListMetadata(MD);
4761   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4762     visitAliasScopeListMetadata(MD);
4763 
4764   if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
4765     visitAccessGroupMetadata(MD);
4766 
4767   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4768     Check(I.getType()->isPointerTy(), "align applies only to pointer types",
4769           &I);
4770     Check(isa<LoadInst>(I),
4771           "align applies only to load instructions, "
4772           "use attributes for calls or invokes",
4773           &I);
4774     Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4775     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4776     Check(CI && CI->getType()->isIntegerTy(64),
4777           "align metadata value must be an i64!", &I);
4778     uint64_t Align = CI->getZExtValue();
4779     Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
4780           &I);
4781     Check(Align <= Value::MaximumAlignment,
4782           "alignment is larger that implementation defined limit", &I);
4783   }
4784 
4785   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4786     visitProfMetadata(I, MD);
4787 
4788   if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
4789     visitMemProfMetadata(I, MD);
4790 
4791   if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
4792     visitCallsiteMetadata(I, MD);
4793 
4794   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4795     visitAnnotationMetadata(Annotation);
4796 
4797   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4798     CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4799     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4800   }
4801 
4802   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4803     verifyFragmentExpression(*DII);
4804     verifyNotEntryValue(*DII);
4805   }
4806 
4807   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4808   I.getAllMetadata(MDs);
4809   for (auto Attachment : MDs) {
4810     unsigned Kind = Attachment.first;
4811     auto AllowLocs =
4812         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4813             ? AreDebugLocsAllowed::Yes
4814             : AreDebugLocsAllowed::No;
4815     visitMDNode(*Attachment.second, AllowLocs);
4816   }
4817 
4818   InstsInThisBlock.insert(&I);
4819 }
4820 
4821 /// Allow intrinsics to be verified in different ways.
4822 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4823   Function *IF = Call.getCalledFunction();
4824   Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4825         IF);
4826 
4827   // Verify that the intrinsic prototype lines up with what the .td files
4828   // describe.
4829   FunctionType *IFTy = IF->getFunctionType();
4830   bool IsVarArg = IFTy->isVarArg();
4831 
4832   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4833   getIntrinsicInfoTableEntries(ID, Table);
4834   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4835 
4836   // Walk the descriptors to extract overloaded types.
4837   SmallVector<Type *, 4> ArgTys;
4838   Intrinsic::MatchIntrinsicTypesResult Res =
4839       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4840   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4841         "Intrinsic has incorrect return type!", IF);
4842   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4843         "Intrinsic has incorrect argument type!", IF);
4844 
4845   // Verify if the intrinsic call matches the vararg property.
4846   if (IsVarArg)
4847     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4848           "Intrinsic was not defined with variable arguments!", IF);
4849   else
4850     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4851           "Callsite was not defined with variable arguments!", IF);
4852 
4853   // All descriptors should be absorbed by now.
4854   Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4855 
4856   // Now that we have the intrinsic ID and the actual argument types (and we
4857   // know they are legal for the intrinsic!) get the intrinsic name through the
4858   // usual means.  This allows us to verify the mangling of argument types into
4859   // the name.
4860   const std::string ExpectedName =
4861       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4862   Check(ExpectedName == IF->getName(),
4863         "Intrinsic name not mangled correctly for type arguments! "
4864         "Should be: " +
4865             ExpectedName,
4866         IF);
4867 
4868   // If the intrinsic takes MDNode arguments, verify that they are either global
4869   // or are local to *this* function.
4870   for (Value *V : Call.args()) {
4871     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4872       visitMetadataAsValue(*MD, Call.getCaller());
4873     if (auto *Const = dyn_cast<Constant>(V))
4874       Check(!Const->getType()->isX86_AMXTy(),
4875             "const x86_amx is not allowed in argument!");
4876   }
4877 
4878   switch (ID) {
4879   default:
4880     break;
4881   case Intrinsic::assume: {
4882     for (auto &Elem : Call.bundle_op_infos()) {
4883       Check(Elem.Tag->getKey() == "ignore" ||
4884                 Attribute::isExistingAttribute(Elem.Tag->getKey()),
4885             "tags must be valid attribute names", Call);
4886       Attribute::AttrKind Kind =
4887           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4888       unsigned ArgCount = Elem.End - Elem.Begin;
4889       if (Kind == Attribute::Alignment) {
4890         Check(ArgCount <= 3 && ArgCount >= 2,
4891               "alignment assumptions should have 2 or 3 arguments", Call);
4892         Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4893               "first argument should be a pointer", Call);
4894         Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4895               "second argument should be an integer", Call);
4896         if (ArgCount == 3)
4897           Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4898                 "third argument should be an integer if present", Call);
4899         return;
4900       }
4901       Check(ArgCount <= 2, "too many arguments", Call);
4902       if (Kind == Attribute::None)
4903         break;
4904       if (Attribute::isIntAttrKind(Kind)) {
4905         Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
4906         Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4907               "the second argument should be a constant integral value", Call);
4908       } else if (Attribute::canUseAsParamAttr(Kind)) {
4909         Check((ArgCount) == 1, "this attribute should have one argument", Call);
4910       } else if (Attribute::canUseAsFnAttr(Kind)) {
4911         Check((ArgCount) == 0, "this attribute has no argument", Call);
4912       }
4913     }
4914     break;
4915   }
4916   case Intrinsic::coro_id: {
4917     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4918     if (isa<ConstantPointerNull>(InfoArg))
4919       break;
4920     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4921     Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4922           "info argument of llvm.coro.id must refer to an initialized "
4923           "constant");
4924     Constant *Init = GV->getInitializer();
4925     Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4926           "info argument of llvm.coro.id must refer to either a struct or "
4927           "an array");
4928     break;
4929   }
4930   case Intrinsic::fptrunc_round: {
4931     // Check the rounding mode
4932     Metadata *MD = nullptr;
4933     auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
4934     if (MAV)
4935       MD = MAV->getMetadata();
4936 
4937     Check(MD != nullptr, "missing rounding mode argument", Call);
4938 
4939     Check(isa<MDString>(MD),
4940           ("invalid value for llvm.fptrunc.round metadata operand"
4941            " (the operand should be a string)"),
4942           MD);
4943 
4944     Optional<RoundingMode> RoundMode =
4945         convertStrToRoundingMode(cast<MDString>(MD)->getString());
4946     Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
4947           "unsupported rounding mode argument", Call);
4948     break;
4949   }
4950 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
4951 #include "llvm/IR/VPIntrinsics.def"
4952     visitVPIntrinsic(cast<VPIntrinsic>(Call));
4953     break;
4954 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4955   case Intrinsic::INTRINSIC:
4956 #include "llvm/IR/ConstrainedOps.def"
4957     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4958     break;
4959   case Intrinsic::dbg_declare: // llvm.dbg.declare
4960     Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
4961           "invalid llvm.dbg.declare intrinsic call 1", Call);
4962     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4963     break;
4964   case Intrinsic::dbg_addr: // llvm.dbg.addr
4965     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4966     break;
4967   case Intrinsic::dbg_value: // llvm.dbg.value
4968     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4969     break;
4970   case Intrinsic::dbg_label: // llvm.dbg.label
4971     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4972     break;
4973   case Intrinsic::memcpy:
4974   case Intrinsic::memcpy_inline:
4975   case Intrinsic::memmove:
4976   case Intrinsic::memset:
4977   case Intrinsic::memset_inline: {
4978     const auto *MI = cast<MemIntrinsic>(&Call);
4979     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4980       return Alignment == 0 || isPowerOf2_32(Alignment);
4981     };
4982     Check(IsValidAlignment(MI->getDestAlignment()),
4983           "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4984           Call);
4985     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4986       Check(IsValidAlignment(MTI->getSourceAlignment()),
4987             "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4988             Call);
4989     }
4990 
4991     break;
4992   }
4993   case Intrinsic::memcpy_element_unordered_atomic:
4994   case Intrinsic::memmove_element_unordered_atomic:
4995   case Intrinsic::memset_element_unordered_atomic: {
4996     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4997 
4998     ConstantInt *ElementSizeCI =
