1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // |                                   | Higher address
22 // |-----------------------------------|
23 // |                                   |
24 // | arguments passed on the stack     |
25 // |                                   |
26 // |-----------------------------------| <- sp
27 // |                                   | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // |                                   | Higher address
37 // |-----------------------------------|
38 // |                                   |
39 // | arguments passed on the stack     |
40 // |                                   |
41 // |-----------------------------------|
42 // |                                   |
43 // | (Win64 only) varargs from reg     |
44 // |                                   |
45 // |-----------------------------------|
46 // |                                   |
47 // | callee-saved gpr registers        | <--.
48 // |                                   |    | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -|    | callee saves are swapped,
50 // | prev_lr                           |    | (frame record first)
51 // | prev_fp                           | <--'
52 // | async context if needed           |
53 // | (a.k.a. "frame record")           |
54 // |-----------------------------------| <- fp(=x29)
55 // |                                   |
56 // | callee-saved fp/simd/SVE regs     |
57 // |                                   |
58 // |-----------------------------------|
59 // |                                   |
60 // |        SVE stack objects          |
61 // |                                   |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.16-byte.alignment....|  compile time; if present)
66 // |-----------------------------------|
67 // |                                   |
68 // | local variables of fixed size     |
69 // | including spill slots             |
70 // |-----------------------------------| <- bp(not defined by ABI,
71 // |.variable-sized.local.variables....|       LLVM chooses X19)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................|  compile time)
74 // |-----------------------------------| <- sp
75 // |                                   | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 //   variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 //   more-than-default alignment requirements.
91 //
92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
93 // callee-saved area, since the unwind encoding does not allow for encoding
94 // this dynamically and existing tools depend on this layout. For other
95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
96 // area to allow SVE stack objects (allocated directly below the callee-saves,
97 // if available) to be accessed directly from the framepointer.
98 // The SVE spill/fill instructions have VL-scaled addressing modes such
99 // as:
100 //    ldr z8, [fp, #-7 mul vl]
101 // For SVE the size of the vector length (VL) is not known at compile-time, so
102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
103 // layout, we don't need to add an unscaled offset to the framepointer before
104 // accessing the SVE object in the frame.
105 //
106 // In some cases when a base pointer is not strictly needed, it is generated
107 // anyway when offsets from the frame pointer to access local variables become
108 // so large that the offset can't be encoded in the immediate fields of loads
109 // or stores.
110 //
111 // Outgoing function arguments must be at the bottom of the stack frame when
112 // calling another function. If we do not have variable-sized stack objects, we
113 // can allocate a "reserved call frame" area at the bottom of the local
114 // variable area, large enough for all outgoing calls. If we do have VLAs, then
115 // the stack pointer must be decremented and incremented around each call to
116 // make space for the arguments below the VLAs.
117 //
118 // FIXME: also explain the redzone concept.
119 //
120 // An example of the prologue:
121 //
122 //     .globl __foo
123 //     .align 2
124 //  __foo:
125 // Ltmp0:
126 //     .cfi_startproc
127 //     .cfi_personality 155, ___gxx_personality_v0
128 // Leh_func_begin:
129 //     .cfi_lsda 16, Lexception33
130 //
131 //     stp  xa,bx, [sp, -#offset]!
132 //     ...
133 //     stp  x28, x27, [sp, #offset-32]
134 //     stp  fp, lr, [sp, #offset-16]
135 //     add  fp, sp, #offset - 16
136 //     sub  sp, sp, #1360
137 //
138 // The Stack:
139 //       +-------------------------------------------+
140 // 10000 | ........ | ........ | ........ | ........ |
141 // 10004 | ........ | ........ | ........ | ........ |
142 //       +-------------------------------------------+
143 // 10008 | ........ | ........ | ........ | ........ |
144 // 1000c | ........ | ........ | ........ | ........ |
145 //       +===========================================+
146 // 10010 |                X28 Register               |
147 // 10014 |                X28 Register               |
148 //       +-------------------------------------------+
149 // 10018 |                X27 Register               |
150 // 1001c |                X27 Register               |
151 //       +===========================================+
152 // 10020 |                Frame Pointer              |
153 // 10024 |                Frame Pointer              |
154 //       +-------------------------------------------+
155 // 10028 |                Link Register              |
156 // 1002c |                Link Register              |
157 //       +===========================================+
158 // 10030 | ........ | ........ | ........ | ........ |
159 // 10034 | ........ | ........ | ........ | ........ |
160 //       +-------------------------------------------+
161 // 10038 | ........ | ........ | ........ | ........ |
162 // 1003c | ........ | ........ | ........ | ........ |
163 //       +-------------------------------------------+
164 //
165 //     [sp] = 10030        ::    >>initial value<<
166 //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
167 //     fp = sp == 10020    ::  mov fp, sp
168 //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
169 //     sp == 10010         ::    >>final value<<
170 //
171 // The frame pointer (w29) points to address 10020. If we use an offset of
172 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
173 // for w27, and -32 for w28:
174 //
175 //  Ltmp1:
176 //     .cfi_def_cfa w29, 16
177 //  Ltmp2:
178 //     .cfi_offset w30, -8
179 //  Ltmp3:
180 //     .cfi_offset w29, -16
181 //  Ltmp4:
182 //     .cfi_offset w27, -24
183 //  Ltmp5:
184 //     .cfi_offset w28, -32
185 //
186 //===----------------------------------------------------------------------===//
187 
188 #include "AArch64FrameLowering.h"
189 #include "AArch64InstrInfo.h"
190 #include "AArch64MachineFunctionInfo.h"
191 #include "AArch64RegisterInfo.h"
192 #include "AArch64Subtarget.h"
193 #include "AArch64TargetMachine.h"
194 #include "MCTargetDesc/AArch64AddressingModes.h"
195 #include "MCTargetDesc/AArch64MCTargetDesc.h"
196 #include "llvm/ADT/ScopeExit.h"
197 #include "llvm/ADT/SmallVector.h"
198 #include "llvm/ADT/Statistic.h"
199 #include "llvm/CodeGen/LivePhysRegs.h"
200 #include "llvm/CodeGen/MachineBasicBlock.h"
201 #include "llvm/CodeGen/MachineFrameInfo.h"
202 #include "llvm/CodeGen/MachineFunction.h"
203 #include "llvm/CodeGen/MachineInstr.h"
204 #include "llvm/CodeGen/MachineInstrBuilder.h"
205 #include "llvm/CodeGen/MachineMemOperand.h"
206 #include "llvm/CodeGen/MachineModuleInfo.h"
207 #include "llvm/CodeGen/MachineOperand.h"
208 #include "llvm/CodeGen/MachineRegisterInfo.h"
209 #include "llvm/CodeGen/RegisterScavenging.h"
210 #include "llvm/CodeGen/TargetInstrInfo.h"
211 #include "llvm/CodeGen/TargetRegisterInfo.h"
212 #include "llvm/CodeGen/TargetSubtargetInfo.h"
213 #include "llvm/CodeGen/WinEHFuncInfo.h"
214 #include "llvm/IR/Attributes.h"
215 #include "llvm/IR/CallingConv.h"
216 #include "llvm/IR/DataLayout.h"
217 #include "llvm/IR/DebugLoc.h"
218 #include "llvm/IR/Function.h"
219 #include "llvm/MC/MCAsmInfo.h"
220 #include "llvm/MC/MCDwarf.h"
221 #include "llvm/Support/CommandLine.h"
222 #include "llvm/Support/Debug.h"
223 #include "llvm/Support/ErrorHandling.h"
224 #include "llvm/Support/MathExtras.h"
225 #include "llvm/Support/raw_ostream.h"
226 #include "llvm/Target/TargetMachine.h"
227 #include "llvm/Target/TargetOptions.h"
228 #include <cassert>
229 #include <cstdint>
230 #include <iterator>
231 #include <optional>
232 #include <vector>
233 
234 using namespace llvm;
235 
236 #define DEBUG_TYPE "frame-info"
237 
238 static cl::opt<bool> EnableRedZone("aarch64-redzone",
239                                    cl::desc("enable use of redzone on AArch64"),
240                                    cl::init(false), cl::Hidden);
241 
242 static cl::opt<bool>
243     ReverseCSRRestoreSeq("reverse-csr-restore-seq",
244                          cl::desc("reverse the CSR restore sequence"),
245                          cl::init(false), cl::Hidden);
246 
247 static cl::opt<bool> StackTaggingMergeSetTag(
248     "stack-tagging-merge-settag",
249     cl::desc("merge settag instruction in function epilog"), cl::init(true),
250     cl::Hidden);
251 
252 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
253                                        cl::desc("sort stack allocations"),
254                                        cl::init(true), cl::Hidden);
255 
256 cl::opt<bool> EnableHomogeneousPrologEpilog(
257     "homogeneous-prolog-epilog", cl::Hidden,
258     cl::desc("Emit homogeneous prologue and epilogue for the size "
259              "optimization (default = off)"));
260 
261 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
262 
263 /// Returns how much of the incoming argument stack area (in bytes) we should
264 /// clean up in an epilogue. For the C calling convention this will be 0, for
265 /// guaranteed tail call conventions it can be positive (a normal return or a
266 /// tail call to a function that uses less stack space for arguments) or
267 /// negative (for a tail call to a function that needs more stack space than us
268 /// for arguments).
269 static int64_t getArgumentStackToRestore(MachineFunction &MF,
270                                          MachineBasicBlock &MBB) {
271   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
272   bool IsTailCallReturn = false;
273   if (MBB.end() != MBBI) {
274     unsigned RetOpcode = MBBI->getOpcode();
275     IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
276                        RetOpcode == AArch64::TCRETURNri ||
277                        RetOpcode == AArch64::TCRETURNriBTI;
278   }
279   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
280 
281   int64_t ArgumentPopSize = 0;
282   if (IsTailCallReturn) {
283     MachineOperand &StackAdjust = MBBI->getOperand(1);
284 
285     // For a tail-call in a callee-pops-arguments environment, some or all of
286     // the stack may actually be in use for the call's arguments, this is
287     // calculated during LowerCall and consumed here...
288     ArgumentPopSize = StackAdjust.getImm();
289   } else {
290     // ... otherwise the amount to pop is *all* of the argument space,
291     // conveniently stored in the MachineFunctionInfo by
292     // LowerFormalArguments. This will, of course, be zero for the C calling
293     // convention.
294     ArgumentPopSize = AFI->getArgumentStackToRestore();
295   }
296 
297   return ArgumentPopSize;
298 }
299 
300 static bool produceCompactUnwindFrame(MachineFunction &MF);
301 static bool needsWinCFI(const MachineFunction &MF);
302 static StackOffset getSVEStackSize(const MachineFunction &MF);
303 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF);
304 
305 /// Returns true if a homogeneous prolog or epilog code can be emitted
306 /// for the size optimization. If possible, a frame helper call is injected.
307 /// When Exit block is given, this check is for epilog.
308 bool AArch64FrameLowering::homogeneousPrologEpilog(
309     MachineFunction &MF, MachineBasicBlock *Exit) const {
310   if (!MF.getFunction().hasMinSize())
311     return false;
312   if (!EnableHomogeneousPrologEpilog)
313     return false;
314   if (ReverseCSRRestoreSeq)
315     return false;
316   if (EnableRedZone)
317     return false;
318 
319   // TODO: Window is supported yet.
320   if (needsWinCFI(MF))
321     return false;
322   // TODO: SVE is not supported yet.
323   if (getSVEStackSize(MF))
324     return false;
325 
326   // Bail on stack adjustment needed on return for simplicity.
327   const MachineFrameInfo &MFI = MF.getFrameInfo();
328   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
329   if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
330     return false;
331   if (Exit && getArgumentStackToRestore(MF, *Exit))
332     return false;
333 
334   return true;
335 }
336 
337 /// Returns true if CSRs should be paired.
338 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
339   return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
340 }
341 
342 /// This is the biggest offset to the stack pointer we can encode in aarch64
343 /// instructions (without using a separate calculation and a temp register).
344 /// Note that the exception here are vector stores/loads which cannot encode any
345 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
346 static const unsigned DefaultSafeSPDisplacement = 255;
347 
348 /// Look at each instruction that references stack frames and return the stack
349 /// size limit beyond which some of these instructions will require a scratch
350 /// register during their expansion later.
351 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
352   // FIXME: For now, just conservatively guestimate based on unscaled indexing
353   // range. We'll end up allocating an unnecessary spill slot a lot, but
354   // realistically that's not a big deal at this stage of the game.
355   for (MachineBasicBlock &MBB : MF) {
356     for (MachineInstr &MI : MBB) {
357       if (MI.isDebugInstr() || MI.isPseudo() ||
358           MI.getOpcode() == AArch64::ADDXri ||
359           MI.getOpcode() == AArch64::ADDSXri)
360         continue;
361 
362       for (const MachineOperand &MO : MI.operands()) {
363         if (!MO.isFI())
364           continue;
365 
366         StackOffset Offset;
367         if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
368             AArch64FrameOffsetCannotUpdate)
369           return 0;
370       }
371     }
372   }
373   return DefaultSafeSPDisplacement;
374 }
375 
376 TargetStackID::Value
377 AArch64FrameLowering::getStackIDForScalableVectors() const {
378   return TargetStackID::ScalableVector;
379 }
380 
381 /// Returns the size of the fixed object area (allocated next to sp on entry)
382 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
383 static unsigned getFixedObjectSize(const MachineFunction &MF,
384                                    const AArch64FunctionInfo *AFI, bool IsWin64,
385                                    bool IsFunclet) {
386   if (!IsWin64 || IsFunclet) {
387     return AFI->getTailCallReservedStack();
388   } else {
389     if (AFI->getTailCallReservedStack() != 0)
390       report_fatal_error("cannot generate ABI-changing tail call for Win64");
391     // Var args are stored here in the primary function.
392     const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
393     // To support EH funclets we allocate an UnwindHelp object
394     const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
395     return alignTo(VarArgsArea + UnwindHelpObject, 16);
396   }
397 }
398 
399 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
400 static StackOffset getSVEStackSize(const MachineFunction &MF) {
401   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
402   return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
403 }
404 
405 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
406   if (!EnableRedZone)
407     return false;
408 
409   // Don't use the red zone if the function explicitly asks us not to.
410   // This is typically used for kernel code.
411   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
412   const unsigned RedZoneSize =
413       Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
414   if (!RedZoneSize)
415     return false;
416 
417   const MachineFrameInfo &MFI = MF.getFrameInfo();
418   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
419   uint64_t NumBytes = AFI->getLocalStackSize();
420 
421   return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
422            getSVEStackSize(MF));
423 }
424 
425 /// hasFP - Return true if the specified function should have a dedicated frame
426 /// pointer register.
427 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
428   const MachineFrameInfo &MFI = MF.getFrameInfo();
429   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
430   // Win64 EH requires a frame pointer if funclets are present, as the locals
431   // are accessed off the frame pointer in both the parent function and the
432   // funclets.
433   if (MF.hasEHFunclets())
434     return true;
435   // Retain behavior of always omitting the FP for leaf functions when possible.
436   if (MF.getTarget().Options.DisableFramePointerElim(MF))
437     return true;
438   if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
439       MFI.hasStackMap() || MFI.hasPatchPoint() ||
440       RegInfo->hasStackRealignment(MF))
441     return true;
442   // With large callframes around we may need to use FP to access the scavenging
443   // emergency spillslot.
444   //
445   // Unfortunately some calls to hasFP() like machine verifier ->
446   // getReservedReg() -> hasFP in the middle of global isel are too early
447   // to know the max call frame size. Hopefully conservatively returning "true"
448   // in those cases is fine.
449   // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
450   if (!MFI.isMaxCallFrameSizeComputed() ||
451       MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
452     return true;
453 
454   return false;
455 }
456 
457 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
458 /// not required, we reserve argument space for call sites in the function
459 /// immediately on entry to the current function.  This eliminates the need for
460 /// add/sub sp brackets around call sites.  Returns true if the call frame is
461 /// included as part of the stack frame.
462 bool
463 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
464   return !MF.getFrameInfo().hasVarSizedObjects();
465 }
466 
467 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
468     MachineFunction &MF, MachineBasicBlock &MBB,
469     MachineBasicBlock::iterator I) const {
470   const AArch64InstrInfo *TII =
471       static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
472   DebugLoc DL = I->getDebugLoc();
473   unsigned Opc = I->getOpcode();
474   bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
475   uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
476 
477   if (!hasReservedCallFrame(MF)) {
478     int64_t Amount = I->getOperand(0).getImm();
479     Amount = alignTo(Amount, getStackAlign());
480     if (!IsDestroy)
481       Amount = -Amount;
482 
483     // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
484     // doesn't have to pop anything), then the first operand will be zero too so
485     // this adjustment is a no-op.
486     if (CalleePopAmount == 0) {
487       // FIXME: in-function stack adjustment for calls is limited to 24-bits
488       // because there's no guaranteed temporary register available.
489       //
490       // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
491       // 1) For offset <= 12-bit, we use LSL #0
492       // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
493       // LSL #0, and the other uses LSL #12.
