1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the ARM target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARM.h"
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMTargetMachine.h"
16 #include "MCTargetDesc/ARMAddressingModes.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsARM.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include <optional>
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "arm-isel"
43 #define PASS_NAME "ARM Instruction Selection"
44 
45 static cl::opt<bool>
46 DisableShifterOp("disable-shifter-op", cl::Hidden,
47   cl::desc("Disable isel of shifter-op"),
48   cl::init(false));
49 
50 //===--------------------------------------------------------------------===//
51 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
52 /// instructions for SelectionDAG operations.
53 ///
54 namespace {
55 
56 class ARMDAGToDAGISel : public SelectionDAGISel {
57   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
58   /// make the right decision when generating code for different targets.
59   const ARMSubtarget *Subtarget;
60 
61 public:
62   static char ID;
63 
64   ARMDAGToDAGISel() = delete;
65 
66   explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel)
67       : SelectionDAGISel(ID, tm, OptLevel) {}
68 
69   bool runOnMachineFunction(MachineFunction &MF) override {
70     // Reset the subtarget each time through.
71     Subtarget = &MF.getSubtarget<ARMSubtarget>();
72     SelectionDAGISel::runOnMachineFunction(MF);
73     return true;
74   }
75 
76   void PreprocessISelDAG() override;
77 
78   /// getI32Imm - Return a target constant of type i32 with the specified
79   /// value.
80   inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
81     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
82   }
83 
84   void Select(SDNode *N) override;
85 
86   /// Return true as some complex patterns, like those that call
87   /// canExtractShiftFromMul can modify the DAG inplace.
88   bool ComplexPatternFuncMutatesDAG() const override { return true; }
89 
90   bool hasNoVMLxHazardUse(SDNode *N) const;
91   bool isShifterOpProfitable(const SDValue &Shift,
92                              ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
93   bool SelectRegShifterOperand(SDValue N, SDValue &A,
94                                SDValue &B, SDValue &C,
95                                bool CheckProfitability = true);
96   bool SelectImmShifterOperand(SDValue N, SDValue &A,
97                                SDValue &B, bool CheckProfitability = true);
98   bool SelectShiftRegShifterOperand(SDValue N, SDValue &A, SDValue &B,
99                                     SDValue &C) {
100     // Don't apply the profitability check
101     return SelectRegShifterOperand(N, A, B, C, false);
102   }
103   bool SelectShiftImmShifterOperand(SDValue N, SDValue &A, SDValue &B) {
104     // Don't apply the profitability check
105     return SelectImmShifterOperand(N, A, B, false);
106   }
107   bool SelectShiftImmShifterOperandOneUse(SDValue N, SDValue &A, SDValue &B) {
108     if (!N.hasOneUse())
109       return false;
110     return SelectImmShifterOperand(N, A, B, false);
111   }
112 
113   bool SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out);
114 
115   bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
116   bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
117 
118   bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
119     const ConstantSDNode *CN = cast<ConstantSDNode>(N);
120     Pred = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(N), MVT::i32);
121     Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
122     return true;
123   }
124 
125   bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
126                              SDValue &Offset, SDValue &Opc);
127   bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
128                              SDValue &Offset, SDValue &Opc);
129   bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
130                              SDValue &Offset, SDValue &Opc);
131   bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
132   bool SelectAddrMode3(SDValue N, SDValue &Base,
133                        SDValue &Offset, SDValue &Opc);
134   bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
135                              SDValue &Offset, SDValue &Opc);
136   bool IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset, bool FP16);
137   bool SelectAddrMode5(SDValue N, SDValue &Base, SDValue &Offset);
138   bool SelectAddrMode5FP16(SDValue N, SDValue &Base, SDValue &Offset);
139   bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
140   bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
141 
142   bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
143 
144   // Thumb Addressing Modes:
145   bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
146   bool SelectThumbAddrModeRRSext(SDValue N, SDValue &Base, SDValue &Offset);
147   bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
148                                 SDValue &OffImm);
149   bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
150                                  SDValue &OffImm);
151   bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
152                                  SDValue &OffImm);
153   bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
154                                  SDValue &OffImm);
155   bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
156   template <unsigned Shift>
157   bool SelectTAddrModeImm7(SDValue N, SDValue &Base, SDValue &OffImm);
158 
159   // Thumb 2 Addressing Modes:
160   bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
161   template <unsigned Shift>
162   bool SelectT2AddrModeImm8(SDValue N, SDValue &Base, SDValue &OffImm);
163   bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
164                             SDValue &OffImm);
165   bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
166                                  SDValue &OffImm);
167   template <unsigned Shift>
168   bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm);
169   bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm,
170                                   unsigned Shift);
171   template <unsigned Shift>
172   bool SelectT2AddrModeImm7(SDValue N, SDValue &Base, SDValue &OffImm);
173   bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
174                              SDValue &OffReg, SDValue &ShImm);
175   bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
176 
177   template<int Min, int Max>
178   bool SelectImmediateInRange(SDValue N, SDValue &OffImm);
179 
180   inline bool is_so_imm(unsigned Imm) const {
181     return ARM_AM::getSOImmVal(Imm) != -1;
182   }
183 
184   inline bool is_so_imm_not(unsigned Imm) const {
185     return ARM_AM::getSOImmVal(~Imm) != -1;
186   }
187 
188   inline bool is_t2_so_imm(unsigned Imm) const {
189     return ARM_AM::getT2SOImmVal(Imm) != -1;
190   }
191 
192   inline bool is_t2_so_imm_not(unsigned Imm) const {
193     return ARM_AM::getT2SOImmVal(~Imm) != -1;
194   }
195 
196   // Include the pieces autogenerated from the target description.
197 #include "ARMGenDAGISel.inc"
198 
199 private:
200   void transferMemOperands(SDNode *Src, SDNode *Dst);
201 
202   /// Indexed (pre/post inc/dec) load matching code for ARM.
203   bool tryARMIndexedLoad(SDNode *N);
204   bool tryT1IndexedLoad(SDNode *N);
205   bool tryT2IndexedLoad(SDNode *N);
206   bool tryMVEIndexedLoad(SDNode *N);
207   bool tryFMULFixed(SDNode *N, SDLoc dl);
208   bool tryFP_TO_INT(SDNode *N, SDLoc dl);
209   bool transformFixedFloatingPointConversion(SDNode *N, SDNode *FMul,
210                                              bool IsUnsigned,
211                                              bool FixedToFloat);
212 
213   /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
214   /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
215   /// loads of D registers and even subregs and odd subregs of Q registers.
216   /// For NumVecs <= 2, QOpcodes1 is not used.
217   void SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
218                  const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
219                  const uint16_t *QOpcodes1);
220 
221   /// SelectVST - Select NEON store intrinsics.  NumVecs should
222   /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
223   /// stores of D registers and even subregs and odd subregs of Q registers.
224   /// For NumVecs <= 2, QOpcodes1 is not used.
225   void SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
226                  const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
227                  const uint16_t *QOpcodes1);
228 
229   /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
230   /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
231   /// load/store of D registers and Q registers.
232   void SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
233                        unsigned NumVecs, const uint16_t *DOpcodes,
234                        const uint16_t *QOpcodes);
235 
236   /// Helper functions for setting up clusters of MVE predication operands.
237   template <typename SDValueVector>
238   void AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
239                             SDValue PredicateMask);
240   template <typename SDValueVector>
241   void AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
242                             SDValue PredicateMask, SDValue Inactive);
243 
244   template <typename SDValueVector>
245   void AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc);
246   template <typename SDValueVector>
247   void AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc, EVT InactiveTy);
248 
249   /// SelectMVE_WB - Select MVE writeback load/store intrinsics.
250   void SelectMVE_WB(SDNode *N, const uint16_t *Opcodes, bool Predicated);
251 
252   /// SelectMVE_LongShift - Select MVE 64-bit scalar shift intrinsics.
253   void SelectMVE_LongShift(SDNode *N, uint16_t Opcode, bool Immediate,
254                            bool HasSaturationOperand);
255 
256   /// SelectMVE_VADCSBC - Select MVE vector add/sub-with-carry intrinsics.
257   void SelectMVE_VADCSBC(SDNode *N, uint16_t OpcodeWithCarry,
258                          uint16_t OpcodeWithNoCarry, bool Add, bool Predicated);
259 
260   /// SelectMVE_VSHLC - Select MVE intrinsics for a shift that carries between
261   /// vector lanes.
262   void SelectMVE_VSHLC(SDNode *N, bool Predicated);
263 
264   /// Select long MVE vector reductions with two vector operands
265   /// Stride is the number of vector element widths the instruction can operate
266   /// on:
267   /// 2 for long non-rounding variants, vml{a,s}ldav[a][x]: [i16, i32]
268   /// 1 for long rounding variants: vrml{a,s}ldavh[a][x]: [i32]
269   /// Stride is used when addressing the OpcodesS array which contains multiple
270   /// opcodes for each element width.
271   /// TySize is the index into the list of element types listed above
272   void SelectBaseMVE_VMLLDAV(SDNode *N, bool Predicated,
273                              const uint16_t *OpcodesS, const uint16_t *OpcodesU,
274                              size_t Stride, size_t TySize);
275 
276   /// Select a 64-bit MVE vector reduction with two vector operands
277   /// arm_mve_vmlldava_[predicated]
278   void SelectMVE_VMLLDAV(SDNode *N, bool Predicated, const uint16_t *OpcodesS,
279                          const uint16_t *OpcodesU);
280   /// Select a 72-bit MVE vector rounding reduction with two vector operands
281   /// int_arm_mve_vrmlldavha[_predicated]
282   void SelectMVE_VRMLLDAVH(SDNode *N, bool Predicated, const uint16_t *OpcodesS,
283                            const uint16_t *OpcodesU);
284 
285   /// SelectMVE_VLD - Select MVE interleaving load intrinsics. NumVecs
286   /// should be 2 or 4. The opcode array specifies the instructions
287   /// used for 8, 16 and 32-bit lane sizes respectively, and each
288   /// pointer points to a set of NumVecs sub-opcodes used for the
289   /// different stages (e.g. VLD20 versus VLD21) of each load family.
290   void SelectMVE_VLD(SDNode *N, unsigned NumVecs,
291                      const uint16_t *const *Opcodes, bool HasWriteback);
292 
293   /// SelectMVE_VxDUP - Select MVE incrementing-dup instructions. Opcodes is an
294   /// array of 3 elements for the 8, 16 and 32-bit lane sizes.
295   void SelectMVE_VxDUP(SDNode *N, const uint16_t *Opcodes,
296                        bool Wrapping, bool Predicated);
297 
298   /// Select SelectCDE_CXxD - Select CDE dual-GPR instruction (one of CX1D,
299   /// CX1DA, CX2D, CX2DA, CX3, CX3DA).
300   /// \arg \c NumExtraOps number of extra operands besides the coprocossor,
301   ///                     the accumulator and the immediate operand, i.e. 0
302   ///                     for CX1*, 1 for CX2*, 2 for CX3*
303   /// \arg \c HasAccum whether the instruction has an accumulator operand
304   void SelectCDE_CXxD(SDNode *N, uint16_t Opcode, size_t NumExtraOps,
305                       bool HasAccum);
306 
307   /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
308   /// should be 1, 2, 3 or 4.  The opcode array specifies the instructions used
309   /// for loading D registers.
310   void SelectVLDDup(SDNode *N, bool IsIntrinsic, bool isUpdating,
311                     unsigned NumVecs, const uint16_t *DOpcodes,
312                     const uint16_t *QOpcodes0 = nullptr,
313                     const uint16_t *QOpcodes1 = nullptr);
314 
315   /// Try to select SBFX/UBFX instructions for ARM.
316   bool tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
317 
318   bool tryInsertVectorElt(SDNode *N);
319 
320   // Select special operations if node forms integer ABS pattern
321   bool tryABSOp(SDNode *N);
322 
323   bool tryReadRegister(SDNode *N);
324   bool tryWriteRegister(SDNode *N);
325 
326   bool tryInlineAsm(SDNode *N);
327 
328   void SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI);
329 
330   void SelectCMP_SWAP(SDNode *N);
331 
332   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
333   /// inline asm expressions.
334   bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
335                                     std::vector<SDValue> &OutOps) override;
336 
337   // Form pairs of consecutive R, S, D, or Q registers.
338   SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
339   SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
340   SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
341   SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
342 
343   // Form sequences of 4 consecutive S, D, or Q registers.
344   SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
345   SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
346   SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
347 
348   // Get the alignment operand for a NEON VLD or VST instruction.
349   SDValue GetVLDSTAlign(SDValue Align, const SDLoc &dl, unsigned NumVecs,
350                         bool is64BitVector);
351 
352   /// Checks if N is a multiplication by a constant where we can extract out a
353   /// power of two from the constant so that it can be used in a shift, but only
354   /// if it simplifies the materialization of the constant. Returns true if it
355   /// is, and assigns to PowerOfTwo the power of two that should be extracted
356   /// out and to NewMulConst the new constant to be multiplied by.
357   bool canExtractShiftFromMul(const SDValue &N, unsigned MaxShift,
358                               unsigned &PowerOfTwo, SDValue &NewMulConst) const;
359 
360   /// Replace N with M in CurDAG, in a way that also ensures that M gets
361   /// selected when N would have been selected.
362   void replaceDAGValue(const SDValue &N, SDValue M);
363 };
364 }
365 
366 char ARMDAGToDAGISel::ID = 0;
367 
368 INITIALIZE_PASS(ARMDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
369 
370 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
371 /// operand. If so Imm will receive the 32-bit value.
372 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
373   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
374     Imm = cast<ConstantSDNode>(N)->getZExtValue();
375     return true;
376   }
377   return false;
378 }
379 
380 // isInt32Immediate - This method tests to see if a constant operand.
381 // If so Imm will receive the 32 bit value.
382 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
383   return isInt32Immediate(N.getNode(), Imm);
384 }
385 
386 // isOpcWithIntImmediate - This method tests to see if the node is a specific
387 // opcode and that it has a immediate integer right operand.
388 // If so Imm will receive the 32 bit value.
389 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
390   return N->getOpcode() == Opc &&
391          isInt32Immediate(N->getOperand(1).getNode(), Imm);
392 }
393 
394 /// Check whether a particular node is a constant value representable as
395 /// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
396 ///
397 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
398 static bool isScaledConstantInRange(SDValue Node, int Scale,
399                                     int RangeMin, int RangeMax,
400                                     int &ScaledConstant) {
401   assert(Scale > 0 && "Invalid scale!");
402 
403   // Check that this is a constant.
404   const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
405   if (!C)
406     return false;
407 
408   ScaledConstant = (int) C->getZExtValue();
409   if ((ScaledConstant % Scale) != 0)
410     return false;
411 
412   ScaledConstant /= Scale;
413   return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
414 }
415 
416 void ARMDAGToDAGISel::PreprocessISelDAG() {
417   if (!Subtarget->hasV6T2Ops())
418     return;
419 
420   bool isThumb2 = Subtarget->isThumb();
421   // We use make_early_inc_range to avoid invalidation issues.
422   for (SDNode &N : llvm::make_early_inc_range(CurDAG->allnodes())) {
423     if (N.getOpcode() != ISD::ADD)
424       continue;
425 
426     // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
427     // leading zeros, followed by consecutive set bits, followed by 1 or 2
428     // trailing zeros, e.g. 1020.
429     // Transform the expression to
430     // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
431     // of trailing zeros of c2. The left shift would be folded as an shifter
432     // operand of 'add' and the 'and' and 'srl' would become a bits extraction
433     // node (UBFX).
434 
435     SDValue N0 = N.getOperand(0);
436     SDValue N1 = N.getOperand(1);
437     unsigned And_imm = 0;
438     if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
439       if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
440         std::swap(N0, N1);
441     }
442     if (!And_imm)
443       continue;
444 
445     // Check if the AND mask is an immediate of the form: 000.....1111111100
446     unsigned TZ = llvm::countr_zero(And_imm);
447     if (TZ != 1 && TZ != 2)
448       // Be conservative here. Shifter operands aren't always free. e.g. On
449       // Swift, left shifter operand of 1 / 2 for free but others are not.
450       // e.g.
451       //  ubfx   r3, r1, #16, #8
452       //  ldr.w  r3, [r0, r3, lsl #2]
453       // vs.
454       //  mov.w  r9, #1020
455       //  and.w  r2, r9, r1, lsr #14
456       //  ldr    r2, [r0, r2]
457       continue;
458     And_imm >>= TZ;
459     if (And_imm & (And_imm + 1))
460       continue;
461 
462     // Look for (and (srl X, c1), c2).
463     SDValue Srl = N1.getOperand(0);
464     unsigned Srl_imm = 0;
465     if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
466         (Srl_imm <= 2))
467       continue;
468 
469     // Make sure first operand is not a shifter operand which would prevent
470     // folding of the left shift.
471     SDValue CPTmp0;
472     SDValue CPTmp1;
473     SDValue CPTmp2;
474     if (isThumb2) {
475       if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1))
476         continue;
477     } else {
478       if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
479           SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
480         continue;
481     }
482 
483     // Now make the transformation.
484     Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
485                           Srl.getOperand(0),
486                           CurDAG->getConstant(Srl_imm + TZ, SDLoc(Srl),
487                                               MVT::i32));
488     N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
489                          Srl,
490                          CurDAG->getConstant(And_imm, SDLoc(Srl), MVT::i32));
491     N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
492                          N1, CurDAG->getConstant(TZ, SDLoc(Srl), MVT::i32));
493     CurDAG->UpdateNodeOperands(&N, N0, N1);
494   }
495 }
496 
497 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
498 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
499 /// least on current ARM implementations) which should be avoidded.
500 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
501   if (OptLevel == CodeGenOpt::None)
502     return true;
503 
504   if (!Subtarget->hasVMLxHazards())
505     return true;
506 
507   if (!N->hasOneUse())
508     return false;
509 
510   SDNode *Use = *N->use_begin();
511   if (Use->getOpcode() == ISD::CopyToReg)
512     return true;
513   if (Use->isMachineOpcode()) {
514     const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
515         CurDAG->getSubtarget().getInstrInfo());
516 
517     const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
518     if (MCID.mayStore())
519       return true;
520     unsigned Opcode = MCID.getOpcode();
521     if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
522       return true;
523     // vmlx feeding into another vmlx. We actually want to unfold
524     // the use later in the MLxExpansion pass. e.g.
525     // vmla
526     // vmla (stall 8 cycles)
527     //
528     // vmul (5 cycles)
529     // vadd (5 cycles)
530     // vmla
531     // This adds up to about 18 - 19 cycles.
532     //
533     // vmla
534     // vmul (stall 4 cycles)
535     // vadd adds up to about 14 cycles.
536     return TII->isFpMLxInstruction(Opcode);
537   }
538 
539   return false;
540 }
541 
542 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
543                                             ARM_AM::ShiftOpc ShOpcVal,
544                                             unsigned ShAmt) {
545   if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
546     return true;
547   if (Shift.hasOneUse())
548     return true;
549   // R << 2 is free.
550   return ShOpcVal == ARM_AM::lsl &&
551          (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
552 }
553 
554 bool ARMDAGToDAGISel::canExtractShiftFromMul(const SDValue &N,
555                                              unsigned MaxShift,
556                                              unsigned &PowerOfTwo,
557                                              SDValue &NewMulConst) const {
558   assert(N.getOpcode() == ISD::MUL);
559   assert(MaxShift > 0);
560 
561   // If the multiply is used in more than one place then changing the constant
562   // will make other uses incorrect, so don't.
563   if (!N.hasOneUse()) return false;
564   // Check if the multiply is by a constant
565   ConstantSDNode *MulConst = dyn_cast<ConstantSDNode>(N.getOperand(1));
566   if (!MulConst) return false;
567   // If the constant is used in more than one place then modifying it will mean
568   // we need to materialize two constants instead of one, which is a bad idea.
569   if (!MulConst->hasOneUse()) return false;
570   unsigned MulConstVal = MulConst->getZExtValue();
571   if (MulConstVal == 0) return false;
572 
573   // Find the largest power of 2 that MulConstVal is a multiple of
574   PowerOfTwo = MaxShift;
575   while ((MulConstVal % (1 << PowerOfTwo)) != 0) {
576     --PowerOfTwo;
577     if (PowerOfTwo == 0) return false;
578   }
579 
580   // Only optimise if the new cost is better
581   unsigned NewMulConstVal = MulConstVal / (1 << PowerOfTwo);
582   NewMulConst = CurDAG->getConstant(NewMulConstVal, SDLoc(N), MVT::i32);
583   unsigned OldCost = ConstantMaterializationCost(MulConstVal, Subtarget);
584   unsigned NewCost = ConstantMaterializationCost(NewMulConstVal, Subtarget);
585   return NewCost < OldCost;
586 }
587 
588 void ARMDAGToDAGISel::replaceDAGValue(const SDValue &N, SDValue M) {
589   CurDAG->RepositionNode(N.getNode()->getIterator(), M.getNode());
590   ReplaceUses(N, M);
591 }
592 
593 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
594                                               SDValue &BaseReg,
595                                               SDValue &Opc,
596                                               bool CheckProfitability) {
597   if (DisableShifterOp)
598     return false;
599 
600   // If N is a multiply-by-constant and it's profitable to extract a shift and
601   // use it in a shifted operand do so.
602   if (N.getOpcode() == ISD::MUL) {
603     unsigned PowerOfTwo = 0;
604     SDValue NewMulConst;
605     if (canExtractShiftFromMul(N, 31, PowerOfTwo, NewMulConst)) {
606       HandleSDNode Handle(N);
607       SDLoc Loc(N);
608       replaceDAGValue(N.getOperand(1), NewMulConst);
609       BaseReg = Handle.getValue();
610       Opc = CurDAG->getTargetConstant(
611           ARM_AM::getSORegOpc(ARM_AM::lsl, PowerOfTwo), Loc, MVT::i32);
612       return true;
613     }
614   }
615 
616   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
617 
618   // Don't match base register only case. That is matched to a separate
619   // lower complexity pattern with explicit register operand.
620   if (ShOpcVal == ARM_AM::no_shift) return false;
621 
622   BaseReg = N.getOperand(0);
623   unsigned ShImmVal = 0;
624   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
625   if (!RHS) return false;
626   ShImmVal = RHS->getZExtValue() & 31;
627   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
628                                   SDLoc(N), MVT::i32);
629   return true;
630 }
631 
632 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
633                                               SDValue &BaseReg,
634                                               SDValue &ShReg,
635                                               SDValue &Opc,
636                                               bool CheckProfitability) {
637   if (DisableShifterOp)
638     return false;
639 
640   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
641 
642   // Don't match base register only case. That is matched to a separate
643   // lower complexity pattern with explicit register operand.
644   if (ShOpcVal == ARM_AM::no_shift) return false;
645 
646   BaseReg = N.getOperand(0);
647   unsigned ShImmVal = 0;
648   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
649   if (RHS) return false;
650 
651   ShReg = N.getOperand(1);
652   if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
653     return false;
654   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
655                                   SDLoc(N), MVT::i32);
656   return true;
657 }
658 
659 // Determine whether an ISD::OR's operands are suitable to turn the operation
660 // into an addition, which often has more compact encodings.
661 bool ARMDAGToDAGISel::SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out) {
662   assert(Parent->getOpcode() == ISD::OR && "unexpected parent");
663   Out = N;
664   return CurDAG->haveNoCommonBitsSet(N, Parent->getOperand(1));
665 }
666 
667 
668 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
669                                           SDValue &Base,
670                                           SDValue &OffImm) {
671   // Match simple R + imm12 operands.
672 
673   // Base only.
674   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
675       !CurDAG->isBaseWithConstantOffset(N)) {
676     if (N.getOpcode() == ISD::FrameIndex) {
677       // Match frame index.
678       int FI = cast<FrameIndexSDNode>(N)->getIndex();
679       Base = CurDAG->getTargetFrameIndex(
680           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
681       OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
682       return true;
683     }
684 
685     if (N.getOpcode() == ARMISD::Wrapper &&
686         N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
687         N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
688         N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
689       Base = N.getOperand(0);
690     } else
691       Base = N;
692     OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
693     return true;
694   }
695 
696   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
697     int RHSC = (int)RHS->getSExtValue();
698     if (N.getOpcode() == ISD::SUB)
699       RHSC = -RHSC;
700 
701     if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits
702       Base   = N.getOperand(0);
703       if (Base.getOpcode() == ISD::FrameIndex) {
704         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
705         Base = CurDAG->getTargetFrameIndex(
706             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
707       }
708       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
709       return true;
710     }
711   }
712 
713   // Base only.
714   Base = N;
715   OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
716   return true;
717 }
718 
719 
720 
721 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
722                                       SDValue &Opc) {
723   if (N.getOpcode() == ISD::MUL &&
724       ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
725     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
726       // X * [3,5,9] -> X + X * [2,4,8] etc.
727       int RHSC = (int)RHS->getZExtValue();
728       if (RHSC & 1) {
729         RHSC = RHSC & ~1;
730         ARM_AM::AddrOpc AddSub = ARM_AM::add;
731         if (RHSC < 0) {
732           AddSub = ARM_AM::sub;
733           RHSC = - RHSC;
734         }
735         if (isPowerOf2_32(RHSC)) {
736           unsigned ShAmt = Log2_32(RHSC);
737           Base = Offset = N.getOperand(0);
738           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
739                                                             ARM_AM::lsl),
740                                           SDLoc(N), MVT::i32);
741           return true;
742         }
743       }
744     }
745   }
746 
747   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
748       // ISD::OR that is equivalent to an ISD::ADD.
749       !CurDAG->isBaseWithConstantOffset(N))
750     return false;
751 
752   // Leave simple R +/- imm12 operands for LDRi12
753   if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
754     int RHSC;
755     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
756                                 -0x1000+1, 0x1000, RHSC)) // 12 bits.
757       return false;
758   }
759 
760   // Otherwise this is R +/- [possibly shifted] R.
761   ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
762   ARM_AM::ShiftOpc ShOpcVal =
763     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
764   unsigned ShAmt = 0;
765 
766   Base   = N.getOperand(0);
767   Offset = N.getOperand(1);
768 
769   if (ShOpcVal != ARM_AM::no_shift) {
770     // Check to see if the RHS of the shift is a constant, if not, we can't fold
771     // it.
772     if (ConstantSDNode *Sh =
773            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
774       ShAmt = Sh->getZExtValue();
775       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
776         Offset = N.getOperand(1).getOperand(0);
777       else {
778         ShAmt = 0;
779         ShOpcVal = ARM_AM::no_shift;
780       }
781     } else {
782       ShOpcVal = ARM_AM::no_shift;
783     }
784   }
785 
786   // Try matching (R shl C) + (R).
787   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
788       !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
789         N.getOperand(0).hasOneUse())) {
790     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
791     if (ShOpcVal != ARM_AM::no_shift) {
792       // Check to see if the RHS of the shift is a constant, if not, we can't
793       // fold it.
794       if (ConstantSDNode *Sh =
795           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
796         ShAmt = Sh->getZExtValue();
797         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
798           Offset = N.getOperand(0).getOperand(0);
799           Base = N.getOperand(1);
800         } else {
801           ShAmt = 0;
802           ShOpcVal = ARM_AM::no_shift;
803         }
804       } else {
805         ShOpcVal = ARM_AM::no_shift;
806       }
807     }
808   }
809 
810   // If Offset is a multiply-by-constant and it's profitable to extract a shift
811   // and use it in a shifted operand do so.
812   if (Offset.getOpcode() == ISD::MUL && N.hasOneUse()) {
813     unsigned PowerOfTwo = 0;
814     SDValue NewMulConst;
815     if (canExtractShiftFromMul(Offset, 31, PowerOfTwo, NewMulConst)) {
816       HandleSDNode Handle(Offset);
817       replaceDAGValue(Offset.getOperand(1), NewMulConst);
818       Offset = Handle.getValue();
819       ShAmt = PowerOfTwo;
820       ShOpcVal = ARM_AM::lsl;
821     }
822   }
823 
824   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
825                                   SDLoc(N), MVT::i32);
826   return true;
827 }
828 
829 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
830                                             SDValue &Offset, SDValue &Opc) {
831   unsigned Opcode = Op->getOpcode();
832   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
833     ? cast<LoadSDNode>(Op)->getAddressingMode()
834     : cast<StoreSDNode>(Op)->getAddressingMode();
835   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
836     ? ARM_AM::add : ARM_AM::sub;
837   int Val;
838   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
839     return false;
840 
841   Offset = N;
842   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
843   unsigned ShAmt = 0;
844   if (ShOpcVal != ARM_AM::no_shift) {
845     // Check to see if the RHS of the shift is a constant, if not, we can't fold
846     // it.
