1 //===-- SIModeRegister.cpp - Mode Register --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass inserts changes to the Mode register settings as required.
10 /// Note that currently it only deals with the Double Precision Floating Point
11 /// rounding mode setting, but is intended to be generic enough to be easily
12 /// expanded.
13 ///
14 //===----------------------------------------------------------------------===//
15 //
16 #include "AMDGPU.h"
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUSubtarget.h"
19 #include "SIInstrInfo.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include <queue>
32 
33 #define DEBUG_TYPE "si-mode-register"
34 
35 STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted.");
36 
37 using namespace llvm;
38 
39 struct Status {
40   // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a
41   // known value
42   unsigned Mask;
43   unsigned Mode;
44 
45   Status() : Mask(0), Mode(0){};
46 
47   Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) {
48     Mode &= Mask;
49   };
50 
51   // merge two status values such that only values that don't conflict are
52   // preserved
53   Status merge(const Status &S) const {
54     return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask)));
55   }
56 
57   // merge an unknown value by using the unknown value's mask to remove bits
58   // from the result
59   Status mergeUnknown(unsigned newMask) {
60     return Status(Mask & ~newMask, Mode & ~newMask);
61   }
62 
63   // intersect two Status values to produce a mode and mask that is a subset
64   // of both values
65   Status intersect(const Status &S) const {
66     unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode);
67     unsigned NewMode = (Mode & NewMask);
68     return Status(NewMask, NewMode);
69   }
70 
71   // produce the delta required to change the Mode to the required Mode
72   Status delta(const Status &S) const {
73     return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode);
74   }
75 
76   bool operator==(const Status &S) const {
77     return (Mask == S.Mask) && (Mode == S.Mode);
78   }
79 
80   bool operator!=(const Status &S) const { return !(*this == S); }
81 
82   bool isCompatible(Status &S) {
83     return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode);
84   }
85 
86   bool isCombinable(Status &S) {
87     return !(Mask & S.Mask) || isCompatible(S);
88   }
89 };
90 
91 class BlockData {
92 public:
93   // The Status that represents the mode register settings required by the
94   // FirstInsertionPoint (if any) in this block. Calculated in Phase 1.
95   Status Require;
96 
97   // The Status that represents the net changes to the Mode register made by
98   // this block, Calculated in Phase 1.
99   Status Change;
100 
101   // The Status that represents the mode register settings on exit from this
102   // block. Calculated in Phase 2.
103   Status Exit;
104 
105   // The Status that represents the intersection of exit Mode register settings
106   // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3.
107   Status Pred;
108 
109   // In Phase 1 we record the first instruction that has a mode requirement,
110   // which is used in Phase 3 if we need to insert a mode change.
111   MachineInstr *FirstInsertionPoint;
112 
113   BlockData() : FirstInsertionPoint(nullptr) {};
114 };
115 
116 namespace {
117 
118 class SIModeRegister : public MachineFunctionPass {
119 public:
120   static char ID;
121 
122   std::vector<std::unique_ptr<BlockData>> BlockInfo;
123   std::queue<MachineBasicBlock *> Phase2List;
124 
125   // The default mode register setting currently only caters for the floating
126   // point double precision rounding mode.
127   // We currently assume the default rounding mode is Round to Nearest
128   // NOTE: this should come from a per function rounding mode setting once such
129   // a setting exists.
130   unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST;
131   Status DefaultStatus =
132       Status(FP_ROUND_MODE_DP(0x3), FP_ROUND_MODE_DP(DefaultMode));
133 
134 public:
135   SIModeRegister() : MachineFunctionPass(ID) {}
136 
137   bool runOnMachineFunction(MachineFunction &MF) override;
138 
139   void getAnalysisUsage(AnalysisUsage &AU) const override {
140     AU.setPreservesCFG();
141     MachineFunctionPass::getAnalysisUsage(AU);
142   }
143 
144   void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII);
145 
146   void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII);
147 
148   void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII);
149 
150   Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII);
151 
152   void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I,
153                     const SIInstrInfo *TII, Status InstrMode);
154 };
155 } // End anonymous namespace.
