1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCFixedLenDisassembler.h"
28 #include "llvm/Support/AMDHSAKernelDescriptor.h"
29 #include "llvm/Support/TargetRegistry.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "amdgpu-disassembler"
34 
35 #define SGPR_MAX                                                               \
36   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
37                  : AMDGPU::EncValues::SGPR_MAX_SI)
38 
39 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
40 
41 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
42                                        MCContext &Ctx,
43                                        MCInstrInfo const *MCII) :
44   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
45   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
46 
47   // ToDo: AMDGPUDisassembler supports only VI ISA.
48   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
49     report_fatal_error("Disassembly not yet supported for subtarget");
50 }
51 
52 inline static MCDisassembler::DecodeStatus
53 addOperand(MCInst &Inst, const MCOperand& Opnd) {
54   Inst.addOperand(Opnd);
55   return Opnd.isValid() ?
56     MCDisassembler::Success :
57     MCDisassembler::Fail;
58 }
59 
60 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
61                                 uint16_t NameIdx) {
62   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
63   if (OpIdx != -1) {
64     auto I = MI.begin();
65     std::advance(I, OpIdx);
66     MI.insert(I, Op);
67   }
68   return OpIdx;
69 }
70 
71 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
72                                        uint64_t Addr, const void *Decoder) {
73   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
74 
75   // Our branches take a simm16, but we need two extra bits to account for the
76   // factor of 4.
77   APInt SignedOffset(18, Imm * 4, true);
78   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
79 
80   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
81     return MCDisassembler::Success;
82   return addOperand(Inst, MCOperand::createImm(Imm));
83 }
84 
85 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
86                                      uint64_t Addr, const void *Decoder) {
87   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
88   int64_t Offset;
89   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
90     Offset = Imm & 0xFFFFF;
91   } else {                    // GFX9+ supports 21-bit signed offsets.
92     Offset = SignExtend64<21>(Imm);
93   }
94   return addOperand(Inst, MCOperand::createImm(Offset));
95 }
96 
97 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
98                                   uint64_t Addr, const void *Decoder) {
99   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
100   return addOperand(Inst, DAsm->decodeBoolReg(Val));
101 }
102 
103 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
104 static DecodeStatus StaticDecoderName(MCInst &Inst, \
105                                        unsigned Imm, \
106                                        uint64_t /*Addr*/, \
107                                        const void *Decoder) { \
108   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
109   return addOperand(Inst, DAsm->DecoderName(Imm)); \
110 }
111 
112 #define DECODE_OPERAND_REG(RegClass) \
113 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
114 
115 DECODE_OPERAND_REG(VGPR_32)
116 DECODE_OPERAND_REG(VRegOrLds_32)
117 DECODE_OPERAND_REG(VS_32)
118 DECODE_OPERAND_REG(VS_64)
119 DECODE_OPERAND_REG(VS_128)
120 
121 DECODE_OPERAND_REG(VReg_64)
122 DECODE_OPERAND_REG(VReg_96)
123 DECODE_OPERAND_REG(VReg_128)
124 DECODE_OPERAND_REG(VReg_256)
125 DECODE_OPERAND_REG(VReg_512)
126 
127 DECODE_OPERAND_REG(SReg_32)
128 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
129 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
130 DECODE_OPERAND_REG(SRegOrLds_32)
131 DECODE_OPERAND_REG(SReg_64)
132 DECODE_OPERAND_REG(SReg_64_XEXEC)
133 DECODE_OPERAND_REG(SReg_128)
134 DECODE_OPERAND_REG(SReg_256)
135 DECODE_OPERAND_REG(SReg_512)
136 
137 DECODE_OPERAND_REG(AGPR_32)
138 DECODE_OPERAND_REG(AReg_128)
139 DECODE_OPERAND_REG(AReg_512)
140 DECODE_OPERAND_REG(AReg_1024)
141 DECODE_OPERAND_REG(AV_32)
142 DECODE_OPERAND_REG(AV_64)
143 
144 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
145                                          unsigned Imm,
146                                          uint64_t Addr,
147                                          const void *Decoder) {
148   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
149   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
150 }
151 
152 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
153                                          unsigned Imm,
154                                          uint64_t Addr,
155                                          const void *Decoder) {
156   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
157   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
158 }
159 
160 static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
161                                         unsigned Imm,
162                                         uint64_t Addr,
163                                         const void *Decoder) {
164   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
165   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
166 }
167 
168 static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
169                                         unsigned Imm,
170                                         uint64_t Addr,
171                                         const void *Decoder) {
172   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
173   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
174 }
175 
176 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
177                                            unsigned Imm,
178                                            uint64_t Addr,
179                                            const void *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
182 }
183 
184 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
185                                            unsigned Imm,
186                                            uint64_t Addr,
187                                            const void *Decoder) {
188   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
189   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
190 }
191 
192 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
193                                             unsigned Imm,
194                                             uint64_t Addr,
195                                             const void *Decoder) {
196   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
197   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
198 }
199 
200 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
201                                           unsigned Imm,
202                                           uint64_t Addr,
203                                           const void *Decoder) {
204   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
205   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
206 }
207 
208 static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst,
209                                          unsigned Imm,
210                                          uint64_t Addr,
211                                          const void *Decoder) {
212   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
213   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm));
214 }
215 
216 #define DECODE_SDWA(DecName) \
217 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
218 
219 DECODE_SDWA(Src32)
220 DECODE_SDWA(Src16)
221 DECODE_SDWA(VopcDst)
222 
223 #include "AMDGPUGenDisassemblerTables.inc"
224 
225 //===----------------------------------------------------------------------===//
226 //
227 //===----------------------------------------------------------------------===//
228 
229 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
230   assert(Bytes.size() >= sizeof(T));
231   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
232   Bytes = Bytes.slice(sizeof(T));
233   return Res;
234 }
235 
236 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
237                                                MCInst &MI,
238                                                uint64_t Inst,
239                                                uint64_t Address) const {
