1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This contains a MachineSchedStrategy implementation for maximizing wave
11 /// occupancy on GCN hardware.
12 //===----------------------------------------------------------------------===//
13 
14 #include "GCNSchedStrategy.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIInstrInfo.h"
17 #include "SIMachineFunctionInfo.h"
18 #include "SIRegisterInfo.h"
19 #include "llvm/CodeGen/RegisterClassInfo.h"
20 #include "llvm/Support/MathExtras.h"
21 
22 #define DEBUG_TYPE "machine-scheduler"
23 
24 using namespace llvm;
25 
26 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
27     const MachineSchedContext *C) :
28     GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
29 
30 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
31   GenericScheduler::initialize(DAG);
32 
33   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
34 
35   MF = &DAG->MF;
36 
37   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
38 
39   // FIXME: This is also necessary, because some passes that run after
40   // scheduling and before regalloc increase register pressure.
41   const int ErrorMargin = 3;
42 
43   SGPRExcessLimit = Context->RegClassInfo
44     ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
45   VGPRExcessLimit = Context->RegClassInfo
46     ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
47   if (TargetOccupancy) {
48     SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
49     VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
50   } else {
51     SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
52                                                     SRI->getSGPRPressureSet());
53     VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
54                                                     SRI->getVGPRPressureSet());
55   }
56 
57   SGPRCriticalLimit -= ErrorMargin;
58   VGPRCriticalLimit -= ErrorMargin;
59 }
60 
61 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
62                                      bool AtTop, const RegPressureTracker &RPTracker,
63                                      const SIRegisterInfo *SRI,
64                                      unsigned SGPRPressure,
65                                      unsigned VGPRPressure) {
66 
67   Cand.SU = SU;
68   Cand.AtTop = AtTop;
69 
70   // getDownwardPressure() and getUpwardPressure() make temporary changes to
71   // the tracker, so we need to pass those function a non-const copy.
72   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
73 
74   std::vector<unsigned> Pressure;
75   std::vector<unsigned> MaxPressure;
76 
77   if (AtTop)
78     TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
79   else {
80     // FIXME: I think for bottom up scheduling, the register pressure is cached
81     // and can be retrieved by DAG->getPressureDif(SU).
82     TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
83   }
84 
85   unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
86   unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
87 
88   // If two instructions increase the pressure of different register sets
89   // by the same amount, the generic scheduler will prefer to schedule the
90   // instruction that increases the set with the least amount of registers,
91   // which in our case would be SGPRs.  This is rarely what we want, so
92   // when we report excess/critical register pressure, we do it either
93   // only for VGPRs or only for SGPRs.
94 
95   // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
96   const unsigned MaxVGPRPressureInc = 16;
97   bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
98   bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
99 
100 
101   // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
102   // to increase the likelihood we don't go over the limits.  We should improve
103   // the analysis to look through dependencies to find the path with the least
104   // register pressure.
105 
106   // We only need to update the RPDelata for instructions that increase
107   // register pressure.  Instructions that decrease or keep reg pressure
108   // the same will be marked as RegExcess in tryCandidate() when they
109   // are compared with instructions that increase the register pressure.
110   if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
111     Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
112     Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
113   }
114 
115   if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
116     Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
117     Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
118   }
119 
120   // Register pressure is considered 'CRITICAL' if it is approaching a value
121   // that would reduce the wave occupancy for the execution unit.  When
122   // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
123   // has the same cost, so we don't need to prefer one over the other.
124 
125   int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
126   int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
127 
128   if (SGPRDelta >= 0 || VGPRDelta >= 0) {
129     if (SGPRDelta > VGPRDelta) {
130       Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
131       Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
132     } else {
133       Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
134       Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
135     }
136   }
137 }
138 
139 // This function is mostly cut and pasted from
140 // GenericScheduler::pickNodeFromQueue()
141 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
142                                          const CandPolicy &ZonePolicy,
143                                          const RegPressureTracker &RPTracker,
144                                          SchedCandidate &Cand) {
145   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
146   ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
147   unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
148   unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
149   ReadyQueue &Q = Zone.Available;
150   for (SUnit *SU : Q) {
151 
152     SchedCandidate TryCand(ZonePolicy);
153     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
154                   SGPRPressure, VGPRPressure);
155     // Pass SchedBoundary only when comparing nodes from the same boundary.