494       //
495       // Most call frames will be allocated at the start of a function so
496       // this is OK, but it is a limitation that needs dealing with.
497       assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
498       emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
499                       StackOffset::getFixed(Amount), TII);
500     }
501   } else if (CalleePopAmount != 0) {
502     // If the calling convention demands that the callee pops arguments from the
503     // stack, we want to add it back if we have a reserved call frame.
504     assert(CalleePopAmount < 0xffffff && "call frame too large");
505     emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
506                     StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
507   }
508   return MBB.erase(I);
509 }
510 
511 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
512     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
513   MachineFunction &MF = *MBB.getParent();
514   MachineFrameInfo &MFI = MF.getFrameInfo();
515 
516   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
517   if (CSI.empty())
518     return;
519 
520   const TargetSubtargetInfo &STI = MF.getSubtarget();
521   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
522   const TargetInstrInfo &TII = *STI.getInstrInfo();
523   DebugLoc DL = MBB.findDebugLoc(MBBI);
524 
525   for (const auto &Info : CSI) {
526     if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)
527       continue;
528 
529     assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
530     unsigned DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
531 
532     int64_t Offset =
533         MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
534     unsigned CFIIndex = MF.addFrameInst(
535         MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
536     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
537         .addCFIIndex(CFIIndex)
538         .setMIFlags(MachineInstr::FrameSetup);
539   }
540 }
541 
542 void AArch64FrameLowering::emitCalleeSavedSVELocations(
543     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
544   MachineFunction &MF = *MBB.getParent();
545   MachineFrameInfo &MFI = MF.getFrameInfo();
546 
547   // Add callee saved registers to move list.
548   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
549   if (CSI.empty())
550     return;
551 
552   const TargetSubtargetInfo &STI = MF.getSubtarget();
553   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
554   const TargetInstrInfo &TII = *STI.getInstrInfo();
555   DebugLoc DL = MBB.findDebugLoc(MBBI);
556   AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
557 
558   for (const auto &Info : CSI) {
559     if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
560       continue;
561 
562     // Not all unwinders may know about SVE registers, so assume the lowest
563     // common demoninator.
564     assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
565     unsigned Reg = Info.getReg();
566     if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
567       continue;
568 
569     StackOffset Offset =
570         StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
571         StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
572 
573     unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
574     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
575         .addCFIIndex(CFIIndex)
576         .setMIFlags(MachineInstr::FrameSetup);
577   }
578 }
579 
580 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
581                                MachineBasicBlock &MBB,
582                                MachineBasicBlock::iterator InsertPt,
583                                unsigned DwarfReg) {
584   unsigned CFIIndex =
585       MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
586   BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
587 }
588 
589 void AArch64FrameLowering::resetCFIToInitialState(
590     MachineBasicBlock &MBB) const {
591 
592   MachineFunction &MF = *MBB.getParent();
593   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
594   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
595   const auto &TRI =
596       static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
597   const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
598 
599   const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
600   DebugLoc DL;
601 
602   // Reset the CFA to `SP + 0`.
603   MachineBasicBlock::iterator InsertPt = MBB.begin();
604   unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
605       nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
606   BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
607 
608   // Flip the RA sign state.
609   if (MFI.shouldSignReturnAddress(MF)) {
610     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
611     BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
612   }
613 
614   // Shadow call stack uses X18, reset it.
615   if (needsShadowCallStackPrologueEpilogue(MF))
616     insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
617                        TRI.getDwarfRegNum(AArch64::X18, true));
618 
619   // Emit .cfi_same_value for callee-saved registers.
620   const std::vector<CalleeSavedInfo> &CSI =
621       MF.getFrameInfo().getCalleeSavedInfo();
622   for (const auto &Info : CSI) {
623     unsigned Reg = Info.getReg();
624     if (!TRI.regNeedsCFI(Reg, Reg))
625       continue;
626     insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
627                        TRI.getDwarfRegNum(Reg, true));
628   }
629 }
630 
631 static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
632                                     MachineBasicBlock::iterator MBBI,
633                                     bool SVE) {
634   MachineFunction &MF = *MBB.getParent();
635   MachineFrameInfo &MFI = MF.getFrameInfo();
636 
637   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
638   if (CSI.empty())
639     return;
640 
641   const TargetSubtargetInfo &STI = MF.getSubtarget();
642   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
643   const TargetInstrInfo &TII = *STI.getInstrInfo();
644   DebugLoc DL = MBB.findDebugLoc(MBBI);
645 
646   for (const auto &Info : CSI) {
647     if (SVE !=
648         (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
649       continue;
650 
651     unsigned Reg = Info.getReg();
652     if (SVE &&
653         !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
654       continue;
655 
656     unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
657         nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
658     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
659         .addCFIIndex(CFIIndex)
660         .setMIFlags(MachineInstr::FrameDestroy);
661   }
662 }
663 
664 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
665     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
666   emitCalleeSavedRestores(MBB, MBBI, false);
667 }
668 
669 void AArch64FrameLowering::emitCalleeSavedSVERestores(
670     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
671   emitCalleeSavedRestores(MBB, MBBI, true);
672 }
673 
674 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
675   switch (Reg.id()) {
676   default:
677     // The called routine is expected to preserve r19-r28
678     // r29 and r30 are used as frame pointer and link register resp.
679     return 0;
680 
681     // GPRs
682 #define CASE(n)                                                                \
683   case AArch64::W##n:                                                          \
684   case AArch64::X##n:                                                          \
685     return AArch64::X##n
686   CASE(0);
687   CASE(1);
688   CASE(2);
689   CASE(3);
690   CASE(4);
691   CASE(5);
692   CASE(6);
693   CASE(7);
694   CASE(8);
695   CASE(9);
696   CASE(10);
697   CASE(11);
698   CASE(12);
699   CASE(13);
700   CASE(14);
701   CASE(15);
702   CASE(16);
703   CASE(17);
704   CASE(18);
705 #undef CASE
706 
707     // FPRs
708 #define CASE(n)                                                                \
709   case AArch64::B##n:                                                          \
710   case AArch64::H##n:                                                          \
711   case AArch64::S##n:                                                          \
712   case AArch64::D##n:                                                          \
713   case AArch64::Q##n:                                                          \
714     return HasSVE ? AArch64::Z##n : AArch64::Q##n
715   CASE(0);
716   CASE(1);
717   CASE(2);
718   CASE(3);
719   CASE(4);
720   CASE(5);
721   CASE(6);
722   CASE(7);
723   CASE(8);
724   CASE(9);
725   CASE(10);
726   CASE(11);
727   CASE(12);
728   CASE(13);
729   CASE(14);
730   CASE(15);
731   CASE(16);
732   CASE(17);
733   CASE(18);
734   CASE(19);
735   CASE(20);
736   CASE(21);
737   CASE(22);
738   CASE(23);
739   CASE(24);
740   CASE(25);
741   CASE(26);
742   CASE(27);
743   CASE(28);
744   CASE(29);
745   CASE(30);
746   CASE(31);
747 #undef CASE
748   }
749 }
750 
751 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
752                                                 MachineBasicBlock &MBB) const {
753   // Insertion point.
754   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
755 
756   // Fake a debug loc.
757   DebugLoc DL;
758   if (MBBI != MBB.end())
759     DL = MBBI->getDebugLoc();
760 
761   const MachineFunction &MF = *MBB.getParent();
762   const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
763   const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
764 
765   BitVector GPRsToZero(TRI.getNumRegs());
766   BitVector FPRsToZero(TRI.getNumRegs());
767   bool HasSVE = STI.hasSVE();
768   for (MCRegister Reg : RegsToZero.set_bits()) {
769     if (TRI.isGeneralPurposeRegister(MF, Reg)) {
770       // For GPRs, we only care to clear out the 64-bit register.
771       if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
772         GPRsToZero.set(XReg);
773     } else if (AArch64::FPR128RegClass.contains(Reg) ||
774                AArch64::FPR64RegClass.contains(Reg) ||
775                AArch64::FPR32RegClass.contains(Reg) ||
776                AArch64::FPR16RegClass.contains(Reg) ||
777                AArch64::FPR8RegClass.contains(Reg)) {
778       // For FPRs,
779       if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
780         FPRsToZero.set(XReg);
781     }
782   }
783 
784   const AArch64InstrInfo &TII = *STI.getInstrInfo();
785 
786   // Zero out GPRs.
787   for (MCRegister Reg : GPRsToZero.set_bits())
788     BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), Reg).addImm(0);
789 
790   // Zero out FP/vector registers.
791   for (MCRegister Reg : FPRsToZero.set_bits())
792     if (HasSVE)
793       BuildMI(MBB, MBBI, DL, TII.get(AArch64::DUP_ZI_D), Reg)
794         .addImm(0)
795         .addImm(0);
796     else
797       BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVIv2d_ns), Reg).addImm(0);
798 
799   if (HasSVE) {
800     for (MCRegister PReg :
801          {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
802           AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
803           AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
804           AArch64::P15}) {
805       if (RegsToZero[PReg])
806         BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
807     }
808   }
809 }
810 
811 // Find a scratch register that we can use at the start of the prologue to
812 // re-align the stack pointer.  We avoid using callee-save registers since they
813 // may appear to be free when this is called from canUseAsPrologue (during
814 // shrink wrapping), but then no longer be free when this is called from
815 // emitPrologue.
816 //
817 // FIXME: This is a bit conservative, since in the above case we could use one
818 // of the callee-save registers as a scratch temp to re-align the stack pointer,
819 // but we would then have to make sure that we were in fact saving at least one
820 // callee-save register in the prologue, which is additional complexity that
821 // doesn't seem worth the benefit.
822 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
823   MachineFunction *MF = MBB->getParent();
824 
825   // If MBB is an entry block, use X9 as the scratch register
826   if (&MF->front() == MBB)
827     return AArch64::X9;
828 
829   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
830   const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
831   LivePhysRegs LiveRegs(TRI);
832   LiveRegs.addLiveIns(*MBB);
833 
834   // Mark callee saved registers as used so we will not choose them.
835   const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
836   for (unsigned i = 0; CSRegs[i]; ++i)
837     LiveRegs.addReg(CSRegs[i]);
838 
839   // Prefer X9 since it was historically used for the prologue scratch reg.
840   const MachineRegisterInfo &MRI = MF->getRegInfo();
841   if (LiveRegs.available(MRI, AArch64::X9))
842     return AArch64::X9;
843 
844   for (unsigned Reg : AArch64::GPR64RegClass) {
845     if (LiveRegs.available(MRI, Reg))
846       return Reg;
847   }
848   return AArch64::NoRegister;
849 }
850 
851 bool AArch64FrameLowering::canUseAsPrologue(
852     const MachineBasicBlock &MBB) const {
853   const MachineFunction *MF = MBB.getParent();
854   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
855   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
856   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
857 
858   // Don't need a scratch register if we're not going to re-align the stack.
859   if (!RegInfo->hasStackRealignment(*MF))
860     return true;
861   // Otherwise, we can use any block as long as it has a scratch register
862   // available.
863   return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
864 }
865 
866 static bool windowsRequiresStackProbe(MachineFunction &MF,
867                                       uint64_t StackSizeInBytes) {
868   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
869   if (!Subtarget.isTargetWindows())
870     return false;
871   const Function &F = MF.getFunction();
872   // TODO: When implementing stack protectors, take that into account
873   // for the probe threshold.
874   unsigned StackProbeSize =
875       F.getFnAttributeAsParsedInteger("stack-probe-size", 4096);
876   return (StackSizeInBytes >= StackProbeSize) &&
877          !F.hasFnAttribute("no-stack-arg-probe");
878 }
879 
880 static bool needsWinCFI(const MachineFunction &MF) {
881   const Function &F = MF.getFunction();
882   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
883          F.needsUnwindTableEntry();
884 }
885 
886 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
887     MachineFunction &MF, uint64_t StackBumpBytes) const {
888   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
889   const MachineFrameInfo &MFI = MF.getFrameInfo();
890   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
891   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
892   if (homogeneousPrologEpilog(MF))
893     return false;
894 
895   if (AFI->getLocalStackSize() == 0)
896     return false;
897 
898   // For WinCFI, if optimizing for size, prefer to not combine the stack bump
899   // (to force a stp with predecrement) to match the packed unwind format,
900   // provided that there actually are any callee saved registers to merge the
901   // decrement with.
902   // This is potentially marginally slower, but allows using the packed
903   // unwind format for functions that both have a local area and callee saved
904   // registers. Using the packed unwind format notably reduces the size of
905   // the unwind info.
906   if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
907       MF.getFunction().hasOptSize())
908     return false;
909 
910   // 512 is the maximum immediate for stp/ldp that will be used for
911   // callee-save save/restores
912   if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
913     return false;
914 
915   if (MFI.hasVarSizedObjects())
916     return false;
917 
918   if (RegInfo->hasStackRealignment(MF))
919     return false;
920 
921   // This isn't strictly necessary, but it simplifies things a bit since the
922   // current RedZone handling code assumes the SP is adjusted by the
923   // callee-save save/restore code.
924   if (canUseRedZone(MF))
925     return false;
926 
927   // When there is an SVE area on the stack, always allocate the
928   // callee-saves and spills/locals separately.
929   if (getSVEStackSize(MF))
930     return false;
931 
932   return true;
933 }
934 
935 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
936     MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
937   if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
938     return false;
939 
940   if (MBB.empty())
941     return true;
942 
943   // Disable combined SP bump if the last instruction is an MTE tag store. It
944   // is almost always better to merge SP adjustment into those instructions.
945   MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
946   MachineBasicBlock::iterator Begin = MBB.begin();
947   while (LastI != Begin) {
948     --LastI;
949     if (LastI->isTransient())
950       continue;
951     if (!LastI->getFlag(MachineInstr::FrameDestroy))
952       break;
953   }
954   switch (LastI->getOpcode()) {
955   case AArch64::STGloop:
956   case AArch64::STZGloop:
957   case AArch64::STGOffset:
958   case AArch64::STZGOffset:
959   case AArch64::ST2GOffset:
960   case AArch64::STZ2GOffset:
961     return false;
962   default:
963     return true;
964   }
965   llvm_unreachable("unreachable");
966 }
967 
968 // Given a load or a store instruction, generate an appropriate unwinding SEH
969 // code on Windows.
970 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
971                                              const TargetInstrInfo &TII,
972                                              MachineInstr::MIFlag Flag) {
973   unsigned Opc = MBBI->getOpcode();
974   MachineBasicBlock *MBB = MBBI->getParent();
975   MachineFunction &MF = *MBB->getParent();
976   DebugLoc DL = MBBI->getDebugLoc();
977   unsigned ImmIdx = MBBI->getNumOperands() - 1;
978   int Imm = MBBI->getOperand(ImmIdx).getImm();
979   MachineInstrBuilder MIB;
980   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
981   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
982 
983   switch (Opc) {
984   default:
985     llvm_unreachable("No SEH Opcode for this instruction");
986   case AArch64::LDPDpost:
987     Imm = -Imm;
988     [[fallthrough]];
989   case AArch64::STPDpre: {
990     unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
991     unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
992     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
993               .addImm(Reg0)
994               .addImm(Reg1)
995               .addImm(Imm * 8)
996               .setMIFlag(Flag);
997     break;
998   }
999   case AArch64::LDPXpost:
1000     Imm = -Imm;
1001     [[fallthrough]];
1002   case AArch64::STPXpre: {
1003     Register Reg0 = MBBI->getOperand(1).getReg();
1004     Register Reg1 = MBBI->getOperand(2).getReg();
1005     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1006       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1007                 .addImm(Imm * 8)
1008                 .setMIFlag(Flag);
1009     else
1010       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1011                 .addImm(RegInfo->getSEHRegNum(Reg0))
1012                 .addImm(RegInfo->getSEHRegNum(Reg1))
1013                 .addImm(Imm * 8)
1014                 .setMIFlag(Flag);
1015     break;
1016   }
1017   case AArch64::LDRDpost:
1018     Imm = -Imm;
1019     [[fallthrough]];
1020   case AArch64::STRDpre: {
1021     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1022     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1023               .addImm(Reg)
1024               .addImm(Imm)
1025               .setMIFlag(Flag);
1026     break;
1027   }
1028   case AArch64::LDRXpost:
1029     Imm = -Imm;
1030     [[fallthrough]];
1031   case AArch64::STRXpre: {
1032     unsigned Reg =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1033     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1034               .addImm(Reg)
1035               .addImm(Imm)
1036               .setMIFlag(Flag);
1037     break;
1038   }
1039   case AArch64::STPDi:
1040   case AArch64::LDPDi: {
1041     unsigned Reg0 =  RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1042     unsigned Reg1 =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1043     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1044               .addImm(Reg0)
1045               .addImm(Reg1)
1046               .addImm(Imm * 8)
1047               .setMIFlag(Flag);
1048     break;
1049   }
1050   case AArch64::STPXi:
1051   case AArch64::LDPXi: {
1052     Register Reg0 = MBBI->getOperand(0).getReg();
1053     Register Reg1 = MBBI->getOperand(1).getReg();
1054     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1055       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1056                 .addImm(Imm * 8)
1057                 .setMIFlag(Flag);
1058     else
1059       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1060                 .addImm(RegInfo->getSEHRegNum(Reg0))
1061                 .addImm(RegInfo->getSEHRegNum(Reg1))
1062                 .addImm(Imm * 8)
1063                 .setMIFlag(Flag);
1064     break;
1065   }
1066   case AArch64::STRXui:
1067   case AArch64::LDRXui: {
1068     int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1069     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1070               .addImm(Reg)
1071               .addImm(Imm * 8)
1072               .setMIFlag(Flag);
1073     break;
1074   }
1075   case AArch64::STRDui:
1076   case AArch64::LDRDui: {
1077     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1078     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1079               .addImm(Reg)
1080               .addImm(Imm * 8)
1081               .setMIFlag(Flag);
1082     break;
1083   }
1084   }
1085   auto I = MBB->insertAfter(MBBI, MIB);
1086   return I;
1087 }
1088 
1089 // Fix up the SEH opcode associated with the save/restore instruction.