240   assert(MI.getOpcode() == 0);
241   assert(MI.getNumOperands() == 0);
242   MCInst TmpInst;
243   HasLiteral = false;
244   const auto SavedBytes = Bytes;
245   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
246     MI = TmpInst;
247     return MCDisassembler::Success;
248   }
249   Bytes = SavedBytes;
250   return MCDisassembler::Fail;
251 }
252 
253 static bool isValidDPP8(const MCInst &MI) {
254   using namespace llvm::AMDGPU::DPP;
255   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
256   assert(FiIdx != -1);
257   if ((unsigned)FiIdx >= MI.getNumOperands())
258     return false;
259   unsigned Fi = MI.getOperand(FiIdx).getImm();
260   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
261 }
262 
263 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
264                                                 ArrayRef<uint8_t> Bytes_,
265                                                 uint64_t Address,
266                                                 raw_ostream &CS) const {
267   CommentStream = &CS;
268   bool IsSDWA = false;
269 
270   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
271   Bytes = Bytes_.slice(0, MaxInstBytesNum);
272 
273   DecodeStatus Res = MCDisassembler::Fail;
274   do {
275     // ToDo: better to switch encoding length using some bit predicate
276     // but it is unknown yet, so try all we can
277 
278     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
279     // encodings
280     if (Bytes.size() >= 8) {
281       const uint64_t QW = eatBytes<uint64_t>(Bytes);
282 
283       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
284         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
285         if (Res) {
286           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
287               == -1)
288             break;
289           if (convertDPP8Inst(MI) == MCDisassembler::Success)
290             break;
291           MI = MCInst(); // clear
292         }
293       }
294 
295       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
296       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
297         break;
298 
299       MI = MCInst(); // clear
300 
301       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
302       if (Res) break;
303 
304       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
305       if (Res) { IsSDWA = true;  break; }
306 
307       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
308       if (Res) { IsSDWA = true;  break; }
309 
310       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
311       if (Res) { IsSDWA = true;  break; }
312 
313       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
314         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
315         if (Res)
316           break;
317       }
318 
319       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
320       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
321       // table first so we print the correct name.
322       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
323         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
324         if (Res)
325           break;
326       }
327     }
328 
329     // Reinitialize Bytes as DPP64 could have eaten too much
330     Bytes = Bytes_.slice(0, MaxInstBytesNum);
331 
332     // Try decode 32-bit instruction
333     if (Bytes.size() < 4) break;
334     const uint32_t DW = eatBytes<uint32_t>(Bytes);
335     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
336     if (Res) break;
337 
338     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
339     if (Res) break;
340 
341     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
342     if (Res) break;
343 
344     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
345       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
346       if (Res) break;
347     }
348 
349     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
350     if (Res) break;
351 
352     if (Bytes.size() < 4) break;
353     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
354     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
355     if (Res) break;
356 
357     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
358     if (Res) break;
359 
360     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
361     if (Res) break;
362 
363     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
364   } while (false);
365 
366   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
367               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
368               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
369               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
370               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
371               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
372               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
373               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
374               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
375               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
376     // Insert dummy unused src2_modifiers.
377     insertNamedMCOperand(MI, MCOperand::createImm(0),
378                          AMDGPU::OpName::src2_modifiers);
379   }
380 
381   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
382                         (SIInstrFlags::MUBUF | SIInstrFlags::FLAT)) &&
383       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::glc1) != -1) {
384     insertNamedMCOperand(MI, MCOperand::createImm(1), AMDGPU::OpName::glc1);
385   }
386 
387   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
388     int VAddr0Idx =
389         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
390     int RsrcIdx =
391         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
392     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
393     if (VAddr0Idx >= 0 && NSAArgs > 0) {
394       unsigned NSAWords = (NSAArgs + 3) / 4;
395       if (Bytes.size() < 4 * NSAWords) {
396         Res = MCDisassembler::Fail;
397       } else {
398         for (unsigned i = 0; i < NSAArgs; ++i) {
399           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
400                     decodeOperand_VGPR_32(Bytes[i]));
401         }
402         Bytes = Bytes.slice(4 * NSAWords);
403       }
404     }
405 
406     if (Res)
407       Res = convertMIMGInst(MI);
408   }
409 
410   if (Res && IsSDWA)
411     Res = convertSDWAInst(MI);
412 
413   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
414                                               AMDGPU::OpName::vdst_in);
415   if (VDstIn_Idx != -1) {
416     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
417                            MCOI::OperandConstraint::TIED_TO);
418     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
419          !MI.getOperand(VDstIn_Idx).isReg() ||
420          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
421       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
422         MI.erase(&MI.getOperand(VDstIn_Idx));
423       insertNamedMCOperand(MI,
424         MCOperand::createReg(MI.getOperand(Tied).getReg()),
425         AMDGPU::OpName::vdst_in);
426     }
427   }
428 
429   // if the opcode was not recognized we'll assume a Size of 4 bytes
430   // (unless there are fewer bytes left)
431   Size = Res ? (MaxInstBytesNum - Bytes.size())
432              : std::min((size_t)4, Bytes_.size());
433   return Res;
434 }
435 
436 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
437   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
438       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
439     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
440       // VOPC - insert clamp
441       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
442   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
443     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
444     if (SDst != -1) {
445       // VOPC - insert VCC register as sdst
446       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
447                            AMDGPU::OpName::sdst);
448     } else {
449       // VOP1/2 - insert omod if present in instruction
450       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
451     }
452   }
453   return MCDisassembler::Success;
454 }
455 
456 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
457   unsigned Opc = MI.getOpcode();
458   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
459 
460   // Insert dummy unused src modifiers.