4999         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5000     const APInt &ElementSizeVal = ElementSizeCI->getValue();
5001     Check(ElementSizeVal.isPowerOf2(),
5002           "element size of the element-wise atomic memory intrinsic "
5003           "must be a power of 2",
5004           Call);
5005 
5006     auto IsValidAlignment = [&](uint64_t Alignment) {
5007       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
5008     };
5009     uint64_t DstAlignment = AMI->getDestAlignment();
5010     Check(IsValidAlignment(DstAlignment),
5011           "incorrect alignment of the destination argument", Call);
5012     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5013       uint64_t SrcAlignment = AMT->getSourceAlignment();
5014       Check(IsValidAlignment(SrcAlignment),
5015             "incorrect alignment of the source argument", Call);
5016     }
5017     break;
5018   }
5019   case Intrinsic::call_preallocated_setup: {
5020     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5021     Check(NumArgs != nullptr,
5022           "llvm.call.preallocated.setup argument must be a constant");
5023     bool FoundCall = false;
5024     for (User *U : Call.users()) {
5025       auto *UseCall = dyn_cast<CallBase>(U);
5026       Check(UseCall != nullptr,
5027             "Uses of llvm.call.preallocated.setup must be calls");
5028       const Function *Fn = UseCall->getCalledFunction();
5029       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5030         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5031         Check(AllocArgIndex != nullptr,
5032               "llvm.call.preallocated.alloc arg index must be a constant");
5033         auto AllocArgIndexInt = AllocArgIndex->getValue();
5034         Check(AllocArgIndexInt.sge(0) &&
5035                   AllocArgIndexInt.slt(NumArgs->getValue()),
5036               "llvm.call.preallocated.alloc arg index must be between 0 and "
5037               "corresponding "
5038               "llvm.call.preallocated.setup's argument count");
5039       } else if (Fn && Fn->getIntrinsicID() ==
5040                            Intrinsic::call_preallocated_teardown) {
5041         // nothing to do
5042       } else {
5043         Check(!FoundCall, "Can have at most one call corresponding to a "
5044                           "llvm.call.preallocated.setup");
5045         FoundCall = true;
5046         size_t NumPreallocatedArgs = 0;
5047         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5048           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5049             ++NumPreallocatedArgs;
5050           }
5051         }
5052         Check(NumPreallocatedArgs != 0,
5053               "cannot use preallocated intrinsics on a call without "
5054               "preallocated arguments");
5055         Check(NumArgs->equalsInt(NumPreallocatedArgs),
5056               "llvm.call.preallocated.setup arg size must be equal to number "
5057               "of preallocated arguments "
5058               "at call site",
5059               Call, *UseCall);
5060         // getOperandBundle() cannot be called if more than one of the operand
5061         // bundle exists. There is already a check elsewhere for this, so skip
5062         // here if we see more than one.
5063         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5064             1) {
5065           return;
5066         }
5067         auto PreallocatedBundle =
5068             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5069         Check(PreallocatedBundle,
5070               "Use of llvm.call.preallocated.setup outside intrinsics "
5071               "must be in \"preallocated\" operand bundle");
5072         Check(PreallocatedBundle->Inputs.front().get() == &Call,
5073               "preallocated bundle must have token from corresponding "
5074               "llvm.call.preallocated.setup");
5075       }
5076     }
5077     break;
5078   }
5079   case Intrinsic::call_preallocated_arg: {
5080     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5081     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5082                        Intrinsic::call_preallocated_setup,
5083           "llvm.call.preallocated.arg token argument must be a "
5084           "llvm.call.preallocated.setup");
5085     Check(Call.hasFnAttr(Attribute::Preallocated),
5086           "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5087           "call site attribute");
5088     break;
5089   }
5090   case Intrinsic::call_preallocated_teardown: {
5091     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5092     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5093                        Intrinsic::call_preallocated_setup,
5094           "llvm.call.preallocated.teardown token argument must be a "
5095           "llvm.call.preallocated.setup");
5096     break;
5097   }
5098   case Intrinsic::gcroot:
5099   case Intrinsic::gcwrite:
5100   case Intrinsic::gcread:
5101     if (ID == Intrinsic::gcroot) {
5102       AllocaInst *AI =
5103           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5104       Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5105       Check(isa<Constant>(Call.getArgOperand(1)),
5106             "llvm.gcroot parameter #2 must be a constant.", Call);
5107       if (!AI->getAllocatedType()->isPointerTy()) {
5108         Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5109               "llvm.gcroot parameter #1 must either be a pointer alloca, "
5110               "or argument #2 must be a non-null constant.",
5111               Call);
5112       }
5113     }
5114 
5115     Check(Call.getParent()->getParent()->hasGC(),
5116           "Enclosing function does not use GC.", Call);
5117     break;
5118   case Intrinsic::init_trampoline:
5119     Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5120           "llvm.init_trampoline parameter #2 must resolve to a function.",
5121           Call);
5122     break;
5123   case Intrinsic::prefetch:
5124     Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
5125               cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5126           "invalid arguments to llvm.prefetch", Call);
5127     break;
5128   case Intrinsic::stackprotector:
5129     Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5130           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5131     break;
5132   case Intrinsic::localescape: {
5133     BasicBlock *BB = Call.getParent();
5134     Check(BB == &BB->getParent()->front(),
5135           "llvm.localescape used outside of entry block", Call);
5136     Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5137           Call);
5138     for (Value *Arg : Call.args()) {
5139       if (isa<ConstantPointerNull>(Arg))
5140         continue; // Null values are allowed as placeholders.
5141       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5142       Check(AI && AI->isStaticAlloca(),
5143             "llvm.localescape only accepts static allocas", Call);
5144     }
5145     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5146     SawFrameEscape = true;
5147     break;
5148   }
5149   case Intrinsic::localrecover: {
5150     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5151     Function *Fn = dyn_cast<Function>(FnArg);
5152     Check(Fn && !Fn->isDeclaration(),
5153           "llvm.localrecover first "
5154           "argument must be function defined in this module",
5155           Call);
5156     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5157     auto &Entry = FrameEscapeInfo[Fn];
5158     Entry.second = unsigned(
5159         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5160     break;
5161   }
5162 
5163   case Intrinsic::experimental_gc_statepoint:
5164     if (auto *CI = dyn_cast<CallInst>(&Call))
5165       Check(!CI->isInlineAsm(),
5166             "gc.statepoint support for inline assembly unimplemented", CI);
5167     Check(Call.getParent()->getParent()->hasGC(),
5168           "Enclosing function does not use GC.", Call);
5169 
5170     verifyStatepoint(Call);
5171     break;
5172   case Intrinsic::experimental_gc_result: {
5173     Check(Call.getParent()->getParent()->hasGC(),
5174           "Enclosing function does not use GC.", Call);
5175     // Are we tied to a statepoint properly?
5176     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
5177     const Function *StatepointFn =
5178         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5179     Check(StatepointFn && StatepointFn->isDeclaration() &&
5180               StatepointFn->getIntrinsicID() ==
5181                   Intrinsic::experimental_gc_statepoint,
5182           "gc.result operand #1 must be from a statepoint", Call,
5183           Call.getArgOperand(0));
5184 
5185     // Check that result type matches wrapped callee.
5186     auto *TargetFuncType =
5187         cast<FunctionType>(StatepointCall->getParamElementType(2));
5188     Check(Call.getType() == TargetFuncType->getReturnType(),
5189           "gc.result result type does not match wrapped callee", Call);
5190     break;
5191   }
5192   case Intrinsic::experimental_gc_relocate: {
5193     Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5194 
5195     Check(isa<PointerType>(Call.getType()->getScalarType()),
5196           "gc.relocate must return a pointer or a vector of pointers", Call);
5197 
5198     // Check that this relocate is correctly tied to the statepoint
5199 
5200     // This is case for relocate on the unwinding path of an invoke statepoint
5201     if (LandingPadInst *LandingPad =
5202             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5203 
5204       const BasicBlock *InvokeBB =
5205           LandingPad->getParent()->getUniquePredecessor();
5206 
5207       // Landingpad relocates should have only one predecessor with invoke
5208       // statepoint terminator
5209       Check(InvokeBB, "safepoints should have unique landingpads",
5210             LandingPad->getParent());
5211       Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5212             InvokeBB);
5213       Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5214             "gc relocate should be linked to a statepoint", InvokeBB);
5215     } else {
5216       // In all other cases relocate should be tied to the statepoint directly.
