1 //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements Wasm object file writer information.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/BinaryFormat/Wasm.h"
15 #include "llvm/BinaryFormat/WasmTraits.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/MC/MCAsmBackend.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCAssembler.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCFixupKindInfo.h"
23 #include "llvm/MC/MCObjectWriter.h"
24 #include "llvm/MC/MCSectionWasm.h"
25 #include "llvm/MC/MCSymbolWasm.h"
26 #include "llvm/MC/MCValue.h"
27 #include "llvm/MC/MCWasmObjectWriter.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/EndianStream.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/LEB128.h"
33 #include <vector>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "mc"
38 
39 namespace {
40 
41 // When we create the indirect function table we start at 1, so that there is
42 // and empty slot at 0 and therefore calling a null function pointer will trap.
43 static const uint32_t InitialTableOffset = 1;
44 
45 // For patching purposes, we need to remember where each section starts, both
46 // for patching up the section size field, and for patching up references to
47 // locations within the section.
48 struct SectionBookkeeping {
49   // Where the size of the section is written.
50   uint64_t SizeOffset;
51   // Where the section header ends (without custom section name).
52   uint64_t PayloadOffset;
53   // Where the contents of the section starts.
54   uint64_t ContentsOffset;
55   uint32_t Index;
56 };
57 
58 // A wasm data segment.  A wasm binary contains only a single data section
59 // but that can contain many segments, each with their own virtual location
60 // in memory.  Each MCSection data created by llvm is modeled as its own
61 // wasm data segment.
62 struct WasmDataSegment {
63   MCSectionWasm *Section;
64   StringRef Name;
65   uint32_t InitFlags;
66   uint64_t Offset;
67   uint32_t Alignment;
68   uint32_t LinkingFlags;
69   SmallVector<char, 4> Data;
70 };
71 
72 // A wasm function to be written into the function section.
73 struct WasmFunction {
74   uint32_t SigIndex;
75   MCSection *Section;
76 };
77 
78 // A wasm global to be written into the global section.
79 struct WasmGlobal {
80   wasm::WasmGlobalType Type;
81   uint64_t InitialValue;
82 };
83 
84 // Information about a single item which is part of a COMDAT.  For each data
85 // segment or function which is in the COMDAT, there is a corresponding
86 // WasmComdatEntry.
87 struct WasmComdatEntry {
88   unsigned Kind;
89   uint32_t Index;
90 };
91 
92 // Information about a single relocation.
93 struct WasmRelocationEntry {
94   uint64_t Offset;                   // Where is the relocation.
95   const MCSymbolWasm *Symbol;        // The symbol to relocate with.
96   int64_t Addend;                    // A value to add to the symbol.
97   unsigned Type;                     // The type of the relocation.
98   const MCSectionWasm *FixupSection; // The section the relocation is targeting.
99 
100   WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol,
101                       int64_t Addend, unsigned Type,
102                       const MCSectionWasm *FixupSection)
103       : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type),
104         FixupSection(FixupSection) {}
105 
106   bool hasAddend() const { return wasm::relocTypeHasAddend(Type); }
107 
108   void print(raw_ostream &Out) const {
109     Out << wasm::relocTypetoString(Type) << " Off=" << Offset
110         << ", Sym=" << *Symbol << ", Addend=" << Addend
111         << ", FixupSection=" << FixupSection->getName();
112   }
113 
114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
115   LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
116 #endif
117 };
118 
119 static const uint32_t InvalidIndex = -1;
120 
121 struct WasmCustomSection {
122 
123   StringRef Name;
124   MCSectionWasm *Section;
125 
126   uint32_t OutputContentsOffset = 0;
127   uint32_t OutputIndex = InvalidIndex;
128 
129   WasmCustomSection(StringRef Name, MCSectionWasm *Section)
130       : Name(Name), Section(Section) {}
131 };
132 
133 #if !defined(NDEBUG)
134 raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) {
135   Rel.print(OS);
136   return OS;
137 }
138 #endif
139 
140 // Write Value as an (unsigned) LEB value at offset Offset in Stream, padded
141 // to allow patching.
142 template <typename T, int W>
143 void writePatchableULEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) {
144   uint8_t Buffer[W];
145   unsigned SizeLen = encodeULEB128(Value, Buffer, W);
146   assert(SizeLen == W);
147   Stream.pwrite((char *)Buffer, SizeLen, Offset);
148 }
149 
150 // Write Value as an signed LEB value at offset Offset in Stream, padded
151 // to allow patching.
152 template <typename T, int W>
153 void writePatchableSLEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) {
154   uint8_t Buffer[W];
155   unsigned SizeLen = encodeSLEB128(Value, Buffer, W);
156   assert(SizeLen == W);
157   Stream.pwrite((char *)Buffer, SizeLen, Offset);
158 }
159 
160 static void writePatchableU32(raw_pwrite_stream &Stream, uint32_t Value,
161                               uint64_t Offset) {
162   writePatchableULEB<uint32_t, 5>(Stream, Value, Offset);
163 }
164 
165 static void writePatchableS32(raw_pwrite_stream &Stream, int32_t Value,
166                               uint64_t Offset) {
167   writePatchableSLEB<int32_t, 5>(Stream, Value, Offset);
168 }
169 
170 static void writePatchableU64(raw_pwrite_stream &Stream, uint64_t Value,
171                               uint64_t Offset) {
172   writePatchableSLEB<uint64_t, 10>(Stream, Value, Offset);
173 }
174 
175 static void writePatchableS64(raw_pwrite_stream &Stream, int64_t Value,
176                               uint64_t Offset) {
177   writePatchableSLEB<int64_t, 10>(Stream, Value, Offset);
178 }
179 
180 // Write Value as a plain integer value at offset Offset in Stream.
181 static void patchI32(raw_pwrite_stream &Stream, uint32_t Value,
182                      uint64_t Offset) {
183   uint8_t Buffer[4];
184   support::endian::write32le(Buffer, Value);
185   Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset);
186 }
187 
188 static void patchI64(raw_pwrite_stream &Stream, uint64_t Value,
189                      uint64_t Offset) {
190   uint8_t Buffer[8];
191   support::endian::write64le(Buffer, Value);
192   Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset);
193 }
194 
195 bool isDwoSection(const MCSection &Sec) {
196   return Sec.getName().endswith(".dwo");
197 }
198 
199 class WasmObjectWriter : public MCObjectWriter {
200   support::endian::Writer *W;
201 
202   /// The target specific Wasm writer instance.
203   std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter;
204 
205   // Relocations for fixing up references in the code section.
206   std::vector<WasmRelocationEntry> CodeRelocations;
207   // Relocations for fixing up references in the data section.
208   std::vector<WasmRelocationEntry> DataRelocations;
209 
210   // Index values to use for fixing up call_indirect type indices.
211   // Maps function symbols to the index of the type of the function
212   DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices;
213   // Maps function symbols to the table element index space. Used
214   // for TABLE_INDEX relocation types (i.e. address taken functions).
215   DenseMap<const MCSymbolWasm *, uint32_t> TableIndices;
216   // Maps function/global/table symbols to the
217   // function/global/table/tag/section index space.
218   DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices;
219   DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices;
220   // Maps data symbols to the Wasm segment and offset/size with the segment.
221   DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations;
222 
223   // Stores output data (index, relocations, content offset) for custom
224   // section.
225   std::vector<WasmCustomSection> CustomSections;
226   std::unique_ptr<WasmCustomSection> ProducersSection;
227   std::unique_ptr<WasmCustomSection> TargetFeaturesSection;
228   // Relocations for fixing up references in the custom sections.
229   DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>>
230       CustomSectionsRelocations;
231 
232   // Map from section to defining function symbol.
233   DenseMap<const MCSection *, const MCSymbol *> SectionFunctions;
234 
235   DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices;
236   SmallVector<wasm::WasmSignature, 4> Signatures;
237   SmallVector<WasmDataSegment, 4> DataSegments;
238   unsigned NumFunctionImports = 0;
239   unsigned NumGlobalImports = 0;
240   unsigned NumTableImports = 0;
241   unsigned NumTagImports = 0;
242   uint32_t SectionCount = 0;
243 
244   enum class DwoMode {
245     AllSections,
246     NonDwoOnly,
247     DwoOnly,
248   };
249   bool IsSplitDwarf = false;
250   raw_pwrite_stream *OS = nullptr;
251   raw_pwrite_stream *DwoOS = nullptr;
252 
253   // TargetObjectWriter wranppers.