156     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
157     GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
158     if (TryCand.Reason != NoCand) {
159       // Initialize resource delta if needed in case future heuristics query it.
160       if (TryCand.ResDelta == SchedResourceDelta())
161         TryCand.initResourceDelta(Zone.DAG, SchedModel);
162       Cand.setBest(TryCand);
163     }
164   }
165 }
166 
167 // This function is mostly cut and pasted from
168 // GenericScheduler::pickNodeBidirectional()
169 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
170   // Schedule as far as possible in the direction of no choice. This is most
171   // efficient, but also provides the best heuristics for CriticalPSets.
172   if (SUnit *SU = Bot.pickOnlyChoice()) {
173     IsTopNode = false;
174     return SU;
175   }
176   if (SUnit *SU = Top.pickOnlyChoice()) {
177     IsTopNode = true;
178     return SU;
179   }
180   // Set the bottom-up policy based on the state of the current bottom zone and
181   // the instructions outside the zone, including the top zone.
182   CandPolicy BotPolicy;
183   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
184   // Set the top-down policy based on the state of the current top zone and
185   // the instructions outside the zone, including the bottom zone.
186   CandPolicy TopPolicy;
187   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
188 
189   // See if BotCand is still valid (because we previously scheduled from Top).
190   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
191   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
192       BotCand.Policy != BotPolicy) {
193     BotCand.reset(CandPolicy());
194     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
195     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
196   } else {
197     LLVM_DEBUG(traceCandidate(BotCand));
198   }
199 
200   // Check if the top Q has a better candidate.
201   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
202   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
203       TopCand.Policy != TopPolicy) {
204     TopCand.reset(CandPolicy());
205     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
206     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
207   } else {
208     LLVM_DEBUG(traceCandidate(TopCand));
209   }
210 
211   // Pick best from BotCand and TopCand.
212   LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
213              dbgs() << "Bot Cand: "; traceCandidate(BotCand););
214   SchedCandidate Cand;
215   if (TopCand.Reason == BotCand.Reason) {
216     Cand = BotCand;
217     GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
218     TopCand.Reason = NoCand;
219     GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
220     if (TopCand.Reason != NoCand) {
221       Cand.setBest(TopCand);
222     } else {
223       TopCand.Reason = TopReason;
224     }
225   } else {
226     if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
227       Cand = TopCand;
228     } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
229       Cand = BotCand;
230     } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
231       Cand = TopCand;
232     } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
233       Cand = BotCand;
234     } else {
235       if (BotCand.Reason > TopCand.Reason) {
236         Cand = TopCand;
237       } else {
238         Cand = BotCand;
239       }
240     }
241   }
242   LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
243 
244   IsTopNode = Cand.AtTop;
245   return Cand.SU;
246 }
247 
248 // This function is mostly cut and pasted from
249 // GenericScheduler::pickNode()
250 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
251   if (DAG->top() == DAG->bottom()) {
252     assert(Top.Available.empty() && Top.Pending.empty() &&
253            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
254     return nullptr;
255   }
256   SUnit *SU;
257   do {
258     if (RegionPolicy.OnlyTopDown) {
259       SU = Top.pickOnlyChoice();
260       if (!SU) {
261         CandPolicy NoPolicy;
262         TopCand.reset(NoPolicy);
263         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
264         assert(TopCand.Reason != NoCand && "failed to find a candidate");
265         SU = TopCand.SU;
266       }
267       IsTopNode = true;
268     } else if (RegionPolicy.OnlyBottomUp) {
269       SU = Bot.pickOnlyChoice();
270       if (!SU) {
271         CandPolicy NoPolicy;
272         BotCand.reset(NoPolicy);
273         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
274         assert(BotCand.Reason != NoCand && "failed to find a candidate");
275         SU = BotCand.SU;
276       }
277       IsTopNode = false;
278     } else {
279       SU = pickNodeBidirectional(IsTopNode);
280     }
281   } while (SU->isScheduled);
282 
283   if (SU->isTopReady())
284     Top.removeReady(SU);
285   if (SU->isBottomReady())
286     Bot.removeReady(SU);
287 
288   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
289                     << *SU->getInstr());
290   return SU;
291 }
292 
293 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
294                         std::unique_ptr<MachineSchedStrategy> S) :
295   ScheduleDAGMILive(C, std::move(S)),
296   ST(MF.getSubtarget<GCNSubtarget>()),
297   MFI(*MF.getInfo<SIMachineFunctionInfo>()),
298   StartingOccupancy(MFI.getOccupancy()),
299   MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) {
300 
301   LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
302 }
303 
304 void GCNScheduleDAGMILive::schedule() {
305   if (Stage == 0) {
306     // Just record regions at the first pass.