5217       // This covers relocates on a normal return path of invoke statepoint and
5218       // relocates of a call statepoint.
5219       auto *Token = Call.getArgOperand(0);
5220       Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5221             "gc relocate is incorrectly tied to the statepoint", Call, Token);
5222     }
5223 
5224     // Verify rest of the relocate arguments.
5225     const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5226 
5227     // Both the base and derived must be piped through the safepoint.
5228     Value *Base = Call.getArgOperand(1);
5229     Check(isa<ConstantInt>(Base),
5230           "gc.relocate operand #2 must be integer offset", Call);
5231 
5232     Value *Derived = Call.getArgOperand(2);
5233     Check(isa<ConstantInt>(Derived),
5234           "gc.relocate operand #3 must be integer offset", Call);
5235 
5236     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5237     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5238 
5239     // Check the bounds
5240     if (isa<UndefValue>(StatepointCall))
5241       break;
5242     if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5243                        .getOperandBundle(LLVMContext::OB_gc_live)) {
5244       Check(BaseIndex < Opt->Inputs.size(),
5245             "gc.relocate: statepoint base index out of bounds", Call);
5246       Check(DerivedIndex < Opt->Inputs.size(),
5247             "gc.relocate: statepoint derived index out of bounds", Call);
5248     }
5249 
5250     // Relocated value must be either a pointer type or vector-of-pointer type,
5251     // but gc_relocate does not need to return the same pointer type as the
5252     // relocated pointer. It can be casted to the correct type later if it's
5253     // desired. However, they must have the same address space and 'vectorness'
5254     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5255     Check(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
5256           "gc.relocate: relocated value must be a gc pointer", Call);
5257 
5258     auto ResultType = Call.getType();
5259     auto DerivedType = Relocate.getDerivedPtr()->getType();
5260     Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5261           "gc.relocate: vector relocates to vector and pointer to pointer",
5262           Call);
5263     Check(
5264         ResultType->getPointerAddressSpace() ==
5265             DerivedType->getPointerAddressSpace(),
5266         "gc.relocate: relocating a pointer shouldn't change its address space",
5267         Call);
5268     break;
5269   }
5270   case Intrinsic::eh_exceptioncode:
5271   case Intrinsic::eh_exceptionpointer: {
5272     Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5273           "eh.exceptionpointer argument must be a catchpad", Call);
5274     break;
5275   }
5276   case Intrinsic::get_active_lane_mask: {
5277     Check(Call.getType()->isVectorTy(),
5278           "get_active_lane_mask: must return a "
5279           "vector",
5280           Call);
5281     auto *ElemTy = Call.getType()->getScalarType();
5282     Check(ElemTy->isIntegerTy(1),
5283           "get_active_lane_mask: element type is not "
5284           "i1",
5285           Call);
5286     break;
5287   }
5288   case Intrinsic::masked_load: {
5289     Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5290           Call);
5291 
5292     Value *Ptr = Call.getArgOperand(0);
5293     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5294     Value *Mask = Call.getArgOperand(2);
5295     Value *PassThru = Call.getArgOperand(3);
5296     Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5297           Call);
5298     Check(Alignment->getValue().isPowerOf2(),
5299           "masked_load: alignment must be a power of 2", Call);
5300 
5301     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5302     Check(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
5303           "masked_load: return must match pointer type", Call);
5304     Check(PassThru->getType() == Call.getType(),
5305           "masked_load: pass through and return type must match", Call);
5306     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5307               cast<VectorType>(Call.getType())->getElementCount(),
5308           "masked_load: vector mask must be same length as return", Call);
5309     break;
5310   }
5311   case Intrinsic::masked_store: {
5312     Value *Val = Call.getArgOperand(0);
5313     Value *Ptr = Call.getArgOperand(1);
5314     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5315     Value *Mask = Call.getArgOperand(3);
5316     Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5317           Call);
5318     Check(Alignment->getValue().isPowerOf2(),
5319           "masked_store: alignment must be a power of 2", Call);
5320 
5321     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5322     Check(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5323           "masked_store: storee must match pointer type", Call);
5324     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5325               cast<VectorType>(Val->getType())->getElementCount(),
5326           "masked_store: vector mask must be same length as value", Call);
5327     break;
5328   }
5329 
5330   case Intrinsic::masked_gather: {
5331     const APInt &Alignment =
5332         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5333     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5334           "masked_gather: alignment must be 0 or a power of 2", Call);
5335     break;
5336   }
5337   case Intrinsic::masked_scatter: {
5338     const APInt &Alignment =
5339         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5340     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5341           "masked_scatter: alignment must be 0 or a power of 2", Call);
5342     break;
5343   }
5344 
5345   case Intrinsic::experimental_guard: {
5346     Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5347     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5348           "experimental_guard must have exactly one "
5349           "\"deopt\" operand bundle");
5350     break;
5351   }
5352 
5353   case Intrinsic::experimental_deoptimize: {
5354     Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5355           Call);
5356     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5357           "experimental_deoptimize must have exactly one "
5358           "\"deopt\" operand bundle");
5359     Check(Call.getType() == Call.getFunction()->getReturnType(),
5360           "experimental_deoptimize return type must match caller return type");
5361 
5362     if (isa<CallInst>(Call)) {
5363       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5364       Check(RI,
5365             "calls to experimental_deoptimize must be followed by a return");
5366 
5367       if (!Call.getType()->isVoidTy() && RI)
5368         Check(RI->getReturnValue() == &Call,
5369               "calls to experimental_deoptimize must be followed by a return "
5370               "of the value computed by experimental_deoptimize");
5371     }
5372 
5373     break;
5374   }
5375   case Intrinsic::vector_reduce_and:
5376   case Intrinsic::vector_reduce_or:
5377   case Intrinsic::vector_reduce_xor:
5378   case Intrinsic::vector_reduce_add:
5379   case Intrinsic::vector_reduce_mul:
5380   case Intrinsic::vector_reduce_smax:
5381   case Intrinsic::vector_reduce_smin:
5382   case Intrinsic::vector_reduce_umax:
5383   case Intrinsic::vector_reduce_umin: {
5384     Type *ArgTy = Call.getArgOperand(0)->getType();
5385     Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5386           "Intrinsic has incorrect argument type!");
5387     break;
5388   }
5389   case Intrinsic::vector_reduce_fmax:
5390   case Intrinsic::vector_reduce_fmin: {
5391     Type *ArgTy = Call.getArgOperand(0)->getType();
5392     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5393           "Intrinsic has incorrect argument type!");
5394     break;
5395   }
5396   case Intrinsic::vector_reduce_fadd:
5397   case Intrinsic::vector_reduce_fmul: {
5398     // Unlike the other reductions, the first argument is a start value. The
5399     // second argument is the vector to be reduced.