847     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
848       ShAmt = Sh->getZExtValue();
849       if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
850         Offset = N.getOperand(0);
851       else {
852         ShAmt = 0;
853         ShOpcVal = ARM_AM::no_shift;
854       }
855     } else {
856       ShOpcVal = ARM_AM::no_shift;
857     }
858   }
859 
860   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
861                                   SDLoc(N), MVT::i32);
862   return true;
863 }
864 
865 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
866                                             SDValue &Offset, SDValue &Opc) {
867   unsigned Opcode = Op->getOpcode();
868   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
869     ? cast<LoadSDNode>(Op)->getAddressingMode()
870     : cast<StoreSDNode>(Op)->getAddressingMode();
871   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
872     ? ARM_AM::add : ARM_AM::sub;
873   int Val;
874   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
875     if (AddSub == ARM_AM::sub) Val *= -1;
876     Offset = CurDAG->getRegister(0, MVT::i32);
877     Opc = CurDAG->getTargetConstant(Val, SDLoc(Op), MVT::i32);
878     return true;
879   }
880 
881   return false;
882 }
883 
884 
885 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
886                                             SDValue &Offset, SDValue &Opc) {
887   unsigned Opcode = Op->getOpcode();
888   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
889     ? cast<LoadSDNode>(Op)->getAddressingMode()
890     : cast<StoreSDNode>(Op)->getAddressingMode();
891   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
892     ? ARM_AM::add : ARM_AM::sub;
893   int Val;
894   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
895     Offset = CurDAG->getRegister(0, MVT::i32);
896     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
897                                                       ARM_AM::no_shift),
898                                     SDLoc(Op), MVT::i32);
899     return true;
900   }
901 
902   return false;
903 }
904 
905 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
906   Base = N;
907   return true;
908 }
909 
910 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
911                                       SDValue &Base, SDValue &Offset,
912                                       SDValue &Opc) {
913   if (N.getOpcode() == ISD::SUB) {
914     // X - C  is canonicalize to X + -C, no need to handle it here.
915     Base = N.getOperand(0);
916     Offset = N.getOperand(1);
917     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0), SDLoc(N),
918                                     MVT::i32);
919     return true;
920   }
921 
922   if (!CurDAG->isBaseWithConstantOffset(N)) {
923     Base = N;
924     if (N.getOpcode() == ISD::FrameIndex) {
925       int FI = cast<FrameIndexSDNode>(N)->getIndex();
926       Base = CurDAG->getTargetFrameIndex(
927           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
928     }
929     Offset = CurDAG->getRegister(0, MVT::i32);
930     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
931                                     MVT::i32);
932     return true;
933   }
934 
935   // If the RHS is +/- imm8, fold into addr mode.
936   int RHSC;
937   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
938                               -256 + 1, 256, RHSC)) { // 8 bits.
939     Base = N.getOperand(0);
940     if (Base.getOpcode() == ISD::FrameIndex) {
941       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
942       Base = CurDAG->getTargetFrameIndex(
943           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
944     }
945     Offset = CurDAG->getRegister(0, MVT::i32);
946 
947     ARM_AM::AddrOpc AddSub = ARM_AM::add;
948     if (RHSC < 0) {
949       AddSub = ARM_AM::sub;
950       RHSC = -RHSC;
951     }
952     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC), SDLoc(N),
953                                     MVT::i32);
954     return true;
955   }
956 
957   Base = N.getOperand(0);
958   Offset = N.getOperand(1);
959   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
960                                   MVT::i32);
961   return true;
962 }
963 
964 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
965                                             SDValue &Offset, SDValue &Opc) {
966   unsigned Opcode = Op->getOpcode();
967   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
968     ? cast<LoadSDNode>(Op)->getAddressingMode()
969     : cast<StoreSDNode>(Op)->getAddressingMode();
970   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
971     ? ARM_AM::add : ARM_AM::sub;
972   int Val;
973   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
974     Offset = CurDAG->getRegister(0, MVT::i32);
975     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), SDLoc(Op),
976                                     MVT::i32);
977     return true;
978   }
979 
980   Offset = N;
981   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), SDLoc(Op),
982                                   MVT::i32);
983   return true;
984 }
985 
986 bool ARMDAGToDAGISel::IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset,
987                                         bool FP16) {
988   if (!CurDAG->isBaseWithConstantOffset(N)) {
989     Base = N;
990     if (N.getOpcode() == ISD::FrameIndex) {
991       int FI = cast<FrameIndexSDNode>(N)->getIndex();
992       Base = CurDAG->getTargetFrameIndex(
993           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
994     } else if (N.getOpcode() == ARMISD::Wrapper &&
995                N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
996                N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
997                N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
998       Base = N.getOperand(0);
999     }
1000     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
1001                                        SDLoc(N), MVT::i32);
1002     return true;
1003   }
1004 
1005   // If the RHS is +/- imm8, fold into addr mode.
1006   int RHSC;
1007   const int Scale = FP16 ? 2 : 4;
1008 
1009   if (isScaledConstantInRange(N.getOperand(1), Scale, -255, 256, RHSC)) {
1010     Base = N.getOperand(0);
1011     if (Base.getOpcode() == ISD::FrameIndex) {
1012       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1013       Base = CurDAG->getTargetFrameIndex(
1014           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1015     }
1016 
1017     ARM_AM::AddrOpc AddSub = ARM_AM::add;
1018     if (RHSC < 0) {
1019       AddSub = ARM_AM::sub;
1020       RHSC = -RHSC;
1021     }
1022 
1023     if (FP16)
1024       Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(AddSub, RHSC),
1025                                          SDLoc(N), MVT::i32);
1026     else
1027       Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
1028                                          SDLoc(N), MVT::i32);
1029 
1030     return true;
1031   }
1032 
1033   Base = N;
1034 
1035   if (FP16)
1036     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(ARM_AM::add, 0),
1037                                        SDLoc(N), MVT::i32);
1038   else
1039     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
1040                                        SDLoc(N), MVT::i32);
1041 
1042   return true;
1043 }
1044 
1045 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
1046                                       SDValue &Base, SDValue &Offset) {
1047   return IsAddressingMode5(N, Base, Offset, /*FP16=*/ false);
1048 }
1049 
1050 bool ARMDAGToDAGISel::SelectAddrMode5FP16(SDValue N,
1051                                           SDValue &Base, SDValue &Offset) {
1052   return IsAddressingMode5(N, Base, Offset, /*FP16=*/ true);
1053 }
1054 
1055 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
1056                                       SDValue &Align) {
1057   Addr = N;
1058 
1059   unsigned Alignment = 0;
1060 
1061   MemSDNode *MemN = cast<MemSDNode>(Parent);
1062 
1063   if (isa<LSBaseSDNode>(MemN) ||
1064       ((MemN->getOpcode() == ARMISD::VST1_UPD ||
1065         MemN->getOpcode() == ARMISD::VLD1_UPD) &&
1066        MemN->getConstantOperandVal(MemN->getNumOperands() - 1) == 1)) {
1067     // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
1068     // The maximum alignment is equal to the memory size being referenced.
1069     llvm::Align MMOAlign = MemN->getAlign();
1070     unsigned MemSize = MemN->getMemoryVT().getSizeInBits() / 8;
1071     if (MMOAlign.value() >= MemSize && MemSize > 1)
1072       Alignment = MemSize;
1073   } else {
1074     // All other uses of addrmode6 are for intrinsics.  For now just record
1075     // the raw alignment value; it will be refined later based on the legal
1076     // alignment operands for the intrinsic.
1077     Alignment = MemN->getAlign().value();
1078   }
1079 
1080   Align = CurDAG->getTargetConstant(Alignment, SDLoc(N), MVT::i32);
1081   return true;
1082 }
1083 
1084 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
1085                                             SDValue &Offset) {
1086   LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
1087   ISD::MemIndexedMode AM = LdSt->getAddressingMode();
1088   if (AM != ISD::POST_INC)
1089     return false;
1090   Offset = N;
1091   if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
1092     if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
1093       Offset = CurDAG->getRegister(0, MVT::i32);
1094   }
1095   return true;
1096 }
1097 
1098 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
1099                                        SDValue &Offset, SDValue &Label) {
1100   if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
1101     Offset = N.getOperand(0);
1102     SDValue N1 = N.getOperand(1);
1103     Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
1104                                       SDLoc(N), MVT::i32);
1105     return true;
1106   }
1107 
1108   return false;
1109 }
1110 
1111 
1112 //===----------------------------------------------------------------------===//
1113 //                         Thumb Addressing Modes
1114 //===----------------------------------------------------------------------===//
1115 
1116 static bool shouldUseZeroOffsetLdSt(SDValue N) {
1117   // Negative numbers are difficult to materialise in thumb1. If we are
1118   // selecting the add of a negative, instead try to select ri with a zero
1119   // offset, so create the add node directly which will become a sub.
1120   if (N.getOpcode() != ISD::ADD)
1121     return false;
1122 
1123   // Look for an imm which is not legal for ld/st, but is legal for sub.
1124   if (auto C = dyn_cast<ConstantSDNode>(N.getOperand(1)))
1125     return C->getSExtValue() < 0 && C->getSExtValue() >= -255;
1126 
1127   return false;
1128 }
1129 
1130 bool ARMDAGToDAGISel::SelectThumbAddrModeRRSext(SDValue N, SDValue &Base,
1131                                                 SDValue &Offset) {
1132   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
1133     ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
1134     if (!NC || !NC->isZero())
1135       return false;
1136 
1137     Base = Offset = N;
1138     return true;
1139   }
1140 
1141   Base = N.getOperand(0);
1142   Offset = N.getOperand(1);
1143   return true;
1144 }
1145 
1146 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N, SDValue &Base,
1147                                             SDValue &Offset) {
1148   if (shouldUseZeroOffsetLdSt(N))
1149     return false; // Select ri instead
1150   return SelectThumbAddrModeRRSext(N, Base, Offset);
1151 }
1152 
1153 bool
1154 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
1155                                           SDValue &Base, SDValue &OffImm) {
1156   if (shouldUseZeroOffsetLdSt(N)) {
1157     Base = N;
1158     OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1159     return true;
1160   }
1161 
1162   if (!CurDAG->isBaseWithConstantOffset(N)) {
1163     if (N.getOpcode() == ISD::ADD) {
1164       return false; // We want to select register offset instead
1165     } else if (N.getOpcode() == ARMISD::Wrapper &&
1166         N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
1167         N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
1168         N.getOperand(0).getOpcode() != ISD::TargetConstantPool &&
1169         N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
1170       Base = N.getOperand(0);
1171     } else {
1172       Base = N;
1173     }
1174 
1175     OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1176     return true;
1177   }
1178 
1179   // If the RHS is + imm5 * scale, fold into addr mode.
1180   int RHSC;
1181   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
1182     Base = N.getOperand(0);
1183     OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1184     return true;
1185   }
1186 
1187   // Offset is too large, so use register offset instead.
1188   return false;
1189 }
1190 
1191 bool
1192 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
1193                                            SDValue &OffImm) {
1194   return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
1195 }
1196 
1197 bool
1198 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
1199                                            SDValue &OffImm) {
1200   return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
1201 }
1202 
1203 bool
1204 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
1205                                            SDValue &OffImm) {
1206   return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
1207 }
1208 
1209 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
1210                                             SDValue &Base, SDValue &OffImm) {
1211   if (N.getOpcode() == ISD::FrameIndex) {
1212     int FI = cast<FrameIndexSDNode>(N)->getIndex();
1213     // Only multiples of 4 are allowed for the offset, so the frame object
1214     // alignment must be at least 4.
1215     MachineFrameInfo &MFI = MF->getFrameInfo();
1216     if (MFI.getObjectAlign(FI) < Align(4))
1217       MFI.setObjectAlignment(FI, Align(4));
1218     Base = CurDAG->getTargetFrameIndex(
1219         FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1220     OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1221     return true;
1222   }
1223 
1224   if (!CurDAG->isBaseWithConstantOffset(N))
1225     return false;
1226 
1227   if (N.getOperand(0).getOpcode() == ISD::FrameIndex) {
1228     // If the RHS is + imm8 * scale, fold into addr mode.
1229     int RHSC;
1230     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
1231       Base = N.getOperand(0);
1232       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1233       // Make sure the offset is inside the object, or we might fail to
1234       // allocate an emergency spill slot. (An out-of-range access is UB, but
1235       // it could show up anyway.)
1236       MachineFrameInfo &MFI = MF->getFrameInfo();
1237       if (RHSC * 4 < MFI.getObjectSize(FI)) {
1238         // For LHS+RHS to result in an offset that's a multiple of 4 the object
1239         // indexed by the LHS must be 4-byte aligned.
1240         if (!MFI.isFixedObjectIndex(FI) && MFI.getObjectAlign(FI) < Align(4))
1241           MFI.setObjectAlignment(FI, Align(4));
1242         if (MFI.getObjectAlign(FI) >= Align(4)) {
1243           Base = CurDAG->getTargetFrameIndex(
1244               FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1245           OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1246           return true;
1247         }
1248       }
1249     }
1250   }
1251 
1252   return false;
1253 }
1254 
1255 template <unsigned Shift>
1256 bool ARMDAGToDAGISel::SelectTAddrModeImm7(SDValue N, SDValue &Base,
1257                                           SDValue &OffImm) {
1258   if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(N)) {
1259     int RHSC;
1260     if (isScaledConstantInRange(N.getOperand(1), 1 << Shift, -0x7f, 0x80,
1261                                 RHSC)) {
1262       Base = N.getOperand(0);
1263       if (N.getOpcode() == ISD::SUB)
1264         RHSC = -RHSC;
1265       OffImm =
1266           CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32);
1267       return true;
1268     }
1269   }
1270 
1271   // Base only.
1272   Base = N;
1273   OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1274   return true;
1275 }
1276 
1277 
1278 //===----------------------------------------------------------------------===//
1279 //                        Thumb 2 Addressing Modes
1280 //===----------------------------------------------------------------------===//
1281 
1282 
1283 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
1284                                             SDValue &Base, SDValue &OffImm) {
1285   // Match simple R + imm12 operands.
1286 
1287   // Base only.
1288   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1289       !CurDAG->isBaseWithConstantOffset(N)) {
1290     if (N.getOpcode() == ISD::FrameIndex) {
1291       // Match frame index.
1292       int FI = cast<FrameIndexSDNode>(N)->getIndex();
1293       Base = CurDAG->getTargetFrameIndex(
1294           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1295       OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1296       return true;
1297     }
1298 
1299     if (N.getOpcode() == ARMISD::Wrapper &&
1300         N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
1301         N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
1302         N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
1303       Base = N.getOperand(0);
1304       if (Base.getOpcode() == ISD::TargetConstantPool)
1305         return false;  // We want to select t2LDRpci instead.
1306     } else
1307       Base = N;
1308     OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1309     return true;
1310   }
1311 
1312   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1313     if (SelectT2AddrModeImm8(N, Base, OffImm))
1314       // Let t2LDRi8 handle (R - imm8).
1315       return false;
1316 
1317     int RHSC = (int)RHS->getZExtValue();
1318     if (N.getOpcode() == ISD::SUB)
1319       RHSC = -RHSC;
1320 
1321     if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
1322       Base   = N.getOperand(0);
1323       if (Base.getOpcode() == ISD::FrameIndex) {
1324         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1325         Base = CurDAG->getTargetFrameIndex(
1326             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1327       }
1328       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1329       return true;
1330     }
1331   }
1332 
1333   // Base only.
1334   Base = N;
1335   OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1336   return true;
1337 }
1338 
1339 template <unsigned Shift>
1340 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N, SDValue &Base,
1341                                            SDValue &OffImm) {
1342   if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(N)) {
1343     int RHSC;
1344     if (isScaledConstantInRange(N.getOperand(1), 1 << Shift, -255, 256, RHSC)) {
1345       Base = N.getOperand(0);
1346       if (Base.getOpcode() == ISD::FrameIndex) {
1347         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1348         Base = CurDAG->getTargetFrameIndex(
1349             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1350       }
1351 
1352       if (N.getOpcode() == ISD::SUB)
1353         RHSC = -RHSC;
1354       OffImm =
1355           CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32);
1356       return true;
1357     }
1358   }
1359 
1360   // Base only.
1361   Base = N;
1362   OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1363   return true;
1364 }
1365 
1366 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
1367                                            SDValue &Base, SDValue &OffImm) {
1368   // Match simple R - imm8 operands.
1369   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1370       !CurDAG->isBaseWithConstantOffset(N))
1371     return false;
1372 
1373   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1374     int RHSC = (int)RHS->getSExtValue();
1375     if (N.getOpcode() == ISD::SUB)
1376       RHSC = -RHSC;
1377 
1378     if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
1379       Base = N.getOperand(0);
1380       if (Base.getOpcode() == ISD::FrameIndex) {
1381         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1382         Base = CurDAG->getTargetFrameIndex(
1383             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1384       }
1385       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1386       return true;
1387     }
1388   }
1389 
1390   return false;
1391 }
1392 
1393 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
1394                                                  SDValue &OffImm){
1395   unsigned Opcode = Op->getOpcode();
1396   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1397     ? cast<LoadSDNode>(Op)->getAddressingMode()
1398     : cast<StoreSDNode>(Op)->getAddressingMode();
1399   int RHSC;
1400   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
1401     OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1402       ? CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32)
1403       : CurDAG->getTargetConstant(-RHSC, SDLoc(N), MVT::i32);
1404     return true;
1405   }
1406 
1407   return false;
1408 }
1409 
1410 template <unsigned Shift>
1411 bool ARMDAGToDAGISel::SelectT2AddrModeImm7(SDValue N, SDValue &Base,
1412                                            SDValue &OffImm) {
1413   if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(N)) {
1414     int RHSC;
1415     if (isScaledConstantInRange(N.getOperand(1), 1 << Shift, -0x7f, 0x80,
1416                                 RHSC)) {
1417       Base = N.getOperand(0);
1418       if (Base.getOpcode() == ISD::FrameIndex) {
1419         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1420         Base = CurDAG->getTargetFrameIndex(
1421             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1422       }
1423 
1424       if (N.getOpcode() == ISD::SUB)
1425         RHSC = -RHSC;
1426       OffImm =
1427           CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32);
1428       return true;
1429     }
1430   }
1431 
1432   // Base only.
1433   Base = N;
1434   OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1435   return true;
1436 }
1437 
1438 template <unsigned Shift>
1439 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N,
1440                                                  SDValue &OffImm) {
1441   return SelectT2AddrModeImm7Offset(Op, N, OffImm, Shift);
1442 }
1443 
1444 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N,
1445                                                  SDValue &OffImm,
1446                                                  unsigned Shift) {
1447   unsigned Opcode = Op->getOpcode();
1448   ISD::MemIndexedMode AM;
1449   switch (Opcode) {
1450   case ISD::LOAD:
1451     AM = cast<LoadSDNode>(Op)->getAddressingMode();
1452     break;
1453   case ISD::STORE:
1454     AM = cast<StoreSDNode>(Op)->getAddressingMode();
1455     break;
1456   case ISD::MLOAD:
1457     AM = cast<MaskedLoadSDNode>(Op)->getAddressingMode();
1458     break;
1459   case ISD::MSTORE:
1460     AM = cast<MaskedStoreSDNode>(Op)->getAddressingMode();
1461     break;
1462   default:
1463     llvm_unreachable("Unexpected Opcode for Imm7Offset");
1464   }
1465 
1466   int RHSC;
1467   // 7 bit constant, shifted by Shift.
1468   if (isScaledConstantInRange(N, 1 << Shift, 0, 0x80, RHSC)) {
1469     OffImm =
1470         ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1471             ? CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32)
1472             : CurDAG->getTargetConstant(-RHSC * (1 << Shift), SDLoc(N),
1473                                         MVT::i32);
1474     return true;
1475   }
1476   return false;
1477 }
1478 
1479 template <int Min, int Max>
1480 bool ARMDAGToDAGISel::SelectImmediateInRange(SDValue N, SDValue &OffImm) {
1481   int Val;
1482   if (isScaledConstantInRange(N, 1, Min, Max, Val)) {
1483     OffImm = CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
1484     return true;
1485   }
1486   return false;
1487 }
1488 
1489 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
1490                                             SDValue &Base,
1491                                             SDValue &OffReg, SDValue &ShImm) {
1492   // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1493   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
1494     return false;
1495 
1496   // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1497   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1498     int RHSC = (int)RHS->getZExtValue();
1499     if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
1500       return false;
1501     else if (RHSC < 0 && RHSC >= -255) // 8 bits
1502       return false;
1503   }
1504 
1505   // Look for (R + R) or (R + (R << [1,2,3])).
1506   unsigned ShAmt = 0;
1507   Base   = N.getOperand(0);
1508   OffReg = N.getOperand(1);
1509 
1510   // Swap if it is ((R << c) + R).
1511   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
1512   if (ShOpcVal != ARM_AM::lsl) {
1513     ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
1514     if (ShOpcVal == ARM_AM::lsl)
1515       std::swap(Base, OffReg);
1516   }
1517 
1518   if (ShOpcVal == ARM_AM::lsl) {
1519     // Check to see if the RHS of the shift is a constant, if not, we can't fold
1520     // it.
1521     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
1522       ShAmt = Sh->getZExtValue();
1523       if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
1524         OffReg = OffReg.getOperand(0);
1525       else {
1526         ShAmt = 0;
1527       }
1528     }
1529   }
1530 
1531   // If OffReg is a multiply-by-constant and it's profitable to extract a shift
1532   // and use it in a shifted operand do so.
1533   if (OffReg.getOpcode() == ISD::MUL && N.hasOneUse()) {
1534     unsigned PowerOfTwo = 0;
1535     SDValue NewMulConst;
1536     if (canExtractShiftFromMul(OffReg, 3, PowerOfTwo, NewMulConst)) {
1537       HandleSDNode Handle(OffReg);
1538       replaceDAGValue(OffReg.getOperand(1), NewMulConst);
1539       OffReg = Handle.getValue();
1540       ShAmt = PowerOfTwo;
1541     }
1542   }
1543 
1544   ShImm = CurDAG->getTargetConstant(ShAmt, SDLoc(N), MVT::i32);
1545 
1546   return true;
1547 }
1548 
1549 bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
1550                                                 SDValue &OffImm) {
1551   // This *must* succeed since it's used for the irreplaceable ldrex and strex
1552   // instructions.
1553   Base = N;
1554   OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1555 
1556   if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
1557     return true;
1558 
1559   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1560   if (!RHS)
1561     return true;
1562 
1563   uint32_t RHSC = (int)RHS->getZExtValue();
1564   if (RHSC > 1020 || RHSC % 4 != 0)
1565     return true;
1566 
1567   Base = N.getOperand(0);
1568   if (Base.getOpcode() == ISD::FrameIndex) {
1569     int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1570     Base = CurDAG->getTargetFrameIndex(
1571         FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1572   }
1573 
1574   OffImm = CurDAG->getTargetConstant(RHSC/4, SDLoc(N), MVT::i32);
1575   return true;
1576 }
1577 
1578 //===--------------------------------------------------------------------===//
1579 
1580 /// getAL - Returns a ARMCC::AL immediate node.
1581 static inline SDValue getAL(SelectionDAG *CurDAG, const SDLoc &dl) {
1582   return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, dl, MVT::i32);
1583 }
1584 
1585 void ARMDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
1586   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
1587   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
1588 }
1589 
1590 bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode *N) {
1591   LoadSDNode *LD = cast<LoadSDNode>(N);
1592   ISD::MemIndexedMode AM = LD->getAddressingMode();
1593   if (AM == ISD::UNINDEXED)
1594     return false;
1595 
1596   EVT LoadedVT = LD->getMemoryVT();
1597   SDValue Offset, AMOpc;
1598   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1599   unsigned Opcode = 0;
1600   bool Match = false;
1601   if (LoadedVT == MVT::i32 && isPre &&
1602       SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1603     Opcode = ARM::LDR_PRE_IMM;
1604     Match = true;
1605   } else if (LoadedVT == MVT::i32 && !isPre &&
1606       SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1607     Opcode = ARM::LDR_POST_IMM;
1608     Match = true;
1609   } else if (LoadedVT == MVT::i32 &&
1610       SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1611     Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
1612     Match = true;
1613 
1614   } else if (LoadedVT == MVT::i16 &&
1615              SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1616     Match = true;
1617     Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
1618       ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
1619       : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
1620   } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
1621     if (LD->getExtensionType() == ISD::SEXTLOAD) {
1622       if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1623         Match = true;
1624         Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
1625       }
1626     } else {
1627       if (isPre &&
1628           SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1629         Match = true;
1630         Opcode = ARM::LDRB_PRE_IMM;
1631       } else if (!isPre &&
1632                   SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1633         Match = true;
1634         Opcode = ARM::LDRB_POST_IMM;
1635       } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1636         Match = true;
1637         Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
1638       }
1639     }
1640   }
1641 
1642   if (Match) {
1643     if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
1644       SDValue Chain = LD->getChain();
1645       SDValue Base = LD->getBasePtr();
1646       SDValue Ops[]= { Base, AMOpc, getAL(CurDAG, SDLoc(N)),
1647                        CurDAG->getRegister(0, MVT::i32), Chain };
1648       SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1649                                            MVT::Other, Ops);
1650       transferMemOperands(N, New);
1651       ReplaceNode(N, New);
1652       return true;
1653     } else {
1654       SDValue Chain = LD->getChain();
1655       SDValue Base = LD->getBasePtr();
1656       SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG, SDLoc(N)),
1657                        CurDAG->getRegister(0, MVT::i32), Chain };
1658       SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1659                                            MVT::Other, Ops);
1660       transferMemOperands(N, New);
1661       ReplaceNode(N, New);
1662       return true;
1663     }
1664   }
1665 
1666   return false;
1667 }
1668 
1669 bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode *N) {
1670   LoadSDNode *LD = cast<LoadSDNode>(N);
1671   EVT LoadedVT = LD->getMemoryVT();
1672   ISD::MemIndexedMode AM = LD->getAddressingMode();
1673   if (AM != ISD::POST_INC || LD->getExtensionType() != ISD::NON_EXTLOAD ||
1674       LoadedVT.getSimpleVT().SimpleTy != MVT::i32)
1675     return false;
1676 
1677   auto *COffs = dyn_cast<ConstantSDNode>(LD->getOffset());
1678   if (!COffs || COffs->getZExtValue() != 4)
1679     return false;
1680 
1681   // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}.
1682   // The encoding of LDM is not how the rest of ISel expects a post-inc load to
1683   // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after
1684   // ISel.
1685   SDValue Chain = LD->getChain();
1686   SDValue Base = LD->getBasePtr();
1687   SDValue Ops[]= { Base, getAL(CurDAG, SDLoc(N)),
1688                    CurDAG->getRegister(0, MVT::i32), Chain };
1689   SDNode *New = CurDAG->getMachineNode(ARM::tLDR_postidx, SDLoc(N), MVT::i32,
1690                                        MVT::i32, MVT::Other, Ops);
1691   transferMemOperands(N, New);
1692   ReplaceNode(N, New);
1693   return true;
1694 }
1695 
1696 bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode *N) {
1697   LoadSDNode *LD = cast<LoadSDNode>(N);
1698   ISD::MemIndexedMode AM = LD->getAddressingMode();
1699   if (AM == ISD::UNINDEXED)
1700     return false;
1701 
1702   EVT LoadedVT = LD->getMemoryVT();
1703   bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1704   SDValue Offset;
1705   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1706   unsigned Opcode = 0;
1707   bool Match = false;
1708   if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
1709     switch (LoadedVT.getSimpleVT().SimpleTy) {
1710     case MVT::i32:
1711       Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
1712       break;
1713     case MVT::i16:
1714       if (isSExtLd)
1715         Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
1716       else
1717         Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
1718       break;
1719     case MVT::i8:
1720     case MVT::i1:
1721       if (isSExtLd)
1722         Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
1723       else
1724         Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
1725       break;
1726     default:
1727       return false;
1728     }
1729     Match = true;
1730   }
1731 
1732   if (Match) {
1733     SDValue Chain = LD->getChain();
1734     SDValue Base = LD->getBasePtr();
1735     SDValue Ops[]= { Base, Offset, getAL(CurDAG, SDLoc(N)),
1736                      CurDAG->getRegister(0, MVT::i32), Chain };
1737     SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1738                                          MVT::Other, Ops);
1739     transferMemOperands(N, New);
1740     ReplaceNode(N, New);
1741     return true;
1742   }
1743 
1744   return false;
1745 }
1746 
1747 bool ARMDAGToDAGISel::tryMVEIndexedLoad(SDNode *N) {
1748   EVT LoadedVT;
1749   unsigned Opcode = 0;
1750   bool isSExtLd, isPre;
1751   Align Alignment;
1752   ARMVCC::VPTCodes Pred;
1753   SDValue PredReg;
1754   SDValue Chain, Base, Offset;
1755 
1756   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1757     ISD::MemIndexedMode AM = LD->getAddressingMode();
1758     if (AM == ISD::UNINDEXED)
1759       return false;
1760     LoadedVT = LD->getMemoryVT();
1761     if (!LoadedVT.isVector())
1762       return false;
1763 
1764     Chain = LD->getChain();
1765     Base = LD->getBasePtr();
1766     Offset = LD->getOffset();
1767     Alignment = LD->getAlign();
1768     isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1769     isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1770     Pred = ARMVCC::None;
1771     PredReg = CurDAG->getRegister(0, MVT::i32);
1772   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
1773     ISD::MemIndexedMode AM = LD->getAddressingMode();
1774     if (AM == ISD::UNINDEXED)
1775       return false;
1776     LoadedVT = LD->getMemoryVT();
1777     if (!LoadedVT.isVector())
1778       return false;
1779 
1780     Chain = LD->getChain();
1781     Base = LD->getBasePtr();
1782     Offset = LD->getOffset();
1783     Alignment = LD->getAlign();
1784     isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1785     isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1786     Pred = ARMVCC::Then;
1787     PredReg = LD->getMask();
1788   } else
1789     llvm_unreachable("Expected a Load or a Masked Load!");
1790 
1791   // We allow LE non-masked loads to change the type (for example use a vldrb.8
1792   // as opposed to a vldrw.32). This can allow extra addressing modes or
1793   // alignments for what is otherwise an equivalent instruction.
