1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "amdgpu-simplifylib"
15 
16 #include "AMDGPU.h"
17 #include "AMDGPULibFunc.h"
18 #include "AMDGPUSubtarget.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/ADT/StringSet.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include <vector>
37 #include <cmath>
38 
39 using namespace llvm;
40 
41 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
42   cl::desc("Enable pre-link mode optimizations"),
43   cl::init(false),
44   cl::Hidden);
45 
46 static cl::list<std::string> UseNative("amdgpu-use-native",
47   cl::desc("Comma separated list of functions to replace with native, or all"),
48   cl::CommaSeparated, cl::ValueOptional,
49   cl::Hidden);
50 
51 #define MATH_PI     3.14159265358979323846264338327950288419716939937511
52 #define MATH_E      2.71828182845904523536028747135266249775724709369996
53 #define MATH_SQRT2  1.41421356237309504880168872420969807856967187537695
54 
55 #define MATH_LOG2E     1.4426950408889634073599246810018921374266459541529859
56 #define MATH_LOG10E    0.4342944819032518276511289189166050822943970058036665
57 // Value of log2(10)
58 #define MATH_LOG2_10   3.3219280948873623478703194294893901758648313930245806
59 // Value of 1 / log2(10)
60 #define MATH_RLOG2_10  0.3010299956639811952137388947244930267681898814621085
61 // Value of 1 / M_LOG2E_F = 1 / log2(e)
62 #define MATH_RLOG2_E   0.6931471805599453094172321214581765680755001343602552
63 
64 namespace llvm {
65 
66 class AMDGPULibCalls {
67 private:
68 
69   typedef llvm::AMDGPULibFunc FuncInfo;
70 
71   const TargetMachine *TM;
72 
73   // -fuse-native.
74   bool AllNative = false;
75 
76   bool useNativeFunc(const StringRef F) const;
77 
78   // Return a pointer (pointer expr) to the function if function defintion with
79   // "FuncName" exists. It may create a new function prototype in pre-link mode.
80   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
81 
82   // Replace a normal function with its native version.
83   bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
84 
85   bool parseFunctionName(const StringRef& FMangledName,
86                          FuncInfo *FInfo=nullptr /*out*/);
87 
88   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
89 
90   /* Specialized optimizations */
91 
92   // recip (half or native)
93   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
94 
95   // divide (half or native)
96   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
97 
98   // pow/powr/pown
99   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
100 
101   // rootn
102   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
103 
104   // fma/mad
105   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
106 
107   // -fuse-native for sincos
108   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
109 
110   // evaluate calls if calls' arguments are constants.
111   bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
112     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
113   bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
114 
115   // exp
116   bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
117 
118   // exp2
119   bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
120 
121   // exp10
122   bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
123 
124   // log
125   bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
126 
127   // log2
128   bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
129 
130   // log10
131   bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
132 
133   // sqrt
134   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
135 
136   // sin/cos
137   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
138 
139   // __read_pipe/__write_pipe
140   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
141 
142   // llvm.amdgcn.wavefrontsize
143   bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
144 
145   // Get insertion point at entry.
146   BasicBlock::iterator getEntryIns(CallInst * UI);
147   // Insert an Alloc instruction.
148   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
149   // Get a scalar native builtin signle argument FP function
150   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
151 
152 protected:
153   CallInst *CI;
154 
155   bool isUnsafeMath(const CallInst *CI) const;
156 
157   void replaceCall(Value *With) {
158     CI->replaceAllUsesWith(With);
159     CI->eraseFromParent();
160   }
161 
162 public:
163   AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
164 
165   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
166 
167   void initNativeFuncs();
168 
169   // Replace a normal math function call with that native version
170   bool useNative(CallInst *CI);
171 };
172 
173 } // end llvm namespace
174 
175 namespace {
176 
177   class AMDGPUSimplifyLibCalls : public FunctionPass {
178 
179   const TargetOptions Options;
180 
181   AMDGPULibCalls Simplifier;
182 
183   public:
184     static char ID; // Pass identification
185 
186     AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions(),
187                            const TargetMachine *TM = nullptr)
188       : FunctionPass(ID), Options(Opt), Simplifier(TM) {
189       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
190     }
191 
192     void getAnalysisUsage(AnalysisUsage &AU) const override {
193       AU.addRequired<AAResultsWrapperPass>();
194     }
195 
196     bool runOnFunction(Function &M) override;
197   };
198 
199   class AMDGPUUseNativeCalls : public FunctionPass {
200 
201   AMDGPULibCalls Simplifier;
202 
203   public:
204     static char ID; // Pass identification
205 
206     AMDGPUUseNativeCalls() : FunctionPass(ID) {
207       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
208       Simplifier.initNativeFuncs();
209     }
210 
211     bool runOnFunction(Function &F) override;
212   };
213 
214 } // end anonymous namespace.
215 
216 char AMDGPUSimplifyLibCalls::ID = 0;
217 char AMDGPUUseNativeCalls::ID = 0;
218 
219 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
220                       "Simplify well-known AMD library calls", false, false)
221 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
222 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
223                     "Simplify well-known AMD library calls", false, false)
224 
225 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
226                 "Replace builtin math calls with that native versions.",
227                 false, false)
228 
229 template <typename IRB>
230 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
231                               const Twine &Name = "") {
232   CallInst *R = B.CreateCall(Callee, Arg, Name);
233   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
234     R->setCallingConv(F->getCallingConv());
235   return R;
236 }
237 
238 template <typename IRB>
239 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
240                                Value *Arg2, const Twine &Name = "") {
241   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
242   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
243     R->setCallingConv(F->getCallingConv());
244   return R;
245 }
246 
247 //  Data structures for table-driven optimizations.
