1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates allocas by either converting them into vectors or
10 // by migrating them to local address space.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "GCNSubtarget.h"
16 #include "Utils/AMDGPUBaseInfo.h"
17 #include "llvm/Analysis/CaptureTracking.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/IntrinsicsAMDGPU.h"
23 #include "llvm/IR/IntrinsicsR600.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "amdgpu-promote-alloca"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 static cl::opt<bool> DisablePromoteAllocaToVector(
34   "disable-promote-alloca-to-vector",
35   cl::desc("Disable promote alloca to vector"),
36   cl::init(false));
37 
38 static cl::opt<bool> DisablePromoteAllocaToLDS(
39   "disable-promote-alloca-to-lds",
40   cl::desc("Disable promote alloca to LDS"),
41   cl::init(false));
42 
43 static cl::opt<unsigned> PromoteAllocaToVectorLimit(
44   "amdgpu-promote-alloca-to-vector-limit",
45   cl::desc("Maximum byte size to consider promote alloca to vector"),
46   cl::init(0));
47 
48 // FIXME: This can create globals so should be a module pass.
49 class AMDGPUPromoteAlloca : public FunctionPass {
50 public:
51   static char ID;
52 
53   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
54 
55   bool runOnFunction(Function &F) override;
56 
57   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
58 
59   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
60 
61   void getAnalysisUsage(AnalysisUsage &AU) const override {
62     AU.setPreservesCFG();
63     FunctionPass::getAnalysisUsage(AU);
64   }
65 };
66 
67 class AMDGPUPromoteAllocaImpl {
68 private:
69   const TargetMachine &TM;
70   Module *Mod = nullptr;
71   const DataLayout *DL = nullptr;
72 
73   // FIXME: This should be per-kernel.
74   uint32_t LocalMemLimit = 0;
75   uint32_t CurrentLocalMemUsage = 0;
76   unsigned MaxVGPRs;
77 
78   bool IsAMDGCN = false;
79   bool IsAMDHSA = false;
80 
81   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
82   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
83 
84   /// BaseAlloca is the alloca root the search started from.
85   /// Val may be that alloca or a recursive user of it.
86   bool collectUsesWithPtrTypes(Value *BaseAlloca,
87                                Value *Val,
88                                std::vector<Value*> &WorkList) const;
89 
90   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
91   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
92   /// Returns true if both operands are derived from the same alloca. Val should
93   /// be the same value as one of the input operands of UseInst.
94   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
95                                        Instruction *UseInst,
96                                        int OpIdx0, int OpIdx1) const;
97 
98   /// Check whether we have enough local memory for promotion.
99   bool hasSufficientLocalMem(const Function &F);
100 
101   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
102 
103 public:
104   AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {}
105   bool run(Function &F);
106 };
107 
108 class AMDGPUPromoteAllocaToVector : public FunctionPass {
109 public:
110   static char ID;
111 
112   AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
113 
114   bool runOnFunction(Function &F) override;
115 
116   StringRef getPassName() const override {
117     return "AMDGPU Promote Alloca to vector";
118   }
119 
120   void getAnalysisUsage(AnalysisUsage &AU) const override {
121     AU.setPreservesCFG();
122     FunctionPass::getAnalysisUsage(AU);
123   }
124 };
125 
126 } // end anonymous namespace
127 
128 char AMDGPUPromoteAlloca::ID = 0;
129 char AMDGPUPromoteAllocaToVector::ID = 0;
130 
131 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,
132                       "AMDGPU promote alloca to vector or LDS", false, false)
133 // Move LDS uses from functions to kernels before promote alloca for accurate
134 // estimation of LDS available
135 INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)
136 INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,
137                     "AMDGPU promote alloca to vector or LDS", false, false)
138 
139 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
140                 "AMDGPU promote alloca to vector", false, false)
141 
142 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
143 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
144 
145 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
146   if (skipFunction(F))
147     return false;
148 
149   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
150     return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F);
151   }
152   return false;
153 }
154 
155 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
156                                                FunctionAnalysisManager &AM) {
157   bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F);
158   if (Changed) {
159     PreservedAnalyses PA;
160     PA.preserveSet<CFGAnalyses>();
161     return PA;
162   }
163   return PreservedAnalyses::all();
164 }
165 
166 bool AMDGPUPromoteAllocaImpl::run(Function &F) {
167   Mod = F.getParent();
168   DL = &Mod->getDataLayout();
169 
170   const Triple &TT = TM.getTargetTriple();
171   IsAMDGCN = TT.getArch() == Triple::amdgcn;
172   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
173 
174   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
175   if (!ST.isPromoteAllocaEnabled())
176     return false;
177 
178   if (IsAMDGCN) {
179     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
180     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
181     // A non-entry function has only 32 caller preserved registers.