1794   bool CanChangeType = Subtarget->isLittle() && !isa<MaskedLoadSDNode>(N);
1795 
1796   SDValue NewOffset;
1797   if (Alignment >= Align(2) && LoadedVT == MVT::v4i16 &&
1798       SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 1)) {
1799     if (isSExtLd)
1800       Opcode = isPre ? ARM::MVE_VLDRHS32_pre : ARM::MVE_VLDRHS32_post;
1801     else
1802       Opcode = isPre ? ARM::MVE_VLDRHU32_pre : ARM::MVE_VLDRHU32_post;
1803   } else if (LoadedVT == MVT::v8i8 &&
1804              SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 0)) {
1805     if (isSExtLd)
1806       Opcode = isPre ? ARM::MVE_VLDRBS16_pre : ARM::MVE_VLDRBS16_post;
1807     else
1808       Opcode = isPre ? ARM::MVE_VLDRBU16_pre : ARM::MVE_VLDRBU16_post;
1809   } else if (LoadedVT == MVT::v4i8 &&
1810              SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 0)) {
1811     if (isSExtLd)
1812       Opcode = isPre ? ARM::MVE_VLDRBS32_pre : ARM::MVE_VLDRBS32_post;
1813     else
1814       Opcode = isPre ? ARM::MVE_VLDRBU32_pre : ARM::MVE_VLDRBU32_post;
1815   } else if (Alignment >= Align(4) &&
1816              (CanChangeType || LoadedVT == MVT::v4i32 ||
1817               LoadedVT == MVT::v4f32) &&
1818              SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 2))
1819     Opcode = isPre ? ARM::MVE_VLDRWU32_pre : ARM::MVE_VLDRWU32_post;
1820   else if (Alignment >= Align(2) &&
1821            (CanChangeType || LoadedVT == MVT::v8i16 ||
1822             LoadedVT == MVT::v8f16) &&
1823            SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 1))
1824     Opcode = isPre ? ARM::MVE_VLDRHU16_pre : ARM::MVE_VLDRHU16_post;
1825   else if ((CanChangeType || LoadedVT == MVT::v16i8) &&
1826            SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 0))
1827     Opcode = isPre ? ARM::MVE_VLDRBU8_pre : ARM::MVE_VLDRBU8_post;
1828   else
1829     return false;
1830 
1831   SDValue Ops[] = {Base,
1832                    NewOffset,
1833                    CurDAG->getTargetConstant(Pred, SDLoc(N), MVT::i32),
1834                    PredReg,
1835                    CurDAG->getRegister(0, MVT::i32), // tp_reg
1836                    Chain};
1837   SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
1838                                        N->getValueType(0), MVT::Other, Ops);
1839   transferMemOperands(N, New);
1840   ReplaceUses(SDValue(N, 0), SDValue(New, 1));
1841   ReplaceUses(SDValue(N, 1), SDValue(New, 0));
1842   ReplaceUses(SDValue(N, 2), SDValue(New, 2));
1843   CurDAG->RemoveDeadNode(N);
1844   return true;
1845 }
1846 
1847 /// Form a GPRPair pseudo register from a pair of GPR regs.
1848 SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
1849   SDLoc dl(V0.getNode());
1850   SDValue RegClass =
1851     CurDAG->getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
1852   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
1853   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
1854   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1855   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1856 }
1857 
1858 /// Form a D register from a pair of S registers.
1859 SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1860   SDLoc dl(V0.getNode());
1861   SDValue RegClass =
1862     CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, dl, MVT::i32);
1863   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
1864   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
1865   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1866   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1867 }
1868 
1869 /// Form a quad register from a pair of D registers.
1870 SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1871   SDLoc dl(V0.getNode());
1872   SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, dl,
1873                                                MVT::i32);
1874   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
1875   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
1876   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1877   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1878 }
1879 
1880 /// Form 4 consecutive D registers from a pair of Q registers.
1881 SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1882   SDLoc dl(V0.getNode());
1883   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
1884                                                MVT::i32);
1885   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
1886   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
1887   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1888   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1889 }
1890 
1891 /// Form 4 consecutive S registers.
1892 SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
1893                                    SDValue V2, SDValue V3) {
1894   SDLoc dl(V0.getNode());
1895   SDValue RegClass =
1896     CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, dl, MVT::i32);
1897   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
1898   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
1899   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, dl, MVT::i32);
1900   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, dl, MVT::i32);
1901   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1902                                     V2, SubReg2, V3, SubReg3 };
1903   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1904 }
1905 
1906 /// Form 4 consecutive D registers.
1907 SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
1908                                    SDValue V2, SDValue V3) {
1909   SDLoc dl(V0.getNode());
1910   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
1911                                                MVT::i32);
1912   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
1913   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
1914   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, dl, MVT::i32);
1915   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, dl, MVT::i32);
1916   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1917                                     V2, SubReg2, V3, SubReg3 };
1918   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1919 }
1920 
1921 /// Form 4 consecutive Q registers.
1922 SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
1923                                    SDValue V2, SDValue V3) {
1924   SDLoc dl(V0.getNode());
1925   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, dl,
1926                                                MVT::i32);
1927   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
1928   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
1929   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, dl, MVT::i32);
1930   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, dl, MVT::i32);
1931   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1932                                     V2, SubReg2, V3, SubReg3 };
1933   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1934 }
1935 
1936 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1937 /// of a NEON VLD or VST instruction.  The supported values depend on the
1938 /// number of registers being loaded.
1939 SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, const SDLoc &dl,
1940                                        unsigned NumVecs, bool is64BitVector) {
1941   unsigned NumRegs = NumVecs;
1942   if (!is64BitVector && NumVecs < 3)
1943     NumRegs *= 2;
1944 
1945   unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1946   if (Alignment >= 32 && NumRegs == 4)
1947     Alignment = 32;
1948   else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
1949     Alignment = 16;
1950   else if (Alignment >= 8)
1951     Alignment = 8;
1952   else
1953     Alignment = 0;
1954 
1955   return CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
1956 }
1957 
1958 static bool isVLDfixed(unsigned Opc)
1959 {
1960   switch (Opc) {
1961   default: return false;
1962   case ARM::VLD1d8wb_fixed : return true;
1963   case ARM::VLD1d16wb_fixed : return true;
1964   case ARM::VLD1d64Qwb_fixed : return true;
1965   case ARM::VLD1d32wb_fixed : return true;
1966   case ARM::VLD1d64wb_fixed : return true;
1967   case ARM::VLD1d8TPseudoWB_fixed : return true;
1968   case ARM::VLD1d16TPseudoWB_fixed : return true;
1969   case ARM::VLD1d32TPseudoWB_fixed : return true;
1970   case ARM::VLD1d64TPseudoWB_fixed : return true;
1971   case ARM::VLD1d8QPseudoWB_fixed : return true;
1972   case ARM::VLD1d16QPseudoWB_fixed : return true;
1973   case ARM::VLD1d32QPseudoWB_fixed : return true;
1974   case ARM::VLD1d64QPseudoWB_fixed : return true;
1975   case ARM::VLD1q8wb_fixed : return true;
1976   case ARM::VLD1q16wb_fixed : return true;
1977   case ARM::VLD1q32wb_fixed : return true;
1978   case ARM::VLD1q64wb_fixed : return true;
1979   case ARM::VLD1DUPd8wb_fixed : return true;
1980   case ARM::VLD1DUPd16wb_fixed : return true;
1981   case ARM::VLD1DUPd32wb_fixed : return true;
1982   case ARM::VLD1DUPq8wb_fixed : return true;
1983   case ARM::VLD1DUPq16wb_fixed : return true;
1984   case ARM::VLD1DUPq32wb_fixed : return true;
1985   case ARM::VLD2d8wb_fixed : return true;
1986   case ARM::VLD2d16wb_fixed : return true;
1987   case ARM::VLD2d32wb_fixed : return true;
1988   case ARM::VLD2q8PseudoWB_fixed : return true;
1989   case ARM::VLD2q16PseudoWB_fixed : return true;
1990   case ARM::VLD2q32PseudoWB_fixed : return true;
1991   case ARM::VLD2DUPd8wb_fixed : return true;
1992   case ARM::VLD2DUPd16wb_fixed : return true;
1993   case ARM::VLD2DUPd32wb_fixed : return true;
1994   case ARM::VLD2DUPq8OddPseudoWB_fixed: return true;
1995   case ARM::VLD2DUPq16OddPseudoWB_fixed: return true;
1996   case ARM::VLD2DUPq32OddPseudoWB_fixed: return true;
1997   }
1998 }
1999 
2000 static bool isVSTfixed(unsigned Opc)
2001 {
2002   switch (Opc) {
2003   default: return false;
2004   case ARM::VST1d8wb_fixed : return true;
2005   case ARM::VST1d16wb_fixed : return true;
2006   case ARM::VST1d32wb_fixed : return true;
2007   case ARM::VST1d64wb_fixed : return true;
2008   case ARM::VST1q8wb_fixed : return true;
2009   case ARM::VST1q16wb_fixed : return true;
2010   case ARM::VST1q32wb_fixed : return true;
2011   case ARM::VST1q64wb_fixed : return true;
2012   case ARM::VST1d8TPseudoWB_fixed : return true;
2013   case ARM::VST1d16TPseudoWB_fixed : return true;
2014   case ARM::VST1d32TPseudoWB_fixed : return true;
2015   case ARM::VST1d64TPseudoWB_fixed : return true;
2016   case ARM::VST1d8QPseudoWB_fixed : return true;
2017   case ARM::VST1d16QPseudoWB_fixed : return true;
2018   case ARM::VST1d32QPseudoWB_fixed : return true;
2019   case ARM::VST1d64QPseudoWB_fixed : return true;
2020   case ARM::VST2d8wb_fixed : return true;
2021   case ARM::VST2d16wb_fixed : return true;
2022   case ARM::VST2d32wb_fixed : return true;
2023   case ARM::VST2q8PseudoWB_fixed : return true;
2024   case ARM::VST2q16PseudoWB_fixed : return true;
2025   case ARM::VST2q32PseudoWB_fixed : return true;
2026   }
2027 }
2028 
2029 // Get the register stride update opcode of a VLD/VST instruction that
2030 // is otherwise equivalent to the given fixed stride updating instruction.
2031 static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
2032   assert((isVLDfixed(Opc) || isVSTfixed(Opc))
2033     && "Incorrect fixed stride updating instruction.");
2034   switch (Opc) {
2035   default: break;
2036   case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
2037   case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
2038   case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
2039   case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
2040   case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
2041   case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
2042   case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
2043   case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
2044   case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register;
2045   case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register;
2046   case ARM::VLD1d8TPseudoWB_fixed: return ARM::VLD1d8TPseudoWB_register;
2047   case ARM::VLD1d16TPseudoWB_fixed: return ARM::VLD1d16TPseudoWB_register;
2048   case ARM::VLD1d32TPseudoWB_fixed: return ARM::VLD1d32TPseudoWB_register;
2049   case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register;
2050   case ARM::VLD1d8QPseudoWB_fixed: return ARM::VLD1d8QPseudoWB_register;
2051   case ARM::VLD1d16QPseudoWB_fixed: return ARM::VLD1d16QPseudoWB_register;
2052   case ARM::VLD1d32QPseudoWB_fixed: return ARM::VLD1d32QPseudoWB_register;
2053   case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register;
2054   case ARM::VLD1DUPd8wb_fixed : return ARM::VLD1DUPd8wb_register;
2055   case ARM::VLD1DUPd16wb_fixed : return ARM::VLD1DUPd16wb_register;
2056   case ARM::VLD1DUPd32wb_fixed : return ARM::VLD1DUPd32wb_register;
2057   case ARM::VLD1DUPq8wb_fixed : return ARM::VLD1DUPq8wb_register;
2058   case ARM::VLD1DUPq16wb_fixed : return ARM::VLD1DUPq16wb_register;
2059   case ARM::VLD1DUPq32wb_fixed : return ARM::VLD1DUPq32wb_register;
2060   case ARM::VLD2DUPq8OddPseudoWB_fixed: return ARM::VLD2DUPq8OddPseudoWB_register;
2061   case ARM::VLD2DUPq16OddPseudoWB_fixed: return ARM::VLD2DUPq16OddPseudoWB_register;
2062   case ARM::VLD2DUPq32OddPseudoWB_fixed: return ARM::VLD2DUPq32OddPseudoWB_register;
2063 
2064   case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
2065   case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
2066   case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
2067   case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
2068   case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
2069   case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
2070   case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
2071   case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
2072   case ARM::VST1d8TPseudoWB_fixed: return ARM::VST1d8TPseudoWB_register;
2073   case ARM::VST1d16TPseudoWB_fixed: return ARM::VST1d16TPseudoWB_register;
2074   case ARM::VST1d32TPseudoWB_fixed: return ARM::VST1d32TPseudoWB_register;
2075   case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
2076   case ARM::VST1d8QPseudoWB_fixed: return ARM::VST1d8QPseudoWB_register;
2077   case ARM::VST1d16QPseudoWB_fixed: return ARM::VST1d16QPseudoWB_register;
2078   case ARM::VST1d32QPseudoWB_fixed: return ARM::VST1d32QPseudoWB_register;
2079   case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
2080 
2081   case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
2082   case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
2083   case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
2084   case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
2085   case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
2086   case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
2087 
2088   case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
2089   case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
2090   case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
2091   case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
2092   case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
2093   case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
2094 
2095   case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
2096   case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
2097   case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
2098   }
2099   return Opc; // If not one we handle, return it unchanged.
2100 }
2101 
2102 /// Returns true if the given increment is a Constant known to be equal to the
2103 /// access size performed by a NEON load/store. This means the "[rN]!" form can
2104 /// be used.
2105 static bool isPerfectIncrement(SDValue Inc, EVT VecTy, unsigned NumVecs) {
2106   auto C = dyn_cast<ConstantSDNode>(Inc);
2107   return C && C->getZExtValue() == VecTy.getSizeInBits() / 8 * NumVecs;
2108 }
2109 
2110 void ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
2111                                 const uint16_t *DOpcodes,
2112                                 const uint16_t *QOpcodes0,
2113                                 const uint16_t *QOpcodes1) {
2114   assert(Subtarget->hasNEON());
2115   assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
2116   SDLoc dl(N);
2117 
2118   SDValue MemAddr, Align;
2119   bool IsIntrinsic = !isUpdating;  // By coincidence, all supported updating
2120                                    // nodes are not intrinsics.
2121   unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2122   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2123     return;
2124 
2125   SDValue Chain = N->getOperand(0);
2126   EVT VT = N->getValueType(0);
2127   bool is64BitVector = VT.is64BitVector();
2128   Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
2129 
2130   unsigned OpcodeIndex;
2131   switch (VT.getSimpleVT().SimpleTy) {
2132   default: llvm_unreachable("unhandled vld type");
2133     // Double-register operations:
2134   case MVT::v8i8:  OpcodeIndex = 0; break;
2135   case MVT::v4f16:
2136   case MVT::v4bf16:
2137   case MVT::v4i16: OpcodeIndex = 1; break;
2138   case MVT::v2f32:
2139   case MVT::v2i32: OpcodeIndex = 2; break;
2140   case MVT::v1i64: OpcodeIndex = 3; break;
2141     // Quad-register operations:
2142   case MVT::v16i8: OpcodeIndex = 0; break;
2143   case MVT::v8f16:
2144   case MVT::v8bf16:
2145   case MVT::v8i16: OpcodeIndex = 1; break;
2146   case MVT::v4f32:
2147   case MVT::v4i32: OpcodeIndex = 2; break;
2148   case MVT::v2f64:
2149   case MVT::v2i64: OpcodeIndex = 3; break;
2150   }
2151 
2152   EVT ResTy;
2153   if (NumVecs == 1)
2154     ResTy = VT;
2155   else {
2156     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2157     if (!is64BitVector)
2158       ResTyElts *= 2;
2159     ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
2160   }
2161   std::vector<EVT> ResTys;
2162   ResTys.push_back(ResTy);
2163   if (isUpdating)
2164     ResTys.push_back(MVT::i32);
2165   ResTys.push_back(MVT::Other);
2166 
2167   SDValue Pred = getAL(CurDAG, dl);
2168   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2169   SDNode *VLd;
2170   SmallVector<SDValue, 7> Ops;
2171 
2172   // Double registers and VLD1/VLD2 quad registers are directly supported.
2173   if (is64BitVector || NumVecs <= 2) {
2174     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2175                     QOpcodes0[OpcodeIndex]);
2176     Ops.push_back(MemAddr);
2177     Ops.push_back(Align);
2178     if (isUpdating) {
2179       SDValue Inc = N->getOperand(AddrOpIdx + 1);
2180       bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
2181       if (!IsImmUpdate) {
2182         // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
2183         // check for the opcode rather than the number of vector elements.
2184         if (isVLDfixed(Opc))
2185           Opc = getVLDSTRegisterUpdateOpcode(Opc);
2186         Ops.push_back(Inc);
2187       // VLD1/VLD2 fixed increment does not need Reg0 so only include it in
2188       // the operands if not such an opcode.
2189       } else if (!isVLDfixed(Opc))
2190         Ops.push_back(Reg0);
2191     }
2192     Ops.push_back(Pred);
2193     Ops.push_back(Reg0);
2194     Ops.push_back(Chain);
2195     VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2196 
2197   } else {
2198     // Otherwise, quad registers are loaded with two separate instructions,
2199     // where one loads the even registers and the other loads the odd registers.
2200     EVT AddrTy = MemAddr.getValueType();
2201 
2202     // Load the even subregs.  This is always an updating load, so that it
2203     // provides the address to the second load for the odd subregs.
2204     SDValue ImplDef =
2205       SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
2206     const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
2207     SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
2208                                           ResTy, AddrTy, MVT::Other, OpsA);
2209     Chain = SDValue(VLdA, 2);
2210 
2211     // Load the odd subregs.
2212     Ops.push_back(SDValue(VLdA, 1));
2213     Ops.push_back(Align);
2214     if (isUpdating) {
2215       SDValue Inc = N->getOperand(AddrOpIdx + 1);
2216       assert(isa<ConstantSDNode>(Inc.getNode()) &&
2217              "only constant post-increment update allowed for VLD3/4");
2218       (void)Inc;
2219       Ops.push_back(Reg0);
2220     }
2221     Ops.push_back(SDValue(VLdA, 0));
2222     Ops.push_back(Pred);
2223     Ops.push_back(Reg0);
2224     Ops.push_back(Chain);
2225     VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
2226   }
2227 
2228   // Transfer memoperands.
2229   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2230   CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLd), {MemOp});
2231 
2232   if (NumVecs == 1) {
2233     ReplaceNode(N, VLd);
2234     return;
2235   }
2236 
2237   // Extract out the subregisters.
2238   SDValue SuperReg = SDValue(VLd, 0);
2239   static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
2240                     ARM::qsub_3 == ARM::qsub_0 + 3,
2241                 "Unexpected subreg numbering");
2242   unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
2243   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2244     ReplaceUses(SDValue(N, Vec),
2245                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2246   ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
2247   if (isUpdating)
2248     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
2249   CurDAG->RemoveDeadNode(N);
2250 }
2251 
2252 void ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
2253                                 const uint16_t *DOpcodes,
2254                                 const uint16_t *QOpcodes0,
2255                                 const uint16_t *QOpcodes1) {
2256   assert(Subtarget->hasNEON());
2257   assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
2258   SDLoc dl(N);
2259 
2260   SDValue MemAddr, Align;
2261   bool IsIntrinsic = !isUpdating;  // By coincidence, all supported updating
2262                                    // nodes are not intrinsics.
2263   unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2264   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2265   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2266     return;
2267 
2268   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2269 
2270   SDValue Chain = N->getOperand(0);
2271   EVT VT = N->getOperand(Vec0Idx).getValueType();
2272   bool is64BitVector = VT.is64BitVector();
2273   Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
2274 
2275   unsigned OpcodeIndex;
2276   switch (VT.getSimpleVT().SimpleTy) {
2277   default: llvm_unreachable("unhandled vst type");
2278     // Double-register operations:
2279   case MVT::v8i8:  OpcodeIndex = 0; break;
2280   case MVT::v4f16:
2281   case MVT::v4bf16:
2282   case MVT::v4i16: OpcodeIndex = 1; break;
2283   case MVT::v2f32:
2284   case MVT::v2i32: OpcodeIndex = 2; break;
2285   case MVT::v1i64: OpcodeIndex = 3; break;
2286     // Quad-register operations:
2287   case MVT::v16i8: OpcodeIndex = 0; break;
2288   case MVT::v8f16:
2289   case MVT::v8bf16:
2290   case MVT::v8i16: OpcodeIndex = 1; break;
2291   case MVT::v4f32:
2292   case MVT::v4i32: OpcodeIndex = 2; break;
2293   case MVT::v2f64:
2294   case MVT::v2i64: OpcodeIndex = 3; break;
2295   }
2296 
2297   std::vector<EVT> ResTys;
2298   if (isUpdating)
2299     ResTys.push_back(MVT::i32);
2300   ResTys.push_back(MVT::Other);
2301 
2302   SDValue Pred = getAL(CurDAG, dl);
2303   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2304   SmallVector<SDValue, 7> Ops;
2305 
2306   // Double registers and VST1/VST2 quad registers are directly supported.
2307   if (is64BitVector || NumVecs <= 2) {
2308     SDValue SrcReg;
2309     if (NumVecs == 1) {
2310       SrcReg = N->getOperand(Vec0Idx);
2311     } else if (is64BitVector) {
2312       // Form a REG_SEQUENCE to force register allocation.
2313       SDValue V0 = N->getOperand(Vec0Idx + 0);
2314       SDValue V1 = N->getOperand(Vec0Idx + 1);
2315       if (NumVecs == 2)
2316         SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
2317       else {
2318         SDValue V2 = N->getOperand(Vec0Idx + 2);
2319         // If it's a vst3, form a quad D-register and leave the last part as
2320         // an undef.
2321         SDValue V3 = (NumVecs == 3)
2322           ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
2323           : N->getOperand(Vec0Idx + 3);
2324         SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2325       }
2326     } else {
2327       // Form a QQ register.
2328       SDValue Q0 = N->getOperand(Vec0Idx);
2329       SDValue Q1 = N->getOperand(Vec0Idx + 1);
2330       SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
2331     }
2332 
2333     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2334                     QOpcodes0[OpcodeIndex]);
2335     Ops.push_back(MemAddr);
2336     Ops.push_back(Align);
2337     if (isUpdating) {
2338       SDValue Inc = N->getOperand(AddrOpIdx + 1);
2339       bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
2340       if (!IsImmUpdate) {
2341         // We use a VST1 for v1i64 even if the pseudo says VST2/3/4, so
2342         // check for the opcode rather than the number of vector elements.
2343         if (isVSTfixed(Opc))
2344           Opc = getVLDSTRegisterUpdateOpcode(Opc);
2345         Ops.push_back(Inc);
2346       }
2347       // VST1/VST2 fixed increment does not need Reg0 so only include it in
2348       // the operands if not such an opcode.
2349       else if (!isVSTfixed(Opc))
2350         Ops.push_back(Reg0);
2351     }
2352     Ops.push_back(SrcReg);
2353     Ops.push_back(Pred);
2354     Ops.push_back(Reg0);
2355     Ops.push_back(Chain);
2356     SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2357 
2358     // Transfer memoperands.
2359     CurDAG->setNodeMemRefs(cast<MachineSDNode>(VSt), {MemOp});
2360 
2361     ReplaceNode(N, VSt);
2362     return;
2363   }
2364 
2365   // Otherwise, quad registers are stored with two separate instructions,
2366   // where one stores the even registers and the other stores the odd registers.
2367 
2368   // Form the QQQQ REG_SEQUENCE.
2369   SDValue V0 = N->getOperand(Vec0Idx + 0);
2370   SDValue V1 = N->getOperand(Vec0Idx + 1);
2371   SDValue V2 = N->getOperand(Vec0Idx + 2);
2372   SDValue V3 = (NumVecs == 3)
2373     ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2374     : N->getOperand(Vec0Idx + 3);
2375   SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2376 
2377   // Store the even D registers.  This is always an updating store, so that it
2378   // provides the address to the second store for the odd subregs.
2379   const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
2380   SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
2381                                         MemAddr.getValueType(),
2382                                         MVT::Other, OpsA);
2383   CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStA), {MemOp});
2384   Chain = SDValue(VStA, 1);
2385 
2386   // Store the odd D registers.
2387   Ops.push_back(SDValue(VStA, 0));
2388   Ops.push_back(Align);
2389   if (isUpdating) {
2390     SDValue Inc = N->getOperand(AddrOpIdx + 1);
2391     assert(isa<ConstantSDNode>(Inc.getNode()) &&
2392            "only constant post-increment update allowed for VST3/4");
2393     (void)Inc;
2394     Ops.push_back(Reg0);
2395   }
2396   Ops.push_back(RegSeq);
2397   Ops.push_back(Pred);
2398   Ops.push_back(Reg0);
2399   Ops.push_back(Chain);
2400   SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
2401                                         Ops);
2402   CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStB), {MemOp});
2403   ReplaceNode(N, VStB);
2404 }
2405 
2406 void ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
2407                                       unsigned NumVecs,
2408                                       const uint16_t *DOpcodes,
2409                                       const uint16_t *QOpcodes) {
2410   assert(Subtarget->hasNEON());
2411   assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
2412   SDLoc dl(N);
2413 
2414   SDValue MemAddr, Align;
2415   bool IsIntrinsic = !isUpdating;  // By coincidence, all supported updating
2416                                    // nodes are not intrinsics.
2417   unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2418   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2419   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2420     return;
2421 
2422   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2423 
2424   SDValue Chain = N->getOperand(0);
2425   unsigned Lane =
2426     cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
2427   EVT VT = N->getOperand(Vec0Idx).getValueType();
2428   bool is64BitVector = VT.is64BitVector();
2429 
2430   unsigned Alignment = 0;
2431   if (NumVecs != 3) {
2432     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2433     unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
2434     if (Alignment > NumBytes)
2435       Alignment = NumBytes;
2436     if (Alignment < 8 && Alignment < NumBytes)
2437       Alignment = 0;
2438     // Alignment must be a power of two; make sure of that.