248 //  FuncTbl works for both f32 and f64 functions with 1 input argument
249 
250 struct TableEntry {
251   double   result;
252   double   input;
253 };
254 
255 /* a list of {result, input} */
256 static const TableEntry tbl_acos[] = {
257   {MATH_PI/2.0, 0.0},
258   {MATH_PI/2.0, -0.0},
259   {0.0, 1.0},
260   {MATH_PI, -1.0}
261 };
262 static const TableEntry tbl_acosh[] = {
263   {0.0, 1.0}
264 };
265 static const TableEntry tbl_acospi[] = {
266   {0.5, 0.0},
267   {0.5, -0.0},
268   {0.0, 1.0},
269   {1.0, -1.0}
270 };
271 static const TableEntry tbl_asin[] = {
272   {0.0, 0.0},
273   {-0.0, -0.0},
274   {MATH_PI/2.0, 1.0},
275   {-MATH_PI/2.0, -1.0}
276 };
277 static const TableEntry tbl_asinh[] = {
278   {0.0, 0.0},
279   {-0.0, -0.0}
280 };
281 static const TableEntry tbl_asinpi[] = {
282   {0.0, 0.0},
283   {-0.0, -0.0},
284   {0.5, 1.0},
285   {-0.5, -1.0}
286 };
287 static const TableEntry tbl_atan[] = {
288   {0.0, 0.0},
289   {-0.0, -0.0},
290   {MATH_PI/4.0, 1.0},
291   {-MATH_PI/4.0, -1.0}
292 };
293 static const TableEntry tbl_atanh[] = {
294   {0.0, 0.0},
295   {-0.0, -0.0}
296 };
297 static const TableEntry tbl_atanpi[] = {
298   {0.0, 0.0},
299   {-0.0, -0.0},
300   {0.25, 1.0},
301   {-0.25, -1.0}
302 };
303 static const TableEntry tbl_cbrt[] = {
304   {0.0, 0.0},
305   {-0.0, -0.0},
306   {1.0, 1.0},
307   {-1.0, -1.0},
308 };
309 static const TableEntry tbl_cos[] = {
310   {1.0, 0.0},
311   {1.0, -0.0}
312 };
313 static const TableEntry tbl_cosh[] = {
314   {1.0, 0.0},
315   {1.0, -0.0}
316 };
317 static const TableEntry tbl_cospi[] = {
318   {1.0, 0.0},
319   {1.0, -0.0}
320 };
321 static const TableEntry tbl_erfc[] = {
322   {1.0, 0.0},
323   {1.0, -0.0}
324 };
325 static const TableEntry tbl_erf[] = {
326   {0.0, 0.0},
327   {-0.0, -0.0}
328 };
329 static const TableEntry tbl_exp[] = {
330   {1.0, 0.0},
331   {1.0, -0.0},
332   {MATH_E, 1.0}
333 };
334 static const TableEntry tbl_exp2[] = {
335   {1.0, 0.0},
336   {1.0, -0.0},
337   {2.0, 1.0}
338 };
339 static const TableEntry tbl_exp10[] = {
340   {1.0, 0.0},
341   {1.0, -0.0},
342   {10.0, 1.0}
343 };
344 static const TableEntry tbl_expm1[] = {
345   {0.0, 0.0},
346   {-0.0, -0.0}
347 };
348 static const TableEntry tbl_log[] = {
349   {0.0, 1.0},
350   {1.0, MATH_E}
351 };
352 static const TableEntry tbl_log2[] = {
353   {0.0, 1.0},
354   {1.0, 2.0}
355 };
356 static const TableEntry tbl_log10[] = {
357   {0.0, 1.0},
358   {1.0, 10.0}
359 };
360 static const TableEntry tbl_rsqrt[] = {
361   {1.0, 1.0},
362   {1.0/MATH_SQRT2, 2.0}
363 };
364 static const TableEntry tbl_sin[] = {
365   {0.0, 0.0},
366   {-0.0, -0.0}
367 };
368 static const TableEntry tbl_sinh[] = {
369   {0.0, 0.0},
370   {-0.0, -0.0}
371 };
372 static const TableEntry tbl_sinpi[] = {
373   {0.0, 0.0},
374   {-0.0, -0.0}
375 };
376 static const TableEntry tbl_sqrt[] = {
377   {0.0, 0.0},
378   {1.0, 1.0},
379   {MATH_SQRT2, 2.0}
380 };
381 static const TableEntry tbl_tan[] = {
382   {0.0, 0.0},
383   {-0.0, -0.0}
384 };
385 static const TableEntry tbl_tanh[] = {
386   {0.0, 0.0},
387   {-0.0, -0.0}
388 };
389 static const TableEntry tbl_tanpi[] = {
390   {0.0, 0.0},
391   {-0.0, -0.0}
392 };
393 static const TableEntry tbl_tgamma[] = {
394   {1.0, 1.0},
395   {1.0, 2.0},
396   {2.0, 3.0},
397   {6.0, 4.0}
398 };
399 
400 static bool HasNative(AMDGPULibFunc::EFuncId id) {
401   switch(id) {
402   case AMDGPULibFunc::EI_DIVIDE:
403   case AMDGPULibFunc::EI_COS:
404   case AMDGPULibFunc::EI_EXP:
405   case AMDGPULibFunc::EI_EXP2:
406   case AMDGPULibFunc::EI_EXP10:
407   case AMDGPULibFunc::EI_LOG:
408   case AMDGPULibFunc::EI_LOG2:
409   case AMDGPULibFunc::EI_LOG10:
410   case AMDGPULibFunc::EI_POWR:
411   case AMDGPULibFunc::EI_RECIP:
412   case AMDGPULibFunc::EI_RSQRT:
413   case AMDGPULibFunc::EI_SIN:
414   case AMDGPULibFunc::EI_SINCOS:
415   case AMDGPULibFunc::EI_SQRT:
416   case AMDGPULibFunc::EI_TAN:
417     return true;
418   default:;
419   }
420   return false;
421 }
422 
423 struct TableRef {
424   size_t size;
425   const TableEntry *table; // variable size: from 0 to (size - 1)
426 
427   TableRef() : size(0), table(nullptr) {}
428 
429   template <size_t N>
430   TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
431 };
432 
433 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
434   switch(id) {
435   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
436   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
437   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
438   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
439   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
440   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
441   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
442   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
443   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
444   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
445   case AMDGPULibFunc::EI_NCOS:
446   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
447   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
448   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
449   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
450   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
451   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
452   case AMDGPULibFunc::EI_NEXP2:
453   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
454   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
455   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
456   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
457   case AMDGPULibFunc::EI_NLOG2:
458   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
459   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
460   case AMDGPULibFunc::EI_NRSQRT:
461   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
462   case AMDGPULibFunc::EI_NSIN:
463   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
464   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
465   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
466   case AMDGPULibFunc::EI_NSQRT:
467   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
468   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
469   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
470   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
471   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
472   default:;
473   }
474   return TableRef();
475 }
476 
477 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
478   return FInfo.getLeads()[0].VectorSize;
479 }
480 
481 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
482   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
483 }
484 
485 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
486   // If we are doing PreLinkOpt, the function is external. So it is safe to
487   // use getOrInsertFunction() at this stage.