182     // Do not promote alloca which will force spilling.
183     if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
184       MaxVGPRs = std::min(MaxVGPRs, 32u);
185   } else {
186     MaxVGPRs = 128;
187   }
188 
189   bool SufficientLDS = hasSufficientLocalMem(F);
190   bool Changed = false;
191   BasicBlock &EntryBB = *F.begin();
192 
193   SmallVector<AllocaInst *, 16> Allocas;
194   for (Instruction &I : EntryBB) {
195     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
196       Allocas.push_back(AI);
197   }
198 
199   for (AllocaInst *AI : Allocas) {
200     if (handleAlloca(*AI, SufficientLDS))
201       Changed = true;
202   }
203 
204   return Changed;
205 }
206 
207 std::pair<Value *, Value *>
208 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
209   Function &F = *Builder.GetInsertBlock()->getParent();
210   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
211 
212   if (!IsAMDHSA) {
213     Function *LocalSizeYFn
214       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
215     Function *LocalSizeZFn
216       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
217 
218     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
219     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
220 
221     ST.makeLIDRangeMetadata(LocalSizeY);
222     ST.makeLIDRangeMetadata(LocalSizeZ);
223 
224     return std::make_pair(LocalSizeY, LocalSizeZ);
225   }
226 
227   // We must read the size out of the dispatch pointer.
228   assert(IsAMDGCN);
229 
230   // We are indexing into this struct, and want to extract the workgroup_size_*
231   // fields.
232   //
233   //   typedef struct hsa_kernel_dispatch_packet_s {
234   //     uint16_t header;
235   //     uint16_t setup;
236   //     uint16_t workgroup_size_x ;
237   //     uint16_t workgroup_size_y;
238   //     uint16_t workgroup_size_z;
239   //     uint16_t reserved0;
240   //     uint32_t grid_size_x ;
241   //     uint32_t grid_size_y ;
242   //     uint32_t grid_size_z;
243   //
244   //     uint32_t private_segment_size;
245   //     uint32_t group_segment_size;
246   //     uint64_t kernel_object;
247   //
248   // #ifdef HSA_LARGE_MODEL
249   //     void *kernarg_address;
250   // #elif defined HSA_LITTLE_ENDIAN
251   //     void *kernarg_address;
252   //     uint32_t reserved1;
253   // #else
254   //     uint32_t reserved1;
255   //     void *kernarg_address;
256   // #endif
257   //     uint64_t reserved2;
258   //     hsa_signal_t completion_signal; // uint64_t wrapper
259   //   } hsa_kernel_dispatch_packet_t
260   //
261   Function *DispatchPtrFn
262     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
263 
264   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
265   DispatchPtr->addRetAttr(Attribute::NoAlias);
266   DispatchPtr->addRetAttr(Attribute::NonNull);
267   F.removeFnAttr("amdgpu-no-dispatch-ptr");
268 
269   // Size of the dispatch packet struct.
270   DispatchPtr->addDereferenceableRetAttr(64);
271 
272   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
273   Value *CastDispatchPtr = Builder.CreateBitCast(
274     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
275 
276   // We could do a single 64-bit load here, but it's likely that the basic
277   // 32-bit and extract sequence is already present, and it is probably easier
278   // to CSE this. The loads should be mergeable later anyway.
279   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
280   LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
281 
282   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
283   LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
284 
285   MDNode *MD = MDNode::get(Mod->getContext(), None);
286   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
287   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
288   ST.makeLIDRangeMetadata(LoadZU);
289 
290   // Extract y component. Upper half of LoadZU should be zero already.
