1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "ARMTargetTransformInfo.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/VectorUtils.h"
43 #include "llvm/CodeGen/CallingConvLower.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcalls.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
59 #include "llvm/CodeGen/SelectionDAGNodes.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/CodeGen/TargetLowering.h"
62 #include "llvm/CodeGen/TargetOpcodes.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/CodeGen/TargetSubtargetInfo.h"
65 #include "llvm/CodeGen/ValueTypes.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Constant.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DebugLoc.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/IRBuilder.h"
78 #include "llvm/IR/InlineAsm.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Instructions.h"
81 #include "llvm/IR/IntrinsicInst.h"
82 #include "llvm/IR/Intrinsics.h"
83 #include "llvm/IR/IntrinsicsARM.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/MC/MCInstrItineraries.h"
91 #include "llvm/MC/MCRegisterInfo.h"
92 #include "llvm/MC/MCSchedule.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/BranchProbability.h"
95 #include "llvm/Support/Casting.h"
96 #include "llvm/Support/CodeGen.h"
97 #include "llvm/Support/CommandLine.h"
98 #include "llvm/Support/Compiler.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/KnownBits.h"
102 #include "llvm/Support/MachineValueType.h"
103 #include "llvm/Support/MathExtras.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Target/TargetMachine.h"
106 #include "llvm/Target/TargetOptions.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <cstdlib>
111 #include <iterator>
112 #include <limits>
113 #include <optional>
114 #include <string>
115 #include <tuple>
116 #include <utility>
117 #include <vector>
118 
119 using namespace llvm;
120 using namespace llvm::PatternMatch;
121 
122 #define DEBUG_TYPE "arm-isel"
123 
124 STATISTIC(NumTailCalls, "Number of tail calls");
125 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
126 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
127 STATISTIC(NumConstpoolPromoted,
128   "Number of constants with their storage promoted into constant pools");
129 
130 static cl::opt<bool>
131 ARMInterworking("arm-interworking", cl::Hidden,
132   cl::desc("Enable / disable ARM interworking (for debugging only)"),
133   cl::init(true));
134 
135 static cl::opt<bool> EnableConstpoolPromotion(
136     "arm-promote-constant", cl::Hidden,
137     cl::desc("Enable / disable promotion of unnamed_addr constants into "
138              "constant pools"),
139     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
140 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
141     "arm-promote-constant-max-size", cl::Hidden,
142     cl::desc("Maximum size of constant to promote into a constant pool"),
143     cl::init(64));
144 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
145     "arm-promote-constant-max-total", cl::Hidden,
146     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
147     cl::init(128));
148 
149 cl::opt<unsigned>
150 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
151   cl::desc("Maximum interleave factor for MVE VLDn to generate."),
152   cl::init(2));
153 
154 // The APCS parameter registers.
155 static const MCPhysReg GPRArgRegs[] = {
156   ARM::R0, ARM::R1, ARM::R2, ARM::R3
157 };
158 
159 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT) {
160   if (VT != PromotedLdStVT) {
161     setOperationAction(ISD::LOAD, VT, Promote);
162     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
163 
164     setOperationAction(ISD::STORE, VT, Promote);
165     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
166   }
167 
168   MVT ElemTy = VT.getVectorElementType();
169   if (ElemTy != MVT::f64)
170     setOperationAction(ISD::SETCC, VT, Custom);
171   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
172   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
173   if (ElemTy == MVT::i32) {
174     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
175     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
176     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
177     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
178   } else {
179     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
180     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
181     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
182     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
183   }
184   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
185   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
186   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
187   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
188   setOperationAction(ISD::SELECT,            VT, Expand);
189   setOperationAction(ISD::SELECT_CC,         VT, Expand);
190   setOperationAction(ISD::VSELECT,           VT, Expand);
191   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
192   if (VT.isInteger()) {
193     setOperationAction(ISD::SHL, VT, Custom);
194     setOperationAction(ISD::SRA, VT, Custom);
195     setOperationAction(ISD::SRL, VT, Custom);
196   }
197 
198   // Neon does not support vector divide/remainder operations.
199   setOperationAction(ISD::SDIV, VT, Expand);
200   setOperationAction(ISD::UDIV, VT, Expand);
201   setOperationAction(ISD::FDIV, VT, Expand);
202   setOperationAction(ISD::SREM, VT, Expand);
203   setOperationAction(ISD::UREM, VT, Expand);
204   setOperationAction(ISD::FREM, VT, Expand);
205   setOperationAction(ISD::SDIVREM, VT, Expand);
206   setOperationAction(ISD::UDIVREM, VT, Expand);
207 
208   if (!VT.isFloatingPoint() &&
209       VT != MVT::v2i64 && VT != MVT::v1i64)
210     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
211       setOperationAction(Opcode, VT, Legal);
212   if (!VT.isFloatingPoint())
213     for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
214       setOperationAction(Opcode, VT, Legal);
215 }
216 
217 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
218   addRegisterClass(VT, &ARM::DPRRegClass);
219   addTypeForNEON(VT, MVT::f64);
220 }
221 
222 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
223   addRegisterClass(VT, &ARM::DPairRegClass);
224   addTypeForNEON(VT, MVT::v2f64);
225 }
226 
227 void ARMTargetLowering::setAllExpand(MVT VT) {
228   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
229     setOperationAction(Opc, VT, Expand);
230 
231   // We support these really simple operations even on types where all
232   // the actual arithmetic has to be broken down into simpler
233   // operations or turned into library calls.
234   setOperationAction(ISD::BITCAST, VT, Legal);
235   setOperationAction(ISD::LOAD, VT, Legal);
236   setOperationAction(ISD::STORE, VT, Legal);
237   setOperationAction(ISD::UNDEF, VT, Legal);
238 }
239 
240 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
241                                        LegalizeAction Action) {
242   setLoadExtAction(ISD::EXTLOAD,  From, To, Action);
243   setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
244   setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
245 }
246 
247 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
248   const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
249 
250   for (auto VT : IntTypes) {
251     addRegisterClass(VT, &ARM::MQPRRegClass);
252     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
253     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
254     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
255     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
256     setOperationAction(ISD::SHL, VT, Custom);
257     setOperationAction(ISD::SRA, VT, Custom);
258     setOperationAction(ISD::SRL, VT, Custom);
259     setOperationAction(ISD::SMIN, VT, Legal);
260     setOperationAction(ISD::SMAX, VT, Legal);
261     setOperationAction(ISD::UMIN, VT, Legal);
262     setOperationAction(ISD::UMAX, VT, Legal);
263     setOperationAction(ISD::ABS, VT, Legal);
264     setOperationAction(ISD::SETCC, VT, Custom);
265     setOperationAction(ISD::MLOAD, VT, Custom);
266     setOperationAction(ISD::MSTORE, VT, Legal);
267     setOperationAction(ISD::CTLZ, VT, Legal);
268     setOperationAction(ISD::CTTZ, VT, Custom);
269     setOperationAction(ISD::BITREVERSE, VT, Legal);
270     setOperationAction(ISD::BSWAP, VT, Legal);
271     setOperationAction(ISD::SADDSAT, VT, Legal);
272     setOperationAction(ISD::UADDSAT, VT, Legal);
273     setOperationAction(ISD::SSUBSAT, VT, Legal);
274     setOperationAction(ISD::USUBSAT, VT, Legal);
275     setOperationAction(ISD::ABDS, VT, Legal);
276     setOperationAction(ISD::ABDU, VT, Legal);
277     setOperationAction(ISD::AVGFLOORS, VT, Legal);
278     setOperationAction(ISD::AVGFLOORU, VT, Legal);
279     setOperationAction(ISD::AVGCEILS, VT, Legal);
280     setOperationAction(ISD::AVGCEILU, VT, Legal);
281 
282     // No native support for these.
283     setOperationAction(ISD::UDIV, VT, Expand);
284     setOperationAction(ISD::SDIV, VT, Expand);
285     setOperationAction(ISD::UREM, VT, Expand);
286     setOperationAction(ISD::SREM, VT, Expand);
287     setOperationAction(ISD::UDIVREM, VT, Expand);
288     setOperationAction(ISD::SDIVREM, VT, Expand);
289     setOperationAction(ISD::CTPOP, VT, Expand);
290     setOperationAction(ISD::SELECT, VT, Expand);
291     setOperationAction(ISD::SELECT_CC, VT, Expand);
292 
293     // Vector reductions
294     setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
295     setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
296     setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
297     setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
298     setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
299     setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
300     setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
301     setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
302     setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
303 
304     if (!HasMVEFP) {
305       setOperationAction(ISD::SINT_TO_FP, VT, Expand);
306       setOperationAction(ISD::UINT_TO_FP, VT, Expand);
307       setOperationAction(ISD::FP_TO_SINT, VT, Expand);
308       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
309     } else {
310       setOperationAction(ISD::FP_TO_SINT_SAT, VT, Custom);
311       setOperationAction(ISD::FP_TO_UINT_SAT, VT, Custom);
312     }
313 
314     // Pre and Post inc are supported on loads and stores
315     for (unsigned im = (unsigned)ISD::PRE_INC;
316          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
317       setIndexedLoadAction(im, VT, Legal);
318       setIndexedStoreAction(im, VT, Legal);
319       setIndexedMaskedLoadAction(im, VT, Legal);
320       setIndexedMaskedStoreAction(im, VT, Legal);
321     }
322   }
323 
324   const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
325   for (auto VT : FloatTypes) {
326     addRegisterClass(VT, &ARM::MQPRRegClass);
327     if (!HasMVEFP)
328       setAllExpand(VT);
329 
330     // These are legal or custom whether we have MVE.fp or not
331     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
332     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
333     setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
334     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
335     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
336     setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
337     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
338     setOperationAction(ISD::SETCC, VT, Custom);
339     setOperationAction(ISD::MLOAD, VT, Custom);
340     setOperationAction(ISD::MSTORE, VT, Legal);
341     setOperationAction(ISD::SELECT, VT, Expand);
342     setOperationAction(ISD::SELECT_CC, VT, Expand);
343 
344     // Pre and Post inc are supported on loads and stores
345     for (unsigned im = (unsigned)ISD::PRE_INC;
346          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
347       setIndexedLoadAction(im, VT, Legal);
348       setIndexedStoreAction(im, VT, Legal);
349       setIndexedMaskedLoadAction(im, VT, Legal);
350       setIndexedMaskedStoreAction(im, VT, Legal);
351     }
352 
353     if (HasMVEFP) {
354       setOperationAction(ISD::FMINNUM, VT, Legal);
355       setOperationAction(ISD::FMAXNUM, VT, Legal);
356       setOperationAction(ISD::FROUND, VT, Legal);
357       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
358       setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
359       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
360       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
361 
362       // No native support for these.