1090 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1091                            unsigned LocalStackSize) {
1092   MachineOperand *ImmOpnd = nullptr;
1093   unsigned ImmIdx = MBBI->getNumOperands() - 1;
1094   switch (MBBI->getOpcode()) {
1095   default:
1096     llvm_unreachable("Fix the offset in the SEH instruction");
1097   case AArch64::SEH_SaveFPLR:
1098   case AArch64::SEH_SaveRegP:
1099   case AArch64::SEH_SaveReg:
1100   case AArch64::SEH_SaveFRegP:
1101   case AArch64::SEH_SaveFReg:
1102     ImmOpnd = &MBBI->getOperand(ImmIdx);
1103     break;
1104   }
1105   if (ImmOpnd)
1106     ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1107 }
1108 
1109 // Convert callee-save register save/restore instruction to do stack pointer
1110 // decrement/increment to allocate/deallocate the callee-save stack area by
1111 // converting store/load to use pre/post increment version.
1112 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1113     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1114     const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1115     bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1116     MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1117     int CFAOffset = 0) {
1118   unsigned NewOpc;
1119   switch (MBBI->getOpcode()) {
1120   default:
1121     llvm_unreachable("Unexpected callee-save save/restore opcode!");
1122   case AArch64::STPXi:
1123     NewOpc = AArch64::STPXpre;
1124     break;
1125   case AArch64::STPDi:
1126     NewOpc = AArch64::STPDpre;
1127     break;
1128   case AArch64::STPQi:
1129     NewOpc = AArch64::STPQpre;
1130     break;
1131   case AArch64::STRXui:
1132     NewOpc = AArch64::STRXpre;
1133     break;
1134   case AArch64::STRDui:
1135     NewOpc = AArch64::STRDpre;
1136     break;
1137   case AArch64::STRQui:
1138     NewOpc = AArch64::STRQpre;
1139     break;
1140   case AArch64::LDPXi:
1141     NewOpc = AArch64::LDPXpost;
1142     break;
1143   case AArch64::LDPDi:
1144     NewOpc = AArch64::LDPDpost;
1145     break;
1146   case AArch64::LDPQi:
1147     NewOpc = AArch64::LDPQpost;
1148     break;
1149   case AArch64::LDRXui:
1150     NewOpc = AArch64::LDRXpost;
1151     break;
1152   case AArch64::LDRDui:
1153     NewOpc = AArch64::LDRDpost;
1154     break;
1155   case AArch64::LDRQui:
1156     NewOpc = AArch64::LDRQpost;
1157     break;
1158   }
1159   // Get rid of the SEH code associated with the old instruction.
1160   if (NeedsWinCFI) {
1161     auto SEH = std::next(MBBI);
1162     if (AArch64InstrInfo::isSEHInstruction(*SEH))
1163       SEH->eraseFromParent();
1164   }
1165 
1166   TypeSize Scale = TypeSize::Fixed(1);
1167   unsigned Width;
1168   int64_t MinOffset, MaxOffset;
1169   bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1170       NewOpc, Scale, Width, MinOffset, MaxOffset);
1171   (void)Success;
1172   assert(Success && "unknown load/store opcode");
1173 
1174   // If the first store isn't right where we want SP then we can't fold the
1175   // update in so create a normal arithmetic instruction instead.
1176   MachineFunction &MF = *MBB.getParent();
1177   if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1178       CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1179     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1180                     StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1181                     false, false, nullptr, EmitCFI,
1182                     StackOffset::getFixed(CFAOffset));
1183 
1184     return std::prev(MBBI);
1185   }
1186 
1187   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1188   MIB.addReg(AArch64::SP, RegState::Define);
1189 
1190   // Copy all operands other than the immediate offset.
1191   unsigned OpndIdx = 0;
1192   for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1193        ++OpndIdx)
1194     MIB.add(MBBI->getOperand(OpndIdx));
1195 
1196   assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1197          "Unexpected immediate offset in first/last callee-save save/restore "
1198          "instruction!");
1199   assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1200          "Unexpected base register in callee-save save/restore instruction!");
1201   assert(CSStackSizeInc % Scale == 0);
1202   MIB.addImm(CSStackSizeInc / (int)Scale);
1203 
1204   MIB.setMIFlags(MBBI->getFlags());
1205   MIB.setMemRefs(MBBI->memoperands());
1206 
1207   // Generate a new SEH code that corresponds to the new instruction.
1208   if (NeedsWinCFI) {
1209     *HasWinCFI = true;
1210     InsertSEH(*MIB, *TII, FrameFlag);
1211   }
1212 
1213   if (EmitCFI) {
1214     unsigned CFIIndex = MF.addFrameInst(
1215         MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1216     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1217         .addCFIIndex(CFIIndex)
1218         .setMIFlags(FrameFlag);
1219   }
1220 
1221   return std::prev(MBB.erase(MBBI));
1222 }
1223 
1224 // Fixup callee-save register save/restore instructions to take into account
1225 // combined SP bump by adding the local stack size to the stack offsets.
1226 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1227                                               uint64_t LocalStackSize,
1228                                               bool NeedsWinCFI,
1229                                               bool *HasWinCFI) {
1230   if (AArch64InstrInfo::isSEHInstruction(MI))
1231     return;
1232 
1233   unsigned Opc = MI.getOpcode();
1234   unsigned Scale;
1235   switch (Opc) {
1236   case AArch64::STPXi:
1237   case AArch64::STRXui:
1238   case AArch64::STPDi:
1239   case AArch64::STRDui:
1240   case AArch64::LDPXi:
1241   case AArch64::LDRXui:
1242   case AArch64::LDPDi:
1243   case AArch64::LDRDui:
1244     Scale = 8;
1245     break;
1246   case AArch64::STPQi:
1247   case AArch64::STRQui:
1248   case AArch64::LDPQi:
1249   case AArch64::LDRQui:
1250     Scale = 16;
1251     break;
1252   default:
1253     llvm_unreachable("Unexpected callee-save save/restore opcode!");
1254   }
1255 
1256   unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1257   assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1258          "Unexpected base register in callee-save save/restore instruction!");
1259   // Last operand is immediate offset that needs fixing.
1260   MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1261   // All generated opcodes have scaled offsets.
1262   assert(LocalStackSize % Scale == 0);
1263   OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1264 
1265   if (NeedsWinCFI) {
1266     *HasWinCFI = true;
1267     auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1268     assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1269     assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1270            "Expecting a SEH instruction");
1271     fixupSEHOpcode(MBBI, LocalStackSize);
1272   }
1273 }
1274 
1275 static bool isTargetWindows(const MachineFunction &MF) {
1276   return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1277 }
1278 
1279 // Convenience function to determine whether I is an SVE callee save.
1280 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1281   switch (I->getOpcode()) {
1282   default:
1283     return false;
1284   case AArch64::STR_ZXI:
1285   case AArch64::STR_PXI:
1286   case AArch64::LDR_ZXI:
1287   case AArch64::LDR_PXI:
1288     return I->getFlag(MachineInstr::FrameSetup) ||
1289            I->getFlag(MachineInstr::FrameDestroy);
1290   }
1291 }
1292 
1293 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF) {
1294   if (!(llvm::any_of(
1295             MF.getFrameInfo().getCalleeSavedInfo(),
1296             [](const auto &Info) { return Info.getReg() == AArch64::LR; }) &&
1297         MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)))
1298     return false;
1299 
1300   if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
1301     report_fatal_error("Must reserve x18 to use shadow call stack");
1302 
1303   return true;
1304 }
1305 
1306 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1307                                         MachineFunction &MF,
1308                                         MachineBasicBlock &MBB,
1309                                         MachineBasicBlock::iterator MBBI,
1310                                         const DebugLoc &DL, bool NeedsWinCFI,
1311                                         bool NeedsUnwindInfo) {
1312   // Shadow call stack prolog: str x30, [x18], #8
1313   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1314       .addReg(AArch64::X18, RegState::Define)
1315       .addReg(AArch64::LR)
1316       .addReg(AArch64::X18)
1317       .addImm(8)
1318       .setMIFlag(MachineInstr::FrameSetup);
1319 
1320   // This instruction also makes x18 live-in to the entry block.
1321   MBB.addLiveIn(AArch64::X18);
1322 
1323   if (NeedsWinCFI)
1324     BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1325         .setMIFlag(MachineInstr::FrameSetup);
1326 
1327   if (NeedsUnwindInfo) {
1328     // Emit a CFI instruction that causes 8 to be subtracted from the value of
1329     // x18 when unwinding past this frame.
1330     static const char CFIInst[] = {
1331         dwarf::DW_CFA_val_expression,
1332         18, // register
1333         2,  // length
1334         static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1335         static_cast<char>(-8) & 0x7f, // addend (sleb128)
1336     };
1337     unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1338         nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1339     BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1340         .addCFIIndex(CFIIndex)
1341         .setMIFlag(MachineInstr::FrameSetup);
1342   }
1343 }
1344 
1345 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1346                                         MachineFunction &MF,
1347                                         MachineBasicBlock &MBB,
1348                                         MachineBasicBlock::iterator MBBI,
1349                                         const DebugLoc &DL) {
1350   // Shadow call stack epilog: ldr x30, [x18, #-8]!
1351   BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1352       .addReg(AArch64::X18, RegState::Define)
1353       .addReg(AArch64::LR, RegState::Define)
1354       .addReg(AArch64::X18)
1355       .addImm(-8)
1356       .setMIFlag(MachineInstr::FrameDestroy);
1357 
1358   if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) {
1359     unsigned CFIIndex =
1360         MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1361     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1362         .addCFIIndex(CFIIndex)
1363         .setMIFlags(MachineInstr::FrameDestroy);
1364   }
1365 }
1366 
1367 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1368                                         MachineBasicBlock &MBB) const {
1369   MachineBasicBlock::iterator MBBI = MBB.begin();
1370   const MachineFrameInfo &MFI = MF.getFrameInfo();
1371   const Function &F = MF.getFunction();
1372   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1373   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1374   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1375   MachineModuleInfo &MMI = MF.getMMI();
1376   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1377   bool EmitCFI = AFI->needsDwarfUnwindInfo(MF);
1378   bool HasFP = hasFP(MF);
1379   bool NeedsWinCFI = needsWinCFI(MF);
1380   bool HasWinCFI = false;
1381   auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1382 
1383   bool IsFunclet = MBB.isEHFuncletEntry();
1384 
1385   // At this point, we're going to decide whether or not the function uses a
1386   // redzone. In most cases, the function doesn't have a redzone so let's
1387   // assume that's false and set it to true in the case that there's a redzone.
1388   AFI->setHasRedZone(false);
1389 
1390   // Debug location must be unknown since the first debug location is used
1391   // to determine the end of the prologue.
1392   DebugLoc DL;
1393 
1394   const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1395   if (needsShadowCallStackPrologueEpilogue(MF))
1396     emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1397                                 MFnI.needsDwarfUnwindInfo(MF));
1398 
1399   if (MFnI.shouldSignReturnAddress(MF)) {
1400     if (MFnI.shouldSignWithBKey()) {
1401       BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
1402           .setMIFlag(MachineInstr::FrameSetup);
1403     }
1404 
1405     // No SEH opcode for this one; it doesn't materialize into an
1406     // instruction on Windows.
1407     BuildMI(MBB, MBBI, DL,
1408             TII->get(MFnI.shouldSignWithBKey() ? AArch64::PACIBSP
1409                                                : AArch64::PACIASP))
1410         .setMIFlag(MachineInstr::FrameSetup);
1411 
1412     if (EmitCFI) {
1413       unsigned CFIIndex =
1414           MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1415       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1416           .addCFIIndex(CFIIndex)
1417           .setMIFlags(MachineInstr::FrameSetup);
1418     } else if (NeedsWinCFI) {
1419       HasWinCFI = true;
1420       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
1421           .setMIFlag(MachineInstr::FrameSetup);
1422     }
1423   }
1424   if (EmitCFI && MFnI.isMTETagged()) {
1425     BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1426         .setMIFlag(MachineInstr::FrameSetup);
1427   }
1428 
1429   // We signal the presence of a Swift extended frame to external tools by
1430   // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1431   // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1432   // bits so that is still true.
1433   if (HasFP && AFI->hasSwiftAsyncContext()) {
1434     switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1435     case SwiftAsyncFramePointerMode::DeploymentBased:
1436       if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1437         // The special symbol below is absolute and has a *value* that can be
1438         // combined with the frame pointer to signal an extended frame.
1439         BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1440             .addExternalSymbol("swift_async_extendedFramePointerFlags",
1441                                AArch64II::MO_GOT);
1442         BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1443             .addUse(AArch64::FP)
1444             .addUse(AArch64::X16)
1445             .addImm(Subtarget.isTargetILP32() ? 32 : 0);
1446         break;
1447       }
1448       [[fallthrough]];
1449 
1450     case SwiftAsyncFramePointerMode::Always:
1451       // ORR x29, x29, #0x1000_0000_0000_0000
1452       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1453           .addUse(AArch64::FP)
1454           .addImm(0x1100)
1455           .setMIFlag(MachineInstr::FrameSetup);
1456       break;
1457 
1458     case SwiftAsyncFramePointerMode::Never:
1459       break;
1460     }
1461   }
1462 
1463   // All calls are tail calls in GHC calling conv, and functions have no
1464   // prologue/epilogue.
1465   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1466     return;
1467 
1468   // Set tagged base pointer to the requested stack slot.
1469   // Ideally it should match SP value after prologue.
1470   std::optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1471   if (TBPI)
1472     AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1473   else
1474     AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1475 
1476   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1477 
1478   // getStackSize() includes all the locals in its size calculation. We don't
1479   // include these locals when computing the stack size of a funclet, as they
1480   // are allocated in the parent's stack frame and accessed via the frame
1481   // pointer from the funclet.  We only save the callee saved registers in the
1482   // funclet, which are really the callee saved registers of the parent
1483   // function, including the funclet.
1484   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1485                                : MFI.getStackSize();
1486   if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1487     assert(!HasFP && "unexpected function without stack frame but with FP");
1488     assert(!SVEStackSize &&
1489            "unexpected function without stack frame but with SVE objects");
1490     // All of the stack allocation is for locals.
1491     AFI->setLocalStackSize(NumBytes);
1492     if (!NumBytes)
1493       return;
1494     // REDZONE: If the stack size is less than 128 bytes, we don't need
1495     // to actually allocate.
1496     if (canUseRedZone(MF)) {
1497       AFI->setHasRedZone(true);
1498       ++NumRedZoneFunctions;
1499     } else {
1500       emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1501                       StackOffset::getFixed(-NumBytes), TII,
1502                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1503       if (EmitCFI) {
1504         // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1505         MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1506           // Encode the stack size of the leaf function.
1507         unsigned CFIIndex = MF.addFrameInst(
1508             MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1509         BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1510             .addCFIIndex(CFIIndex)
1511             .setMIFlags(MachineInstr::FrameSetup);
1512       }
1513     }
1514 
1515     if (NeedsWinCFI) {
1516       HasWinCFI = true;
1517       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1518           .setMIFlag(MachineInstr::FrameSetup);
1519     }
1520 
1521     return;
1522   }
1523 
1524   bool IsWin64 =
1525       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1526   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1527 
1528   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1529   // All of the remaining stack allocations are for locals.
1530   AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1531   bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1532   bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1533   if (CombineSPBump) {
1534     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1535     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1536                     StackOffset::getFixed(-NumBytes), TII,
1537                     MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1538                     EmitCFI);
1539     NumBytes = 0;
1540   } else if (HomPrologEpilog) {
1541     // Stack has been already adjusted.
1542     NumBytes -= PrologueSaveSize;
1543   } else if (PrologueSaveSize != 0) {
1544     MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1545         MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1546         EmitCFI);
1547     NumBytes -= PrologueSaveSize;
1548   }
1549   assert(NumBytes >= 0 && "Negative stack allocation size!?");
1550 
1551   // Move past the saves of the callee-saved registers, fixing up the offsets
1552   // and pre-inc if we decided to combine the callee-save and local stack
1553   // pointer bump above.