156 
157 INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE,
158                 "Insert required mode register values", false, false)
159 
160 char SIModeRegister::ID = 0;
161 
162 char &llvm::SIModeRegisterID = SIModeRegister::ID;
163 
164 FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); }
165 
166 // Determine the Mode register setting required for this instruction.
167 // Instructions which don't use the Mode register return a null Status.
168 // Note this currently only deals with instructions that use the floating point
169 // double precision setting.
170 Status SIModeRegister::getInstructionMode(MachineInstr &MI,
171                                           const SIInstrInfo *TII) {
172   if (TII->usesFPDPRounding(MI)) {
173     switch (MI.getOpcode()) {
174     case AMDGPU::V_INTERP_P1LL_F16:
175     case AMDGPU::V_INTERP_P1LV_F16:
176     case AMDGPU::V_INTERP_P2_F16:
177       // f16 interpolation instructions need double precision round to zero
178       return Status(FP_ROUND_MODE_DP(3),
179                     FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO));
180     default:
181       return DefaultStatus;
182     }
183   }
184   return Status();
185 }
186 
187 // Insert a setreg instruction to update the Mode register.
188 // It is possible (though unlikely) for an instruction to require a change to
189 // the value of disjoint parts of the Mode register when we don't know the
190 // value of the intervening bits. In that case we need to use more than one
191 // setreg instruction.
192 void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI,
193                                   const SIInstrInfo *TII, Status InstrMode) {
194   while (InstrMode.Mask) {
195     unsigned Offset = countTrailingZeros<unsigned>(InstrMode.Mask);
196     unsigned Width = countTrailingOnes<unsigned>(InstrMode.Mask >> Offset);
197     unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1);
198     BuildMI(MBB, MI, 0, TII->get(AMDGPU::S_SETREG_IMM32_B32))
199         .addImm(Value)
200         .addImm(((Width - 1) << AMDGPU::Hwreg::WIDTH_M1_SHIFT_) |
201                 (Offset << AMDGPU::Hwreg::OFFSET_SHIFT_) |
202                 (AMDGPU::Hwreg::ID_MODE << AMDGPU::Hwreg::ID_SHIFT_));
203     ++NumSetregInserted;
204     InstrMode.Mask &= ~(((1 << Width) - 1) << Offset);
205   }
206 }
207 
208 // In Phase 1 we iterate through the instructions of the block and for each
209 // instruction we get its mode usage. If the instruction uses the Mode register
210 // we:
211 // - update the Change status, which tracks the changes to the Mode register
212 //   made by this block
213 // - if this instruction's requirements are compatible with the current setting
214 //   of the Mode register we merge the modes
215 // - if it isn't compatible and an InsertionPoint isn't set, then we set the
216 //   InsertionPoint to the current instruction, and we remember the current
217 //   mode
218 // - if it isn't compatible and InsertionPoint is set we insert a seteg before
219 //   that instruction (unless this instruction forms part of the block's
220 //   entry requirements in which case the insertion is deferred until Phase 3
221 //   when predecessor exit values are known), and move the insertion point to
222 //   this instruction
223 // - if this is a setreg instruction we treat it as an incompatible instruction.
224 //   This is sub-optimal but avoids some nasty corner cases, and is expected to
225 //   occur very rarely.
226 // - on exit we have set the Require, Change, and initial Exit modes.
227 void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB,
228                                         const SIInstrInfo *TII) {
229   auto NewInfo = llvm::make_unique<BlockData>();
230   MachineInstr *InsertionPoint = nullptr;
231   // RequirePending is used to indicate whether we are collecting the initial
232   // requirements for the block, and need to defer the first InsertionPoint to
233   // Phase 3. It is set to false once we have set FirstInsertionPoint, or when
234   // we discover an explict setreg that means this block doesn't have any
235   // initial requirements.
