1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPUTargetTransformInfo.h"
11 #include "AMDGPU.h"
12 #include "SIDefines.h"
13 #include "AMDGPUAsmUtils.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/SubtargetFeature.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <utility>
40 
41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
42 
43 #define GET_INSTRINFO_NAMED_OPS
44 #define GET_INSTRMAP_INFO
45 #include "AMDGPUGenInstrInfo.inc"
46 #undef GET_INSTRMAP_INFO
47 #undef GET_INSTRINFO_NAMED_OPS
48 
49 namespace {
50 
51 /// \returns Bit mask for given bit \p Shift and bit \p Width.
52 unsigned getBitMask(unsigned Shift, unsigned Width) {
53   return ((1 << Width) - 1) << Shift;
54 }
55 
56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Packed \p Dst.
59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
60   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
61   Dst |= (Src << Shift) & getBitMask(Shift, Width);
62   return Dst;
63 }
64 
65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
66 ///
67 /// \returns Unpacked bits.
68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
69   return (Src & getBitMask(Shift, Width)) >> Shift;
70 }
71 
72 /// \returns Vmcnt bit shift (lower bits).
73 unsigned getVmcntBitShiftLo() { return 0; }
74 
75 /// \returns Vmcnt bit width (lower bits).
76 unsigned getVmcntBitWidthLo() { return 4; }
77 
78 /// \returns Expcnt bit shift.
79 unsigned getExpcntBitShift() { return 4; }
80 
81 /// \returns Expcnt bit width.
82 unsigned getExpcntBitWidth() { return 3; }
83 
84 /// \returns Lgkmcnt bit shift.
85 unsigned getLgkmcntBitShift() { return 8; }
86 
87 /// \returns Lgkmcnt bit width.
88 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
89   return (VersionMajor >= 10) ? 6 : 4;
90 }
91 
92 /// \returns Vmcnt bit shift (higher bits).
93 unsigned getVmcntBitShiftHi() { return 14; }
94 
95 /// \returns Vmcnt bit width (higher bits).
96 unsigned getVmcntBitWidthHi() { return 2; }
97 
98 } // end namespace anonymous
99 
100 namespace llvm {
101 
102 namespace AMDGPU {
103 
104 #define GET_MIMGBaseOpcodesTable_IMPL
105 #define GET_MIMGDimInfoTable_IMPL
106 #define GET_MIMGInfoTable_IMPL
107 #define GET_MIMGLZMappingTable_IMPL
108 #define GET_MIMGMIPMappingTable_IMPL
109 #include "AMDGPUGenSearchableTables.inc"
110 
111 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
112                   unsigned VDataDwords, unsigned VAddrDwords) {
113   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
114                                              VDataDwords, VAddrDwords);
115   return Info ? Info->Opcode : -1;
116 }
117 
118 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
119   const MIMGInfo *Info = getMIMGInfo(Opc);
120   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
121 }
122 
123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
124   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
125   const MIMGInfo *NewInfo =
126       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
127                           NewChannels, OrigInfo->VAddrDwords);
128   return NewInfo ? NewInfo->Opcode : -1;
129 }
130 
131 struct MUBUFInfo {
132   uint16_t Opcode;
133   uint16_t BaseOpcode;
134   uint8_t dwords;
135   bool has_vaddr;
136   bool has_srsrc;
137   bool has_soffset;
138 };
139 
140 #define GET_MUBUFInfoTable_DECL
141 #define GET_MUBUFInfoTable_IMPL
142 #include "AMDGPUGenSearchableTables.inc"
143 
144 int getMUBUFBaseOpcode(unsigned Opc) {
145   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
146   return Info ? Info->BaseOpcode : -1;
147 }
148 
149 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) {
150   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords);
151   return Info ? Info->Opcode : -1;
152 }
153 
154 int getMUBUFDwords(unsigned Opc) {
155   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
156   return Info ? Info->dwords : 0;
157 }
158 
159 bool getMUBUFHasVAddr(unsigned Opc) {
160   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
161   return Info ? Info->has_vaddr : false;
162 }
163 
164 bool getMUBUFHasSrsrc(unsigned Opc) {
165   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
166   return Info ? Info->has_srsrc : false;
167 }
168 
169 bool getMUBUFHasSoffset(unsigned Opc) {
170   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
171   return Info ? Info->has_soffset : false;
172 }
173 
174 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
175 // header files, so we need to wrap it in a function that takes unsigned
176 // instead.