461   if (MI.getNumOperands() < DescNumOps &&
462       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
463     insertNamedMCOperand(MI, MCOperand::createImm(0),
464                          AMDGPU::OpName::src0_modifiers);
465 
466   if (MI.getNumOperands() < DescNumOps &&
467       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
468     insertNamedMCOperand(MI, MCOperand::createImm(0),
469                          AMDGPU::OpName::src1_modifiers);
470 
471   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
472 }
473 
474 // Note that before gfx10, the MIMG encoding provided no information about
475 // VADDR size. Consequently, decoded instructions always show address as if it
476 // has 1 dword, which could be not really so.
477 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
478 
479   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
480                                            AMDGPU::OpName::vdst);
481 
482   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
483                                             AMDGPU::OpName::vdata);
484   int VAddr0Idx =
485       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
486   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
487                                             AMDGPU::OpName::dmask);
488 
489   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
490                                             AMDGPU::OpName::tfe);
491   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
492                                             AMDGPU::OpName::d16);
493 
494   assert(VDataIdx != -1);
495   if (DMaskIdx == -1 || TFEIdx == -1) {// intersect_ray
496     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
497       assert(MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_sa ||
498              MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa ||
499              MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_sa ||
500              MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa);
501       addOperand(MI, MCOperand::createImm(1));
502     }
503     return MCDisassembler::Success;
504   }
505 
506   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
507   bool IsAtomic = (VDstIdx != -1);
508   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
509 
510   bool IsNSA = false;
511   unsigned AddrSize = Info->VAddrDwords;
512 
513   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
514     unsigned DimIdx =
515         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
516     const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
517         AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
518     const AMDGPU::MIMGDimInfo *Dim =
519         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
520 
521     AddrSize = BaseOpcode->NumExtraArgs +
522                (BaseOpcode->Gradients ? Dim->NumGradients : 0) +
523                (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
524                (BaseOpcode->LodOrClampOrMip ? 1 : 0);
525     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
526     if (!IsNSA) {
527       if (AddrSize > 8)
528         AddrSize = 16;
529       else if (AddrSize > 4)
530         AddrSize = 8;
531     } else {
532       if (AddrSize > Info->VAddrDwords) {
533         // The NSA encoding does not contain enough operands for the combination
534         // of base opcode / dimension. Should this be an error?
535         return MCDisassembler::Success;
536       }
537     }
538   }
539 
540   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
541   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
542 
543   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
544   if (D16 && AMDGPU::hasPackedD16(STI)) {
545     DstSize = (DstSize + 1) / 2;
546   }
547 
548   if (MI.getOperand(TFEIdx).getImm())
549     DstSize += 1;
550 
551   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
552     return MCDisassembler::Success;
553 
554   int NewOpcode =
555       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
556   if (NewOpcode == -1)
557     return MCDisassembler::Success;
558 
559   // Widen the register to the correct number of enabled channels.
560   unsigned NewVdata = AMDGPU::NoRegister;
561   if (DstSize != Info->VDataDwords) {
562     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
563 
564     // Get first subregister of VData
565     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
566     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
567     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
568 
569     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
570                                        &MRI.getRegClass(DataRCID));
571     if (NewVdata == AMDGPU::NoRegister) {
572       // It's possible to encode this such that the low register + enabled
573       // components exceeds the register count.