254   bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
255   bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); }
256 
257   void startSection(SectionBookkeeping &Section, unsigned SectionId);
258   void startCustomSection(SectionBookkeeping &Section, StringRef Name);
259   void endSection(SectionBookkeeping &Section);
260 
261 public:
262   WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,
263                    raw_pwrite_stream &OS_)
264       : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {}
265 
266   WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,
267                    raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_)
268       : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_),
269         DwoOS(&DwoOS_) {}
270 
271 private:
272   void reset() override {
273     CodeRelocations.clear();
274     DataRelocations.clear();
275     TypeIndices.clear();
276     WasmIndices.clear();
277     GOTIndices.clear();
278     TableIndices.clear();
279     DataLocations.clear();
280     CustomSections.clear();
281     ProducersSection.reset();
282     TargetFeaturesSection.reset();
283     CustomSectionsRelocations.clear();
284     SignatureIndices.clear();
285     Signatures.clear();
286     DataSegments.clear();
287     SectionFunctions.clear();
288     NumFunctionImports = 0;
289     NumGlobalImports = 0;
290     NumTableImports = 0;
291     MCObjectWriter::reset();
292   }
293 
294   void writeHeader(const MCAssembler &Asm);
295 
296   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
297                         const MCFragment *Fragment, const MCFixup &Fixup,
298                         MCValue Target, uint64_t &FixedValue) override;
299 
300   void executePostLayoutBinding(MCAssembler &Asm,
301                                 const MCAsmLayout &Layout) override;
302   void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports,
303                       MCAssembler &Asm, const MCAsmLayout &Layout);
304   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
305 
306   uint64_t writeOneObject(MCAssembler &Asm, const MCAsmLayout &Layout,
307                           DwoMode Mode);
308 
309   void writeString(const StringRef Str) {
310     encodeULEB128(Str.size(), W->OS);
311     W->OS << Str;
312   }
313 
314   void writeStringWithAlignment(const StringRef Str, unsigned Alignment);
315 
316   void writeI32(int32_t val) {
317     char Buffer[4];
318     support::endian::write32le(Buffer, val);
319     W->OS.write(Buffer, sizeof(Buffer));
320   }
321 
322   void writeI64(int64_t val) {
323     char Buffer[8];
324     support::endian::write64le(Buffer, val);
325     W->OS.write(Buffer, sizeof(Buffer));
326   }
327 
328   void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); }
329 
330   void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures);
331   void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize,
332                           uint32_t NumElements);
333   void writeFunctionSection(ArrayRef<WasmFunction> Functions);
334   void writeExportSection(ArrayRef<wasm::WasmExport> Exports);
335   void writeElemSection(const MCSymbolWasm *IndirectFunctionTable,
336                         ArrayRef<uint32_t> TableElems);
337   void writeDataCountSection();
338   uint32_t writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout,
339                             ArrayRef<WasmFunction> Functions);
340   uint32_t writeDataSection(const MCAsmLayout &Layout);
341   void writeTagSection(ArrayRef<uint32_t> TagTypes);
342   void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals);
343   void writeTableSection(ArrayRef<wasm::WasmTable> Tables);
344   void writeRelocSection(uint32_t SectionIndex, StringRef Name,
345                          std::vector<WasmRelocationEntry> &Relocations);
346   void writeLinkingMetaDataSection(
347       ArrayRef<wasm::WasmSymbolInfo> SymbolInfos,
348       ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs,
349       const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats);
350   void writeCustomSection(WasmCustomSection &CustomSection,
351                           const MCAssembler &Asm, const MCAsmLayout &Layout);
352   void writeCustomRelocSections();
353 
354   uint64_t getProvisionalValue(const WasmRelocationEntry &RelEntry,
355                                const MCAsmLayout &Layout);
356   void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations,
357                         uint64_t ContentsOffset, const MCAsmLayout &Layout);
358 
359   uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry);
360   uint32_t getFunctionType(const MCSymbolWasm &Symbol);
361   uint32_t getTagType(const MCSymbolWasm &Symbol);
362   void registerFunctionType(const MCSymbolWasm &Symbol);
363   void registerTagType(const MCSymbolWasm &Symbol);
364 };
365 
366 } // end anonymous namespace
367 
368 // Write out a section header and a patchable section size field.
369 void WasmObjectWriter::startSection(SectionBookkeeping &Section,
370                                     unsigned SectionId) {
371   LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n");
372   W->OS << char(SectionId);
373 
374   Section.SizeOffset = W->OS.tell();
375 
376   // The section size. We don't know the size yet, so reserve enough space
377   // for any 32-bit value; we'll patch it later.
378   encodeULEB128(0, W->OS, 5);
379 
380   // The position where the section starts, for measuring its size.
381   Section.ContentsOffset = W->OS.tell();
382   Section.PayloadOffset = W->OS.tell();
383   Section.Index = SectionCount++;
384 }
385 
386 // Write a string with extra paddings for trailing alignment
387 // TODO: support alignment at asm and llvm level?
388 void WasmObjectWriter::writeStringWithAlignment(const StringRef Str,
389                                                 unsigned Alignment) {
390 
391   // Calculate the encoded size of str length and add pads based on it and
392   // alignment.
393   raw_null_ostream NullOS;
394   uint64_t StrSizeLength = encodeULEB128(Str.size(), NullOS);
395   uint64_t Offset = W->OS.tell() + StrSizeLength + Str.size();
396   uint64_t Paddings = offsetToAlignment(Offset, Align(Alignment));
397   Offset += Paddings;
398 
399   // LEB128 greater than 5 bytes is invalid
400   assert((StrSizeLength + Paddings) <= 5 && "too long string to align");
401 
402   encodeSLEB128(Str.size(), W->OS, StrSizeLength + Paddings);
403   W->OS << Str;
404 
405   assert(W->OS.tell() == Offset && "invalid padding");
406 }
407 
408 void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section,
409                                           StringRef Name) {
410   LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n");
411   startSection(Section, wasm::WASM_SEC_CUSTOM);
412 
413   // The position where the section header ends, for measuring its size.
414   Section.PayloadOffset = W->OS.tell();
415 
416   // Custom sections in wasm also have a string identifier.
417   if (Name != "__clangast") {
418     writeString(Name);
419   } else {
420     // The on-disk hashtable in clangast needs to be aligned by 4 bytes.
421     writeStringWithAlignment(Name, 4);
422   }
423 
424   // The position where the custom section starts.
425   Section.ContentsOffset = W->OS.tell();
426 }
427 
428 // Now that the section is complete and we know how big it is, patch up the
429 // section size field at the start of the section.
430 void WasmObjectWriter::endSection(SectionBookkeeping &Section) {
431   uint64_t Size = W->OS.tell();
432   // /dev/null doesn't support seek/tell and can report offset of 0.
433   // Simply skip this patching in that case.
434   if (!Size)
435     return;
436 
437   Size -= Section.PayloadOffset;
438   if (uint32_t(Size) != Size)
439     report_fatal_error("section size does not fit in a uint32_t");
440 
441   LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n");
442 
443   // Write the final section size to the payload_len field, which follows
444   // the section id byte.
445   writePatchableU32(static_cast<raw_pwrite_stream &>(W->OS), Size,
446                     Section.SizeOffset);
447 }
448 
449 // Emit the Wasm header.
450 void WasmObjectWriter::writeHeader(const MCAssembler &Asm) {
451   W->OS.write(wasm::WasmMagic, sizeof(wasm::WasmMagic));
452   W->write<uint32_t>(wasm::WasmVersion);
453 }
454 
455 void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
456                                                 const MCAsmLayout &Layout) {
457   // Some compilation units require the indirect function table to be present
458   // but don't explicitly reference it.  This is the case for call_indirect
459   // without the reference-types feature, and also function bitcasts in all
460   // cases.  In those cases the __indirect_function_table has the
461   // WASM_SYMBOL_NO_STRIP attribute.  Here we make sure this symbol makes it to
462   // the assembler, if needed.
463   if (auto *Sym = Asm.getContext().lookupSymbol("__indirect_function_table")) {
464     const auto *WasmSym = static_cast<const MCSymbolWasm *>(Sym);
465     if (WasmSym->isNoStrip())
466       Asm.registerSymbol(*Sym);
467   }
468 
469   // Build a map of sections to the function that defines them, for use
470   // in recordRelocation.
471   for (const MCSymbol &S : Asm.symbols()) {
472     const auto &WS = static_cast<const MCSymbolWasm &>(S);
473     if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) {
474       const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection());
475       auto Pair = SectionFunctions.insert(std::make_pair(&Sec, &S));
476       if (!Pair.second)
477         report_fatal_error("section already has a defining function: " +
478                            Sec.getName());
479     }
480   }
481 }
482 
483 void WasmObjectWriter::recordRelocation(MCAssembler &Asm,
484                                         const MCAsmLayout &Layout,
485                                         const MCFragment *Fragment,
486                                         const MCFixup &Fixup, MCValue Target,
487                                         uint64_t &FixedValue) {
488   // The WebAssembly backend should never generate FKF_IsPCRel fixups
489   assert(!(Asm.getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
490            MCFixupKindInfo::FKF_IsPCRel));
491 
492   const auto &FixupSection = cast<MCSectionWasm>(*Fragment->getParent());
493   uint64_t C = Target.getConstant();
494   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
495   MCContext &Ctx = Asm.getContext();
496   bool IsLocRel = false;
497 
498   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
499 
500     const auto &SymB = cast<MCSymbolWasm>(RefB->getSymbol());
501 
502     if (FixupSection.getKind().isText()) {
503       Ctx.reportError(Fixup.getLoc(),
504                       Twine("symbol '") + SymB.getName() +
505                           "' unsupported subtraction expression used in "
506                           "relocation in code section.");
507       return;
508     }
509 
510     if (SymB.isUndefined()) {
511       Ctx.reportError(Fixup.getLoc(),
512                       Twine("symbol '") + SymB.getName() +
513                           "' can not be undefined in a subtraction expression");
514       return;
515     }
516     const MCSection &SecB = SymB.getSection();
517     if (&SecB != &FixupSection) {
518       Ctx.reportError(Fixup.getLoc(),
519                       Twine("symbol '") + SymB.getName() +
520                           "' can not be placed in a different section");
521       return;
522     }
523     IsLocRel = true;
524     C += FixupOffset - Layout.getSymbolOffset(SymB);
525   }
526 
527   // We either rejected the fixup or folded B into C at this point.
528   const MCSymbolRefExpr *RefA = Target.getSymA();
529   const auto *SymA = cast<MCSymbolWasm>(&RefA->getSymbol());
530 
531   // The .init_array isn't translated as data, so don't do relocations in it.
532   if (FixupSection.getName().startswith(".init_array")) {
533     SymA->setUsedInInitArray();
534     return;
535   }
536 
537   if (SymA->isVariable()) {
538     const MCExpr *Expr = SymA->getVariableValue();
539     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr))
540       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
541         llvm_unreachable("weakref used in reloc not yet implemented");
542   }
543 
544   // Put any constant offset in an addend. Offsets can be negative, and
545   // LLVM expects wrapping, in contrast to wasm's immediates which can't
546   // be negative and don't wrap.