1554   MachineBasicBlock::iterator End = MBB.end();
1555   while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1556          !IsSVECalleeSave(MBBI)) {
1557     if (CombineSPBump)
1558       fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1559                                         NeedsWinCFI, &HasWinCFI);
1560     ++MBBI;
1561   }
1562 
1563   // For funclets the FP belongs to the containing function.
1564   if (!IsFunclet && HasFP) {
1565     // Only set up FP if we actually need to.
1566     int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1567 
1568     if (CombineSPBump)
1569       FPOffset += AFI->getLocalStackSize();
1570 
1571     if (AFI->hasSwiftAsyncContext()) {
1572       // Before we update the live FP we have to ensure there's a valid (or
1573       // null) asynchronous context in its slot just before FP in the frame
1574       // record, so store it now.
1575       const auto &Attrs = MF.getFunction().getAttributes();
1576       bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1577       if (HaveInitialContext)
1578         MBB.addLiveIn(AArch64::X22);
1579       BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1580           .addUse(HaveInitialContext ? AArch64::X22 : AArch64::XZR)
1581           .addUse(AArch64::SP)
1582           .addImm(FPOffset - 8)
1583           .setMIFlags(MachineInstr::FrameSetup);
1584     }
1585 
1586     if (HomPrologEpilog) {
1587       auto Prolog = MBBI;
1588       --Prolog;
1589       assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1590       Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1591     } else {
1592       // Issue    sub fp, sp, FPOffset or
1593       //          mov fp,sp          when FPOffset is zero.
1594       // Note: All stores of callee-saved registers are marked as "FrameSetup".
1595       // This code marks the instruction(s) that set the FP also.
1596       emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1597                       StackOffset::getFixed(FPOffset), TII,
1598                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1599       if (NeedsWinCFI && HasWinCFI) {
1600         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1601             .setMIFlag(MachineInstr::FrameSetup);
1602         // After setting up the FP, the rest of the prolog doesn't need to be
1603         // included in the SEH unwind info.
1604         NeedsWinCFI = false;
1605       }
1606     }
1607     if (EmitCFI) {
1608       // Define the current CFA rule to use the provided FP.
1609       const int OffsetToFirstCalleeSaveFromFP =
1610           AFI->getCalleeSaveBaseToFrameRecordOffset() -
1611           AFI->getCalleeSavedStackSize();
1612       Register FramePtr = RegInfo->getFrameRegister(MF);
1613       unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1614       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1615           nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1616       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1617           .addCFIIndex(CFIIndex)
1618           .setMIFlags(MachineInstr::FrameSetup);
1619     }
1620   }
1621 
1622   // Now emit the moves for whatever callee saved regs we have (including FP,
1623   // LR if those are saved). Frame instructions for SVE register are emitted
1624   // later, after the instruction which actually save SVE regs.
1625   if (EmitCFI)
1626     emitCalleeSavedGPRLocations(MBB, MBBI);
1627 
1628   // Alignment is required for the parent frame, not the funclet
1629   const bool NeedsRealignment =
1630       NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF);
1631   int64_t RealignmentPadding =
1632       (NeedsRealignment && MFI.getMaxAlign() > Align(16))
1633           ? MFI.getMaxAlign().value() - 16
1634           : 0;
1635 
1636   if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) {
1637     uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4;
1638     if (NeedsWinCFI) {
1639       HasWinCFI = true;
1640       // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1641       // exceed this amount.  We need to move at most 2^24 - 1 into x15.
1642       // This is at most two instructions, MOVZ follwed by MOVK.
1643       // TODO: Fix to use multiple stack alloc unwind codes for stacks
1644       // exceeding 256MB in size.
1645       if (NumBytes >= (1 << 28))
1646         report_fatal_error("Stack size cannot exceed 256MB for stack "
1647                             "unwinding purposes");
1648 
1649       uint32_t LowNumWords = NumWords & 0xFFFF;
1650       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1651             .addImm(LowNumWords)
1652             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1653             .setMIFlag(MachineInstr::FrameSetup);
1654       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1655             .setMIFlag(MachineInstr::FrameSetup);
1656       if ((NumWords & 0xFFFF0000) != 0) {
1657           BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1658               .addReg(AArch64::X15)
1659               .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1660               .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1661               .setMIFlag(MachineInstr::FrameSetup);
1662           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1663             .setMIFlag(MachineInstr::FrameSetup);
1664       }
1665     } else {
1666       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1667           .addImm(NumWords)
1668           .setMIFlags(MachineInstr::FrameSetup);
1669     }
1670 
1671     const char* ChkStk = Subtarget.getChkStkName();
1672     switch (MF.getTarget().getCodeModel()) {
1673     case CodeModel::Tiny:
1674     case CodeModel::Small:
1675     case CodeModel::Medium:
1676     case CodeModel::Kernel:
1677       BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1678           .addExternalSymbol(ChkStk)
1679           .addReg(AArch64::X15, RegState::Implicit)
1680           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1681           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1682           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1683           .setMIFlags(MachineInstr::FrameSetup);
1684       if (NeedsWinCFI) {
1685         HasWinCFI = true;
1686         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1687             .setMIFlag(MachineInstr::FrameSetup);
1688       }
1689       break;
1690     case CodeModel::Large:
1691       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1692           .addReg(AArch64::X16, RegState::Define)
1693           .addExternalSymbol(ChkStk)
1694           .addExternalSymbol(ChkStk)
1695           .setMIFlags(MachineInstr::FrameSetup);
1696       if (NeedsWinCFI) {
1697         HasWinCFI = true;
1698         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1699             .setMIFlag(MachineInstr::FrameSetup);
1700       }
1701 
1702       BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
1703           .addReg(AArch64::X16, RegState::Kill)
1704           .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1705           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1706           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1707           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1708           .setMIFlags(MachineInstr::FrameSetup);
1709       if (NeedsWinCFI) {
1710         HasWinCFI = true;
1711         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1712             .setMIFlag(MachineInstr::FrameSetup);
1713       }
1714       break;
1715     }
1716 
1717     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1718         .addReg(AArch64::SP, RegState::Kill)
1719         .addReg(AArch64::X15, RegState::Kill)
1720         .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1721         .setMIFlags(MachineInstr::FrameSetup);
1722     if (NeedsWinCFI) {
1723       HasWinCFI = true;
1724       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1725           .addImm(NumBytes)
1726           .setMIFlag(MachineInstr::FrameSetup);
1727     }
1728     NumBytes = 0;
1729 
1730     if (RealignmentPadding > 0) {
1731       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15)
1732           .addReg(AArch64::SP)
1733           .addImm(RealignmentPadding)
1734           .addImm(0);
1735 
1736       uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1737       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1738           .addReg(AArch64::X15, RegState::Kill)
1739           .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1740       AFI->setStackRealigned(true);
1741 
1742       // No need for SEH instructions here; if we're realigning the stack,
1743       // we've set a frame pointer and already finished the SEH prologue.
1744       assert(!NeedsWinCFI);
1745     }
1746   }
1747 
1748   StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1749   MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1750 
1751   // Process the SVE callee-saves to determine what space needs to be
1752   // allocated.
1753   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
1754     // Find callee save instructions in frame.
1755     CalleeSavesBegin = MBBI;
1756     assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1757     while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1758       ++MBBI;
1759     CalleeSavesEnd = MBBI;
1760 
1761     AllocateBefore = StackOffset::getScalable(CalleeSavedSize);
1762     AllocateAfter = SVEStackSize - AllocateBefore;
1763   }
1764 
1765   // Allocate space for the callee saves (if any).
1766   emitFrameOffset(
1767       MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, -AllocateBefore, TII,
1768       MachineInstr::FrameSetup, false, false, nullptr,
1769       EmitCFI && !HasFP && AllocateBefore,
1770       StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1771 
1772   if (EmitCFI)
1773     emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
1774 
1775   // Finally allocate remaining SVE stack space.
1776   emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1777                   -AllocateAfter, TII, MachineInstr::FrameSetup, false, false,
1778                   nullptr, EmitCFI && !HasFP && AllocateAfter,
1779                   AllocateBefore + StackOffset::getFixed(
1780                                        (int64_t)MFI.getStackSize() - NumBytes));
1781 
1782   // Allocate space for the rest of the frame.
1783   if (NumBytes) {
1784     unsigned scratchSPReg = AArch64::SP;
1785 
1786     if (NeedsRealignment) {
1787       scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1788       assert(scratchSPReg != AArch64::NoRegister);
1789     }
1790 
1791     // If we're a leaf function, try using the red zone.
1792     if (!canUseRedZone(MF)) {
1793       // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1794       // the correct value here, as NumBytes also includes padding bytes,
1795       // which shouldn't be counted here.
1796       emitFrameOffset(
1797           MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1798           StackOffset::getFixed(-NumBytes), TII, MachineInstr::FrameSetup,
1799           false, NeedsWinCFI, &HasWinCFI, EmitCFI && !HasFP,
1800           SVEStackSize +
1801               StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1802     }
1803     if (NeedsRealignment) {
1804       assert(MFI.getMaxAlign() > Align(1));
1805       assert(scratchSPReg != AArch64::SP);
1806 
1807       // SUB X9, SP, NumBytes
1808       //   -- X9 is temporary register, so shouldn't contain any live data here,
1809       //   -- free to use. This is already produced by emitFrameOffset above.
1810       // AND SP, X9, 0b11111...0000
1811       uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1812 
1813       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1814           .addReg(scratchSPReg, RegState::Kill)
1815           .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1816       AFI->setStackRealigned(true);
1817 
1818       // No need for SEH instructions here; if we're realigning the stack,
1819       // we've set a frame pointer and already finished the SEH prologue.
1820       assert(!NeedsWinCFI);
1821     }
1822   }
1823 
1824   // If we need a base pointer, set it up here. It's whatever the value of the
1825   // stack pointer is at this point. Any variable size objects will be allocated
1826   // after this, so we can still use the base pointer to reference locals.
1827   //
1828   // FIXME: Clarify FrameSetup flags here.
1829   // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1830   // needed.
1831   // For funclets the BP belongs to the containing function.
1832   if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
1833     TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1834                      false);
1835     if (NeedsWinCFI) {
1836       HasWinCFI = true;
1837       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1838           .setMIFlag(MachineInstr::FrameSetup);
1839     }
1840   }
1841 
1842   // The very last FrameSetup instruction indicates the end of prologue. Emit a
1843   // SEH opcode indicating the prologue end.
1844   if (NeedsWinCFI && HasWinCFI) {
1845     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1846         .setMIFlag(MachineInstr::FrameSetup);
1847   }
1848 
1849   // SEH funclets are passed the frame pointer in X1.  If the parent
1850   // function uses the base register, then the base register is used
1851   // directly, and is not retrieved from X1.
1852   if (IsFunclet && F.hasPersonalityFn()) {
1853     EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1854     if (isAsynchronousEHPersonality(Per)) {
1855       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1856           .addReg(AArch64::X1)
1857           .setMIFlag(MachineInstr::FrameSetup);
1858       MBB.addLiveIn(AArch64::X1);
1859     }
1860   }
1861 }
1862 
1863 static void InsertReturnAddressAuth(MachineFunction &MF, MachineBasicBlock &MBB,
1864                                     bool NeedsWinCFI, bool *HasWinCFI) {
1865   const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
1866   if (!MFI.shouldSignReturnAddress(MF))
1867     return;
1868   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1869   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1870 
1871   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1872   DebugLoc DL;
1873   if (MBBI != MBB.end())
1874     DL = MBBI->getDebugLoc();
1875 
1876   // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1877   // this instruction can safely used for any v8a architecture.
1878   // From v8.3a onwards there are optimised authenticate LR and return
1879   // instructions, namely RETA{A,B}, that can be used instead. In this case the
1880   // DW_CFA_AARCH64_negate_ra_state can't be emitted.
1881   if (Subtarget.hasPAuth() &&
1882       !MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack) &&
1883       MBBI != MBB.end() && MBBI->getOpcode() == AArch64::RET_ReallyLR &&
1884       !NeedsWinCFI) {
1885     BuildMI(MBB, MBBI, DL,
1886             TII->get(MFI.shouldSignWithBKey() ? AArch64::RETAB : AArch64::RETAA))
1887         .copyImplicitOps(*MBBI);
1888     MBB.erase(MBBI);
1889   } else {
1890     BuildMI(
1891         MBB, MBBI, DL,
1892         TII->get(MFI.shouldSignWithBKey() ? AArch64::AUTIBSP : AArch64::AUTIASP))
1893         .setMIFlag(MachineInstr::FrameDestroy);
1894 
1895     unsigned CFIIndex =
1896         MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1897     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1898         .addCFIIndex(CFIIndex)
1899         .setMIFlags(MachineInstr::FrameDestroy);
1900     if (NeedsWinCFI) {
1901       *HasWinCFI = true;
1902       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
1903           .setMIFlag(MachineInstr::FrameDestroy);
1904     }
1905   }
1906 }
1907 
1908 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1909   switch (MI.getOpcode()) {
1910   default:
1911     return false;
1912   case AArch64::CATCHRET:
1913   case AArch64::CLEANUPRET:
1914     return true;
1915   }
1916 }
1917 
1918 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1919                                         MachineBasicBlock &MBB) const {
1920   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1921   MachineFrameInfo &MFI = MF.getFrameInfo();
1922   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1923   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1924   DebugLoc DL;
1925   bool NeedsWinCFI = needsWinCFI(MF);
1926   bool EmitCFI =
1927       MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
1928   bool HasWinCFI = false;
1929   bool IsFunclet = false;
1930   auto WinCFI = make_scope_exit([&]() { assert(HasWinCFI == MF.hasWinCFI()); });
1931 
1932   if (MBB.end() != MBBI) {
1933     DL = MBBI->getDebugLoc();
1934     IsFunclet = isFuncletReturnInstr(*MBBI);
1935   }
1936 
1937   auto FinishingTouches = make_scope_exit([&]() {
1938     InsertReturnAddressAuth(MF, MBB, NeedsWinCFI, &HasWinCFI);
1939     if (needsShadowCallStackPrologueEpilogue(MF))
1940       emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
1941     if (EmitCFI)
1942       emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
1943     if (HasWinCFI)
1944       BuildMI(MBB, MBB.getFirstTerminator(), DL,
1945               TII->get(AArch64::SEH_EpilogEnd))
1946           .setMIFlag(MachineInstr::FrameDestroy);
1947   });
1948 
1949   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1950                                : MFI.getStackSize();
1951   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1952 
1953   // All calls are tail calls in GHC calling conv, and functions have no
1954   // prologue/epilogue.
1955   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1956     return;
1957 
1958   // How much of the stack used by incoming arguments this function is expected
1959   // to restore in this particular epilogue.
1960   int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
1961   bool IsWin64 =
1962       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1963   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1964 
1965   int64_t AfterCSRPopSize = ArgumentStackToRestore;
1966   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1967   // We cannot rely on the local stack size set in emitPrologue if the function
1968   // has funclets, as funclets have different local stack size requirements, and
1969   // the current value set in emitPrologue may be that of the containing
1970   // function.
1971   if (MF.hasEHFunclets())
1972     AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1973   if (homogeneousPrologEpilog(MF, &MBB)) {
1974     assert(!NeedsWinCFI);
1975     auto LastPopI = MBB.getFirstTerminator();
1976     if (LastPopI != MBB.begin()) {
1977       auto HomogeneousEpilog = std::prev(LastPopI);
1978       if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
1979         LastPopI = HomogeneousEpilog;
1980     }
1981 
1982     // Adjust local stack
1983     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1984                     StackOffset::getFixed(AFI->getLocalStackSize()), TII,
1985                     MachineInstr::FrameDestroy, false, NeedsWinCFI);
1986 
1987     // SP has been already adjusted while restoring callee save regs.
1988     // We've bailed-out the case with adjusting SP for arguments.
1989     assert(AfterCSRPopSize == 0);
1990     return;
1991   }
1992   bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
1993   // Assume we can't combine the last pop with the sp restore.
1994 
1995   bool CombineAfterCSRBump = false;
1996   if (!CombineSPBump && PrologueSaveSize != 0) {
1997     MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1998     while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
1999            AArch64InstrInfo::isSEHInstruction(*Pop))
2000       Pop = std::prev(Pop);
2001     // Converting the last ldp to a post-index ldp is valid only if the last
2002     // ldp's offset is 0.
2003     const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
2004     // If the offset is 0 and the AfterCSR pop is not actually trying to
2005     // allocate more stack for arguments (in space that an untimely interrupt
2006     // may clobber), convert it to a post-index ldp.
2007     if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
2008       convertCalleeSaveRestoreToSPPrePostIncDec(
2009           MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
2010           MachineInstr::FrameDestroy, PrologueSaveSize);
2011     } else {
2012       // If not, make sure to emit an add after the last ldp.