363       setOperationAction(ISD::FDIV, VT, Expand);
364       setOperationAction(ISD::FREM, VT, Expand);
365       setOperationAction(ISD::FSQRT, VT, Expand);
366       setOperationAction(ISD::FSIN, VT, Expand);
367       setOperationAction(ISD::FCOS, VT, Expand);
368       setOperationAction(ISD::FPOW, VT, Expand);
369       setOperationAction(ISD::FLOG, VT, Expand);
370       setOperationAction(ISD::FLOG2, VT, Expand);
371       setOperationAction(ISD::FLOG10, VT, Expand);
372       setOperationAction(ISD::FEXP, VT, Expand);
373       setOperationAction(ISD::FEXP2, VT, Expand);
374       setOperationAction(ISD::FNEARBYINT, VT, Expand);
375     }
376   }
377 
378   // Custom Expand smaller than legal vector reductions to prevent false zero
379   // items being added.
380   setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
381   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
382   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
383   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
384   setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
385   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
386   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
387   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
388 
389   // We 'support' these types up to bitcast/load/store level, regardless of
390   // MVE integer-only / float support. Only doing FP data processing on the FP
391   // vector types is inhibited at integer-only level.
392   const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
393   for (auto VT : LongTypes) {
394     addRegisterClass(VT, &ARM::MQPRRegClass);
395     setAllExpand(VT);
396     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
397     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
398     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
399     setOperationAction(ISD::VSELECT, VT, Legal);
400     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
401   }
402   setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
403 
404   // We can do bitwise operations on v2i64 vectors
405   setOperationAction(ISD::AND, MVT::v2i64, Legal);
406   setOperationAction(ISD::OR, MVT::v2i64, Legal);
407   setOperationAction(ISD::XOR, MVT::v2i64, Legal);
408 
409   // It is legal to extload from v4i8 to v4i16 or v4i32.
410   addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
411   addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
412   addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
413 
414   // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
415   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
416   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
417   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
418   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8,  Legal);
419   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
420 
421   // Some truncating stores are legal too.
422   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
423   setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
424   setTruncStoreAction(MVT::v8i16, MVT::v8i8,  Legal);
425 
426   // Pre and Post inc on these are legal, given the correct extends
427   for (unsigned im = (unsigned)ISD::PRE_INC;
428        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
429     for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
430       setIndexedLoadAction(im, VT, Legal);
431       setIndexedStoreAction(im, VT, Legal);
432       setIndexedMaskedLoadAction(im, VT, Legal);
433       setIndexedMaskedStoreAction(im, VT, Legal);
434     }
435   }
436 
437   // Predicate types
438   const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1, MVT::v2i1};
439   for (auto VT : pTypes) {
440     addRegisterClass(VT, &ARM::VCCRRegClass);
441     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
442     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
443     setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
444     setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
445     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
446     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
447     setOperationAction(ISD::SETCC, VT, Custom);
448     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
449     setOperationAction(ISD::LOAD, VT, Custom);
450     setOperationAction(ISD::STORE, VT, Custom);
451     setOperationAction(ISD::TRUNCATE, VT, Custom);
452     setOperationAction(ISD::VSELECT, VT, Expand);
453     setOperationAction(ISD::SELECT, VT, Expand);
454     setOperationAction(ISD::SELECT_CC, VT, Expand);
455 
456     if (!HasMVEFP) {
457       setOperationAction(ISD::SINT_TO_FP, VT, Expand);
458       setOperationAction(ISD::UINT_TO_FP, VT, Expand);
459       setOperationAction(ISD::FP_TO_SINT, VT, Expand);
460       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
461     }
462   }
463   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
464   setOperationAction(ISD::TRUNCATE, MVT::v2i1, Expand);
465   setOperationAction(ISD::AND, MVT::v2i1, Expand);
466   setOperationAction(ISD::OR, MVT::v2i1, Expand);
467   setOperationAction(ISD::XOR, MVT::v2i1, Expand);
468   setOperationAction(ISD::SINT_TO_FP, MVT::v2i1, Expand);
469   setOperationAction(ISD::UINT_TO_FP, MVT::v2i1, Expand);
470   setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Expand);
471   setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Expand);
472 
473   setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
474   setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
475   setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
476   setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
477   setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
478   setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
479   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
480   setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
481 }
482 
483 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
484                                      const ARMSubtarget &STI)
485     : TargetLowering(TM), Subtarget(&STI) {
486   RegInfo = Subtarget->getRegisterInfo();
487   Itins = Subtarget->getInstrItineraryData();
488 
489   setBooleanContents(ZeroOrOneBooleanContent);
490   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
491 
492   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
493       !Subtarget->isTargetWatchOS() && !Subtarget->isTargetDriverKit()) {
494     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
495     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
496       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
497                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
498                                        : CallingConv::ARM_AAPCS);
499   }
500 
501   if (Subtarget->isTargetMachO()) {
502     // Uses VFP for Thumb libfuncs if available.
503     if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
504         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
505       static const struct {
506         const RTLIB::Libcall Op;
507         const char * const Name;
508         const ISD::CondCode Cond;
509       } LibraryCalls[] = {
510         // Single-precision floating-point arithmetic.
511         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
512         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
513         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
514         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
515 
516         // Double-precision floating-point arithmetic.
517         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
518         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
519         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
520         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
521 
522         // Single-precision comparisons.
523         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
524         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
525         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
526         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
527         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
528         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
529         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
530 
531         // Double-precision comparisons.
532         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
533         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
534         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
535         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
536         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
537         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
538         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
539 
540         // Floating-point to integer conversions.
541         // i64 conversions are done via library routines even when generating VFP
542         // instructions, so use the same ones.
543         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
544         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
545         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
546         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
547 
548         // Conversions between floating types.
549         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
550         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
551 
552         // Integer to floating-point conversions.
553         // i64 conversions are done via library routines even when generating VFP
554         // instructions, so use the same ones.
555         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
556         // e.g., __floatunsidf vs. __floatunssidfvfp.
557         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
558         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
559         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
560         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
561       };
562 
563       for (const auto &LC : LibraryCalls) {
564         setLibcallName(LC.Op, LC.Name);
565         if (LC.Cond != ISD::SETCC_INVALID)
566           setCmpLibcallCC(LC.Op, LC.Cond);
567       }
568     }
569   }
570 
571   // These libcalls are not available in 32-bit.
572   setLibcallName(RTLIB::SHL_I128, nullptr);
573   setLibcallName(RTLIB::SRL_I128, nullptr);
574   setLibcallName(RTLIB::SRA_I128, nullptr);
575   setLibcallName(RTLIB::MUL_I128, nullptr);
576   setLibcallName(RTLIB::MULO_I64, nullptr);
577   setLibcallName(RTLIB::MULO_I128, nullptr);
578 
579   // RTLIB
580   if (Subtarget->isAAPCS_ABI() &&
581       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
582        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
583     static const struct {
584       const RTLIB::Libcall Op;
585       const char * const Name;
586       const CallingConv::ID CC;
587       const ISD::CondCode Cond;
588     } LibraryCalls[] = {
589       // Double-precision floating-point arithmetic helper functions
590       // RTABI chapter 4.1.2, Table 2
591       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
592       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
593       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
594       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
595 
596       // Double-precision floating-point comparison helper functions
597       // RTABI chapter 4.1.2, Table 3
598       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
599       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
600       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
601       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
602       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
603       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
604       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
605 
606       // Single-precision floating-point arithmetic helper functions
607       // RTABI chapter 4.1.2, Table 4
608       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
609       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
610       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
611       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
612 
613       // Single-precision floating-point comparison helper functions
614       // RTABI chapter 4.1.2, Table 5
615       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
616       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
617       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
618       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
619       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
620       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
621       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
622 
623       // Floating-point to integer conversions.
624       // RTABI chapter 4.1.2, Table 6
625       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
626       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
627       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
628       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
629       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
630       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
631       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
632       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
633 
634       // Conversions between floating types.
635       // RTABI chapter 4.1.2, Table 7
636       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
637       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
638       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
639 
640       // Integer to floating-point conversions.
641       // RTABI chapter 4.1.2, Table 8
642       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
643       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
644       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
645       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
646       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
647       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
648       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
649       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
650 
651       // Long long helper functions
652       // RTABI chapter 4.2, Table 9
653       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
654       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
655       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
656       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
657 
658       // Integer division functions
659       // RTABI chapter 4.3.1
660       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
661       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
662       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
663       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
664       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
665       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
666       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
667       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
668     };
669 
670     for (const auto &LC : LibraryCalls) {
671       setLibcallName(LC.Op, LC.Name);
672       setLibcallCallingConv(LC.Op, LC.CC);
673       if (LC.Cond != ISD::SETCC_INVALID)
674         setCmpLibcallCC(LC.Op, LC.Cond);
675     }
676 
677     // EABI dependent RTLIB
678     if (TM.Options.EABIVersion == EABI::EABI4 ||
679         TM.Options.EABIVersion == EABI::EABI5) {
680       static const struct {
681         const RTLIB::Libcall Op;
682         const char *const Name;
683         const CallingConv::ID CC;
684         const ISD::CondCode Cond;
685       } MemOpsLibraryCalls[] = {
686         // Memory operations
687         // RTABI chapter 4.3.4
688         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
689         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
690         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
691       };
692 
693       for (const auto &LC : MemOpsLibraryCalls) {
694         setLibcallName(LC.Op, LC.Name);
695         setLibcallCallingConv(LC.Op, LC.CC);
696         if (LC.Cond != ISD::SETCC_INVALID)
697           setCmpLibcallCC(LC.Op, LC.Cond);
698       }
699     }
700   }
701 
702   if (Subtarget->isTargetWindows()) {
703     static const struct {
704       const RTLIB::Libcall Op;
705       const char * const Name;
706       const CallingConv::ID CC;
707     } LibraryCalls[] = {
708       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
709       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
710       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
711       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
712       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
713       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
714       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
715       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
716     };
717 
718     for (const auto &LC : LibraryCalls) {
719       setLibcallName(LC.Op, LC.Name);
720       setLibcallCallingConv(LC.Op, LC.CC);
721     }
722   }
723 
724   // Use divmod compiler-rt calls for iOS 5.0 and later.
725   if (Subtarget->isTargetMachO() &&
726       !(Subtarget->isTargetIOS() &&
727         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
728     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
729     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
730   }
731 
732   // The half <-> float conversion functions are always soft-float on
733   // non-watchos platforms, but are needed for some targets which use a
734   // hard-float calling convention by default.
735   if (!Subtarget->isTargetWatchABI()) {
736     if (Subtarget->isAAPCS_ABI()) {
737       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
738       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
739       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
740     } else {
741       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
742       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
743       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
744     }
745   }
746 
747   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
748   // a __gnu_ prefix (which is the default).