547   FixedValue = 0;
548 
549   unsigned Type =
550       TargetObjectWriter->getRelocType(Target, Fixup, FixupSection, IsLocRel);
551 
552   // Absolute offset within a section or a function.
553   // Currently only supported for for metadata sections.
554   // See: test/MC/WebAssembly/blockaddress.ll
555   if ((Type == wasm::R_WASM_FUNCTION_OFFSET_I32 ||
556        Type == wasm::R_WASM_FUNCTION_OFFSET_I64 ||
557        Type == wasm::R_WASM_SECTION_OFFSET_I32) &&
558       SymA->isDefined()) {
559     // SymA can be a temp data symbol that represents a function (in which case
560     // it needs to be replaced by the section symbol), [XXX and it apparently
561     // later gets changed again to a func symbol?] or it can be a real
562     // function symbol, in which case it can be left as-is.
563 
564     if (!FixupSection.getKind().isMetadata())
565       report_fatal_error("relocations for function or section offsets are "
566                          "only supported in metadata sections");
567 
568     const MCSymbol *SectionSymbol = nullptr;
569     const MCSection &SecA = SymA->getSection();
570     if (SecA.getKind().isText()) {
571       auto SecSymIt = SectionFunctions.find(&SecA);
572       if (SecSymIt == SectionFunctions.end())
573         report_fatal_error("section doesn\'t have defining symbol");
574       SectionSymbol = SecSymIt->second;
575     } else {
576       SectionSymbol = SecA.getBeginSymbol();
577     }
578     if (!SectionSymbol)
579       report_fatal_error("section symbol is required for relocation");
580 
581     C += Layout.getSymbolOffset(*SymA);
582     SymA = cast<MCSymbolWasm>(SectionSymbol);
583   }
584 
585   if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB ||
586       Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64 ||
587       Type == wasm::R_WASM_TABLE_INDEX_SLEB ||
588       Type == wasm::R_WASM_TABLE_INDEX_SLEB64 ||
589       Type == wasm::R_WASM_TABLE_INDEX_I32 ||
590       Type == wasm::R_WASM_TABLE_INDEX_I64) {
591     // TABLE_INDEX relocs implicitly use the default indirect function table.
592     // We require the function table to have already been defined.
593     auto TableName = "__indirect_function_table";
594     MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Ctx.lookupSymbol(TableName));
595     if (!Sym) {
596       report_fatal_error("missing indirect function table symbol");
597     } else {
598       if (!Sym->isFunctionTable())
599         report_fatal_error("__indirect_function_table symbol has wrong type");
600       // Ensure that __indirect_function_table reaches the output.
601       Sym->setNoStrip();
602       Asm.registerSymbol(*Sym);
603     }
604   }
605 
606   // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be
607   // against a named symbol.
608   if (Type != wasm::R_WASM_TYPE_INDEX_LEB) {
609     if (SymA->getName().empty())
610       report_fatal_error("relocations against un-named temporaries are not yet "
611                          "supported by wasm");
612 
613     SymA->setUsedInReloc();
614   }
615 
616   switch (RefA->getKind()) {
617   case MCSymbolRefExpr::VK_GOT:
618   case MCSymbolRefExpr::VK_WASM_GOT_TLS:
619     SymA->setUsedInGOT();
620     break;
621   default:
622     break;
623   }
624 
625   WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection);
626   LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n");
627 
628   if (FixupSection.isWasmData()) {
629     DataRelocations.push_back(Rec);
630   } else if (FixupSection.getKind().isText()) {
631     CodeRelocations.push_back(Rec);
632   } else if (FixupSection.getKind().isMetadata()) {
633     CustomSectionsRelocations[&FixupSection].push_back(Rec);
634   } else {
635     llvm_unreachable("unexpected section type");
636   }
637 }
638 
639 // Compute a value to write into the code at the location covered
640 // by RelEntry. This value isn't used by the static linker; it just serves
641 // to make the object format more readable and more likely to be directly
642 // useable.
643 uint64_t
644 WasmObjectWriter::getProvisionalValue(const WasmRelocationEntry &RelEntry,
645                                       const MCAsmLayout &Layout) {
646   if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB ||
647        RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) &&
648       !RelEntry.Symbol->isGlobal()) {
649     assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space");
650     return GOTIndices[RelEntry.Symbol];
651   }
652 
653   switch (RelEntry.Type) {
654   case wasm::R_WASM_TABLE_INDEX_REL_SLEB:
655   case wasm::R_WASM_TABLE_INDEX_REL_SLEB64:
656   case wasm::R_WASM_TABLE_INDEX_SLEB:
657   case wasm::R_WASM_TABLE_INDEX_SLEB64:
658   case wasm::R_WASM_TABLE_INDEX_I32:
659   case wasm::R_WASM_TABLE_INDEX_I64: {
660     // Provisional value is table address of the resolved symbol itself
661     const MCSymbolWasm *Base =
662         cast<MCSymbolWasm>(Layout.getBaseSymbol(*RelEntry.Symbol));
663     assert(Base->isFunction());
664     if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB ||
665         RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64)
666       return TableIndices[Base] - InitialTableOffset;
667     else
668       return TableIndices[Base];
669   }
670   case wasm::R_WASM_TYPE_INDEX_LEB:
671     // Provisional value is same as the index
672     return getRelocationIndexValue(RelEntry);
673   case wasm::R_WASM_FUNCTION_INDEX_LEB:
674   case wasm::R_WASM_GLOBAL_INDEX_LEB:
675   case wasm::R_WASM_GLOBAL_INDEX_I32:
676   case wasm::R_WASM_TAG_INDEX_LEB:
677   case wasm::R_WASM_TABLE_NUMBER_LEB:
678     // Provisional value is function/global/tag Wasm index
679     assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space");
680     return WasmIndices[RelEntry.Symbol];
681   case wasm::R_WASM_FUNCTION_OFFSET_I32:
682   case wasm::R_WASM_FUNCTION_OFFSET_I64:
683   case wasm::R_WASM_SECTION_OFFSET_I32: {
684     if (!RelEntry.Symbol->isDefined())
685       return 0;
686     const auto &Section =
687         static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection());
688     return Section.getSectionOffset() + RelEntry.Addend;
689   }
690   case wasm::R_WASM_MEMORY_ADDR_LEB:
691   case wasm::R_WASM_MEMORY_ADDR_LEB64:
692   case wasm::R_WASM_MEMORY_ADDR_SLEB:
693   case wasm::R_WASM_MEMORY_ADDR_SLEB64:
694   case wasm::R_WASM_MEMORY_ADDR_REL_SLEB:
695   case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64:
696   case wasm::R_WASM_MEMORY_ADDR_I32:
697   case wasm::R_WASM_MEMORY_ADDR_I64:
698   case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB:
699   case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64:
700   case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: {
701     // Provisional value is address of the global plus the offset
702     // For undefined symbols, use zero
703     if (!RelEntry.Symbol->isDefined())
704       return 0;
705     const wasm::WasmDataReference &SymRef = DataLocations[RelEntry.Symbol];
706     const WasmDataSegment &Segment = DataSegments[SymRef.Segment];
707     // Ignore overflow. LLVM allows address arithmetic to silently wrap.
708     return Segment.Offset + SymRef.Offset + RelEntry.Addend;
709   }
710   default:
711     llvm_unreachable("invalid relocation type");
712   }
713 }
714 
715 static void addData(SmallVectorImpl<char> &DataBytes,
716                     MCSectionWasm &DataSection) {
717   LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n");
718 
719   DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlign()));
720 
721   for (const MCFragment &Frag : DataSection) {
722     if (Frag.hasInstructions())
723       report_fatal_error("only data supported in data sections");
724 
725     if (auto *Align = dyn_cast<MCAlignFragment>(&Frag)) {
726       if (Align->getValueSize() != 1)
727         report_fatal_error("only byte values supported for alignment");
728       // If nops are requested, use zeros, as this is the data section.
729       uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue();
730       uint64_t Size =
731           std::min<uint64_t>(alignTo(DataBytes.size(), Align->getAlignment()),
732                              DataBytes.size() + Align->getMaxBytesToEmit());
733       DataBytes.resize(Size, Value);
734     } else if (auto *Fill = dyn_cast<MCFillFragment>(&Frag)) {
735       int64_t NumValues;
736       if (!Fill->getNumValues().evaluateAsAbsolute(NumValues))
737         llvm_unreachable("The fill should be an assembler constant");
738       DataBytes.insert(DataBytes.end(), Fill->getValueSize() * NumValues,
739                        Fill->getValue());
740     } else if (auto *LEB = dyn_cast<MCLEBFragment>(&Frag)) {
741       const SmallVectorImpl<char> &Contents = LEB->getContents();
742       llvm::append_range(DataBytes, Contents);
743     } else {
744       const auto &DataFrag = cast<MCDataFragment>(Frag);
745       const SmallVectorImpl<char> &Contents = DataFrag.getContents();
746       llvm::append_range(DataBytes, Contents);
747     }
748   }
749 
750   LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n");
751 }
752 
753 uint32_t
754 WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) {
755   if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) {
756     if (!TypeIndices.count(RelEntry.Symbol))
757       report_fatal_error("symbol not found in type index space: " +
758                          RelEntry.Symbol->getName());
759     return TypeIndices[RelEntry.Symbol];
760   }
761 
762   return RelEntry.Symbol->getIndex();
763 }
764 
765 // Apply the portions of the relocation records that we can handle ourselves
766 // directly.