574       return MCDisassembler::Success;
575     }
576   }
577 
578   unsigned NewVAddr0 = AMDGPU::NoRegister;
579   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
580       AddrSize != Info->VAddrDwords) {
581     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
582     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
583     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
584 
585     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
586     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
587                                         &MRI.getRegClass(AddrRCID));
588     if (NewVAddr0 == AMDGPU::NoRegister)
589       return MCDisassembler::Success;
590   }
591 
592   MI.setOpcode(NewOpcode);
593 
594   if (NewVdata != AMDGPU::NoRegister) {
595     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
596 
597     if (IsAtomic) {
598       // Atomic operations have an additional operand (a copy of data)
599       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
600     }
601   }
602 
603   if (NewVAddr0 != AMDGPU::NoRegister) {
604     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
605   } else if (IsNSA) {
606     assert(AddrSize <= Info->VAddrDwords);
607     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
608              MI.begin() + VAddr0Idx + Info->VAddrDwords);
609   }
610 
611   return MCDisassembler::Success;
612 }
613 
614 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
615   return getContext().getRegisterInfo()->
616     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
617 }
618 
619 inline
620 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
621                                          const Twine& ErrMsg) const {
622   *CommentStream << "Error: " + ErrMsg;
623 
624   // ToDo: add support for error operands to MCInst.h
625   // return MCOperand::createError(V);
626   return MCOperand();
627 }
628 
629 inline
630 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
631   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
632 }
633 
634 inline
635 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
636                                                unsigned Val) const {
637   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
638   if (Val >= RegCl.getNumRegs())
639     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
640                            ": unknown register " + Twine(Val));
641   return createRegOperand(RegCl.getRegister(Val));
642 }
643 
644 inline
645 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
646                                                 unsigned Val) const {
647   // ToDo: SI/CI have 104 SGPRs, VI - 102
648   // Valery: here we accepting as much as we can, let assembler sort it out
649   int shift = 0;
650   switch (SRegClassID) {
651   case AMDGPU::SGPR_32RegClassID:
652   case AMDGPU::TTMP_32RegClassID:
653     break;
654   case AMDGPU::SGPR_64RegClassID:
655   case AMDGPU::TTMP_64RegClassID:
656     shift = 1;
657     break;
658   case AMDGPU::SGPR_128RegClassID:
659   case AMDGPU::TTMP_128RegClassID:
660   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
661   // this bundle?
662   case AMDGPU::SGPR_256RegClassID:
663   case AMDGPU::TTMP_256RegClassID:
664     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
665   // this bundle?
666   case AMDGPU::SGPR_512RegClassID:
667   case AMDGPU::TTMP_512RegClassID:
668     shift = 2;
669     break;
670   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
671   // this bundle?
672   default:
673     llvm_unreachable("unhandled register class");
674   }
675 
676   if (Val % (1 << shift)) {
677     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
678                    << ": scalar reg isn't aligned " << Val;
679   }
680 
681   return createRegOperand(SRegClassID, Val >> shift);
682 }
683 
684 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
685   return decodeSrcOp(OPW32, Val);
686 }
687 
688 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
689   return decodeSrcOp(OPW64, Val);
690 }
691 
692 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
693   return decodeSrcOp(OPW128, Val);
694 }
695 
696 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
697   return decodeSrcOp(OPW16, Val);
698 }
699 
700 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
701   return decodeSrcOp(OPWV216, Val);
702 }
703 
704 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
705   // Some instructions have operand restrictions beyond what the encoding
706   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
707   // high bit.
708   Val &= 255;
709 
710   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
711 }
712 
713 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
714   return decodeSrcOp(OPW32, Val);
715 }
716 
717 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
718   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
719 }
720 
721 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
722   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
723 }
724 
725 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
726   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
727 }
728 
729 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
730   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
731 }
732 
733 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
734   return decodeSrcOp(OPW32, Val);
735 }
736 
737 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
738   return decodeSrcOp(OPW64, Val);
739 }
740 
741 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
742   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
743 }
744 
745 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
746   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
747 }
748 
749 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
750   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
751 }
752 
753 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
754   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
755 }
756 
757 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
758   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
759 }
760 
761 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
762   // table-gen generated disassembler doesn't care about operand types
763   // leaving only registry class so SSrc_32 operand turns into SReg_32
764   // and therefore we accept immediates and literals here as well
765   return decodeSrcOp(OPW32, Val);
766 }
767 
768 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
769   unsigned Val) const {
770   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
771   return decodeOperand_SReg_32(Val);
772 }
773 
774 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
775   unsigned Val) const {
776   // SReg_32_XM0 is SReg_32 without EXEC_HI
777   return decodeOperand_SReg_32(Val);
778 }
779 
780 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
781   // table-gen generated disassembler doesn't care about operand types
782   // leaving only registry class so SSrc_32 operand turns into SReg_32
783   // and therefore we accept immediates and literals here as well
784   return decodeSrcOp(OPW32, Val);
785 }
786 
787 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
788   return decodeSrcOp(OPW64, Val);
789 }
790 
791 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
792   return decodeSrcOp(OPW64, Val);
793 }
794 
795 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
796   return decodeSrcOp(OPW128, Val);
797 }
798 
799 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
800   return decodeDstOp(OPW256, Val);
801 }
802 
803 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
804   return decodeDstOp(OPW512, Val);
805 }
806 
807 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
808   // For now all literal constants are supposed to be unsigned integer
809   // ToDo: deal with signed/unsigned 64-bit integer constants
810   // ToDo: deal with float/double constants
811   if (!HasLiteral) {
812     if (Bytes.size() < 4) {
813       return errOperand(0, "cannot read literal, inst bytes left " +
814                         Twine(Bytes.size()));
815     }
816     HasLiteral = true;
817     Literal = eatBytes<uint32_t>(Bytes);
818   }
819   return MCOperand::createImm(Literal);
820 }
821 
822 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
823   using namespace AMDGPU::EncValues;
824 
825   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
826   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
827     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
828     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
829       // Cast prevents negative overflow.