749   if (Subtarget->isTargetAEABI()) {
750     static const struct {
751       const RTLIB::Libcall Op;
752       const char * const Name;
753       const CallingConv::ID CC;
754     } LibraryCalls[] = {
755       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
756       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
757       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
758     };
759 
760     for (const auto &LC : LibraryCalls) {
761       setLibcallName(LC.Op, LC.Name);
762       setLibcallCallingConv(LC.Op, LC.CC);
763     }
764   }
765 
766   if (Subtarget->isThumb1Only())
767     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
768   else
769     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
770 
771   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
772       Subtarget->hasFPRegs()) {
773     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
774     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
775 
776     setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
777     setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
778     setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);
779     setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
780 
781     if (!Subtarget->hasVFP2Base())
782       setAllExpand(MVT::f32);
783     if (!Subtarget->hasFP64())
784       setAllExpand(MVT::f64);
785   }
786 
787   if (Subtarget->hasFullFP16()) {
788     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
789     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
790     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
791 
792     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
793     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
794   }
795 
796   if (Subtarget->hasBF16()) {
797     addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
798     setAllExpand(MVT::bf16);
799     if (!Subtarget->hasFullFP16())
800       setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
801   }
802 
803   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
804     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
805       setTruncStoreAction(VT, InnerVT, Expand);
806       addAllExtLoads(VT, InnerVT, Expand);
807     }
808 
809     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
810     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
811 
812     setOperationAction(ISD::BSWAP, VT, Expand);
813   }
814 
815   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
816   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
817 
818   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
819   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
820 
821   if (Subtarget->hasMVEIntegerOps())
822     addMVEVectorTypes(Subtarget->hasMVEFloatOps());
823 
824   // Combine low-overhead loop intrinsics so that we can lower i1 types.
825   if (Subtarget->hasLOB()) {
826     setTargetDAGCombine({ISD::BRCOND, ISD::BR_CC});
827   }
828 
829   if (Subtarget->hasNEON()) {
830     addDRTypeForNEON(MVT::v2f32);
831     addDRTypeForNEON(MVT::v8i8);
832     addDRTypeForNEON(MVT::v4i16);
833     addDRTypeForNEON(MVT::v2i32);
834     addDRTypeForNEON(MVT::v1i64);
835 
836     addQRTypeForNEON(MVT::v4f32);
837     addQRTypeForNEON(MVT::v2f64);
838     addQRTypeForNEON(MVT::v16i8);
839     addQRTypeForNEON(MVT::v8i16);
840     addQRTypeForNEON(MVT::v4i32);
841     addQRTypeForNEON(MVT::v2i64);
842 
843     if (Subtarget->hasFullFP16()) {
844       addQRTypeForNEON(MVT::v8f16);
845       addDRTypeForNEON(MVT::v4f16);
846     }
847 
848     if (Subtarget->hasBF16()) {
849       addQRTypeForNEON(MVT::v8bf16);
850       addDRTypeForNEON(MVT::v4bf16);
851     }
852   }
853 
854   if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
855     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
856     // none of Neon, MVE or VFP supports any arithmetic operations on it.
857     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
858     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
859     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
860     // FIXME: Code duplication: FDIV and FREM are expanded always, see
861     // ARMTargetLowering::addTypeForNEON method for details.
862     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
863     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
864     // FIXME: Create unittest.
865     // In another words, find a way when "copysign" appears in DAG with vector
866     // operands.
867     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
868     // FIXME: Code duplication: SETCC has custom operation action, see
869     // ARMTargetLowering::addTypeForNEON method for details.
870     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
871     // FIXME: Create unittest for FNEG and for FABS.
872     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
873     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
874     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
875     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
876     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
877     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
878     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
879     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
880     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
881     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
882     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
883     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
884     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
885     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
886     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
887     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
888     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
889     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
890   }
891 
892   if (Subtarget->hasNEON()) {
893     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
894     // supported for v4f32.
895     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
896     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
897     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
898     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
899     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
900     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
901     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
902     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
903     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
904     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
905     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
906     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
907     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
908     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
909 
910     // Mark v2f32 intrinsics.
911     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
912     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
913     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
914     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
915     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
916     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
917     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
918     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
919     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
920     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
921     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
922     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
923     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
924     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
925 
926     // Neon does not support some operations on v1i64 and v2i64 types.
927     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
928     // Custom handling for some quad-vector types to detect VMULL.
929     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
930     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
931     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
932     // Custom handling for some vector types to avoid expensive expansions
933     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
934     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
935     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
936     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
937     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
938     // a destination type that is wider than the source, and nor does
939     // it have a FP_TO_[SU]INT instruction with a narrower destination than
940     // source.
941     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
942     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
943     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
944     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
945     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
946     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
947     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
948     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
949 
950     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
951     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
952 
953     // NEON does not have single instruction CTPOP for vectors with element
954     // types wider than 8-bits.  However, custom lowering can leverage the
955     // v8i8/v16i8 vcnt instruction.
956     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
957     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
958     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
959     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
960     setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
961     setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);
962 
963     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
964     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
965 
966     // NEON does not have single instruction CTTZ for vectors.
967     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
968     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
969     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
970     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
971 
972     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
973     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
974     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
975     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
976 
977     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
978     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
979     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
980     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
981 
982     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
983     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
984     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
985     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
986 
987     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
988       setOperationAction(ISD::MULHS, VT, Expand);
989       setOperationAction(ISD::MULHU, VT, Expand);
990     }
991 
992     // NEON only has FMA instructions as of VFP4.
993     if (!Subtarget->hasVFP4Base()) {
994       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
995       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
996     }
997 
998     setTargetDAGCombine({ISD::SHL, ISD::SRL, ISD::SRA, ISD::FP_TO_SINT,
999                          ISD::FP_TO_UINT, ISD::FDIV, ISD::LOAD});
1000 
1001     // It is legal to extload from v4i8 to v4i16 or v4i32.
1002     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
1003                    MVT::v2i32}) {
1004       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1005         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
1006         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
1007         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
1008       }
1009     }
1010   }
1011 
1012   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1013     setTargetDAGCombine(
1014         {ISD::BUILD_VECTOR, ISD::VECTOR_SHUFFLE, ISD::INSERT_SUBVECTOR,
1015          ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
1016          ISD::SIGN_EXTEND_INREG, ISD::STORE, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND,
1017          ISD::ANY_EXTEND, ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN,
1018          ISD::INTRINSIC_VOID, ISD::VECREDUCE_ADD, ISD::ADD, ISD::BITCAST});
1019   }
1020   if (Subtarget->hasMVEIntegerOps()) {
1021     setTargetDAGCombine({ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
1022                          ISD::FP_EXTEND, ISD::SELECT, ISD::SELECT_CC,
1023                          ISD::SETCC});
1024   }
1025   if (Subtarget->hasMVEFloatOps()) {
1026     setTargetDAGCombine(ISD::FADD);
1027   }
1028 
1029   if (!Subtarget->hasFP64()) {
1030     // When targeting a floating-point unit with only single-precision
1031     // operations, f64 is legal for the few double-precision instructions which
1032     // are present However, no double-precision operations other than moves,
1033     // loads and stores are provided by the hardware.
1034     setOperationAction(ISD::FADD,       MVT::f64, Expand);
1035     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
1036     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
1037     setOperationAction(ISD::FMA,        MVT::f64, Expand);
1038     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
1039     setOperationAction(ISD::FREM,       MVT::f64, Expand);
1040     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
1041     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
1042     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
1043     setOperationAction(ISD::FABS,       MVT::f64, Expand);
1044     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
1045     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
1046     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
1047     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
1048     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
1049     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
1050     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
1051     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
1052     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
1053     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
1054     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
1055     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
1056     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
1057     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
1058     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1059     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1060     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1061     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1062     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
1063     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
1064     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
1065     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
1066     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
1067     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
1068     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
1069     setOperationAction(ISD::STRICT_FP_ROUND,   MVT::f32, Custom);
1070   }
1071 
1072   if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
1073     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
1074     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
1075     if (Subtarget->hasFullFP16()) {
1076       setOperationAction(ISD::FP_ROUND,  MVT::f16, Custom);
1077       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
1078     }
1079   }
1080 
1081   if (!Subtarget->hasFP16()) {
1082     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Custom);
1083     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1084   }
1085 
1086   computeRegisterProperties(Subtarget->getRegisterInfo());
1087 
1088   // ARM does not have floating-point extending loads.
1089   for (MVT VT : MVT::fp_valuetypes()) {
1090     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1091     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1092   }
1093 
1094   // ... or truncating stores
1095   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1096   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1097   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1098 
1099   // ARM does not have i1 sign extending load.
1100   for (MVT VT : MVT::integer_valuetypes())
1101     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1102 
1103   // ARM supports all 4 flavors of integer indexed load / store.
1104   if (!Subtarget->isThumb1Only()) {
1105     for (unsigned im = (unsigned)ISD::PRE_INC;
1106          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1107       setIndexedLoadAction(im,  MVT::i1,  Legal);
1108       setIndexedLoadAction(im,  MVT::i8,  Legal);
1109       setIndexedLoadAction(im,  MVT::i16, Legal);
1110       setIndexedLoadAction(im,  MVT::i32, Legal);
1111       setIndexedStoreAction(im, MVT::i1,  Legal);
1112       setIndexedStoreAction(im, MVT::i8,  Legal);
1113       setIndexedStoreAction(im, MVT::i16, Legal);
1114       setIndexedStoreAction(im, MVT::i32, Legal);
1115     }
1116   } else {
1117     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1118     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
1119     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
1120   }
1121 
1122   setOperationAction(ISD::SADDO, MVT::i32, Custom);
1123   setOperationAction(ISD::UADDO, MVT::i32, Custom);
1124   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1125   setOperationAction(ISD::USUBO, MVT::i32, Custom);
1126 
1127   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
1128   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
1129   if (Subtarget->hasDSP()) {
1130     setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1131     setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1132     setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1133     setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1134     setOperationAction(ISD::UADDSAT, MVT::i8, Custom);
1135     setOperationAction(ISD::USUBSAT, MVT::i8, Custom);
1136     setOperationAction(ISD::UADDSAT, MVT::i16, Custom);
1137     setOperationAction(ISD::USUBSAT, MVT::i16, Custom);
1138   }
1139   if (Subtarget->hasBaseDSP()) {
1140     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1141     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1142   }
1143 
1144   // i64 operation support.
1145   setOperationAction(ISD::MUL,     MVT::i64, Expand);
1146   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
1147   if (Subtarget->isThumb1Only()) {
1148     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1149     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1150   }
1151   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1152       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1153     setOperationAction(ISD::MULHS, MVT::i32, Expand);
1154 
1155   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1156   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1157   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1158   setOperationAction(ISD::SRL,       MVT::i64, Custom);
1159   setOperationAction(ISD::SRA,       MVT::i64, Custom);
1160   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1161   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1162   setOperationAction(ISD::LOAD, MVT::i64, Custom);
1163   setOperationAction(ISD::STORE, MVT::i64, Custom);
1164 
1165   // MVE lowers 64 bit shifts to lsll and lsrl
1166   // assuming that ISD::SRL and SRA of i64 are already marked custom
1167   if (Subtarget->hasMVEIntegerOps())
1168     setOperationAction(ISD::SHL, MVT::i64, Custom);
1169 
1170   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1171   if (Subtarget->isThumb1Only()) {
1172     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1173     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1174     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1175   }
1176 
1177   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1178     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1179 
1180   // ARM does not have ROTL.