488 
489   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
490                        : AMDGPULibFunc::getFunction(M, fInfo);
491 }
492 
493 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
494                                     FuncInfo *FInfo) {
495   return AMDGPULibFunc::parse(FMangledName, *FInfo);
496 }
497 
498 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
499   if (auto Op = dyn_cast<FPMathOperator>(CI))
500     if (Op->isFast())
501       return true;
502   const Function *F = CI->getParent()->getParent();
503   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
504   return Attr.getValueAsString() == "true";
505 }
506 
507 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
508   return AllNative ||
509          std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
510 }
511 
512 void AMDGPULibCalls::initNativeFuncs() {
513   AllNative = useNativeFunc("all") ||
514               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
515                UseNative.begin()->empty());
516 }
517 
518 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
519   bool native_sin = useNativeFunc("sin");
520   bool native_cos = useNativeFunc("cos");
521 
522   if (native_sin && native_cos) {
523     Module *M = aCI->getModule();
524     Value *opr0 = aCI->getArgOperand(0);
525 
526     AMDGPULibFunc nf;
527     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
528     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
529 
530     nf.setPrefix(AMDGPULibFunc::NATIVE);
531     nf.setId(AMDGPULibFunc::EI_SIN);
532     FunctionCallee sinExpr = getFunction(M, nf);
533 
534     nf.setPrefix(AMDGPULibFunc::NATIVE);
535     nf.setId(AMDGPULibFunc::EI_COS);
536     FunctionCallee cosExpr = getFunction(M, nf);
537     if (sinExpr && cosExpr) {
538       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
539       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
540       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
541 
542       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
543                                           << " with native version of sin/cos");
544 
545       replaceCall(sinval);
546       return true;
547     }
548   }
549   return false;
550 }
551 
552 bool AMDGPULibCalls::useNative(CallInst *aCI) {
553   CI = aCI;
554   Function *Callee = aCI->getCalledFunction();
555 
556   FuncInfo FInfo;
557   if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
558       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
559       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
560       !(AllNative || useNativeFunc(FInfo.getName()))) {
561     return false;
562   }
563 
564   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
565     return sincosUseNative(aCI, FInfo);
566 
567   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
568   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
569   if (!F)
570     return false;
571 
572   aCI->setCalledFunction(F);
573   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
574                                       << " with native version");
575   return true;
576 }
577 
578 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
579 // builtin, with appended type size and alignment arguments, where 2 or 4
580 // indicates the original number of arguments. The library has optimized version
581 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
582 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
583 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
584 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
585 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
586                                           FuncInfo &FInfo) {
587   auto *Callee = CI->getCalledFunction();
588   if (!Callee->isDeclaration())
589     return false;
590 
591   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
592   auto *M = Callee->getParent();
593   auto &Ctx = M->getContext();
594   std::string Name = Callee->getName();
595   auto NumArg = CI->getNumArgOperands();
596   if (NumArg != 4 && NumArg != 6)
597     return false;
598   auto *PacketSize = CI->getArgOperand(NumArg - 2);
599   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
600   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
601     return false;
602   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
603   unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue();
604   if (Size != Align || !isPowerOf2_32(Size))
605     return false;
606 
607   Type *PtrElemTy;
608   if (Size <= 8)
609     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
610   else
611     PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8);
612   unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
613   auto PtrArg = CI->getArgOperand(PtrArgLoc);
614   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
615   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
616 
617   SmallVector<llvm::Type *, 6> ArgTys;
618   for (unsigned I = 0; I != PtrArgLoc; ++I)
619     ArgTys.push_back(CI->getArgOperand(I)->getType());
620   ArgTys.push_back(PtrTy);
621 
622   Name = Name + "_" + std::to_string(Size);
623   auto *FTy = FunctionType::get(Callee->getReturnType(),
624                                 ArrayRef<Type *>(ArgTys), false);
625   AMDGPULibFunc NewLibFunc(Name, FTy);
626   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
627   if (!F)
628     return false;
629 
630   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
631   SmallVector<Value *, 6> Args;
632   for (unsigned I = 0; I != PtrArgLoc; ++I)
633     Args.push_back(CI->getArgOperand(I));
634   Args.push_back(BCast);
635 
636   auto *NCI = B.CreateCall(F, Args);
637   NCI->setAttributes(CI->getAttributes());
638   CI->replaceAllUsesWith(NCI);
639   CI->dropAllReferences();
640   CI->eraseFromParent();
641 
642   return true;
643 }
644 
645 // This function returns false if no change; return true otherwise.
646 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
647   this->CI = CI;
648   Function *Callee = CI->getCalledFunction();
649 
650   // Ignore indirect calls.
651   if (Callee == 0) return false;
652 
653   BasicBlock *BB = CI->getParent();
654   LLVMContext &Context = CI->getParent()->getContext();
655   IRBuilder<> B(Context);
656 
657   // Set the builder to the instruction after the call.
658   B.SetInsertPoint(BB, CI->getIterator());
659 
660   // Copy fast flags from the original call.
661   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
662     B.setFastMathFlags(FPOp->getFastMathFlags());
663 
664   switch (Callee->getIntrinsicID()) {
665   default:
666     break;
667   case Intrinsic::amdgcn_wavefrontsize:
668     return !EnablePreLink && fold_wavefrontsize(CI, B);
669   }
670 
671   FuncInfo FInfo;
672   if (!parseFunctionName(Callee->getName(), &FInfo))
673     return false;
674 
675   // Further check the number of arguments to see if they match.
676   if (CI->getNumArgOperands() != FInfo.getNumArgs())
677     return false;
678 
679   if (TDOFold(CI, FInfo))
680     return true;
681 
682   // Under unsafe-math, evaluate calls if possible.
683   // According to Brian Sumner, we can do this for all f32 function calls
684   // using host's double function calls.