767 void WasmObjectWriter::applyRelocations(
768     ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset,
769     const MCAsmLayout &Layout) {
770   auto &Stream = static_cast<raw_pwrite_stream &>(W->OS);
771   for (const WasmRelocationEntry &RelEntry : Relocations) {
772     uint64_t Offset = ContentsOffset +
773                       RelEntry.FixupSection->getSectionOffset() +
774                       RelEntry.Offset;
775 
776     LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n");
777     uint64_t Value = getProvisionalValue(RelEntry, Layout);
778 
779     switch (RelEntry.Type) {
780     case wasm::R_WASM_FUNCTION_INDEX_LEB:
781     case wasm::R_WASM_TYPE_INDEX_LEB:
782     case wasm::R_WASM_GLOBAL_INDEX_LEB:
783     case wasm::R_WASM_MEMORY_ADDR_LEB:
784     case wasm::R_WASM_TAG_INDEX_LEB:
785     case wasm::R_WASM_TABLE_NUMBER_LEB:
786       writePatchableU32(Stream, Value, Offset);
787       break;
788     case wasm::R_WASM_MEMORY_ADDR_LEB64:
789       writePatchableU64(Stream, Value, Offset);
790       break;
791     case wasm::R_WASM_TABLE_INDEX_I32:
792     case wasm::R_WASM_MEMORY_ADDR_I32:
793     case wasm::R_WASM_FUNCTION_OFFSET_I32:
794     case wasm::R_WASM_SECTION_OFFSET_I32:
795     case wasm::R_WASM_GLOBAL_INDEX_I32:
796     case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32:
797       patchI32(Stream, Value, Offset);
798       break;
799     case wasm::R_WASM_TABLE_INDEX_I64:
800     case wasm::R_WASM_MEMORY_ADDR_I64:
801     case wasm::R_WASM_FUNCTION_OFFSET_I64:
802       patchI64(Stream, Value, Offset);
803       break;
804     case wasm::R_WASM_TABLE_INDEX_SLEB:
805     case wasm::R_WASM_TABLE_INDEX_REL_SLEB:
806     case wasm::R_WASM_MEMORY_ADDR_SLEB:
807     case wasm::R_WASM_MEMORY_ADDR_REL_SLEB:
808     case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB:
809       writePatchableS32(Stream, Value, Offset);
810       break;
811     case wasm::R_WASM_TABLE_INDEX_SLEB64:
812     case wasm::R_WASM_TABLE_INDEX_REL_SLEB64:
813     case wasm::R_WASM_MEMORY_ADDR_SLEB64:
814     case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64:
815     case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64:
816       writePatchableS64(Stream, Value, Offset);
817       break;
818     default:
819       llvm_unreachable("invalid relocation type");
820     }
821   }
822 }
823 
824 void WasmObjectWriter::writeTypeSection(
825     ArrayRef<wasm::WasmSignature> Signatures) {
826   if (Signatures.empty())
827     return;
828 
829   SectionBookkeeping Section;
830   startSection(Section, wasm::WASM_SEC_TYPE);
831 
832   encodeULEB128(Signatures.size(), W->OS);
833 
834   for (const wasm::WasmSignature &Sig : Signatures) {
835     W->OS << char(wasm::WASM_TYPE_FUNC);
836     encodeULEB128(Sig.Params.size(), W->OS);
837     for (wasm::ValType Ty : Sig.Params)
838       writeValueType(Ty);
839     encodeULEB128(Sig.Returns.size(), W->OS);
840     for (wasm::ValType Ty : Sig.Returns)
841       writeValueType(Ty);
842   }
843 
844   endSection(Section);
845 }
846 
847 void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports,
848                                           uint64_t DataSize,
849                                           uint32_t NumElements) {
850   if (Imports.empty())
851     return;
852 
853   uint64_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize;
854 
855   SectionBookkeeping Section;
856   startSection(Section, wasm::WASM_SEC_IMPORT);
857 
858   encodeULEB128(Imports.size(), W->OS);
859   for (const wasm::WasmImport &Import : Imports) {
860     writeString(Import.Module);
861     writeString(Import.Field);
862     W->OS << char(Import.Kind);
863 
864     switch (Import.Kind) {
865     case wasm::WASM_EXTERNAL_FUNCTION:
866       encodeULEB128(Import.SigIndex, W->OS);
867       break;
868     case wasm::WASM_EXTERNAL_GLOBAL:
869       W->OS << char(Import.Global.Type);
870       W->OS << char(Import.Global.Mutable ? 1 : 0);
871       break;
872     case wasm::WASM_EXTERNAL_MEMORY:
873       encodeULEB128(Import.Memory.Flags, W->OS);
874       encodeULEB128(NumPages, W->OS); // initial
875       break;
876     case wasm::WASM_EXTERNAL_TABLE:
877       W->OS << char(Import.Table.ElemType);
878       encodeULEB128(0, W->OS);           // flags
879       encodeULEB128(NumElements, W->OS); // initial
880       break;
881     case wasm::WASM_EXTERNAL_TAG:
882       W->OS << char(0); // Reserved 'attribute' field
883       encodeULEB128(Import.SigIndex, W->OS);
884       break;
885     default:
886       llvm_unreachable("unsupported import kind");
887     }
888   }
889 
890   endSection(Section);
891 }
892 
893 void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) {
894   if (Functions.empty())
895     return;
896 
897   SectionBookkeeping Section;
898   startSection(Section, wasm::WASM_SEC_FUNCTION);
899 
900   encodeULEB128(Functions.size(), W->OS);
901   for (const WasmFunction &Func : Functions)
902     encodeULEB128(Func.SigIndex, W->OS);
903 
904   endSection(Section);
905 }
906 
907 void WasmObjectWriter::writeTagSection(ArrayRef<uint32_t> TagTypes) {
908   if (TagTypes.empty())
909     return;
910 
911   SectionBookkeeping Section;
912   startSection(Section, wasm::WASM_SEC_TAG);
913 
914   encodeULEB128(TagTypes.size(), W->OS);
915   for (uint32_t Index : TagTypes) {
916     W->OS << char(0); // Reserved 'attribute' field
917     encodeULEB128(Index, W->OS);
918   }
919 
920   endSection(Section);
921 }
922 
923 void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) {
924   if (Globals.empty())
925     return;
926 
927   SectionBookkeeping Section;
928   startSection(Section, wasm::WASM_SEC_GLOBAL);
929 
930   encodeULEB128(Globals.size(), W->OS);
931   for (const wasm::WasmGlobal &Global : Globals) {
932     encodeULEB128(Global.Type.Type, W->OS);
933     W->OS << char(Global.Type.Mutable);
934     if (Global.InitExpr.Extended) {
935       llvm_unreachable("extected init expressions not supported");
936     } else {
937       W->OS << char(Global.InitExpr.Inst.Opcode);
938       switch (Global.Type.Type) {
939       case wasm::WASM_TYPE_I32:
940         encodeSLEB128(0, W->OS);
941         break;
942       case wasm::WASM_TYPE_I64:
943         encodeSLEB128(0, W->OS);
944         break;
945       case wasm::WASM_TYPE_F32:
946         writeI32(0);
947         break;
948       case wasm::WASM_TYPE_F64:
949         writeI64(0);
950         break;
951       case wasm::WASM_TYPE_EXTERNREF:
952         writeValueType(wasm::ValType::EXTERNREF);
953         break;
954       default:
955         llvm_unreachable("unexpected type");
956       }
957     }
958     W->OS << char(wasm::WASM_OPCODE_END);
959   }
960 
961   endSection(Section);
962 }
963 
964 void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) {
965   if (Tables.empty())
966     return;
967 
968   SectionBookkeeping Section;
969   startSection(Section, wasm::WASM_SEC_TABLE);
970 
971   encodeULEB128(Tables.size(), W->OS);
972   for (const wasm::WasmTable &Table : Tables) {
973     encodeULEB128(Table.Type.ElemType, W->OS);
974     encodeULEB128(Table.Type.Limits.Flags, W->OS);
975     encodeULEB128(Table.Type.Limits.Minimum, W->OS);
976     if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX)
977       encodeULEB128(Table.Type.Limits.Maximum, W->OS);
978   }
979   endSection(Section);
980 }
981 
982 void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) {
983   if (Exports.empty())
984     return;
985 
986   SectionBookkeeping Section;
987   startSection(Section, wasm::WASM_SEC_EXPORT);
988 
989   encodeULEB128(Exports.size(), W->OS);
990   for (const wasm::WasmExport &Export : Exports) {
991     writeString(Export.Name);
992     W->OS << char(Export.Kind);
993     encodeULEB128(Export.Index, W->OS);
994   }
995 
996   endSection(Section);
997 }
998 
999 void WasmObjectWriter::writeElemSection(
1000     const MCSymbolWasm *IndirectFunctionTable, ArrayRef<uint32_t> TableElems) {
1001   if (TableElems.empty())
1002     return;
1003 
1004   assert(IndirectFunctionTable);
1005 
1006   SectionBookkeeping Section;
1007   startSection(Section, wasm::WASM_SEC_ELEM);
1008 
1009   encodeULEB128(1, W->OS); // number of "segments"
1010 
1011   assert(WasmIndices.count(IndirectFunctionTable));
1012   uint32_t TableNumber = WasmIndices.find(IndirectFunctionTable)->second;
1013   uint32_t Flags = 0;
1014   if (TableNumber)
1015     Flags |= wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER;
1016   encodeULEB128(Flags, W->OS);
1017   if (Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER)
1018     encodeULEB128(TableNumber, W->OS); // the table number
1019 
1020   // init expr for starting offset
1021   W->OS << char(wasm::WASM_OPCODE_I32_CONST);
1022   encodeSLEB128(InitialTableOffset, W->OS);
1023   W->OS << char(wasm::WASM_OPCODE_END);
1024 
1025   if (Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) {
1026     // We only write active function table initializers, for which the elem kind
1027     // is specified to be written as 0x00 and interpreted to mean "funcref".