177 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
178   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
179 }
180 
181 namespace IsaInfo {
182 
183 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
184   auto TargetTriple = STI->getTargetTriple();
185   auto Version = getIsaVersion(STI->getCPU());
186 
187   Stream << TargetTriple.getArchName() << '-'
188          << TargetTriple.getVendorName() << '-'
189          << TargetTriple.getOSName() << '-'
190          << TargetTriple.getEnvironmentName() << '-'
191          << "gfx"
192          << Version.Major
193          << Version.Minor
194          << Version.Stepping;
195 
196   if (hasXNACK(*STI))
197     Stream << "+xnack";
198   if (hasSRAMECC(*STI))
199     Stream << "+sram-ecc";
200 
201   Stream.flush();
202 }
203 
204 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
205   return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
206              STI->getFeatureBits().test(FeatureCodeObjectV3);
207 }
208 
209 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
210   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
211     return 16;
212   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
213     return 32;
214 
215   return 64;
216 }
217 
218 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
219   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
220     return 32768;
221   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
222     return 65536;
223 
224   return 0;
225 }
226 
227 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
228   return 4;
229 }
230 
231 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
232                                unsigned FlatWorkGroupSize) {
233   assert(FlatWorkGroupSize != 0);
234   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
235     return 8;
236   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
237   if (N == 1)
238     return 40;
239   N = 40 / N;
240   return std::min(N, 16u);
241 }
242 
243 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
244   return getMaxWavesPerEU() * getEUsPerCU(STI);
245 }
246 
247 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
248                           unsigned FlatWorkGroupSize) {
249   return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
250 }
251 
252 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
253   return 1;
254 }
255 
256 unsigned getMaxWavesPerEU() {
257   // FIXME: Need to take scratch memory into account.
258   return 10;
259 }
260 
261 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
262                           unsigned FlatWorkGroupSize) {
263   return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
264                  getEUsPerCU(STI)) / getEUsPerCU(STI);
265 }
266 
267 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
268   return 1;
269 }
270 
271 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
272   return 2048;
273 }
274 
275 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
276                               unsigned FlatWorkGroupSize) {
277   return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
278                  getWavefrontSize(STI);
279 }
280 
281 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
282   IsaVersion Version = getIsaVersion(STI->getCPU());
283   if (Version.Major >= 10)
284     return getAddressableNumSGPRs(STI);
285   if (Version.Major >= 8)
286     return 16;
287   return 8;
288 }
289 
290 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
291   return 8;
292 }
293 
294 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
295   IsaVersion Version = getIsaVersion(STI->getCPU());
296   if (Version.Major >= 8)
297     return 800;
298   return 512;
299 }
300 
301 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
302   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
303     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
304 
305   IsaVersion Version = getIsaVersion(STI->getCPU());
306   if (Version.Major >= 10)
307     return 106;
308   if (Version.Major >= 8)
309     return 102;
310   return 104;
311 }
312 
313 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
314   assert(WavesPerEU != 0);
315 
316   IsaVersion Version = getIsaVersion(STI->getCPU());
317   if (Version.Major >= 10)
318     return 0;
319 
320   if (WavesPerEU >= getMaxWavesPerEU())
321     return 0;
322 
323   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
324   if (STI->getFeatureBits().test(FeatureTrapHandler))
325     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
326   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
327   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
328 }
329 
330 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
331                         bool Addressable) {
332   assert(WavesPerEU != 0);
333 
334   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
335   IsaVersion Version = getIsaVersion(STI->getCPU());
336   if (Version.Major >= 10)
337     return Addressable ? AddressableNumSGPRs : 108;
338   if (Version.Major >= 8 && !Addressable)
339     AddressableNumSGPRs = 112;
340   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
341   if (STI->getFeatureBits().test(FeatureTrapHandler))
342     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
343   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
344   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
345 }
346 
347 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
348                           bool FlatScrUsed, bool XNACKUsed) {
349   unsigned ExtraSGPRs = 0;
350   if (VCCUsed)
351     ExtraSGPRs = 2;
352 
353   IsaVersion Version = getIsaVersion(STI->getCPU());
354   if (Version.Major >= 10)
355     return ExtraSGPRs;
356 
357   if (Version.Major < 8) {
358     if (FlatScrUsed)
359       ExtraSGPRs = 4;
360   } else {
361     if (XNACKUsed)
362       ExtraSGPRs = 4;
363 
364     if (FlatScrUsed)
365       ExtraSGPRs = 6;
366   }
367 
368   return ExtraSGPRs;
369 }
370 
371 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
372                           bool FlatScrUsed) {
373   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
374                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
375 }
376 
377 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
378   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
379   // SGPRBlocks is actual number of SGPR blocks minus 1.