830 }
831 
832 static int64_t getInlineImmVal32(unsigned Imm) {
833   switch (Imm) {
834   case 240:
835     return FloatToBits(0.5f);
836   case 241:
837     return FloatToBits(-0.5f);
838   case 242:
839     return FloatToBits(1.0f);
840   case 243:
841     return FloatToBits(-1.0f);
842   case 244:
843     return FloatToBits(2.0f);
844   case 245:
845     return FloatToBits(-2.0f);
846   case 246:
847     return FloatToBits(4.0f);
848   case 247:
849     return FloatToBits(-4.0f);
850   case 248: // 1 / (2 * PI)
851     return 0x3e22f983;
852   default:
853     llvm_unreachable("invalid fp inline imm");
854   }
855 }
856 
857 static int64_t getInlineImmVal64(unsigned Imm) {
858   switch (Imm) {
859   case 240:
860     return DoubleToBits(0.5);
861   case 241:
862     return DoubleToBits(-0.5);
863   case 242:
864     return DoubleToBits(1.0);
865   case 243:
866     return DoubleToBits(-1.0);
867   case 244:
868     return DoubleToBits(2.0);
869   case 245:
870     return DoubleToBits(-2.0);
871   case 246:
872     return DoubleToBits(4.0);
873   case 247:
874     return DoubleToBits(-4.0);
875   case 248: // 1 / (2 * PI)
876     return 0x3fc45f306dc9c882;
877   default:
878     llvm_unreachable("invalid fp inline imm");
879   }
880 }
881 
882 static int64_t getInlineImmVal16(unsigned Imm) {
883   switch (Imm) {
884   case 240:
885     return 0x3800;
886   case 241:
887     return 0xB800;
888   case 242:
889     return 0x3C00;
890   case 243:
891     return 0xBC00;
892   case 244:
893     return 0x4000;
894   case 245:
895     return 0xC000;
896   case 246:
897     return 0x4400;
898   case 247:
899     return 0xC400;
900   case 248: // 1 / (2 * PI)
901     return 0x3118;
902   default:
903     llvm_unreachable("invalid fp inline imm");
904   }
905 }
906 
907 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
908   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
909       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
910 
911   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
912   switch (Width) {
913   case OPW32:
914   case OPW128: // splat constants
915   case OPW512:
916   case OPW1024:
917     return MCOperand::createImm(getInlineImmVal32(Imm));
918   case OPW64:
919     return MCOperand::createImm(getInlineImmVal64(Imm));
920   case OPW16:
921   case OPWV216:
922     return MCOperand::createImm(getInlineImmVal16(Imm));
923   default:
924     llvm_unreachable("implement me");
925   }
926 }
927 
928 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
929   using namespace AMDGPU;
930 
931   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
932   switch (Width) {
933   default: // fall
934   case OPW32:
935   case OPW16:
936   case OPWV216:
937     return VGPR_32RegClassID;
938   case OPW64: return VReg_64RegClassID;
939   case OPW128: return VReg_128RegClassID;
940   }
941 }
942 
943 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
944   using namespace AMDGPU;
945 
946   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
947   switch (Width) {
948   default: // fall
949   case OPW32:
950   case OPW16:
951   case OPWV216:
952     return AGPR_32RegClassID;
953   case OPW64: return AReg_64RegClassID;
954   case OPW128: return AReg_128RegClassID;
955   case OPW256: return AReg_256RegClassID;
956   case OPW512: return AReg_512RegClassID;
957   case OPW1024: return AReg_1024RegClassID;
958   }
959 }
960 
961 
962 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
963   using namespace AMDGPU;
964 
965   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
966   switch (Width) {
967   default: // fall
968   case OPW32:
969   case OPW16:
970   case OPWV216:
971     return SGPR_32RegClassID;
972   case OPW64: return SGPR_64RegClassID;
973   case OPW128: return SGPR_128RegClassID;
974   case OPW256: return SGPR_256RegClassID;
975   case OPW512: return SGPR_512RegClassID;
976   }
977 }
978 
979 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
980   using namespace AMDGPU;
981 
982   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
983   switch (Width) {
984   default: // fall
985   case OPW32:
986   case OPW16:
987   case OPWV216:
988     return TTMP_32RegClassID;
989   case OPW64: return TTMP_64RegClassID;
990   case OPW128: return TTMP_128RegClassID;
991   case OPW256: return TTMP_256RegClassID;
992   case OPW512: return TTMP_512RegClassID;
993   }
994 }
995 
996 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
997   using namespace AMDGPU::EncValues;
998 
999   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1000   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1001 
1002   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1003 }
1004 
1005 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) const {
1006   using namespace AMDGPU::EncValues;
1007 
1008   assert(Val < 1024); // enum10
1009 
1010   bool IsAGPR = Val & 512;
1011   Val &= 511;
1012 
1013   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1014     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1015                                    : getVgprClassId(Width), Val - VGPR_MIN);
1016   }
1017   if (Val <= SGPR_MAX) {
1018     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1019     static_assert(SGPR_MIN == 0, "");
1020     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1021   }
1022 
1023   int TTmpIdx = getTTmpIdx(Val);
1024   if (TTmpIdx >= 0) {
1025     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1026   }
1027 
1028   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1029     return decodeIntImmed(Val);
1030 
1031   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1032     return decodeFPImmed(Width, Val);
1033 
1034   if (Val == LITERAL_CONST)
1035     return decodeLiteralConstant();
1036 
1037   switch (Width) {
1038   case OPW32:
1039   case OPW16:
1040   case OPWV216:
1041     return decodeSpecialReg32(Val);
1042   case OPW64:
1043     return decodeSpecialReg64(Val);
1044   default:
1045     llvm_unreachable("unexpected immediate type");
1046   }
1047 }
1048 
1049 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1050   using namespace AMDGPU::EncValues;
1051 
1052   assert(Val < 128);
1053   assert(Width == OPW256 || Width == OPW512);
1054 
1055   if (Val <= SGPR_MAX) {
1056     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1057     static_assert(SGPR_MIN == 0, "");
1058     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1059   }
1060 
1061   int TTmpIdx = getTTmpIdx(Val);
1062   if (TTmpIdx >= 0) {
1063     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1064   }
1065 
1066   llvm_unreachable("unknown dst register");
1067 }
1068 
1069 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1070   using namespace AMDGPU;
1071 
1072   switch (Val) {
1073   case 102: return createRegOperand(FLAT_SCR_LO);
1074   case 103: return createRegOperand(FLAT_SCR_HI);
1075   case 104: return createRegOperand(XNACK_MASK_LO);