1028     const uint8_t ElemKind = 0;
1029     W->OS << ElemKind;
1030   }
1031 
1032   encodeULEB128(TableElems.size(), W->OS);
1033   for (uint32_t Elem : TableElems)
1034     encodeULEB128(Elem, W->OS);
1035 
1036   endSection(Section);
1037 }
1038 
1039 void WasmObjectWriter::writeDataCountSection() {
1040   if (DataSegments.empty())
1041     return;
1042 
1043   SectionBookkeeping Section;
1044   startSection(Section, wasm::WASM_SEC_DATACOUNT);
1045   encodeULEB128(DataSegments.size(), W->OS);
1046   endSection(Section);
1047 }
1048 
1049 uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm,
1050                                             const MCAsmLayout &Layout,
1051                                             ArrayRef<WasmFunction> Functions) {
1052   if (Functions.empty())
1053     return 0;
1054 
1055   SectionBookkeeping Section;
1056   startSection(Section, wasm::WASM_SEC_CODE);
1057 
1058   encodeULEB128(Functions.size(), W->OS);
1059 
1060   for (const WasmFunction &Func : Functions) {
1061     auto *FuncSection = static_cast<MCSectionWasm *>(Func.Section);
1062 
1063     int64_t Size = Layout.getSectionAddressSize(FuncSection);
1064     encodeULEB128(Size, W->OS);
1065     FuncSection->setSectionOffset(W->OS.tell() - Section.ContentsOffset);
1066     Asm.writeSectionData(W->OS, FuncSection, Layout);
1067   }
1068 
1069   // Apply fixups.
1070   applyRelocations(CodeRelocations, Section.ContentsOffset, Layout);
1071 
1072   endSection(Section);
1073   return Section.Index;
1074 }
1075 
1076 uint32_t WasmObjectWriter::writeDataSection(const MCAsmLayout &Layout) {
1077   if (DataSegments.empty())
1078     return 0;
1079 
1080   SectionBookkeeping Section;
1081   startSection(Section, wasm::WASM_SEC_DATA);
1082 
1083   encodeULEB128(DataSegments.size(), W->OS); // count
1084 
1085   for (const WasmDataSegment &Segment : DataSegments) {
1086     encodeULEB128(Segment.InitFlags, W->OS); // flags
1087     if (Segment.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX)
1088       encodeULEB128(0, W->OS); // memory index
1089     if ((Segment.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) {
1090       W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST
1091                               : wasm::WASM_OPCODE_I32_CONST);
1092       encodeSLEB128(Segment.Offset, W->OS); // offset
1093       W->OS << char(wasm::WASM_OPCODE_END);
1094     }
1095     encodeULEB128(Segment.Data.size(), W->OS); // size
1096     Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset);
1097     W->OS << Segment.Data; // data
1098   }
1099 
1100   // Apply fixups.
1101   applyRelocations(DataRelocations, Section.ContentsOffset, Layout);
1102 
1103   endSection(Section);
1104   return Section.Index;
1105 }
1106 
1107 void WasmObjectWriter::writeRelocSection(
1108     uint32_t SectionIndex, StringRef Name,
1109     std::vector<WasmRelocationEntry> &Relocs) {
1110   // See: https://github.com/WebAssembly/tool-conventions/blob/main/Linking.md
1111   // for descriptions of the reloc sections.
1112 
1113   if (Relocs.empty())
1114     return;
1115 
1116   // First, ensure the relocations are sorted in offset order.  In general they
1117   // should already be sorted since `recordRelocation` is called in offset
1118   // order, but for the code section we combine many MC sections into single
1119   // wasm section, and this order is determined by the order of Asm.Symbols()
1120   // not the sections order.
1121   llvm::stable_sort(
1122       Relocs, [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) {
1123         return (A.Offset + A.FixupSection->getSectionOffset()) <
1124                (B.Offset + B.FixupSection->getSectionOffset());
1125       });
1126 
1127   SectionBookkeeping Section;
1128   startCustomSection(Section, std::string("reloc.") + Name.str());
1129 
1130   encodeULEB128(SectionIndex, W->OS);
1131   encodeULEB128(Relocs.size(), W->OS);
1132   for (const WasmRelocationEntry &RelEntry : Relocs) {
1133     uint64_t Offset =
1134         RelEntry.Offset + RelEntry.FixupSection->getSectionOffset();
1135     uint32_t Index = getRelocationIndexValue(RelEntry);
1136 
1137     W->OS << char(RelEntry.Type);
1138     encodeULEB128(Offset, W->OS);
1139     encodeULEB128(Index, W->OS);
1140     if (RelEntry.hasAddend())
1141       encodeSLEB128(RelEntry.Addend, W->OS);
1142   }
1143 
1144   endSection(Section);
1145 }
1146 
1147 void WasmObjectWriter::writeCustomRelocSections() {
1148   for (const auto &Sec : CustomSections) {
1149     auto &Relocations = CustomSectionsRelocations[Sec.Section];
1150     writeRelocSection(Sec.OutputIndex, Sec.Name, Relocations);
1151   }
1152 }
1153 
1154 void WasmObjectWriter::writeLinkingMetaDataSection(
1155     ArrayRef<wasm::WasmSymbolInfo> SymbolInfos,
1156     ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs,
1157     const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) {
1158   SectionBookkeeping Section;
1159   startCustomSection(Section, "linking");
1160   encodeULEB128(wasm::WasmMetadataVersion, W->OS);
1161 
1162   SectionBookkeeping SubSection;
1163   if (SymbolInfos.size() != 0) {
1164     startSection(SubSection, wasm::WASM_SYMBOL_TABLE);
1165     encodeULEB128(SymbolInfos.size(), W->OS);
1166     for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) {
1167       encodeULEB128(Sym.Kind, W->OS);
1168       encodeULEB128(Sym.Flags, W->OS);
1169       switch (Sym.Kind) {
1170       case wasm::WASM_SYMBOL_TYPE_FUNCTION:
1171       case wasm::WASM_SYMBOL_TYPE_GLOBAL:
1172       case wasm::WASM_SYMBOL_TYPE_TAG:
1173       case wasm::WASM_SYMBOL_TYPE_TABLE:
1174         encodeULEB128(Sym.ElementIndex, W->OS);
1175         if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 ||
1176             (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0)
1177           writeString(Sym.Name);
1178         break;
1179       case wasm::WASM_SYMBOL_TYPE_DATA:
1180         writeString(Sym.Name);
1181         if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) {
1182           encodeULEB128(Sym.DataRef.Segment, W->OS);
1183           encodeULEB128(Sym.DataRef.Offset, W->OS);
1184           encodeULEB128(Sym.DataRef.Size, W->OS);
1185         }
1186         break;
1187       case wasm::WASM_SYMBOL_TYPE_SECTION: {
1188         const uint32_t SectionIndex =
1189             CustomSections[Sym.ElementIndex].OutputIndex;
1190         encodeULEB128(SectionIndex, W->OS);
1191         break;
1192       }
1193       default:
1194         llvm_unreachable("unexpected kind");
1195       }
1196     }
1197     endSection(SubSection);
1198   }
1199 
1200   if (DataSegments.size()) {
1201     startSection(SubSection, wasm::WASM_SEGMENT_INFO);
1202     encodeULEB128(DataSegments.size(), W->OS);
1203     for (const WasmDataSegment &Segment : DataSegments) {
1204       writeString(Segment.Name);
1205       encodeULEB128(Segment.Alignment, W->OS);
1206       encodeULEB128(Segment.LinkingFlags, W->OS);
1207     }
1208     endSection(SubSection);
1209   }
1210 
1211   if (!InitFuncs.empty()) {
1212     startSection(SubSection, wasm::WASM_INIT_FUNCS);
1213     encodeULEB128(InitFuncs.size(), W->OS);
1214     for (auto &StartFunc : InitFuncs) {
1215       encodeULEB128(StartFunc.first, W->OS);  // priority
1216       encodeULEB128(StartFunc.second, W->OS); // function index
1217     }
1218     endSection(SubSection);
1219   }
1220 
1221   if (Comdats.size()) {
1222     startSection(SubSection, wasm::WASM_COMDAT_INFO);
1223     encodeULEB128(Comdats.size(), W->OS);
1224     for (const auto &C : Comdats) {
1225       writeString(C.first);
1226       encodeULEB128(0, W->OS); // flags for future use
1227       encodeULEB128(C.second.size(), W->OS);
1228       for (const WasmComdatEntry &Entry : C.second) {
1229         encodeULEB128(Entry.Kind, W->OS);
1230         encodeULEB128(Entry.Index, W->OS);
1231       }
1232     }
1233     endSection(SubSection);
1234   }
1235 
1236   endSection(Section);
1237 }
1238 
1239 void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection,
1240                                           const MCAssembler &Asm,
1241                                           const MCAsmLayout &Layout) {
1242   SectionBookkeeping Section;
1243   auto *Sec = CustomSection.Section;
1244   startCustomSection(Section, CustomSection.Name);
1245 
1246   Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset);
1247   Asm.writeSectionData(W->OS, Sec, Layout);
1248 
1249   CustomSection.OutputContentsOffset = Section.ContentsOffset;
1250   CustomSection.OutputIndex = Section.Index;
1251 
1252   endSection(Section);
1253 
1254   // Apply fixups.
1255   auto &Relocations = CustomSectionsRelocations[CustomSection.Section];
1256   applyRelocations(Relocations, CustomSection.OutputContentsOffset, Layout);
1257 }
1258 
1259 uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) {
1260   assert(Symbol.isFunction());
1261   assert(TypeIndices.count(&Symbol));
1262   return TypeIndices[&Symbol];
1263 }
1264 
1265 uint32_t WasmObjectWriter::getTagType(const MCSymbolWasm &Symbol) {
1266   assert(Symbol.isTag());
1267   assert(TypeIndices.count(&Symbol));
1268   return TypeIndices[&Symbol];
1269 }
1270 
1271 void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) {
1272   assert(Symbol.isFunction());
1273 
1274   wasm::WasmSignature S;
1275 
1276   if (auto *Sig = Symbol.getSignature()) {
1277     S.Returns = Sig->Returns;
1278     S.Params = Sig->Params;
1279   }
1280 
1281   auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size()));
1282   if (Pair.second)
1283     Signatures.push_back(S);
1284   TypeIndices[&Symbol] = Pair.first->second;
1285 
1286   LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol
1287                     << " new:" << Pair.second << "\n");
1288   LLVM_DEBUG(dbgs() << "  -> type index: " << Pair.first->second << "\n");
1289 }
1290 
1291 void WasmObjectWriter::registerTagType(const MCSymbolWasm &Symbol) {
1292   assert(Symbol.isTag());
1293 
1294   // TODO Currently we don't generate imported exceptions, but if we do, we
1295   // should have a way of infering types of imported exceptions.