5400     Type *ArgTy = Call.getArgOperand(1)->getType();
5401     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5402           "Intrinsic has incorrect argument type!");
5403     break;
5404   }
5405   case Intrinsic::smul_fix:
5406   case Intrinsic::smul_fix_sat:
5407   case Intrinsic::umul_fix:
5408   case Intrinsic::umul_fix_sat:
5409   case Intrinsic::sdiv_fix:
5410   case Intrinsic::sdiv_fix_sat:
5411   case Intrinsic::udiv_fix:
5412   case Intrinsic::udiv_fix_sat: {
5413     Value *Op1 = Call.getArgOperand(0);
5414     Value *Op2 = Call.getArgOperand(1);
5415     Check(Op1->getType()->isIntOrIntVectorTy(),
5416           "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5417           "vector of ints");
5418     Check(Op2->getType()->isIntOrIntVectorTy(),
5419           "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5420           "vector of ints");
5421 
5422     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5423     Check(Op3->getType()->getBitWidth() <= 32,
5424           "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5425 
5426     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5427         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5428       Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5429             "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5430             "the operands");
5431     } else {
5432       Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5433             "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5434             "to the width of the operands");
5435     }
5436     break;
5437   }
5438   case Intrinsic::lround:
5439   case Intrinsic::llround:
5440   case Intrinsic::lrint:
5441   case Intrinsic::llrint: {
5442     Type *ValTy = Call.getArgOperand(0)->getType();
5443     Type *ResultTy = Call.getType();
5444     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5445           "Intrinsic does not support vectors", &Call);
5446     break;
5447   }
5448   case Intrinsic::bswap: {
5449     Type *Ty = Call.getType();
5450     unsigned Size = Ty->getScalarSizeInBits();
5451     Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5452     break;
5453   }
5454   case Intrinsic::invariant_start: {
5455     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5456     Check(InvariantSize &&
5457               (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5458           "invariant_start parameter must be -1, 0 or a positive number",
5459           &Call);
5460     break;
5461   }
5462   case Intrinsic::matrix_multiply:
5463   case Intrinsic::matrix_transpose:
5464   case Intrinsic::matrix_column_major_load:
5465   case Intrinsic::matrix_column_major_store: {
5466     Function *IF = Call.getCalledFunction();
5467     ConstantInt *Stride = nullptr;
5468     ConstantInt *NumRows;
5469     ConstantInt *NumColumns;
5470     VectorType *ResultTy;
5471     Type *Op0ElemTy = nullptr;
5472     Type *Op1ElemTy = nullptr;
5473     switch (ID) {
5474     case Intrinsic::matrix_multiply:
5475       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5476       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5477       ResultTy = cast<VectorType>(Call.getType());
5478       Op0ElemTy =
5479           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5480       Op1ElemTy =
5481           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5482       break;
5483     case Intrinsic::matrix_transpose:
5484       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5485       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5486       ResultTy = cast<VectorType>(Call.getType());
5487       Op0ElemTy =
5488           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5489       break;
5490     case Intrinsic::matrix_column_major_load: {
5491       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5492       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5493       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5494       ResultTy = cast<VectorType>(Call.getType());
5495 
5496       PointerType *Op0PtrTy =
5497           cast<PointerType>(Call.getArgOperand(0)->getType());
5498       if (!Op0PtrTy->isOpaque())
5499         Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType();
5500       break;
5501     }
5502     case Intrinsic::matrix_column_major_store: {
5503       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5504       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5505       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5506       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5507       Op0ElemTy =
5508           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5509 
5510       PointerType *Op1PtrTy =
5511           cast<PointerType>(Call.getArgOperand(1)->getType());
5512       if (!Op1PtrTy->isOpaque())
5513         Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType();
5514       break;
5515     }
5516     default:
5517       llvm_unreachable("unexpected intrinsic");
5518     }
5519 
5520     Check(ResultTy->getElementType()->isIntegerTy() ||
5521               ResultTy->getElementType()->isFloatingPointTy(),
5522           "Result type must be an integer or floating-point type!", IF);
5523 
5524     if (Op0ElemTy)
5525       Check(ResultTy->getElementType() == Op0ElemTy,
5526             "Vector element type mismatch of the result and first operand "
5527             "vector!",
5528             IF);
5529 
5530     if (Op1ElemTy)
5531       Check(ResultTy->getElementType() == Op1ElemTy,
5532             "Vector element type mismatch of the result and second operand "
5533             "vector!",
5534             IF);
5535 
5536     Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5537               NumRows->getZExtValue() * NumColumns->getZExtValue(),
5538           "Result of a matrix operation does not fit in the returned vector!");
5539 
5540     if (Stride)
5541       Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
5542             "Stride must be greater or equal than the number of rows!", IF);
5543 
5544     break;
5545   }
5546   case Intrinsic::experimental_vector_splice: {
5547     VectorType *VecTy = cast<VectorType>(Call.getType());
5548     int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5549     int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5550     if (Call.getParent() && Call.getParent()->getParent()) {
5551       AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5552       if (Attrs.hasFnAttr(Attribute::VScaleRange))
5553         KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5554     }
5555     Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5556               (Idx >= 0 && Idx < KnownMinNumElements),
5557           "The splice index exceeds the range [-VL, VL-1] where VL is the "
5558           "known minimum number of elements in the vector. For scalable "
5559           "vectors the minimum number of elements is determined from "
5560           "vscale_range.",
5561           &Call);
5562     break;
5563   }
5564   case Intrinsic::experimental_stepvector: {
5565     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5566     Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5567               VecTy->getScalarSizeInBits() >= 8,
5568           "experimental_stepvector only supported for vectors of integers "
5569           "with a bitwidth of at least 8.",
5570           &Call);
5571     break;
5572   }
5573   case Intrinsic::vector_insert: {
5574     Value *Vec = Call.getArgOperand(0);
5575     Value *SubVec = Call.getArgOperand(1);
5576     Value *Idx = Call.getArgOperand(2);
5577     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5578 
5579     VectorType *VecTy = cast<VectorType>(Vec->getType());
5580     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5581 
5582     ElementCount VecEC = VecTy->getElementCount();
5583     ElementCount SubVecEC = SubVecTy->getElementCount();
5584     Check(VecTy->getElementType() == SubVecTy->getElementType(),
5585           "vector_insert parameters must have the same element "
5586           "type.",
5587           &Call);
5588     Check(IdxN % SubVecEC.getKnownMinValue() == 0,
5589           "vector_insert index must be a constant multiple of "
5590           "the subvector's known minimum vector length.");
5591 
5592     // If this insertion is not the 'mixed' case where a fixed vector is
5593     // inserted into a scalable vector, ensure that the insertion of the
5594     // subvector does not overrun the parent vector.
5595     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5596       Check(IdxN < VecEC.getKnownMinValue() &&
5597                 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5598             "subvector operand of vector_insert would overrun the "
5599             "vector being inserted into.");
5600     }
5601     break;
5602   }
5603   case Intrinsic::vector_extract: {
5604     Value *Vec = Call.getArgOperand(0);
5605     Value *Idx = Call.getArgOperand(1);
5606     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5607 
5608     VectorType *ResultTy = cast<VectorType>(Call.getType());
5609     VectorType *VecTy = cast<VectorType>(Vec->getType());
5610 
5611     ElementCount VecEC = VecTy->getElementCount();
5612     ElementCount ResultEC = ResultTy->getElementCount();
5613 
5614     Check(ResultTy->getElementType() == VecTy->getElementType(),
5615           "vector_extract result must have the same element "
5616           "type as the input vector.",
5617           &Call);
5618     Check(IdxN % ResultEC.getKnownMinValue() == 0,
5619           "vector_extract index must be a constant multiple of "
5620           "the result type's known minimum vector length.");
5621 
5622     // If this extraction is not the 'mixed' case where a fixed vector is is
5623     // extracted from a scalable vector, ensure that the extraction does not
5624     // overrun the parent vector.
5625     if (VecEC.isScalable() == ResultEC.isScalable()) {
5626       Check(IdxN < VecEC.getKnownMinValue() &&
5627                 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5628             "vector_extract would overrun.");
5629     }
5630     break;
5631   }
5632   case Intrinsic::experimental_noalias_scope_decl: {
5633     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5634     break;
5635   }
5636   case Intrinsic::preserve_array_access_index:
5637   case Intrinsic::preserve_struct_access_index:
5638   case Intrinsic::aarch64_ldaxr:
5639   case Intrinsic::aarch64_ldxr:
5640   case Intrinsic::arm_ldaex:
5641   case Intrinsic::arm_ldrex: {
5642     Type *ElemTy = Call.getParamElementType(0);
5643     Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
5644           &Call);
5645     break;
5646   }
5647   case Intrinsic::aarch64_stlxr:
5648   case Intrinsic::aarch64_stxr:
5649   case Intrinsic::arm_stlex:
5650   case Intrinsic::arm_strex: {
5651     Type *ElemTy = Call.getAttributes().getParamElementType(1);
5652     Check(ElemTy,
5653           "Intrinsic requires elementtype attribute on second argument.",
5654           &Call);
5655     break;
5656   }
5657   };
5658 }
5659 
5660 /// Carefully grab the subprogram from a local scope.