2439     Alignment = (Alignment & -Alignment);
2440     if (Alignment == 1)
2441       Alignment = 0;
2442   }
2443   Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
2444 
2445   unsigned OpcodeIndex;
2446   switch (VT.getSimpleVT().SimpleTy) {
2447   default: llvm_unreachable("unhandled vld/vst lane type");
2448     // Double-register operations:
2449   case MVT::v8i8:  OpcodeIndex = 0; break;
2450   case MVT::v4f16:
2451   case MVT::v4bf16:
2452   case MVT::v4i16: OpcodeIndex = 1; break;
2453   case MVT::v2f32:
2454   case MVT::v2i32: OpcodeIndex = 2; break;
2455     // Quad-register operations:
2456   case MVT::v8f16:
2457   case MVT::v8bf16:
2458   case MVT::v8i16: OpcodeIndex = 0; break;
2459   case MVT::v4f32:
2460   case MVT::v4i32: OpcodeIndex = 1; break;
2461   }
2462 
2463   std::vector<EVT> ResTys;
2464   if (IsLoad) {
2465     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2466     if (!is64BitVector)
2467       ResTyElts *= 2;
2468     ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
2469                                       MVT::i64, ResTyElts));
2470   }
2471   if (isUpdating)
2472     ResTys.push_back(MVT::i32);
2473   ResTys.push_back(MVT::Other);
2474 
2475   SDValue Pred = getAL(CurDAG, dl);
2476   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2477 
2478   SmallVector<SDValue, 8> Ops;
2479   Ops.push_back(MemAddr);
2480   Ops.push_back(Align);
2481   if (isUpdating) {
2482     SDValue Inc = N->getOperand(AddrOpIdx + 1);
2483     bool IsImmUpdate =
2484         isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
2485     Ops.push_back(IsImmUpdate ? Reg0 : Inc);
2486   }
2487 
2488   SDValue SuperReg;
2489   SDValue V0 = N->getOperand(Vec0Idx + 0);
2490   SDValue V1 = N->getOperand(Vec0Idx + 1);
2491   if (NumVecs == 2) {
2492     if (is64BitVector)
2493       SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
2494     else
2495       SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
2496   } else {
2497     SDValue V2 = N->getOperand(Vec0Idx + 2);
2498     SDValue V3 = (NumVecs == 3)
2499       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2500       : N->getOperand(Vec0Idx + 3);
2501     if (is64BitVector)
2502       SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2503     else
2504       SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2505   }
2506   Ops.push_back(SuperReg);
2507   Ops.push_back(getI32Imm(Lane, dl));
2508   Ops.push_back(Pred);
2509   Ops.push_back(Reg0);
2510   Ops.push_back(Chain);
2511 
2512   unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2513                                   QOpcodes[OpcodeIndex]);
2514   SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2515   CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdLn), {MemOp});
2516   if (!IsLoad) {
2517     ReplaceNode(N, VLdLn);
2518     return;
2519   }
2520 
2521   // Extract the subregisters.
2522   SuperReg = SDValue(VLdLn, 0);
2523   static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
2524                     ARM::qsub_3 == ARM::qsub_0 + 3,
2525                 "Unexpected subreg numbering");
2526   unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
2527   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2528     ReplaceUses(SDValue(N, Vec),
2529                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2530   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
2531   if (isUpdating)
2532     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
2533   CurDAG->RemoveDeadNode(N);
2534 }
2535 
2536 template <typename SDValueVector>
2537 void ARMDAGToDAGISel::AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
2538                                            SDValue PredicateMask) {
2539   Ops.push_back(CurDAG->getTargetConstant(ARMVCC::Then, Loc, MVT::i32));
2540   Ops.push_back(PredicateMask);
2541   Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // tp_reg
2542 }
2543 
2544 template <typename SDValueVector>
2545 void ARMDAGToDAGISel::AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
2546                                            SDValue PredicateMask,
2547                                            SDValue Inactive) {
2548   Ops.push_back(CurDAG->getTargetConstant(ARMVCC::Then, Loc, MVT::i32));
2549   Ops.push_back(PredicateMask);
2550   Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // tp_reg
2551   Ops.push_back(Inactive);
2552 }
2553 
2554 template <typename SDValueVector>
2555 void ARMDAGToDAGISel::AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc) {
2556   Ops.push_back(CurDAG->getTargetConstant(ARMVCC::None, Loc, MVT::i32));
2557   Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2558   Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // tp_reg
2559 }
2560 
2561 template <typename SDValueVector>
2562 void ARMDAGToDAGISel::AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
2563                                                 EVT InactiveTy) {
2564   Ops.push_back(CurDAG->getTargetConstant(ARMVCC::None, Loc, MVT::i32));
2565   Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2566   Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // tp_reg
2567   Ops.push_back(SDValue(
2568       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, Loc, InactiveTy), 0));
2569 }
2570 
2571 void ARMDAGToDAGISel::SelectMVE_WB(SDNode *N, const uint16_t *Opcodes,
2572                                    bool Predicated) {
2573   SDLoc Loc(N);
2574   SmallVector<SDValue, 8> Ops;
2575 
2576   uint16_t Opcode;
2577   switch (N->getValueType(1).getVectorElementType().getSizeInBits()) {
2578   case 32:
2579     Opcode = Opcodes[0];
2580     break;
2581   case 64:
2582     Opcode = Opcodes[1];
2583     break;
2584   default:
2585     llvm_unreachable("bad vector element size in SelectMVE_WB");
2586   }
2587 
2588   Ops.push_back(N->getOperand(2)); // vector of base addresses
2589 
2590   int32_t ImmValue = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
2591   Ops.push_back(getI32Imm(ImmValue, Loc)); // immediate offset
2592 
2593   if (Predicated)
2594     AddMVEPredicateToOps(Ops, Loc, N->getOperand(4));
2595   else
2596     AddEmptyMVEPredicateToOps(Ops, Loc);
2597 
2598   Ops.push_back(N->getOperand(0)); // chain
2599 
2600   SmallVector<EVT, 8> VTs;
2601   VTs.push_back(N->getValueType(1));
2602   VTs.push_back(N->getValueType(0));
2603   VTs.push_back(N->getValueType(2));
2604 
2605   SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), VTs, Ops);
2606   ReplaceUses(SDValue(N, 0), SDValue(New, 1));
2607   ReplaceUses(SDValue(N, 1), SDValue(New, 0));
2608   ReplaceUses(SDValue(N, 2), SDValue(New, 2));
2609   transferMemOperands(N, New);
2610   CurDAG->RemoveDeadNode(N);
2611 }
2612 
2613 void ARMDAGToDAGISel::SelectMVE_LongShift(SDNode *N, uint16_t Opcode,
2614                                           bool Immediate,
2615                                           bool HasSaturationOperand) {
2616   SDLoc Loc(N);
2617   SmallVector<SDValue, 8> Ops;
2618 
2619   // Two 32-bit halves of the value to be shifted
2620   Ops.push_back(N->getOperand(1));
2621   Ops.push_back(N->getOperand(2));
2622 
2623   // The shift count
2624   if (Immediate) {
2625     int32_t ImmValue = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
2626     Ops.push_back(getI32Imm(ImmValue, Loc)); // immediate shift count
2627   } else {
2628     Ops.push_back(N->getOperand(3));
2629   }
2630 
2631   // The immediate saturation operand, if any
2632   if (HasSaturationOperand) {
2633     int32_t SatOp = cast<ConstantSDNode>(N->getOperand(4))->getZExtValue();
2634     int SatBit = (SatOp == 64 ? 0 : 1);
2635     Ops.push_back(getI32Imm(SatBit, Loc));
2636   }
2637 
2638   // MVE scalar shifts are IT-predicable, so include the standard
2639   // predicate arguments.
2640   Ops.push_back(getAL(CurDAG, Loc));
2641   Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2642 
2643   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), ArrayRef(Ops));
2644 }
2645 
2646 void ARMDAGToDAGISel::SelectMVE_VADCSBC(SDNode *N, uint16_t OpcodeWithCarry,
2647                                         uint16_t OpcodeWithNoCarry,
2648                                         bool Add, bool Predicated) {
2649   SDLoc Loc(N);
2650   SmallVector<SDValue, 8> Ops;
2651   uint16_t Opcode;
2652 
2653   unsigned FirstInputOp = Predicated ? 2 : 1;
2654 
2655   // Two input vectors and the input carry flag
2656   Ops.push_back(N->getOperand(FirstInputOp));
2657   Ops.push_back(N->getOperand(FirstInputOp + 1));
2658   SDValue CarryIn = N->getOperand(FirstInputOp + 2);
2659   ConstantSDNode *CarryInConstant = dyn_cast<ConstantSDNode>(CarryIn);
2660   uint32_t CarryMask = 1 << 29;
2661   uint32_t CarryExpected = Add ? 0 : CarryMask;
2662   if (CarryInConstant &&
2663       (CarryInConstant->getZExtValue() & CarryMask) == CarryExpected) {
2664     Opcode = OpcodeWithNoCarry;
2665   } else {
2666     Ops.push_back(CarryIn);
2667     Opcode = OpcodeWithCarry;
2668   }
2669 
2670   if (Predicated)
2671     AddMVEPredicateToOps(Ops, Loc,
2672                          N->getOperand(FirstInputOp + 3),  // predicate
2673                          N->getOperand(FirstInputOp - 1)); // inactive
2674   else
2675     AddEmptyMVEPredicateToOps(Ops, Loc, N->getValueType(0));
2676 
2677   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), ArrayRef(Ops));
2678 }
2679 
2680 void ARMDAGToDAGISel::SelectMVE_VSHLC(SDNode *N, bool Predicated) {
2681   SDLoc Loc(N);
2682   SmallVector<SDValue, 8> Ops;
2683 
2684   // One vector input, followed by a 32-bit word of bits to shift in
2685   // and then an immediate shift count
2686   Ops.push_back(N->getOperand(1));
2687   Ops.push_back(N->getOperand(2));
2688   int32_t ImmValue = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
2689   Ops.push_back(getI32Imm(ImmValue, Loc)); // immediate shift count
2690 
2691   if (Predicated)
2692     AddMVEPredicateToOps(Ops, Loc, N->getOperand(4));
2693   else
2694     AddEmptyMVEPredicateToOps(Ops, Loc);
2695 
2696   CurDAG->SelectNodeTo(N, ARM::MVE_VSHLC, N->getVTList(), ArrayRef(Ops));
2697 }
2698 
2699 static bool SDValueToConstBool(SDValue SDVal) {
2700   assert(isa<ConstantSDNode>(SDVal) && "expected a compile-time constant");
2701   ConstantSDNode *SDValConstant = dyn_cast<ConstantSDNode>(SDVal);
2702   uint64_t Value = SDValConstant->getZExtValue();
2703   assert((Value == 0 || Value == 1) && "expected value 0 or 1");
2704   return Value;
2705 }
2706 
2707 void ARMDAGToDAGISel::SelectBaseMVE_VMLLDAV(SDNode *N, bool Predicated,
2708                                             const uint16_t *OpcodesS,
2709                                             const uint16_t *OpcodesU,
2710                                             size_t Stride, size_t TySize) {
2711   assert(TySize < Stride && "Invalid TySize");
2712   bool IsUnsigned = SDValueToConstBool(N->getOperand(1));
2713   bool IsSub = SDValueToConstBool(N->getOperand(2));
2714   bool IsExchange = SDValueToConstBool(N->getOperand(3));
2715   if (IsUnsigned) {
2716     assert(!IsSub &&
2717            "Unsigned versions of vmlsldav[a]/vrmlsldavh[a] do not exist");
2718     assert(!IsExchange &&
2719            "Unsigned versions of vmlaldav[a]x/vrmlaldavh[a]x do not exist");
2720   }
2721 
2722   auto OpIsZero = [N](size_t OpNo) {
2723     return isNullConstant(N->getOperand(OpNo));
2724   };
2725 
2726   // If the input accumulator value is not zero, select an instruction with
2727   // accumulator, otherwise select an instruction without accumulator
2728   bool IsAccum = !(OpIsZero(4) && OpIsZero(5));
2729 
2730   const uint16_t *Opcodes = IsUnsigned ? OpcodesU : OpcodesS;
2731   if (IsSub)
2732     Opcodes += 4 * Stride;
2733   if (IsExchange)
2734     Opcodes += 2 * Stride;
2735   if (IsAccum)
2736     Opcodes += Stride;
2737   uint16_t Opcode = Opcodes[TySize];
2738 
2739   SDLoc Loc(N);
2740   SmallVector<SDValue, 8> Ops;
2741   // Push the accumulator operands, if they are used
2742   if (IsAccum) {
2743     Ops.push_back(N->getOperand(4));
2744     Ops.push_back(N->getOperand(5));
2745   }
2746   // Push the two vector operands
2747   Ops.push_back(N->getOperand(6));
2748   Ops.push_back(N->getOperand(7));
2749 
2750   if (Predicated)
2751     AddMVEPredicateToOps(Ops, Loc, N->getOperand(8));
2752   else
2753     AddEmptyMVEPredicateToOps(Ops, Loc);
2754 
2755   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), ArrayRef(Ops));
2756 }
2757 
2758 void ARMDAGToDAGISel::SelectMVE_VMLLDAV(SDNode *N, bool Predicated,
2759                                         const uint16_t *OpcodesS,
2760                                         const uint16_t *OpcodesU) {
2761   EVT VecTy = N->getOperand(6).getValueType();
2762   size_t SizeIndex;
2763   switch (VecTy.getVectorElementType().getSizeInBits()) {
2764   case 16:
2765     SizeIndex = 0;
2766     break;
2767   case 32:
2768     SizeIndex = 1;
2769     break;
2770   default:
2771     llvm_unreachable("bad vector element size");
2772   }
2773 
2774   SelectBaseMVE_VMLLDAV(N, Predicated, OpcodesS, OpcodesU, 2, SizeIndex);
2775 }
2776 
2777 void ARMDAGToDAGISel::SelectMVE_VRMLLDAVH(SDNode *N, bool Predicated,
2778                                           const uint16_t *OpcodesS,
2779                                           const uint16_t *OpcodesU) {
2780   assert(
2781       N->getOperand(6).getValueType().getVectorElementType().getSizeInBits() ==
2782           32 &&
2783       "bad vector element size");
2784   SelectBaseMVE_VMLLDAV(N, Predicated, OpcodesS, OpcodesU, 1, 0);
2785 }
2786 
2787 void ARMDAGToDAGISel::SelectMVE_VLD(SDNode *N, unsigned NumVecs,
2788                                     const uint16_t *const *Opcodes,
2789                                     bool HasWriteback) {
2790   EVT VT = N->getValueType(0);
2791   SDLoc Loc(N);
2792 
2793   const uint16_t *OurOpcodes;
2794   switch (VT.getVectorElementType().getSizeInBits()) {
2795   case 8:
2796     OurOpcodes = Opcodes[0];
2797     break;
2798   case 16:
2799     OurOpcodes = Opcodes[1];
2800     break;
2801   case 32:
2802     OurOpcodes = Opcodes[2];
2803     break;
2804   default:
2805     llvm_unreachable("bad vector element size in SelectMVE_VLD");
2806   }
2807 
2808   EVT DataTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, NumVecs * 2);
2809   SmallVector<EVT, 4> ResultTys = {DataTy, MVT::Other};
2810   unsigned PtrOperand = HasWriteback ? 1 : 2;
2811 
2812   auto Data = SDValue(
2813       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, Loc, DataTy), 0);
2814   SDValue Chain = N->getOperand(0);
2815   // Add a MVE_VLDn instruction for each Vec, except the last
2816   for (unsigned Stage = 0; Stage < NumVecs - 1; ++Stage) {
2817     SDValue Ops[] = {Data, N->getOperand(PtrOperand), Chain};
2818     auto LoadInst =
2819         CurDAG->getMachineNode(OurOpcodes[Stage], Loc, ResultTys, Ops);
2820     Data = SDValue(LoadInst, 0);
2821     Chain = SDValue(LoadInst, 1);
2822     transferMemOperands(N, LoadInst);
2823   }
2824   // The last may need a writeback on it
2825   if (HasWriteback)
2826     ResultTys = {DataTy, MVT::i32, MVT::Other};
2827   SDValue Ops[] = {Data, N->getOperand(PtrOperand), Chain};
2828   auto LoadInst =
2829       CurDAG->getMachineNode(OurOpcodes[NumVecs - 1], Loc, ResultTys, Ops);
2830   transferMemOperands(N, LoadInst);
2831 
2832   unsigned i;
2833   for (i = 0; i < NumVecs; i++)
2834     ReplaceUses(SDValue(N, i),
2835                 CurDAG->getTargetExtractSubreg(ARM::qsub_0 + i, Loc, VT,
2836                                                SDValue(LoadInst, 0)));
2837   if (HasWriteback)
2838     ReplaceUses(SDValue(N, i++), SDValue(LoadInst, 1));
2839   ReplaceUses(SDValue(N, i), SDValue(LoadInst, HasWriteback ? 2 : 1));
2840   CurDAG->RemoveDeadNode(N);
2841 }
2842 
2843 void ARMDAGToDAGISel::SelectMVE_VxDUP(SDNode *N, const uint16_t *Opcodes,
2844                                       bool Wrapping, bool Predicated) {
2845   EVT VT = N->getValueType(0);
2846   SDLoc Loc(N);
2847 
2848   uint16_t Opcode;
2849   switch (VT.getScalarSizeInBits()) {
2850   case 8:
2851     Opcode = Opcodes[0];
2852     break;
2853   case 16:
2854     Opcode = Opcodes[1];
2855     break;
2856   case 32:
2857     Opcode = Opcodes[2];
2858     break;
2859   default:
2860     llvm_unreachable("bad vector element size in SelectMVE_VxDUP");
2861   }
2862 
2863   SmallVector<SDValue, 8> Ops;
2864   unsigned OpIdx = 1;
2865 
2866   SDValue Inactive;
2867   if (Predicated)
2868     Inactive = N->getOperand(OpIdx++);
2869 
2870   Ops.push_back(N->getOperand(OpIdx++));     // base
2871   if (Wrapping)
2872     Ops.push_back(N->getOperand(OpIdx++));   // limit
2873 
2874   SDValue ImmOp = N->getOperand(OpIdx++);    // step
2875   int ImmValue = cast<ConstantSDNode>(ImmOp)->getZExtValue();
2876   Ops.push_back(getI32Imm(ImmValue, Loc));
2877 
2878   if (Predicated)
2879     AddMVEPredicateToOps(Ops, Loc, N->getOperand(OpIdx), Inactive);
2880   else
2881     AddEmptyMVEPredicateToOps(Ops, Loc, N->getValueType(0));
2882 
2883   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), ArrayRef(Ops));
2884 }
2885 
2886 void ARMDAGToDAGISel::SelectCDE_CXxD(SDNode *N, uint16_t Opcode,
2887                                      size_t NumExtraOps, bool HasAccum) {
2888   bool IsBigEndian = CurDAG->getDataLayout().isBigEndian();
2889   SDLoc Loc(N);
2890   SmallVector<SDValue, 8> Ops;
2891 
2892   unsigned OpIdx = 1;
2893 
2894   // Convert and append the immediate operand designating the coprocessor.
2895   SDValue ImmCorpoc = N->getOperand(OpIdx++);
2896   uint32_t ImmCoprocVal = cast<ConstantSDNode>(ImmCorpoc)->getZExtValue();
2897   Ops.push_back(getI32Imm(ImmCoprocVal, Loc));
2898 
2899   // For accumulating variants copy the low and high order parts of the
2900   // accumulator into a register pair and add it to the operand vector.
2901   if (HasAccum) {
2902     SDValue AccLo = N->getOperand(OpIdx++);
2903     SDValue AccHi = N->getOperand(OpIdx++);
2904     if (IsBigEndian)
2905       std::swap(AccLo, AccHi);
2906     Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, AccLo, AccHi), 0));
2907   }
2908 
2909   // Copy extra operands as-is.
2910   for (size_t I = 0; I < NumExtraOps; I++)
2911     Ops.push_back(N->getOperand(OpIdx++));
2912 
2913   // Convert and append the immediate operand
2914   SDValue Imm = N->getOperand(OpIdx);
2915   uint32_t ImmVal = cast<ConstantSDNode>(Imm)->getZExtValue();
2916   Ops.push_back(getI32Imm(ImmVal, Loc));
2917 
2918   // Accumulating variants are IT-predicable, add predicate operands.
2919   if (HasAccum) {
2920     SDValue Pred = getAL(CurDAG, Loc);
2921     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2922     Ops.push_back(Pred);
2923     Ops.push_back(PredReg);
2924   }
2925 
2926   // Create the CDE intruction
2927   SDNode *InstrNode = CurDAG->getMachineNode(Opcode, Loc, MVT::Untyped, Ops);
2928   SDValue ResultPair = SDValue(InstrNode, 0);
2929 
2930   // The original intrinsic had two outputs, and the output of the dual-register
2931   // CDE instruction is a register pair. We need to extract the two subregisters
2932   // and replace all uses of the original outputs with the extracted
2933   // subregisters.
2934   uint16_t SubRegs[2] = {ARM::gsub_0, ARM::gsub_1};
2935   if (IsBigEndian)
2936     std::swap(SubRegs[0], SubRegs[1]);
2937 
2938   for (size_t ResIdx = 0; ResIdx < 2; ResIdx++) {
2939     if (SDValue(N, ResIdx).use_empty())
2940       continue;
2941     SDValue SubReg = CurDAG->getTargetExtractSubreg(SubRegs[ResIdx], Loc,
2942                                                     MVT::i32, ResultPair);
2943     ReplaceUses(SDValue(N, ResIdx), SubReg);
2944   }
2945 
2946   CurDAG->RemoveDeadNode(N);
2947 }
2948 
2949 void ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool IsIntrinsic,
2950                                    bool isUpdating, unsigned NumVecs,
2951                                    const uint16_t *DOpcodes,
2952                                    const uint16_t *QOpcodes0,
2953                                    const uint16_t *QOpcodes1) {
2954   assert(Subtarget->hasNEON());
2955   assert(NumVecs >= 1 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
2956   SDLoc dl(N);
2957 
2958   SDValue MemAddr, Align;
2959   unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2960   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2961     return;
2962 
2963   SDValue Chain = N->getOperand(0);
2964   EVT VT = N->getValueType(0);
2965   bool is64BitVector = VT.is64BitVector();
2966 
2967   unsigned Alignment = 0;
2968   if (NumVecs != 3) {
2969     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2970     unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
2971     if (Alignment > NumBytes)
2972       Alignment = NumBytes;
2973     if (Alignment < 8 && Alignment < NumBytes)
2974       Alignment = 0;
2975     // Alignment must be a power of two; make sure of that.
2976     Alignment = (Alignment & -Alignment);
2977     if (Alignment == 1)
2978       Alignment = 0;
2979   }
2980   Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
2981 
2982   unsigned OpcodeIndex;
2983   switch (VT.getSimpleVT().SimpleTy) {
2984   default: llvm_unreachable("unhandled vld-dup type");
2985   case MVT::v8i8:
2986   case MVT::v16i8: OpcodeIndex = 0; break;
2987   case MVT::v4i16:
2988   case MVT::v8i16:
2989   case MVT::v4f16:
2990   case MVT::v8f16:
2991   case MVT::v4bf16:
2992   case MVT::v8bf16:
2993                   OpcodeIndex = 1; break;
2994   case MVT::v2f32:
2995   case MVT::v2i32:
2996   case MVT::v4f32:
2997   case MVT::v4i32: OpcodeIndex = 2; break;
2998   case MVT::v1f64:
2999   case MVT::v1i64: OpcodeIndex = 3; break;
3000   }
3001 
3002   unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
3003   if (!is64BitVector)
3004     ResTyElts *= 2;
3005   EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
3006 
3007   std::vector<EVT> ResTys;
3008   ResTys.push_back(ResTy);
3009   if (isUpdating)
3010     ResTys.push_back(MVT::i32);
3011   ResTys.push_back(MVT::Other);
3012 
3013   SDValue Pred = getAL(CurDAG, dl);
3014   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3015 
3016   SmallVector<SDValue, 6> Ops;
3017   Ops.push_back(MemAddr);
3018   Ops.push_back(Align);
3019   unsigned Opc = is64BitVector    ? DOpcodes[OpcodeIndex]
3020                  : (NumVecs == 1) ? QOpcodes0[OpcodeIndex]
3021                                   : QOpcodes1[OpcodeIndex];
3022   if (isUpdating) {
3023     SDValue Inc = N->getOperand(2);
3024     bool IsImmUpdate =
3025         isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
3026     if (IsImmUpdate) {
3027       if (!isVLDfixed(Opc))
3028         Ops.push_back(Reg0);
3029     } else {
3030       if (isVLDfixed(Opc))
3031         Opc = getVLDSTRegisterUpdateOpcode(Opc);
3032       Ops.push_back(Inc);
3033     }
3034   }
3035   if (is64BitVector || NumVecs == 1) {
3036     // Double registers and VLD1 quad registers are directly supported.
3037   } else if (NumVecs == 2) {
3038     const SDValue OpsA[] = {MemAddr, Align, Pred, Reg0, Chain};
3039     SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, ResTy,
3040                                           MVT::Other, OpsA);
3041     Chain = SDValue(VLdA, 1);
3042   } else {
3043     SDValue ImplDef = SDValue(
3044         CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
3045     const SDValue OpsA[] = {MemAddr, Align, ImplDef, Pred, Reg0, Chain};
3046     SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, ResTy,
3047                                           MVT::Other, OpsA);
3048     Ops.push_back(SDValue(VLdA, 0));
3049     Chain = SDValue(VLdA, 1);
3050   }
3051 
3052   Ops.push_back(Pred);
3053   Ops.push_back(Reg0);
3054   Ops.push_back(Chain);
3055 
3056   SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
3057 
3058   // Transfer memoperands.
3059   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3060   CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdDup), {MemOp});
3061 
3062   // Extract the subregisters.
3063   if (NumVecs == 1) {
3064     ReplaceUses(SDValue(N, 0), SDValue(VLdDup, 0));
3065   } else {
3066     SDValue SuperReg = SDValue(VLdDup, 0);
3067     static_assert(ARM::dsub_7 == ARM::dsub_0 + 7, "Unexpected subreg numbering");
3068     unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
3069     for (unsigned Vec = 0; Vec != NumVecs; ++Vec) {
3070       ReplaceUses(SDValue(N, Vec),
3071                   CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
3072     }
3073   }
3074   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
3075   if (isUpdating)
3076     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
3077   CurDAG->RemoveDeadNode(N);
3078 }
3079 
3080 bool ARMDAGToDAGISel::tryInsertVectorElt(SDNode *N) {
3081   if (!Subtarget->hasMVEIntegerOps())
3082     return false;
3083 
3084   SDLoc dl(N);
3085 
3086   // We are trying to use VMOV/VMOVX/VINS to more efficiently lower insert and
3087   // extracts of v8f16 and v8i16 vectors. Check that we have two adjacent
3088   // inserts of the correct type:
3089   SDValue Ins1 = SDValue(N, 0);
3090   SDValue Ins2 = N->getOperand(0);
3091   EVT VT = Ins1.getValueType();
3092   if (Ins2.getOpcode() != ISD::INSERT_VECTOR_ELT || !Ins2.hasOneUse() ||
3093       !isa<ConstantSDNode>(Ins1.getOperand(2)) ||
3094       !isa<ConstantSDNode>(Ins2.getOperand(2)) ||
3095       (VT != MVT::v8f16 && VT != MVT::v8i16) || (Ins2.getValueType() != VT))
3096     return false;
3097 
3098   unsigned Lane1 = Ins1.getConstantOperandVal(2);
3099   unsigned Lane2 = Ins2.getConstantOperandVal(2);
3100   if (Lane2 % 2 != 0 || Lane1 != Lane2 + 1)
3101     return false;
3102 
3103   // If the inserted values will be able to use T/B already, leave it to the
3104   // existing tablegen patterns. For example VCVTT/VCVTB.
3105   SDValue Val1 = Ins1.getOperand(1);
3106   SDValue Val2 = Ins2.getOperand(1);
3107   if (Val1.getOpcode() == ISD::FP_ROUND || Val2.getOpcode() == ISD::FP_ROUND)
3108     return false;
3109 
3110   // Check if the inserted values are both extracts.
3111   if ((Val1.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
3112        Val1.getOpcode() == ARMISD::VGETLANEu) &&
3113       (Val2.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
3114        Val2.getOpcode() == ARMISD::VGETLANEu) &&
3115       isa<ConstantSDNode>(Val1.getOperand(1)) &&
3116       isa<ConstantSDNode>(Val2.getOperand(1)) &&
3117       (Val1.getOperand(0).getValueType() == MVT::v8f16 ||
3118        Val1.getOperand(0).getValueType() == MVT::v8i16) &&
3119       (Val2.getOperand(0).getValueType() == MVT::v8f16 ||
3120        Val2.getOperand(0).getValueType() == MVT::v8i16)) {
3121     unsigned ExtractLane1 = Val1.getConstantOperandVal(1);
3122     unsigned ExtractLane2 = Val2.getConstantOperandVal(1);
3123 
3124     // If the two extracted lanes are from the same place and adjacent, this
3125     // simplifies into a f32 lane move.
3126     if (Val1.getOperand(0) == Val2.getOperand(0) && ExtractLane2 % 2 == 0 &&
3127         ExtractLane1 == ExtractLane2 + 1) {
3128       SDValue NewExt = CurDAG->getTargetExtractSubreg(
3129           ARM::ssub_0 + ExtractLane2 / 2, dl, MVT::f32, Val1.getOperand(0));
3130       SDValue NewIns = CurDAG->getTargetInsertSubreg(
3131           ARM::ssub_0 + Lane2 / 2, dl, VT, Ins2.getOperand(0),
3132           NewExt);
3133       ReplaceUses(Ins1, NewIns);
3134       return true;
3135     }
3136 
3137     // Else v8i16 pattern of an extract and an insert, with a optional vmovx for
3138     // extracting odd lanes.