1181   setOperationAction(ISD::ROTL, MVT::i32, Expand);
1182   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1183     setOperationAction(ISD::ROTL, VT, Expand);
1184     setOperationAction(ISD::ROTR, VT, Expand);
1185   }
1186   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
1187   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1188   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1189     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1190     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1191   }
1192 
1193   // @llvm.readcyclecounter requires the Performance Monitors extension.
1194   // Default to the 0 expansion on unsupported platforms.
1195   // FIXME: Technically there are older ARM CPUs that have
1196   // implementation-specific ways of obtaining this information.
1197   if (Subtarget->hasPerfMon())
1198     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1199 
1200   // Only ARMv6 has BSWAP.
1201   if (!Subtarget->hasV6Ops())
1202     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1203 
1204   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1205                                         : Subtarget->hasDivideInARMMode();
1206   if (!hasDivide) {
1207     // These are expanded into libcalls if the cpu doesn't have HW divider.
1208     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
1209     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
1210   }
1211 
1212   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1213     setOperationAction(ISD::SDIV, MVT::i32, Custom);
1214     setOperationAction(ISD::UDIV, MVT::i32, Custom);
1215 
1216     setOperationAction(ISD::SDIV, MVT::i64, Custom);
1217     setOperationAction(ISD::UDIV, MVT::i64, Custom);
1218   }
1219 
1220   setOperationAction(ISD::SREM,  MVT::i32, Expand);
1221   setOperationAction(ISD::UREM,  MVT::i32, Expand);
1222 
1223   // Register based DivRem for AEABI (RTABI 4.2)
1224   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1225       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1226       Subtarget->isTargetWindows()) {
1227     setOperationAction(ISD::SREM, MVT::i64, Custom);
1228     setOperationAction(ISD::UREM, MVT::i64, Custom);
1229     HasStandaloneRem = false;
1230 
1231     if (Subtarget->isTargetWindows()) {
1232       const struct {
1233         const RTLIB::Libcall Op;
1234         const char * const Name;
1235         const CallingConv::ID CC;
1236       } LibraryCalls[] = {
1237         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1238         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1239         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1240         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1241 
1242         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1243         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1244         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1245         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1246       };
1247 
1248       for (const auto &LC : LibraryCalls) {
1249         setLibcallName(LC.Op, LC.Name);
1250         setLibcallCallingConv(LC.Op, LC.CC);
1251       }
1252     } else {
1253       const struct {
1254         const RTLIB::Libcall Op;
1255         const char * const Name;
1256         const CallingConv::ID CC;
1257       } LibraryCalls[] = {
1258         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1259         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1260         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1261         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1262 
1263         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1264         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1265         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1266         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1267       };
1268 
1269       for (const auto &LC : LibraryCalls) {
1270         setLibcallName(LC.Op, LC.Name);
1271         setLibcallCallingConv(LC.Op, LC.CC);
1272       }
1273     }
1274 
1275     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1276     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1277     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1278     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1279   } else {
1280     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1281     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1282   }
1283 
1284   if (Subtarget->getTargetTriple().isOSMSVCRT()) {
1285     // MSVCRT doesn't have powi; fall back to pow
1286     setLibcallName(RTLIB::POWI_F32, nullptr);
1287     setLibcallName(RTLIB::POWI_F64, nullptr);
1288   }
1289 
1290   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
1291   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
1292   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1293   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1294 
1295   setOperationAction(ISD::TRAP, MVT::Other, Legal);
1296   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1297 
1298   // Use the default implementation.
1299   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
1300   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
1301   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
1302   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
1303   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
1304   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
1305 
1306   if (Subtarget->isTargetWindows())
1307     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1308   else
1309     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1310 
1311   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1312   // the default expansion.
1313   InsertFencesForAtomic = false;
1314   if (Subtarget->hasAnyDataBarrier() &&
1315       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1316     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1317     // to ldrex/strex loops already.
1318     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
1319     if (!Subtarget->isThumb() || !Subtarget->isMClass())
1320       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
1321 
1322     // On v8, we have particularly efficient implementations of atomic fences
1323     // if they can be combined with nearby atomic loads and stores.
1324     if (!Subtarget->hasAcquireRelease() ||
1325         getTargetMachine().getOptLevel() == 0) {
1326       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1327       InsertFencesForAtomic = true;
1328     }
1329   } else {
1330     // If there's anything we can use as a barrier, go through custom lowering
1331     // for ATOMIC_FENCE.
1332     // If target has DMB in thumb, Fences can be inserted.
1333     if (Subtarget->hasDataBarrier())
1334       InsertFencesForAtomic = true;
1335 
1336     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1337                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1338 
1339     // Set them all for expansion, which will force libcalls.
1340     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1341     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1342     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1343     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1344     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1345     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1346     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1347     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1348     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1349     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1350     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1351     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1352     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1353     // Unordered/Monotonic case.
1354     if (!InsertFencesForAtomic) {
1355       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1356       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1357     }
1358   }
1359 
1360   // Compute supported atomic widths.
1361   if (Subtarget->isTargetLinux() ||
1362       (!Subtarget->isMClass() && Subtarget->hasV6Ops())) {
1363     // For targets where __sync_* routines are reliably available, we use them
1364     // if necessary.
1365     //
1366     // ARM Linux always supports 64-bit atomics through kernel-assisted atomic
1367     // routines (kernel 3.1 or later). FIXME: Not with compiler-rt?
1368     //
1369     // ARMv6 targets have native instructions in ARM mode. For Thumb mode,
1370     // such targets should provide __sync_* routines, which use the ARM mode
1371     // instructions. (ARMv6 doesn't have dmb, but it has an equivalent
1372     // encoding; see ARMISD::MEMBARRIER_MCR.)
1373     setMaxAtomicSizeInBitsSupported(64);
1374   } else if ((Subtarget->isMClass() && Subtarget->hasV8MBaselineOps()) ||
1375              Subtarget->hasForced32BitAtomics()) {
1376     // Cortex-M (besides Cortex-M0) have 32-bit atomics.
1377     setMaxAtomicSizeInBitsSupported(32);
1378   } else {
1379     // We can't assume anything about other targets; just use libatomic
1380     // routines.
1381     setMaxAtomicSizeInBitsSupported(0);
1382   }
1383 
1384   setMaxDivRemBitWidthSupported(64);
1385 
1386   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1387 
1388   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1389   if (!Subtarget->hasV6Ops()) {
1390     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1391     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1392   }
1393   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1394 
1395   if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1396       !Subtarget->isThumb1Only()) {
1397     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1398     // iff target supports vfp2.
1399     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1400     setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
1401     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
1402   }
1403 
1404   // We want to custom lower some of our intrinsics.
1405   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1406   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1407   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1408   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1409   if (Subtarget->useSjLjEH())
1410     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1411 
1412   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1413   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1414   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1415   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1416   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1417   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1418   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1419   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1420   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1421   if (Subtarget->hasFullFP16()) {
1422     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1423     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1424     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1425   }
1426 
1427   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1428 
1429   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1430   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1431   if (Subtarget->hasFullFP16())
1432       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1433   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1434   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1435   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1436 
1437   // We don't support sin/cos/fmod/copysign/pow
1438   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1439   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1440   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1441   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1442   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1443   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1444   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1445   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1446   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1447       !Subtarget->isThumb1Only()) {
1448     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1449     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1450   }
1451   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1452   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1453 
1454   if (!Subtarget->hasVFP4Base()) {
1455     setOperationAction(ISD::FMA, MVT::f64, Expand);
1456     setOperationAction(ISD::FMA, MVT::f32, Expand);
1457   }
1458 
1459   // Various VFP goodness
1460   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1461     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1462     if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1463       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1464       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1465     }
1466 
1467     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1468     if (!Subtarget->hasFP16()) {
1469       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1470       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1471     }
1472 
1473     // Strict floating-point comparisons need custom lowering.
1474     setOperationAction(ISD::STRICT_FSETCC,  MVT::f16, Custom);
1475     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1476     setOperationAction(ISD::STRICT_FSETCC,  MVT::f32, Custom);
1477     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1478     setOperationAction(ISD::STRICT_FSETCC,  MVT::f64, Custom);
1479     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1480   }
1481 
1482   // Use __sincos_stret if available.
1483   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1484       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1485     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1486     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1487   }
1488 
1489   // FP-ARMv8 implements a lot of rounding-like FP operations.
1490   if (Subtarget->hasFPARMv8Base()) {
1491     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1492     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1493     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1494     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1495     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1496     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1497     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1498     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1499     if (Subtarget->hasNEON()) {
1500       setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1501       setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1502       setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1503       setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1504     }
1505 
1506     if (Subtarget->hasFP64()) {
1507       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1508       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1509       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1510       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1511       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1512       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1513       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1514       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1515     }
1516   }
1517 
1518   // FP16 often need to be promoted to call lib functions
1519   if (Subtarget->hasFullFP16()) {
1520     setOperationAction(ISD::FREM, MVT::f16, Promote);
1521     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1522     setOperationAction(ISD::FSIN, MVT::f16, Promote);
1523     setOperationAction(ISD::FCOS, MVT::f16, Promote);
1524     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1525     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1526     setOperationAction(ISD::FPOW, MVT::f16, Promote);
1527     setOperationAction(ISD::FEXP, MVT::f16, Promote);
1528     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1529     setOperationAction(ISD::FLOG, MVT::f16, Promote);
1530     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1531     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1532 
1533     setOperationAction(ISD::FROUND, MVT::f16, Legal);
1534   }
1535 
1536   if (Subtarget->hasNEON()) {
1537     // vmin and vmax aren't available in a scalar form, so we can use
1538     // a NEON instruction with an undef lane instead.  This has a performance
1539     // penalty on some cores, so we don't do this unless we have been
1540     // asked to by the core tuning model.
1541     if (Subtarget->useNEONForSinglePrecisionFP()) {
1542       setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1543       setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1544       setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1545       setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1546     }
1547     setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1548     setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1549     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1550     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1551 
1552     if (Subtarget->hasFullFP16()) {
1553       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1554       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1555       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1556       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1557 
1558       setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1559       setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1560       setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1561       setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1562     }
1563   }
1564 
1565   // We have target-specific dag combine patterns for the following nodes:
1566   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1567   setTargetDAGCombine(
1568       {ISD::ADD, ISD::SUB, ISD::MUL, ISD::AND, ISD::OR, ISD::XOR});
1569 
1570   if (Subtarget->hasMVEIntegerOps())
1571     setTargetDAGCombine(ISD::VSELECT);
1572 
1573   if (Subtarget->hasV6Ops())
1574     setTargetDAGCombine(ISD::SRL);
1575   if (Subtarget->isThumb1Only())
1576     setTargetDAGCombine(ISD::SHL);
1577   // Attempt to lower smin/smax to ssat/usat
1578   if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) ||
1579       Subtarget->isThumb2()) {
1580     setTargetDAGCombine({ISD::SMIN, ISD::SMAX});
1581   }
1582 
1583   setStackPointerRegisterToSaveRestore(ARM::SP);
1584 
1585   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1586       !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1587     setSchedulingPreference(Sched::RegPressure);
1588   else
1589     setSchedulingPreference(Sched::Hybrid);
1590 
1591   //// temporary - rewrite interface to use type
1592   MaxStoresPerMemset = 8;
1593   MaxStoresPerMemsetOptSize = 4;
1594   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1595   MaxStoresPerMemcpyOptSize = 2;
1596   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1597   MaxStoresPerMemmoveOptSize = 2;
1598 
1599   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1600   // are at least 4 bytes aligned.