5661 ///
5662 /// This carefully grabs the subprogram from a local scope, avoiding the
5663 /// built-in assertions that would typically fire.
5664 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5665   if (!LocalScope)
5666     return nullptr;
5667 
5668   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5669     return SP;
5670 
5671   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5672     return getSubprogram(LB->getRawScope());
5673 
5674   // Just return null; broken scope chains are checked elsewhere.
5675   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5676   return nullptr;
5677 }
5678 
5679 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
5680   if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
5681     auto *RetTy = cast<VectorType>(VPCast->getType());
5682     auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
5683     Check(RetTy->getElementCount() == ValTy->getElementCount(),
5684           "VP cast intrinsic first argument and result vector lengths must be "
5685           "equal",
5686           *VPCast);
5687 
5688     switch (VPCast->getIntrinsicID()) {
5689     default:
5690       llvm_unreachable("Unknown VP cast intrinsic");
5691     case Intrinsic::vp_trunc:
5692       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
5693             "llvm.vp.trunc intrinsic first argument and result element type "
5694             "must be integer",
5695             *VPCast);
5696       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
5697             "llvm.vp.trunc intrinsic the bit size of first argument must be "
5698             "larger than the bit size of the return type",
5699             *VPCast);
5700       break;
5701     case Intrinsic::vp_zext:
5702     case Intrinsic::vp_sext:
5703       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
5704             "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
5705             "element type must be integer",
5706             *VPCast);
5707       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
5708             "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
5709             "argument must be smaller than the bit size of the return type",
5710             *VPCast);
5711       break;
5712     case Intrinsic::vp_fptoui:
5713     case Intrinsic::vp_fptosi:
5714       Check(
5715           RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
5716           "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
5717           "type must be floating-point and result element type must be integer",
5718           *VPCast);
5719       break;
5720     case Intrinsic::vp_uitofp:
5721     case Intrinsic::vp_sitofp:
5722       Check(
5723           RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
5724           "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
5725           "type must be integer and result element type must be floating-point",
5726           *VPCast);
5727       break;
5728     case Intrinsic::vp_fptrunc:
5729       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
5730             "llvm.vp.fptrunc intrinsic first argument and result element type "
5731             "must be floating-point",
5732             *VPCast);
5733       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
5734             "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
5735             "larger than the bit size of the return type",
5736             *VPCast);
5737       break;
5738     case Intrinsic::vp_fpext:
5739       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
5740             "llvm.vp.fpext intrinsic first argument and result element type "
5741             "must be floating-point",
5742             *VPCast);
5743       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
5744             "llvm.vp.fpext intrinsic the bit size of first argument must be "
5745             "smaller than the bit size of the return type",
5746             *VPCast);
5747       break;
5748     case Intrinsic::vp_ptrtoint:
5749       Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
5750             "llvm.vp.ptrtoint intrinsic first argument element type must be "
5751             "pointer and result element type must be integer",
5752             *VPCast);
5753       break;
5754     case Intrinsic::vp_inttoptr:
5755       Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
5756             "llvm.vp.inttoptr intrinsic first argument element type must be "
5757             "integer and result element type must be pointer",
5758             *VPCast);
5759       break;
5760     }
5761   }
5762   if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
5763     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
5764     Check(CmpInst::isFPPredicate(Pred),
5765           "invalid predicate for VP FP comparison intrinsic", &VPI);
5766   }
5767   if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
5768     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
5769     Check(CmpInst::isIntPredicate(Pred),
5770           "invalid predicate for VP integer comparison intrinsic", &VPI);
5771   }
5772 }
5773 
5774 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5775   unsigned NumOperands;
5776   bool HasRoundingMD;
5777   switch (FPI.getIntrinsicID()) {
5778 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5779   case Intrinsic::INTRINSIC:                                                   \
5780     NumOperands = NARG;                                                        \
5781     HasRoundingMD = ROUND_MODE;                                                \
5782     break;
5783 #include "llvm/IR/ConstrainedOps.def"
5784   default:
5785     llvm_unreachable("Invalid constrained FP intrinsic!");
5786   }
5787   NumOperands += (1 + HasRoundingMD);
5788   // Compare intrinsics carry an extra predicate metadata operand.
5789   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5790     NumOperands += 1;
5791   Check((FPI.arg_size() == NumOperands),
5792         "invalid arguments for constrained FP intrinsic", &FPI);
5793 
5794   switch (FPI.getIntrinsicID()) {
5795   case Intrinsic::experimental_constrained_lrint:
5796   case Intrinsic::experimental_constrained_llrint: {
5797     Type *ValTy = FPI.getArgOperand(0)->getType();
5798     Type *ResultTy = FPI.getType();
5799     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5800           "Intrinsic does not support vectors", &FPI);
5801   }
5802     break;
5803 
5804   case Intrinsic::experimental_constrained_lround:
5805   case Intrinsic::experimental_constrained_llround: {
5806     Type *ValTy = FPI.getArgOperand(0)->getType();
5807     Type *ResultTy = FPI.getType();
5808     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5809           "Intrinsic does not support vectors", &FPI);
5810     break;
5811   }
5812 
5813   case Intrinsic::experimental_constrained_fcmp:
5814   case Intrinsic::experimental_constrained_fcmps: {
5815     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5816     Check(CmpInst::isFPPredicate(Pred),
5817           "invalid predicate for constrained FP comparison intrinsic", &FPI);
5818     break;
5819   }
5820 
5821   case Intrinsic::experimental_constrained_fptosi:
5822   case Intrinsic::experimental_constrained_fptoui: {
5823     Value *Operand = FPI.getArgOperand(0);
5824     uint64_t NumSrcElem = 0;
5825     Check(Operand->getType()->isFPOrFPVectorTy(),
5826           "Intrinsic first argument must be floating point", &FPI);
5827     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5828       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5829     }
5830 
5831     Operand = &FPI;
5832     Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5833           "Intrinsic first argument and result disagree on vector use", &FPI);
5834     Check(Operand->getType()->isIntOrIntVectorTy(),
5835           "Intrinsic result must be an integer", &FPI);
5836     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5837       Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5838             "Intrinsic first argument and result vector lengths must be equal",
5839             &FPI);
5840     }
5841   }
5842     break;
5843 
5844   case Intrinsic::experimental_constrained_sitofp:
5845   case Intrinsic::experimental_constrained_uitofp: {
5846     Value *Operand = FPI.getArgOperand(0);
5847     uint64_t NumSrcElem = 0;
5848     Check(Operand->getType()->isIntOrIntVectorTy(),
5849           "Intrinsic first argument must be integer", &FPI);
5850     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5851       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5852     }
5853 
5854     Operand = &FPI;
5855     Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5856           "Intrinsic first argument and result disagree on vector use", &FPI);
5857     Check(Operand->getType()->isFPOrFPVectorTy(),
5858           "Intrinsic result must be a floating point", &FPI);
5859     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5860       Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5861             "Intrinsic first argument and result vector lengths must be equal",
5862             &FPI);
5863     }
5864   } break;
5865 
5866   case Intrinsic::experimental_constrained_fptrunc:
5867   case Intrinsic::experimental_constrained_fpext: {
5868     Value *Operand = FPI.getArgOperand(0);
5869     Type *OperandTy = Operand->getType();
5870     Value *Result = &FPI;
5871     Type *ResultTy = Result->getType();
5872     Check(OperandTy->isFPOrFPVectorTy(),
5873           "Intrinsic first argument must be FP or FP vector", &FPI);
5874     Check(ResultTy->isFPOrFPVectorTy(),
5875           "Intrinsic result must be FP or FP vector", &FPI);
5876     Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5877           "Intrinsic first argument and result disagree on vector use", &FPI);
5878     if (OperandTy->isVectorTy()) {
5879       Check(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5880                 cast<FixedVectorType>(ResultTy)->getNumElements(),
5881             "Intrinsic first argument and result vector lengths must be equal",
5882             &FPI);
5883     }
5884     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5885       Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5886             "Intrinsic first argument's type must be larger than result type",
5887             &FPI);
5888     } else {
5889       Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5890             "Intrinsic first argument's type must be smaller than result type",
5891             &FPI);
5892     }
5893   }
5894     break;
5895 
5896   default:
5897     break;
5898   }
5899 
5900   // If a non-metadata argument is passed in a metadata slot then the
5901   // error will be caught earlier when the incorrect argument doesn't
5902   // match the specification in the intrinsic call table. Thus, no
5903   // argument type check is needed here.