291   Value *Y = Builder.CreateLShr(LoadXY, 16);
292 
293   return std::make_pair(Y, LoadZU);
294 }
295 
296 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
297                                               unsigned N) {
298   Function *F = Builder.GetInsertBlock()->getParent();
299   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F);
300   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
301   StringRef AttrName;
302 
303   switch (N) {
304   case 0:
305     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
306                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
307     AttrName = "amdgpu-no-workitem-id-x";
308     break;
309   case 1:
310     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
311                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
312     AttrName = "amdgpu-no-workitem-id-y";
313     break;
314 
315   case 2:
316     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
317                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
318     AttrName = "amdgpu-no-workitem-id-z";
319     break;
320   default:
321     llvm_unreachable("invalid dimension");
322   }
323 
324   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
325   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
326   ST.makeLIDRangeMetadata(CI);
327   F->removeFnAttr(AttrName);
328 
329   return CI;
330 }
331 
332 static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
333   return FixedVectorType::get(ArrayTy->getElementType(),
334                               ArrayTy->getNumElements());
335 }
336 
337 static Value *stripBitcasts(Value *V) {
338   while (Instruction *I = dyn_cast<Instruction>(V)) {
339     if (I->getOpcode() != Instruction::BitCast)
340       break;
341     V = I->getOperand(0);
342   }
343   return V;
344 }
345 
346 static Value *
347 calculateVectorIndex(Value *Ptr,
348                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
349   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr));
350   if (!GEP)
351     return nullptr;
352 
353   auto I = GEPIdx.find(GEP);
354   return I == GEPIdx.end() ? nullptr : I->second;
355 }
356 
357 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
358   // FIXME we only support simple cases
359   if (GEP->getNumOperands() != 3)
360     return nullptr;
361 
362   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
363   if (!I0 || !I0->isZero())
364     return nullptr;
365 
366   return GEP->getOperand(2);
367 }
368 
369 // Not an instruction handled below to turn into a vector.
370 //
371 // TODO: Check isTriviallyVectorizable for calls and handle other
372 // instructions.
373 static bool canVectorizeInst(Instruction *Inst, User *User,
374                              const DataLayout &DL) {
375   switch (Inst->getOpcode()) {
376   case Instruction::Load: {
377     // Currently only handle the case where the Pointer Operand is a GEP.
378     // Also we could not vectorize volatile or atomic loads.
379     LoadInst *LI = cast<LoadInst>(Inst);
380     if (isa<AllocaInst>(User) &&
381         LI->getPointerOperandType() == User->getType() &&
382         isa<VectorType>(LI->getType()))
383       return true;
384 
385     Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand());
386     if (!PtrInst)
387       return false;
388 
389     return (PtrInst->getOpcode() == Instruction::GetElementPtr ||
390             PtrInst->getOpcode() == Instruction::BitCast) &&
391            LI->isSimple();
392   }
393   case Instruction::BitCast:
394     return true;
395   case Instruction::Store: {
396     // Must be the stored pointer operand, not a stored value, plus
397     // since it should be canonical form, the User should be a GEP.
398     // Also we could not vectorize volatile or atomic stores.
399     StoreInst *SI = cast<StoreInst>(Inst);
400     if (isa<AllocaInst>(User) &&
401         SI->getPointerOperandType() == User->getType() &&
402         isa<VectorType>(SI->getValueOperand()->getType()))
403       return true;
404 
405     Instruction *UserInst = dyn_cast<Instruction>(User);
406     if (!UserInst)
407       return false;
408 
409     return (SI->getPointerOperand() == User) &&
410            (UserInst->getOpcode() == Instruction::GetElementPtr ||
411             UserInst->getOpcode() == Instruction::BitCast) &&
412            SI->isSimple();
413   }
414   default:
415     return false;
416   }
417 }
418 
419 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
420                                      unsigned MaxVGPRs) {
421 
422   if (DisablePromoteAllocaToVector) {
423     LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
424     return false;
425   }
426 
427   Type *AllocaTy = Alloca->getAllocatedType();
428   auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
429   if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
430     if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
431         ArrayTy->getNumElements() > 0)
432       VectorTy = arrayTypeToVecType(ArrayTy);
433   }
434 
435   // Use up to 1/4 of available register budget for vectorization.
436   unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
437                                               : (MaxVGPRs * 32);
438 
439   if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
440     LLVM_DEBUG(dbgs() << "  Alloca too big for vectorization with "
441                       << MaxVGPRs << " registers available\n");
442     return false;
443   }
444 
445   LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
446 
447   // FIXME: There is no reason why we can't support larger arrays, we
448   // are just being conservative for now.