1296   wasm::WasmSignature S;
1297   if (auto *Sig = Symbol.getSignature()) {
1298     S.Returns = Sig->Returns;
1299     S.Params = Sig->Params;
1300   }
1301 
1302   auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size()));
1303   if (Pair.second)
1304     Signatures.push_back(S);
1305   TypeIndices[&Symbol] = Pair.first->second;
1306 
1307   LLVM_DEBUG(dbgs() << "registerTagType: " << Symbol << " new:" << Pair.second
1308                     << "\n");
1309   LLVM_DEBUG(dbgs() << "  -> type index: " << Pair.first->second << "\n");
1310 }
1311 
1312 static bool isInSymtab(const MCSymbolWasm &Sym) {
1313   if (Sym.isUsedInReloc() || Sym.isUsedInInitArray())
1314     return true;
1315 
1316   if (Sym.isComdat() && !Sym.isDefined())
1317     return false;
1318 
1319   if (Sym.isTemporary())
1320     return false;
1321 
1322   if (Sym.isSection())
1323     return false;
1324 
1325   if (Sym.omitFromLinkingSection())
1326     return false;
1327 
1328   return true;
1329 }
1330 
1331 void WasmObjectWriter::prepareImports(
1332     SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm,
1333     const MCAsmLayout &Layout) {
1334   // For now, always emit the memory import, since loads and stores are not
1335   // valid without it. In the future, we could perhaps be more clever and omit
1336   // it if there are no loads or stores.
1337   wasm::WasmImport MemImport;
1338   MemImport.Module = "env";
1339   MemImport.Field = "__linear_memory";
1340   MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY;
1341   MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64
1342                                      : wasm::WASM_LIMITS_FLAG_NONE;
1343   Imports.push_back(MemImport);
1344 
1345   // Populate SignatureIndices, and Imports and WasmIndices for undefined
1346   // symbols.  This must be done before populating WasmIndices for defined
1347   // symbols.
1348   for (const MCSymbol &S : Asm.symbols()) {
1349     const auto &WS = static_cast<const MCSymbolWasm &>(S);
1350 
1351     // Register types for all functions, including those with private linkage
1352     // (because wasm always needs a type signature).
1353     if (WS.isFunction()) {
1354       const auto *BS = Layout.getBaseSymbol(S);
1355       if (!BS)
1356         report_fatal_error(Twine(S.getName()) +
1357                            ": absolute addressing not supported!");
1358       registerFunctionType(*cast<MCSymbolWasm>(BS));
1359     }
1360 
1361     if (WS.isTag())
1362       registerTagType(WS);
1363 
1364     if (WS.isTemporary())
1365       continue;
1366 
1367     // If the symbol is not defined in this translation unit, import it.
1368     if (!WS.isDefined() && !WS.isComdat()) {
1369       if (WS.isFunction()) {
1370         wasm::WasmImport Import;
1371         Import.Module = WS.getImportModule();
1372         Import.Field = WS.getImportName();
1373         Import.Kind = wasm::WASM_EXTERNAL_FUNCTION;
1374         Import.SigIndex = getFunctionType(WS);
1375         Imports.push_back(Import);
1376         assert(WasmIndices.count(&WS) == 0);
1377         WasmIndices[&WS] = NumFunctionImports++;
1378       } else if (WS.isGlobal()) {
1379         if (WS.isWeak())
1380           report_fatal_error("undefined global symbol cannot be weak");
1381 
1382         wasm::WasmImport Import;
1383         Import.Field = WS.getImportName();
1384         Import.Kind = wasm::WASM_EXTERNAL_GLOBAL;
1385         Import.Module = WS.getImportModule();
1386         Import.Global = WS.getGlobalType();
1387         Imports.push_back(Import);
1388         assert(WasmIndices.count(&WS) == 0);
1389         WasmIndices[&WS] = NumGlobalImports++;
1390       } else if (WS.isTag()) {
1391         if (WS.isWeak())
1392           report_fatal_error("undefined tag symbol cannot be weak");
1393 
1394         wasm::WasmImport Import;
1395         Import.Module = WS.getImportModule();
1396         Import.Field = WS.getImportName();
1397         Import.Kind = wasm::WASM_EXTERNAL_TAG;
1398         Import.SigIndex = getTagType(WS);
1399         Imports.push_back(Import);
1400         assert(WasmIndices.count(&WS) == 0);
1401         WasmIndices[&WS] = NumTagImports++;
1402       } else if (WS.isTable()) {
1403         if (WS.isWeak())
1404           report_fatal_error("undefined table symbol cannot be weak");
1405 
1406         wasm::WasmImport Import;
1407         Import.Module = WS.getImportModule();
1408         Import.Field = WS.getImportName();
1409         Import.Kind = wasm::WASM_EXTERNAL_TABLE;
1410         Import.Table = WS.getTableType();
1411         Imports.push_back(Import);
1412         assert(WasmIndices.count(&WS) == 0);
1413         WasmIndices[&WS] = NumTableImports++;
1414       }
1415     }
1416   }
1417 
1418   // Add imports for GOT globals
1419   for (const MCSymbol &S : Asm.symbols()) {
1420     const auto &WS = static_cast<const MCSymbolWasm &>(S);
1421     if (WS.isUsedInGOT()) {
1422       wasm::WasmImport Import;
1423       if (WS.isFunction())
1424         Import.Module = "GOT.func";
1425       else
1426         Import.Module = "GOT.mem";
1427       Import.Field = WS.getName();
1428       Import.Kind = wasm::WASM_EXTERNAL_GLOBAL;
1429       Import.Global = {wasm::WASM_TYPE_I32, true};
1430       Imports.push_back(Import);
1431       assert(GOTIndices.count(&WS) == 0);
1432       GOTIndices[&WS] = NumGlobalImports++;
1433     }
1434   }
1435 }
1436 
1437 uint64_t WasmObjectWriter::writeObject(MCAssembler &Asm,
1438                                        const MCAsmLayout &Layout) {
1439   support::endian::Writer MainWriter(*OS, support::little);
1440   W = &MainWriter;
1441   if (IsSplitDwarf) {
1442     uint64_t TotalSize = writeOneObject(Asm, Layout, DwoMode::NonDwoOnly);
1443     assert(DwoOS);
1444     support::endian::Writer DwoWriter(*DwoOS, support::little);
1445     W = &DwoWriter;
1446     return TotalSize + writeOneObject(Asm, Layout, DwoMode::DwoOnly);
1447   } else {
1448     return writeOneObject(Asm, Layout, DwoMode::AllSections);
1449   }
1450 }
1451 
1452 uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm,
1453                                           const MCAsmLayout &Layout,
1454                                           DwoMode Mode) {
1455   uint64_t StartOffset = W->OS.tell();
1456   SectionCount = 0;
1457   CustomSections.clear();
1458 
1459   LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n");
1460 
1461   // Collect information from the available symbols.
1462   SmallVector<WasmFunction, 4> Functions;
1463   SmallVector<uint32_t, 4> TableElems;
1464   SmallVector<wasm::WasmImport, 4> Imports;
1465   SmallVector<wasm::WasmExport, 4> Exports;
1466   SmallVector<uint32_t, 2> TagTypes;
1467   SmallVector<wasm::WasmGlobal, 1> Globals;
1468   SmallVector<wasm::WasmTable, 1> Tables;
1469   SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos;
1470   SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs;
1471   std::map<StringRef, std::vector<WasmComdatEntry>> Comdats;
1472   uint64_t DataSize = 0;
1473   if (Mode != DwoMode::DwoOnly) {
1474     prepareImports(Imports, Asm, Layout);
1475   }
1476 
1477   // Populate DataSegments and CustomSections, which must be done before
1478   // populating DataLocations.
1479   for (MCSection &Sec : Asm) {
1480     auto &Section = static_cast<MCSectionWasm &>(Sec);
1481     StringRef SectionName = Section.getName();
1482 
1483     if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec))
1484       continue;
1485     if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec))
1486       continue;
1487 
1488     LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << "  group "
1489                       << Section.getGroup() << "\n";);
1490 
1491     // .init_array sections are handled specially elsewhere.
1492     if (SectionName.startswith(".init_array"))
1493       continue;
1494 
1495     // Code is handled separately
1496     if (Section.getKind().isText())
1497       continue;
1498 
1499     if (Section.isWasmData()) {
1500       uint32_t SegmentIndex = DataSegments.size();
1501       DataSize = alignTo(DataSize, Section.getAlign());
1502       DataSegments.emplace_back();
1503       WasmDataSegment &Segment = DataSegments.back();
1504       Segment.Name = SectionName;
1505       Segment.InitFlags = Section.getPassive()
1506                               ? (uint32_t)wasm::WASM_DATA_SEGMENT_IS_PASSIVE
1507                               : 0;
1508       Segment.Offset = DataSize;
1509       Segment.Section = &Section;
1510       addData(Segment.Data, Section);
1511       Segment.Alignment = Log2(Section.getAlign());
1512       Segment.LinkingFlags = Section.getSegmentFlags();
1513       DataSize += Segment.Data.size();
1514       Section.setSegmentIndex(SegmentIndex);
1515 
1516       if (const MCSymbolWasm *C = Section.getGroup()) {
1517         Comdats[C->getName()].emplace_back(
1518             WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex});
1519       }
1520     } else {
1521       // Create custom sections
1522       assert(Sec.getKind().isMetadata());
1523 
1524       StringRef Name = SectionName;
1525 
1526       // For user-defined custom sections, strip the prefix
1527       if (Name.startswith(".custom_section."))