685   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
686     return true;
687 
688   // Specilized optimizations for each function call
689   switch (FInfo.getId()) {
690   case AMDGPULibFunc::EI_RECIP:
691     // skip vector function
692     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
693              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
694             "recip must be an either native or half function");
695     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
696 
697   case AMDGPULibFunc::EI_DIVIDE:
698     // skip vector function
699     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
700              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
701             "divide must be an either native or half function");
702     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
703 
704   case AMDGPULibFunc::EI_POW:
705   case AMDGPULibFunc::EI_POWR:
706   case AMDGPULibFunc::EI_POWN:
707     return fold_pow(CI, B, FInfo);
708 
709   case AMDGPULibFunc::EI_ROOTN:
710     // skip vector function
711     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
712 
713   case AMDGPULibFunc::EI_FMA:
714   case AMDGPULibFunc::EI_MAD:
715   case AMDGPULibFunc::EI_NFMA:
716     // skip vector function
717     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
718 
719   case AMDGPULibFunc::EI_SQRT:
720     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
721   case AMDGPULibFunc::EI_COS:
722   case AMDGPULibFunc::EI_SIN:
723     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
724          getArgType(FInfo) == AMDGPULibFunc::F64)
725         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
726       return fold_sincos(CI, B, AA);
727 
728     break;
729   case AMDGPULibFunc::EI_READ_PIPE_2:
730   case AMDGPULibFunc::EI_READ_PIPE_4:
731   case AMDGPULibFunc::EI_WRITE_PIPE_2:
732   case AMDGPULibFunc::EI_WRITE_PIPE_4:
733     return fold_read_write_pipe(CI, B, FInfo);
734 
735   default:
736     break;
737   }
738 
739   return false;
740 }
741 
742 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
743   // Table-Driven optimization
744   const TableRef tr = getOptTable(FInfo.getId());
745   if (tr.size==0)
746     return false;
747 
748   int const sz = (int)tr.size;
749   const TableEntry * const ftbl = tr.table;
750   Value *opr0 = CI->getArgOperand(0);
751 
752   if (getVecSize(FInfo) > 1) {
753     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
754       SmallVector<double, 0> DVal;
755       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
756         ConstantFP *eltval = dyn_cast<ConstantFP>(
757                                CV->getElementAsConstant((unsigned)eltNo));
758         assert(eltval && "Non-FP arguments in math function!");
759         bool found = false;
760         for (int i=0; i < sz; ++i) {
761           if (eltval->isExactlyValue(ftbl[i].input)) {
762             DVal.push_back(ftbl[i].result);
763             found = true;
764             break;
765           }
766         }
767         if (!found) {
768           // This vector constants not handled yet.
769           return false;
770         }
771       }
772       LLVMContext &context = CI->getParent()->getParent()->getContext();
773       Constant *nval;
774       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
775         SmallVector<float, 0> FVal;
776         for (unsigned i = 0; i < DVal.size(); ++i) {
777           FVal.push_back((float)DVal[i]);
778         }
779         ArrayRef<float> tmp(FVal);
780         nval = ConstantDataVector::get(context, tmp);
781       } else { // F64
782         ArrayRef<double> tmp(DVal);
783         nval = ConstantDataVector::get(context, tmp);
784       }
785       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
786       replaceCall(nval);
787       return true;
788     }
789   } else {
790     // Scalar version
791     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
792       for (int i = 0; i < sz; ++i) {
793         if (CF->isExactlyValue(ftbl[i].input)) {
794           Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
795           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
796           replaceCall(nval);
797           return true;
798         }
799       }
800     }
801   }
802 
803   return false;
804 }
805 
806 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
807   Module *M = CI->getModule();
808   if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
809       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
810       !HasNative(FInfo.getId()))
811     return false;
812 
813   AMDGPULibFunc nf = FInfo;
814   nf.setPrefix(AMDGPULibFunc::NATIVE);
815   if (FunctionCallee FPExpr = getFunction(M, nf)) {
816     LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
817 
818     CI->setCalledFunction(FPExpr);
819 
820     LLVM_DEBUG(dbgs() << *CI << '\n');
821 
822     return true;
823   }
824   return false;
825 }
826 
827 //  [native_]half_recip(c) ==> 1.0/c
828 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
829                                 const FuncInfo &FInfo) {
830   Value *opr0 = CI->getArgOperand(0);
831   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
832     // Just create a normal div. Later, InstCombine will be able
833     // to compute the divide into a constant (avoid check float infinity
834     // or subnormal at this point).
835     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
836                                opr0,
837                                "recip2div");
838     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
839     replaceCall(nval);
840     return true;
841   }
842   return false;
843 }
844 
845 //  [native_]half_divide(x, c) ==> x/c
846 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
847                                  const FuncInfo &FInfo) {
848   Value *opr0 = CI->getArgOperand(0);
849   Value *opr1 = CI->getArgOperand(1);
850   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
851   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
852 
853   if ((CF0 && CF1) ||  // both are constants
854       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
855       // CF1 is constant && f32 divide
856   {
857     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
858                                 opr1, "__div2recip");
859     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
860     replaceCall(nval);
861     return true;
862   }
863   return false;
864 }
865 
866 namespace llvm {
867 static double log2(double V) {
868 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
869   return ::log2(V);
870 #else
871   return log(V) / 0.693147180559945309417;
872 #endif
873 }
874 }
875 
876 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
877                               const FuncInfo &FInfo) {
878   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
879           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
880           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
881          "fold_pow: encounter a wrong function call");
882 
883   Value *opr0, *opr1;
884   ConstantFP *CF;
885   ConstantInt *CINT;
886   ConstantAggregateZero *CZero;
887   Type *eltType;
888 
889   opr0 = CI->getArgOperand(0);
890   opr1 = CI->getArgOperand(1);
891   CZero = dyn_cast<ConstantAggregateZero>(opr1);
892   if (getVecSize(FInfo) == 1) {
893     eltType = opr0->getType();
894     CF = dyn_cast<ConstantFP>(opr1);
895     CINT = dyn_cast<ConstantInt>(opr1);
896   } else {
897     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
898     assert(VTy && "Oprand of vector function should be of vectortype");
899     eltType = VTy->getElementType();
900     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
901 
902     // Now, only Handle vector const whose elements have the same value.
903     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
904     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
905   }
906 
907   // No unsafe math , no constant argument, do nothing
908   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
909     return false;
910 
911   // 0x1111111 means that we don't do anything for this call.