449   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
450   // could also be promoted but we don't currently handle this case
451   if (!VectorTy || VectorTy->getNumElements() > 16 ||
452       VectorTy->getNumElements() < 2) {
453     LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
454     return false;
455   }
456 
457   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
458   std::vector<Value *> WorkList;
459   SmallVector<User *, 8> Users(Alloca->users());
460   SmallVector<User *, 8> UseUsers(Users.size(), Alloca);
461   Type *VecEltTy = VectorTy->getElementType();
462   while (!Users.empty()) {
463     User *AllocaUser = Users.pop_back_val();
464     User *UseUser = UseUsers.pop_back_val();
465     Instruction *Inst = dyn_cast<Instruction>(AllocaUser);
466 
467     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
468     if (!GEP) {
469       if (!canVectorizeInst(Inst, UseUser, DL))
470         return false;
471 
472       if (Inst->getOpcode() == Instruction::BitCast) {
473         Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType();
474         Type *ToTy = Inst->getType()->getPointerElementType();
475         if (FromTy->isAggregateType() || ToTy->isAggregateType() ||
476             DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy))
477           continue;
478 
479         for (User *CastUser : Inst->users()) {
480           if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser)))
481             continue;
482           Users.push_back(CastUser);
483           UseUsers.push_back(Inst);
484         }
485 
486         continue;
487       }
488 
489       WorkList.push_back(AllocaUser);
490       continue;
491     }
492 
493     Value *Index = GEPToVectorIndex(GEP);
494 
495     // If we can't compute a vector index from this GEP, then we can't
496     // promote this alloca to vector.
497     if (!Index) {
498       LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
499                         << '\n');
500       return false;
501     }
502 
503     GEPVectorIdx[GEP] = Index;
504     Users.append(GEP->user_begin(), GEP->user_end());
505     UseUsers.append(GEP->getNumUses(), GEP);
506   }
507 
508   LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
509                     << *VectorTy << '\n');
510 
511   for (Value *V : WorkList) {
512     Instruction *Inst = cast<Instruction>(V);
513     IRBuilder<> Builder(Inst);
514     switch (Inst->getOpcode()) {
515     case Instruction::Load: {
516       if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy())
517         break;
518 
519       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
520       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
521       if (!Index)
522         break;
523 
524       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
525       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
526       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
527       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
528       if (Inst->getType() != VecEltTy)
529         ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
530       Inst->replaceAllUsesWith(ExtractElement);
531       Inst->eraseFromParent();
532       break;
533     }
534     case Instruction::Store: {
535       StoreInst *SI = cast<StoreInst>(Inst);
536       if (SI->getValueOperand()->getType() == AllocaTy ||
537           SI->getValueOperand()->getType()->isVectorTy())
538         break;
539 
540       Value *Ptr = SI->getPointerOperand();
541       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
542       if (!Index)
543         break;
544 
545       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
546       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
547       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
548       Value *Elt = SI->getValueOperand();
549       if (Elt->getType() != VecEltTy)
550         Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
551       Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
552       Builder.CreateStore(NewVecValue, BitCast);
553       Inst->eraseFromParent();
554       break;
555     }
556 
557     default:
558       llvm_unreachable("Inconsistency in instructions promotable to vector");
559     }
560   }
561   return true;
562 }
563 
564 static bool isCallPromotable(CallInst *CI) {
565   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
566   if (!II)
567     return false;
568 
569   switch (II->getIntrinsicID()) {
570   case Intrinsic::memcpy:
571   case Intrinsic::memmove:
572   case Intrinsic::memset:
573   case Intrinsic::lifetime_start:
574   case Intrinsic::lifetime_end:
575   case Intrinsic::invariant_start:
576   case Intrinsic::invariant_end:
577   case Intrinsic::launder_invariant_group:
578   case Intrinsic::strip_invariant_group:
579   case Intrinsic::objectsize:
580     return true;
581   default:
582     return false;
583   }
584 }
585 
586 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
587     Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
588     int OpIdx1) const {
589   // Figure out which operand is the one we might not be promoting.