2013       // We're doing this by transfering the size to be restored from the
2014       // adjustment *before* the CSR pops to the adjustment *after* the CSR
2015       // pops.
2016       AfterCSRPopSize += PrologueSaveSize;
2017       CombineAfterCSRBump = true;
2018     }
2019   }
2020 
2021   // Move past the restores of the callee-saved registers.
2022   // If we plan on combining the sp bump of the local stack size and the callee
2023   // save stack size, we might need to adjust the CSR save and restore offsets.
2024   MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
2025   MachineBasicBlock::iterator Begin = MBB.begin();
2026   while (LastPopI != Begin) {
2027     --LastPopI;
2028     if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2029         IsSVECalleeSave(LastPopI)) {
2030       ++LastPopI;
2031       break;
2032     } else if (CombineSPBump)
2033       fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2034                                         NeedsWinCFI, &HasWinCFI);
2035   }
2036 
2037   if (MF.hasWinCFI()) {
2038     // If the prologue didn't contain any SEH opcodes and didn't set the
2039     // MF.hasWinCFI() flag, assume the epilogue won't either, and skip the
2040     // EpilogStart - to avoid generating CFI for functions that don't need it.
2041     // (And as we didn't generate any prologue at all, it would be asymmetrical
2042     // to the epilogue.) By the end of the function, we assert that
2043     // HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption.
2044     HasWinCFI = true;
2045     BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2046         .setMIFlag(MachineInstr::FrameDestroy);
2047   }
2048 
2049   if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2050     switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2051     case SwiftAsyncFramePointerMode::DeploymentBased:
2052       // Avoid the reload as it is GOT relative, and instead fall back to the
2053       // hardcoded value below.  This allows a mismatch between the OS and
2054       // application without immediately terminating on the difference.
2055       [[fallthrough]];
2056     case SwiftAsyncFramePointerMode::Always:
2057       // We need to reset FP to its untagged state on return. Bit 60 is
2058       // currently used to show the presence of an extended frame.
2059 
2060       // BIC x29, x29, #0x1000_0000_0000_0000
2061       BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2062               AArch64::FP)
2063           .addUse(AArch64::FP)
2064           .addImm(0x10fe)
2065           .setMIFlag(MachineInstr::FrameDestroy);
2066       break;
2067 
2068     case SwiftAsyncFramePointerMode::Never:
2069       break;
2070     }
2071   }
2072 
2073   const StackOffset &SVEStackSize = getSVEStackSize(MF);
2074 
2075   // If there is a single SP update, insert it before the ret and we're done.
2076   if (CombineSPBump) {
2077     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2078 
2079     // When we are about to restore the CSRs, the CFA register is SP again.
2080     if (EmitCFI && hasFP(MF)) {
2081       const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2082       unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2083       unsigned CFIIndex =
2084           MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2085       BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2086           .addCFIIndex(CFIIndex)
2087           .setMIFlags(MachineInstr::FrameDestroy);
2088     }
2089 
2090     emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2091                     StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2092                     TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2093                     &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2094     return;
2095   }
2096 
2097   NumBytes -= PrologueSaveSize;
2098   assert(NumBytes >= 0 && "Negative stack allocation size!?");
2099 
2100   // Process the SVE callee-saves to determine what space needs to be
2101   // deallocated.
2102   StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2103   MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2104   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2105     RestoreBegin = std::prev(RestoreEnd);
2106     while (RestoreBegin != MBB.begin() &&
2107            IsSVECalleeSave(std::prev(RestoreBegin)))
2108       --RestoreBegin;
2109 
2110     assert(IsSVECalleeSave(RestoreBegin) &&
2111            IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2112 
2113     StackOffset CalleeSavedSizeAsOffset =
2114         StackOffset::getScalable(CalleeSavedSize);
2115     DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2116     DeallocateAfter = CalleeSavedSizeAsOffset;
2117   }
2118 
2119   // Deallocate the SVE area.
2120   if (SVEStackSize) {
2121     // If we have stack realignment or variable sized objects on the stack,
2122     // restore the stack pointer from the frame pointer prior to SVE CSR
2123     // restoration.
2124     if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2125       if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2126         // Set SP to start of SVE callee-save area from which they can
2127         // be reloaded. The code below will deallocate the stack space
2128         // space by moving FP -> SP.
2129         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2130                         StackOffset::getScalable(-CalleeSavedSize), TII,
2131                         MachineInstr::FrameDestroy);
2132       }
2133     } else {
2134       if (AFI->getSVECalleeSavedStackSize()) {
2135         // Deallocate the non-SVE locals first before we can deallocate (and
2136         // restore callee saves) from the SVE area.
2137         emitFrameOffset(
2138             MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2139             StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2140             false, false, nullptr, EmitCFI && !hasFP(MF),
2141             SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2142         NumBytes = 0;
2143       }
2144 
2145       emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2146                       DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2147                       false, nullptr, EmitCFI && !hasFP(MF),
2148                       SVEStackSize +
2149                           StackOffset::getFixed(NumBytes + PrologueSaveSize));
2150 
2151       emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2152                       DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2153                       false, nullptr, EmitCFI && !hasFP(MF),
2154                       DeallocateAfter +
2155                           StackOffset::getFixed(NumBytes + PrologueSaveSize));
2156     }
2157     if (EmitCFI)
2158       emitCalleeSavedSVERestores(MBB, RestoreEnd);
2159   }
2160 
2161   if (!hasFP(MF)) {
2162     bool RedZone = canUseRedZone(MF);
2163     // If this was a redzone leaf function, we don't need to restore the
2164     // stack pointer (but we may need to pop stack args for fastcc).
2165     if (RedZone && AfterCSRPopSize == 0)
2166       return;
2167 
2168     // Pop the local variables off the stack. If there are no callee-saved
2169     // registers, it means we are actually positioned at the terminator and can
2170     // combine stack increment for the locals and the stack increment for
2171     // callee-popped arguments into (possibly) a single instruction and be done.
2172     bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2173     int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2174     if (NoCalleeSaveRestore)
2175       StackRestoreBytes += AfterCSRPopSize;
2176 
2177     emitFrameOffset(
2178         MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2179         StackOffset::getFixed(StackRestoreBytes), TII,
2180         MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2181         StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2182 
2183     // If we were able to combine the local stack pop with the argument pop,
2184     // then we're done.
2185     if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2186       return;
2187     }
2188 
2189     NumBytes = 0;
2190   }
2191 
2192   // Restore the original stack pointer.
2193   // FIXME: Rather than doing the math here, we should instead just use
2194   // non-post-indexed loads for the restores if we aren't actually going to
2195   // be able to save any instructions.
2196   if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2197     emitFrameOffset(
2198         MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2199         StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2200         TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
2201   } else if (NumBytes)
2202     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2203                     StackOffset::getFixed(NumBytes), TII,
2204                     MachineInstr::FrameDestroy, false, NeedsWinCFI);
2205 
2206   // When we are about to restore the CSRs, the CFA register is SP again.
2207   if (EmitCFI && hasFP(MF)) {
2208     const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2209     unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2210     unsigned CFIIndex = MF.addFrameInst(
2211         MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2212     BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2213         .addCFIIndex(CFIIndex)
2214         .setMIFlags(MachineInstr::FrameDestroy);
2215   }
2216 
2217   // This must be placed after the callee-save restore code because that code
2218   // assumes the SP is at the same location as it was after the callee-save save
2219   // code in the prologue.
2220   if (AfterCSRPopSize) {
2221     assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2222                                   "interrupt may have clobbered");
2223 
2224     emitFrameOffset(
2225         MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2226         StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2227         false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2228         StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2229   }
2230 }
2231 
2232 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2233 /// debug info.  It's the same as what we use for resolving the code-gen
2234 /// references for now.  FIXME: This can go wrong when references are
2235 /// SP-relative and simple call frames aren't used.
2236 StackOffset
2237 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2238                                              Register &FrameReg) const {
2239   return resolveFrameIndexReference(
2240       MF, FI, FrameReg,
2241       /*PreferFP=*/
2242       MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
2243       /*ForSimm=*/false);
2244 }
2245 
2246 StackOffset
2247 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2248                                                      int FI) const {
2249   return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2250 }
2251 
2252 static StackOffset getFPOffset(const MachineFunction &MF,
2253                                int64_t ObjectOffset) {
2254   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2255   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2256   bool IsWin64 =
2257       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
2258   unsigned FixedObject =
2259       getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2260   int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2261   int64_t FPAdjust =
2262       CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2263   return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2264 }
2265 
2266 static StackOffset getStackOffset(const MachineFunction &MF,
2267                                   int64_t ObjectOffset) {
2268   const auto &MFI = MF.getFrameInfo();
2269   return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2270 }
2271 
2272   // TODO: This function currently does not work for scalable vectors.
2273 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2274                                                  int FI) const {
2275   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2276       MF.getSubtarget().getRegisterInfo());
2277   int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2278   return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2279              ? getFPOffset(MF, ObjectOffset).getFixed()
2280              : getStackOffset(MF, ObjectOffset).getFixed();
2281 }
2282 
2283 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2284     const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2285     bool ForSimm) const {
2286   const auto &MFI = MF.getFrameInfo();
2287   int64_t ObjectOffset = MFI.getObjectOffset(FI);
2288   bool isFixed = MFI.isFixedObjectIndex(FI);
2289   bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2290   return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2291                                      PreferFP, ForSimm);
2292 }
2293 
2294 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2295     const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2296     Register &FrameReg, bool PreferFP, bool ForSimm) const {
2297   const auto &MFI = MF.getFrameInfo();
2298   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2299       MF.getSubtarget().getRegisterInfo());
2300   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2301   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2302 
2303   int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2304   int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2305   bool isCSR =
2306       !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2307 
2308   const StackOffset &SVEStackSize = getSVEStackSize(MF);
2309 
2310   // Use frame pointer to reference fixed objects. Use it for locals if
2311   // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2312   // reliable as a base). Make sure useFPForScavengingIndex() does the
2313   // right thing for the emergency spill slot.
2314   bool UseFP = false;
2315   if (AFI->hasStackFrame() && !isSVE) {
2316     // We shouldn't prefer using the FP to access fixed-sized stack objects when
2317     // there are scalable (SVE) objects in between the FP and the fixed-sized
2318     // objects.
2319     PreferFP &= !SVEStackSize;
2320 
2321     // Note: Keeping the following as multiple 'if' statements rather than
2322     // merging to a single expression for readability.
2323     //
2324     // Argument access should always use the FP.
2325     if (isFixed) {
2326       UseFP = hasFP(MF);
2327     } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2328       // References to the CSR area must use FP if we're re-aligning the stack
2329       // since the dynamically-sized alignment padding is between the SP/BP and
2330       // the CSR area.
2331       assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2332       UseFP = true;
2333     } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2334       // If the FPOffset is negative and we're producing a signed immediate, we
2335       // have to keep in mind that the available offset range for negative
2336       // offsets is smaller than for positive ones. If an offset is available
2337       // via the FP and the SP, use whichever is closest.
2338       bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2339       PreferFP |= Offset > -FPOffset && !SVEStackSize;
2340 
2341       if (MFI.hasVarSizedObjects()) {
2342         // If we have variable sized objects, we can use either FP or BP, as the
2343         // SP offset is unknown. We can use the base pointer if we have one and
2344         // FP is not preferred. If not, we're stuck with using FP.
2345         bool CanUseBP = RegInfo->hasBasePointer(MF);
2346         if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2347           UseFP = PreferFP;
2348         else if (!CanUseBP) // Can't use BP. Forced to use FP.
2349           UseFP = true;
2350         // else we can use BP and FP, but the offset from FP won't fit.
2351         // That will make us scavenge registers which we can probably avoid by
2352         // using BP. If it won't fit for BP either, we'll scavenge anyway.
2353       } else if (FPOffset >= 0) {
2354         // Use SP or FP, whichever gives us the best chance of the offset
2355         // being in range for direct access. If the FPOffset is positive,
2356         // that'll always be best, as the SP will be even further away.
2357         UseFP = true;
2358       } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2359         // Funclets access the locals contained in the parent's stack frame
2360         // via the frame pointer, so we have to use the FP in the parent
2361         // function.
2362         (void) Subtarget;
2363         assert(
2364             Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
2365             "Funclets should only be present on Win64");
2366         UseFP = true;
2367       } else {
2368         // We have the choice between FP and (SP or BP).
2369         if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2370           UseFP = true;
2371       }
2372     }
2373   }
2374 
2375   assert(
2376       ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2377       "In the presence of dynamic stack pointer realignment, "
2378       "non-argument/CSR objects cannot be accessed through the frame pointer");
2379 
2380   if (isSVE) {
2381     StackOffset FPOffset =
2382         StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2383     StackOffset SPOffset =
2384         SVEStackSize +
2385         StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2386                          ObjectOffset);
2387     // Always use the FP for SVE spills if available and beneficial.
2388     if (hasFP(MF) && (SPOffset.getFixed() ||
2389                       FPOffset.getScalable() < SPOffset.getScalable() ||
2390                       RegInfo->hasStackRealignment(MF))) {
2391       FrameReg = RegInfo->getFrameRegister(MF);
2392       return FPOffset;
2393     }
2394 
2395     FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2396                                            : (unsigned)AArch64::SP;
2397     return SPOffset;
2398   }
2399 
2400   StackOffset ScalableOffset = {};
2401   if (UseFP && !(isFixed || isCSR))
2402     ScalableOffset = -SVEStackSize;
2403   if (!UseFP && (isFixed || isCSR))
2404     ScalableOffset = SVEStackSize;
2405 
2406   if (UseFP) {
2407     FrameReg = RegInfo->getFrameRegister(MF);
2408     return StackOffset::getFixed(FPOffset) + ScalableOffset;
2409   }
2410 
2411   // Use the base pointer if we have one.
2412   if (RegInfo->hasBasePointer(MF))
2413     FrameReg = RegInfo->getBaseRegister();
2414   else {
2415     assert(!MFI.hasVarSizedObjects() &&
2416            "Can't use SP when we have var sized objects.");
2417     FrameReg = AArch64::SP;
2418     // If we're using the red zone for this function, the SP won't actually
2419     // be adjusted, so the offsets will be negative. They're also all
2420     // within range of the signed 9-bit immediate instructions.
2421     if (canUseRedZone(MF))
2422       Offset -= AFI->getLocalStackSize();
2423   }
2424 
2425   return StackOffset::getFixed(Offset) + ScalableOffset;
2426 }
2427 
2428 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2429   // Do not set a kill flag on values that are also marked as live-in. This
2430   // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2431   // callee saved registers.
2432   // Omitting the kill flags is conservatively correct even if the live-in
2433   // is not used after all.
2434   bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2435   return getKillRegState(!IsLiveIn);
2436 }
2437 
2438 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2439   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2440   AttributeList Attrs = MF.getFunction().getAttributes();
2441   return Subtarget.isTargetMachO() &&
2442          !(Subtarget.getTargetLowering()->supportSwiftError() &&
2443            Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2444          MF.getFunction().getCallingConv() != CallingConv::SwiftTail;
2445 }
2446 
2447 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2448                                              bool NeedsWinCFI, bool IsFirst,
2449                                              const TargetRegisterInfo *TRI) {
2450   // If we are generating register pairs for a Windows function that requires
2451   // EH support, then pair consecutive registers only.  There are no unwind
2452   // opcodes for saves/restores of non-consectuve register pairs.
2453   // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2454   // save_lrpair.
2455   // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2456 
2457   if (Reg2 == AArch64::FP)
2458     return true;
2459   if (!NeedsWinCFI)
2460     return false;
2461   if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
2462     return false;
2463   // If pairing a GPR with LR, the pair can be described by the save_lrpair
2464   // opcode. If this is the first register pair, it would end up with a
2465   // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2466   // if LR is paired with something else than the first register.
2467   // The save_lrpair opcode requires the first register to be an odd one.
2468   if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2469       (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2470     return false;
2471   return true;
2472 }
2473 
2474 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2475 /// WindowsCFI requires that only consecutive registers can be paired.
2476 /// LR and FP need to be allocated together when the frame needs to save
2477 /// the frame-record. This means any other register pairing with LR is invalid.
2478 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2479                                       bool UsesWinAAPCS, bool NeedsWinCFI,
2480                                       bool NeedsFrameRecord, bool IsFirst,
2481                                       const TargetRegisterInfo *TRI) {
2482   if (UsesWinAAPCS)
2483     return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst,
2484                                             TRI);
2485 
2486   // If we need to store the frame record, don't pair any register
2487   // with LR other than FP.