380   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
381 }
382 
383 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
384                              Optional<bool> EnableWavefrontSize32) {
385   bool IsWave32 = EnableWavefrontSize32 ?
386       *EnableWavefrontSize32 :
387       STI->getFeatureBits().test(FeatureWavefrontSize32);
388   return IsWave32 ? 8 : 4;
389 }
390 
391 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
392                                 Optional<bool> EnableWavefrontSize32) {
393   return getVGPRAllocGranule(STI, EnableWavefrontSize32);
394 }
395 
396 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
397   return 256;
398 }
399 
400 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
401   return getTotalNumVGPRs(STI);
402 }
403 
404 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
405   assert(WavesPerEU != 0);
406 
407   if (WavesPerEU >= getMaxWavesPerEU())
408     return 0;
409   unsigned MinNumVGPRs =
410       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
411                 getVGPRAllocGranule(STI)) + 1;
412   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
413 }
414 
415 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
416   assert(WavesPerEU != 0);
417 
418   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
419                                    getVGPRAllocGranule(STI));
420   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
421   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
422 }
423 
424 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
425                           Optional<bool> EnableWavefrontSize32) {
426   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
427                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
428   // VGPRBlocks is actual number of VGPR blocks minus 1.
429   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
430 }
431 
432 } // end namespace IsaInfo
433 
434 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
435                                const MCSubtargetInfo *STI) {
436   IsaVersion Version = getIsaVersion(STI->getCPU());
437 
438   memset(&Header, 0, sizeof(Header));
439 
440   Header.amd_kernel_code_version_major = 1;
441   Header.amd_kernel_code_version_minor = 2;
442   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
443   Header.amd_machine_version_major = Version.Major;
444   Header.amd_machine_version_minor = Version.Minor;
445   Header.amd_machine_version_stepping = Version.Stepping;
446   Header.kernel_code_entry_byte_offset = sizeof(Header);
447   Header.wavefront_size = 6;
448 
449   // If the code object does not support indirect functions, then the value must
450   // be 0xffffffff.
451   Header.call_convention = -1;
452 
453   // These alignment values are specified in powers of two, so alignment =
454   // 2^n.  The minimum alignment is 2^4 = 16.
455   Header.kernarg_segment_alignment = 4;
456   Header.group_segment_alignment = 4;
457   Header.private_segment_alignment = 4;
458 
459   if (Version.Major >= 10) {
460     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
461       Header.wavefront_size = 5;
462       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
463     }
464     Header.compute_pgm_resource_registers |=
465       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
466       S_00B848_MEM_ORDERED(1);
467   }
468 }
469 
470 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
471     const MCSubtargetInfo *STI) {
472   IsaVersion Version = getIsaVersion(STI->getCPU());
473 
474   amdhsa::kernel_descriptor_t KD;
475   memset(&KD, 0, sizeof(KD));
476 
477   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
478                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
479                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
480   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
481                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
482   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
483                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
484   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
485                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
486   if (Version.Major >= 10) {
487     AMDHSA_BITS_SET(KD.kernel_code_properties,
488                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
489                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
490     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
491                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
492                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
493     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
494                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
495   }
496   return KD;
497 }
498 
499 bool isGroupSegment(const GlobalValue *GV) {
500   return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
501 }
502 
503 bool isGlobalSegment(const GlobalValue *GV) {
504   return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
505 }
506 
507 bool isReadOnlySegment(const GlobalValue *GV) {
508   return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
509          GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
510 }
511 
512 bool shouldEmitConstantsToTextSection(const Triple &TT) {
513   return TT.getOS() != Triple::AMDHSA;
514 }
515 
516 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
517   Attribute A = F.getFnAttribute(Name);
518   int Result = Default;
519 
520   if (A.isStringAttribute()) {
521     StringRef Str = A.getValueAsString();
522     if (Str.getAsInteger(0, Result)) {
523       LLVMContext &Ctx = F.getContext();