5904 
5905   Check(FPI.getExceptionBehavior().has_value(),
5906         "invalid exception behavior argument", &FPI);
5907   if (HasRoundingMD) {
5908     Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
5909           &FPI);
5910   }
5911 }
5912 
5913 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5914   auto *MD = DII.getRawLocation();
5915   CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
5916               (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5917           "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5918   CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
5919           "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5920           DII.getRawVariable());
5921   CheckDI(isa<DIExpression>(DII.getRawExpression()),
5922           "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5923           DII.getRawExpression());
5924 
5925   // Ignore broken !dbg attachments; they're checked elsewhere.
5926   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5927     if (!isa<DILocation>(N))
5928       return;
5929 
5930   BasicBlock *BB = DII.getParent();
5931   Function *F = BB ? BB->getParent() : nullptr;
5932 
5933   // The scopes for variables and !dbg attachments must agree.
5934   DILocalVariable *Var = DII.getVariable();
5935   DILocation *Loc = DII.getDebugLoc();
5936   CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5937           &DII, BB, F);
5938 
5939   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5940   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5941   if (!VarSP || !LocSP)
5942     return; // Broken scope chains are checked elsewhere.
5943 
5944   CheckDI(VarSP == LocSP,
5945           "mismatched subprogram between llvm.dbg." + Kind +
5946               " variable and !dbg attachment",
5947           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5948           Loc->getScope()->getSubprogram());
5949 
5950   // This check is redundant with one in visitLocalVariable().
5951   CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
5952           Var->getRawType());
5953   verifyFnArgs(DII);
5954 }
5955 
5956 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5957   CheckDI(isa<DILabel>(DLI.getRawLabel()),
5958           "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5959           DLI.getRawLabel());
5960 
5961   // Ignore broken !dbg attachments; they're checked elsewhere.
5962   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5963     if (!isa<DILocation>(N))
5964       return;
5965 
5966   BasicBlock *BB = DLI.getParent();
5967   Function *F = BB ? BB->getParent() : nullptr;
5968 
5969   // The scopes for variables and !dbg attachments must agree.
5970   DILabel *Label = DLI.getLabel();
5971   DILocation *Loc = DLI.getDebugLoc();
5972   Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
5973         BB, F);
5974 
5975   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5976   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5977   if (!LabelSP || !LocSP)
5978     return;
5979 
5980   CheckDI(LabelSP == LocSP,
5981           "mismatched subprogram between llvm.dbg." + Kind +
5982               " label and !dbg attachment",
5983           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5984           Loc->getScope()->getSubprogram());
5985 }
5986 
5987 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5988   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5989   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5990 
5991   // We don't know whether this intrinsic verified correctly.
5992   if (!V || !E || !E->isValid())
5993     return;
5994 
5995   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5996   auto Fragment = E->getFragmentInfo();
5997   if (!Fragment)
5998     return;
5999 
6000   // The frontend helps out GDB by emitting the members of local anonymous
6001   // unions as artificial local variables with shared storage. When SROA splits
6002   // the storage for artificial local variables that are smaller than the entire
6003   // union, the overhang piece will be outside of the allotted space for the
6004   // variable and this check fails.
6005   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6006   if (V->isArtificial())
6007     return;
6008 
6009   verifyFragmentExpression(*V, *Fragment, &I);
6010 }
6011 
6012 template <typename ValueOrMetadata>
6013 void Verifier::verifyFragmentExpression(const DIVariable &V,
6014                                         DIExpression::FragmentInfo Fragment,
6015                                         ValueOrMetadata *Desc) {
6016   // If there's no size, the type is broken, but that should be checked
6017   // elsewhere.
6018   auto VarSize = V.getSizeInBits();
6019   if (!VarSize)
6020     return;
6021 
6022   unsigned FragSize = Fragment.SizeInBits;
6023   unsigned FragOffset = Fragment.OffsetInBits;
6024   CheckDI(FragSize + FragOffset <= *VarSize,
6025           "fragment is larger than or outside of variable", Desc, &V);
6026   CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6027 }
6028 
6029 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6030   // This function does not take the scope of noninlined function arguments into
6031   // account. Don't run it if current function is nodebug, because it may
6032   // contain inlined debug intrinsics.
6033   if (!HasDebugInfo)
6034     return;
6035 
6036   // For performance reasons only check non-inlined ones.
6037   if (I.getDebugLoc()->getInlinedAt())
6038     return;
6039 
6040   DILocalVariable *Var = I.getVariable();
6041   CheckDI(Var, "dbg intrinsic without variable");
6042 
6043   unsigned ArgNo = Var->getArg();
6044   if (!ArgNo)
6045     return;
6046 
6047   // Verify there are no duplicate function argument debug info entries.
6048   // These will cause hard-to-debug assertions in the DWARF backend.
6049   if (DebugFnArgs.size() < ArgNo)
6050     DebugFnArgs.resize(ArgNo, nullptr);
6051 
6052   auto *Prev = DebugFnArgs[ArgNo - 1];
6053   DebugFnArgs[ArgNo - 1] = Var;
6054   CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6055           Prev, Var);
6056 }
6057 
6058 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6059   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6060 
6061   // We don't know whether this intrinsic verified correctly.
6062   if (!E || !E->isValid())
6063     return;
6064 
6065   CheckDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
6066 }
6067 
6068 void Verifier::verifyCompileUnits() {
6069   // When more than one Module is imported into the same context, such as during
6070   // an LTO build before linking the modules, ODR type uniquing may cause types
6071   // to point to a different CU. This check does not make sense in this case.
6072   if (M.getContext().isODRUniquingDebugTypes())
6073     return;
6074   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
6075   SmallPtrSet<const Metadata *, 2> Listed;
6076   if (CUs)
6077     Listed.insert(CUs->op_begin(), CUs->op_end());
6078   for (auto *CU : CUVisited)
6079     CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
6080   CUVisited.clear();
6081 }
6082 
6083 void Verifier::verifyDeoptimizeCallingConvs() {
6084   if (DeoptimizeDeclarations.empty())
6085     return;
6086 
6087   const Function *First = DeoptimizeDeclarations[0];
6088   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
6089     Check(First->getCallingConv() == F->getCallingConv(),
6090           "All llvm.experimental.deoptimize declarations must have the same "
6091           "calling convention",
6092           First, F);
6093   }
6094 }
6095 
6096 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6097                                         const OperandBundleUse &BU) {
6098   FunctionType *FTy = Call.getFunctionType();
6099 
6100   Check((FTy->getReturnType()->isPointerTy() ||
6101          (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6102         "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6103         "function returning a pointer or a non-returning function that has a "
6104         "void return type",
6105         Call);
6106 
6107   Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6108         "operand bundle \"clang.arc.attachedcall\" requires one function as "
6109         "an argument",
6110         Call);
6111 
6112   auto *Fn = cast<Function>(BU.Inputs.front());
6113   Intrinsic::ID IID = Fn->getIntrinsicID();
6114 
6115   if (IID) {
6116     Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6117            IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6118           "invalid function argument", Call);
6119   } else {
6120     StringRef FnName = Fn->getName();
6121     Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6122            FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6123           "invalid function argument", Call);
6124   }
6125 }
6126 
6127 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
6128   bool HasSource = F.getSource().has_value();
6129   if (!HasSourceDebugInfo.count(&U))
6130     HasSourceDebugInfo[&U] = HasSource;
6131   CheckDI(HasSource == HasSourceDebugInfo[&U],
6132           "inconsistent use of embedded source");
6133 }
6134 
6135 void Verifier::verifyNoAliasScopeDecl() {
6136   if (NoAliasScopeDecls.empty())
6137     return;
6138 
6139   // only a single scope must be declared at a time.