3139     if (VT == MVT::v8i16 && Subtarget->hasFullFP16()) {
3140       SDValue Inp1 = CurDAG->getTargetExtractSubreg(
3141           ARM::ssub_0 + ExtractLane1 / 2, dl, MVT::f32, Val1.getOperand(0));
3142       SDValue Inp2 = CurDAG->getTargetExtractSubreg(
3143           ARM::ssub_0 + ExtractLane2 / 2, dl, MVT::f32, Val2.getOperand(0));
3144       if (ExtractLane1 % 2 != 0)
3145         Inp1 = SDValue(CurDAG->getMachineNode(ARM::VMOVH, dl, MVT::f32, Inp1), 0);
3146       if (ExtractLane2 % 2 != 0)
3147         Inp2 = SDValue(CurDAG->getMachineNode(ARM::VMOVH, dl, MVT::f32, Inp2), 0);
3148       SDNode *VINS = CurDAG->getMachineNode(ARM::VINSH, dl, MVT::f32, Inp2, Inp1);
3149       SDValue NewIns =
3150           CurDAG->getTargetInsertSubreg(ARM::ssub_0 + Lane2 / 2, dl, MVT::v4f32,
3151                                         Ins2.getOperand(0), SDValue(VINS, 0));
3152       ReplaceUses(Ins1, NewIns);
3153       return true;
3154     }
3155   }
3156 
3157   // The inserted values are not extracted - if they are f16 then insert them
3158   // directly using a VINS.
3159   if (VT == MVT::v8f16 && Subtarget->hasFullFP16()) {
3160     SDNode *VINS = CurDAG->getMachineNode(ARM::VINSH, dl, MVT::f32, Val2, Val1);
3161     SDValue NewIns =
3162         CurDAG->getTargetInsertSubreg(ARM::ssub_0 + Lane2 / 2, dl, MVT::v4f32,
3163                                       Ins2.getOperand(0), SDValue(VINS, 0));
3164     ReplaceUses(Ins1, NewIns);
3165     return true;
3166   }
3167 
3168   return false;
3169 }
3170 
3171 bool ARMDAGToDAGISel::transformFixedFloatingPointConversion(SDNode *N,
3172                                                             SDNode *FMul,
3173                                                             bool IsUnsigned,
3174                                                             bool FixedToFloat) {
3175   auto Type = N->getValueType(0);
3176   unsigned ScalarBits = Type.getScalarSizeInBits();
3177   if (ScalarBits > 32)
3178     return false;
3179 
3180   SDNodeFlags FMulFlags = FMul->getFlags();
3181   // The fixed-point vcvt and vcvt+vmul are not always equivalent if inf is
3182   // allowed in 16 bit unsigned floats
3183   if (ScalarBits == 16 && !FMulFlags.hasNoInfs() && IsUnsigned)
3184     return false;
3185 
3186   SDValue ImmNode = FMul->getOperand(1);
3187   SDValue VecVal = FMul->getOperand(0);
3188   if (VecVal->getOpcode() == ISD::UINT_TO_FP ||
3189       VecVal->getOpcode() == ISD::SINT_TO_FP)
3190     VecVal = VecVal->getOperand(0);
3191 
3192   if (VecVal.getValueType().getScalarSizeInBits() != ScalarBits)
3193     return false;
3194 
3195   if (ImmNode.getOpcode() == ISD::BITCAST) {
3196     if (ImmNode.getValueType().getScalarSizeInBits() != ScalarBits)
3197       return false;
3198     ImmNode = ImmNode.getOperand(0);
3199   }
3200 
3201   if (ImmNode.getValueType().getScalarSizeInBits() != ScalarBits)
3202     return false;
3203 
3204   APFloat ImmAPF(0.0f);
3205   switch (ImmNode.getOpcode()) {
3206   case ARMISD::VMOVIMM:
3207   case ARMISD::VDUP: {
3208     if (!isa<ConstantSDNode>(ImmNode.getOperand(0)))
3209       return false;
3210     unsigned Imm = ImmNode.getConstantOperandVal(0);
3211     if (ImmNode.getOpcode() == ARMISD::VMOVIMM)
3212       Imm = ARM_AM::decodeVMOVModImm(Imm, ScalarBits);
3213     ImmAPF =
3214         APFloat(ScalarBits == 32 ? APFloat::IEEEsingle() : APFloat::IEEEhalf(),
3215                 APInt(ScalarBits, Imm));
3216     break;
3217   }
3218   case ARMISD::VMOVFPIMM: {
3219     ImmAPF = APFloat(ARM_AM::getFPImmFloat(ImmNode.getConstantOperandVal(0)));
3220     break;
3221   }
3222   default:
3223     return false;
3224   }
3225 
3226   // Where n is the number of fractional bits, multiplying by 2^n will convert
3227   // from float to fixed and multiplying by 2^-n will convert from fixed to
3228   // float. Taking log2 of the factor (after taking the inverse in the case of
3229   // float to fixed) will give n.
3230   APFloat ToConvert = ImmAPF;
3231   if (FixedToFloat) {
3232     if (!ImmAPF.getExactInverse(&ToConvert))
3233       return false;
3234   }
3235   APSInt Converted(64, false);
3236   bool IsExact;
3237   ToConvert.convertToInteger(Converted, llvm::RoundingMode::NearestTiesToEven,
3238                              &IsExact);
3239   if (!IsExact || !Converted.isPowerOf2())
3240     return false;
3241 
3242   unsigned FracBits = Converted.logBase2();
3243   if (FracBits > ScalarBits)
3244     return false;
3245 
3246   SmallVector<SDValue, 3> Ops{
3247       VecVal, CurDAG->getConstant(FracBits, SDLoc(N), MVT::i32)};
3248   AddEmptyMVEPredicateToOps(Ops, SDLoc(N), Type);
3249 
3250   unsigned int Opcode;
3251   switch (ScalarBits) {
3252   case 16:
3253     if (FixedToFloat)
3254       Opcode = IsUnsigned ? ARM::MVE_VCVTf16u16_fix : ARM::MVE_VCVTf16s16_fix;
3255     else
3256       Opcode = IsUnsigned ? ARM::MVE_VCVTu16f16_fix : ARM::MVE_VCVTs16f16_fix;
3257     break;
3258   case 32:
3259     if (FixedToFloat)
3260       Opcode = IsUnsigned ? ARM::MVE_VCVTf32u32_fix : ARM::MVE_VCVTf32s32_fix;
3261     else
3262       Opcode = IsUnsigned ? ARM::MVE_VCVTu32f32_fix : ARM::MVE_VCVTs32f32_fix;
3263     break;
3264   default:
3265     llvm_unreachable("unexpected number of scalar bits");
3266     break;
3267   }
3268 
3269   ReplaceNode(N, CurDAG->getMachineNode(Opcode, SDLoc(N), Type, Ops));
3270   return true;
3271 }
3272 
3273 bool ARMDAGToDAGISel::tryFP_TO_INT(SDNode *N, SDLoc dl) {
3274   // Transform a floating-point to fixed-point conversion to a VCVT
3275   if (!Subtarget->hasMVEFloatOps())
3276     return false;
3277   EVT Type = N->getValueType(0);
3278   if (!Type.isVector())
3279     return false;
3280   unsigned int ScalarBits = Type.getScalarSizeInBits();
3281 
3282   bool IsUnsigned = N->getOpcode() == ISD::FP_TO_UINT ||
3283                     N->getOpcode() == ISD::FP_TO_UINT_SAT;
3284   SDNode *Node = N->getOperand(0).getNode();
3285 
3286   // floating-point to fixed-point with one fractional bit gets turned into an
3287   // FP_TO_[U|S]INT(FADD (x, x)) rather than an FP_TO_[U|S]INT(FMUL (x, y))
3288   if (Node->getOpcode() == ISD::FADD) {
3289     if (Node->getOperand(0) != Node->getOperand(1))
3290       return false;
3291     SDNodeFlags Flags = Node->getFlags();
3292     // The fixed-point vcvt and vcvt+vmul are not always equivalent if inf is
3293     // allowed in 16 bit unsigned floats
3294     if (ScalarBits == 16 && !Flags.hasNoInfs() && IsUnsigned)
3295       return false;
3296 
3297     unsigned Opcode;
3298     switch (ScalarBits) {
3299     case 16:
3300       Opcode = IsUnsigned ? ARM::MVE_VCVTu16f16_fix : ARM::MVE_VCVTs16f16_fix;
3301       break;
3302     case 32:
3303       Opcode = IsUnsigned ? ARM::MVE_VCVTu32f32_fix : ARM::MVE_VCVTs32f32_fix;
3304       break;
3305     }
3306     SmallVector<SDValue, 3> Ops{Node->getOperand(0),
3307                                 CurDAG->getConstant(1, dl, MVT::i32)};
3308     AddEmptyMVEPredicateToOps(Ops, dl, Type);
3309 
3310     ReplaceNode(N, CurDAG->getMachineNode(Opcode, dl, Type, Ops));
3311     return true;
3312   }
3313 
3314   if (Node->getOpcode() != ISD::FMUL)
3315     return false;
3316 
3317   return transformFixedFloatingPointConversion(N, Node, IsUnsigned, false);
3318 }
3319 
3320 bool ARMDAGToDAGISel::tryFMULFixed(SDNode *N, SDLoc dl) {
3321   // Transform a fixed-point to floating-point conversion to a VCVT
3322   if (!Subtarget->hasMVEFloatOps())
3323     return false;
3324   auto Type = N->getValueType(0);
3325   if (!Type.isVector())
3326     return false;
3327 
3328   auto LHS = N->getOperand(0);
3329   if (LHS.getOpcode() != ISD::SINT_TO_FP && LHS.getOpcode() != ISD::UINT_TO_FP)
3330     return false;
3331 
3332   return transformFixedFloatingPointConversion(
3333       N, N, LHS.getOpcode() == ISD::UINT_TO_FP, true);
3334 }
3335 
3336 bool ARMDAGToDAGISel::tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned) {
3337   if (!Subtarget->hasV6T2Ops())
3338     return false;
3339 
3340   unsigned Opc = isSigned
3341     ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
3342     : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
3343   SDLoc dl(N);
3344 
3345   // For unsigned extracts, check for a shift right and mask
3346   unsigned And_imm = 0;
3347   if (N->getOpcode() == ISD::AND) {
3348     if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
3349 
3350       // The immediate is a mask of the low bits iff imm & (imm+1) == 0
3351       if (And_imm & (And_imm + 1))
3352         return false;
3353 
3354       unsigned Srl_imm = 0;
3355       if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
3356                                 Srl_imm)) {
3357         assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
3358 
3359         // Mask off the unnecessary bits of the AND immediate; normally
3360         // DAGCombine will do this, but that might not happen if
3361         // targetShrinkDemandedConstant chooses a different immediate.
3362         And_imm &= -1U >> Srl_imm;
3363 
3364         // Note: The width operand is encoded as width-1.
3365         unsigned Width = llvm::countr_one(And_imm) - 1;
3366         unsigned LSB = Srl_imm;
3367 
3368         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3369 
3370         if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
3371           // It's cheaper to use a right shift to extract the top bits.
3372           if (Subtarget->isThumb()) {
3373             Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
3374             SDValue Ops[] = { N->getOperand(0).getOperand(0),
3375                               CurDAG->getTargetConstant(LSB, dl, MVT::i32),
3376                               getAL(CurDAG, dl), Reg0, Reg0 };
3377             CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3378             return true;
3379           }
3380 
3381           // ARM models shift instructions as MOVsi with shifter operand.
3382           ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
3383           SDValue ShOpc =
3384             CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB), dl,
3385                                       MVT::i32);
3386           SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
3387                             getAL(CurDAG, dl), Reg0, Reg0 };
3388           CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops);
3389           return true;
3390         }
3391 
3392         assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
3393         SDValue Ops[] = { N->getOperand(0).getOperand(0),
3394                           CurDAG->getTargetConstant(LSB, dl, MVT::i32),
3395                           CurDAG->getTargetConstant(Width, dl, MVT::i32),
3396                           getAL(CurDAG, dl), Reg0 };
3397         CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3398         return true;
3399       }
3400     }
3401     return false;
3402   }
3403 
3404   // Otherwise, we're looking for a shift of a shift
3405   unsigned Shl_imm = 0;
3406   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
3407     assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
3408     unsigned Srl_imm = 0;
3409     if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
3410       assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
3411       // Note: The width operand is encoded as width-1.
3412       unsigned Width = 32 - Srl_imm - 1;
3413       int LSB = Srl_imm - Shl_imm;
3414       if (LSB < 0)
3415         return false;
3416       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3417       assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
3418       SDValue Ops[] = { N->getOperand(0).getOperand(0),
3419                         CurDAG->getTargetConstant(LSB, dl, MVT::i32),
3420                         CurDAG->getTargetConstant(Width, dl, MVT::i32),
3421                         getAL(CurDAG, dl), Reg0 };
3422       CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3423       return true;
3424     }
3425   }
3426 
3427   // Or we are looking for a shift of an and, with a mask operand
3428   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_imm) &&
3429       isShiftedMask_32(And_imm)) {
3430     unsigned Srl_imm = 0;
3431     unsigned LSB = llvm::countr_zero(And_imm);
3432     // Shift must be the same as the ands lsb
3433     if (isInt32Immediate(N->getOperand(1), Srl_imm) && Srl_imm == LSB) {
3434       assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
3435       unsigned MSB = llvm::Log2_32(And_imm);
3436       // Note: The width operand is encoded as width-1.
3437       unsigned Width = MSB - LSB;
3438       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3439       assert(Srl_imm + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
3440       SDValue Ops[] = { N->getOperand(0).getOperand(0),
3441                         CurDAG->getTargetConstant(Srl_imm, dl, MVT::i32),
3442                         CurDAG->getTargetConstant(Width, dl, MVT::i32),
3443                         getAL(CurDAG, dl), Reg0 };
3444       CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3445       return true;
3446     }
3447   }
3448 
3449   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
3450     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
3451     unsigned LSB = 0;
3452     if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) &&
3453         !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB))
3454       return false;
3455 
3456     if (LSB + Width > 32)
3457       return false;
3458 
3459     SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3460     assert(LSB + Width <= 32 && "Shouldn't create an invalid ubfx");
3461     SDValue Ops[] = { N->getOperand(0).getOperand(0),
3462                       CurDAG->getTargetConstant(LSB, dl, MVT::i32),
3463                       CurDAG->getTargetConstant(Width - 1, dl, MVT::i32),
3464                       getAL(CurDAG, dl), Reg0 };
3465     CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3466     return true;
3467   }
3468 
3469   return false;
3470 }
3471 
3472 /// Target-specific DAG combining for ISD::SUB.
3473 /// Target-independent combining lowers SELECT_CC nodes of the form
3474 /// select_cc setg[ge] X,  0,  X, -X
3475 /// select_cc setgt    X, -1,  X, -X
3476 /// select_cc setl[te] X,  0, -X,  X
3477 /// select_cc setlt    X,  1, -X,  X
3478 /// which represent Integer ABS into:
3479 /// Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
3480 /// ARM instruction selection detects the latter and matches it to
3481 /// ARM::ABS or ARM::t2ABS machine node.
3482 bool ARMDAGToDAGISel::tryABSOp(SDNode *N){
3483   SDValue SUBSrc0 = N->getOperand(0);
3484   SDValue SUBSrc1 = N->getOperand(1);
3485   EVT VT = N->getValueType(0);
3486 
3487   if (Subtarget->isThumb1Only())
3488     return false;
3489 
3490   if (SUBSrc0.getOpcode() != ISD::XOR || SUBSrc1.getOpcode() != ISD::SRA)
3491     return false;
3492 
3493   SDValue XORSrc0 = SUBSrc0.getOperand(0);
3494   SDValue XORSrc1 = SUBSrc0.getOperand(1);
3495   SDValue SRASrc0 = SUBSrc1.getOperand(0);
3496   SDValue SRASrc1 = SUBSrc1.getOperand(1);
3497   ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
3498   EVT XType = SRASrc0.getValueType();
3499   unsigned Size = XType.getSizeInBits() - 1;
3500 
3501   if (XORSrc1 == SUBSrc1 && XORSrc0 == SRASrc0 && XType.isInteger() &&
3502       SRAConstant != nullptr && Size == SRAConstant->getZExtValue()) {
3503     unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
3504     CurDAG->SelectNodeTo(N, Opcode, VT, XORSrc0);
3505     return true;
3506   }
3507 
3508   return false;
3509 }
3510 
3511 /// We've got special pseudo-instructions for these
3512 void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
3513   unsigned Opcode;
3514   EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
3515   if (MemTy == MVT::i8)
3516     Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_8 : ARM::CMP_SWAP_8;
3517   else if (MemTy == MVT::i16)
3518     Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_16 : ARM::CMP_SWAP_16;
3519   else if (MemTy == MVT::i32)
3520     Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_32 : ARM::CMP_SWAP_32;
3521   else
3522     llvm_unreachable("Unknown AtomicCmpSwap type");
3523 
3524   SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
3525                    N->getOperand(0)};
3526   SDNode *CmpSwap = CurDAG->getMachineNode(
3527       Opcode, SDLoc(N),
3528       CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other), Ops);
3529 
3530   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
3531   CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
3532 
3533   ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
3534   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
3535   CurDAG->RemoveDeadNode(N);
3536 }
3537 
3538 static std::optional<std::pair<unsigned, unsigned>>
3539 getContiguousRangeOfSetBits(const APInt &A) {
3540   unsigned FirstOne = A.getBitWidth() - A.countl_zero() - 1;
3541   unsigned LastOne = A.countr_zero();
3542   if (A.popcount() != (FirstOne - LastOne + 1))
3543     return std::nullopt;
3544   return std::make_pair(FirstOne, LastOne);
3545 }
3546 
3547 void ARMDAGToDAGISel::SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI) {
3548   assert(N->getOpcode() == ARMISD::CMPZ);
3549   SwitchEQNEToPLMI = false;
3550 
3551   if (!Subtarget->isThumb())
3552     // FIXME: Work out whether it is profitable to do this in A32 mode - LSL and
3553     // LSR don't exist as standalone instructions - they need the barrel shifter.
3554     return;
3555 
3556   // select (cmpz (and X, C), #0) -> (LSLS X) or (LSRS X) or (LSRS (LSLS X))
3557   SDValue And = N->getOperand(0);
3558   if (!And->hasOneUse())
3559     return;
3560 
3561   SDValue Zero = N->getOperand(1);
3562   if (!isa<ConstantSDNode>(Zero) || !cast<ConstantSDNode>(Zero)->isZero() ||
3563       And->getOpcode() != ISD::AND)
3564     return;
3565   SDValue X = And.getOperand(0);
3566   auto C = dyn_cast<ConstantSDNode>(And.getOperand(1));
3567 
3568   if (!C)
3569     return;
3570   auto Range = getContiguousRangeOfSetBits(C->getAPIntValue());
3571   if (!Range)
3572     return;
3573 
3574   // There are several ways to lower this:
3575   SDNode *NewN;
3576   SDLoc dl(N);
3577 
3578   auto EmitShift = [&](unsigned Opc, SDValue Src, unsigned Imm) -> SDNode* {
3579     if (Subtarget->isThumb2()) {
3580       Opc = (Opc == ARM::tLSLri) ? ARM::t2LSLri : ARM::t2LSRri;
3581       SDValue Ops[] = { Src, CurDAG->getTargetConstant(Imm, dl, MVT::i32),
3582                         getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
3583                         CurDAG->getRegister(0, MVT::i32) };
3584       return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
3585     } else {
3586       SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), Src,
3587                        CurDAG->getTargetConstant(Imm, dl, MVT::i32),
3588                        getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
3589       return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
3590     }
3591   };
3592 
3593   if (Range->second == 0) {
3594     //  1. Mask includes the LSB -> Simply shift the top N bits off
3595     NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
3596     ReplaceNode(And.getNode(), NewN);
3597   } else if (Range->first == 31) {
3598     //  2. Mask includes the MSB -> Simply shift the bottom N bits off
3599     NewN = EmitShift(ARM::tLSRri, X, Range->second);
3600     ReplaceNode(And.getNode(), NewN);
3601   } else if (Range->first == Range->second) {
3602     //  3. Only one bit is set. We can shift this into the sign bit and use a
3603     //     PL/MI comparison.
3604     NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
3605     ReplaceNode(And.getNode(), NewN);
3606 
3607     SwitchEQNEToPLMI = true;
3608   } else if (!Subtarget->hasV6T2Ops()) {
3609     //  4. Do a double shift to clear bottom and top bits, but only in
3610     //     thumb-1 mode as in thumb-2 we can use UBFX.
3611     NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
3612     NewN = EmitShift(ARM::tLSRri, SDValue(NewN, 0),
3613                      Range->second + (31 - Range->first));
3614     ReplaceNode(And.getNode(), NewN);
3615   }
3616 }
3617 
3618 static unsigned getVectorShuffleOpcode(EVT VT, unsigned Opc64[3],
3619                                        unsigned Opc128[3]) {
3620   assert((VT.is64BitVector() || VT.is128BitVector()) &&
3621          "Unexpected vector shuffle length");
3622   switch (VT.getScalarSizeInBits()) {
3623   default:
3624     llvm_unreachable("Unexpected vector shuffle element size");
3625   case 8:
3626     return VT.is64BitVector() ? Opc64[0] : Opc128[0];
3627   case 16:
3628     return VT.is64BitVector() ? Opc64[1] : Opc128[1];
3629   case 32:
3630     return VT.is64BitVector() ? Opc64[2] : Opc128[2];
3631   }
3632 }
3633 
3634 void ARMDAGToDAGISel::Select(SDNode *N) {
3635   SDLoc dl(N);
3636 
3637   if (N->isMachineOpcode()) {
3638     N->setNodeId(-1);
3639     return;   // Already selected.
3640   }
3641 
3642   switch (N->getOpcode()) {
3643   default: break;
3644   case ISD::STORE: {
3645     // For Thumb1, match an sp-relative store in C++. This is a little
3646     // unfortunate, but I don't think I can make the chain check work
3647     // otherwise.  (The chain of the store has to be the same as the chain
3648     // of the CopyFromReg, or else we can't replace the CopyFromReg with
3649     // a direct reference to "SP".)
3650     //
3651     // This is only necessary on Thumb1 because Thumb1 sp-relative stores use
3652     // a different addressing mode from other four-byte stores.
3653     //
3654     // This pattern usually comes up with call arguments.
3655     StoreSDNode *ST = cast<StoreSDNode>(N);
3656     SDValue Ptr = ST->getBasePtr();
3657     if (Subtarget->isThumb1Only() && ST->isUnindexed()) {
3658       int RHSC = 0;
3659       if (Ptr.getOpcode() == ISD::ADD &&
3660           isScaledConstantInRange(Ptr.getOperand(1), /*Scale=*/4, 0, 256, RHSC))
3661         Ptr = Ptr.getOperand(0);
3662 
3663       if (Ptr.getOpcode() == ISD::CopyFromReg &&
3664           cast<RegisterSDNode>(Ptr.getOperand(1))->getReg() == ARM::SP &&
3665           Ptr.getOperand(0) == ST->getChain()) {
3666         SDValue Ops[] = {ST->getValue(),
3667                          CurDAG->getRegister(ARM::SP, MVT::i32),
3668                          CurDAG->getTargetConstant(RHSC, dl, MVT::i32),
3669                          getAL(CurDAG, dl),
3670                          CurDAG->getRegister(0, MVT::i32),
3671                          ST->getChain()};
3672         MachineSDNode *ResNode =
3673             CurDAG->getMachineNode(ARM::tSTRspi, dl, MVT::Other, Ops);
3674         MachineMemOperand *MemOp = ST->getMemOperand();
3675         CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
3676         ReplaceNode(N, ResNode);
3677         return;
3678       }
3679     }
3680     break;
3681   }
3682   case ISD::WRITE_REGISTER:
3683     if (tryWriteRegister(N))
3684       return;
3685     break;
3686   case ISD::READ_REGISTER:
3687     if (tryReadRegister(N))
3688       return;
3689     break;
3690   case ISD::INLINEASM:
3691   case ISD::INLINEASM_BR:
3692     if (tryInlineAsm(N))
3693       return;
3694     break;
3695   case ISD::SUB:
3696     // Select special operations if SUB node forms integer ABS pattern
3697     if (tryABSOp(N))
3698       return;
3699     // Other cases are autogenerated.
3700     break;
3701   case ISD::Constant: {
3702     unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
3703     // If we can't materialize the constant we need to use a literal pool
3704     if (ConstantMaterializationCost(Val, Subtarget) > 2 &&
3705         !Subtarget->genExecuteOnly()) {
3706       SDValue CPIdx = CurDAG->getTargetConstantPool(
3707           ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val),
3708           TLI->getPointerTy(CurDAG->getDataLayout()));
3709 
3710       SDNode *ResNode;
3711       if (Subtarget->isThumb()) {
3712         SDValue Ops[] = {
3713           CPIdx,
3714           getAL(CurDAG, dl),
3715           CurDAG->getRegister(0, MVT::i32),
3716           CurDAG->getEntryNode()
3717         };
3718         ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
3719                                          Ops);
3720       } else {
3721         SDValue Ops[] = {
3722           CPIdx,
3723           CurDAG->getTargetConstant(0, dl, MVT::i32),
3724           getAL(CurDAG, dl),
3725           CurDAG->getRegister(0, MVT::i32),
3726           CurDAG->getEntryNode()
3727         };
3728         ResNode = CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
3729                                          Ops);
3730       }
3731       // Annotate the Node with memory operand information so that MachineInstr
3732       // queries work properly. This e.g. gives the register allocation the
3733       // required information for rematerialization.
3734       MachineFunction& MF = CurDAG->getMachineFunction();
3735       MachineMemOperand *MemOp =
3736           MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
3737                                   MachineMemOperand::MOLoad, 4, Align(4));
3738 
3739       CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
3740 
3741       ReplaceNode(N, ResNode);
3742       return;
3743     }
3744 
3745     // Other cases are autogenerated.
3746     break;
3747   }
3748   case ISD::FrameIndex: {
3749     // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
3750     int FI = cast<FrameIndexSDNode>(N)->getIndex();
3751     SDValue TFI = CurDAG->getTargetFrameIndex(
3752         FI, TLI->getPointerTy(CurDAG->getDataLayout()));
3753     if (Subtarget->isThumb1Only()) {
3754       // Set the alignment of the frame object to 4, to avoid having to generate
3755       // more than one ADD
3756       MachineFrameInfo &MFI = MF->getFrameInfo();
3757       if (MFI.getObjectAlign(FI) < Align(4))
3758         MFI.setObjectAlignment(FI, Align(4));
3759       CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI,
3760                            CurDAG->getTargetConstant(0, dl, MVT::i32));
3761       return;
3762     } else {
3763       unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
3764                       ARM::t2ADDri : ARM::ADDri);
3765       SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, dl, MVT::i32),
3766                         getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
3767                         CurDAG->getRegister(0, MVT::i32) };
3768       CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3769       return;
3770     }
3771   }
3772   case ISD::INSERT_VECTOR_ELT: {
3773     if (tryInsertVectorElt(N))
3774       return;
3775     break;
3776   }
3777   case ISD::SRL:
3778     if (tryV6T2BitfieldExtractOp(N, false))
3779       return;
3780     break;
3781   case ISD::SIGN_EXTEND_INREG:
3782   case ISD::SRA:
3783     if (tryV6T2BitfieldExtractOp(N, true))
3784       return;
3785     break;
3786   case ISD::FP_TO_UINT:
3787   case ISD::FP_TO_SINT:
3788   case ISD::FP_TO_UINT_SAT:
3789   case ISD::FP_TO_SINT_SAT:
3790     if (tryFP_TO_INT(N, dl))
3791       return;
3792     break;
3793   case ISD::FMUL:
3794     if (tryFMULFixed(N, dl))
3795       return;
3796     break;
3797   case ISD::MUL:
3798     if (Subtarget->isThumb1Only())
3799       break;
3800     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
3801       unsigned RHSV = C->getZExtValue();
3802       if (!RHSV) break;
3803       if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
3804         unsigned ShImm = Log2_32(RHSV-1);
3805         if (ShImm >= 32)
3806           break;
3807         SDValue V = N->getOperand(0);
3808         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
3809         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
3810         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3811         if (Subtarget->isThumb()) {
3812           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
3813           CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops);
3814           return;
3815         } else {
3816           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
3817                             Reg0 };
3818           CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops);
3819           return;
3820         }
3821       }
3822       if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
3823         unsigned ShImm = Log2_32(RHSV+1);
3824         if (ShImm >= 32)
3825           break;
3826         SDValue V = N->getOperand(0);
3827         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
3828         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
3829         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3830         if (Subtarget->isThumb()) {
3831           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
3832           CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops);
3833           return;
3834         } else {
3835           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
3836                             Reg0 };
3837           CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops);
3838           return;
3839         }
3840       }
3841     }
3842     break;
3843   case ISD::AND: {
3844     // Check for unsigned bitfield extract
3845     if (tryV6T2BitfieldExtractOp(N, false))
3846       return;
3847 
3848     // If an immediate is used in an AND node, it is possible that the immediate
3849     // can be more optimally materialized when negated. If this is the case we
3850     // can negate the immediate and use a BIC instead.