912   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
913 
914   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
915     //  pow/powr/pown(x, 0) == 1
916     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
917     Constant *cnval = ConstantFP::get(eltType, 1.0);
918     if (getVecSize(FInfo) > 1) {
919       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
920     }
921     replaceCall(cnval);
922     return true;
923   }
924   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
925     // pow/powr/pown(x, 1.0) = x
926     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
927     replaceCall(opr0);
928     return true;
929   }
930   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
931     // pow/powr/pown(x, 2.0) = x*x
932     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
933                       << "\n");
934     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
935     replaceCall(nval);
936     return true;
937   }
938   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
939     // pow/powr/pown(x, -1.0) = 1.0/x
940     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
941     Constant *cnval = ConstantFP::get(eltType, 1.0);
942     if (getVecSize(FInfo) > 1) {
943       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
944     }
945     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
946     replaceCall(nval);
947     return true;
948   }
949 
950   Module *M = CI->getModule();
951   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
952     // pow[r](x, [-]0.5) = sqrt(x)
953     bool issqrt = CF->isExactlyValue(0.5);
954     if (FunctionCallee FPExpr =
955             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
956                                                 : AMDGPULibFunc::EI_RSQRT,
957                                          FInfo))) {
958       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
959                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
960       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
961                                                         : "__pow2rsqrt");
962       replaceCall(nval);
963       return true;
964     }
965   }
966 
967   if (!isUnsafeMath(CI))
968     return false;
969 
970   // Unsafe Math optimization
971 
972   // Remember that ci_opr1 is set if opr1 is integral
973   if (CF) {
974     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
975                     ? (double)CF->getValueAPF().convertToFloat()
976                     : CF->getValueAPF().convertToDouble();
977     int ival = (int)dval;
978     if ((double)ival == dval) {
979       ci_opr1 = ival;
980     } else
981       ci_opr1 = 0x11111111;
982   }
983 
984   // pow/powr/pown(x, c) = [1/](x*x*..x); where
985   //   trunc(c) == c && the number of x == c && |c| <= 12
986   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
987   if (abs_opr1 <= 12) {
988     Constant *cnval;
989     Value *nval;
990     if (abs_opr1 == 0) {
991       cnval = ConstantFP::get(eltType, 1.0);
992       if (getVecSize(FInfo) > 1) {
993         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
994       }
995       nval = cnval;
996     } else {
997       Value *valx2 = nullptr;
998       nval = nullptr;
999       while (abs_opr1 > 0) {
1000         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
1001         if (abs_opr1 & 1) {
1002           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
1003         }
1004         abs_opr1 >>= 1;
1005       }
1006     }
1007 
1008     if (ci_opr1 < 0) {
1009       cnval = ConstantFP::get(eltType, 1.0);
1010       if (getVecSize(FInfo) > 1) {
1011         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1012       }
1013       nval = B.CreateFDiv(cnval, nval, "__1powprod");
1014     }
1015     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1016                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
1017                       << ")\n");
1018     replaceCall(nval);
1019     return true;
1020   }
1021 
1022   // powr ---> exp2(y * log2(x))
1023   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1024   FunctionCallee ExpExpr =
1025       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1026   if (!ExpExpr)
1027     return false;
1028 
1029   bool needlog = false;
1030   bool needabs = false;
1031   bool needcopysign = false;
1032   Constant *cnval = nullptr;
1033   if (getVecSize(FInfo) == 1) {
1034     CF = dyn_cast<ConstantFP>(opr0);
1035 
1036     if (CF) {
1037       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1038                    ? (double)CF->getValueAPF().convertToFloat()
1039                    : CF->getValueAPF().convertToDouble();
1040 
1041       V = log2(std::abs(V));
1042       cnval = ConstantFP::get(eltType, V);
1043       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1044                      CF->isNegative();
1045     } else {
1046       needlog = true;
1047       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1048                                (!CF || CF->isNegative());
1049     }
1050   } else {
1051     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1052 
1053     if (!CDV) {
1054       needlog = true;
1055       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1056     } else {
1057       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1058               "Wrong vector size detected");
1059 
1060       SmallVector<double, 0> DVal;
1061       for (int i=0; i < getVecSize(FInfo); ++i) {
1062         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1063                      ? (double)CDV->getElementAsFloat(i)
1064                      : CDV->getElementAsDouble(i);
1065         if (V < 0.0) needcopysign = true;
1066         V = log2(std::abs(V));
1067         DVal.push_back(V);
1068       }
1069       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1070         SmallVector<float, 0> FVal;
1071         for (unsigned i=0; i < DVal.size(); ++i) {
1072           FVal.push_back((float)DVal[i]);
1073         }
1074         ArrayRef<float> tmp(FVal);
1075         cnval = ConstantDataVector::get(M->getContext(), tmp);
1076       } else {
1077         ArrayRef<double> tmp(DVal);
1078         cnval = ConstantDataVector::get(M->getContext(), tmp);
1079       }
1080     }
1081   }
1082 
1083   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1084     // We cannot handle corner cases for a general pow() function, give up
1085     // unless y is a constant integral value. Then proceed as if it were pown.
1086     if (getVecSize(FInfo) == 1) {
1087       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1088         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1089                    ? (double)CF->getValueAPF().convertToFloat()
1090                    : CF->getValueAPF().convertToDouble();
1091         if (y != (double)(int64_t)y)
1092           return false;
1093       } else
1094         return false;
1095     } else {
1096       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1097         for (int i=0; i < getVecSize(FInfo); ++i) {
1098           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1099                      ? (double)CDV->getElementAsFloat(i)
1100                      : CDV->getElementAsDouble(i);
1101           if (y != (double)(int64_t)y)
1102             return false;
1103         }
1104       } else
1105         return false;
1106     }
1107   }
1108 
1109   Value *nval;
1110   if (needabs) {
1111     FunctionCallee AbsExpr =
1112         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1113     if (!AbsExpr)
1114       return false;
1115     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1116   } else {
1117     nval = cnval ? cnval : opr0;
1118   }
1119   if (needlog) {
1120     FunctionCallee LogExpr =
1121         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1122     if (!LogExpr)
1123       return false;
1124     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1125   }
1126 
1127   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1128     // convert int(32) to fp(f32 or f64)
1129     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1130   }
1131   nval = B.CreateFMul(opr1, nval, "__ylogx");
1132   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1133 
1134   if (needcopysign) {
1135     Value *opr_n;
1136     Type* rTy = opr0->getType();
1137     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1138     Type *nTy = nTyS;
1139     if (const VectorType *vTy = dyn_cast<VectorType>(rTy))
1140       nTy = VectorType::get(nTyS, vTy->getNumElements());
1141     unsigned size = nTy->getScalarSizeInBits();
1142     opr_n = CI->getArgOperand(1);
1143     if (opr_n->getType()->isIntegerTy())
1144       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1145     else
1146       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1147 
1148     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1149     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1150     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1151     nval = B.CreateBitCast(nval, opr0->getType());
1152   }
1153 
1154   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1155                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1156   replaceCall(nval);
1157 
1158   return true;
1159 }
1160 
1161 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1162                                 const FuncInfo &FInfo) {