6140   for (auto *II : NoAliasScopeDecls) {
6141     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6142            "Not a llvm.experimental.noalias.scope.decl ?");
6143     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6144         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6145     Check(ScopeListMV != nullptr,
6146           "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
6147           "argument",
6148           II);
6149 
6150     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
6151     Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
6152     Check(ScopeListMD->getNumOperands() == 1,
6153           "!id.scope.list must point to a list with a single scope", II);
6154     visitAliasScopeListMetadata(ScopeListMD);
6155   }
6156 
6157   // Only check the domination rule when requested. Once all passes have been
6158   // adapted this option can go away.
6159   if (!VerifyNoAliasScopeDomination)
6160     return;
6161 
6162   // Now sort the intrinsics based on the scope MDNode so that declarations of
6163   // the same scopes are next to each other.
6164   auto GetScope = [](IntrinsicInst *II) {
6165     const auto *ScopeListMV = cast<MetadataAsValue>(
6166         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6167     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
6168   };
6169 
6170   // We are sorting on MDNode pointers here. For valid input IR this is ok.
6171   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
6172   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
6173     return GetScope(Lhs) < GetScope(Rhs);
6174   };
6175 
6176   llvm::sort(NoAliasScopeDecls, Compare);
6177 
6178   // Go over the intrinsics and check that for the same scope, they are not
6179   // dominating each other.
6180   auto ItCurrent = NoAliasScopeDecls.begin();
6181   while (ItCurrent != NoAliasScopeDecls.end()) {
6182     auto CurScope = GetScope(*ItCurrent);
6183     auto ItNext = ItCurrent;
6184     do {
6185       ++ItNext;
6186     } while (ItNext != NoAliasScopeDecls.end() &&
6187              GetScope(*ItNext) == CurScope);
6188 
6189     // [ItCurrent, ItNext) represents the declarations for the same scope.
6190     // Ensure they are not dominating each other.. but only if it is not too
6191     // expensive.
6192     if (ItNext - ItCurrent < 32)
6193       for (auto *I : llvm::make_range(ItCurrent, ItNext))
6194         for (auto *J : llvm::make_range(ItCurrent, ItNext))
6195           if (I != J)
6196             Check(!DT.dominates(I, J),
6197                   "llvm.experimental.noalias.scope.decl dominates another one "
6198                   "with the same scope",
6199                   I);
6200     ItCurrent = ItNext;
6201   }
6202 }
6203 
6204 //===----------------------------------------------------------------------===//
6205 //  Implement the public interfaces to this file...
6206 //===----------------------------------------------------------------------===//
6207 
6208 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6209   Function &F = const_cast<Function &>(f);
6210 
6211   // Don't use a raw_null_ostream.  Printing IR is expensive.
6212   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6213 
6214   // Note that this function's return value is inverted from what you would
6215   // expect of a function called "verify".
6216   return !V.verify(F);
6217 }
6218 
6219 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6220                         bool *BrokenDebugInfo) {
6221   // Don't use a raw_null_ostream.  Printing IR is expensive.
6222   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6223 
6224   bool Broken = false;
6225   for (const Function &F : M)
6226     Broken |= !V.verify(F);
6227 
6228   Broken |= !V.verify();
6229   if (BrokenDebugInfo)
6230     *BrokenDebugInfo = V.hasBrokenDebugInfo();
6231   // Note that this function's return value is inverted from what you would
6232   // expect of a function called "verify".
6233   return Broken;
6234 }
6235 
6236 namespace {
6237 
6238 struct VerifierLegacyPass : public FunctionPass {
6239   static char ID;
6240 
6241   std::unique_ptr<Verifier> V;
6242   bool FatalErrors = true;
6243 
6244   VerifierLegacyPass() : FunctionPass(ID) {
6245     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6246   }
6247   explicit VerifierLegacyPass(bool FatalErrors)
6248       : FunctionPass(ID),
6249         FatalErrors(FatalErrors) {
6250     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6251   }
6252 
6253   bool doInitialization(Module &M) override {
6254     V = std::make_unique<Verifier>(
6255         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6256     return false;
6257   }
6258 
6259   bool runOnFunction(Function &F) override {
6260     if (!V->verify(F) && FatalErrors) {
6261       errs() << "in function " << F.getName() << '\n';
6262       report_fatal_error("Broken function found, compilation aborted!");
6263     }
6264     return false;
6265   }
6266 
6267   bool doFinalization(Module &M) override {
6268     bool HasErrors = false;
6269     for (Function &F : M)
6270       if (F.isDeclaration())
6271         HasErrors |= !V->verify(F);
6272 
6273     HasErrors |= !V->verify();
6274     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6275       report_fatal_error("Broken module found, compilation aborted!");
6276     return false;
6277   }
6278 
6279   void getAnalysisUsage(AnalysisUsage &AU) const override {
6280     AU.setPreservesAll();
6281   }
6282 };
6283 
6284 } // end anonymous namespace
6285 
6286 /// Helper to issue failure from the TBAA verification
6287 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6288   if (Diagnostic)
6289     return Diagnostic->CheckFailed(Args...);
6290 }
6291 
6292 #define CheckTBAA(C, ...)                                                      \
6293   do {                                                                         \
6294     if (!(C)) {                                                                \
6295       CheckFailed(__VA_ARGS__);                                                \
6296       return false;                                                            \
6297     }                                                                          \
6298   } while (false)
6299 
6300 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
6301 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
6302 /// struct-type node describing an aggregate data structure (like a struct).
6303 TBAAVerifier::TBAABaseNodeSummary
6304 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6305                                  bool IsNewFormat) {
6306   if (BaseNode->getNumOperands() < 2) {
6307     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6308     return {true, ~0u};
6309   }
6310 
6311   auto Itr = TBAABaseNodes.find(BaseNode);
6312   if (Itr != TBAABaseNodes.end())
6313     return Itr->second;
6314 
6315   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6316   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6317   (void)InsertResult;
6318   assert(InsertResult.second && "We just checked!");
6319   return Result;
6320 }
6321 
6322 TBAAVerifier::TBAABaseNodeSummary
6323 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6324                                      bool IsNewFormat) {
6325   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6326 
6327   if (BaseNode->getNumOperands() == 2) {
6328     // Scalar nodes can only be accessed at offset 0.
6329     return isValidScalarTBAANode(BaseNode)
6330                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6331                : InvalidNode;
6332   }
6333 
6334   if (IsNewFormat) {
6335     if (BaseNode->getNumOperands() % 3 != 0) {
6336       CheckFailed("Access tag nodes must have the number of operands that is a "
6337                   "multiple of 3!", BaseNode);
6338       return InvalidNode;
6339     }
6340   } else {
6341     if (BaseNode->getNumOperands() % 2 != 1) {
6342       CheckFailed("Struct tag nodes must have an odd number of operands!",
6343                   BaseNode);
6344       return InvalidNode;
6345     }
6346   }
6347 
6348   // Check the type size field.
6349   if (IsNewFormat) {
6350     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6351         BaseNode->getOperand(1));
6352     if (!TypeSizeNode) {
6353       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6354       return InvalidNode;
6355     }
6356   }
6357 
6358   // Check the type name field. In the new format it can be anything.
6359   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6360     CheckFailed("Struct tag nodes have a string as their first operand",
6361                 BaseNode);
6362     return InvalidNode;
6363   }
6364 
6365   bool Failed = false;
6366 
6367   Optional<APInt> PrevOffset;
6368   unsigned BitWidth = ~0u;
6369 
6370   // We've already checked that BaseNode is not a degenerate root node with one
6371   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6372   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6373   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6374   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6375            Idx += NumOpsPerField) {
6376     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6377     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6378     if (!isa<MDNode>(FieldTy)) {
6379       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6380       Failed = true;
6381       continue;
6382     }
6383 
6384     auto *OffsetEntryCI =
6385         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6386     if (!OffsetEntryCI) {
6387       CheckFailed("Offset entries must be constants!", &I, BaseNode);
6388       Failed = true;
6389       continue;
6390     }
6391 
6392     if (BitWidth == ~0u)
6393       BitWidth = OffsetEntryCI->getBitWidth();
6394 
6395     if (OffsetEntryCI->getBitWidth() != BitWidth) {
6396       CheckFailed(
6397           "Bitwidth between the offsets and struct type entries must match", &I,
6398           BaseNode);
6399       Failed = true;
6400       continue;
6401     }
6402 
6403     // NB! As far as I can tell, we generate a non-strictly increasing offset
6404     // sequence only from structs that have zero size bit fields.  When
6405     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6406     // pick the field lexically the latest in struct type metadata node.  This
6407     // mirrors the actual behavior of the alias analysis implementation.