1076   case 105: return createRegOperand(XNACK_MASK_HI);
1077   case 106: return createRegOperand(VCC_LO);
1078   case 107: return createRegOperand(VCC_HI);
1079   case 108: return createRegOperand(TBA_LO);
1080   case 109: return createRegOperand(TBA_HI);
1081   case 110: return createRegOperand(TMA_LO);
1082   case 111: return createRegOperand(TMA_HI);
1083   case 124: return createRegOperand(M0);
1084   case 125: return createRegOperand(SGPR_NULL);
1085   case 126: return createRegOperand(EXEC_LO);
1086   case 127: return createRegOperand(EXEC_HI);
1087   case 235: return createRegOperand(SRC_SHARED_BASE);
1088   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1089   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1090   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1091   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1092   case 251: return createRegOperand(SRC_VCCZ);
1093   case 252: return createRegOperand(SRC_EXECZ);
1094   case 253: return createRegOperand(SRC_SCC);
1095   case 254: return createRegOperand(LDS_DIRECT);
1096   default: break;
1097   }
1098   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1099 }
1100 
1101 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1102   using namespace AMDGPU;
1103 
1104   switch (Val) {
1105   case 102: return createRegOperand(FLAT_SCR);
1106   case 104: return createRegOperand(XNACK_MASK);
1107   case 106: return createRegOperand(VCC);
1108   case 108: return createRegOperand(TBA);
1109   case 110: return createRegOperand(TMA);
1110   case 125: return createRegOperand(SGPR_NULL);
1111   case 126: return createRegOperand(EXEC);
1112   case 235: return createRegOperand(SRC_SHARED_BASE);
1113   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1114   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1115   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1116   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1117   case 251: return createRegOperand(SRC_VCCZ);
1118   case 252: return createRegOperand(SRC_EXECZ);
1119   case 253: return createRegOperand(SRC_SCC);
1120   default: break;
1121   }
1122   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1123 }
1124 
1125 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1126                                             const unsigned Val) const {
1127   using namespace AMDGPU::SDWA;
1128   using namespace AMDGPU::EncValues;
1129 
1130   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1131       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1132     // XXX: cast to int is needed to avoid stupid warning:
1133     // compare with unsigned is always true
1134     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1135         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1136       return createRegOperand(getVgprClassId(Width),
1137                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1138     }
1139     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1140         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1141                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1142       return createSRegOperand(getSgprClassId(Width),
1143                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1144     }
1145     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1146         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1147       return createSRegOperand(getTtmpClassId(Width),
1148                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1149     }
1150 
1151     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1152 
1153     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1154       return decodeIntImmed(SVal);
1155 
1156     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1157       return decodeFPImmed(Width, SVal);
1158 
1159     return decodeSpecialReg32(SVal);
1160   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1161     return createRegOperand(getVgprClassId(Width), Val);
1162   }
1163   llvm_unreachable("unsupported target");
1164 }
1165 
1166 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1167   return decodeSDWASrc(OPW16, Val);
1168 }
1169 
1170 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1171   return decodeSDWASrc(OPW32, Val);
1172 }
1173 
1174 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1175   using namespace AMDGPU::SDWA;
1176 
1177   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1178           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1179          "SDWAVopcDst should be present only on GFX9+");
1180 
1181   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1182 
1183   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1184     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1185 
1186     int TTmpIdx = getTTmpIdx(Val);
1187     if (TTmpIdx >= 0) {
1188       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1189       return createSRegOperand(TTmpClsId, TTmpIdx);
1190     } else if (Val > SGPR_MAX) {
1191       return IsWave64 ? decodeSpecialReg64(Val)
1192                       : decodeSpecialReg32(Val);
1193     } else {
1194       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1195     }
1196   } else {
1197     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1198   }
1199 }
1200 
1201 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1202   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1203     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1204 }
1205 
1206 bool AMDGPUDisassembler::isVI() const {
1207   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1208 }
1209 
1210 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1211 
1212 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1213 
1214 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1215 
1216 bool AMDGPUDisassembler::isGFX10Plus() const {
1217   return AMDGPU::isGFX10Plus(STI);
1218 }
1219 
1220 //===----------------------------------------------------------------------===//
1221 // AMDGPU specific symbol handling
1222 //===----------------------------------------------------------------------===//
1223 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1224   do {                                                                         \
1225     KdStream << Indent << DIRECTIVE " "                                        \
1226              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1227   } while (0)
1228 
1229 // NOLINTNEXTLINE(readability-identifier-naming)
1230 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1231     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1232   using namespace amdhsa;
1233   StringRef Indent = "\t";
1234 
1235   // We cannot accurately backward compute #VGPRs used from
1236   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1237   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1238   // simply calculate the inverse of what the assembler does.