236   bool RequirePending = true;
237   Status IPChange;
238   for (MachineInstr &MI : MBB) {
239     Status InstrMode = getInstructionMode(MI, TII);
240     if ((MI.getOpcode() == AMDGPU::S_SETREG_B32) ||
241         (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32)) {
242       // We preserve any explicit mode register setreg instruction we encounter,
243       // as we assume it has been inserted by a higher authority (this is
244       // likely to be a very rare occurrence).
245       unsigned Dst = TII->getNamedOperand(MI, AMDGPU::OpName::simm16)->getImm();
246       if (((Dst & AMDGPU::Hwreg::ID_MASK_) >> AMDGPU::Hwreg::ID_SHIFT_) !=
247           AMDGPU::Hwreg::ID_MODE)
248         continue;
249 
250       unsigned Width = ((Dst & AMDGPU::Hwreg::WIDTH_M1_MASK_) >>
251                         AMDGPU::Hwreg::WIDTH_M1_SHIFT_) +
252                        1;
253       unsigned Offset =
254           (Dst & AMDGPU::Hwreg::OFFSET_MASK_) >> AMDGPU::Hwreg::OFFSET_SHIFT_;
255       unsigned Mask = ((1 << Width) - 1) << Offset;
256 
257       // If an InsertionPoint is set we will insert a setreg there.
258       if (InsertionPoint) {
259         insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
260         InsertionPoint = nullptr;
261       }
262       // If this is an immediate then we know the value being set, but if it is
263       // not an immediate then we treat the modified bits of the mode register
264       // as unknown.
265       if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32) {
266         unsigned Val = TII->getNamedOperand(MI, AMDGPU::OpName::imm)->getImm();
267         unsigned Mode = (Val << Offset) & Mask;
268         Status Setreg = Status(Mask, Mode);
269         // If we haven't already set the initial requirements for the block we
270         // don't need to as the requirements start from this explicit setreg.
271         RequirePending = false;
272         NewInfo->Change = NewInfo->Change.merge(Setreg);
273       } else {
274         NewInfo->Change = NewInfo->Change.mergeUnknown(Mask);
275       }
276     } else if (!NewInfo->Change.isCompatible(InstrMode)) {
277       // This instruction uses the Mode register and its requirements aren't
278       // compatible with the current mode.
279       if (InsertionPoint) {
280         // If the required mode change cannot be included in the current
281         // InsertionPoint changes, we need a setreg and start a new
282         // InsertionPoint.
283         if (!IPChange.delta(NewInfo->Change).isCombinable(InstrMode)) {
284           if (RequirePending) {
285             // This is the first insertionPoint in the block so we will defer
286             // the insertion of the setreg to Phase 3 where we know whether or
287             // not it is actually needed.
288             NewInfo->FirstInsertionPoint = InsertionPoint;
289             NewInfo->Require = NewInfo->Change;
290             RequirePending = false;
291           } else {
292             insertSetreg(MBB, InsertionPoint, TII,
293                          IPChange.delta(NewInfo->Change));
294             IPChange = NewInfo->Change;
295           }
296           // Set the new InsertionPoint
297           InsertionPoint = &MI;
298         }
299         NewInfo->Change = NewInfo->Change.merge(InstrMode);
300       } else {
301         // No InsertionPoint is currently set - this is either the first in
302         // the block or we have previously seen an explicit setreg.
303         InsertionPoint = &MI;
304         IPChange = NewInfo->Change;
305         NewInfo->Change = NewInfo->Change.merge(InstrMode);
306       }
307     }
308   }
309   if (RequirePending) {
310     // If we haven't yet set the initial requirements for the block we set them
311     // now.
312     NewInfo->FirstInsertionPoint = InsertionPoint;
313     NewInfo->Require = NewInfo->Change;
314   } else if (InsertionPoint) {
315     // We need to insert a setreg at the InsertionPoint
316     insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
317   }
318   NewInfo->Exit = NewInfo->Change;
319   BlockInfo[MBB.getNumber()] = std::move(NewInfo);
320 }
321 
322 // In Phase 2 we revisit each block and calculate the common Mode register
323 // value provided by all predecessor blocks. If the Exit value for the block
324 // is changed, then we add the successor blocks to the worklist so that the
325 // exit value is propagated.