590   Value *OtherOp = Inst->getOperand(OpIdx0);
591   if (Val == OtherOp)
592     OtherOp = Inst->getOperand(OpIdx1);
593 
594   if (isa<ConstantPointerNull>(OtherOp))
595     return true;
596 
597   Value *OtherObj = getUnderlyingObject(OtherOp);
598   if (!isa<AllocaInst>(OtherObj))
599     return false;
600 
601   // TODO: We should be able to replace undefs with the right pointer type.
602 
603   // TODO: If we know the other base object is another promotable
604   // alloca, not necessarily this alloca, we can do this. The
605   // important part is both must have the same address space at
606   // the end.
607   if (OtherObj != BaseAlloca) {
608     LLVM_DEBUG(
609         dbgs() << "Found a binary instruction with another alloca object\n");
610     return false;
611   }
612 
613   return true;
614 }
615 
616 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
617     Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
618 
619   for (User *User : Val->users()) {
620     if (is_contained(WorkList, User))
621       continue;
622 
623     if (CallInst *CI = dyn_cast<CallInst>(User)) {
624       if (!isCallPromotable(CI))
625         return false;
626 
627       WorkList.push_back(User);
628       continue;
629     }
630 
631     Instruction *UseInst = cast<Instruction>(User);
632     if (UseInst->getOpcode() == Instruction::PtrToInt)
633       return false;
634 
635     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
636       if (LI->isVolatile())
637         return false;
638 
639       continue;
640     }
641 
642     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
643       if (SI->isVolatile())
644         return false;
645 
646       // Reject if the stored value is not the pointer operand.
647       if (SI->getPointerOperand() != Val)
648         return false;
649     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
650       if (RMW->isVolatile())
651         return false;
652     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
653       if (CAS->isVolatile())
654         return false;
655     }
656 
657     // Only promote a select if we know that the other select operand
658     // is from another pointer that will also be promoted.
659     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
660       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
661         return false;
662 
663       // May need to rewrite constant operands.
664       WorkList.push_back(ICmp);
665     }
666 
667     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
668       // Give up if the pointer may be captured.
669       if (PointerMayBeCaptured(UseInst, true, true))
670         return false;
671       // Don't collect the users of this.
672       WorkList.push_back(User);
673       continue;
674     }
675 
676     // Do not promote vector/aggregate type instructions. It is hard to track
677     // their users.
678     if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User))
679       return false;
680 
681     if (!User->getType()->isPointerTy())
682       continue;
683 
684     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
685       // Be conservative if an address could be computed outside the bounds of
686       // the alloca.
687       if (!GEP->isInBounds())
688         return false;
689     }
690 
691     // Only promote a select if we know that the other select operand is from
692     // another pointer that will also be promoted.
693     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
694       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
695         return false;
696     }
697 
698     // Repeat for phis.
699     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
700       // TODO: Handle more complex cases. We should be able to replace loops
701       // over arrays.
702       switch (Phi->getNumIncomingValues()) {
703       case 1:
704         break;
705       case 2:
706         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
707           return false;
708         break;
709       default:
710         return false;
711       }
712     }
713 
714     WorkList.push_back(User);
715     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
716       return false;
717   }
718 
719   return true;
720 }
721 
722 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
723 
724   FunctionType *FTy = F.getFunctionType();
725   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
726 
727   // If the function has any arguments in the local address space, then it's
728   // possible these arguments require the entire local memory space, so
729   // we cannot use local memory in the pass.
730   for (Type *ParamTy : FTy->params()) {
731     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
732     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
733       LocalMemLimit = 0;
734       LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
735                            "local memory disabled.\n");
736       return false;
737     }
738   }
739 
740   LocalMemLimit = ST.getLocalMemorySize();
741   if (LocalMemLimit == 0)
742     return false;
743 
744   SmallVector<const Constant *, 16> Stack;
745   SmallPtrSet<const Constant *, 8> VisitedConstants;
746   SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
747 
748   auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
749     for (const User *U : Val->users()) {
750       if (const Instruction *Use = dyn_cast<Instruction>(U)) {
751         if (Use->getParent()->getParent() == &F)
752           return true;
753       } else {
754         const Constant *C = cast<Constant>(U);
755         if (VisitedConstants.insert(C).second)
756           Stack.push_back(C);
757       }
758     }
759 
760     return false;
761   };
762 
763   for (GlobalVariable &GV : Mod->globals()) {
764     if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
765       continue;
766 
767     if (visitUsers(&GV, &GV)) {
768       UsedLDS.insert(&GV);
769       Stack.clear();
770       continue;
771     }
772 
773     // For any ConstantExpr uses, we need to recursively search the users until
774     // we see a function.