1163   Value *opr0 = CI->getArgOperand(0);
1164   Value *opr1 = CI->getArgOperand(1);
1165 
1166   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1167   if (!CINT) {
1168     return false;
1169   }
1170   int ci_opr1 = (int)CINT->getSExtValue();
1171   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1172     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1173     replaceCall(opr0);
1174     return true;
1175   }
1176   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1177     std::vector<const Type*> ParamsTys;
1178     ParamsTys.push_back(opr0->getType());
1179     Module *M = CI->getModule();
1180     if (FunctionCallee FPExpr =
1181             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1182       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1183       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1184       replaceCall(nval);
1185       return true;
1186     }
1187   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1188     Module *M = CI->getModule();
1189     if (FunctionCallee FPExpr =
1190             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1191       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1192       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1193       replaceCall(nval);
1194       return true;
1195     }
1196   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1197     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1198     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1199                                opr0,
1200                                "__rootn2div");
1201     replaceCall(nval);
1202     return true;
1203   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1204     std::vector<const Type*> ParamsTys;
1205     ParamsTys.push_back(opr0->getType());
1206     Module *M = CI->getModule();
1207     if (FunctionCallee FPExpr =
1208             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1209       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1210                         << ")\n");
1211       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1212       replaceCall(nval);
1213       return true;
1214     }
1215   }
1216   return false;
1217 }
1218 
1219 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1220                                   const FuncInfo &FInfo) {
1221   Value *opr0 = CI->getArgOperand(0);
1222   Value *opr1 = CI->getArgOperand(1);
1223   Value *opr2 = CI->getArgOperand(2);
1224 
1225   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1226   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1227   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1228     // fma/mad(a, b, c) = c if a=0 || b=0
1229     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1230     replaceCall(opr2);
1231     return true;
1232   }
1233   if (CF0 && CF0->isExactlyValue(1.0f)) {
1234     // fma/mad(a, b, c) = b+c if a=1
1235     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1236                       << "\n");
1237     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1238     replaceCall(nval);
1239     return true;
1240   }
1241   if (CF1 && CF1->isExactlyValue(1.0f)) {
1242     // fma/mad(a, b, c) = a+c if b=1
1243     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1244                       << "\n");
1245     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1246     replaceCall(nval);
1247     return true;
1248   }
1249   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1250     if (CF->isZero()) {
1251       // fma/mad(a, b, c) = a*b if c=0
1252       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1253                         << *opr1 << "\n");
1254       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1255       replaceCall(nval);
1256       return true;
1257     }
1258   }
1259 
1260   return false;
1261 }
1262 
1263 // Get a scalar native builtin signle argument FP function
1264 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1265                                                  const FuncInfo &FInfo) {
1266   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1267     return nullptr;
1268   FuncInfo nf = FInfo;
1269   nf.setPrefix(AMDGPULibFunc::NATIVE);
1270   return getFunction(M, nf);
1271 }
1272 
1273 // fold sqrt -> native_sqrt (x)
1274 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1275                                const FuncInfo &FInfo) {
1276   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1277       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1278     if (FunctionCallee FPExpr = getNativeFunction(
1279             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1280       Value *opr0 = CI->getArgOperand(0);
1281       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1282                         << "sqrt(" << *opr0 << ")\n");
1283       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1284       replaceCall(nval);
1285       return true;
1286     }
1287   }
1288   return false;
1289 }
1290 
1291 // fold sin, cos -> sincos.
1292 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1293                                  AliasAnalysis *AA) {
1294   AMDGPULibFunc fInfo;
1295   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1296     return false;
1297 
1298   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1299          fInfo.getId() == AMDGPULibFunc::EI_COS);
1300   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1301 
1302   Value *CArgVal = CI->getArgOperand(0);
1303   BasicBlock * const CBB = CI->getParent();
1304 
1305   int const MaxScan = 30;
1306 
1307   { // fold in load value.
1308     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1309     if (LI && LI->getParent() == CBB) {
1310       BasicBlock::iterator BBI = LI->getIterator();
1311       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1312       if (AvailableVal) {
1313         CArgVal->replaceAllUsesWith(AvailableVal);
1314         if (CArgVal->getNumUses() == 0)
1315           LI->eraseFromParent();
1316         CArgVal = CI->getArgOperand(0);
1317       }
1318     }
1319   }
1320 
1321   Module *M = CI->getModule();
1322   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1323   std::string const PairName = fInfo.mangle();
1324 
1325   CallInst *UI = nullptr;
1326   for (User* U : CArgVal->users()) {
1327     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1328     if (!XI || XI == CI || XI->getParent() != CBB)
1329       continue;
1330 
1331     Function *UCallee = XI->getCalledFunction();
1332     if (!UCallee || !UCallee->getName().equals(PairName))
1333       continue;
1334 
1335     BasicBlock::iterator BBI = CI->getIterator();
1336     if (BBI == CI->getParent()->begin())
1337       break;
1338     --BBI;
1339     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1340       if (cast<Instruction>(BBI) == XI) {
1341         UI = XI;
1342         break;
1343       }
1344     }
1345     if (UI) break;
1346   }
1347 
1348   if (!UI) return false;
1349 
1350   // Merge the sin and cos.
1351 
1352   // for OpenCL 2.0 we have only generic implementation of sincos
1353   // function.
1354   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1355   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1356   FunctionCallee Fsincos = getFunction(M, nf);
1357   if (!Fsincos) return false;
1358 
1359   BasicBlock::iterator ItOld = B.GetInsertPoint();
1360   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1361   B.SetInsertPoint(UI);
1362 
1363   Value *P = Alloc;
1364   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1365   // The allocaInst allocates the memory in private address space. This need
1366   // to be bitcasted to point to the address space of cos pointer type.
1367   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1368   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1369     P = B.CreateAddrSpaceCast(Alloc, PTy);
1370   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1371 
1372   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1373                     << *Call << "\n");
1374 
1375   if (!isSin) { // CI->cos, UI->sin
1376     B.SetInsertPoint(&*ItOld);
1377     UI->replaceAllUsesWith(&*Call);
1378     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1379     CI->replaceAllUsesWith(Reload);
1380     UI->eraseFromParent();
1381     CI->eraseFromParent();
1382   } else { // CI->sin, UI->cos
1383     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1384     UI->replaceAllUsesWith(Reload);
1385     CI->replaceAllUsesWith(Call);
1386     UI->eraseFromParent();
1387     CI->eraseFromParent();
1388   }
1389   return true;
1390 }
1391 
1392 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1393   if (!TM)
1394     return false;
1395 
1396   StringRef CPU = TM->getTargetCPU();
1397   StringRef Features = TM->getTargetFeatureString();
1398   if ((CPU.empty() || CPU.equals_lower("generic")) &&
1399       (Features.empty() ||
1400        Features.find_lower("wavefrontsize") == StringRef::npos))
1401     return false;
1402 
1403   Function *F = CI->getParent()->getParent();
1404   const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1405   unsigned N = ST.getWavefrontSize();
1406 
1407   LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1408                << N << "\n");
1409 
1410   CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1411   CI->eraseFromParent();
1412   return true;
1413 }
1414 
1415 // Get insertion point at entry.