307     Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
308     return;
309   }
310 
311   std::vector<MachineInstr*> Unsched;
312   Unsched.reserve(NumRegionInstrs);
313   for (auto &I : *this) {
314     Unsched.push_back(&I);
315   }
316 
317   GCNRegPressure PressureBefore;
318   if (LIS) {
319     PressureBefore = Pressure[RegionIdx];
320 
321     LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
322                GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
323                dbgs() << "Region live-in pressure:  ";
324                llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
325                dbgs() << "Region register pressure: ";
326                PressureBefore.print(dbgs()));
327   }
328 
329   ScheduleDAGMILive::schedule();
330   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
331 
332   if (!LIS)
333     return;
334 
335   // Check the results of scheduling.
336   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
337   auto PressureAfter = getRealRegPressure();
338 
339   LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
340              PressureAfter.print(dbgs()));
341 
342   if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
343       PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) {
344     Pressure[RegionIdx] = PressureAfter;
345     LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
346     return;
347   }
348   unsigned Occ = MFI.getOccupancy();
349   unsigned WavesAfter = std::min(Occ, PressureAfter.getOccupancy(ST));
350   unsigned WavesBefore = std::min(Occ, PressureBefore.getOccupancy(ST));
351   LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
352                     << ", after " << WavesAfter << ".\n");
353 
354   // We could not keep current target occupancy because of the just scheduled
355   // region. Record new occupancy for next scheduling cycle.
356   unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
357   // Allow memory bound functions to drop to 4 waves if not limited by an
358   // attribute.
359   if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
360       WavesAfter >= MFI.getMinAllowedOccupancy()) {
361     LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
362                       << MFI.getMinAllowedOccupancy() << " waves\n");
363     NewOccupancy = WavesAfter;
364   }
365   if (NewOccupancy < MinOccupancy) {
366     MinOccupancy = NewOccupancy;
367     MFI.limitOccupancy(MinOccupancy);
368     LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
369                       << MinOccupancy << ".\n");
370   }
371 
372   if (WavesAfter >= MinOccupancy) {
373     Pressure[RegionIdx] = PressureAfter;
374     return;
375   }
376 
377   LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
378   RegionEnd = RegionBegin;
379   for (MachineInstr *MI : Unsched) {
380     if (MI->isDebugInstr())
381       continue;
382 
383     if (MI->getIterator() != RegionEnd) {
384       BB->remove(MI);
385       BB->insert(RegionEnd, MI);
386       if (!MI->isDebugInstr())
387         LIS->handleMove(*MI, true);
388     }
389     // Reset read-undef flags and update them later.
390     for (auto &Op : MI->operands())
391       if (Op.isReg() && Op.isDef())
392         Op.setIsUndef(false);
393     RegisterOperands RegOpers;
394     RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
395     if (!MI->isDebugInstr()) {
396       if (ShouldTrackLaneMasks) {
397         // Adjust liveness and add missing dead+read-undef flags.
398         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
399         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
400       } else {
401         // Adjust for missing dead-def flags.
402         RegOpers.detectDeadDefs(*MI, *LIS);
403       }
404     }
405     RegionEnd = MI->getIterator();
406     ++RegionEnd;
407     LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
408   }
409   RegionBegin = Unsched.front()->getIterator();
410   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
411 
412   placeDebugValues();
413 }
414 
415 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
416   GCNDownwardRPTracker RPTracker(*LIS);
417   RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
418   return RPTracker.moveMaxPressure();
419 }
420 
421 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
422   GCNDownwardRPTracker RPTracker(*LIS);
423 
424   // If the block has the only successor then live-ins of that successor are
425   // live-outs of the current block. We can reuse calculated live set if the
426   // successor will be sent to scheduling past current block.
427   const MachineBasicBlock *OnlySucc = nullptr;
428   if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
429     SlotIndexes *Ind = LIS->getSlotIndexes();
430     if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
431       OnlySucc = *MBB->succ_begin();
432   }
433 
434   // Scheduler sends regions from the end of the block upwards.