775     while (!Stack.empty()) {
776       const Constant *C = Stack.pop_back_val();
777       if (visitUsers(&GV, C)) {
778         UsedLDS.insert(&GV);
779         Stack.clear();
780         break;
781       }
782     }
783   }
784 
785   const DataLayout &DL = Mod->getDataLayout();
786   SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
787   AllocatedSizes.reserve(UsedLDS.size());
788 
789   for (const GlobalVariable *GV : UsedLDS) {
790     Align Alignment =
791         DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
792     uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
793 
794     // HIP uses an extern unsized array in local address space for dynamically
795     // allocated shared memory.  In that case, we have to disable the promotion.
796     if (GV->hasExternalLinkage() && AllocSize == 0) {
797       LocalMemLimit = 0;
798       LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated "
799                            "local memory. Promoting to local memory "
800                            "disabled.\n");
801       return false;
802     }
803 
804     AllocatedSizes.emplace_back(AllocSize, Alignment);
805   }
806 
807   // Sort to try to estimate the worst case alignment padding
808   //
809   // FIXME: We should really do something to fix the addresses to a more optimal
810   // value instead
811   llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS,
812                                 std::pair<uint64_t, Align> RHS) {
813     return LHS.second < RHS.second;
814   });
815 
816   // Check how much local memory is being used by global objects
817   CurrentLocalMemUsage = 0;
818 
819   // FIXME: Try to account for padding here. The real padding and address is
820   // currently determined from the inverse order of uses in the function when
821   // legalizing, which could also potentially change. We try to estimate the
822   // worst case here, but we probably should fix the addresses earlier.
823   for (auto Alloc : AllocatedSizes) {
824     CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
825     CurrentLocalMemUsage += Alloc.first;
826   }
827 
828   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
829                                                           F);
830 
831   // Restrict local memory usage so that we don't drastically reduce occupancy,
832   // unless it is already significantly reduced.
833 
834   // TODO: Have some sort of hint or other heuristics to guess occupancy based
835   // on other factors..
836   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
837   if (OccupancyHint == 0)
838     OccupancyHint = 7;
839 
840   // Clamp to max value.
841   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
842 
843   // Check the hint but ignore it if it's obviously wrong from the existing LDS
844   // usage.
845   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
846 
847 
848   // Round up to the next tier of usage.
849   unsigned MaxSizeWithWaveCount
850     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
851 
852   // Program is possibly broken by using more local mem than available.
853   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
854     return false;
855 
856   LocalMemLimit = MaxSizeWithWaveCount;
857 
858   LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
859                     << " bytes of LDS\n"
860                     << "  Rounding size to " << MaxSizeWithWaveCount
861                     << " with a maximum occupancy of " << MaxOccupancy << '\n'
862                     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
863                     << " available for promotion\n");
864 
865   return true;
866 }
867 
868 // FIXME: Should try to pick the most likely to be profitable allocas first.
869 bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) {
870   // Array allocations are probably not worth handling, since an allocation of
871   // the array type is the canonical form.
872   if (!I.isStaticAlloca() || I.isArrayAllocation())
873     return false;
874 
875   const DataLayout &DL = Mod->getDataLayout();
876   IRBuilder<> Builder(&I);
877 
878   // First try to replace the alloca with a vector
879   Type *AllocaTy = I.getAllocatedType();
880 
881   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
882 
883   if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
884     return true; // Promoted to vector.
885 
886   if (DisablePromoteAllocaToLDS)
887     return false;
888 
889   const Function &ContainingFunction = *I.getParent()->getParent();
890   CallingConv::ID CC = ContainingFunction.getCallingConv();
891 
892   // Don't promote the alloca to LDS for shader calling conventions as the work
893   // item ID intrinsics are not supported for these calling conventions.
894   // Furthermore not all LDS is available for some of the stages.
895   switch (CC) {
896   case CallingConv::AMDGPU_KERNEL:
897   case CallingConv::SPIR_KERNEL:
898     break;
899   default:
900     LLVM_DEBUG(
901         dbgs()
902         << " promote alloca to LDS not supported with calling convention.\n");
903     return false;
904   }
905 
906   // Not likely to have sufficient local memory for promotion.