1601   setMinStackArgumentAlignment(Align(4));
1602 
1603   // Prefer likely predicted branches to selects on out-of-order cores.
1604   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1605 
1606   setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1607 
1608   setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1609 
1610   if (Subtarget->isThumb() || Subtarget->isThumb2())
1611     setTargetDAGCombine(ISD::ABS);
1612 }
1613 
1614 bool ARMTargetLowering::useSoftFloat() const {
1615   return Subtarget->useSoftFloat();
1616 }
1617 
1618 // FIXME: It might make sense to define the representative register class as the
1619 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1620 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1621 // SPR's representative would be DPR_VFP2. This should work well if register
1622 // pressure tracking were modified such that a register use would increment the
1623 // pressure of the register class's representative and all of it's super
1624 // classes' representatives transitively. We have not implemented this because
1625 // of the difficulty prior to coalescing of modeling operand register classes
1626 // due to the common occurrence of cross class copies and subregister insertions
1627 // and extractions.
1628 std::pair<const TargetRegisterClass *, uint8_t>
1629 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1630                                            MVT VT) const {
1631   const TargetRegisterClass *RRC = nullptr;
1632   uint8_t Cost = 1;
1633   switch (VT.SimpleTy) {
1634   default:
1635     return TargetLowering::findRepresentativeClass(TRI, VT);
1636   // Use DPR as representative register class for all floating point
1637   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1638   // the cost is 1 for both f32 and f64.
1639   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1640   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1641     RRC = &ARM::DPRRegClass;
1642     // When NEON is used for SP, only half of the register file is available
1643     // because operations that define both SP and DP results will be constrained
1644     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1645     // coalescing by double-counting the SP regs. See the FIXME above.
1646     if (Subtarget->useNEONForSinglePrecisionFP())
1647       Cost = 2;
1648     break;
1649   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1650   case MVT::v4f32: case MVT::v2f64:
1651     RRC = &ARM::DPRRegClass;
1652     Cost = 2;
1653     break;
1654   case MVT::v4i64:
1655     RRC = &ARM::DPRRegClass;
1656     Cost = 4;
1657     break;
1658   case MVT::v8i64:
1659     RRC = &ARM::DPRRegClass;
1660     Cost = 8;
1661     break;
1662   }
1663   return std::make_pair(RRC, Cost);
1664 }
1665 
1666 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1667 #define MAKE_CASE(V)                                                           \
1668   case V:                                                                      \
1669     return #V;
1670   switch ((ARMISD::NodeType)Opcode) {
1671   case ARMISD::FIRST_NUMBER:
1672     break;
1673     MAKE_CASE(ARMISD::Wrapper)
1674     MAKE_CASE(ARMISD::WrapperPIC)
1675     MAKE_CASE(ARMISD::WrapperJT)
1676     MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL)
1677     MAKE_CASE(ARMISD::CALL)
1678     MAKE_CASE(ARMISD::CALL_PRED)
1679     MAKE_CASE(ARMISD::CALL_NOLINK)
1680     MAKE_CASE(ARMISD::tSECALL)
1681     MAKE_CASE(ARMISD::t2CALL_BTI)
1682     MAKE_CASE(ARMISD::BRCOND)
1683     MAKE_CASE(ARMISD::BR_JT)
1684     MAKE_CASE(ARMISD::BR2_JT)
1685     MAKE_CASE(ARMISD::RET_FLAG)
1686     MAKE_CASE(ARMISD::SERET_FLAG)
1687     MAKE_CASE(ARMISD::INTRET_FLAG)
1688     MAKE_CASE(ARMISD::PIC_ADD)
1689     MAKE_CASE(ARMISD::CMP)
1690     MAKE_CASE(ARMISD::CMN)
1691     MAKE_CASE(ARMISD::CMPZ)
1692     MAKE_CASE(ARMISD::CMPFP)
1693     MAKE_CASE(ARMISD::CMPFPE)
1694     MAKE_CASE(ARMISD::CMPFPw0)
1695     MAKE_CASE(ARMISD::CMPFPEw0)
1696     MAKE_CASE(ARMISD::BCC_i64)
1697     MAKE_CASE(ARMISD::FMSTAT)
1698     MAKE_CASE(ARMISD::CMOV)
1699     MAKE_CASE(ARMISD::SUBS)
1700     MAKE_CASE(ARMISD::SSAT)
1701     MAKE_CASE(ARMISD::USAT)
1702     MAKE_CASE(ARMISD::ASRL)
1703     MAKE_CASE(ARMISD::LSRL)
1704     MAKE_CASE(ARMISD::LSLL)
1705     MAKE_CASE(ARMISD::SRL_FLAG)
1706     MAKE_CASE(ARMISD::SRA_FLAG)
1707     MAKE_CASE(ARMISD::RRX)
1708     MAKE_CASE(ARMISD::ADDC)
1709     MAKE_CASE(ARMISD::ADDE)
1710     MAKE_CASE(ARMISD::SUBC)
1711     MAKE_CASE(ARMISD::SUBE)
1712     MAKE_CASE(ARMISD::LSLS)
1713     MAKE_CASE(ARMISD::VMOVRRD)
1714     MAKE_CASE(ARMISD::VMOVDRR)
1715     MAKE_CASE(ARMISD::VMOVhr)
1716     MAKE_CASE(ARMISD::VMOVrh)
1717     MAKE_CASE(ARMISD::VMOVSR)
1718     MAKE_CASE(ARMISD::EH_SJLJ_SETJMP)
1719     MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP)
1720     MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH)
1721     MAKE_CASE(ARMISD::TC_RETURN)
1722     MAKE_CASE(ARMISD::THREAD_POINTER)
1723     MAKE_CASE(ARMISD::DYN_ALLOC)
1724     MAKE_CASE(ARMISD::MEMBARRIER_MCR)
1725     MAKE_CASE(ARMISD::PRELOAD)
1726     MAKE_CASE(ARMISD::LDRD)
1727     MAKE_CASE(ARMISD::STRD)
1728     MAKE_CASE(ARMISD::WIN__CHKSTK)
1729     MAKE_CASE(ARMISD::WIN__DBZCHK)
1730     MAKE_CASE(ARMISD::PREDICATE_CAST)
1731     MAKE_CASE(ARMISD::VECTOR_REG_CAST)
1732     MAKE_CASE(ARMISD::MVESEXT)
1733     MAKE_CASE(ARMISD::MVEZEXT)
1734     MAKE_CASE(ARMISD::MVETRUNC)
1735     MAKE_CASE(ARMISD::VCMP)
1736     MAKE_CASE(ARMISD::VCMPZ)
1737     MAKE_CASE(ARMISD::VTST)
1738     MAKE_CASE(ARMISD::VSHLs)
1739     MAKE_CASE(ARMISD::VSHLu)
1740     MAKE_CASE(ARMISD::VSHLIMM)
1741     MAKE_CASE(ARMISD::VSHRsIMM)
1742     MAKE_CASE(ARMISD::VSHRuIMM)
1743     MAKE_CASE(ARMISD::VRSHRsIMM)
1744     MAKE_CASE(ARMISD::VRSHRuIMM)
1745     MAKE_CASE(ARMISD::VRSHRNIMM)
1746     MAKE_CASE(ARMISD::VQSHLsIMM)
1747     MAKE_CASE(ARMISD::VQSHLuIMM)
1748     MAKE_CASE(ARMISD::VQSHLsuIMM)
1749     MAKE_CASE(ARMISD::VQSHRNsIMM)
1750     MAKE_CASE(ARMISD::VQSHRNuIMM)
1751     MAKE_CASE(ARMISD::VQSHRNsuIMM)
1752     MAKE_CASE(ARMISD::VQRSHRNsIMM)
1753     MAKE_CASE(ARMISD::VQRSHRNuIMM)
1754     MAKE_CASE(ARMISD::VQRSHRNsuIMM)
1755     MAKE_CASE(ARMISD::VSLIIMM)
1756     MAKE_CASE(ARMISD::VSRIIMM)
1757     MAKE_CASE(ARMISD::VGETLANEu)
1758     MAKE_CASE(ARMISD::VGETLANEs)
1759     MAKE_CASE(ARMISD::VMOVIMM)
1760     MAKE_CASE(ARMISD::VMVNIMM)
1761     MAKE_CASE(ARMISD::VMOVFPIMM)
1762     MAKE_CASE(ARMISD::VDUP)
1763     MAKE_CASE(ARMISD::VDUPLANE)
1764     MAKE_CASE(ARMISD::VEXT)
1765     MAKE_CASE(ARMISD::VREV64)
1766     MAKE_CASE(ARMISD::VREV32)
1767     MAKE_CASE(ARMISD::VREV16)
1768     MAKE_CASE(ARMISD::VZIP)
1769     MAKE_CASE(ARMISD::VUZP)
1770     MAKE_CASE(ARMISD::VTRN)
1771     MAKE_CASE(ARMISD::VTBL1)
1772     MAKE_CASE(ARMISD::VTBL2)
1773     MAKE_CASE(ARMISD::VMOVN)
1774     MAKE_CASE(ARMISD::VQMOVNs)
1775     MAKE_CASE(ARMISD::VQMOVNu)
1776     MAKE_CASE(ARMISD::VCVTN)
1777     MAKE_CASE(ARMISD::VCVTL)
1778     MAKE_CASE(ARMISD::VIDUP)
1779     MAKE_CASE(ARMISD::VMULLs)
1780     MAKE_CASE(ARMISD::VMULLu)
1781     MAKE_CASE(ARMISD::VQDMULH)
1782     MAKE_CASE(ARMISD::VADDVs)
1783     MAKE_CASE(ARMISD::VADDVu)
1784     MAKE_CASE(ARMISD::VADDVps)
1785     MAKE_CASE(ARMISD::VADDVpu)
1786     MAKE_CASE(ARMISD::VADDLVs)
1787     MAKE_CASE(ARMISD::VADDLVu)
1788     MAKE_CASE(ARMISD::VADDLVAs)
1789     MAKE_CASE(ARMISD::VADDLVAu)
1790     MAKE_CASE(ARMISD::VADDLVps)
1791     MAKE_CASE(ARMISD::VADDLVpu)
1792     MAKE_CASE(ARMISD::VADDLVAps)
1793     MAKE_CASE(ARMISD::VADDLVApu)
1794     MAKE_CASE(ARMISD::VMLAVs)
1795     MAKE_CASE(ARMISD::VMLAVu)
1796     MAKE_CASE(ARMISD::VMLAVps)
1797     MAKE_CASE(ARMISD::VMLAVpu)
1798     MAKE_CASE(ARMISD::VMLALVs)
1799     MAKE_CASE(ARMISD::VMLALVu)
1800     MAKE_CASE(ARMISD::VMLALVps)
1801     MAKE_CASE(ARMISD::VMLALVpu)
1802     MAKE_CASE(ARMISD::VMLALVAs)
1803     MAKE_CASE(ARMISD::VMLALVAu)
1804     MAKE_CASE(ARMISD::VMLALVAps)
1805     MAKE_CASE(ARMISD::VMLALVApu)
1806     MAKE_CASE(ARMISD::VMINVu)
1807     MAKE_CASE(ARMISD::VMINVs)
1808     MAKE_CASE(ARMISD::VMAXVu)
1809     MAKE_CASE(ARMISD::VMAXVs)
1810     MAKE_CASE(ARMISD::UMAAL)
1811     MAKE_CASE(ARMISD::UMLAL)
1812     MAKE_CASE(ARMISD::SMLAL)
1813     MAKE_CASE(ARMISD::SMLALBB)
1814     MAKE_CASE(ARMISD::SMLALBT)
1815     MAKE_CASE(ARMISD::SMLALTB)
1816     MAKE_CASE(ARMISD::SMLALTT)
1817     MAKE_CASE(ARMISD::SMULWB)
1818     MAKE_CASE(ARMISD::SMULWT)
1819     MAKE_CASE(ARMISD::SMLALD)
1820     MAKE_CASE(ARMISD::SMLALDX)
1821     MAKE_CASE(ARMISD::SMLSLD)
1822     MAKE_CASE(ARMISD::SMLSLDX)
1823     MAKE_CASE(ARMISD::SMMLAR)
1824     MAKE_CASE(ARMISD::SMMLSR)
1825     MAKE_CASE(ARMISD::QADD16b)
1826     MAKE_CASE(ARMISD::QSUB16b)
1827     MAKE_CASE(ARMISD::QADD8b)
1828     MAKE_CASE(ARMISD::QSUB8b)
1829     MAKE_CASE(ARMISD::UQADD16b)
1830     MAKE_CASE(ARMISD::UQSUB16b)