524       Ctx.emitError("can't parse integer attribute " + Name);
525     }
526   }
527 
528   return Result;
529 }
530 
531 std::pair<int, int> getIntegerPairAttribute(const Function &F,
532                                             StringRef Name,
533                                             std::pair<int, int> Default,
534                                             bool OnlyFirstRequired) {
535   Attribute A = F.getFnAttribute(Name);
536   if (!A.isStringAttribute())
537     return Default;
538 
539   LLVMContext &Ctx = F.getContext();
540   std::pair<int, int> Ints = Default;
541   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
542   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
543     Ctx.emitError("can't parse first integer attribute " + Name);
544     return Default;
545   }
546   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
547     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
548       Ctx.emitError("can't parse second integer attribute " + Name);
549       return Default;
550     }
551   }
552 
553   return Ints;
554 }
555 
556 unsigned getVmcntBitMask(const IsaVersion &Version) {
557   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
558   if (Version.Major < 9)
559     return VmcntLo;
560 
561   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
562   return VmcntLo | VmcntHi;
563 }
564 
565 unsigned getExpcntBitMask(const IsaVersion &Version) {
566   return (1 << getExpcntBitWidth()) - 1;
567 }
568 
569 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
570   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
571 }
572 
573 unsigned getWaitcntBitMask(const IsaVersion &Version) {
574   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
575   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
576   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
577                                 getLgkmcntBitWidth(Version.Major));
578   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
579   if (Version.Major < 9)
580     return Waitcnt;
581 
582   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
583   return Waitcnt | VmcntHi;
584 }
585 
586 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
587   unsigned VmcntLo =
588       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
589   if (Version.Major < 9)
590     return VmcntLo;
591 
592   unsigned VmcntHi =
593       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
594   VmcntHi <<= getVmcntBitWidthLo();
595   return VmcntLo | VmcntHi;
596 }
597 
598 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
599   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
600 }
601 
602 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
603   return unpackBits(Waitcnt, getLgkmcntBitShift(),
604                     getLgkmcntBitWidth(Version.Major));
605 }
606 
607 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
608                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
609   Vmcnt = decodeVmcnt(Version, Waitcnt);
610   Expcnt = decodeExpcnt(Version, Waitcnt);
611   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
612 }
613 
614 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
615   Waitcnt Decoded;
616   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
617   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
618   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
619   return Decoded;
620 }
621 
622 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
623                      unsigned Vmcnt) {
624   Waitcnt =
625       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
626   if (Version.Major < 9)
627     return Waitcnt;
628 
629   Vmcnt >>= getVmcntBitWidthLo();
630   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
631 }
632 
633 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
634                       unsigned Expcnt) {
635   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
636 }
637 
638 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
639                        unsigned Lgkmcnt) {
640   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
641                                     getLgkmcntBitWidth(Version.Major));
642 }
643 
644 unsigned encodeWaitcnt(const IsaVersion &Version,
645                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
646   unsigned Waitcnt = getWaitcntBitMask(Version);
647   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
648   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
649   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
650   return Waitcnt;
651 }
652 
653 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
654   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
655 }
656 
657 //===----------------------------------------------------------------------===//
658 // hwreg
659 //===----------------------------------------------------------------------===//
660 
661 namespace Hwreg {
662 
663 int64_t getHwregId(const StringRef Name) {
664   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
665     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
666       return Id;
667   }
668   return ID_UNKNOWN_;
669 }
670 
671 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
672   if (isSI(STI) || isCI(STI) || isVI(STI))
673     return ID_SYMBOLIC_FIRST_GFX9_;
674   else if (isGFX9(STI))
675     return ID_SYMBOLIC_FIRST_GFX10_;
676   else
677     return ID_SYMBOLIC_LAST_;
678 }
679 
680 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
681   return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
682          IdSymbolic[Id];
683 }
684 
685 bool isValidHwreg(int64_t Id) {
686   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
687 }