907   if (!SufficientLDS)
908     return false;
909 
910   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
911   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
912 
913   Align Alignment =
914       DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
915 
916   // FIXME: This computed padding is likely wrong since it depends on inverse
917   // usage order.
918   //
919   // FIXME: It is also possible that if we're allowed to use all of the memory
920   // could could end up using more than the maximum due to alignment padding.
921 
922   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
923   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
924   NewSize += AllocSize;
925 
926   if (NewSize > LocalMemLimit) {
927     LLVM_DEBUG(dbgs() << "  " << AllocSize
928                       << " bytes of local memory not available to promote\n");
929     return false;
930   }
931 
932   CurrentLocalMemUsage = NewSize;
933 
934   std::vector<Value*> WorkList;
935 
936   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
937     LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
938     return false;
939   }
940 
941   LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
942 
943   Function *F = I.getParent()->getParent();
944 
945   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
946   GlobalVariable *GV = new GlobalVariable(
947       *Mod, GVTy, false, GlobalValue::InternalLinkage,
948       UndefValue::get(GVTy),
949       Twine(F->getName()) + Twine('.') + I.getName(),
950       nullptr,
951       GlobalVariable::NotThreadLocal,
952       AMDGPUAS::LOCAL_ADDRESS);
953   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
954   GV->setAlignment(I.getAlign());
955 
956   Value *TCntY, *TCntZ;
957 
958   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
959   Value *TIdX = getWorkitemID(Builder, 0);
960   Value *TIdY = getWorkitemID(Builder, 1);
961   Value *TIdZ = getWorkitemID(Builder, 2);
962 
963   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
964   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
965   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
966   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
967   TID = Builder.CreateAdd(TID, TIdZ);
968 
969   Value *Indices[] = {
970     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
971     TID
972   };
973 
974   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
975   I.mutateType(Offset->getType());
976   I.replaceAllUsesWith(Offset);
977   I.eraseFromParent();
978 
979   SmallVector<IntrinsicInst *> DeferredIntrs;
980 
981   for (Value *V : WorkList) {
982     CallInst *Call = dyn_cast<CallInst>(V);
983     if (!Call) {
984       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
985         Value *Src0 = CI->getOperand(0);
986         PointerType *NewTy = PointerType::getWithSamePointeeType(
987             cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS);
988 
989         if (isa<ConstantPointerNull>(CI->getOperand(0)))
990           CI->setOperand(0, ConstantPointerNull::get(NewTy));
991 
992         if (isa<ConstantPointerNull>(CI->getOperand(1)))
993           CI->setOperand(1, ConstantPointerNull::get(NewTy));
994 
995         continue;
996       }
997 
998       // The operand's value should be corrected on its own and we don't want to
999       // touch the users.
1000       if (isa<AddrSpaceCastInst>(V))
1001         continue;
1002 
1003       PointerType *NewTy = PointerType::getWithSamePointeeType(
1004           cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS);
1005 
1006       // FIXME: It doesn't really make sense to try to do this for all
1007       // instructions.
1008       V->mutateType(NewTy);
1009 
1010       // Adjust the types of any constant operands.
1011       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1012         if (isa<ConstantPointerNull>(SI->getOperand(1)))
1013           SI->setOperand(1, ConstantPointerNull::get(NewTy));
1014 
1015         if (isa<ConstantPointerNull>(SI->getOperand(2)))
1016           SI->setOperand(2, ConstantPointerNull::get(NewTy));
1017       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
1018         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1019           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
1020             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
1021         }
1022       }
1023 
1024       continue;
1025     }
1026 
1027     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
1028     Builder.SetInsertPoint(Intr);
1029     switch (Intr->getIntrinsicID()) {
1030     case Intrinsic::lifetime_start:
1031     case Intrinsic::lifetime_end:
1032       // These intrinsics are for address space 0 only
1033       Intr->eraseFromParent();
1034       continue;
1035     case Intrinsic::memcpy:
1036     case Intrinsic::memmove:
1037       // These have 2 pointer operands. In case if second pointer also needs
1038       // to be replaced we defer processing of these intrinsics until all
1039       // other values are processed.