435   size_t CurRegion = RegionIdx;
436   for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
437     if (Regions[CurRegion].first->getParent() != MBB)
438       break;
439   --CurRegion;
440 
441   auto I = MBB->begin();
442   auto LiveInIt = MBBLiveIns.find(MBB);
443   if (LiveInIt != MBBLiveIns.end()) {
444     auto LiveIn = std::move(LiveInIt->second);
445     RPTracker.reset(*MBB->begin(), &LiveIn);
446     MBBLiveIns.erase(LiveInIt);
447   } else {
448     auto &Rgn = Regions[CurRegion];
449     I = Rgn.first;
450     auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
451     auto LRS = BBLiveInMap.lookup(NonDbgMI);
452     assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
453     RPTracker.reset(*I, &LRS);
454   }
455 
456   for ( ; ; ) {
457     I = RPTracker.getNext();
458 
459     if (Regions[CurRegion].first == I) {
460       LiveIns[CurRegion] = RPTracker.getLiveRegs();
461       RPTracker.clearMaxPressure();
462     }
463 
464     if (Regions[CurRegion].second == I) {
465       Pressure[CurRegion] = RPTracker.moveMaxPressure();
466       if (CurRegion-- == RegionIdx)
467         break;
468     }
469     RPTracker.advanceToNext();
470     RPTracker.advanceBeforeNext();
471   }
472 
473   if (OnlySucc) {
474     if (I != MBB->end()) {
475       RPTracker.advanceToNext();
476       RPTracker.advance(MBB->end());
477     }
478     RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
479     RPTracker.advanceBeforeNext();
480     MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
481   }
482 }
483 
484 DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
485 GCNScheduleDAGMILive::getBBLiveInMap() const {
486   assert(!Regions.empty());
487   std::vector<MachineInstr *> BBStarters;
488   BBStarters.reserve(Regions.size());
489   auto I = Regions.rbegin(), E = Regions.rend();
490   auto *BB = I->first->getParent();
491   do {
492     auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
493     BBStarters.push_back(MI);
494     do {
495       ++I;
496     } while (I != E && I->first->getParent() == BB);
497   } while (I != E);
498   return getLiveRegMap(BBStarters, false /*After*/, *LIS);
499 }
500 
501 void GCNScheduleDAGMILive::finalizeSchedule() {
502   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
503   LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
504 
505   LiveIns.resize(Regions.size());
506   Pressure.resize(Regions.size());
507 
508   if (!Regions.empty())
509     BBLiveInMap = getBBLiveInMap();
510 
511   do {
512     Stage++;
513     RegionIdx = 0;
514     MachineBasicBlock *MBB = nullptr;
515 
516     if (Stage > 1) {
517       // Retry function scheduling if we found resulting occupancy and it is
518       // lower than used for first pass scheduling. This will give more freedom
519       // to schedule low register pressure blocks.
520       // Code is partially copied from MachineSchedulerBase::scheduleRegions().
521 
522       if (!LIS || StartingOccupancy <= MinOccupancy)
523         break;
524 
525       LLVM_DEBUG(
526           dbgs()
527           << "Retrying function scheduling with lowest recorded occupancy "
528           << MinOccupancy << ".\n");
529 
530       S.setTargetOccupancy(MinOccupancy);
531     }
532 
533     for (auto Region : Regions) {
534       RegionBegin = Region.first;
535       RegionEnd = Region.second;
536 
537       if (RegionBegin->getParent() != MBB) {
538         if (MBB) finishBlock();
539         MBB = RegionBegin->getParent();
540         startBlock(MBB);
541         if (Stage == 1)
542           computeBlockPressure(MBB);
543       }
544 
545       unsigned NumRegionInstrs = std::distance(begin(), end());
546       enterRegion(MBB, begin(), end(), NumRegionInstrs);
547 
548       // Skip empty scheduling regions (0 or 1 schedulable instructions).
549       if (begin() == end() || begin() == std::prev(end())) {
550         exitRegion();
551         continue;
552       }
553 
554       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
555       LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
556                         << MBB->getName() << "\n  From: " << *begin()
557                         << "    To: ";
558                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
559                  else dbgs() << "End";
560                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
561 
562       schedule();
563 
564       exitRegion();
565       ++RegionIdx;
566     }
567     finishBlock();
568 
569   } while (Stage < 2);
570 }
571