1416 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1417   Function * Func = UI->getParent()->getParent();
1418   BasicBlock * BB = &Func->getEntryBlock();
1419   assert(BB && "Entry block not found!");
1420   BasicBlock::iterator ItNew = BB->begin();
1421   return ItNew;
1422 }
1423 
1424 // Insert a AllocsInst at the beginning of function entry block.
1425 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1426                                          const char *prefix) {
1427   BasicBlock::iterator ItNew = getEntryIns(UI);
1428   Function *UCallee = UI->getCalledFunction();
1429   Type *RetType = UCallee->getReturnType();
1430   B.SetInsertPoint(&*ItNew);
1431   AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1432     std::string(prefix) + UI->getName());
1433   Alloc->setAlignment(UCallee->getParent()->getDataLayout()
1434                        .getTypeAllocSize(RetType));
1435   return Alloc;
1436 }
1437 
1438 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
1439                                             double& Res0, double& Res1,
1440                                             Constant *copr0, Constant *copr1,
1441                                             Constant *copr2) {
1442   // By default, opr0/opr1/opr3 holds values of float/double type.
1443   // If they are not float/double, each function has to its
1444   // operand separately.
1445   double opr0=0.0, opr1=0.0, opr2=0.0;
1446   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1447   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1448   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1449   if (fpopr0) {
1450     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1451              ? fpopr0->getValueAPF().convertToDouble()
1452              : (double)fpopr0->getValueAPF().convertToFloat();
1453   }
1454 
1455   if (fpopr1) {
1456     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1457              ? fpopr1->getValueAPF().convertToDouble()
1458              : (double)fpopr1->getValueAPF().convertToFloat();
1459   }
1460 
1461   if (fpopr2) {
1462     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1463              ? fpopr2->getValueAPF().convertToDouble()
1464              : (double)fpopr2->getValueAPF().convertToFloat();
1465   }
1466 
1467   switch (FInfo.getId()) {
1468   default : return false;
1469 
1470   case AMDGPULibFunc::EI_ACOS:
1471     Res0 = acos(opr0);
1472     return true;
1473 
1474   case AMDGPULibFunc::EI_ACOSH:
1475     // acosh(x) == log(x + sqrt(x*x - 1))
1476     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1477     return true;
1478 
1479   case AMDGPULibFunc::EI_ACOSPI:
1480     Res0 = acos(opr0) / MATH_PI;
1481     return true;
1482 
1483   case AMDGPULibFunc::EI_ASIN:
1484     Res0 = asin(opr0);
1485     return true;
1486 
1487   case AMDGPULibFunc::EI_ASINH:
1488     // asinh(x) == log(x + sqrt(x*x + 1))
1489     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1490     return true;
1491 
1492   case AMDGPULibFunc::EI_ASINPI:
1493     Res0 = asin(opr0) / MATH_PI;
1494     return true;
1495 
1496   case AMDGPULibFunc::EI_ATAN:
1497     Res0 = atan(opr0);
1498     return true;
1499 
1500   case AMDGPULibFunc::EI_ATANH:
1501     // atanh(x) == (log(x+1) - log(x-1))/2;
1502     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1503     return true;
1504 
1505   case AMDGPULibFunc::EI_ATANPI:
1506     Res0 = atan(opr0) / MATH_PI;
1507     return true;
1508 
1509   case AMDGPULibFunc::EI_CBRT:
1510     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1511     return true;
1512 
1513   case AMDGPULibFunc::EI_COS:
1514     Res0 = cos(opr0);
1515     return true;
1516 
1517   case AMDGPULibFunc::EI_COSH:
1518     Res0 = cosh(opr0);
1519     return true;
1520 
1521   case AMDGPULibFunc::EI_COSPI:
1522     Res0 = cos(MATH_PI * opr0);
1523     return true;
1524 
1525   case AMDGPULibFunc::EI_EXP:
1526     Res0 = exp(opr0);
1527     return true;
1528 
1529   case AMDGPULibFunc::EI_EXP2:
1530     Res0 = pow(2.0, opr0);
1531     return true;
1532 
1533   case AMDGPULibFunc::EI_EXP10:
1534     Res0 = pow(10.0, opr0);
1535     return true;
1536 
1537   case AMDGPULibFunc::EI_EXPM1:
1538     Res0 = exp(opr0) - 1.0;
1539     return true;
1540 
1541   case AMDGPULibFunc::EI_LOG:
1542     Res0 = log(opr0);
1543     return true;
1544 
1545   case AMDGPULibFunc::EI_LOG2:
1546     Res0 = log(opr0) / log(2.0);
1547     return true;
1548 
1549   case AMDGPULibFunc::EI_LOG10:
1550     Res0 = log(opr0) / log(10.0);
1551     return true;
1552 
1553   case AMDGPULibFunc::EI_RSQRT:
1554     Res0 = 1.0 / sqrt(opr0);
1555     return true;
1556 
1557   case AMDGPULibFunc::EI_SIN:
1558     Res0 = sin(opr0);
1559     return true;
1560 
1561   case AMDGPULibFunc::EI_SINH:
1562     Res0 = sinh(opr0);
1563     return true;
1564 
1565   case AMDGPULibFunc::EI_SINPI:
1566     Res0 = sin(MATH_PI * opr0);
1567     return true;
1568 
1569   case AMDGPULibFunc::EI_SQRT:
1570     Res0 = sqrt(opr0);
1571     return true;
1572 
1573   case AMDGPULibFunc::EI_TAN:
1574     Res0 = tan(opr0);
1575     return true;
1576 
1577   case AMDGPULibFunc::EI_TANH:
1578     Res0 = tanh(opr0);
1579     return true;
1580 
1581   case AMDGPULibFunc::EI_TANPI:
1582     Res0 = tan(MATH_PI * opr0);
1583     return true;
1584 
1585   case AMDGPULibFunc::EI_RECIP:
1586     Res0 = 1.0 / opr0;
1587     return true;
1588 
1589   // two-arg functions
1590   case AMDGPULibFunc::EI_DIVIDE:
1591     Res0 = opr0 / opr1;
1592     return true;
1593 
1594   case AMDGPULibFunc::EI_POW:
1595   case AMDGPULibFunc::EI_POWR:
1596     Res0 = pow(opr0, opr1);
1597     return true;
1598 
1599   case AMDGPULibFunc::EI_POWN: {
1600     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1601       double val = (double)iopr1->getSExtValue();
1602       Res0 = pow(opr0, val);
1603       return true;
1604     }
1605     return false;
1606   }
1607 
1608   case AMDGPULibFunc::EI_ROOTN: {
1609     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1610       double val = (double)iopr1->getSExtValue();
1611       Res0 = pow(opr0, 1.0 / val);
1612       return true;
1613     }
1614     return false;
1615   }
1616 
1617   // with ptr arg
1618   case AMDGPULibFunc::EI_SINCOS:
1619     Res0 = sin(opr0);
1620     Res1 = cos(opr0);
1621     return true;
1622 
1623   // three-arg functions
1624   case AMDGPULibFunc::EI_FMA:
1625   case AMDGPULibFunc::EI_MAD:
1626     Res0 = opr0 * opr1 + opr2;
1627     return true;
1628   }
1629 
1630   return false;
1631 }
1632 
1633 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
1634   int numArgs = (int)aCI->getNumArgOperands();
1635   if (numArgs > 3)
1636     return false;
1637 
1638   Constant *copr0 = nullptr;
1639   Constant *copr1 = nullptr;
1640   Constant *copr2 = nullptr;
1641   if (numArgs > 0) {
1642     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1643       return false;
1644   }
1645 
1646   if (numArgs > 1) {
1647     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1648       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1649         return false;
1650     }
1651   }
1652 
1653   if (numArgs > 2) {
1654     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1655       return false;
1656   }
1657 
1658   // At this point, all arguments to aCI are constants.
1659 
1660   // max vector size is 16, and sincos will generate two results.
1661   double DVal0[16], DVal1[16];
1662   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1663   if (getVecSize(FInfo) == 1) {
1664     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1665                                 DVal1[0], copr0, copr1, copr2)) {
1666       return false;
1667     }
1668   } else {
1669     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1670     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1671     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1672     for (int i=0; i < getVecSize(FInfo); ++i) {
1673       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1674       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1675       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1676       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1677                                   DVal1[i], celt0, celt1, celt2)) {
1678         return false;
1679       }
1680     }
1681   }
1682 
1683   LLVMContext &context = CI->getParent()->getParent()->getContext();
1684   Constant *nval0, *nval1;
1685   if (getVecSize(FInfo) == 1) {
1686     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1687     if (hasTwoResults)
1688       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1689   } else {
1690     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1691       SmallVector <float, 0> FVal0, FVal1;
1692       for (int i=0; i < getVecSize(FInfo); ++i)
1693         FVal0.push_back((float)DVal0[i]);
1694       ArrayRef<float> tmp0(FVal0);
1695       nval0 = ConstantDataVector::get(context, tmp0);
1696       if (hasTwoResults) {
1697         for (int i=0; i < getVecSize(FInfo); ++i)
1698           FVal1.push_back((float)DVal1[i]);
1699         ArrayRef<float> tmp1(FVal1);
1700         nval1 = ConstantDataVector::get(context, tmp1);
1701       }
1702     } else {
1703       ArrayRef<double> tmp0(DVal0);
1704       nval0 = ConstantDataVector::get(context, tmp0);
1705       if (hasTwoResults) {
1706         ArrayRef<double> tmp1(DVal1);
1707         nval1 = ConstantDataVector::get(context, tmp1);
1708       }
1709     }
1710   }
1711 
1712   if (hasTwoResults) {
1713     // sincos
1714     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1715            "math function with ptr arg not supported yet");
1716     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1717   }
1718 
1719   replaceCall(nval0);
1720   return true;
1721 }
1722 
1723 // Public interface to the Simplify LibCalls pass.
1724 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt,
1725                                                      const TargetMachine *TM) {
1726   return new AMDGPUSimplifyLibCalls(Opt, TM);
1727 }
1728 
1729 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1730   return new AMDGPUUseNativeCalls();
1731 }
1732 
1733 static bool setFastFlags(Function &F, const TargetOptions &Options) {
1734   AttrBuilder B;
1735 
1736   if (Options.UnsafeFPMath || Options.NoInfsFPMath)
1737     B.addAttribute("no-infs-fp-math", "true");
1738   if (Options.UnsafeFPMath || Options.NoNaNsFPMath)
1739     B.addAttribute("no-nans-fp-math", "true");
1740   if (Options.UnsafeFPMath) {
1741     B.addAttribute("less-precise-fpmad", "true");
1742     B.addAttribute("unsafe-fp-math", "true");
1743   }
1744 
1745   if (!B.hasAttributes())
1746     return false;
1747 
1748   F.addAttributes(AttributeList::FunctionIndex, B);
1749 
1750   return true;
1751 }
1752 
1753 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1754   if (skipFunction(F))
1755     return false;
1756 
1757   bool Changed = false;
1758   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1759 
1760   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1761              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1762 
1763   if (!EnablePreLink)
1764     Changed |= setFastFlags(F, Options);
1765 
1766   for (auto &BB : F) {
1767     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1768       // Ignore non-calls.
1769       CallInst *CI = dyn_cast<CallInst>(I);
1770       ++I;
1771       if (!CI) continue;
1772 
1773       // Ignore indirect calls.
1774       Function *Callee = CI->getCalledFunction();
1775       if (Callee == 0) continue;
1776 
1777       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1778                  dbgs().flush());
1779       if(Simplifier.fold(CI, AA))
1780         Changed = true;
1781     }
1782   }
1783   return Changed;
1784 }
1785 
1786 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1787   if (skipFunction(F) || UseNative.empty())
1788     return false;
1789 
1790   bool Changed = false;
1791   for (auto &BB : F) {
1792     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1793       // Ignore non-calls.
1794       CallInst *CI = dyn_cast<CallInst>(I);
1795       ++I;
1796       if (!CI) continue;
1797 
1798       // Ignore indirect calls.
1799       Function *Callee = CI->getCalledFunction();
1800       if (Callee == 0) continue;
1801 
1802       if(Simplifier.useNative(CI))
1803         Changed = true;
1804     }
1805   }
1806   return Changed;
1807 }
1808