1040       DeferredIntrs.push_back(Intr);
1041       continue;
1042     case Intrinsic::memset: {
1043       MemSetInst *MemSet = cast<MemSetInst>(Intr);
1044       Builder.CreateMemSet(
1045           MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
1046           MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
1047       Intr->eraseFromParent();
1048       continue;
1049     }
1050     case Intrinsic::invariant_start:
1051     case Intrinsic::invariant_end:
1052     case Intrinsic::launder_invariant_group:
1053     case Intrinsic::strip_invariant_group:
1054       Intr->eraseFromParent();
1055       // FIXME: I think the invariant marker should still theoretically apply,
1056       // but the intrinsics need to be changed to accept pointers with any
1057       // address space.
1058       continue;
1059     case Intrinsic::objectsize: {
1060       Value *Src = Intr->getOperand(0);
1061       Function *ObjectSize = Intrinsic::getDeclaration(
1062           Mod, Intrinsic::objectsize,
1063           {Intr->getType(),
1064            PointerType::getWithSamePointeeType(
1065                cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)});
1066 
1067       CallInst *NewCall = Builder.CreateCall(
1068           ObjectSize,
1069           {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
1070       Intr->replaceAllUsesWith(NewCall);
1071       Intr->eraseFromParent();
1072       continue;
1073     }
1074     default:
1075       Intr->print(errs());
1076       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
1077     }
1078   }
1079 
1080   for (IntrinsicInst *Intr : DeferredIntrs) {
1081     Builder.SetInsertPoint(Intr);
1082     Intrinsic::ID ID = Intr->getIntrinsicID();
1083     assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove);
1084 
1085     MemTransferInst *MI = cast<MemTransferInst>(Intr);
1086     auto *B =
1087       Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(),
1088                                     MI->getRawSource(), MI->getSourceAlign(),
1089                                     MI->getLength(), MI->isVolatile());
1090 
1091     for (unsigned I = 0; I != 2; ++I) {
1092       if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) {
1093         B->addDereferenceableParamAttr(I, Bytes);
1094       }
1095     }
1096 
1097     Intr->eraseFromParent();
1098   }
1099 
1100   return true;
1101 }
1102 
1103 bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) {
1104   // Array allocations are probably not worth handling, since an allocation of
1105   // the array type is the canonical form.
1106   if (!I.isStaticAlloca() || I.isArrayAllocation())
1107     return false;
1108 
1109   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
1110 
1111   Module *Mod = I.getParent()->getParent()->getParent();
1112   return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
1113 }
1114 
1115 bool promoteAllocasToVector(Function &F, TargetMachine &TM) {
1116   if (DisablePromoteAllocaToVector)
1117     return false;
1118 
1119   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
1120   if (!ST.isPromoteAllocaEnabled())
1121     return false;
1122 
1123   unsigned MaxVGPRs;
1124   if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1125     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
1126     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
1127     // A non-entry function has only 32 caller preserved registers.
1128     // Do not promote alloca which will force spilling.
1129     if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
1130       MaxVGPRs = std::min(MaxVGPRs, 32u);
1131   } else {
1132     MaxVGPRs = 128;
1133   }
1134 
1135   bool Changed = false;
1136   BasicBlock &EntryBB = *F.begin();
1137 
1138   SmallVector<AllocaInst *, 16> Allocas;
1139   for (Instruction &I : EntryBB) {
1140     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
1141       Allocas.push_back(AI);
1142   }
1143 
1144   for (AllocaInst *AI : Allocas) {
1145     if (handlePromoteAllocaToVector(*AI, MaxVGPRs))
1146       Changed = true;
1147   }
1148 
1149   return Changed;
1150 }
1151 
1152 bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
1153   if (skipFunction(F))
1154     return false;
1155   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
1156     return promoteAllocasToVector(F, TPC->getTM<TargetMachine>());
1157   }
1158   return false;
1159 }
1160 
1161 PreservedAnalyses
1162 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
1163   bool Changed = promoteAllocasToVector(F, TM);
1164   if (Changed) {
1165     PreservedAnalyses PA;
1166     PA.preserveSet<CFGAnalyses>();
1167     return PA;
1168   }
1169   return PreservedAnalyses::all();
1170 }
1171 
1172 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
1173   return new AMDGPUPromoteAlloca();
1174 }
1175 
1176 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
1177   return new AMDGPUPromoteAllocaToVector();
1178 }
1179