1239 
1240   uint32_t GranulatedWorkitemVGPRCount =
1241       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1242       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1243 
1244   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1245                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1246 
1247   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1248 
1249   // We cannot backward compute values used to calculate
1250   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1251   // directives can't be computed:
1252   // .amdhsa_reserve_vcc
1253   // .amdhsa_reserve_flat_scratch
1254   // .amdhsa_reserve_xnack_mask
1255   // They take their respective default values if not specified in the assembly.
1256   //
1257   // GRANULATED_WAVEFRONT_SGPR_COUNT
1258   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1259   //
1260   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1261   // are set to 0. So while disassembling we consider that:
1262   //
1263   // GRANULATED_WAVEFRONT_SGPR_COUNT
1264   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1265   //
1266   // The disassembler cannot recover the original values of those 3 directives.
1267 
1268   uint32_t GranulatedWavefrontSGPRCount =
1269       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1270       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1271 
1272   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1273     return MCDisassembler::Fail;
1274 
1275   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1276                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1277 
1278   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1279   KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1280   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1281   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1282 
1283   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1284     return MCDisassembler::Fail;
1285 
1286   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1287                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1288   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1289                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1290   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1291                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1292   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1293                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1294 
1295   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1296     return MCDisassembler::Fail;
1297 
1298   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1299 
1300   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1301     return MCDisassembler::Fail;
1302 
1303   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1304 
1305   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1306     return MCDisassembler::Fail;
1307 
1308   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1309     return MCDisassembler::Fail;
1310 
1311   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1312 
1313   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1314     return MCDisassembler::Fail;
1315 
1316   if (isGFX10Plus()) {
1317     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1318                     COMPUTE_PGM_RSRC1_WGP_MODE);
1319     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1320     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1321   }
1322   return MCDisassembler::Success;
1323 }
1324 
1325 // NOLINTNEXTLINE(readability-identifier-naming)
1326 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1327     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1328   using namespace amdhsa;
1329   StringRef Indent = "\t";
1330   PRINT_DIRECTIVE(
1331       ".amdhsa_system_sgpr_private_segment_wavefront_offset",
1332       COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1333   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1334                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1335   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1336                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1337   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1338                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1339   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1340                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1341   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1342                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1343 
1344   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1345     return MCDisassembler::Fail;
1346 
1347   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1348     return MCDisassembler::Fail;
1349 
1350   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1351     return MCDisassembler::Fail;
1352 
1353   PRINT_DIRECTIVE(
1354       ".amdhsa_exception_fp_ieee_invalid_op",
1355       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1356   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1357                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1358   PRINT_DIRECTIVE(
1359       ".amdhsa_exception_fp_ieee_div_zero",
1360       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1361   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1362                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1363   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1364                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1365   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1366                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1367   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1368                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1369 
1370   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1371     return MCDisassembler::Fail;
1372 
1373   return MCDisassembler::Success;
1374 }
1375 
1376 #undef PRINT_DIRECTIVE
1377 
1378 MCDisassembler::DecodeStatus
1379 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1380     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1381     raw_string_ostream &KdStream) const {
1382 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1383   do {                                                                         \
1384     KdStream << Indent << DIRECTIVE " "                                        \
1385              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1386   } while (0)
1387 
1388   uint16_t TwoByteBuffer = 0;
1389   uint32_t FourByteBuffer = 0;
1390   uint64_t EightByteBuffer = 0;
1391 
1392   StringRef ReservedBytes;
1393   StringRef Indent = "\t";
1394 
1395   assert(Bytes.size() == 64);
1396   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1397 
1398   switch (Cursor.tell()) {
1399   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1400     FourByteBuffer = DE.getU32(Cursor);
1401     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1402              << '\n';
1403     return MCDisassembler::Success;
1404 
1405   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1406     FourByteBuffer = DE.getU32(Cursor);
1407     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1408              << FourByteBuffer << '\n';
1409     return MCDisassembler::Success;
1410 
1411   case amdhsa::RESERVED0_OFFSET:
1412     // 8 reserved bytes, must be 0.
1413     EightByteBuffer = DE.getU64(Cursor);
1414     if (EightByteBuffer) {
1415       return MCDisassembler::Fail;
1416     }
1417     return MCDisassembler::Success;
1418 
1419   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1420     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1421     // So far no directive controls this for Code Object V3, so simply skip for
1422     // disassembly.
1423     DE.skip(Cursor, 8);
1424     return MCDisassembler::Success;
1425 
1426   case amdhsa::RESERVED1_OFFSET:
1427     // 20 reserved bytes, must be 0.
1428     ReservedBytes = DE.getBytes(Cursor, 20);
1429     for (int I = 0; I < 20; ++I) {
1430       if (ReservedBytes[I] != 0) {
1431         return MCDisassembler::Fail;
1432       }
1433     }
1434     return MCDisassembler::Success;
1435 
1436   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1437     // COMPUTE_PGM_RSRC3
1438     //  - Only set for GFX10, GFX6-9 have this to be 0.