2488   if (NeedsFrameRecord)
2489     return Reg2 == AArch64::LR;
2490 
2491   return false;
2492 }
2493 
2494 namespace {
2495 
2496 struct RegPairInfo {
2497   unsigned Reg1 = AArch64::NoRegister;
2498   unsigned Reg2 = AArch64::NoRegister;
2499   int FrameIdx;
2500   int Offset;
2501   enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
2502 
2503   RegPairInfo() = default;
2504 
2505   bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2506 
2507   unsigned getScale() const {
2508     switch (Type) {
2509     case PPR:
2510       return 2;
2511     case GPR:
2512     case FPR64:
2513       return 8;
2514     case ZPR:
2515     case FPR128:
2516       return 16;
2517     }
2518     llvm_unreachable("Unsupported type");
2519   }
2520 
2521   bool isScalable() const { return Type == PPR || Type == ZPR; }
2522 };
2523 
2524 } // end anonymous namespace
2525 
2526 static void computeCalleeSaveRegisterPairs(
2527     MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2528     const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2529     bool NeedsFrameRecord) {
2530 
2531   if (CSI.empty())
2532     return;
2533 
2534   bool IsWindows = isTargetWindows(MF);
2535   bool NeedsWinCFI = needsWinCFI(MF);
2536   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2537   MachineFrameInfo &MFI = MF.getFrameInfo();
2538   CallingConv::ID CC = MF.getFunction().getCallingConv();
2539   unsigned Count = CSI.size();
2540   (void)CC;
2541   // MachO's compact unwind format relies on all registers being stored in
2542   // pairs.
2543   assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2544           CC == CallingConv::CXX_FAST_TLS || CC == CallingConv::Win64 ||
2545           (Count & 1) == 0) &&
2546          "Odd number of callee-saved regs to spill!");
2547   int ByteOffset = AFI->getCalleeSavedStackSize();
2548   int StackFillDir = -1;
2549   int RegInc = 1;
2550   unsigned FirstReg = 0;
2551   if (NeedsWinCFI) {
2552     // For WinCFI, fill the stack from the bottom up.
2553     ByteOffset = 0;
2554     StackFillDir = 1;
2555     // As the CSI array is reversed to match PrologEpilogInserter, iterate
2556     // backwards, to pair up registers starting from lower numbered registers.
2557     RegInc = -1;
2558     FirstReg = Count - 1;
2559   }
2560   int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2561   bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2562 
2563   // When iterating backwards, the loop condition relies on unsigned wraparound.
2564   for (unsigned i = FirstReg; i < Count; i += RegInc) {
2565     RegPairInfo RPI;
2566     RPI.Reg1 = CSI[i].getReg();
2567 
2568     if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2569       RPI.Type = RegPairInfo::GPR;
2570     else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2571       RPI.Type = RegPairInfo::FPR64;
2572     else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2573       RPI.Type = RegPairInfo::FPR128;
2574     else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2575       RPI.Type = RegPairInfo::ZPR;
2576     else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2577       RPI.Type = RegPairInfo::PPR;
2578     else
2579       llvm_unreachable("Unsupported register class.");
2580 
2581     // Add the next reg to the pair if it is in the same register class.
2582     if (unsigned(i + RegInc) < Count) {
2583       Register NextReg = CSI[i + RegInc].getReg();
2584       bool IsFirst = i == FirstReg;
2585       switch (RPI.Type) {
2586       case RegPairInfo::GPR:
2587         if (AArch64::GPR64RegClass.contains(NextReg) &&
2588             !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
2589                                        NeedsWinCFI, NeedsFrameRecord, IsFirst,
2590                                        TRI))
2591           RPI.Reg2 = NextReg;
2592         break;
2593       case RegPairInfo::FPR64:
2594         if (AArch64::FPR64RegClass.contains(NextReg) &&
2595             !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
2596                                               IsFirst, TRI))
2597           RPI.Reg2 = NextReg;
2598         break;
2599       case RegPairInfo::FPR128:
2600         if (AArch64::FPR128RegClass.contains(NextReg))
2601           RPI.Reg2 = NextReg;
2602         break;
2603       case RegPairInfo::PPR:
2604       case RegPairInfo::ZPR:
2605         break;
2606       }
2607     }
2608 
2609     // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2610     // list to come in sorted by frame index so that we can issue the store
2611     // pair instructions directly. Assert if we see anything otherwise.
2612     //
2613     // The order of the registers in the list is controlled by
2614     // getCalleeSavedRegs(), so they will always be in-order, as well.
2615     assert((!RPI.isPaired() ||
2616             (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
2617            "Out of order callee saved regs!");
2618 
2619     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2620             RPI.Reg1 == AArch64::LR) &&
2621            "FrameRecord must be allocated together with LR");
2622 
2623     // Windows AAPCS has FP and LR reversed.
2624     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2625             RPI.Reg2 == AArch64::LR) &&
2626            "FrameRecord must be allocated together with LR");
2627 
2628     // MachO's compact unwind format relies on all registers being stored in
2629     // adjacent register pairs.
2630     assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2631             CC == CallingConv::CXX_FAST_TLS || CC == CallingConv::Win64 ||
2632             (RPI.isPaired() &&
2633              ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2634               RPI.Reg1 + 1 == RPI.Reg2))) &&
2635            "Callee-save registers not saved as adjacent register pair!");
2636 
2637     RPI.FrameIdx = CSI[i].getFrameIdx();
2638     if (NeedsWinCFI &&
2639         RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2640       RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
2641 
2642     int Scale = RPI.getScale();
2643 
2644     int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2645     assert(OffsetPre % Scale == 0);
2646 
2647     if (RPI.isScalable())
2648       ScalableByteOffset += StackFillDir * Scale;
2649     else
2650       ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
2651 
2652     // Swift's async context is directly before FP, so allocate an extra
2653     // 8 bytes for it.
2654     if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2655         RPI.Reg2 == AArch64::FP)
2656       ByteOffset += StackFillDir * 8;
2657 
2658     assert(!(RPI.isScalable() && RPI.isPaired()) &&
2659            "Paired spill/fill instructions don't exist for SVE vectors");
2660 
2661     // Round up size of non-pair to pair size if we need to pad the
2662     // callee-save area to ensure 16-byte alignment.
2663     if (NeedGapToAlignStack && !NeedsWinCFI &&
2664         !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2665         !RPI.isPaired() && ByteOffset % 16 != 0) {
2666       ByteOffset += 8 * StackFillDir;
2667       assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
2668       // A stack frame with a gap looks like this, bottom up:
2669       // d9, d8. x21, gap, x20, x19.
2670       // Set extra alignment on the x21 object to create the gap above it.
2671       MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
2672       NeedGapToAlignStack = false;
2673     }
2674 
2675     int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2676     assert(OffsetPost % Scale == 0);
2677     // If filling top down (default), we want the offset after incrementing it.
2678     // If fillibg bootom up (WinCFI) we need the original offset.
2679     int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
2680 
2681     // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
2682     // Swift context can directly precede FP.
2683     if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2684         RPI.Reg2 == AArch64::FP)
2685       Offset += 8;
2686     RPI.Offset = Offset / Scale;
2687 
2688     assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2689             (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2690            "Offset out of bounds for LDP/STP immediate");
2691 
2692     // Save the offset to frame record so that the FP register can point to the
2693     // innermost frame record (spilled FP and LR registers).
2694     if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR &&
2695                               RPI.Reg2 == AArch64::FP) ||
2696                              (IsWindows && RPI.Reg1 == AArch64::FP &&
2697                               RPI.Reg2 == AArch64::LR)))
2698       AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
2699 
2700     RegPairs.push_back(RPI);
2701     if (RPI.isPaired())
2702       i += RegInc;
2703   }
2704   if (NeedsWinCFI) {
2705     // If we need an alignment gap in the stack, align the topmost stack
2706     // object. A stack frame with a gap looks like this, bottom up:
2707     // x19, d8. d9, gap.
2708     // Set extra alignment on the topmost stack object (the first element in
2709     // CSI, which goes top down), to create the gap above it.
2710     if (AFI->hasCalleeSaveStackFreeSpace())
2711       MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
2712     // We iterated bottom up over the registers; flip RegPairs back to top
2713     // down order.
2714     std::reverse(RegPairs.begin(), RegPairs.end());
2715   }
2716 }
2717 
2718 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2719     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2720     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2721   MachineFunction &MF = *MBB.getParent();
2722   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2723   bool NeedsWinCFI = needsWinCFI(MF);
2724   DebugLoc DL;
2725   SmallVector<RegPairInfo, 8> RegPairs;
2726 
2727   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2728 
2729   const MachineRegisterInfo &MRI = MF.getRegInfo();
2730   if (homogeneousPrologEpilog(MF)) {
2731     auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
2732                    .setMIFlag(MachineInstr::FrameSetup);
2733 
2734     for (auto &RPI : RegPairs) {
2735       MIB.addReg(RPI.Reg1);
2736       MIB.addReg(RPI.Reg2);
2737 
2738       // Update register live in.
2739       if (!MRI.isReserved(RPI.Reg1))
2740         MBB.addLiveIn(RPI.Reg1);
2741       if (!MRI.isReserved(RPI.Reg2))
2742         MBB.addLiveIn(RPI.Reg2);
2743     }
2744     return true;
2745   }
2746   for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
2747     unsigned Reg1 = RPI.Reg1;
2748     unsigned Reg2 = RPI.Reg2;
2749     unsigned StrOpc;
2750 
2751     // Issue sequence of spills for cs regs.  The first spill may be converted
2752     // to a pre-decrement store later by emitPrologue if the callee-save stack
2753     // area allocation can't be combined with the local stack area allocation.
2754     // For example:
2755     //    stp     x22, x21, [sp, #0]     // addImm(+0)
2756     //    stp     x20, x19, [sp, #16]    // addImm(+2)
2757     //    stp     fp, lr, [sp, #32]      // addImm(+4)
2758     // Rationale: This sequence saves uop updates compared to a sequence of
2759     // pre-increment spills like stp xi,xj,[sp,#-16]!
2760     // Note: Similar rationale and sequence for restores in epilog.
2761     unsigned Size;
2762     Align Alignment;
2763     switch (RPI.Type) {
2764     case RegPairInfo::GPR:
2765        StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2766        Size = 8;
2767        Alignment = Align(8);
2768        break;
2769     case RegPairInfo::FPR64:
2770        StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2771        Size = 8;
2772        Alignment = Align(8);
2773        break;
2774     case RegPairInfo::FPR128:
2775        StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2776        Size = 16;
2777        Alignment = Align(16);
2778        break;
2779     case RegPairInfo::ZPR:
2780        StrOpc = AArch64::STR_ZXI;
2781        Size = 16;
2782        Alignment = Align(16);
2783        break;
2784     case RegPairInfo::PPR:
2785        StrOpc = AArch64::STR_PXI;
2786        Size = 2;
2787        Alignment = Align(2);
2788        break;
2789     }
2790     LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2791                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2792                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2793                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2794                dbgs() << ")\n");
2795 
2796     assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2797            "Windows unwdinding requires a consecutive (FP,LR) pair");
2798     // Windows unwind codes require consecutive registers if registers are
2799     // paired.  Make the switch here, so that the code below will save (x,x+1)
2800     // and not (x+1,x).
2801     unsigned FrameIdxReg1 = RPI.FrameIdx;
2802     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2803     if (NeedsWinCFI && RPI.isPaired()) {
2804       std::swap(Reg1, Reg2);
2805       std::swap(FrameIdxReg1, FrameIdxReg2);
2806     }
2807     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2808     if (!MRI.isReserved(Reg1))
2809       MBB.addLiveIn(Reg1);
2810     if (RPI.isPaired()) {
2811       if (!MRI.isReserved(Reg2))
2812         MBB.addLiveIn(Reg2);
2813       MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2814       MIB.addMemOperand(MF.getMachineMemOperand(
2815           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2816           MachineMemOperand::MOStore, Size, Alignment));
2817     }
2818     MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2819         .addReg(AArch64::SP)
2820         .addImm(RPI.Offset) // [sp, #offset*scale],
2821                             // where factor*scale is implicit
2822         .setMIFlag(MachineInstr::FrameSetup);
2823     MIB.addMemOperand(MF.getMachineMemOperand(
2824         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2825         MachineMemOperand::MOStore, Size, Alignment));
2826     if (NeedsWinCFI)
2827       InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2828 
2829     // Update the StackIDs of the SVE stack slots.
2830     MachineFrameInfo &MFI = MF.getFrameInfo();
2831     if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2832       MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector);
2833 
2834   }
2835   return true;
2836 }
2837 
2838 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2839     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2840     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2841   MachineFunction &MF = *MBB.getParent();
2842   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2843   DebugLoc DL;
2844   SmallVector<RegPairInfo, 8> RegPairs;
2845   bool NeedsWinCFI = needsWinCFI(MF);
2846 
2847   if (MBBI != MBB.end())
2848     DL = MBBI->getDebugLoc();
2849 
2850   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2851 
2852   auto EmitMI = [&](const RegPairInfo &RPI) -> MachineBasicBlock::iterator {
2853     unsigned Reg1 = RPI.Reg1;
2854     unsigned Reg2 = RPI.Reg2;
2855 
2856     // Issue sequence of restores for cs regs. The last restore may be converted
2857     // to a post-increment load later by emitEpilogue if the callee-save stack
2858     // area allocation can't be combined with the local stack area allocation.
2859     // For example:
2860     //    ldp     fp, lr, [sp, #32]       // addImm(+4)
2861     //    ldp     x20, x19, [sp, #16]     // addImm(+2)
2862     //    ldp     x22, x21, [sp, #0]      // addImm(+0)
2863     // Note: see comment in spillCalleeSavedRegisters()
2864     unsigned LdrOpc;
2865     unsigned Size;
2866     Align Alignment;
2867     switch (RPI.Type) {
2868     case RegPairInfo::GPR:
2869        LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2870        Size = 8;
2871        Alignment = Align(8);
2872        break;
2873     case RegPairInfo::FPR64:
2874        LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2875        Size = 8;
2876        Alignment = Align(8);
2877        break;
2878     case RegPairInfo::FPR128:
2879        LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2880        Size = 16;
2881        Alignment = Align(16);
2882        break;
2883     case RegPairInfo::ZPR:
2884        LdrOpc = AArch64::LDR_ZXI;
2885        Size = 16;
2886        Alignment = Align(16);
2887        break;
2888     case RegPairInfo::PPR:
2889        LdrOpc = AArch64::LDR_PXI;
2890        Size = 2;
2891        Alignment = Align(2);
2892        break;
2893     }
2894     LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2895                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2896                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2897                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2898                dbgs() << ")\n");
2899 
2900     // Windows unwind codes require consecutive registers if registers are
2901     // paired.  Make the switch here, so that the code below will save (x,x+1)
2902     // and not (x+1,x).
2903     unsigned FrameIdxReg1 = RPI.FrameIdx;
2904     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2905     if (NeedsWinCFI && RPI.isPaired()) {
2906       std::swap(Reg1, Reg2);
2907       std::swap(FrameIdxReg1, FrameIdxReg2);
2908     }
2909     MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2910     if (RPI.isPaired()) {
2911       MIB.addReg(Reg2, getDefRegState(true));
2912       MIB.addMemOperand(MF.getMachineMemOperand(
2913           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2914           MachineMemOperand::MOLoad, Size, Alignment));
2915     }
2916     MIB.addReg(Reg1, getDefRegState(true))
2917         .addReg(AArch64::SP)
2918         .addImm(RPI.Offset) // [sp, #offset*scale]
2919                             // where factor*scale is implicit
2920         .setMIFlag(MachineInstr::FrameDestroy);
2921     MIB.addMemOperand(MF.getMachineMemOperand(
2922         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2923         MachineMemOperand::MOLoad, Size, Alignment));
2924     if (NeedsWinCFI)
2925       InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2926 
2927     return MIB->getIterator();
2928   };
2929 
2930   // SVE objects are always restored in reverse order.
2931   for (const RegPairInfo &RPI : reverse(RegPairs))
2932     if (RPI.isScalable())
2933       EmitMI(RPI);
2934 
2935   if (homogeneousPrologEpilog(MF, &MBB)) {
2936     auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
2937                    .setMIFlag(MachineInstr::FrameDestroy);
2938     for (auto &RPI : RegPairs) {
2939       MIB.addReg(RPI.Reg1, RegState::Define);
2940       MIB.addReg(RPI.Reg2, RegState::Define);
2941     }
2942     return true;
2943   }
2944 
2945   if (ReverseCSRRestoreSeq) {
2946     MachineBasicBlock::iterator First = MBB.end();
2947     for (const RegPairInfo &RPI : reverse(RegPairs)) {
2948       if (RPI.isScalable())
2949         continue;
2950       MachineBasicBlock::iterator It = EmitMI(RPI);
2951       if (First == MBB.end())
2952         First = It;
2953     }
2954     if (First != MBB.end())
2955       MBB.splice(MBBI, &MBB, First);
2956   } else {
2957     for (const RegPairInfo &RPI : RegPairs) {
2958       if (RPI.isScalable())
2959         continue;
2960       (void)EmitMI(RPI);
2961     }
2962   }
2963 
2964   return true;
2965 }
2966 
2967 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2968                                                 BitVector &SavedRegs,
2969                                                 RegScavenger *RS) const {
2970   // All calls are tail calls in GHC calling conv, and functions have no
2971   // prologue/epilogue.