6408     bool IsAscending =
6409         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6410 
6411     if (!IsAscending) {
6412       CheckFailed("Offsets must be increasing!", &I, BaseNode);
6413       Failed = true;
6414     }
6415 
6416     PrevOffset = OffsetEntryCI->getValue();
6417 
6418     if (IsNewFormat) {
6419       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6420           BaseNode->getOperand(Idx + 2));
6421       if (!MemberSizeNode) {
6422         CheckFailed("Member size entries must be constants!", &I, BaseNode);
6423         Failed = true;
6424         continue;
6425       }
6426     }
6427   }
6428 
6429   return Failed ? InvalidNode
6430                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6431 }
6432 
6433 static bool IsRootTBAANode(const MDNode *MD) {
6434   return MD->getNumOperands() < 2;
6435 }
6436 
6437 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6438                                  SmallPtrSetImpl<const MDNode *> &Visited) {
6439   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6440     return false;
6441 
6442   if (!isa<MDString>(MD->getOperand(0)))
6443     return false;
6444 
6445   if (MD->getNumOperands() == 3) {
6446     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6447     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6448       return false;
6449   }
6450 
6451   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6452   return Parent && Visited.insert(Parent).second &&
6453          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6454 }
6455 
6456 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6457   auto ResultIt = TBAAScalarNodes.find(MD);
6458   if (ResultIt != TBAAScalarNodes.end())
6459     return ResultIt->second;
6460 
6461   SmallPtrSet<const MDNode *, 4> Visited;
6462   bool Result = IsScalarTBAANodeImpl(MD, Visited);
6463   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6464   (void)InsertResult;
6465   assert(InsertResult.second && "Just checked!");
6466 
6467   return Result;
6468 }
6469 
6470 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6471 /// Offset in place to be the offset within the field node returned.
6472 ///
6473 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6474 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6475                                                    const MDNode *BaseNode,
6476                                                    APInt &Offset,
6477                                                    bool IsNewFormat) {
6478   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6479 
6480   // Scalar nodes have only one possible "field" -- their parent in the access
6481   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6482   // to check that.
6483   if (BaseNode->getNumOperands() == 2)
6484     return cast<MDNode>(BaseNode->getOperand(1));
6485 
6486   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6487   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6488   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6489            Idx += NumOpsPerField) {
6490     auto *OffsetEntryCI =
6491         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6492     if (OffsetEntryCI->getValue().ugt(Offset)) {
6493       if (Idx == FirstFieldOpNo) {
6494         CheckFailed("Could not find TBAA parent in struct type node", &I,
6495                     BaseNode, &Offset);
6496         return nullptr;
6497       }
6498 
6499       unsigned PrevIdx = Idx - NumOpsPerField;
6500       auto *PrevOffsetEntryCI =
6501           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6502       Offset -= PrevOffsetEntryCI->getValue();
6503       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6504     }
6505   }
6506 
6507   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6508   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6509       BaseNode->getOperand(LastIdx + 1));
6510   Offset -= LastOffsetEntryCI->getValue();
6511   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6512 }
6513 
6514 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6515   if (!Type || Type->getNumOperands() < 3)
6516     return false;
6517 
6518   // In the new format type nodes shall have a reference to the parent type as
6519   // its first operand.
6520   return isa_and_nonnull<MDNode>(Type->getOperand(0));
6521 }
6522 
6523 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6524   CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6525                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6526                 isa<AtomicCmpXchgInst>(I),
6527             "This instruction shall not have a TBAA access tag!", &I);
6528 
6529   bool IsStructPathTBAA =
6530       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6531 
6532   CheckTBAA(IsStructPathTBAA,
6533             "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
6534             &I);
6535 
6536   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6537   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6538 
6539   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6540 
6541   if (IsNewFormat) {
6542     CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6543               "Access tag metadata must have either 4 or 5 operands", &I, MD);
6544   } else {
6545     CheckTBAA(MD->getNumOperands() < 5,
6546               "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6547   }
6548 
6549   // Check the access size field.
6550   if (IsNewFormat) {
6551     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6552         MD->getOperand(3));
6553     CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6554   }
6555 
6556   // Check the immutability flag.
6557   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6558   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6559     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6560         MD->getOperand(ImmutabilityFlagOpNo));
6561     CheckTBAA(IsImmutableCI,
6562               "Immutability tag on struct tag metadata must be a constant", &I,
6563               MD);
6564     CheckTBAA(
6565         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6566         "Immutability part of the struct tag metadata must be either 0 or 1",
6567         &I, MD);
6568   }
6569 
6570   CheckTBAA(BaseNode && AccessType,
6571             "Malformed struct tag metadata: base and access-type "
6572             "should be non-null and point to Metadata nodes",
6573             &I, MD, BaseNode, AccessType);
6574 
6575   if (!IsNewFormat) {
6576     CheckTBAA(isValidScalarTBAANode(AccessType),
6577               "Access type node must be a valid scalar type", &I, MD,
6578               AccessType);
6579   }
6580 
6581   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6582   CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6583 
6584   APInt Offset = OffsetCI->getValue();
6585   bool SeenAccessTypeInPath = false;
6586 
6587   SmallPtrSet<MDNode *, 4> StructPath;
6588 
6589   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6590        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6591                                                IsNewFormat)) {
6592     if (!StructPath.insert(BaseNode).second) {
6593       CheckFailed("Cycle detected in struct path", &I, MD);
6594       return false;
6595     }
6596 
6597     bool Invalid;
6598     unsigned BaseNodeBitWidth;
6599     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6600                                                              IsNewFormat);
6601 
6602     // If the base node is invalid in itself, then we've already printed all the
6603     // errors we wanted to print.
6604     if (Invalid)
6605       return false;
6606 
6607     SeenAccessTypeInPath |= BaseNode == AccessType;
6608 
6609     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6610       CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6611                 &I, MD, &Offset);
6612 
6613     CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6614                   (BaseNodeBitWidth == 0 && Offset == 0) ||
6615                   (IsNewFormat && BaseNodeBitWidth == ~0u),
6616               "Access bit-width not the same as description bit-width", &I, MD,
6617               BaseNodeBitWidth, Offset.getBitWidth());
6618 
6619     if (IsNewFormat && SeenAccessTypeInPath)
6620       break;
6621   }
6622 
6623   CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
6624             MD);
6625   return true;
6626 }
6627 
6628 char VerifierLegacyPass::ID = 0;
6629 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6630 
6631 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6632   return new VerifierLegacyPass(FatalErrors);
6633 }
6634 
6635 AnalysisKey VerifierAnalysis::Key;
6636 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6637                                                ModuleAnalysisManager &) {
6638   Result Res;
6639   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6640   return Res;
6641 }
6642 
6643 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6644                                                FunctionAnalysisManager &) {
6645   return { llvm::verifyFunction(F, &dbgs()), false };
6646 }
6647 
6648 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6649   auto Res = AM.getResult<VerifierAnalysis>(M);
6650   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6651     report_fatal_error("Broken module found, compilation aborted!");
6652 
6653   return PreservedAnalyses::all();
6654 }
6655 
6656 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6657   auto res = AM.getResult<VerifierAnalysis>(F);
6658   if (res.IRBroken && FatalErrors)
6659     report_fatal_error("Broken function found, compilation aborted!");
6660 
6661   return PreservedAnalyses::all();
6662 }
6663