1528         Name = Name.substr(strlen(".custom_section."));
1529 
1530       MCSymbol *Begin = Sec.getBeginSymbol();
1531       if (Begin) {
1532         assert(WasmIndices.count(cast<MCSymbolWasm>(Begin)) == 0);
1533         WasmIndices[cast<MCSymbolWasm>(Begin)] = CustomSections.size();
1534       }
1535 
1536       // Separate out the producers and target features sections
1537       if (Name == "producers") {
1538         ProducersSection = std::make_unique<WasmCustomSection>(Name, &Section);
1539         continue;
1540       }
1541       if (Name == "target_features") {
1542         TargetFeaturesSection =
1543             std::make_unique<WasmCustomSection>(Name, &Section);
1544         continue;
1545       }
1546 
1547       // Custom sections can also belong to COMDAT groups. In this case the
1548       // decriptor's "index" field is the section index (in the final object
1549       // file), but that is not known until after layout, so it must be fixed up
1550       // later
1551       if (const MCSymbolWasm *C = Section.getGroup()) {
1552         Comdats[C->getName()].emplace_back(
1553             WasmComdatEntry{wasm::WASM_COMDAT_SECTION,
1554                             static_cast<uint32_t>(CustomSections.size())});
1555       }
1556 
1557       CustomSections.emplace_back(Name, &Section);
1558     }
1559   }
1560 
1561   if (Mode != DwoMode::DwoOnly) {
1562     // Populate WasmIndices and DataLocations for defined symbols.
1563     for (const MCSymbol &S : Asm.symbols()) {
1564       // Ignore unnamed temporary symbols, which aren't ever exported, imported,
1565       // or used in relocations.
1566       if (S.isTemporary() && S.getName().empty())
1567         continue;
1568 
1569       const auto &WS = static_cast<const MCSymbolWasm &>(S);
1570       LLVM_DEBUG(
1571           dbgs() << "MCSymbol: "
1572                  << toString(WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA))
1573                  << " '" << S << "'"
1574                  << " isDefined=" << S.isDefined() << " isExternal="
1575                  << S.isExternal() << " isTemporary=" << S.isTemporary()
1576                  << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden()
1577                  << " isVariable=" << WS.isVariable() << "\n");
1578 
1579       if (WS.isVariable())
1580         continue;
1581       if (WS.isComdat() && !WS.isDefined())
1582         continue;
1583 
1584       if (WS.isFunction()) {
1585         unsigned Index;
1586         if (WS.isDefined()) {
1587           if (WS.getOffset() != 0)
1588             report_fatal_error(
1589                 "function sections must contain one function each");
1590 
1591           // A definition. Write out the function body.
1592           Index = NumFunctionImports + Functions.size();
1593           WasmFunction Func;
1594           Func.SigIndex = getFunctionType(WS);
1595           Func.Section = &WS.getSection();
1596           assert(WasmIndices.count(&WS) == 0);
1597           WasmIndices[&WS] = Index;
1598           Functions.push_back(Func);
1599 
1600           auto &Section = static_cast<MCSectionWasm &>(WS.getSection());
1601           if (const MCSymbolWasm *C = Section.getGroup()) {
1602             Comdats[C->getName()].emplace_back(
1603                 WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index});
1604           }
1605 
1606           if (WS.hasExportName()) {
1607             wasm::WasmExport Export;
1608             Export.Name = WS.getExportName();
1609             Export.Kind = wasm::WASM_EXTERNAL_FUNCTION;
1610             Export.Index = Index;
1611             Exports.push_back(Export);
1612           }
1613         } else {
1614           // An import; the index was assigned above.
1615           Index = WasmIndices.find(&WS)->second;
1616         }
1617 
1618         LLVM_DEBUG(dbgs() << "  -> function index: " << Index << "\n");
1619 
1620       } else if (WS.isData()) {
1621         if (!isInSymtab(WS))
1622           continue;
1623 
1624         if (!WS.isDefined()) {
1625           LLVM_DEBUG(dbgs() << "  -> segment index: -1"
1626                             << "\n");
1627           continue;
1628         }
1629 
1630         if (!WS.getSize())
1631           report_fatal_error("data symbols must have a size set with .size: " +
1632                              WS.getName());
1633 
1634         int64_t Size = 0;
1635         if (!WS.getSize()->evaluateAsAbsolute(Size, Layout))
1636           report_fatal_error(".size expression must be evaluatable");
1637 
1638         auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection());
1639         if (!DataSection.isWasmData())
1640           report_fatal_error("data symbols must live in a data section: " +
1641                              WS.getName());
1642 
1643         // For each data symbol, export it in the symtab as a reference to the
1644         // corresponding Wasm data segment.
1645         wasm::WasmDataReference Ref = wasm::WasmDataReference{
1646             DataSection.getSegmentIndex(), Layout.getSymbolOffset(WS),
1647             static_cast<uint64_t>(Size)};
1648         assert(DataLocations.count(&WS) == 0);
1649         DataLocations[&WS] = Ref;
1650         LLVM_DEBUG(dbgs() << "  -> segment index: " << Ref.Segment << "\n");
1651 
1652       } else if (WS.isGlobal()) {
1653         // A "true" Wasm global (currently just __stack_pointer)
1654         if (WS.isDefined()) {
1655           wasm::WasmGlobal Global;
1656           Global.Type = WS.getGlobalType();
1657           Global.Index = NumGlobalImports + Globals.size();
1658           Global.InitExpr.Extended = false;
1659           switch (Global.Type.Type) {
1660           case wasm::WASM_TYPE_I32:
1661             Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST;
1662             break;
1663           case wasm::WASM_TYPE_I64:
1664             Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I64_CONST;
1665             break;
1666           case wasm::WASM_TYPE_F32:
1667             Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F32_CONST;
1668             break;
1669           case wasm::WASM_TYPE_F64:
1670             Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F64_CONST;
1671             break;
1672           case wasm::WASM_TYPE_EXTERNREF:
1673             Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_REF_NULL;
1674             break;
1675           default:
1676             llvm_unreachable("unexpected type");
1677           }
1678           assert(WasmIndices.count(&WS) == 0);
1679           WasmIndices[&WS] = Global.Index;
1680           Globals.push_back(Global);
1681         } else {
1682           // An import; the index was assigned above
1683           LLVM_DEBUG(dbgs() << "  -> global index: "
1684                             << WasmIndices.find(&WS)->second << "\n");
1685         }
1686       } else if (WS.isTable()) {
1687         if (WS.isDefined()) {
1688           wasm::WasmTable Table;
1689           Table.Index = NumTableImports + Tables.size();
1690           Table.Type = WS.getTableType();
1691           assert(WasmIndices.count(&WS) == 0);
1692           WasmIndices[&WS] = Table.Index;
1693           Tables.push_back(Table);
1694         }
1695         LLVM_DEBUG(dbgs() << " -> table index: "
1696                           << WasmIndices.find(&WS)->second << "\n");
1697       } else if (WS.isTag()) {
1698         // C++ exception symbol (__cpp_exception) or longjmp symbol
1699         // (__c_longjmp)
1700         unsigned Index;
1701         if (WS.isDefined()) {
1702           Index = NumTagImports + TagTypes.size();
1703           uint32_t SigIndex = getTagType(WS);
1704           assert(WasmIndices.count(&WS) == 0);
1705           WasmIndices[&WS] = Index;
1706           TagTypes.push_back(SigIndex);
1707         } else {
1708           // An import; the index was assigned above.
1709           assert(WasmIndices.count(&WS) > 0);
1710         }
1711         LLVM_DEBUG(dbgs() << "  -> tag index: " << WasmIndices.find(&WS)->second
1712                           << "\n");
1713 
1714       } else {
1715         assert(WS.isSection());
1716       }
1717     }
1718 
1719     // Populate WasmIndices and DataLocations for aliased symbols.  We need to
1720     // process these in a separate pass because we need to have processed the
1721     // target of the alias before the alias itself and the symbols are not
1722     // necessarily ordered in this way.
1723     for (const MCSymbol &S : Asm.symbols()) {
1724       if (!S.isVariable())
1725         continue;
1726 
1727       assert(S.isDefined());
1728 
1729       const auto *BS = Layout.getBaseSymbol(S);
1730       if (!BS)
1731         report_fatal_error(Twine(S.getName()) +
1732                            ": absolute addressing not supported!");
1733       const MCSymbolWasm *Base = cast<MCSymbolWasm>(BS);
1734 
1735       // Find the target symbol of this weak alias and export that index
1736       const auto &WS = static_cast<const MCSymbolWasm &>(S);
1737       LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base
1738                         << "'\n");
1739 
1740       if (Base->isFunction()) {
1741         assert(WasmIndices.count(Base) > 0);
1742         uint32_t WasmIndex = WasmIndices.find(Base)->second;
1743         assert(WasmIndices.count(&WS) == 0);
1744         WasmIndices[&WS] = WasmIndex;
1745         LLVM_DEBUG(dbgs() << "  -> index:" << WasmIndex << "\n");
1746       } else if (Base->isData()) {
1747         auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection());
1748         uint64_t Offset = Layout.getSymbolOffset(S);
1749         int64_t Size = 0;
1750         // For data symbol alias we use the size of the base symbol as the
1751         // size of the alias.  When an offset from the base is involved this
1752         // can result in a offset + size goes past the end of the data section
1753         // which out object format doesn't support.  So we must clamp it.