2972   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2973     return;
2974 
2975   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2976   const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2977       MF.getSubtarget().getRegisterInfo());
2978   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2979   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2980   unsigned UnspilledCSGPR = AArch64::NoRegister;
2981   unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2982 
2983   MachineFrameInfo &MFI = MF.getFrameInfo();
2984   const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2985 
2986   unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2987                                 ? RegInfo->getBaseRegister()
2988                                 : (unsigned)AArch64::NoRegister;
2989 
2990   unsigned ExtraCSSpill = 0;
2991   // Figure out which callee-saved registers to save/restore.
2992   for (unsigned i = 0; CSRegs[i]; ++i) {
2993     const unsigned Reg = CSRegs[i];
2994 
2995     // Add the base pointer register to SavedRegs if it is callee-save.
2996     if (Reg == BasePointerReg)
2997       SavedRegs.set(Reg);
2998 
2999     bool RegUsed = SavedRegs.test(Reg);
3000     unsigned PairedReg = AArch64::NoRegister;
3001     if (AArch64::GPR64RegClass.contains(Reg) ||
3002         AArch64::FPR64RegClass.contains(Reg) ||
3003         AArch64::FPR128RegClass.contains(Reg))
3004       PairedReg = CSRegs[i ^ 1];
3005 
3006     if (!RegUsed) {
3007       if (AArch64::GPR64RegClass.contains(Reg) &&
3008           !RegInfo->isReservedReg(MF, Reg)) {
3009         UnspilledCSGPR = Reg;
3010         UnspilledCSGPRPaired = PairedReg;
3011       }
3012       continue;
3013     }
3014 
3015     // MachO's compact unwind format relies on all registers being stored in
3016     // pairs.
3017     // FIXME: the usual format is actually better if unwinding isn't needed.
3018     if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3019         !SavedRegs.test(PairedReg)) {
3020       SavedRegs.set(PairedReg);
3021       if (AArch64::GPR64RegClass.contains(PairedReg) &&
3022           !RegInfo->isReservedReg(MF, PairedReg))
3023         ExtraCSSpill = PairedReg;
3024     }
3025   }
3026 
3027   if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3028       !Subtarget.isTargetWindows()) {
3029     // For Windows calling convention on a non-windows OS, where X18 is treated
3030     // as reserved, back up X18 when entering non-windows code (marked with the
3031     // Windows calling convention) and restore when returning regardless of
3032     // whether the individual function uses it - it might call other functions
3033     // that clobber it.
3034     SavedRegs.set(AArch64::X18);
3035   }
3036 
3037   // Calculates the callee saved stack size.
3038   unsigned CSStackSize = 0;
3039   unsigned SVECSStackSize = 0;
3040   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3041   const MachineRegisterInfo &MRI = MF.getRegInfo();
3042   for (unsigned Reg : SavedRegs.set_bits()) {
3043     auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3044     if (AArch64::PPRRegClass.contains(Reg) ||
3045         AArch64::ZPRRegClass.contains(Reg))
3046       SVECSStackSize += RegSize;
3047     else
3048       CSStackSize += RegSize;
3049   }
3050 
3051   // Save number of saved regs, so we can easily update CSStackSize later.
3052   unsigned NumSavedRegs = SavedRegs.count();
3053 
3054   // The frame record needs to be created by saving the appropriate registers
3055   uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3056   if (hasFP(MF) ||
3057       windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3058     SavedRegs.set(AArch64::FP);
3059     SavedRegs.set(AArch64::LR);
3060   }
3061 
3062   LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3063              for (unsigned Reg
3064                   : SavedRegs.set_bits()) dbgs()
3065              << ' ' << printReg(Reg, RegInfo);
3066              dbgs() << "\n";);
3067 
3068   // If any callee-saved registers are used, the frame cannot be eliminated.
3069   int64_t SVEStackSize =
3070       alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3071   bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3072 
3073   // The CSR spill slots have not been allocated yet, so estimateStackSize
3074   // won't include them.
3075   unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3076 
3077   // Conservatively always assume BigStack when there are SVE spills.
3078   bool BigStack = SVEStackSize ||
3079                   (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
3080   if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3081     AFI->setHasStackFrame(true);
3082 
3083   // Estimate if we might need to scavenge a register at some point in order
3084   // to materialize a stack offset. If so, either spill one additional
3085   // callee-saved register or reserve a special spill slot to facilitate
3086   // register scavenging. If we already spilled an extra callee-saved register
3087   // above to keep the number of spills even, we don't need to do anything else
3088   // here.
3089   if (BigStack) {
3090     if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3091       LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3092                         << " to get a scratch register.\n");
3093       SavedRegs.set(UnspilledCSGPR);
3094       // MachO's compact unwind format relies on all registers being stored in
3095       // pairs, so if we need to spill one extra for BigStack, then we need to
3096       // store the pair.
3097       if (producePairRegisters(MF))
3098         SavedRegs.set(UnspilledCSGPRPaired);
3099       ExtraCSSpill = UnspilledCSGPR;
3100     }
3101 
3102     // If we didn't find an extra callee-saved register to spill, create
3103     // an emergency spill slot.
3104     if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3105       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3106       const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3107       unsigned Size = TRI->getSpillSize(RC);
3108       Align Alignment = TRI->getSpillAlign(RC);
3109       int FI = MFI.CreateStackObject(Size, Alignment, false);
3110       RS->addScavengingFrameIndex(FI);
3111       LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3112                         << " as the emergency spill slot.\n");
3113     }
3114   }
3115 
3116   // Adding the size of additional 64bit GPR saves.
3117   CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3118 
3119   // A Swift asynchronous context extends the frame record with a pointer
3120   // directly before FP.
3121   if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3122     CSStackSize += 8;
3123 
3124   uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3125   LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3126                << EstimatedStackSize + AlignedCSStackSize
3127                << " bytes.\n");
3128 
3129   assert((!MFI.isCalleeSavedInfoValid() ||
3130           AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3131          "Should not invalidate callee saved info");
3132 
3133   // Round up to register pair alignment to avoid additional SP adjustment
3134   // instructions.
3135   AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3136   AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3137   AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3138 }
3139 
3140 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3141     MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3142     std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3143     unsigned &MaxCSFrameIndex) const {
3144   bool NeedsWinCFI = needsWinCFI(MF);
3145   // To match the canonical windows frame layout, reverse the list of
3146   // callee saved registers to get them laid out by PrologEpilogInserter
3147   // in the right order. (PrologEpilogInserter allocates stack objects top
3148   // down. Windows canonical prologs store higher numbered registers at
3149   // the top, thus have the CSI array start from the highest registers.)
3150   if (NeedsWinCFI)
3151     std::reverse(CSI.begin(), CSI.end());
3152 
3153   if (CSI.empty())
3154     return true; // Early exit if no callee saved registers are modified!
3155 
3156   // Now that we know which registers need to be saved and restored, allocate
3157   // stack slots for them.
3158   MachineFrameInfo &MFI = MF.getFrameInfo();
3159   auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3160 
3161   bool UsesWinAAPCS = isTargetWindows(MF);
3162   if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3163     int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3164     AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3165     if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3166     if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3167   }
3168 
3169   for (auto &CS : CSI) {
3170     Register Reg = CS.getReg();
3171     const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3172 
3173     unsigned Size = RegInfo->getSpillSize(*RC);
3174     Align Alignment(RegInfo->getSpillAlign(*RC));
3175     int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3176     CS.setFrameIdx(FrameIdx);
3177 
3178     if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3179     if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3180 
3181     // Grab 8 bytes below FP for the extended asynchronous frame info.
3182     if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3183         Reg == AArch64::FP) {
3184       FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3185       AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3186       if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3187       if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3188     }
3189   }
3190   return true;
3191 }
3192 
3193 bool AArch64FrameLowering::enableStackSlotScavenging(
3194     const MachineFunction &MF) const {
3195   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3196   return AFI->hasCalleeSaveStackFreeSpace();
3197 }
3198 
3199 /// returns true if there are any SVE callee saves.
3200 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3201                                       int &Min, int &Max) {
3202   Min = std::numeric_limits<int>::max();
3203   Max = std::numeric_limits<int>::min();
3204 
3205   if (!MFI.isCalleeSavedInfoValid())
3206     return false;
3207 
3208   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3209   for (auto &CS : CSI) {
3210     if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
3211         AArch64::PPRRegClass.contains(CS.getReg())) {
3212       assert((Max == std::numeric_limits<int>::min() ||
3213               Max + 1 == CS.getFrameIdx()) &&
3214              "SVE CalleeSaves are not consecutive");
3215 
3216       Min = std::min(Min, CS.getFrameIdx());
3217       Max = std::max(Max, CS.getFrameIdx());
3218     }
3219   }
3220   return Min != std::numeric_limits<int>::max();
3221 }
3222 
3223 // Process all the SVE stack objects and determine offsets for each
3224 // object. If AssignOffsets is true, the offsets get assigned.
3225 // Fills in the first and last callee-saved frame indices into
3226 // Min/MaxCSFrameIndex, respectively.
3227 // Returns the size of the stack.
3228 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
3229                                               int &MinCSFrameIndex,
3230                                               int &MaxCSFrameIndex,
3231                                               bool AssignOffsets) {
3232 #ifndef NDEBUG
3233   // First process all fixed stack objects.
3234   for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
3235     assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
3236            "SVE vectors should never be passed on the stack by value, only by "
3237            "reference.");
3238 #endif
3239 
3240   auto Assign = [&MFI](int FI, int64_t Offset) {
3241     LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
3242     MFI.setObjectOffset(FI, Offset);
3243   };
3244 
3245   int64_t Offset = 0;
3246 
3247   // Then process all callee saved slots.
3248   if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
3249     // Assign offsets to the callee save slots.
3250     for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
3251       Offset += MFI.getObjectSize(I);
3252       Offset = alignTo(Offset, MFI.getObjectAlign(I));
3253       if (AssignOffsets)
3254         Assign(I, -Offset);
3255     }
3256   }
3257 
3258   // Ensure that the Callee-save area is aligned to 16bytes.
3259   Offset = alignTo(Offset, Align(16U));
3260 
3261   // Create a buffer of SVE objects to allocate and sort it.
3262   SmallVector<int, 8> ObjectsToAllocate;
3263   // If we have a stack protector, and we've previously decided that we have SVE
3264   // objects on the stack and thus need it to go in the SVE stack area, then it
3265   // needs to go first.
3266   int StackProtectorFI = -1;
3267   if (MFI.hasStackProtectorIndex()) {
3268     StackProtectorFI = MFI.getStackProtectorIndex();
3269     if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
3270       ObjectsToAllocate.push_back(StackProtectorFI);
3271   }
3272   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
3273     unsigned StackID = MFI.getStackID(I);
3274     if (StackID != TargetStackID::ScalableVector)
3275       continue;
3276     if (I == StackProtectorFI)
3277       continue;
3278     if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
3279       continue;
3280     if (MFI.isDeadObjectIndex(I))
3281       continue;
3282 
3283     ObjectsToAllocate.push_back(I);
3284   }
3285 
3286   // Allocate all SVE locals and spills
3287   for (unsigned FI : ObjectsToAllocate) {
3288     Align Alignment = MFI.getObjectAlign(FI);
3289     // FIXME: Given that the length of SVE vectors is not necessarily a power of
3290     // two, we'd need to align every object dynamically at runtime if the
3291     // alignment is larger than 16. This is not yet supported.
3292     if (Alignment > Align(16))
3293       report_fatal_error(
3294           "Alignment of scalable vectors > 16 bytes is not yet supported");
3295 
3296     Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
3297     if (AssignOffsets)
3298       Assign(FI, -Offset);
3299   }
3300 
3301   return Offset;
3302 }
3303 
3304 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
3305     MachineFrameInfo &MFI) const {
3306   int MinCSFrameIndex, MaxCSFrameIndex;
3307   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
3308 }
3309 
3310 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
3311     MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
3312   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
3313                                         true);
3314 }
3315 
3316 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
3317     MachineFunction &MF, RegScavenger *RS) const {
3318   MachineFrameInfo &MFI = MF.getFrameInfo();
3319 
3320   assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
3321          "Upwards growing stack unsupported");
3322 
3323   int MinCSFrameIndex, MaxCSFrameIndex;
3324   int64_t SVEStackSize =
3325       assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
3326 
3327   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3328   AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
3329   AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
3330 
3331   // If this function isn't doing Win64-style C++ EH, we don't need to do
3332   // anything.
3333   if (!MF.hasEHFunclets())
3334     return;
3335   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3336   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3337 
3338   MachineBasicBlock &MBB = MF.front();
3339   auto MBBI = MBB.begin();
3340   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3341     ++MBBI;
3342 
3343   // Create an UnwindHelp object.
3344   // The UnwindHelp object is allocated at the start of the fixed object area
3345   int64_t FixedObject =
3346       getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
3347   int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
3348                                            /*SPOffset*/ -FixedObject,
3349                                            /*IsImmutable=*/false);
3350   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3351 
3352   // We need to store -2 into the UnwindHelp object at the start of the
3353   // function.
3354   DebugLoc DL;
3355   RS->enterBasicBlockEnd(MBB);
3356   RS->backward(std::prev(MBBI));
3357   Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
3358   assert(DstReg && "There must be a free register after frame setup");
3359   BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
3360   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
3361       .addReg(DstReg, getKillRegState(true))
3362       .addFrameIndex(UnwindHelpFI)
3363       .addImm(0);
3364 }
3365 
3366 namespace {
3367 struct TagStoreInstr {
3368   MachineInstr *MI;
3369   int64_t Offset, Size;
3370   explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
3371       : MI(MI), Offset(Offset), Size(Size) {}
3372 };
3373 
3374 class TagStoreEdit {
3375   MachineFunction *MF;
3376   MachineBasicBlock *MBB;
3377   MachineRegisterInfo *MRI;
3378   // Tag store instructions that are being replaced.
3379   SmallVector<TagStoreInstr, 8> TagStores;
3380   // Combined memref arguments of the above instructions.
3381   SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
3382 
3383   // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3384   // FrameRegOffset + Size) with the address tag of SP.
3385   Register FrameReg;
3386   StackOffset FrameRegOffset;
3387   int64_t Size;
3388   // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end.
3389   std::optional<int64_t> FrameRegUpdate;
3390   // MIFlags for any FrameReg updating instructions.
3391   unsigned FrameRegUpdateFlags;
3392 
3393   // Use zeroing instruction variants.
3394   bool ZeroData;
3395   DebugLoc DL;
3396 
3397   void emitUnrolled(MachineBasicBlock::iterator InsertI);
3398   void emitLoop(MachineBasicBlock::iterator InsertI);
3399 
3400 public:
3401   TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
3402       : MBB(MBB), ZeroData(ZeroData) {
3403     MF = MBB->getParent();
3404     MRI = &MF->getRegInfo();
3405   }
3406   // Add an instruction to be replaced. Instructions must be added in the
3407   // ascending order of Offset, and have to be adjacent.
3408   void addInstruction(TagStoreInstr I) {
3409     assert((TagStores.empty() ||
3410             TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
3411            "Non-adjacent tag store instructions.");
3412     TagStores.push_back(I);
3413   }
3414   void clear() { TagStores.clear(); }
3415   // Emit equivalent code at the given location, and erase the current set of
3416   // instructions. May skip if the replacement is not profitable. May invalidate
3417   // the input iterator and replace it with a valid one.
3418   void emitCode(MachineBasicBlock::iterator &InsertI,
3419                 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
3420 };
3421 
3422 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
3423   const AArch64InstrInfo *TII =
3424       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3425 
3426   const int64_t kMinOffset = -256 * 16;
3427   const int64_t kMaxOffset = 255 * 16;
3428 
3429   Register BaseReg = FrameReg;
3430   int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
3431   if (BaseRegOffsetBytes < kMinOffset ||
3432       BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) {
3433     Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3434     emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
3435                     StackOffset::getFixed(BaseRegOffsetBytes), TII);
3436     BaseReg = ScratchReg;
3437     BaseRegOffsetBytes = 0;
3438   }
3439 
3440   MachineInstr *LastI = nullptr;
3441   while (Size) {
3442     int64_t InstrSize = (Size > 16) ? 32 : 16;
3443     unsigned Opcode =
3444         InstrSize == 16
3445             ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset)
3446             : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset);
3447     MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
3448                           .addReg(AArch64::SP)
3449                           .addReg(BaseReg)
3450                           .addImm(BaseRegOffsetBytes / 16)
3451                           .setMemRefs(CombinedMemRefs);
3452     // A store to [BaseReg, #0] should go last for an opportunity to fold the
3453     // final SP adjustment in the epilogue.
3454     if (BaseRegOffsetBytes == 0)
3455       LastI = I;
3456     BaseRegOffsetBytes += InstrSize;
3457     Size -= InstrSize;
3458   }
3459 
3460   if (LastI)
3461     MBB->splice(InsertI, MBB, LastI);
3462 }
3463 
3464 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
3465   const AArch64InstrInfo *TII =
3466       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3467 
3468   Register BaseReg = FrameRegUpdate
3469                          ? FrameReg
3470                          : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3471   Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3472 
3473   emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
3474 
3475   int64_t LoopSize = Size;
3476   // If the loop size is not a multiple of 32, split off one 16-byte store at
3477   // the end to fold BaseReg update into.