3851     auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3852     if (N1C && N1C->hasOneUse() && Subtarget->isThumb()) {
3853       uint32_t Imm = (uint32_t) N1C->getZExtValue();
3854 
3855       // In Thumb2 mode, an AND can take a 12-bit immediate. If this
3856       // immediate can be negated and fit in the immediate operand of
3857       // a t2BIC, don't do any manual transform here as this can be
3858       // handled by the generic ISel machinery.
3859       bool PreferImmediateEncoding =
3860         Subtarget->hasThumb2() && (is_t2_so_imm(Imm) || is_t2_so_imm_not(Imm));
3861       if (!PreferImmediateEncoding &&
3862           ConstantMaterializationCost(Imm, Subtarget) >
3863               ConstantMaterializationCost(~Imm, Subtarget)) {
3864         // The current immediate costs more to materialize than a negated
3865         // immediate, so negate the immediate and use a BIC.
3866         SDValue NewImm =
3867           CurDAG->getConstant(~N1C->getZExtValue(), dl, MVT::i32);
3868         // If the new constant didn't exist before, reposition it in the topological
3869         // ordering so it is just before N. Otherwise, don't touch its location.
3870         if (NewImm->getNodeId() == -1)
3871           CurDAG->RepositionNode(N->getIterator(), NewImm.getNode());
3872 
3873         if (!Subtarget->hasThumb2()) {
3874           SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32),
3875                            N->getOperand(0), NewImm, getAL(CurDAG, dl),
3876                            CurDAG->getRegister(0, MVT::i32)};
3877           ReplaceNode(N, CurDAG->getMachineNode(ARM::tBIC, dl, MVT::i32, Ops));
3878           return;
3879         } else {
3880           SDValue Ops[] = {N->getOperand(0), NewImm, getAL(CurDAG, dl),
3881                            CurDAG->getRegister(0, MVT::i32),
3882                            CurDAG->getRegister(0, MVT::i32)};
3883           ReplaceNode(N,
3884                       CurDAG->getMachineNode(ARM::t2BICrr, dl, MVT::i32, Ops));
3885           return;
3886         }
3887       }
3888     }
3889 
3890     // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
3891     // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
3892     // are entirely contributed by c2 and lower 16-bits are entirely contributed
3893     // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
3894     // Select it to: "movt x, ((c1 & 0xffff) >> 16)
3895     EVT VT = N->getValueType(0);
3896     if (VT != MVT::i32)
3897       break;
3898     unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
3899       ? ARM::t2MOVTi16
3900       : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
3901     if (!Opc)
3902       break;
3903     SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3904     N1C = dyn_cast<ConstantSDNode>(N1);
3905     if (!N1C)
3906       break;
3907     if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
3908       SDValue N2 = N0.getOperand(1);
3909       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
3910       if (!N2C)
3911         break;
3912       unsigned N1CVal = N1C->getZExtValue();
3913       unsigned N2CVal = N2C->getZExtValue();
3914       if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
3915           (N1CVal & 0xffffU) == 0xffffU &&
3916           (N2CVal & 0xffffU) == 0x0U) {
3917         SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
3918                                                   dl, MVT::i32);
3919         SDValue Ops[] = { N0.getOperand(0), Imm16,
3920                           getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32) };
3921         ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
3922         return;
3923       }
3924     }
3925 
3926     break;
3927   }
3928   case ARMISD::UMAAL: {
3929     unsigned Opc = Subtarget->isThumb() ? ARM::t2UMAAL : ARM::UMAAL;
3930     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
3931                       N->getOperand(2), N->getOperand(3),
3932                       getAL(CurDAG, dl),
3933                       CurDAG->getRegister(0, MVT::i32) };
3934     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::i32, Ops));
3935     return;
3936   }
3937   case ARMISD::UMLAL:{
3938     if (Subtarget->isThumb()) {
3939       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3940                         N->getOperand(3), getAL(CurDAG, dl),
3941                         CurDAG->getRegister(0, MVT::i32)};
3942       ReplaceNode(
3943           N, CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops));
3944       return;
3945     }else{
3946       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3947                         N->getOperand(3), getAL(CurDAG, dl),
3948                         CurDAG->getRegister(0, MVT::i32),
3949                         CurDAG->getRegister(0, MVT::i32) };
3950       ReplaceNode(N, CurDAG->getMachineNode(
3951                          Subtarget->hasV6Ops() ? ARM::UMLAL : ARM::UMLALv5, dl,
3952                          MVT::i32, MVT::i32, Ops));
3953       return;
3954     }
3955   }
3956   case ARMISD::SMLAL:{
3957     if (Subtarget->isThumb()) {
3958       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3959                         N->getOperand(3), getAL(CurDAG, dl),
3960                         CurDAG->getRegister(0, MVT::i32)};
3961       ReplaceNode(
3962           N, CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops));
3963       return;
3964     }else{
3965       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3966                         N->getOperand(3), getAL(CurDAG, dl),
3967                         CurDAG->getRegister(0, MVT::i32),
3968                         CurDAG->getRegister(0, MVT::i32) };
3969       ReplaceNode(N, CurDAG->getMachineNode(
3970                          Subtarget->hasV6Ops() ? ARM::SMLAL : ARM::SMLALv5, dl,
3971                          MVT::i32, MVT::i32, Ops));
3972       return;
3973     }
3974   }
3975   case ARMISD::SUBE: {
3976     if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
3977       break;
3978     // Look for a pattern to match SMMLS
3979     // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b))))
3980     if (N->getOperand(1).getOpcode() != ISD::SMUL_LOHI ||
3981         N->getOperand(2).getOpcode() != ARMISD::SUBC ||
3982         !SDValue(N, 1).use_empty())
3983       break;
3984 
3985     if (Subtarget->isThumb())
3986       assert(Subtarget->hasThumb2() &&
3987              "This pattern should not be generated for Thumb");
3988 
3989     SDValue SmulLoHi = N->getOperand(1);
3990     SDValue Subc = N->getOperand(2);
3991     SDValue Zero = Subc.getOperand(0);
3992 
3993     if (!isNullConstant(Zero) || Subc.getOperand(1) != SmulLoHi.getValue(0) ||
3994         N->getOperand(1) != SmulLoHi.getValue(1) ||
3995         N->getOperand(2) != Subc.getValue(1))
3996       break;
3997 
3998     unsigned Opc = Subtarget->isThumb2() ? ARM::t2SMMLS : ARM::SMMLS;
3999     SDValue Ops[] = { SmulLoHi.getOperand(0), SmulLoHi.getOperand(1),
4000                       N->getOperand(0), getAL(CurDAG, dl),
4001                       CurDAG->getRegister(0, MVT::i32) };
4002     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops));
4003     return;
4004   }
4005   case ISD::LOAD: {
4006     if (Subtarget->hasMVEIntegerOps() && tryMVEIndexedLoad(N))
4007       return;
4008     if (Subtarget->isThumb() && Subtarget->hasThumb2()) {
4009       if (tryT2IndexedLoad(N))
4010         return;
4011     } else if (Subtarget->isThumb()) {
4012       if (tryT1IndexedLoad(N))
4013         return;
4014     } else if (tryARMIndexedLoad(N))
4015       return;
4016     // Other cases are autogenerated.
4017     break;
4018   }
4019   case ISD::MLOAD:
4020     if (Subtarget->hasMVEIntegerOps() && tryMVEIndexedLoad(N))
4021       return;
4022     // Other cases are autogenerated.
4023     break;
4024   case ARMISD::WLSSETUP: {
4025     SDNode *New = CurDAG->getMachineNode(ARM::t2WhileLoopSetup, dl, MVT::i32,
4026                                          N->getOperand(0));
4027     ReplaceUses(N, New);
4028     CurDAG->RemoveDeadNode(N);
4029     return;
4030   }
4031   case ARMISD::WLS: {
4032     SDNode *New = CurDAG->getMachineNode(ARM::t2WhileLoopStart, dl, MVT::Other,
4033                                          N->getOperand(1), N->getOperand(2),
4034                                          N->getOperand(0));
4035     ReplaceUses(N, New);
4036     CurDAG->RemoveDeadNode(N);
4037     return;
4038   }
4039   case ARMISD::LE: {
4040     SDValue Ops[] = { N->getOperand(1),
4041                       N->getOperand(2),
4042                       N->getOperand(0) };
4043     unsigned Opc = ARM::t2LoopEnd;
4044     SDNode *New = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4045     ReplaceUses(N, New);
4046     CurDAG->RemoveDeadNode(N);
4047     return;
4048   }
4049   case ARMISD::LDRD: {
4050     if (Subtarget->isThumb2())
4051       break; // TableGen handles isel in this case.
4052     SDValue Base, RegOffset, ImmOffset;
4053     const SDValue &Chain = N->getOperand(0);
4054     const SDValue &Addr = N->getOperand(1);
4055     SelectAddrMode3(Addr, Base, RegOffset, ImmOffset);
4056     if (RegOffset != CurDAG->getRegister(0, MVT::i32)) {
4057       // The register-offset variant of LDRD mandates that the register
4058       // allocated to RegOffset is not reused in any of the remaining operands.
4059       // This restriction is currently not enforced. Therefore emitting this
4060       // variant is explicitly avoided.
4061       Base = Addr;
4062       RegOffset = CurDAG->getRegister(0, MVT::i32);
4063     }
4064     SDValue Ops[] = {Base, RegOffset, ImmOffset, Chain};
4065     SDNode *New = CurDAG->getMachineNode(ARM::LOADDUAL, dl,
4066                                          {MVT::Untyped, MVT::Other}, Ops);
4067     SDValue Lo = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
4068                                                 SDValue(New, 0));
4069     SDValue Hi = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
4070                                                 SDValue(New, 0));
4071     transferMemOperands(N, New);
4072     ReplaceUses(SDValue(N, 0), Lo);
4073     ReplaceUses(SDValue(N, 1), Hi);
4074     ReplaceUses(SDValue(N, 2), SDValue(New, 1));
4075     CurDAG->RemoveDeadNode(N);
4076     return;
4077   }
4078   case ARMISD::STRD: {
4079     if (Subtarget->isThumb2())
4080       break; // TableGen handles isel in this case.
4081     SDValue Base, RegOffset, ImmOffset;
4082     const SDValue &Chain = N->getOperand(0);
4083     const SDValue &Addr = N->getOperand(3);
4084     SelectAddrMode3(Addr, Base, RegOffset, ImmOffset);
4085     if (RegOffset != CurDAG->getRegister(0, MVT::i32)) {
4086       // The register-offset variant of STRD mandates that the register
4087       // allocated to RegOffset is not reused in any of the remaining operands.
4088       // This restriction is currently not enforced. Therefore emitting this
4089       // variant is explicitly avoided.
4090       Base = Addr;
4091       RegOffset = CurDAG->getRegister(0, MVT::i32);
4092     }
4093     SDNode *RegPair =
4094         createGPRPairNode(MVT::Untyped, N->getOperand(1), N->getOperand(2));
4095     SDValue Ops[] = {SDValue(RegPair, 0), Base, RegOffset, ImmOffset, Chain};
4096     SDNode *New = CurDAG->getMachineNode(ARM::STOREDUAL, dl, MVT::Other, Ops);
4097     transferMemOperands(N, New);
4098     ReplaceUses(SDValue(N, 0), SDValue(New, 0));
4099     CurDAG->RemoveDeadNode(N);
4100     return;
4101   }
4102   case ARMISD::LOOP_DEC: {
4103     SDValue Ops[] = { N->getOperand(1),
4104                       N->getOperand(2),
4105                       N->getOperand(0) };
4106     SDNode *Dec =
4107       CurDAG->getMachineNode(ARM::t2LoopDec, dl,
4108                              CurDAG->getVTList(MVT::i32, MVT::Other), Ops);
4109     ReplaceUses(N, Dec);
4110     CurDAG->RemoveDeadNode(N);
4111     return;
4112   }
4113   case ARMISD::BRCOND: {
4114     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
4115     // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
4116     // Pattern complexity = 6  cost = 1  size = 0
4117 
4118     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
4119     // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
4120     // Pattern complexity = 6  cost = 1  size = 0
4121 
4122     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
4123     // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
4124     // Pattern complexity = 6  cost = 1  size = 0
4125 
4126     unsigned Opc = Subtarget->isThumb() ?
4127       ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
4128     SDValue Chain = N->getOperand(0);
4129     SDValue N1 = N->getOperand(1);
4130     SDValue N2 = N->getOperand(2);
4131     SDValue N3 = N->getOperand(3);
4132     SDValue InGlue = N->getOperand(4);
4133     assert(N1.getOpcode() == ISD::BasicBlock);
4134     assert(N2.getOpcode() == ISD::Constant);
4135     assert(N3.getOpcode() == ISD::Register);
4136 
4137     unsigned CC = (unsigned) cast<ConstantSDNode>(N2)->getZExtValue();
4138 
4139     if (InGlue.getOpcode() == ARMISD::CMPZ) {
4140       if (InGlue.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4141         SDValue Int = InGlue.getOperand(0);
4142         uint64_t ID = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
4143 
4144         // Handle low-overhead loops.
4145         if (ID == Intrinsic::loop_decrement_reg) {
4146           SDValue Elements = Int.getOperand(2);
4147           SDValue Size = CurDAG->getTargetConstant(
4148             cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl,
4149                                  MVT::i32);
4150 
4151           SDValue Args[] = { Elements, Size, Int.getOperand(0) };
4152           SDNode *LoopDec =
4153             CurDAG->getMachineNode(ARM::t2LoopDec, dl,
4154                                    CurDAG->getVTList(MVT::i32, MVT::Other),
4155                                    Args);
4156           ReplaceUses(Int.getNode(), LoopDec);
4157 
4158           SDValue EndArgs[] = { SDValue(LoopDec, 0), N1, Chain };
4159           SDNode *LoopEnd =
4160             CurDAG->getMachineNode(ARM::t2LoopEnd, dl, MVT::Other, EndArgs);
4161 
4162           ReplaceUses(N, LoopEnd);
4163           CurDAG->RemoveDeadNode(N);
4164           CurDAG->RemoveDeadNode(InGlue.getNode());
4165           CurDAG->RemoveDeadNode(Int.getNode());
4166           return;
4167         }
4168       }
4169 
4170       bool SwitchEQNEToPLMI;
4171       SelectCMPZ(InGlue.getNode(), SwitchEQNEToPLMI);
4172       InGlue = N->getOperand(4);
4173 
4174       if (SwitchEQNEToPLMI) {
4175         switch ((ARMCC::CondCodes)CC) {
4176         default: llvm_unreachable("CMPZ must be either NE or EQ!");
4177         case ARMCC::NE:
4178           CC = (unsigned)ARMCC::MI;
4179           break;
4180         case ARMCC::EQ:
4181           CC = (unsigned)ARMCC::PL;
4182           break;
4183         }
4184       }
4185     }
4186 
4187     SDValue Tmp2 = CurDAG->getTargetConstant(CC, dl, MVT::i32);
4188     SDValue Ops[] = { N1, Tmp2, N3, Chain, InGlue };
4189     SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4190                                              MVT::Glue, Ops);
4191     Chain = SDValue(ResNode, 0);
4192     if (N->getNumValues() == 2) {
4193       InGlue = SDValue(ResNode, 1);
4194       ReplaceUses(SDValue(N, 1), InGlue);
4195     }
4196     ReplaceUses(SDValue(N, 0),
4197                 SDValue(Chain.getNode(), Chain.getResNo()));
4198     CurDAG->RemoveDeadNode(N);
4199     return;
4200   }
4201 
4202   case ARMISD::CMPZ: {
4203     // select (CMPZ X, #-C) -> (CMPZ (ADDS X, #C), #0)
4204     //   This allows us to avoid materializing the expensive negative constant.
4205     //   The CMPZ #0 is useless and will be peepholed away but we need to keep it
4206     //   for its glue output.
4207     SDValue X = N->getOperand(0);
4208     auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1).getNode());
4209     if (C && C->getSExtValue() < 0 && Subtarget->isThumb()) {
4210       int64_t Addend = -C->getSExtValue();
4211 
4212       SDNode *Add = nullptr;
4213       // ADDS can be better than CMN if the immediate fits in a
4214       // 16-bit ADDS, which means either [0,256) for tADDi8 or [0,8) for tADDi3.
4215       // Outside that range we can just use a CMN which is 32-bit but has a
4216       // 12-bit immediate range.
4217       if (Addend < 1<<8) {
4218         if (Subtarget->isThumb2()) {
4219           SDValue Ops[] = { X, CurDAG->getTargetConstant(Addend, dl, MVT::i32),
4220                             getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
4221                             CurDAG->getRegister(0, MVT::i32) };
4222           Add = CurDAG->getMachineNode(ARM::t2ADDri, dl, MVT::i32, Ops);
4223         } else {
4224           unsigned Opc = (Addend < 1<<3) ? ARM::tADDi3 : ARM::tADDi8;
4225           SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), X,
4226                            CurDAG->getTargetConstant(Addend, dl, MVT::i32),
4227                            getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
4228           Add = CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
4229         }
4230       }
4231       if (Add) {
4232         SDValue Ops2[] = {SDValue(Add, 0), CurDAG->getConstant(0, dl, MVT::i32)};
4233         CurDAG->MorphNodeTo(N, ARMISD::CMPZ, CurDAG->getVTList(MVT::Glue), Ops2);
4234       }
4235     }
4236     // Other cases are autogenerated.
4237     break;
4238   }
4239 
4240   case ARMISD::CMOV: {
4241     SDValue InGlue = N->getOperand(4);
4242 
4243     if (InGlue.getOpcode() == ARMISD::CMPZ) {
4244       bool SwitchEQNEToPLMI;
4245       SelectCMPZ(InGlue.getNode(), SwitchEQNEToPLMI);
4246 
4247       if (SwitchEQNEToPLMI) {
4248         SDValue ARMcc = N->getOperand(2);
4249         ARMCC::CondCodes CC =
4250           (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
4251 
4252         switch (CC) {
4253         default: llvm_unreachable("CMPZ must be either NE or EQ!");
4254         case ARMCC::NE:
4255           CC = ARMCC::MI;
4256           break;
4257         case ARMCC::EQ:
4258           CC = ARMCC::PL;
4259           break;
4260         }
4261         SDValue NewARMcc = CurDAG->getConstant((unsigned)CC, dl, MVT::i32);
4262         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), NewARMcc,
4263                          N->getOperand(3), N->getOperand(4)};
4264         CurDAG->MorphNodeTo(N, ARMISD::CMOV, N->getVTList(), Ops);
4265       }
4266 
4267     }
4268     // Other cases are autogenerated.
4269     break;
4270   }
4271   case ARMISD::VZIP: {
4272     EVT VT = N->getValueType(0);
4273     // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
4274     unsigned Opc64[] = {ARM::VZIPd8, ARM::VZIPd16, ARM::VTRNd32};
4275     unsigned Opc128[] = {ARM::VZIPq8, ARM::VZIPq16, ARM::VZIPq32};
4276     unsigned Opc = getVectorShuffleOpcode(VT, Opc64, Opc128);
4277     SDValue Pred = getAL(CurDAG, dl);
4278     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
4279     SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Pred, PredReg};
4280     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
4281     return;
4282   }
4283   case ARMISD::VUZP: {
4284     EVT VT = N->getValueType(0);
4285     // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
4286     unsigned Opc64[] = {ARM::VUZPd8, ARM::VUZPd16, ARM::VTRNd32};
4287     unsigned Opc128[] = {ARM::VUZPq8, ARM::VUZPq16, ARM::VUZPq32};
4288     unsigned Opc = getVectorShuffleOpcode(VT, Opc64, Opc128);
4289     SDValue Pred = getAL(CurDAG, dl);
4290     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
4291     SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Pred, PredReg};
4292     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
4293     return;
4294   }
4295   case ARMISD::VTRN: {
4296     EVT VT = N->getValueType(0);
4297     unsigned Opc64[] = {ARM::VTRNd8, ARM::VTRNd16, ARM::VTRNd32};
4298     unsigned Opc128[] = {ARM::VTRNq8, ARM::VTRNq16, ARM::VTRNq32};
4299     unsigned Opc = getVectorShuffleOpcode(VT, Opc64, Opc128);
4300     SDValue Pred = getAL(CurDAG, dl);
4301     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
4302     SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Pred, PredReg};
4303     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
4304     return;
4305   }
4306   case ARMISD::BUILD_VECTOR: {
4307     EVT VecVT = N->getValueType(0);
4308     EVT EltVT = VecVT.getVectorElementType();
4309     unsigned NumElts = VecVT.getVectorNumElements();
4310     if (EltVT == MVT::f64) {
4311       assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
4312       ReplaceNode(
4313           N, createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
4314       return;
4315     }
4316     assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
4317     if (NumElts == 2) {
4318       ReplaceNode(
4319           N, createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
4320       return;
4321     }
4322     assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
4323     ReplaceNode(N,
4324                 createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
4325                                     N->getOperand(2), N->getOperand(3)));
4326     return;
4327   }
4328 
4329   case ARMISD::VLD1DUP: {
4330     static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8, ARM::VLD1DUPd16,
4331                                          ARM::VLD1DUPd32 };
4332     static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8, ARM::VLD1DUPq16,
4333                                          ARM::VLD1DUPq32 };
4334     SelectVLDDup(N, /* IsIntrinsic= */ false, false, 1, DOpcodes, QOpcodes);
4335     return;
4336   }
4337 
4338   case ARMISD::VLD2DUP: {
4339     static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
4340                                         ARM::VLD2DUPd32 };
4341     SelectVLDDup(N, /* IsIntrinsic= */ false, false, 2, Opcodes);
4342     return;
4343   }
4344 
4345   case ARMISD::VLD3DUP: {
4346     static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
4347                                         ARM::VLD3DUPd16Pseudo,
4348                                         ARM::VLD3DUPd32Pseudo };
4349     SelectVLDDup(N, /* IsIntrinsic= */ false, false, 3, Opcodes);
4350     return;
4351   }
4352 
4353   case ARMISD::VLD4DUP: {
4354     static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
4355                                         ARM::VLD4DUPd16Pseudo,
4356                                         ARM::VLD4DUPd32Pseudo };
4357     SelectVLDDup(N, /* IsIntrinsic= */ false, false, 4, Opcodes);
4358     return;
4359   }
4360 
4361   case ARMISD::VLD1DUP_UPD: {
4362     static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8wb_fixed,
4363                                          ARM::VLD1DUPd16wb_fixed,
4364                                          ARM::VLD1DUPd32wb_fixed };
4365     static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8wb_fixed,
4366                                          ARM::VLD1DUPq16wb_fixed,
4367                                          ARM::VLD1DUPq32wb_fixed };
4368     SelectVLDDup(N, /* IsIntrinsic= */ false, true, 1, DOpcodes, QOpcodes);
4369     return;
4370   }
4371 
4372   case ARMISD::VLD2DUP_UPD: {
4373     static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8wb_fixed,
4374                                          ARM::VLD2DUPd16wb_fixed,
4375                                          ARM::VLD2DUPd32wb_fixed,
4376                                          ARM::VLD1q64wb_fixed };
4377     static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo,
4378                                           ARM::VLD2DUPq16EvenPseudo,
4379                                           ARM::VLD2DUPq32EvenPseudo };
4380     static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudoWB_fixed,
4381                                           ARM::VLD2DUPq16OddPseudoWB_fixed,
4382                                           ARM::VLD2DUPq32OddPseudoWB_fixed };
4383     SelectVLDDup(N, /* IsIntrinsic= */ false, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
4384     return;
4385   }
4386 
4387   case ARMISD::VLD3DUP_UPD: {
4388     static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
4389                                          ARM::VLD3DUPd16Pseudo_UPD,
4390                                          ARM::VLD3DUPd32Pseudo_UPD,
4391                                          ARM::VLD1d64TPseudoWB_fixed };
4392     static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo,
4393                                           ARM::VLD3DUPq16EvenPseudo,
4394                                           ARM::VLD3DUPq32EvenPseudo };
4395     static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo_UPD,
4396                                           ARM::VLD3DUPq16OddPseudo_UPD,
4397                                           ARM::VLD3DUPq32OddPseudo_UPD };
4398     SelectVLDDup(N, /* IsIntrinsic= */ false, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4399     return;
4400   }
4401 
4402   case ARMISD::VLD4DUP_UPD: {
4403     static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
4404                                          ARM::VLD4DUPd16Pseudo_UPD,
4405                                          ARM::VLD4DUPd32Pseudo_UPD,
4406                                          ARM::VLD1d64QPseudoWB_fixed };
4407     static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo,
4408                                           ARM::VLD4DUPq16EvenPseudo,
4409                                           ARM::VLD4DUPq32EvenPseudo };
4410     static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo_UPD,
4411                                           ARM::VLD4DUPq16OddPseudo_UPD,
4412                                           ARM::VLD4DUPq32OddPseudo_UPD };
4413     SelectVLDDup(N, /* IsIntrinsic= */ false, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4414     return;
4415   }
4416 
4417   case ARMISD::VLD1_UPD: {
4418     static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
4419                                          ARM::VLD1d16wb_fixed,
4420                                          ARM::VLD1d32wb_fixed,
4421                                          ARM::VLD1d64wb_fixed };
4422     static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
4423                                          ARM::VLD1q16wb_fixed,
4424                                          ARM::VLD1q32wb_fixed,
4425                                          ARM::VLD1q64wb_fixed };
4426     SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr);
4427     return;
4428   }
4429 
4430   case ARMISD::VLD2_UPD: {
4431     if (Subtarget->hasNEON()) {
4432       static const uint16_t DOpcodes[] = {
4433           ARM::VLD2d8wb_fixed, ARM::VLD2d16wb_fixed, ARM::VLD2d32wb_fixed,
4434           ARM::VLD1q64wb_fixed};
4435       static const uint16_t QOpcodes[] = {ARM::VLD2q8PseudoWB_fixed,
4436                                           ARM::VLD2q16PseudoWB_fixed,
4437                                           ARM::VLD2q32PseudoWB_fixed};
4438       SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
4439     } else {
4440       static const uint16_t Opcodes8[] = {ARM::MVE_VLD20_8,
4441                                           ARM::MVE_VLD21_8_wb};
4442       static const uint16_t Opcodes16[] = {ARM::MVE_VLD20_16,
4443                                            ARM::MVE_VLD21_16_wb};
4444       static const uint16_t Opcodes32[] = {ARM::MVE_VLD20_32,
4445                                            ARM::MVE_VLD21_32_wb};
4446       static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
4447       SelectMVE_VLD(N, 2, Opcodes, true);
4448     }
4449     return;
4450   }
4451 
4452   case ARMISD::VLD3_UPD: {
4453     static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
4454                                          ARM::VLD3d16Pseudo_UPD,
4455                                          ARM::VLD3d32Pseudo_UPD,
4456                                          ARM::VLD1d64TPseudoWB_fixed};
4457     static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
4458                                           ARM::VLD3q16Pseudo_UPD,
4459                                           ARM::VLD3q32Pseudo_UPD };
4460     static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
4461                                           ARM::VLD3q16oddPseudo_UPD,
4462                                           ARM::VLD3q32oddPseudo_UPD };
4463     SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4464     return;
4465   }
4466 
4467   case ARMISD::VLD4_UPD: {
4468     if (Subtarget->hasNEON()) {
4469       static const uint16_t DOpcodes[] = {
4470           ARM::VLD4d8Pseudo_UPD, ARM::VLD4d16Pseudo_UPD, ARM::VLD4d32Pseudo_UPD,
4471           ARM::VLD1d64QPseudoWB_fixed};
4472       static const uint16_t QOpcodes0[] = {ARM::VLD4q8Pseudo_UPD,
4473                                            ARM::VLD4q16Pseudo_UPD,
4474                                            ARM::VLD4q32Pseudo_UPD};
4475       static const uint16_t QOpcodes1[] = {ARM::VLD4q8oddPseudo_UPD,
4476                                            ARM::VLD4q16oddPseudo_UPD,
4477                                            ARM::VLD4q32oddPseudo_UPD};
4478       SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4479     } else {
4480       static const uint16_t Opcodes8[] = {ARM::MVE_VLD40_8, ARM::MVE_VLD41_8,
4481                                           ARM::MVE_VLD42_8,
4482                                           ARM::MVE_VLD43_8_wb};
4483       static const uint16_t Opcodes16[] = {ARM::MVE_VLD40_16, ARM::MVE_VLD41_16,
4484                                            ARM::MVE_VLD42_16,
4485                                            ARM::MVE_VLD43_16_wb};
4486       static const uint16_t Opcodes32[] = {ARM::MVE_VLD40_32, ARM::MVE_VLD41_32,
4487                                            ARM::MVE_VLD42_32,
4488                                            ARM::MVE_VLD43_32_wb};
4489       static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
4490       SelectMVE_VLD(N, 4, Opcodes, true);
4491     }
4492     return;
4493   }
4494 
4495   case ARMISD::VLD1x2_UPD: {
4496     if (Subtarget->hasNEON()) {
4497       static const uint16_t DOpcodes[] = {
4498           ARM::VLD1q8wb_fixed, ARM::VLD1q16wb_fixed, ARM::VLD1q32wb_fixed,
4499           ARM::VLD1q64wb_fixed};
4500       static const uint16_t QOpcodes[] = {
4501           ARM::VLD1d8QPseudoWB_fixed, ARM::VLD1d16QPseudoWB_fixed,
4502           ARM::VLD1d32QPseudoWB_fixed, ARM::VLD1d64QPseudoWB_fixed};
4503       SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
4504       return;
4505     }
4506     break;
4507   }
4508 
4509   case ARMISD::VLD1x3_UPD: {
4510     if (Subtarget->hasNEON()) {
4511       static const uint16_t DOpcodes[] = {
4512           ARM::VLD1d8TPseudoWB_fixed, ARM::VLD1d16TPseudoWB_fixed,
4513           ARM::VLD1d32TPseudoWB_fixed, ARM::VLD1d64TPseudoWB_fixed};
4514       static const uint16_t QOpcodes0[] = {
4515           ARM::VLD1q8LowTPseudo_UPD, ARM::VLD1q16LowTPseudo_UPD,
4516           ARM::VLD1q32LowTPseudo_UPD, ARM::VLD1q64LowTPseudo_UPD};
4517       static const uint16_t QOpcodes1[] = {
4518           ARM::VLD1q8HighTPseudo_UPD, ARM::VLD1q16HighTPseudo_UPD,
4519           ARM::VLD1q32HighTPseudo_UPD, ARM::VLD1q64HighTPseudo_UPD};
4520       SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4521       return;