1831     MAKE_CASE(ARMISD::UQADD8b)
1832     MAKE_CASE(ARMISD::UQSUB8b)
1833     MAKE_CASE(ARMISD::BUILD_VECTOR)
1834     MAKE_CASE(ARMISD::BFI)
1835     MAKE_CASE(ARMISD::VORRIMM)
1836     MAKE_CASE(ARMISD::VBICIMM)
1837     MAKE_CASE(ARMISD::VBSP)
1838     MAKE_CASE(ARMISD::MEMCPY)
1839     MAKE_CASE(ARMISD::VLD1DUP)
1840     MAKE_CASE(ARMISD::VLD2DUP)
1841     MAKE_CASE(ARMISD::VLD3DUP)
1842     MAKE_CASE(ARMISD::VLD4DUP)
1843     MAKE_CASE(ARMISD::VLD1_UPD)
1844     MAKE_CASE(ARMISD::VLD2_UPD)
1845     MAKE_CASE(ARMISD::VLD3_UPD)
1846     MAKE_CASE(ARMISD::VLD4_UPD)
1847     MAKE_CASE(ARMISD::VLD1x2_UPD)
1848     MAKE_CASE(ARMISD::VLD1x3_UPD)
1849     MAKE_CASE(ARMISD::VLD1x4_UPD)
1850     MAKE_CASE(ARMISD::VLD2LN_UPD)
1851     MAKE_CASE(ARMISD::VLD3LN_UPD)
1852     MAKE_CASE(ARMISD::VLD4LN_UPD)
1853     MAKE_CASE(ARMISD::VLD1DUP_UPD)
1854     MAKE_CASE(ARMISD::VLD2DUP_UPD)
1855     MAKE_CASE(ARMISD::VLD3DUP_UPD)
1856     MAKE_CASE(ARMISD::VLD4DUP_UPD)
1857     MAKE_CASE(ARMISD::VST1_UPD)
1858     MAKE_CASE(ARMISD::VST2_UPD)
1859     MAKE_CASE(ARMISD::VST3_UPD)
1860     MAKE_CASE(ARMISD::VST4_UPD)
1861     MAKE_CASE(ARMISD::VST1x2_UPD)
1862     MAKE_CASE(ARMISD::VST1x3_UPD)
1863     MAKE_CASE(ARMISD::VST1x4_UPD)
1864     MAKE_CASE(ARMISD::VST2LN_UPD)
1865     MAKE_CASE(ARMISD::VST3LN_UPD)
1866     MAKE_CASE(ARMISD::VST4LN_UPD)
1867     MAKE_CASE(ARMISD::WLS)
1868     MAKE_CASE(ARMISD::WLSSETUP)
1869     MAKE_CASE(ARMISD::LE)
1870     MAKE_CASE(ARMISD::LOOP_DEC)
1871     MAKE_CASE(ARMISD::CSINV)
1872     MAKE_CASE(ARMISD::CSNEG)
1873     MAKE_CASE(ARMISD::CSINC)
1874     MAKE_CASE(ARMISD::MEMCPYLOOP)
1875     MAKE_CASE(ARMISD::MEMSETLOOP)
1876 #undef MAKE_CASE
1877   }
1878   return nullptr;
1879 }
1880 
1881 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1882                                           EVT VT) const {
1883   if (!VT.isVector())
1884     return getPointerTy(DL);
1885 
1886   // MVE has a predicate register.
1887   if ((Subtarget->hasMVEIntegerOps() &&
1888        (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
1889         VT == MVT::v16i8)) ||
1890       (Subtarget->hasMVEFloatOps() &&
1891        (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16)))
1892     return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1893   return VT.changeVectorElementTypeToInteger();
1894 }
1895 
1896 /// getRegClassFor - Return the register class that should be used for the
1897 /// specified value type.
1898 const TargetRegisterClass *
1899 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1900   (void)isDivergent;
1901   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1902   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1903   // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1904   // MVE Q registers.
1905   if (Subtarget->hasNEON()) {
1906     if (VT == MVT::v4i64)
1907       return &ARM::QQPRRegClass;
1908     if (VT == MVT::v8i64)
1909       return &ARM::QQQQPRRegClass;
1910   }
1911   if (Subtarget->hasMVEIntegerOps()) {
1912     if (VT == MVT::v4i64)
1913       return &ARM::MQQPRRegClass;
1914     if (VT == MVT::v8i64)
1915       return &ARM::MQQQQPRRegClass;
1916   }
1917   return TargetLowering::getRegClassFor(VT);
1918 }
1919 
1920 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1921 // source/dest is aligned and the copy size is large enough. We therefore want
1922 // to align such objects passed to memory intrinsics.
1923 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1924                                                Align &PrefAlign) const {
1925   if (!isa<MemIntrinsic>(CI))
1926     return false;
1927   MinSize = 8;
1928   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1929   // cycle faster than 4-byte aligned LDM.
1930   PrefAlign =
1931       (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? Align(8) : Align(4));
1932   return true;
1933 }
1934 
1935 // Create a fast isel object.
1936 FastISel *
1937 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1938                                   const TargetLibraryInfo *libInfo) const {
1939   return ARM::createFastISel(funcInfo, libInfo);
1940 }
1941 
1942 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1943   unsigned NumVals = N->getNumValues();
1944   if (!NumVals)
1945     return Sched::RegPressure;
1946 
1947   for (unsigned i = 0; i != NumVals; ++i) {
1948     EVT VT = N->getValueType(i);
1949     if (VT == MVT::Glue || VT == MVT::Other)
1950       continue;
1951     if (VT.isFloatingPoint() || VT.isVector())
1952       return Sched::ILP;
1953   }
1954 
1955   if (!N->isMachineOpcode())
1956     return Sched::RegPressure;
1957 
1958   // Load are scheduled for latency even if there instruction itinerary
1959   // is not available.
1960   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1961   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1962 
1963   if (MCID.getNumDefs() == 0)
1964     return Sched::RegPressure;
1965   if (!Itins->isEmpty() &&
1966       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1967     return Sched::ILP;
1968 
1969   return Sched::RegPressure;
1970 }
1971 
1972 //===----------------------------------------------------------------------===//
1973 // Lowering Code
1974 //===----------------------------------------------------------------------===//
1975 
1976 static bool isSRL16(const SDValue &Op) {
1977   if (Op.getOpcode() != ISD::SRL)
1978     return false;
1979   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1980     return Const->getZExtValue() == 16;
1981   return false;
1982 }
1983 
1984 static bool isSRA16(const SDValue &Op) {
1985   if (Op.getOpcode() != ISD::SRA)
1986     return false;
1987   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1988     return Const->getZExtValue() == 16;
1989   return false;
1990 }
1991 
1992 static bool isSHL16(const SDValue &Op) {
1993   if (Op.getOpcode() != ISD::SHL)
1994     return false;
1995   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1996     return Const->getZExtValue() == 16;
1997   return false;
1998 }
1999 
2000 // Check for a signed 16-bit value. We special case SRA because it makes it
2001 // more simple when also looking for SRAs that aren't sign extending a
2002 // smaller value. Without the check, we'd need to take extra care with
2003 // checking order for some operations.
2004 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
2005   if (isSRA16(Op))
2006     return isSHL16(Op.getOperand(0));
2007   return DAG.ComputeNumSignBits(Op) == 17;
2008 }
2009 
2010 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
2011 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
2012   switch (CC) {
2013   default: llvm_unreachable("Unknown condition code!");
2014   case ISD::SETNE:  return ARMCC::NE;
2015   case ISD::SETEQ:  return ARMCC::EQ;
2016   case ISD::SETGT:  return ARMCC::GT;
2017   case ISD::SETGE:  return ARMCC::GE;
2018   case ISD::SETLT:  return ARMCC::LT;
2019   case ISD::SETLE:  return ARMCC::LE;
2020   case ISD::SETUGT: return ARMCC::HI;
2021   case ISD::SETUGE: return ARMCC::HS;
2022   case ISD::SETULT: return ARMCC::LO;
2023   case ISD::SETULE: return ARMCC::LS;
2024   }
2025 }
2026 
2027 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
2028 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
2029                         ARMCC::CondCodes &CondCode2) {
2030   CondCode2 = ARMCC::AL;
2031   switch (CC) {
2032   default: llvm_unreachable("Unknown FP condition!");
2033   case ISD::SETEQ:
2034   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
2035   case ISD::SETGT:
2036   case ISD::SETOGT: CondCode = ARMCC::GT; break;
2037   case ISD::SETGE:
2038   case ISD::SETOGE: CondCode = ARMCC::GE; break;
2039   case ISD::SETOLT: CondCode = ARMCC::MI; break;
2040   case ISD::SETOLE: CondCode = ARMCC::LS; break;
2041   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
2042   case ISD::SETO:   CondCode = ARMCC::VC; break;
2043   case ISD::SETUO:  CondCode = ARMCC::VS; break;
2044   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
2045   case ISD::SETUGT: CondCode = ARMCC::HI; break;
2046   case ISD::SETUGE: CondCode = ARMCC::PL; break;
2047   case ISD::SETLT:
2048   case ISD::SETULT: CondCode = ARMCC::LT; break;
2049   case ISD::SETLE:
2050   case ISD::SETULE: CondCode = ARMCC::LE; break;
2051   case ISD::SETNE:
2052   case ISD::SETUNE: CondCode = ARMCC::NE; break;
2053   }
2054 }
2055 
2056 //===----------------------------------------------------------------------===//
2057 //                      Calling Convention Implementation
2058 //===----------------------------------------------------------------------===//
2059 
2060 /// getEffectiveCallingConv - Get the effective calling convention, taking into
2061 /// account presence of floating point hardware and calling convention
2062 /// limitations, such as support for variadic functions.