3478   if (FrameRegUpdate && *FrameRegUpdate)
3479     LoopSize -= LoopSize % 32;
3480   MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
3481                                 TII->get(ZeroData ? AArch64::STZGloop_wback
3482                                                   : AArch64::STGloop_wback))
3483                             .addDef(SizeReg)
3484                             .addDef(BaseReg)
3485                             .addImm(LoopSize)
3486                             .addReg(BaseReg)
3487                             .setMemRefs(CombinedMemRefs);
3488   if (FrameRegUpdate)
3489     LoopI->setFlags(FrameRegUpdateFlags);
3490 
3491   int64_t ExtraBaseRegUpdate =
3492       FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3493   if (LoopSize < Size) {
3494     assert(FrameRegUpdate);
3495     assert(Size - LoopSize == 16);
3496     // Tag 16 more bytes at BaseReg and update BaseReg.
3497     BuildMI(*MBB, InsertI, DL,
3498             TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3499         .addDef(BaseReg)
3500         .addReg(BaseReg)
3501         .addReg(BaseReg)
3502         .addImm(1 + ExtraBaseRegUpdate / 16)
3503         .setMemRefs(CombinedMemRefs)
3504         .setMIFlags(FrameRegUpdateFlags);
3505   } else if (ExtraBaseRegUpdate) {
3506     // Update BaseReg.
3507     BuildMI(
3508         *MBB, InsertI, DL,
3509         TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3510         .addDef(BaseReg)
3511         .addReg(BaseReg)
3512         .addImm(std::abs(ExtraBaseRegUpdate))
3513         .addImm(0)
3514         .setMIFlags(FrameRegUpdateFlags);
3515   }
3516 }
3517 
3518 // Check if *II is a register update that can be merged into STGloop that ends
3519 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3520 // end of the loop.
3521 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3522                        int64_t Size, int64_t *TotalOffset) {
3523   MachineInstr &MI = *II;
3524   if ((MI.getOpcode() == AArch64::ADDXri ||
3525        MI.getOpcode() == AArch64::SUBXri) &&
3526       MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3527     unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3528     int64_t Offset = MI.getOperand(2).getImm() << Shift;
3529     if (MI.getOpcode() == AArch64::SUBXri)
3530       Offset = -Offset;
3531     int64_t AbsPostOffset = std::abs(Offset - Size);
3532     const int64_t kMaxOffset =
3533         0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3534     if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
3535       *TotalOffset = Offset;
3536       return true;
3537     }
3538   }
3539   return false;
3540 }
3541 
3542 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3543                   SmallVectorImpl<MachineMemOperand *> &MemRefs) {
3544   MemRefs.clear();
3545   for (auto &TS : TSE) {
3546     MachineInstr *MI = TS.MI;
3547     // An instruction without memory operands may access anything. Be
3548     // conservative and return an empty list.
3549     if (MI->memoperands_empty()) {
3550       MemRefs.clear();
3551       return;
3552     }
3553     MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3554   }
3555 }
3556 
3557 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3558                             const AArch64FrameLowering *TFI,
3559                             bool TryMergeSPUpdate) {
3560   if (TagStores.empty())
3561     return;
3562   TagStoreInstr &FirstTagStore = TagStores[0];
3563   TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3564   Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3565   DL = TagStores[0].MI->getDebugLoc();
3566 
3567   Register Reg;
3568   FrameRegOffset = TFI->resolveFrameOffsetReference(
3569       *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
3570       /*PreferFP=*/false, /*ForSimm=*/true);
3571   FrameReg = Reg;
3572   FrameRegUpdate = std::nullopt;
3573 
3574   mergeMemRefs(TagStores, CombinedMemRefs);
3575 
3576   LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3577              for (const auto &Instr
3578                   : TagStores) { dbgs() << "  " << *Instr.MI; });
3579 
3580   // Size threshold where a loop becomes shorter than a linear sequence of
3581   // tagging instructions.
3582   const int kSetTagLoopThreshold = 176;
3583   if (Size < kSetTagLoopThreshold) {
3584     if (TagStores.size() < 2)
3585       return;
3586     emitUnrolled(InsertI);
3587   } else {
3588     MachineInstr *UpdateInstr = nullptr;
3589     int64_t TotalOffset = 0;
3590     if (TryMergeSPUpdate) {
3591       // See if we can merge base register update into the STGloop.
3592       // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3593       // but STGloop is way too unusual for that, and also it only
3594       // realistically happens in function epilogue. Also, STGloop is expanded
3595       // before that pass.
3596       if (InsertI != MBB->end() &&
3597           canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3598                             &TotalOffset)) {
3599         UpdateInstr = &*InsertI++;
3600         LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n  "
3601                           << *UpdateInstr);
3602       }
3603     }
3604 
3605     if (!UpdateInstr && TagStores.size() < 2)
3606       return;
3607 
3608     if (UpdateInstr) {
3609       FrameRegUpdate = TotalOffset;
3610       FrameRegUpdateFlags = UpdateInstr->getFlags();
3611     }
3612     emitLoop(InsertI);
3613     if (UpdateInstr)
3614       UpdateInstr->eraseFromParent();
3615   }
3616 
3617   for (auto &TS : TagStores)
3618     TS.MI->eraseFromParent();
3619 }
3620 
3621 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3622                                         int64_t &Size, bool &ZeroData) {
3623   MachineFunction &MF = *MI.getParent()->getParent();
3624   const MachineFrameInfo &MFI = MF.getFrameInfo();
3625 
3626   unsigned Opcode = MI.getOpcode();
3627   ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset ||
3628               Opcode == AArch64::STZ2GOffset);
3629 
3630   if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3631     if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3632       return false;
3633     if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3634       return false;
3635     Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3636     Size = MI.getOperand(2).getImm();
3637     return true;
3638   }
3639 
3640   if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset)
3641     Size = 16;
3642   else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset)
3643     Size = 32;
3644   else
3645     return false;
3646 
3647   if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3648     return false;
3649 
3650   Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3651            16 * MI.getOperand(2).getImm();
3652   return true;
3653 }
3654 
3655 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3656 // and replace them with a shorter instruction sequence:
3657 // * replace STG + STG with ST2G
3658 // * replace STGloop + STGloop with STGloop
3659 // This code needs to run when stack slot offsets are already known, but before
3660 // FrameIndex operands in STG instructions are eliminated.
3661 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
3662                                                 const AArch64FrameLowering *TFI,
3663                                                 RegScavenger *RS) {
3664   bool FirstZeroData;
3665   int64_t Size, Offset;
3666   MachineInstr &MI = *II;
3667   MachineBasicBlock *MBB = MI.getParent();
3668   MachineBasicBlock::iterator NextI = ++II;
3669   if (&MI == &MBB->instr_back())
3670     return II;
3671   if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3672     return II;
3673 
3674   SmallVector<TagStoreInstr, 4> Instrs;
3675   Instrs.emplace_back(&MI, Offset, Size);
3676 
3677   constexpr int kScanLimit = 10;
3678   int Count = 0;
3679   for (MachineBasicBlock::iterator E = MBB->end();
3680        NextI != E && Count < kScanLimit; ++NextI) {
3681     MachineInstr &MI = *NextI;
3682     bool ZeroData;
3683     int64_t Size, Offset;
3684     // Collect instructions that update memory tags with a FrameIndex operand
3685     // and (when applicable) constant size, and whose output registers are dead
3686     // (the latter is almost always the case in practice). Since these
3687     // instructions effectively have no inputs or outputs, we are free to skip
3688     // any non-aliasing instructions in between without tracking used registers.
3689     if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3690       if (ZeroData != FirstZeroData)
3691         break;
3692       Instrs.emplace_back(&MI, Offset, Size);
3693       continue;
3694     }
3695 
3696     // Only count non-transient, non-tagging instructions toward the scan
3697     // limit.
3698     if (!MI.isTransient())
3699       ++Count;
3700 
3701     // Just in case, stop before the epilogue code starts.
3702     if (MI.getFlag(MachineInstr::FrameSetup) ||
3703         MI.getFlag(MachineInstr::FrameDestroy))
3704       break;
3705 
3706     // Reject anything that may alias the collected instructions.
3707     if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
3708       break;
3709   }
3710 
3711   // New code will be inserted after the last tagging instruction we've found.
3712   MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3713   InsertI++;
3714 
3715   llvm::stable_sort(Instrs,
3716                     [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3717                       return Left.Offset < Right.Offset;
3718                     });
3719 
3720   // Make sure that we don't have any overlapping stores.
3721   int64_t CurOffset = Instrs[0].Offset;
3722   for (auto &Instr : Instrs) {
3723     if (CurOffset > Instr.Offset)
3724       return NextI;
3725     CurOffset = Instr.Offset + Instr.Size;
3726   }
3727 
3728   // Find contiguous runs of tagged memory and emit shorter instruction
3729   // sequencies for them when possible.
3730   TagStoreEdit TSE(MBB, FirstZeroData);
3731   std::optional<int64_t> EndOffset;
3732   for (auto &Instr : Instrs) {
3733     if (EndOffset && *EndOffset != Instr.Offset) {
3734       // Found a gap.
3735       TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
3736       TSE.clear();
3737     }
3738 
3739     TSE.addInstruction(Instr);
3740     EndOffset = Instr.Offset + Instr.Size;
3741   }
3742 
3743   const MachineFunction *MF = MBB->getParent();
3744   // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
3745   TSE.emitCode(
3746       InsertI, TFI, /*TryMergeSPUpdate = */
3747       !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF));
3748 
3749   return InsertI;
3750 }
3751 } // namespace
3752 
3753 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3754     MachineFunction &MF, RegScavenger *RS = nullptr) const {
3755   if (StackTaggingMergeSetTag)
3756     for (auto &BB : MF)
3757       for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
3758         II = tryMergeAdjacentSTG(II, this, RS);
3759 }
3760 
3761 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3762 /// before the update.  This is easily retrieved as it is exactly the offset
3763 /// that is set in processFunctionBeforeFrameFinalized.
3764 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
3765     const MachineFunction &MF, int FI, Register &FrameReg,
3766     bool IgnoreSPUpdates) const {
3767   const MachineFrameInfo &MFI = MF.getFrameInfo();
3768   if (IgnoreSPUpdates) {
3769     LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3770                       << MFI.getObjectOffset(FI) << "\n");
3771     FrameReg = AArch64::SP;
3772     return StackOffset::getFixed(MFI.getObjectOffset(FI));
3773   }
3774 
3775   // Go to common code if we cannot provide sp + offset.
3776   if (MFI.hasVarSizedObjects() ||
3777       MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
3778       MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
3779     return getFrameIndexReference(MF, FI, FrameReg);
3780 
3781   FrameReg = AArch64::SP;
3782   return getStackOffset(MF, MFI.getObjectOffset(FI));
3783 }
3784 
3785 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3786 /// the parent's frame pointer
3787 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3788     const MachineFunction &MF) const {
3789   return 0;
3790 }
3791 
3792 /// Funclets only need to account for space for the callee saved registers,
3793 /// as the locals are accounted for in the parent's stack frame.
3794 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3795     const MachineFunction &MF) const {
3796   // This is the size of the pushed CSRs.
3797   unsigned CSSize =
3798       MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3799   // This is the amount of stack a funclet needs to allocate.
3800   return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3801                  getStackAlign());
3802 }
3803 
3804 namespace {
3805 struct FrameObject {
3806   bool IsValid = false;
3807   // Index of the object in MFI.
3808   int ObjectIndex = 0;
3809   // Group ID this object belongs to.
3810   int GroupIndex = -1;
3811   // This object should be placed first (closest to SP).
3812   bool ObjectFirst = false;
3813   // This object's group (which always contains the object with
3814   // ObjectFirst==true) should be placed first.
3815   bool GroupFirst = false;
3816 };
3817 
3818 class GroupBuilder {
3819   SmallVector<int, 8> CurrentMembers;
3820   int NextGroupIndex = 0;
3821   std::vector<FrameObject> &Objects;
3822 
3823 public:
3824   GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
3825   void AddMember(int Index) { CurrentMembers.push_back(Index); }
3826   void EndCurrentGroup() {
3827     if (CurrentMembers.size() > 1) {
3828       // Create a new group with the current member list. This might remove them
3829       // from their pre-existing groups. That's OK, dealing with overlapping
3830       // groups is too hard and unlikely to make a difference.
3831       LLVM_DEBUG(dbgs() << "group:");
3832       for (int Index : CurrentMembers) {
3833         Objects[Index].GroupIndex = NextGroupIndex;
3834         LLVM_DEBUG(dbgs() << " " << Index);
3835       }
3836       LLVM_DEBUG(dbgs() << "\n");
3837       NextGroupIndex++;
3838     }
3839     CurrentMembers.clear();
3840   }
3841 };
3842 
3843 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
3844   // Objects at a lower index are closer to FP; objects at a higher index are
3845   // closer to SP.
3846   //
3847   // For consistency in our comparison, all invalid objects are placed
3848   // at the end. This also allows us to stop walking when we hit the
3849   // first invalid item after it's all sorted.
3850   //
3851   // The "first" object goes first (closest to SP), followed by the members of
3852   // the "first" group.
3853   //
3854   // The rest are sorted by the group index to keep the groups together.
3855   // Higher numbered groups are more likely to be around longer (i.e. untagged
3856   // in the function epilogue and not at some earlier point). Place them closer
3857   // to SP.
3858   //
3859   // If all else equal, sort by the object index to keep the objects in the
3860   // original order.
3861   return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex,
3862                          A.ObjectIndex) <
3863          std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex,
3864                          B.ObjectIndex);
3865 }
3866 } // namespace
3867 
3868 void AArch64FrameLowering::orderFrameObjects(
3869     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3870   if (!OrderFrameObjects || ObjectsToAllocate.empty())
3871     return;
3872 
3873   const MachineFrameInfo &MFI = MF.getFrameInfo();
3874   std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
3875   for (auto &Obj : ObjectsToAllocate) {
3876     FrameObjects[Obj].IsValid = true;
3877     FrameObjects[Obj].ObjectIndex = Obj;
3878   }
3879 
3880   // Identify stack slots that are tagged at the same time.
3881   GroupBuilder GB(FrameObjects);
3882   for (auto &MBB : MF) {
3883     for (auto &MI : MBB) {
3884       if (MI.isDebugInstr())
3885         continue;
3886       int OpIndex;
3887       switch (MI.getOpcode()) {
3888       case AArch64::STGloop:
3889       case AArch64::STZGloop:
3890         OpIndex = 3;
3891         break;
3892       case AArch64::STGOffset:
3893       case AArch64::STZGOffset:
3894       case AArch64::ST2GOffset:
3895       case AArch64::STZ2GOffset:
3896         OpIndex = 1;
3897         break;
3898       default:
3899         OpIndex = -1;
3900       }
3901 
3902       int TaggedFI = -1;
3903       if (OpIndex >= 0) {
3904         const MachineOperand &MO = MI.getOperand(OpIndex);
3905         if (MO.isFI()) {
3906           int FI = MO.getIndex();
3907           if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
3908               FrameObjects[FI].IsValid)
3909             TaggedFI = FI;
3910         }
3911       }
3912 
3913       // If this is a stack tagging instruction for a slot that is not part of a
3914       // group yet, either start a new group or add it to the current one.
3915       if (TaggedFI >= 0)
3916         GB.AddMember(TaggedFI);
3917       else
3918         GB.EndCurrentGroup();
3919     }
3920     // Groups should never span multiple basic blocks.
3921     GB.EndCurrentGroup();
3922   }
3923 
3924   // If the function's tagged base pointer is pinned to a stack slot, we want to
3925   // put that slot first when possible. This will likely place it at SP + 0,
3926   // and save one instruction when generating the base pointer because IRG does
3927   // not allow an immediate offset.
3928   const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
3929   std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
3930   if (TBPI) {
3931     FrameObjects[*TBPI].ObjectFirst = true;
3932     FrameObjects[*TBPI].GroupFirst = true;
3933     int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
3934     if (FirstGroupIndex >= 0)
3935       for (FrameObject &Object : FrameObjects)
3936         if (Object.GroupIndex == FirstGroupIndex)
3937           Object.GroupFirst = true;
3938   }
3939 
3940   llvm::stable_sort(FrameObjects, FrameObjectCompare);
3941 
3942   int i = 0;
3943   for (auto &Obj : FrameObjects) {
3944     // All invalid items are sorted at the end, so it's safe to stop.
3945     if (!Obj.IsValid)
3946       break;
3947     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3948   }
3949 
3950   LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
3951                                                     : FrameObjects) {
3952     if (!Obj.IsValid)
3953       break;
3954     dbgs() << "  " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
3955     if (Obj.ObjectFirst)
3956       dbgs() << ", first";
3957     if (Obj.GroupFirst)
3958       dbgs() << ", group-first";
3959     dbgs() << "\n";
3960   });
3961 }
3962