688 
689 bool isValidHwregOffset(int64_t Offset) {
690   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
691 }
692 
693 bool isValidHwregWidth(int64_t Width) {
694   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
695 }
696 
697 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
698   return (Id << ID_SHIFT_) |
699          (Offset << OFFSET_SHIFT_) |
700          ((Width - 1) << WIDTH_M1_SHIFT_);
701 }
702 
703 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
704   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
705 }
706 
707 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
708   Id = (Val & ID_MASK_) >> ID_SHIFT_;
709   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
710   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
711 }
712 
713 } // namespace Hwreg
714 
715 //===----------------------------------------------------------------------===//
716 // SendMsg
717 //===----------------------------------------------------------------------===//
718 
719 namespace SendMsg {
720 
721 int64_t getMsgId(const StringRef Name) {
722   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
723     if (IdSymbolic[i] && Name == IdSymbolic[i])
724       return i;
725   }
726   return ID_UNKNOWN_;
727 }
728 
729 static bool isValidMsgId(int64_t MsgId) {
730   return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
731 }
732 
733 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
734   if (Strict) {
735     if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
736       return isGFX9(STI) || isGFX10(STI);
737     else
738       return isValidMsgId(MsgId);
739   } else {
740     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
741   }
742 }
743 
744 StringRef getMsgName(int64_t MsgId) {
745   return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
746 }
747 
748 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
749   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
750   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
751   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
752   for (int i = F; i < L; ++i) {
753     if (Name == S[i]) {
754       return i;
755     }
756   }
757   return OP_UNKNOWN_;
758 }
759 
760 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
761 
762   if (!Strict)
763     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
764 
765   switch(MsgId)
766   {
767   case ID_GS:
768     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
769   case ID_GS_DONE:
770     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
771   case ID_SYSMSG:
772     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
773   default:
774     return OpId == OP_NONE_;
775   }
776 }
777 
778 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
779   assert(msgRequiresOp(MsgId));
780   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
781 }
782 
783 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
784 
785   if (!Strict)
786     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
787 
788   switch(MsgId)
789   {
790   case ID_GS:
791     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
792   case ID_GS_DONE:
793     return (OpId == OP_GS_NOP)?
794            (StreamId == STREAM_ID_NONE_) :
795            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
796   default:
797     return StreamId == STREAM_ID_NONE_;
798   }
799 }
800 
801 bool msgRequiresOp(int64_t MsgId) {
802   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
803 }
804 
805 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
806   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
807 }
808 
809 void decodeMsg(unsigned Val,
810                uint16_t &MsgId,
811                uint16_t &OpId,
812                uint16_t &StreamId) {
813   MsgId = Val & ID_MASK_;
814   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
815   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
816 }
817 
818 uint64_t encodeMsg(uint64_t MsgId,
819                    uint64_t OpId,
820                    uint64_t StreamId) {
821   return (MsgId << ID_SHIFT_) |
822          (OpId << OP_SHIFT_) |
823          (StreamId << STREAM_ID_SHIFT_);
824 }
825 
826 } // namespace SendMsg
827 
828 //===----------------------------------------------------------------------===//
829 //
830 //===----------------------------------------------------------------------===//
831 
832 unsigned getInitialPSInputAddr(const Function &F) {
833   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
834 }
835 
836 bool isShader(CallingConv::ID cc) {
837   switch(cc) {
838     case CallingConv::AMDGPU_VS:
839     case CallingConv::AMDGPU_LS:
840     case CallingConv::AMDGPU_HS:
841     case CallingConv::AMDGPU_ES:
842     case CallingConv::AMDGPU_GS:
843     case CallingConv::AMDGPU_PS:
844     case CallingConv::AMDGPU_CS:
845       return true;
846     default:
847       return false;
848   }
849 }
850 
851 bool isCompute(CallingConv::ID cc) {
852   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
853 }
854 
855 bool isEntryFunctionCC(CallingConv::ID CC) {
856   switch (CC) {
857   case CallingConv::AMDGPU_KERNEL:
858   case CallingConv::SPIR_KERNEL:
859   case CallingConv::AMDGPU_VS:
860   case CallingConv::AMDGPU_GS:
861   case CallingConv::AMDGPU_PS:
862   case CallingConv::AMDGPU_CS:
863   case CallingConv::AMDGPU_ES:
864   case CallingConv::AMDGPU_HS:
865   case CallingConv::AMDGPU_LS:
866     return true;
867   default:
868     return false;
869   }
870 }
871 
872 bool hasXNACK(const MCSubtargetInfo &STI) {
873   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
874 }
875 
876 bool hasSRAMECC(const MCSubtargetInfo &STI) {
877   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