326 void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB,
327                                         const SIInstrInfo *TII) {
328 //  BlockData *BI = BlockInfo[MBB.getNumber()];
329   unsigned ThisBlock = MBB.getNumber();
330   if (MBB.pred_empty()) {
331     // There are no predecessors, so use the default starting status.
332     BlockInfo[ThisBlock]->Pred = DefaultStatus;
333   } else {
334     // Build a status that is common to all the predecessors by intersecting
335     // all the predecessor exit status values.
336     MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end();
337     MachineBasicBlock &PB = *(*P);
338     BlockInfo[ThisBlock]->Pred = BlockInfo[PB.getNumber()]->Exit;
339 
340     for (P = std::next(P); P != E; P = std::next(P)) {
341       MachineBasicBlock *Pred = *P;
342       BlockInfo[ThisBlock]->Pred = BlockInfo[ThisBlock]->Pred.intersect(BlockInfo[Pred->getNumber()]->Exit);
343     }
344   }
345   Status TmpStatus = BlockInfo[ThisBlock]->Pred.merge(BlockInfo[ThisBlock]->Change);
346   if (BlockInfo[ThisBlock]->Exit != TmpStatus) {
347     BlockInfo[ThisBlock]->Exit = TmpStatus;
348     // Add the successors to the work list so we can propagate the changed exit
349     // status.
350     for (MachineBasicBlock::succ_iterator S = MBB.succ_begin(),
351                                           E = MBB.succ_end();
352          S != E; S = std::next(S)) {
353       MachineBasicBlock &B = *(*S);
354       Phase2List.push(&B);
355     }
356   }
357 }
358 
359 // In Phase 3 we revisit each block and if it has an insertion point defined we
360 // check whether the predecessor mode meets the block's entry requirements. If
361 // not we insert an appropriate setreg instruction to modify the Mode register.
362 void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB,
363                                         const SIInstrInfo *TII) {
364 //  BlockData *BI = BlockInfo[MBB.getNumber()];
365   unsigned ThisBlock = MBB.getNumber();
366   if (!BlockInfo[ThisBlock]->Pred.isCompatible(BlockInfo[ThisBlock]->Require)) {
367     Status Delta = BlockInfo[ThisBlock]->Pred.delta(BlockInfo[ThisBlock]->Require);
368     if (BlockInfo[ThisBlock]->FirstInsertionPoint)
369       insertSetreg(MBB, BlockInfo[ThisBlock]->FirstInsertionPoint, TII, Delta);
370     else
371       insertSetreg(MBB, &MBB.instr_front(), TII, Delta);
372   }
373 }
374 
375 bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) {
376   BlockInfo.resize(MF.getNumBlockIDs());
377   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
378   const SIInstrInfo *TII = ST.getInstrInfo();
379 
380   // Processing is performed in a number of phases
381 
382   // Phase 1 - determine the initial mode required by each block, and add setreg
383   // instructions for intra block requirements.
384   for (MachineBasicBlock &BB : MF)
385     processBlockPhase1(BB, TII);
386 
387   // Phase 2 - determine the exit mode from each block. We add all blocks to the
388   // list here, but will also add any that need to be revisited during Phase 2
389   // processing.
390   for (MachineBasicBlock &BB : MF)
391     Phase2List.push(&BB);
392   while (!Phase2List.empty()) {
393     processBlockPhase2(*Phase2List.front(), TII);
394     Phase2List.pop();
395   }
396 
397   // Phase 3 - add an initial setreg to each block where the required entry mode
398   // is not satisfied by the exit mode of all its predecessors.
399   for (MachineBasicBlock &BB : MF)
400     processBlockPhase3(BB, TII);
401 
402   BlockInfo.clear();
403 
404   return NumSetregInserted > 0;
405 }
406