1439     //  - Currently no directives directly control this.
1440     FourByteBuffer = DE.getU32(Cursor);
1441     if (!isGFX10Plus() && FourByteBuffer) {
1442       return MCDisassembler::Fail;
1443     }
1444     return MCDisassembler::Success;
1445 
1446   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1447     FourByteBuffer = DE.getU32(Cursor);
1448     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1449         MCDisassembler::Fail) {
1450       return MCDisassembler::Fail;
1451     }
1452     return MCDisassembler::Success;
1453 
1454   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1455     FourByteBuffer = DE.getU32(Cursor);
1456     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1457         MCDisassembler::Fail) {
1458       return MCDisassembler::Fail;
1459     }
1460     return MCDisassembler::Success;
1461 
1462   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1463     using namespace amdhsa;
1464     TwoByteBuffer = DE.getU16(Cursor);
1465 
1466     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1467                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1468     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1469                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1470     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1471                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1472     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1473                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1474     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1475                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1476     PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1477                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1478     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1479                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1480 
1481     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1482       return MCDisassembler::Fail;
1483 
1484     // Reserved for GFX9
1485     if (isGFX9() &&
1486         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1487       return MCDisassembler::Fail;
1488     } else if (isGFX10Plus()) {
1489       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1490                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1491     }
1492 
1493     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1494       return MCDisassembler::Fail;
1495 
1496     return MCDisassembler::Success;
1497 
1498   case amdhsa::RESERVED2_OFFSET:
1499     // 6 bytes from here are reserved, must be 0.
1500     ReservedBytes = DE.getBytes(Cursor, 6);
1501     for (int I = 0; I < 6; ++I) {
1502       if (ReservedBytes[I] != 0)
1503         return MCDisassembler::Fail;
1504     }
1505     return MCDisassembler::Success;
1506 
1507   default:
1508     llvm_unreachable("Unhandled index. Case statements cover everything.");
1509     return MCDisassembler::Fail;
1510   }
1511 #undef PRINT_DIRECTIVE
1512 }
1513 
1514 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1515     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1516   // CP microcode requires the kernel descriptor to be 64 aligned.
1517   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1518     return MCDisassembler::Fail;
1519 
1520   std::string Kd;
1521   raw_string_ostream KdStream(Kd);
1522   KdStream << ".amdhsa_kernel " << KdName << '\n';
1523 
1524   DataExtractor::Cursor C(0);
1525   while (C && C.tell() < Bytes.size()) {
1526     MCDisassembler::DecodeStatus Status =
1527         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1528 
1529     cantFail(C.takeError());
1530 
1531     if (Status == MCDisassembler::Fail)
1532       return MCDisassembler::Fail;
1533   }
1534   KdStream << ".end_amdhsa_kernel\n";
1535   outs() << KdStream.str();
1536   return MCDisassembler::Success;
1537 }
1538 
1539 Optional<MCDisassembler::DecodeStatus>
1540 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1541                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1542                                   raw_ostream &CStream) const {
1543   // Right now only kernel descriptor needs to be handled.
1544   // We ignore all other symbols for target specific handling.
1545   // TODO:
1546   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1547   // Object V2 and V3 when symbols are marked protected.
1548 
1549   // amd_kernel_code_t for Code Object V2.
1550   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1551     Size = 256;
1552     return MCDisassembler::Fail;
1553   }
1554 
1555   // Code Object V3 kernel descriptors.
1556   StringRef Name = Symbol.Name;
1557   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1558     Size = 64; // Size = 64 regardless of success or failure.
1559     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1560   }
1561   return None;
1562 }
1563 
1564 //===----------------------------------------------------------------------===//
1565 // AMDGPUSymbolizer
1566 //===----------------------------------------------------------------------===//
1567 
1568 // Try to find symbol name for specified label
1569 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1570                                 raw_ostream &/*cStream*/, int64_t Value,
1571                                 uint64_t /*Address*/, bool IsBranch,
1572                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1573 
1574   if (!IsBranch) {
1575     return false;
1576   }
1577 
1578   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1579   if (!Symbols)
1580     return false;
1581 
1582   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1583     return Val.Addr == static_cast<uint64_t>(Value) &&
1584            Val.Type == ELF::STT_NOTYPE;
1585   });
1586   if (Result != Symbols->end()) {
1587     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1588     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1589     Inst.addOperand(MCOperand::createExpr(Add));
1590     return true;
1591   }
1592   return false;
1593 }
1594 
1595 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1596                                                        int64_t Value,
1597                                                        uint64_t Address) {
1598   llvm_unreachable("unimplemented");
1599 }
1600 
1601 //===----------------------------------------------------------------------===//
1602 // Initialization
1603 //===----------------------------------------------------------------------===//
1604 
1605 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1606                               LLVMOpInfoCallback /*GetOpInfo*/,
1607                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1608                               void *DisInfo,
1609                               MCContext *Ctx,
1610                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1611   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1612 }
1613 
1614 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1615                                                 const MCSubtargetInfo &STI,
1616                                                 MCContext &Ctx) {
1617   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1618 }
1619 
1620 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1621   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1622                                          createAMDGPUDisassembler);
1623   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1624                                        createAMDGPUSymbolizer);
1625 }
1626