878 }
879 
880 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
881   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
882 }
883 
884 bool hasPackedD16(const MCSubtargetInfo &STI) {
885   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
886 }
887 
888 bool isSI(const MCSubtargetInfo &STI) {
889   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
890 }
891 
892 bool isCI(const MCSubtargetInfo &STI) {
893   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
894 }
895 
896 bool isVI(const MCSubtargetInfo &STI) {
897   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
898 }
899 
900 bool isGFX9(const MCSubtargetInfo &STI) {
901   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
902 }
903 
904 bool isGFX10(const MCSubtargetInfo &STI) {
905   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
906 }
907 
908 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
909   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
910 }
911 
912 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
913   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
914   const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
915   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
916     Reg == AMDGPU::SCC;
917 }
918 
919 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
920   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
921     if (*R == Reg1) return true;
922   }
923   return false;
924 }
925 
926 #define MAP_REG2REG \
927   using namespace AMDGPU; \
928   switch(Reg) { \
929   default: return Reg; \
930   CASE_CI_VI(FLAT_SCR) \
931   CASE_CI_VI(FLAT_SCR_LO) \
932   CASE_CI_VI(FLAT_SCR_HI) \
933   CASE_VI_GFX9_GFX10(TTMP0) \
934   CASE_VI_GFX9_GFX10(TTMP1) \
935   CASE_VI_GFX9_GFX10(TTMP2) \
936   CASE_VI_GFX9_GFX10(TTMP3) \
937   CASE_VI_GFX9_GFX10(TTMP4) \
938   CASE_VI_GFX9_GFX10(TTMP5) \
939   CASE_VI_GFX9_GFX10(TTMP6) \
940   CASE_VI_GFX9_GFX10(TTMP7) \
941   CASE_VI_GFX9_GFX10(TTMP8) \
942   CASE_VI_GFX9_GFX10(TTMP9) \
943   CASE_VI_GFX9_GFX10(TTMP10) \
944   CASE_VI_GFX9_GFX10(TTMP11) \
945   CASE_VI_GFX9_GFX10(TTMP12) \
946   CASE_VI_GFX9_GFX10(TTMP13) \
947   CASE_VI_GFX9_GFX10(TTMP14) \
948   CASE_VI_GFX9_GFX10(TTMP15) \
949   CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
950   CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
951   CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
952   CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
953   CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
954   CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
955   CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
956   CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
957   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
958   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
959   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
960   CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
961   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
962   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
963   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
964   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
965   }
966 
967 #define CASE_CI_VI(node) \
968   assert(!isSI(STI)); \
969   case node: return isCI(STI) ? node##_ci : node##_vi;
970 
971 #define CASE_VI_GFX9_GFX10(node) \
972   case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
973 
974 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
975   if (STI.getTargetTriple().getArch() == Triple::r600)
976     return Reg;
977   MAP_REG2REG
978 }
979 
980 #undef CASE_CI_VI
981 #undef CASE_VI_GFX9_GFX10
982 
983 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
984 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
985 
986 unsigned mc2PseudoReg(unsigned Reg) {
987   MAP_REG2REG
988 }
989 
990 #undef CASE_CI_VI
991 #undef CASE_VI_GFX9_GFX10
992 #undef MAP_REG2REG
993 
994 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
995   assert(OpNo < Desc.NumOperands);
996   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
997   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
998          OpType <= AMDGPU::OPERAND_SRC_LAST;
999 }
1000 
1001 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1002   assert(OpNo < Desc.NumOperands);
1003   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1004   switch (OpType) {
1005   case AMDGPU::OPERAND_REG_IMM_FP32:
1006   case AMDGPU::OPERAND_REG_IMM_FP64:
1007   case AMDGPU::OPERAND_REG_IMM_FP16:
1008   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1009   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1010   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1011   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1012   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1013   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1014   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1015   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1016   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1017   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1018   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1019     return true;
1020   default:
1021     return false;
1022   }
1023 }
1024 
1025 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1026   assert(OpNo < Desc.NumOperands);
1027   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1028   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1029          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1030 }
1031 
1032 // Avoid using MCRegisterClass::getSize, since that function will go away
1033 // (move from MC* level to Target* level). Return size in bits.