2063 CallingConv::ID
2064 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
2065                                            bool isVarArg) const {
2066   switch (CC) {
2067   default:
2068     report_fatal_error("Unsupported calling convention");
2069   case CallingConv::ARM_AAPCS:
2070   case CallingConv::ARM_APCS:
2071   case CallingConv::GHC:
2072   case CallingConv::CFGuard_Check:
2073     return CC;
2074   case CallingConv::PreserveMost:
2075     return CallingConv::PreserveMost;
2076   case CallingConv::ARM_AAPCS_VFP:
2077   case CallingConv::Swift:
2078   case CallingConv::SwiftTail:
2079     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
2080   case CallingConv::C:
2081   case CallingConv::Tail:
2082     if (!Subtarget->isAAPCS_ABI())
2083       return CallingConv::ARM_APCS;
2084     else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
2085              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
2086              !isVarArg)
2087       return CallingConv::ARM_AAPCS_VFP;
2088     else
2089       return CallingConv::ARM_AAPCS;
2090   case CallingConv::Fast:
2091   case CallingConv::CXX_FAST_TLS:
2092     if (!Subtarget->isAAPCS_ABI()) {
2093       if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
2094         return CallingConv::Fast;
2095       return CallingConv::ARM_APCS;
2096     } else if (Subtarget->hasVFP2Base() &&
2097                !Subtarget->isThumb1Only() && !isVarArg)
2098       return CallingConv::ARM_AAPCS_VFP;
2099     else
2100       return CallingConv::ARM_AAPCS;
2101   }
2102 }
2103 
2104 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2105                                                  bool isVarArg) const {
2106   return CCAssignFnForNode(CC, false, isVarArg);
2107 }
2108 
2109 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
2110                                                    bool isVarArg) const {
2111   return CCAssignFnForNode(CC, true, isVarArg);
2112 }
2113 
2114 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2115 /// CallingConvention.
2116 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
2117                                                  bool Return,
2118                                                  bool isVarArg) const {
2119   switch (getEffectiveCallingConv(CC, isVarArg)) {
2120   default:
2121     report_fatal_error("Unsupported calling convention");
2122   case CallingConv::ARM_APCS:
2123     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
2124   case CallingConv::ARM_AAPCS:
2125     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2126   case CallingConv::ARM_AAPCS_VFP:
2127     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
2128   case CallingConv::Fast:
2129     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
2130   case CallingConv::GHC:
2131     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
2132   case CallingConv::PreserveMost:
2133     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2134   case CallingConv::CFGuard_Check:
2135     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
2136   }
2137 }
2138 
2139 SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
2140                                      MVT LocVT, MVT ValVT, SDValue Val) const {
2141   Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
2142                     Val);
2143   if (Subtarget->hasFullFP16()) {
2144     Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
2145   } else {
2146     Val = DAG.getNode(ISD::TRUNCATE, dl,
2147                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2148     Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
2149   }
2150   return Val;
2151 }
2152 
2153 SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
2154                                        MVT LocVT, MVT ValVT,
2155                                        SDValue Val) const {
2156   if (Subtarget->hasFullFP16()) {
2157     Val = DAG.getNode(ARMISD::VMOVrh, dl,
2158                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2159   } else {
2160     Val = DAG.getNode(ISD::BITCAST, dl,
2161                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2162     Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
2163                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2164   }
2165   return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
2166 }
2167 
2168 /// LowerCallResult - Lower the result values of a call into the
2169 /// appropriate copies out of appropriate physical registers.
2170 SDValue ARMTargetLowering::LowerCallResult(
2171     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2172     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2173     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2174     SDValue ThisVal) const {
2175   // Assign locations to each value returned by this call.
2176   SmallVector<CCValAssign, 16> RVLocs;
2177   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2178                  *DAG.getContext());
2179   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
2180 
2181   // Copy all of the result registers out of their specified physreg.
2182   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2183     CCValAssign VA = RVLocs[i];
2184 
2185     // Pass 'this' value directly from the argument to return value, to avoid
2186     // reg unit interference
2187     if (i == 0 && isThisReturn) {
2188       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
2189              "unexpected return calling convention register assignment");
2190       InVals.push_back(ThisVal);
2191       continue;
2192     }
2193 
2194     SDValue Val;
2195     if (VA.needsCustom() &&
2196         (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
2197       // Handle f64 or half of a v2f64.
2198       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2199                                       InFlag);
2200       Chain = Lo.getValue(1);
2201       InFlag = Lo.getValue(2);
2202       VA = RVLocs[++i]; // skip ahead to next loc
2203       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2204                                       InFlag);
2205       Chain = Hi.getValue(1);
2206       InFlag = Hi.getValue(2);
2207       if (!Subtarget->isLittle())
2208         std::swap (Lo, Hi);
2209       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2210 
2211       if (VA.getLocVT() == MVT::v2f64) {
2212         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2213         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2214                           DAG.getConstant(0, dl, MVT::i32));
2215 
2216         VA = RVLocs[++i]; // skip ahead to next loc
2217         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2218         Chain = Lo.getValue(1);
2219         InFlag = Lo.getValue(2);
2220         VA = RVLocs[++i]; // skip ahead to next loc
2221         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2222         Chain = Hi.getValue(1);
2223         InFlag = Hi.getValue(2);
2224         if (!Subtarget->isLittle())
2225           std::swap (Lo, Hi);
2226         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2227         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2228                           DAG.getConstant(1, dl, MVT::i32));
2229       }
2230     } else {
2231       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2232                                InFlag);
2233       Chain = Val.getValue(1);
2234       InFlag = Val.getValue(2);
2235     }
2236 
2237     switch (VA.getLocInfo()) {
2238     default: llvm_unreachable("Unknown loc info!");
2239     case CCValAssign::Full: break;
2240     case CCValAssign::BCvt:
2241       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2242       break;
2243     }
2244 
2245     // f16 arguments have their size extended to 4 bytes and passed as if they
2246     // had been copied to the LSBs of a 32-bit register.
2247     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2248     if (VA.needsCustom() &&
2249         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
2250       Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
2251 
2252     InVals.push_back(Val);
2253   }
2254 
2255   return Chain;
2256 }
2257 
2258 std::pair<SDValue, MachinePointerInfo> ARMTargetLowering::computeAddrForCallArg(
2259     const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, SDValue StackPtr,
2260     bool IsTailCall, int SPDiff) const {
2261   SDValue DstAddr;
2262   MachinePointerInfo DstInfo;
2263   int32_t Offset = VA.getLocMemOffset();
2264   MachineFunction &MF = DAG.getMachineFunction();
2265 
2266   if (IsTailCall) {
2267         Offset += SPDiff;
2268         auto PtrVT = getPointerTy(DAG.getDataLayout());
2269         int Size = VA.getLocVT().getFixedSizeInBits() / 8;
2270         int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
2271         DstAddr = DAG.getFrameIndex(FI, PtrVT);
2272         DstInfo =
2273             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
2274   } else {
2275         SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
2276         DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2277                               StackPtr, PtrOff);
2278         DstInfo =
2279             MachinePointerInfo::getStack(DAG.getMachineFunction(), Offset);
2280   }
2281 
2282   return std::make_pair(DstAddr, DstInfo);
2283 }
2284 
2285 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2286                                          SDValue Chain, SDValue &Arg,
2287                                          RegsToPassVector &RegsToPass,
2288                                          CCValAssign &VA, CCValAssign &NextVA,
2289                                          SDValue &StackPtr,
2290                                          SmallVectorImpl<SDValue> &MemOpChains,
2291                                          bool IsTailCall,
2292                                          int SPDiff) const {
2293   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2294                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
2295   unsigned id = Subtarget->isLittle() ? 0 : 1;
2296   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2297 
2298   if (NextVA.isRegLoc())
2299     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2300   else {
2301     assert(NextVA.isMemLoc());
2302     if (!StackPtr.getNode())
2303       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2304                                     getPointerTy(DAG.getDataLayout()));
2305 
2306     SDValue DstAddr;
2307     MachinePointerInfo DstInfo;
2308     std::tie(DstAddr, DstInfo) =
2309         computeAddrForCallArg(dl, DAG, NextVA, StackPtr, IsTailCall, SPDiff);
2310     MemOpChains.push_back(
2311         DAG.getStore(Chain, dl, fmrrd.getValue(1 - id), DstAddr, DstInfo));
2312   }
2313 }
2314 
2315 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
2316   return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
2317          CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
2318 }
2319 
2320 /// LowerCall - Lowering a call into a callseq_start <-
2321 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2322 /// nodes.
2323 SDValue
2324 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2325                              SmallVectorImpl<SDValue> &InVals) const {
2326   SelectionDAG &DAG                     = CLI.DAG;
2327   SDLoc &dl                             = CLI.DL;
2328   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2329   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2330   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2331   SDValue Chain                         = CLI.Chain;
2332   SDValue Callee                        = CLI.Callee;
2333   bool &isTailCall                      = CLI.IsTailCall;
2334   CallingConv::ID CallConv              = CLI.CallConv;
2335   bool doesNotRet                       = CLI.DoesNotReturn;
2336   bool isVarArg                         = CLI.IsVarArg;
2337 
2338   MachineFunction &MF = DAG.getMachineFunction();
2339   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2340   MachineFunction::CallSiteInfo CSInfo;
2341   bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2342   bool isThisReturn = false;
2343   bool isCmseNSCall   = false;
2344   bool isSibCall = false;
2345   bool PreferIndirect = false;
2346   bool GuardWithBTI = false;
2347 
2348   // Lower 'returns_twice' calls to a pseudo-instruction.
2349   if (CLI.CB && CLI.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) &&
2350       !Subtarget->noBTIAtReturnTwice())
2351     GuardWithBTI = AFI->branchTargetEnforcement();
2352 
2353   // Determine whether this is a non-secure function call.
2354   if (CLI.CB && CLI.CB->getAttributes().hasFnAttr("cmse_nonsecure_call"))
2355     isCmseNSCall = true;
2356 
2357   // Disable tail calls if they're not supported.
2358   if (!Subtarget->supportsTailCall())
2359     isTailCall = false;
2360 
2361   // For both the non-secure calls and the returns from a CMSE entry function,
2362   // the function needs to do some extra work afte r the call, or before the
2363   // return, respectively, thus it cannot end with atail call
2364   if (isCmseNSCall || AFI->isCmseNSEntryFunction())
2365     isTailCall = false;
2366 
2367   if (isa<GlobalAddressSDNode>(Callee)) {
2368     // If we're optimizing for minimum size and the function is called three or
2369     // more times in this block, we can improve codesize by calling indirectly
2370     // as BLXr has a 16-bit encoding.