1754         if (!Base->getSize()->evaluateAsAbsolute(Size, Layout))
1755           report_fatal_error(".size expression must be evaluatable");
1756         const WasmDataSegment &Segment =
1757             DataSegments[DataSection.getSegmentIndex()];
1758         Size =
1759             std::min(static_cast<uint64_t>(Size), Segment.Data.size() - Offset);
1760         wasm::WasmDataReference Ref = wasm::WasmDataReference{
1761             DataSection.getSegmentIndex(),
1762             static_cast<uint32_t>(Layout.getSymbolOffset(S)),
1763             static_cast<uint32_t>(Size)};
1764         DataLocations[&WS] = Ref;
1765         LLVM_DEBUG(dbgs() << "  -> index:" << Ref.Segment << "\n");
1766       } else {
1767         report_fatal_error("don't yet support global/tag aliases");
1768       }
1769     }
1770   }
1771 
1772   // Finally, populate the symbol table itself, in its "natural" order.
1773   for (const MCSymbol &S : Asm.symbols()) {
1774     const auto &WS = static_cast<const MCSymbolWasm &>(S);
1775     if (!isInSymtab(WS)) {
1776       WS.setIndex(InvalidIndex);
1777       continue;
1778     }
1779     LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n");
1780 
1781     uint32_t Flags = 0;
1782     if (WS.isWeak())
1783       Flags |= wasm::WASM_SYMBOL_BINDING_WEAK;
1784     if (WS.isHidden())
1785       Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN;
1786     if (!WS.isExternal() && WS.isDefined())
1787       Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL;
1788     if (WS.isUndefined())
1789       Flags |= wasm::WASM_SYMBOL_UNDEFINED;
1790     if (WS.isNoStrip()) {
1791       Flags |= wasm::WASM_SYMBOL_NO_STRIP;
1792       if (isEmscripten()) {
1793         Flags |= wasm::WASM_SYMBOL_EXPORTED;
1794       }
1795     }
1796     if (WS.hasImportName())
1797       Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME;
1798     if (WS.hasExportName())
1799       Flags |= wasm::WASM_SYMBOL_EXPORTED;
1800     if (WS.isTLS())
1801       Flags |= wasm::WASM_SYMBOL_TLS;
1802 
1803     wasm::WasmSymbolInfo Info;
1804     Info.Name = WS.getName();
1805     Info.Kind = WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA);
1806     Info.Flags = Flags;
1807     if (!WS.isData()) {
1808       assert(WasmIndices.count(&WS) > 0);
1809       Info.ElementIndex = WasmIndices.find(&WS)->second;
1810     } else if (WS.isDefined()) {
1811       assert(DataLocations.count(&WS) > 0);
1812       Info.DataRef = DataLocations.find(&WS)->second;
1813     }
1814     WS.setIndex(SymbolInfos.size());
1815     SymbolInfos.emplace_back(Info);
1816   }
1817 
1818   {
1819     auto HandleReloc = [&](const WasmRelocationEntry &Rel) {
1820       // Functions referenced by a relocation need to put in the table.  This is
1821       // purely to make the object file's provisional values readable, and is
1822       // ignored by the linker, which re-calculates the relocations itself.
1823       if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 &&
1824           Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 &&
1825           Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB &&
1826           Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 &&
1827           Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB &&
1828           Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB64)
1829         return;
1830       assert(Rel.Symbol->isFunction());
1831       const MCSymbolWasm *Base =
1832           cast<MCSymbolWasm>(Layout.getBaseSymbol(*Rel.Symbol));
1833       uint32_t FunctionIndex = WasmIndices.find(Base)->second;
1834       uint32_t TableIndex = TableElems.size() + InitialTableOffset;
1835       if (TableIndices.try_emplace(Base, TableIndex).second) {
1836         LLVM_DEBUG(dbgs() << "  -> adding " << Base->getName()
1837                           << " to table: " << TableIndex << "\n");
1838         TableElems.push_back(FunctionIndex);
1839         registerFunctionType(*Base);
1840       }
1841     };
1842 
1843     for (const WasmRelocationEntry &RelEntry : CodeRelocations)
1844       HandleReloc(RelEntry);
1845     for (const WasmRelocationEntry &RelEntry : DataRelocations)
1846       HandleReloc(RelEntry);
1847   }
1848 
1849   // Translate .init_array section contents into start functions.
1850   for (const MCSection &S : Asm) {
1851     const auto &WS = static_cast<const MCSectionWasm &>(S);
1852     if (WS.getName().startswith(".fini_array"))
1853       report_fatal_error(".fini_array sections are unsupported");
1854     if (!WS.getName().startswith(".init_array"))
1855       continue;
1856     if (WS.getFragmentList().empty())
1857       continue;
1858 
1859     // init_array is expected to contain a single non-empty data fragment
1860     if (WS.getFragmentList().size() != 3)
1861       report_fatal_error("only one .init_array section fragment supported");
1862 
1863     auto IT = WS.begin();
1864     const MCFragment &EmptyFrag = *IT;
1865     if (EmptyFrag.getKind() != MCFragment::FT_Data)
1866       report_fatal_error(".init_array section should be aligned");
1867 
1868     IT = std::next(IT);
1869     const MCFragment &AlignFrag = *IT;
1870     if (AlignFrag.getKind() != MCFragment::FT_Align)
1871       report_fatal_error(".init_array section should be aligned");
1872     if (cast<MCAlignFragment>(AlignFrag).getAlignment() !=
1873         Align(is64Bit() ? 8 : 4))
1874       report_fatal_error(".init_array section should be aligned for pointers");
1875 
1876     const MCFragment &Frag = *std::next(IT);
1877     if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data)
1878       report_fatal_error("only data supported in .init_array section");
1879 
1880     uint16_t Priority = UINT16_MAX;
1881     unsigned PrefixLength = strlen(".init_array");
1882     if (WS.getName().size() > PrefixLength) {
1883       if (WS.getName()[PrefixLength] != '.')
1884         report_fatal_error(
1885             ".init_array section priority should start with '.'");
1886       if (WS.getName().substr(PrefixLength + 1).getAsInteger(10, Priority))
1887         report_fatal_error("invalid .init_array section priority");
1888     }
1889     const auto &DataFrag = cast<MCDataFragment>(Frag);
1890     const SmallVectorImpl<char> &Contents = DataFrag.getContents();
1891     for (const uint8_t *
1892              P = (const uint8_t *)Contents.data(),
1893             *End = (const uint8_t *)Contents.data() + Contents.size();
1894          P != End; ++P) {
1895       if (*P != 0)
1896         report_fatal_error("non-symbolic data in .init_array section");
1897     }
1898     for (const MCFixup &Fixup : DataFrag.getFixups()) {
1899       assert(Fixup.getKind() ==
1900              MCFixup::getKindForSize(is64Bit() ? 8 : 4, false));
1901       const MCExpr *Expr = Fixup.getValue();
1902       auto *SymRef = dyn_cast<MCSymbolRefExpr>(Expr);
1903       if (!SymRef)
1904         report_fatal_error("fixups in .init_array should be symbol references");
1905       const auto &TargetSym = cast<const MCSymbolWasm>(SymRef->getSymbol());
1906       if (TargetSym.getIndex() == InvalidIndex)
1907         report_fatal_error("symbols in .init_array should exist in symtab");
1908       if (!TargetSym.isFunction())
1909         report_fatal_error("symbols in .init_array should be for functions");
1910       InitFuncs.push_back(
1911           std::make_pair(Priority, TargetSym.getIndex()));
1912     }
1913   }
1914 
1915   // Write out the Wasm header.
1916   writeHeader(Asm);
1917 
1918   uint32_t CodeSectionIndex, DataSectionIndex;
1919   if (Mode != DwoMode::DwoOnly) {
1920     writeTypeSection(Signatures);
1921     writeImportSection(Imports, DataSize, TableElems.size());
1922     writeFunctionSection(Functions);
1923     writeTableSection(Tables);
1924     // Skip the "memory" section; we import the memory instead.
1925     writeTagSection(TagTypes);
1926     writeGlobalSection(Globals);
1927     writeExportSection(Exports);
1928     const MCSymbol *IndirectFunctionTable =
1929         Asm.getContext().lookupSymbol("__indirect_function_table");
1930     writeElemSection(cast_or_null<const MCSymbolWasm>(IndirectFunctionTable),
1931                      TableElems);
1932     writeDataCountSection();
1933 
1934     CodeSectionIndex = writeCodeSection(Asm, Layout, Functions);
1935     DataSectionIndex = writeDataSection(Layout);
1936   }
1937 
1938   // The Sections in the COMDAT list have placeholder indices (their index among
1939   // custom sections, rather than among all sections). Fix them up here.
1940   for (auto &Group : Comdats) {
1941     for (auto &Entry : Group.second) {
1942       if (Entry.Kind == wasm::WASM_COMDAT_SECTION) {
1943         Entry.Index += SectionCount;
1944       }
1945     }
1946   }
1947   for (auto &CustomSection : CustomSections)
1948     writeCustomSection(CustomSection, Asm, Layout);
1949 
1950   if (Mode != DwoMode::DwoOnly) {
1951     writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats);
1952 
1953     writeRelocSection(CodeSectionIndex, "CODE", CodeRelocations);
1954     writeRelocSection(DataSectionIndex, "DATA", DataRelocations);
1955   }
1956   writeCustomRelocSections();
1957   if (ProducersSection)
1958     writeCustomSection(*ProducersSection, Asm, Layout);
1959   if (TargetFeaturesSection)
1960     writeCustomSection(*TargetFeaturesSection, Asm, Layout);
1961 
1962   // TODO: Translate the .comment section to the output.
1963   return W->OS.tell() - StartOffset;
1964 }
1965 
1966 std::unique_ptr<MCObjectWriter>
1967 llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,
1968                              raw_pwrite_stream &OS) {
1969   return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS);
1970 }
1971 
1972 std::unique_ptr<MCObjectWriter>
1973 llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,
1974                                 raw_pwrite_stream &OS,
1975                                 raw_pwrite_stream &DwoOS) {
1976   return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS, DwoOS);
1977 }
1978