1034 unsigned getRegBitWidth(unsigned RCID) {
1035   switch (RCID) {
1036   case AMDGPU::SGPR_32RegClassID:
1037   case AMDGPU::VGPR_32RegClassID:
1038   case AMDGPU::VRegOrLds_32RegClassID:
1039   case AMDGPU::AGPR_32RegClassID:
1040   case AMDGPU::VS_32RegClassID:
1041   case AMDGPU::AV_32RegClassID:
1042   case AMDGPU::SReg_32RegClassID:
1043   case AMDGPU::SReg_32_XM0RegClassID:
1044   case AMDGPU::SRegOrLds_32RegClassID:
1045     return 32;
1046   case AMDGPU::SGPR_64RegClassID:
1047   case AMDGPU::VS_64RegClassID:
1048   case AMDGPU::AV_64RegClassID:
1049   case AMDGPU::SReg_64RegClassID:
1050   case AMDGPU::VReg_64RegClassID:
1051   case AMDGPU::AReg_64RegClassID:
1052   case AMDGPU::SReg_64_XEXECRegClassID:
1053     return 64;
1054   case AMDGPU::SGPR_96RegClassID:
1055   case AMDGPU::SReg_96RegClassID:
1056   case AMDGPU::VReg_96RegClassID:
1057     return 96;
1058   case AMDGPU::SGPR_128RegClassID:
1059   case AMDGPU::SReg_128RegClassID:
1060   case AMDGPU::VReg_128RegClassID:
1061   case AMDGPU::AReg_128RegClassID:
1062     return 128;
1063   case AMDGPU::SGPR_160RegClassID:
1064   case AMDGPU::SReg_160RegClassID:
1065   case AMDGPU::VReg_160RegClassID:
1066     return 160;
1067   case AMDGPU::SReg_256RegClassID:
1068   case AMDGPU::VReg_256RegClassID:
1069     return 256;
1070   case AMDGPU::SReg_512RegClassID:
1071   case AMDGPU::VReg_512RegClassID:
1072   case AMDGPU::AReg_512RegClassID:
1073     return 512;
1074   case AMDGPU::SReg_1024RegClassID:
1075   case AMDGPU::VReg_1024RegClassID:
1076   case AMDGPU::AReg_1024RegClassID:
1077     return 1024;
1078   default:
1079     llvm_unreachable("Unexpected register class");
1080   }
1081 }
1082 
1083 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1084   return getRegBitWidth(RC.getID());
1085 }
1086 
1087 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1088                            unsigned OpNo) {
1089   assert(OpNo < Desc.NumOperands);
1090   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1091   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1092 }
1093 
1094 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1095   if (Literal >= -16 && Literal <= 64)
1096     return true;
1097 
1098   uint64_t Val = static_cast<uint64_t>(Literal);
1099   return (Val == DoubleToBits(0.0)) ||
1100          (Val == DoubleToBits(1.0)) ||
1101          (Val == DoubleToBits(-1.0)) ||
1102          (Val == DoubleToBits(0.5)) ||
1103          (Val == DoubleToBits(-0.5)) ||
1104          (Val == DoubleToBits(2.0)) ||
1105          (Val == DoubleToBits(-2.0)) ||
1106          (Val == DoubleToBits(4.0)) ||
1107          (Val == DoubleToBits(-4.0)) ||
1108          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1109 }
1110 
1111 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1112   if (Literal >= -16 && Literal <= 64)
1113     return true;
1114 
1115   // The actual type of the operand does not seem to matter as long
1116   // as the bits match one of the inline immediate values.  For example:
1117   //
1118   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1119   // so it is a legal inline immediate.
1120   //
1121   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1122   // floating-point, so it is a legal inline immediate.
1123 
1124   uint32_t Val = static_cast<uint32_t>(Literal);
1125   return (Val == FloatToBits(0.0f)) ||
1126          (Val == FloatToBits(1.0f)) ||
1127          (Val == FloatToBits(-1.0f)) ||
1128          (Val == FloatToBits(0.5f)) ||
1129          (Val == FloatToBits(-0.5f)) ||
1130          (Val == FloatToBits(2.0f)) ||
1131          (Val == FloatToBits(-2.0f)) ||
1132          (Val == FloatToBits(4.0f)) ||
1133          (Val == FloatToBits(-4.0f)) ||
1134          (Val == 0x3e22f983 && HasInv2Pi);
1135 }
1136 
1137 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1138   if (!HasInv2Pi)
1139     return false;
1140 
1141   if (Literal >= -16 && Literal <= 64)
1142     return true;
1143 
1144   uint16_t Val = static_cast<uint16_t>(Literal);
1145   return Val == 0x3C00 || // 1.0
1146          Val == 0xBC00 || // -1.0
1147          Val == 0x3800 || // 0.5
1148          Val == 0xB800 || // -0.5
1149          Val == 0x4000 || // 2.0
1150          Val == 0xC000 || // -2.0
1151          Val == 0x4400 || // 4.0
1152          Val == 0xC400 || // -4.0
1153          Val == 0x3118;   // 1/2pi
1154 }
1155 
1156 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1157   assert(HasInv2Pi);
1158 
1159   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1160     int16_t Trunc = static_cast<int16_t>(Literal);
1161     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1162   }
1163   if (!(Literal & 0xffff))
1164     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1165 
1166   int16_t Lo16 = static_cast<int16_t>(Literal);
1167   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1168   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1169 }
1170 
1171 bool isArgPassedInSGPR(const Argument *A) {
1172   const Function *F = A->getParent();
1173 
1174   // Arguments to compute shaders are never a source of divergence.