4522     }
4523     break;
4524   }
4525 
4526   case ARMISD::VLD1x4_UPD: {
4527     if (Subtarget->hasNEON()) {
4528       static const uint16_t DOpcodes[] = {
4529           ARM::VLD1d8QPseudoWB_fixed, ARM::VLD1d16QPseudoWB_fixed,
4530           ARM::VLD1d32QPseudoWB_fixed, ARM::VLD1d64QPseudoWB_fixed};
4531       static const uint16_t QOpcodes0[] = {
4532           ARM::VLD1q8LowQPseudo_UPD, ARM::VLD1q16LowQPseudo_UPD,
4533           ARM::VLD1q32LowQPseudo_UPD, ARM::VLD1q64LowQPseudo_UPD};
4534       static const uint16_t QOpcodes1[] = {
4535           ARM::VLD1q8HighQPseudo_UPD, ARM::VLD1q16HighQPseudo_UPD,
4536           ARM::VLD1q32HighQPseudo_UPD, ARM::VLD1q64HighQPseudo_UPD};
4537       SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4538       return;
4539     }
4540     break;
4541   }
4542 
4543   case ARMISD::VLD2LN_UPD: {
4544     static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
4545                                          ARM::VLD2LNd16Pseudo_UPD,
4546                                          ARM::VLD2LNd32Pseudo_UPD };
4547     static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
4548                                          ARM::VLD2LNq32Pseudo_UPD };
4549     SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
4550     return;
4551   }
4552 
4553   case ARMISD::VLD3LN_UPD: {
4554     static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
4555                                          ARM::VLD3LNd16Pseudo_UPD,
4556                                          ARM::VLD3LNd32Pseudo_UPD };
4557     static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
4558                                          ARM::VLD3LNq32Pseudo_UPD };
4559     SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
4560     return;
4561   }
4562 
4563   case ARMISD::VLD4LN_UPD: {
4564     static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
4565                                          ARM::VLD4LNd16Pseudo_UPD,
4566                                          ARM::VLD4LNd32Pseudo_UPD };
4567     static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
4568                                          ARM::VLD4LNq32Pseudo_UPD };
4569     SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
4570     return;
4571   }
4572 
4573   case ARMISD::VST1_UPD: {
4574     static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
4575                                          ARM::VST1d16wb_fixed,
4576                                          ARM::VST1d32wb_fixed,
4577                                          ARM::VST1d64wb_fixed };
4578     static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
4579                                          ARM::VST1q16wb_fixed,
4580                                          ARM::VST1q32wb_fixed,
4581                                          ARM::VST1q64wb_fixed };
4582     SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr);
4583     return;
4584   }
4585 
4586   case ARMISD::VST2_UPD: {
4587     if (Subtarget->hasNEON()) {
4588       static const uint16_t DOpcodes[] = {
4589           ARM::VST2d8wb_fixed, ARM::VST2d16wb_fixed, ARM::VST2d32wb_fixed,
4590           ARM::VST1q64wb_fixed};
4591       static const uint16_t QOpcodes[] = {ARM::VST2q8PseudoWB_fixed,
4592                                           ARM::VST2q16PseudoWB_fixed,
4593                                           ARM::VST2q32PseudoWB_fixed};
4594       SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
4595       return;
4596     }
4597     break;
4598   }
4599 
4600   case ARMISD::VST3_UPD: {
4601     static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
4602                                          ARM::VST3d16Pseudo_UPD,
4603                                          ARM::VST3d32Pseudo_UPD,
4604                                          ARM::VST1d64TPseudoWB_fixed};
4605     static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
4606                                           ARM::VST3q16Pseudo_UPD,
4607                                           ARM::VST3q32Pseudo_UPD };
4608     static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
4609                                           ARM::VST3q16oddPseudo_UPD,
4610                                           ARM::VST3q32oddPseudo_UPD };
4611     SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4612     return;
4613   }
4614 
4615   case ARMISD::VST4_UPD: {
4616     if (Subtarget->hasNEON()) {
4617       static const uint16_t DOpcodes[] = {
4618           ARM::VST4d8Pseudo_UPD, ARM::VST4d16Pseudo_UPD, ARM::VST4d32Pseudo_UPD,
4619           ARM::VST1d64QPseudoWB_fixed};
4620       static const uint16_t QOpcodes0[] = {ARM::VST4q8Pseudo_UPD,
4621                                            ARM::VST4q16Pseudo_UPD,
4622                                            ARM::VST4q32Pseudo_UPD};
4623       static const uint16_t QOpcodes1[] = {ARM::VST4q8oddPseudo_UPD,
4624                                            ARM::VST4q16oddPseudo_UPD,
4625                                            ARM::VST4q32oddPseudo_UPD};
4626       SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4627       return;
4628     }
4629     break;
4630   }
4631 
4632   case ARMISD::VST1x2_UPD: {
4633     if (Subtarget->hasNEON()) {
4634       static const uint16_t DOpcodes[] = { ARM::VST1q8wb_fixed,
4635                                            ARM::VST1q16wb_fixed,
4636                                            ARM::VST1q32wb_fixed,
4637                                            ARM::VST1q64wb_fixed};
4638       static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudoWB_fixed,
4639                                            ARM::VST1d16QPseudoWB_fixed,
4640                                            ARM::VST1d32QPseudoWB_fixed,
4641                                            ARM::VST1d64QPseudoWB_fixed };
4642       SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
4643       return;
4644     }
4645     break;
4646   }
4647 
4648   case ARMISD::VST1x3_UPD: {
4649     if (Subtarget->hasNEON()) {
4650       static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudoWB_fixed,
4651                                            ARM::VST1d16TPseudoWB_fixed,
4652                                            ARM::VST1d32TPseudoWB_fixed,
4653                                            ARM::VST1d64TPseudoWB_fixed };
4654       static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD,
4655                                             ARM::VST1q16LowTPseudo_UPD,
4656                                             ARM::VST1q32LowTPseudo_UPD,
4657                                             ARM::VST1q64LowTPseudo_UPD };
4658       static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo_UPD,
4659                                             ARM::VST1q16HighTPseudo_UPD,
4660                                             ARM::VST1q32HighTPseudo_UPD,
4661                                             ARM::VST1q64HighTPseudo_UPD };
4662       SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4663       return;
4664     }
4665     break;
4666   }
4667 
4668   case ARMISD::VST1x4_UPD: {
4669     if (Subtarget->hasNEON()) {
4670       static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudoWB_fixed,
4671                                            ARM::VST1d16QPseudoWB_fixed,
4672                                            ARM::VST1d32QPseudoWB_fixed,
4673                                            ARM::VST1d64QPseudoWB_fixed };
4674       static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD,
4675                                             ARM::VST1q16LowQPseudo_UPD,
4676                                             ARM::VST1q32LowQPseudo_UPD,
4677                                             ARM::VST1q64LowQPseudo_UPD };
4678       static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo_UPD,
4679                                             ARM::VST1q16HighQPseudo_UPD,
4680                                             ARM::VST1q32HighQPseudo_UPD,
4681                                             ARM::VST1q64HighQPseudo_UPD };
4682       SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4683       return;
4684     }
4685     break;
4686   }
4687   case ARMISD::VST2LN_UPD: {
4688     static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
4689                                          ARM::VST2LNd16Pseudo_UPD,
4690                                          ARM::VST2LNd32Pseudo_UPD };
4691     static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
4692                                          ARM::VST2LNq32Pseudo_UPD };
4693     SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
4694     return;
4695   }
4696 
4697   case ARMISD::VST3LN_UPD: {
4698     static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
4699                                          ARM::VST3LNd16Pseudo_UPD,
4700                                          ARM::VST3LNd32Pseudo_UPD };
4701     static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
4702                                          ARM::VST3LNq32Pseudo_UPD };
4703     SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
4704     return;
4705   }
4706 
4707   case ARMISD::VST4LN_UPD: {
4708     static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
4709                                          ARM::VST4LNd16Pseudo_UPD,
4710                                          ARM::VST4LNd32Pseudo_UPD };
4711     static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
4712                                          ARM::VST4LNq32Pseudo_UPD };
4713     SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
4714     return;
4715   }
4716 
4717   case ISD::INTRINSIC_VOID:
4718   case ISD::INTRINSIC_W_CHAIN: {
4719     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
4720     switch (IntNo) {
4721     default:
4722       break;
4723 
4724     case Intrinsic::arm_mrrc:
4725     case Intrinsic::arm_mrrc2: {
4726       SDLoc dl(N);
4727       SDValue Chain = N->getOperand(0);
4728       unsigned Opc;
4729 
4730       if (Subtarget->isThumb())
4731         Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::t2MRRC : ARM::t2MRRC2);
4732       else
4733         Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::MRRC : ARM::MRRC2);
4734 
4735       SmallVector<SDValue, 5> Ops;
4736       Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(), dl)); /* coproc */
4737       Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(), dl)); /* opc */
4738       Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(4))->getZExtValue(), dl)); /* CRm */
4739 
4740       // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded
4741       // instruction will always be '1111' but it is possible in assembly language to specify
4742       // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction.
4743       if (Opc != ARM::MRRC2) {
4744         Ops.push_back(getAL(CurDAG, dl));
4745         Ops.push_back(CurDAG->getRegister(0, MVT::i32));
4746       }
4747 
4748       Ops.push_back(Chain);
4749 
4750       // Writes to two registers.
4751       const EVT RetType[] = {MVT::i32, MVT::i32, MVT::Other};
4752 
4753       ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, RetType, Ops));
4754       return;
4755     }
4756     case Intrinsic::arm_ldaexd:
4757     case Intrinsic::arm_ldrexd: {
4758       SDLoc dl(N);
4759       SDValue Chain = N->getOperand(0);
4760       SDValue MemAddr = N->getOperand(2);
4761       bool isThumb = Subtarget->isThumb() && Subtarget->hasV8MBaselineOps();
4762 
4763       bool IsAcquire = IntNo == Intrinsic::arm_ldaexd;
4764       unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD)
4765                                 : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD);
4766 
4767       // arm_ldrexd returns a i64 value in {i32, i32}
4768       std::vector<EVT> ResTys;
4769       if (isThumb) {
4770         ResTys.push_back(MVT::i32);
4771         ResTys.push_back(MVT::i32);
4772       } else
4773         ResTys.push_back(MVT::Untyped);
4774       ResTys.push_back(MVT::Other);
4775 
4776       // Place arguments in the right order.
4777       SDValue Ops[] = {MemAddr, getAL(CurDAG, dl),
4778                        CurDAG->getRegister(0, MVT::i32), Chain};
4779       SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
4780       // Transfer memoperands.
4781       MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
4782       CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
4783 
4784       // Remap uses.
4785       SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
4786       if (!SDValue(N, 0).use_empty()) {
4787         SDValue Result;
4788         if (isThumb)
4789           Result = SDValue(Ld, 0);
4790         else {
4791           SDValue SubRegIdx =
4792             CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
4793           SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
4794               dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
4795           Result = SDValue(ResNode,0);
4796         }
4797         ReplaceUses(SDValue(N, 0), Result);
4798       }
4799       if (!SDValue(N, 1).use_empty()) {
4800         SDValue Result;
4801         if (isThumb)
4802           Result = SDValue(Ld, 1);
4803         else {
4804           SDValue SubRegIdx =
4805             CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
4806           SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
4807               dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
4808           Result = SDValue(ResNode,0);
4809         }
4810         ReplaceUses(SDValue(N, 1), Result);
4811       }
4812       ReplaceUses(SDValue(N, 2), OutChain);
4813       CurDAG->RemoveDeadNode(N);
4814       return;
4815     }
4816     case Intrinsic::arm_stlexd:
4817     case Intrinsic::arm_strexd: {
4818       SDLoc dl(N);
4819       SDValue Chain = N->getOperand(0);
4820       SDValue Val0 = N->getOperand(2);
4821       SDValue Val1 = N->getOperand(3);
4822       SDValue MemAddr = N->getOperand(4);
4823 
4824       // Store exclusive double return a i32 value which is the return status
4825       // of the issued store.
4826       const EVT ResTys[] = {MVT::i32, MVT::Other};
4827 
4828       bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
4829       // Place arguments in the right order.
4830       SmallVector<SDValue, 7> Ops;
4831       if (isThumb) {
4832         Ops.push_back(Val0);
4833         Ops.push_back(Val1);
4834       } else
4835         // arm_strexd uses GPRPair.
4836         Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
4837       Ops.push_back(MemAddr);
4838       Ops.push_back(getAL(CurDAG, dl));
4839       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
4840       Ops.push_back(Chain);
4841 
4842       bool IsRelease = IntNo == Intrinsic::arm_stlexd;
4843       unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD)
4844                                 : (IsRelease ? ARM::STLEXD : ARM::STREXD);
4845 
4846       SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
4847       // Transfer memoperands.
4848       MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
4849       CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
4850 
4851       ReplaceNode(N, St);
4852       return;
4853     }
4854 
4855     case Intrinsic::arm_neon_vld1: {
4856       static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
4857                                            ARM::VLD1d32, ARM::VLD1d64 };
4858       static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
4859                                            ARM::VLD1q32, ARM::VLD1q64};
4860       SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr);
4861       return;
4862     }
4863 
4864     case Intrinsic::arm_neon_vld1x2: {
4865       static const uint16_t DOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
4866                                            ARM::VLD1q32, ARM::VLD1q64 };
4867       static const uint16_t QOpcodes[] = { ARM::VLD1d8QPseudo,
4868                                            ARM::VLD1d16QPseudo,
4869                                            ARM::VLD1d32QPseudo,
4870                                            ARM::VLD1d64QPseudo };
4871       SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
4872       return;
4873     }
4874 
4875     case Intrinsic::arm_neon_vld1x3: {
4876       static const uint16_t DOpcodes[] = { ARM::VLD1d8TPseudo,
4877                                            ARM::VLD1d16TPseudo,
4878                                            ARM::VLD1d32TPseudo,
4879                                            ARM::VLD1d64TPseudo };
4880       static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowTPseudo_UPD,
4881                                             ARM::VLD1q16LowTPseudo_UPD,
4882                                             ARM::VLD1q32LowTPseudo_UPD,
4883                                             ARM::VLD1q64LowTPseudo_UPD };
4884       static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighTPseudo,
4885                                             ARM::VLD1q16HighTPseudo,
4886                                             ARM::VLD1q32HighTPseudo,
4887                                             ARM::VLD1q64HighTPseudo };
4888       SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
4889       return;
4890     }
4891 
4892     case Intrinsic::arm_neon_vld1x4: {
4893       static const uint16_t DOpcodes[] = { ARM::VLD1d8QPseudo,
4894                                            ARM::VLD1d16QPseudo,
4895                                            ARM::VLD1d32QPseudo,
4896                                            ARM::VLD1d64QPseudo };
4897       static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowQPseudo_UPD,
4898                                             ARM::VLD1q16LowQPseudo_UPD,
4899                                             ARM::VLD1q32LowQPseudo_UPD,
4900                                             ARM::VLD1q64LowQPseudo_UPD };
4901       static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighQPseudo,
4902                                             ARM::VLD1q16HighQPseudo,
4903                                             ARM::VLD1q32HighQPseudo,
4904                                             ARM::VLD1q64HighQPseudo };
4905       SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
4906       return;
4907     }
4908 
4909     case Intrinsic::arm_neon_vld2: {
4910       static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
4911                                            ARM::VLD2d32, ARM::VLD1q64 };
4912       static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
4913                                            ARM::VLD2q32Pseudo };
4914       SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
4915       return;
4916     }
4917 
4918     case Intrinsic::arm_neon_vld3: {
4919       static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
4920                                            ARM::VLD3d16Pseudo,
4921                                            ARM::VLD3d32Pseudo,
4922                                            ARM::VLD1d64TPseudo };
4923       static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
4924                                             ARM::VLD3q16Pseudo_UPD,
4925                                             ARM::VLD3q32Pseudo_UPD };
4926       static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
4927                                             ARM::VLD3q16oddPseudo,
4928                                             ARM::VLD3q32oddPseudo };
4929       SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
4930       return;
4931     }
4932 
4933     case Intrinsic::arm_neon_vld4: {
4934       static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
4935                                            ARM::VLD4d16Pseudo,
4936                                            ARM::VLD4d32Pseudo,
4937                                            ARM::VLD1d64QPseudo };
4938       static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
4939                                             ARM::VLD4q16Pseudo_UPD,
4940                                             ARM::VLD4q32Pseudo_UPD };
4941       static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
4942                                             ARM::VLD4q16oddPseudo,
4943                                             ARM::VLD4q32oddPseudo };
4944       SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
4945       return;
4946     }
4947 
4948     case Intrinsic::arm_neon_vld2dup: {
4949       static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
4950                                            ARM::VLD2DUPd32, ARM::VLD1q64 };
4951       static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo,
4952                                             ARM::VLD2DUPq16EvenPseudo,
4953                                             ARM::VLD2DUPq32EvenPseudo };
4954       static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudo,
4955                                             ARM::VLD2DUPq16OddPseudo,
4956                                             ARM::VLD2DUPq32OddPseudo };
4957       SelectVLDDup(N, /* IsIntrinsic= */ true, false, 2,
4958                    DOpcodes, QOpcodes0, QOpcodes1);
4959       return;
4960     }
4961 
4962     case Intrinsic::arm_neon_vld3dup: {
4963       static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo,
4964                                            ARM::VLD3DUPd16Pseudo,
4965                                            ARM::VLD3DUPd32Pseudo,
4966                                            ARM::VLD1d64TPseudo };
4967       static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo,
4968                                             ARM::VLD3DUPq16EvenPseudo,
4969                                             ARM::VLD3DUPq32EvenPseudo };
4970       static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo,
4971                                             ARM::VLD3DUPq16OddPseudo,
4972                                             ARM::VLD3DUPq32OddPseudo };
4973       SelectVLDDup(N, /* IsIntrinsic= */ true, false, 3,
4974                    DOpcodes, QOpcodes0, QOpcodes1);
4975       return;
4976     }
4977 
4978     case Intrinsic::arm_neon_vld4dup: {
4979       static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo,
4980                                            ARM::VLD4DUPd16Pseudo,
4981                                            ARM::VLD4DUPd32Pseudo,
4982                                            ARM::VLD1d64QPseudo };
4983       static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo,
4984                                             ARM::VLD4DUPq16EvenPseudo,
4985                                             ARM::VLD4DUPq32EvenPseudo };
4986       static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo,
4987                                             ARM::VLD4DUPq16OddPseudo,
4988                                             ARM::VLD4DUPq32OddPseudo };
4989       SelectVLDDup(N, /* IsIntrinsic= */ true, false, 4,
4990                    DOpcodes, QOpcodes0, QOpcodes1);
4991       return;
4992     }
4993 
4994     case Intrinsic::arm_neon_vld2lane: {
4995       static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
4996                                            ARM::VLD2LNd16Pseudo,
4997                                            ARM::VLD2LNd32Pseudo };
4998       static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
4999                                            ARM::VLD2LNq32Pseudo };
5000       SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
5001       return;
5002     }
5003 
5004     case Intrinsic::arm_neon_vld3lane: {
5005       static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
5006                                            ARM::VLD3LNd16Pseudo,
5007                                            ARM::VLD3LNd32Pseudo };
5008       static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
5009                                            ARM::VLD3LNq32Pseudo };
5010       SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
5011       return;
5012     }
5013 
5014     case Intrinsic::arm_neon_vld4lane: {
5015       static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
5016                                            ARM::VLD4LNd16Pseudo,
5017                                            ARM::VLD4LNd32Pseudo };
5018       static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
5019                                            ARM::VLD4LNq32Pseudo };
5020       SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
5021       return;
5022     }
5023 
5024     case Intrinsic::arm_neon_vst1: {
5025       static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
5026                                            ARM::VST1d32, ARM::VST1d64 };
5027       static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
5028                                            ARM::VST1q32, ARM::VST1q64 };
5029       SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr);
5030       return;
5031     }
5032 
5033     case Intrinsic::arm_neon_vst1x2: {
5034       static const uint16_t DOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
5035                                            ARM::VST1q32, ARM::VST1q64 };
5036       static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudo,
5037                                            ARM::VST1d16QPseudo,
5038                                            ARM::VST1d32QPseudo,
5039                                            ARM::VST1d64QPseudo };
5040       SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
5041       return;
5042     }
5043 
5044     case Intrinsic::arm_neon_vst1x3: {
5045       static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudo,
5046                                            ARM::VST1d16TPseudo,
5047                                            ARM::VST1d32TPseudo,
5048                                            ARM::VST1d64TPseudo };
5049       static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD,
5050                                             ARM::VST1q16LowTPseudo_UPD,
5051                                             ARM::VST1q32LowTPseudo_UPD,
5052                                             ARM::VST1q64LowTPseudo_UPD };
5053       static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo,
5054                                             ARM::VST1q16HighTPseudo,
5055                                             ARM::VST1q32HighTPseudo,
5056                                             ARM::VST1q64HighTPseudo };
5057       SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
5058       return;
5059     }
5060 
5061     case Intrinsic::arm_neon_vst1x4: {
5062       static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudo,
5063                                            ARM::VST1d16QPseudo,
5064                                            ARM::VST1d32QPseudo,
5065                                            ARM::VST1d64QPseudo };
5066       static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD,
5067                                             ARM::VST1q16LowQPseudo_UPD,
5068                                             ARM::VST1q32LowQPseudo_UPD,
5069                                             ARM::VST1q64LowQPseudo_UPD };
5070       static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo,
5071                                             ARM::VST1q16HighQPseudo,
5072                                             ARM::VST1q32HighQPseudo,
5073                                             ARM::VST1q64HighQPseudo };
5074       SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
5075       return;
5076     }
5077 
5078     case Intrinsic::arm_neon_vst2: {
5079       static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
5080                                            ARM::VST2d32, ARM::VST1q64 };
5081       static const uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
5082                                            ARM::VST2q32Pseudo };
5083       SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
5084       return;
5085     }
5086 
5087     case Intrinsic::arm_neon_vst3: {
5088       static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
5089                                            ARM::VST3d16Pseudo,
5090                                            ARM::VST3d32Pseudo,
5091                                            ARM::VST1d64TPseudo };
5092       static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
5093                                             ARM::VST3q16Pseudo_UPD,
5094                                             ARM::VST3q32Pseudo_UPD };
5095       static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
5096                                             ARM::VST3q16oddPseudo,
5097                                             ARM::VST3q32oddPseudo };
5098       SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
5099       return;
5100     }
5101 
5102     case Intrinsic::arm_neon_vst4: {
5103       static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
5104                                            ARM::VST4d16Pseudo,
5105                                            ARM::VST4d32Pseudo,
5106                                            ARM::VST1d64QPseudo };
5107       static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
5108                                             ARM::VST4q16Pseudo_UPD,
5109                                             ARM::VST4q32Pseudo_UPD };
5110       static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
5111                                             ARM::VST4q16oddPseudo,
5112                                             ARM::VST4q32oddPseudo };
5113       SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
5114       return;
5115     }
5116 
5117     case Intrinsic::arm_neon_vst2lane: {
5118       static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
5119                                            ARM::VST2LNd16Pseudo,
5120                                            ARM::VST2LNd32Pseudo };
5121       static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
5122                                            ARM::VST2LNq32Pseudo };
5123       SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
5124       return;
5125     }
5126 
5127     case Intrinsic::arm_neon_vst3lane: {
5128       static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
5129                                            ARM::VST3LNd16Pseudo,
5130                                            ARM::VST3LNd32Pseudo };
5131       static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
5132                                            ARM::VST3LNq32Pseudo };
5133       SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
5134       return;
5135     }
5136 
5137     case Intrinsic::arm_neon_vst4lane: {
5138       static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
5139                                            ARM::VST4LNd16Pseudo,
5140                                            ARM::VST4LNd32Pseudo };
5141       static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
5142                                            ARM::VST4LNq32Pseudo };
5143       SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
5144       return;
5145     }
5146 
5147     case Intrinsic::arm_mve_vldr_gather_base_wb:
5148     case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
5149       static const uint16_t Opcodes[] = {ARM::MVE_VLDRWU32_qi_pre,
5150                                          ARM::MVE_VLDRDU64_qi_pre};
5151       SelectMVE_WB(N, Opcodes,
5152                    IntNo == Intrinsic::arm_mve_vldr_gather_base_wb_predicated);
5153       return;
5154     }
5155 
5156     case Intrinsic::arm_mve_vld2q: {
5157       static const uint16_t Opcodes8[] = {ARM::MVE_VLD20_8, ARM::MVE_VLD21_8};
5158       static const uint16_t Opcodes16[] = {ARM::MVE_VLD20_16,
5159                                            ARM::MVE_VLD21_16};
5160       static const uint16_t Opcodes32[] = {ARM::MVE_VLD20_32,
5161                                            ARM::MVE_VLD21_32};
5162       static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
5163       SelectMVE_VLD(N, 2, Opcodes, false);
5164       return;
5165     }
5166 
5167     case Intrinsic::arm_mve_vld4q: {
5168       static const uint16_t Opcodes8[] = {ARM::MVE_VLD40_8, ARM::MVE_VLD41_8,
5169                                           ARM::MVE_VLD42_8, ARM::MVE_VLD43_8};
5170       static const uint16_t Opcodes16[] = {ARM::MVE_VLD40_16, ARM::MVE_VLD41_16,
5171                                            ARM::MVE_VLD42_16,
5172                                            ARM::MVE_VLD43_16};
5173       static const uint16_t Opcodes32[] = {ARM::MVE_VLD40_32, ARM::MVE_VLD41_32,
5174                                            ARM::MVE_VLD42_32,
5175                                            ARM::MVE_VLD43_32};
5176       static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
5177       SelectMVE_VLD(N, 4, Opcodes, false);
5178       return;
5179     }
5180     }
5181     break;
5182   }
5183 
5184   case ISD::INTRINSIC_WO_CHAIN: {
5185     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5186     switch (IntNo) {
5187     default:
5188       break;
5189 
5190     // Scalar f32 -> bf16
5191     case Intrinsic::arm_neon_vcvtbfp2bf: {
5192       SDLoc dl(N);
5193       const SDValue &Src = N->getOperand(1);
5194       llvm::EVT DestTy = N->getValueType(0);
5195       SDValue Pred = getAL(CurDAG, dl);
5196       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
5197       SDValue Ops[] = { Src, Src, Pred, Reg0 };
5198       CurDAG->SelectNodeTo(N, ARM::BF16_VCVTB, DestTy, Ops);
5199       return;
5200     }
5201 
5202     // Vector v4f32 -> v4bf16
5203     case Intrinsic::arm_neon_vcvtfp2bf: {
5204       SDLoc dl(N);
5205       const SDValue &Src = N->getOperand(1);
5206       SDValue Pred = getAL(CurDAG, dl);
5207       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
5208       SDValue Ops[] = { Src, Pred, Reg0 };
5209       CurDAG->SelectNodeTo(N, ARM::BF16_VCVT, MVT::v4bf16, Ops);
5210       return;
5211     }
5212 
5213     case Intrinsic::arm_mve_urshrl:
5214       SelectMVE_LongShift(N, ARM::MVE_URSHRL, true, false);
5215       return;
5216     case Intrinsic::arm_mve_uqshll:
5217       SelectMVE_LongShift(N, ARM::MVE_UQSHLL, true, false);
5218       return;
5219     case Intrinsic::arm_mve_srshrl:
5220       SelectMVE_LongShift(N, ARM::MVE_SRSHRL, true, false);
5221       return;
5222     case Intrinsic::arm_mve_sqshll:
5223       SelectMVE_LongShift(N, ARM::MVE_SQSHLL, true, false);
5224       return;
5225     case Intrinsic::arm_mve_uqrshll:
5226       SelectMVE_LongShift(N, ARM::MVE_UQRSHLL, false, true);
5227       return;
5228     case Intrinsic::arm_mve_sqrshrl:
5229       SelectMVE_LongShift(N, ARM::MVE_SQRSHRL, false, true);
5230       return;
5231 
5232     case Intrinsic::arm_mve_vadc:
5233     case Intrinsic::arm_mve_vadc_predicated:
5234       SelectMVE_VADCSBC(N, ARM::MVE_VADC, ARM::MVE_VADCI, true,
5235                         IntNo == Intrinsic::arm_mve_vadc_predicated);
5236       return;
5237     case Intrinsic::arm_mve_vsbc:
5238     case Intrinsic::arm_mve_vsbc_predicated:
5239       SelectMVE_VADCSBC(N, ARM::MVE_VSBC, ARM::MVE_VSBCI, true,
5240                         IntNo == Intrinsic::arm_mve_vsbc_predicated);
5241       return;
5242     case Intrinsic::arm_mve_vshlc:
5243     case Intrinsic::arm_mve_vshlc_predicated:
5244       SelectMVE_VSHLC(N, IntNo == Intrinsic::arm_mve_vshlc_predicated);
5245       return;
5246 
5247     case Intrinsic::arm_mve_vmlldava:
5248     case Intrinsic::arm_mve_vmlldava_predicated: {
5249       static const uint16_t OpcodesU[] = {
5250           ARM::MVE_VMLALDAVu16,   ARM::MVE_VMLALDAVu32,
5251           ARM::MVE_VMLALDAVau16,  ARM::MVE_VMLALDAVau32,
5252       };
5253       static const uint16_t OpcodesS[] = {
5254           ARM::MVE_VMLALDAVs16,   ARM::MVE_VMLALDAVs32,
5255           ARM::MVE_VMLALDAVas16,  ARM::MVE_VMLALDAVas32,
5256           ARM::MVE_VMLALDAVxs16,  ARM::MVE_VMLALDAVxs32,
5257           ARM::MVE_VMLALDAVaxs16, ARM::MVE_VMLALDAVaxs32,
5258           ARM::MVE_VMLSLDAVs16,   ARM::MVE_VMLSLDAVs32,
5259           ARM::MVE_VMLSLDAVas16,  ARM::MVE_VMLSLDAVas32,
5260           ARM::MVE_VMLSLDAVxs16,  ARM::MVE_VMLSLDAVxs32,
5261           ARM::MVE_VMLSLDAVaxs16, ARM::MVE_VMLSLDAVaxs32,
5262       };
5263       SelectMVE_VMLLDAV(N, IntNo == Intrinsic::arm_mve_vmlldava_predicated,
5264                         OpcodesS, OpcodesU);
5265       return;
5266     }
5267 
5268     case Intrinsic::arm_mve_vrmlldavha:
5269     case Intrinsic::arm_mve_vrmlldavha_predicated: {
5270       static const uint16_t OpcodesU[] = {
5271           ARM::MVE_VRMLALDAVHu32,  ARM::MVE_VRMLALDAVHau32,
5272       };
5273       static const uint16_t OpcodesS[] = {
5274           ARM::MVE_VRMLALDAVHs32,  ARM::MVE_VRMLALDAVHas32,
5275           ARM::MVE_VRMLALDAVHxs32, ARM::MVE_VRMLALDAVHaxs32,
5276           ARM::MVE_VRMLSLDAVHs32,  ARM::MVE_VRMLSLDAVHas32,
5277           ARM::MVE_VRMLSLDAVHxs32, ARM::MVE_VRMLSLDAVHaxs32,
5278       };
5279       SelectMVE_VRMLLDAVH(N, IntNo == Intrinsic::arm_mve_vrmlldavha_predicated,
5280                           OpcodesS, OpcodesU);
5281       return;
5282     }
5283 
5284     case Intrinsic::arm_mve_vidup:
5285     case Intrinsic::arm_mve_vidup_predicated: {
5286       static const uint16_t Opcodes[] = {
5287           ARM::MVE_VIDUPu8, ARM::MVE_VIDUPu16, ARM::MVE_VIDUPu32,
5288       };
5289       SelectMVE_VxDUP(N, Opcodes, false,
5290                       IntNo == Intrinsic::arm_mve_vidup_predicated);
5291       return;
5292     }
5293 
5294     case Intrinsic::arm_mve_vddup:
5295     case Intrinsic::arm_mve_vddup_predicated: {
5296       static const uint16_t Opcodes[] = {
5297           ARM::MVE_VDDUPu8, ARM::MVE_VDDUPu16, ARM::MVE_VDDUPu32,
5298       };
5299       SelectMVE_VxDUP(N, Opcodes, false,
5300                       IntNo == Intrinsic::arm_mve_vddup_predicated);
5301       return;
5302     }
5303 
5304     case Intrinsic::arm_mve_viwdup:
5305     case Intrinsic::arm_mve_viwdup_predicated: {
5306       static const uint16_t Opcodes[] = {
5307           ARM::MVE_VIWDUPu8, ARM::MVE_VIWDUPu16, ARM::MVE_VIWDUPu32,
5308       };
5309       SelectMVE_VxDUP(N, Opcodes, true,
5310                       IntNo == Intrinsic::arm_mve_viwdup_predicated);
5311       return;
5312     }
5313 
5314     case Intrinsic::arm_mve_vdwdup:
5315     case Intrinsic::arm_mve_vdwdup_predicated: {
5316       static const uint16_t Opcodes[] = {
5317           ARM::MVE_VDWDUPu8, ARM::MVE_VDWDUPu16, ARM::MVE_VDWDUPu32,
5318       };
5319       SelectMVE_VxDUP(N, Opcodes, true,
5320                       IntNo == Intrinsic::arm_mve_vdwdup_predicated);
5321       return;
5322     }
5323 
5324     case Intrinsic::arm_cde_cx1d:
5325     case Intrinsic::arm_cde_cx1da:
5326     case Intrinsic::arm_cde_cx2d:
5327     case Intrinsic::arm_cde_cx2da:
5328     case Intrinsic::arm_cde_cx3d:
5329     case Intrinsic::arm_cde_cx3da: {
5330       bool HasAccum = IntNo == Intrinsic::arm_cde_cx1da ||
5331                       IntNo == Intrinsic::arm_cde_cx2da ||
5332                       IntNo == Intrinsic::arm_cde_cx3da;
5333       size_t NumExtraOps;
5334       uint16_t Opcode;
5335       switch (IntNo) {
5336       case Intrinsic::arm_cde_cx1d:
5337       case Intrinsic::arm_cde_cx1da:
5338         NumExtraOps = 0;
5339         Opcode = HasAccum ? ARM::CDE_CX1DA : ARM::CDE_CX1D;
5340         break;
5341       case Intrinsic::arm_cde_cx2d:
5342       case Intrinsic::arm_cde_cx2da:
5343         NumExtraOps = 1;
5344         Opcode = HasAccum ? ARM::CDE_CX2DA : ARM::CDE_CX2D;
5345         break;
5346       case Intrinsic::arm_cde_cx3d:
5347       case Intrinsic::arm_cde_cx3da:
5348         NumExtraOps = 2;
5349         Opcode = HasAccum ? ARM::CDE_CX3DA : ARM::CDE_CX3D;
5350         break;
5351       default:
5352         llvm_unreachable("Unexpected opcode");
5353       }
5354       SelectCDE_CXxD(N, Opcode, NumExtraOps, HasAccum);
5355       return;
5356     }
5357     }
5358     break;
5359   }
5360 
5361   case ISD::ATOMIC_CMP_SWAP:
5362     SelectCMP_SWAP(N);
5363     return;
5364   }
5365 
5366   SelectCode(N);
5367 }
5368 
5369 // Inspect a register string of the form
5370 // cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
5371 // cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
5372 // and obtain the integer operands from them, adding these operands to the
5373 // provided vector.
5374 static void getIntOperandsFromRegisterString(StringRef RegString,
5375                                              SelectionDAG *CurDAG,
5376                                              const SDLoc &DL,
5377                                              std::vector<SDValue> &Ops) {
5378   SmallVector<StringRef, 5> Fields;
5379   RegString.split(Fields, ':');
5380 
5381   if (Fields.size() > 1) {
5382     bool AllIntFields = true;
5383 
5384     for (StringRef Field : Fields) {
5385       // Need to trim out leading 'cp' characters and get the integer field.
5386       unsigned IntField;
5387       AllIntFields &= !Field.trim("CPcp").getAsInteger(10, IntField);
5388       Ops.push_back(CurDAG->getTargetConstant(IntField, DL, MVT::i32));
5389     }
5390 
5391     assert(AllIntFields &&
5392             "Unexpected non-integer value in special register string.");
5393     (void)AllIntFields;
5394   }
5395 }
5396 
5397 // Maps a Banked Register string to its mask value. The mask value returned is
5398 // for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
5399 // mask operand, which expresses which register is to be used, e.g. r8, and in
5400 // which mode it is to be used, e.g. usr. Returns -1 to signify that the string
5401 // was invalid.
5402 static inline int getBankedRegisterMask(StringRef RegString) {
5403   auto TheReg = ARMBankedReg::lookupBankedRegByName(RegString.lower());
5404   if (!TheReg)
5405      return -1;
5406   return TheReg->Encoding;
5407 }
5408 
5409 // The flags here are common to those allowed for apsr in the A class cores and
5410 // those allowed for the special registers in the M class cores. Returns a
5411 // value representing which flags were present, -1 if invalid.
5412 static inline int getMClassFlagsMask(StringRef Flags) {
5413   return StringSwitch<int>(Flags)
5414           .Case("", 0x2) // no flags means nzcvq for psr registers, and 0x2 is
5415                          // correct when flags are not permitted
5416           .Case("g", 0x1)
5417           .Case("nzcvq", 0x2)
5418           .Case("nzcvqg", 0x3)
5419           .Default(-1);
5420 }
5421 
5422 // Maps MClass special registers string to its value for use in the
5423 // t2MRS_M/t2MSR_M instruction nodes as the SYSm value operand.
5424 // Returns -1 to signify that the string was invalid.
5425 static int getMClassRegisterMask(StringRef Reg, const ARMSubtarget *Subtarget) {
5426   auto TheReg = ARMSysReg::lookupMClassSysRegByName(Reg);
5427   const FeatureBitset &FeatureBits = Subtarget->getFeatureBits();
5428   if (!TheReg || !TheReg->hasRequiredFeatures(FeatureBits))
5429     return -1;
5430   return (int)(TheReg->Encoding & 0xFFF); // SYSm value
5431 }
5432 
5433 static int getARClassRegisterMask(StringRef Reg, StringRef Flags) {
5434   // The mask operand contains the special register (R Bit) in bit 4, whether
5435   // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
5436   // bits 3-0 contains the fields to be accessed in the special register, set by
5437   // the flags provided with the register.
5438   int Mask = 0;
5439   if (Reg == "apsr") {
5440     // The flags permitted for apsr are the same flags that are allowed in
5441     // M class registers. We get the flag value and then shift the flags into
5442     // the correct place to combine with the mask.
5443     Mask = getMClassFlagsMask(Flags);
5444     if (Mask == -1)
5445       return -1;
5446     return Mask << 2;
5447   }
5448 
5449   if (Reg != "cpsr" && Reg != "spsr") {
5450     return -1;
5451   }
5452 
5453   // This is the same as if the flags were "fc"
5454   if (Flags.empty() || Flags == "all")
5455     return Mask | 0x9;
5456 
5457   // Inspect the supplied flags string and set the bits in the mask for
5458   // the relevant and valid flags allowed for cpsr and spsr.
5459   for (char Flag : Flags) {
5460     int FlagVal;
5461     switch (Flag) {
5462       case 'c':
5463         FlagVal = 0x1;
5464         break;
5465       case 'x':
5466         FlagVal = 0x2;
5467         break;
5468       case 's':
5469         FlagVal = 0x4;
5470         break;
5471       case 'f':
5472         FlagVal = 0x8;
5473         break;
5474       default:
5475         FlagVal = 0;
5476     }
5477 
5478     // This avoids allowing strings where the same flag bit appears twice.
5479     if (!FlagVal || (Mask & FlagVal))
5480       return -1;
5481     Mask |= FlagVal;
5482   }
5483 
5484   // If the register is spsr then we need to set the R bit.
5485   if (Reg == "spsr")
5486     Mask |= 0x10;
5487 
5488   return Mask;
5489 }
5490 
5491 // Lower the read_register intrinsic to ARM specific DAG nodes
5492 // using the supplied metadata string to select the instruction node to use
5493 // and the registers/masks to construct as operands for the node.
5494 bool ARMDAGToDAGISel::tryReadRegister(SDNode *N){
5495   const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
5496   const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
5497   bool IsThumb2 = Subtarget->isThumb2();
5498   SDLoc DL(N);
5499 
5500   std::vector<SDValue> Ops;
5501   getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
5502 
5503   if (!Ops.empty()) {
5504     // If the special register string was constructed of fields (as defined
5505     // in the ACLE) then need to lower to MRC node (32 bit) or
5506     // MRRC node(64 bit), we can make the distinction based on the number of
5507     // operands we have.
5508     unsigned Opcode;
5509     SmallVector<EVT, 3> ResTypes;
5510     if (Ops.size() == 5){
5511       Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC;
5512       ResTypes.append({ MVT::i32, MVT::Other });
5513     } else {
5514       assert(Ops.size() == 3 &&
5515               "Invalid number of fields in special register string.");
5516       Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC;
5517       ResTypes.append({ MVT::i32, MVT::i32, MVT::Other });
5518     }
5519 
5520     Ops.push_back(getAL(CurDAG, DL));
5521     Ops.push_back(CurDAG->getRegister(0, MVT::i32));
5522     Ops.push_back(N->getOperand(0));
5523     ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, ResTypes, Ops));
5524     return true;
5525   }
5526 
5527   std::string SpecialReg = RegString->getString().lower();
5528 
5529   int BankedReg = getBankedRegisterMask(SpecialReg);
5530   if (BankedReg != -1) {
5531     Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32),
5532             getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5533             N->getOperand(0) };
5534     ReplaceNode(
5535         N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked,
5536                                   DL, MVT::i32, MVT::Other, Ops));
5537     return true;
5538   }
5539 
5540   // The VFP registers are read by creating SelectionDAG nodes with opcodes
5541   // corresponding to the register that is being read from. So we switch on the
5542   // string to find which opcode we need to use.
5543   unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
5544                     .Case("fpscr", ARM::VMRS)
5545                     .Case("fpexc", ARM::VMRS_FPEXC)
5546                     .Case("fpsid", ARM::VMRS_FPSID)
5547                     .Case("mvfr0", ARM::VMRS_MVFR0)
5548                     .Case("mvfr1", ARM::VMRS_MVFR1)
5549                     .Case("mvfr2", ARM::VMRS_MVFR2)
5550                     .Case("fpinst", ARM::VMRS_FPINST)
5551                     .Case("fpinst2", ARM::VMRS_FPINST2)
5552                     .Default(0);
5553 
5554   // If an opcode was found then we can lower the read to a VFP instruction.
5555   if (Opcode) {
5556     if (!Subtarget->hasVFP2Base())
5557       return false;
5558     if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8Base())
5559       return false;
5560 
5561     Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5562             N->getOperand(0) };
5563     ReplaceNode(N,
5564                 CurDAG->getMachineNode(Opcode, DL, MVT::i32, MVT::Other, Ops));
5565     return true;
5566   }
5567 
5568   // If the target is M Class then need to validate that the register string
5569   // is an acceptable value, so check that a mask can be constructed from the
5570   // string.
5571   if (Subtarget->isMClass()) {
5572     int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
5573     if (SYSmValue == -1)
5574       return false;
5575 
5576     SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
5577                       getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5578                       N->getOperand(0) };
5579     ReplaceNode(
5580         N, CurDAG->getMachineNode(ARM::t2MRS_M, DL, MVT::i32, MVT::Other, Ops));
5581     return true;
5582   }
5583 
5584   // Here we know the target is not M Class so we need to check if it is one
5585   // of the remaining possible values which are apsr, cpsr or spsr.
5586   if (SpecialReg == "apsr" || SpecialReg == "cpsr") {
5587     Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5588             N->getOperand(0) };
5589     ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRS_AR : ARM::MRS,
5590                                           DL, MVT::i32, MVT::Other, Ops));
5591     return true;
5592   }
5593 
5594   if (SpecialReg == "spsr") {
5595     Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5596             N->getOperand(0) };
5597     ReplaceNode(
5598         N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys, DL,
5599                                   MVT::i32, MVT::Other, Ops));
5600     return true;
5601   }
5602 
5603   return false;
5604 }
5605 
5606 // Lower the write_register intrinsic to ARM specific DAG nodes
5607 // using the supplied metadata string to select the instruction node to use
5608 // and the registers/masks to use in the nodes
5609 bool ARMDAGToDAGISel::tryWriteRegister(SDNode *N){
5610   const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
5611   const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
5612   bool IsThumb2 = Subtarget->isThumb2();
5613   SDLoc DL(N);
5614 
5615   std::vector<SDValue> Ops;
5616   getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
5617 
5618   if (!Ops.empty()) {
5619     // If the special register string was constructed of fields (as defined
5620     // in the ACLE) then need to lower to MCR node (32 bit) or
5621     // MCRR node(64 bit), we can make the distinction based on the number of
5622     // operands we have.
5623     unsigned Opcode;
5624     if (Ops.size() == 5) {
5625       Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR;
5626       Ops.insert(Ops.begin()+2, N->getOperand(2));
5627     } else {
5628       assert(Ops.size() == 3 &&
5629               "Invalid number of fields in special register string.");
5630       Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR;
5631       SDValue WriteValue[] = { N->getOperand(2), N->getOperand(3) };
5632       Ops.insert(Ops.begin()+2, WriteValue, WriteValue+2);
5633     }
5634 
5635     Ops.push_back(getAL(CurDAG, DL));
5636     Ops.push_back(CurDAG->getRegister(0, MVT::i32));
5637     Ops.push_back(N->getOperand(0));
5638 
5639     ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
5640     return true;
5641   }
5642 
5643   std::string SpecialReg = RegString->getString().lower();
5644   int BankedReg = getBankedRegisterMask(SpecialReg);
5645   if (BankedReg != -1) {
5646     Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), N->getOperand(2),
5647             getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5648             N->getOperand(0) };
5649     ReplaceNode(
5650         N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked,
5651                                   DL, MVT::Other, Ops));
5652     return true;
5653   }
5654 
5655   // The VFP registers are written to by creating SelectionDAG nodes with
5656   // opcodes corresponding to the register that is being written. So we switch
5657   // on the string to find which opcode we need to use.
5658   unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
5659                     .Case("fpscr", ARM::VMSR)
5660                     .Case("fpexc", ARM::VMSR_FPEXC)
5661                     .Case("fpsid", ARM::VMSR_FPSID)
5662                     .Case("fpinst", ARM::VMSR_FPINST)
5663                     .Case("fpinst2", ARM::VMSR_FPINST2)
5664                     .Default(0);
5665 
5666   if (Opcode) {
5667     if (!Subtarget->hasVFP2Base())
5668       return false;
5669     Ops = { N->getOperand(2), getAL(CurDAG, DL),
5670             CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
5671     ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
5672     return true;
5673   }
5674 
5675   std::pair<StringRef, StringRef> Fields;
5676   Fields = StringRef(SpecialReg).rsplit('_');
5677   std::string Reg = Fields.first.str();
5678   StringRef Flags = Fields.second;
5679 
5680   // If the target was M Class then need to validate the special register value
5681   // and retrieve the mask for use in the instruction node.
5682   if (Subtarget->isMClass()) {
5683     int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
5684     if (SYSmValue == -1)
5685       return false;
5686 
5687     SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
5688                       N->getOperand(2), getAL(CurDAG, DL),
5689                       CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
5690     ReplaceNode(N, CurDAG->getMachineNode(ARM::t2MSR_M, DL, MVT::Other, Ops));
5691     return true;
5692   }
5693 
5694   // We then check to see if a valid mask can be constructed for one of the
5695   // register string values permitted for the A and R class cores. These values
5696   // are apsr, spsr and cpsr; these are also valid on older cores.
5697   int Mask = getARClassRegisterMask(Reg, Flags);
5698   if (Mask != -1) {
5699     Ops = { CurDAG->getTargetConstant(Mask, DL, MVT::i32), N->getOperand(2),
5700             getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5701             N->getOperand(0) };
5702     ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSR_AR : ARM::MSR,
5703                                           DL, MVT::Other, Ops));
5704     return true;
5705   }
5706 
5707   return false;
5708 }
5709 
5710 bool ARMDAGToDAGISel::tryInlineAsm(SDNode *N){
5711   std::vector<SDValue> AsmNodeOperands;
5712   unsigned Flag, Kind;
5713   bool Changed = false;
5714   unsigned NumOps = N->getNumOperands();
5715 
5716   // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
5717   // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
5718   // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
5719   // respectively. Since there is no constraint to explicitly specify a
5720   // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
5721   // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
5722   // them into a GPRPair.
5723 
5724   SDLoc dl(N);
5725   SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps - 1) : SDValue();
5726 
5727   SmallVector<bool, 8> OpChanged;
5728   // Glue node will be appended late.
5729   for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
5730     SDValue op = N->getOperand(i);
5731     AsmNodeOperands.push_back(op);
5732 
5733     if (i < InlineAsm::Op_FirstOperand)
5734       continue;
5735 
5736     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
5737       Flag = C->getZExtValue();
5738       Kind = InlineAsm::getKind(Flag);
5739     }
5740     else
5741       continue;
5742 
5743     // Immediate operands to inline asm in the SelectionDAG are modeled with
5744     // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
5745     // the second is a constant with the value of the immediate. If we get here
5746     // and we have a Kind_Imm, skip the next operand, and continue.
5747     if (Kind == InlineAsm::Kind_Imm) {
5748       SDValue op = N->getOperand(++i);
5749       AsmNodeOperands.push_back(op);
5750       continue;
5751     }
5752 
5753     unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
5754     if (NumRegs)
5755       OpChanged.push_back(false);
5756 
5757     unsigned DefIdx = 0;
5758     bool IsTiedToChangedOp = false;
5759     // If it's a use that is tied with a previous def, it has no
5760     // reg class constraint.
5761     if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
5762       IsTiedToChangedOp = OpChanged[DefIdx];
5763 
5764     // Memory operands to inline asm in the SelectionDAG are modeled with two
5765     // operands: a constant of value InlineAsm::Kind_Mem followed by the input
5766     // operand. If we get here and we have a Kind_Mem, skip the next operand (so
5767     // it doesn't get misinterpreted), and continue. We do this here because
5768     // it's important to update the OpChanged array correctly before moving on.
5769     if (Kind == InlineAsm::Kind_Mem) {
5770       SDValue op = N->getOperand(++i);
5771       AsmNodeOperands.push_back(op);
5772       continue;
5773     }
5774 
5775     if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
5776         && Kind != InlineAsm::Kind_RegDefEarlyClobber)
5777       continue;
5778 
5779     unsigned RC;
5780     bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
5781     if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
5782         || NumRegs != 2)
5783       continue;
5784 
5785     assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
5786     SDValue V0 = N->getOperand(i+1);
5787     SDValue V1 = N->getOperand(i+2);
5788     Register Reg0 = cast<RegisterSDNode>(V0)->getReg();
5789     Register Reg1 = cast<RegisterSDNode>(V1)->getReg();
5790     SDValue PairedReg;
5791     MachineRegisterInfo &MRI = MF->getRegInfo();
5792 
5793     if (Kind == InlineAsm::Kind_RegDef ||
5794         Kind == InlineAsm::Kind_RegDefEarlyClobber) {
5795       // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
5796       // the original GPRs.
5797 
5798       Register GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5799       PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
5800       SDValue Chain = SDValue(N,0);
5801 
5802       SDNode *GU = N->getGluedUser();
5803       SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
5804                                                Chain.getValue(1));
5805 
5806       // Extract values from a GPRPair reg and copy to the original GPR reg.
5807       SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
5808                                                     RegCopy);
5809       SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
5810                                                     RegCopy);
5811       SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
5812                                         RegCopy.getValue(1));
5813       SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
5814 
5815       // Update the original glue user.
5816       std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
5817       Ops.push_back(T1.getValue(1));
5818       CurDAG->UpdateNodeOperands(GU, Ops);
5819     }
5820     else {
5821       // For Kind  == InlineAsm::Kind_RegUse, we first copy two GPRs into a
5822       // GPRPair and then pass the GPRPair to the inline asm.
5823       SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
5824 
5825       // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
5826       SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
5827                                           Chain.getValue(1));
5828       SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
5829                                           T0.getValue(1));
5830       SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
5831 
5832       // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
5833       // i32 VRs of inline asm with it.
5834       Register GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5835       PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
5836       Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
5837 
5838       AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5839       Glue = Chain.getValue(1);
5840     }
5841 
5842     Changed = true;
5843 
5844     if(PairedReg.getNode()) {
5845       OpChanged[OpChanged.size() -1 ] = true;
5846       Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
5847       if (IsTiedToChangedOp)
5848         Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
5849       else
5850         Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
5851       // Replace the current flag.
5852       AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
5853           Flag, dl, MVT::i32);
5854       // Add the new register node and skip the original two GPRs.
5855       AsmNodeOperands.push_back(PairedReg);
5856       // Skip the next two GPRs.
5857       i += 2;
5858     }
5859   }
5860 
5861   if (Glue.getNode())
5862     AsmNodeOperands.push_back(Glue);
5863   if (!Changed)
5864     return false;
5865 
5866   SDValue New = CurDAG->getNode(N->getOpcode(), SDLoc(N),
5867       CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
5868   New->setNodeId(-1);
5869   ReplaceNode(N, New.getNode());
5870   return true;
5871 }
5872 
5873 
5874 bool ARMDAGToDAGISel::
5875 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
5876                              std::vector<SDValue> &OutOps) {
5877   switch(ConstraintID) {
5878   default:
5879     llvm_unreachable("Unexpected asm memory constraint");
5880   case InlineAsm::Constraint_m:
5881   case InlineAsm::Constraint_o:
5882   case InlineAsm::Constraint_Q:
5883   case InlineAsm::Constraint_Um:
5884   case InlineAsm::Constraint_Un:
5885   case InlineAsm::Constraint_Uq:
5886   case InlineAsm::Constraint_Us:
5887   case InlineAsm::Constraint_Ut:
5888   case InlineAsm::Constraint_Uv:
5889   case InlineAsm::Constraint_Uy:
5890     // Require the address to be in a register.  That is safe for all ARM
5891     // variants and it is hard to do anything much smarter without knowing
5892     // how the operand is used.
5893     OutOps.push_back(Op);
5894     return false;
5895   }
5896   return true;
5897 }
5898 
5899 /// createARMISelDag - This pass converts a legalized DAG into a
5900 /// ARM-specific DAG, ready for instruction scheduling.
5901 ///
5902 FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
5903                                      CodeGenOpt::Level OptLevel) {
5904   return new ARMDAGToDAGISel(TM, OptLevel);
5905 }
5906