1175   CallingConv::ID CC = F->getCallingConv();
1176   switch (CC) {
1177   case CallingConv::AMDGPU_KERNEL:
1178   case CallingConv::SPIR_KERNEL:
1179     return true;
1180   case CallingConv::AMDGPU_VS:
1181   case CallingConv::AMDGPU_LS:
1182   case CallingConv::AMDGPU_HS:
1183   case CallingConv::AMDGPU_ES:
1184   case CallingConv::AMDGPU_GS:
1185   case CallingConv::AMDGPU_PS:
1186   case CallingConv::AMDGPU_CS:
1187     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1188     // Everything else is in VGPRs.
1189     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1190            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1191   default:
1192     // TODO: Should calls support inreg for SGPR inputs?
1193     return false;
1194   }
1195 }
1196 
1197 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1198   return isGCN3Encoding(ST) || isGFX10(ST);
1199 }
1200 
1201 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1202   if (hasSMEMByteOffset(ST))
1203     return ByteOffset;
1204   return ByteOffset >> 2;
1205 }
1206 
1207 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1208   int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
1209   return (hasSMEMByteOffset(ST)) ?
1210     isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
1211 }
1212 
1213 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1214 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1215 // hardware bug needing a workaround).
1216 //
1217 // The required alignment ensures that individual address components remain
1218 // aligned if they are aligned to begin with. It also ensures that additional
1219 // offsets within the given alignment can be added to the resulting ImmOffset.
1220 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1221                       const GCNSubtarget *Subtarget, uint32_t Align) {
1222   const uint32_t MaxImm = alignDown(4095, Align);
1223   uint32_t Overflow = 0;
1224 
1225   if (Imm > MaxImm) {
1226     if (Imm <= MaxImm + 64) {
1227       // Use an SOffset inline constant for 4..64
1228       Overflow = Imm - MaxImm;
1229       Imm = MaxImm;
1230     } else {
1231       // Try to keep the same value in SOffset for adjacent loads, so that
1232       // the corresponding register contents can be re-used.
1233       //
1234       // Load values with all low-bits (except for alignment bits) set into
1235       // SOffset, so that a larger range of values can be covered using
1236       // s_movk_i32.
1237       //
1238       // Atomic operations fail to work correctly when individual address
1239       // components are unaligned, even if their sum is aligned.
1240       uint32_t High = (Imm + Align) & ~4095;
1241       uint32_t Low = (Imm + Align) & 4095;
1242       Imm = Low;
1243       Overflow = High - Align;
1244     }
1245   }
1246 
1247   // There is a hardware bug in SI and CI which prevents address clamping in
1248   // MUBUF instructions from working correctly with SOffsets. The immediate
1249   // offset is unaffected.
1250   if (Overflow > 0 &&
1251       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1252     return false;
1253 
1254   ImmOffset = Imm;
1255   SOffset = Overflow;
1256   return true;
1257 }
1258 
1259 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1260   *this = getDefaultForCallingConv(F.getCallingConv());
1261 
1262   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1263   if (!IEEEAttr.empty())
1264     IEEE = IEEEAttr == "true";
1265 
1266   StringRef DX10ClampAttr
1267     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1268   if (!DX10ClampAttr.empty())
1269     DX10Clamp = DX10ClampAttr == "true";
1270 }
1271 
1272 namespace {
1273 
1274 struct SourceOfDivergence {
1275   unsigned Intr;
1276 };
1277 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1278 
1279 #define GET_SourcesOfDivergence_IMPL
1280 #include "AMDGPUGenSearchableTables.inc"
1281 
1282 } // end anonymous namespace
1283 
1284 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1285   return lookupSourceOfDivergence(IntrID);
1286 }
1287 
1288 } // namespace AMDGPU
1289 } // namespace llvm
1290