2371     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2372     if (CLI.CB) {
2373       auto *BB = CLI.CB->getParent();
2374       PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2375                        count_if(GV->users(), [&BB](const User *U) {
2376                          return isa<Instruction>(U) &&
2377                                 cast<Instruction>(U)->getParent() == BB;
2378                        }) > 2;
2379     }
2380   }
2381   if (isTailCall) {
2382     // Check if it's really possible to do a tail call.
2383     isTailCall = IsEligibleForTailCallOptimization(
2384         Callee, CallConv, isVarArg, isStructRet,
2385         MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2386         PreferIndirect);
2387 
2388     if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt &&
2389         CallConv != CallingConv::Tail && CallConv != CallingConv::SwiftTail)
2390       isSibCall = true;
2391 
2392     // We don't support GuaranteedTailCallOpt for ARM, only automatically
2393     // detected sibcalls.
2394     if (isTailCall)
2395       ++NumTailCalls;
2396   }
2397 
2398   if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
2399     report_fatal_error("failed to perform tail call elimination on a call "
2400                        "site marked musttail");
2401   // Analyze operands of the call, assigning locations to each operand.
2402   SmallVector<CCValAssign, 16> ArgLocs;
2403   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2404                  *DAG.getContext());
2405   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2406 
2407   // Get a count of how many bytes are to be pushed on the stack.
2408   unsigned NumBytes = CCInfo.getNextStackOffset();
2409 
2410   // SPDiff is the byte offset of the call's argument area from the callee's.
2411   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2412   // by this amount for a tail call. In a sibling call it must be 0 because the
2413   // caller will deallocate the entire stack and the callee still expects its
2414   // arguments to begin at SP+0. Completely unused for non-tail calls.
2415   int SPDiff = 0;
2416 
2417   if (isTailCall && !isSibCall) {
2418     auto FuncInfo = MF.getInfo<ARMFunctionInfo>();
2419     unsigned NumReusableBytes = FuncInfo->getArgumentStackSize();
2420 
2421     // Since callee will pop argument stack as a tail call, we must keep the
2422     // popped size 16-byte aligned.
2423     Align StackAlign = DAG.getDataLayout().getStackAlignment();
2424     NumBytes = alignTo(NumBytes, StackAlign);
2425 
2426     // SPDiff will be negative if this tail call requires more space than we
2427     // would automatically have in our incoming argument space. Positive if we
2428     // can actually shrink the stack.
2429     SPDiff = NumReusableBytes - NumBytes;
2430 
2431     // If this call requires more stack than we have available from
2432     // LowerFormalArguments, tell FrameLowering to reserve space for it.
2433     if (SPDiff < 0 && AFI->getArgRegsSaveSize() < (unsigned)-SPDiff)
2434       AFI->setArgRegsSaveSize(-SPDiff);
2435   }
2436 
2437   if (isSibCall) {
2438     // For sibling tail calls, memory operands are available in our caller's stack.
2439     NumBytes = 0;
2440   } else {
2441     // Adjust the stack pointer for the new arguments...
2442     // These operations are automatically eliminated by the prolog/epilog pass
2443     Chain = DAG.getCALLSEQ_START(Chain, isTailCall ? 0 : NumBytes, 0, dl);
2444   }
2445 
2446   SDValue StackPtr =
2447       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2448 
2449   RegsToPassVector RegsToPass;
2450   SmallVector<SDValue, 8> MemOpChains;
2451 
2452   // During a tail call, stores to the argument area must happen after all of
2453   // the function's incoming arguments have been loaded because they may alias.
2454   // This is done by folding in a TokenFactor from LowerFormalArguments, but
2455   // there's no point in doing so repeatedly so this tracks whether that's
2456   // happened yet.
2457   bool AfterFormalArgLoads = false;
2458 
2459   // Walk the register/memloc assignments, inserting copies/loads.  In the case
2460   // of tail call optimization, arguments are handled later.
2461   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2462        i != e;
2463        ++i, ++realArgIdx) {
2464     CCValAssign &VA = ArgLocs[i];
2465     SDValue Arg = OutVals[realArgIdx];
2466     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2467     bool isByVal = Flags.isByVal();
2468 
2469     // Promote the value if needed.
2470     switch (VA.getLocInfo()) {
2471     default: llvm_unreachable("Unknown loc info!");
2472     case CCValAssign::Full: break;
2473     case CCValAssign::SExt:
2474       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2475       break;
2476     case CCValAssign::ZExt:
2477       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2478       break;
2479     case CCValAssign::AExt:
2480       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2481       break;
2482     case CCValAssign::BCvt:
2483       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2484       break;
2485     }
2486 
2487     if (isTailCall && VA.isMemLoc() && !AfterFormalArgLoads) {
2488       Chain = DAG.getStackArgumentTokenFactor(Chain);
2489       AfterFormalArgLoads = true;
2490     }
2491 
2492     // f16 arguments have their size extended to 4 bytes and passed as if they
2493     // had been copied to the LSBs of a 32-bit register.
2494     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2495     if (VA.needsCustom() &&
2496         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
2497       Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
2498     } else {
2499       // f16 arguments could have been extended prior to argument lowering.
2500       // Mask them arguments if this is a CMSE nonsecure call.
2501       auto ArgVT = Outs[realArgIdx].ArgVT;
2502       if (isCmseNSCall && (ArgVT == MVT::f16)) {
2503         auto LocBits = VA.getLocVT().getSizeInBits();
2504         auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
2505         SDValue Mask =
2506             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
2507         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
2508         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
2509         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2510       }
2511     }
2512 
2513     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2514     if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
2515       SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2516                                 DAG.getConstant(0, dl, MVT::i32));
2517       SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2518                                 DAG.getConstant(1, dl, MVT::i32));
2519 
2520       PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2521                        StackPtr, MemOpChains, isTailCall, SPDiff);
2522 
2523       VA = ArgLocs[++i]; // skip ahead to next loc
2524       if (VA.isRegLoc()) {
2525         PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2526                          StackPtr, MemOpChains, isTailCall, SPDiff);
2527       } else {
2528         assert(VA.isMemLoc());
2529         SDValue DstAddr;
2530         MachinePointerInfo DstInfo;
2531         std::tie(DstAddr, DstInfo) =
2532             computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2533         MemOpChains.push_back(DAG.getStore(Chain, dl, Op1, DstAddr, DstInfo));
2534       }
2535     } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
2536       PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2537                        StackPtr, MemOpChains, isTailCall, SPDiff);
2538     } else if (VA.isRegLoc()) {
2539       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2540           Outs[0].VT == MVT::i32) {
2541         assert(VA.getLocVT() == MVT::i32 &&
2542                "unexpected calling convention register assignment");
2543         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2544                "unexpected use of 'returned'");
2545         isThisReturn = true;
2546       }
2547       const TargetOptions &Options = DAG.getTarget().Options;
2548       if (Options.EmitCallSiteInfo)
2549         CSInfo.emplace_back(VA.getLocReg(), i);
2550       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2551     } else if (isByVal) {
2552       assert(VA.isMemLoc());
2553       unsigned offset = 0;
2554 
2555       // True if this byval aggregate will be split between registers
2556       // and memory.
2557       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2558       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2559 
2560       if (CurByValIdx < ByValArgsCount) {
2561 
2562         unsigned RegBegin, RegEnd;
2563         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2564 
2565         EVT PtrVT =
2566             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2567         unsigned int i, j;
2568         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2569           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2570           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2571           SDValue Load =
2572               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
2573                           DAG.InferPtrAlign(AddArg));
2574           MemOpChains.push_back(Load.getValue(1));
2575           RegsToPass.push_back(std::make_pair(j, Load));
2576         }
2577 
2578         // If parameter size outsides register area, "offset" value
2579         // helps us to calculate stack slot for remained part properly.
2580         offset = RegEnd - RegBegin;
2581 
2582         CCInfo.nextInRegsParam();
2583       }
2584 
2585       if (Flags.getByValSize() > 4*offset) {
2586         auto PtrVT = getPointerTy(DAG.getDataLayout());
2587         SDValue Dst;
2588         MachinePointerInfo DstInfo;
2589         std::tie(Dst, DstInfo) =
2590             computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2591         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2592         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2593         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2594                                            MVT::i32);
2595         SDValue AlignNode =
2596             DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2597 
2598         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2599         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2600         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2601                                           Ops));
2602       }
2603     } else {
2604       assert(VA.isMemLoc());
2605       SDValue DstAddr;
2606       MachinePointerInfo DstInfo;
2607       std::tie(DstAddr, DstInfo) =
2608           computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2609 
2610       SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo);
2611       MemOpChains.push_back(Store);
2612     }
2613   }
2614 
2615   if (!MemOpChains.empty())
2616     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2617 
2618   // Build a sequence of copy-to-reg nodes chained together with token chain
2619   // and flag operands which copy the outgoing args into the appropriate regs.
2620   SDValue InFlag;
2621   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2622     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2623                              RegsToPass[i].second, InFlag);
2624     InFlag = Chain.getValue(1);
2625   }
2626 
2627   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2628   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2629   // node so that legalize doesn't hack it.
2630   bool isDirect = false;
2631 
2632   const TargetMachine &TM = getTargetMachine();
2633   const Module *Mod = MF.getFunction().getParent();
2634   const GlobalValue *GVal = nullptr;
2635   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2636     GVal = G->getGlobal();
2637   bool isStub =
2638       !TM.shouldAssumeDSOLocal(*Mod, GVal) && Subtarget->isTargetMachO();
2639 
2640   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2641   bool isLocalARMFunc = false;
2642   auto PtrVt = getPointerTy(DAG.getDataLayout());
2643 
2644   if (Subtarget->genLongCalls()) {
2645     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2646            "long-calls codegen is not position independent!");
2647     // Handle a global address or an external symbol. If it's not one of
2648     // those, the target's already in a register, so we don't need to do
2649     // anything extra.
2650     if (isa<GlobalAddressSDNode>(Callee)) {
2651       // When generating execute-only code we use movw movt pair.
2652       // Currently execute-only is only available for architectures that
2653       // support movw movt, so we are safe to assume that.
2654       if (Subtarget->genExecuteOnly()) {
2655         assert(Subtarget->useMovt() &&
2656                "long-calls with execute-only requires movt and movw!");
2657         ++NumMovwMovt;
2658         Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2659                              DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2660       } else {
2661         // Create a constant pool entry for the callee address
2662         unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2663         ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2664             GVal, ARMPCLabelIndex, ARMCP::CPValue, 0);
2665 
2666         // Get the address of the callee into a register
2667         SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2668         Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2669         Callee = DAG.getLoad(
2670             PtrVt, dl, DAG.getEntryNode(), Addr,
2671             MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2672       }
2673     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2674       const char *Sym = S->getSymbol();
2675 
2676       // When generating execute-only code we use movw movt pair.
2677       // Currently execute-only is only available for architectures that
2678       // support movw movt, so we are safe to assume that.
2679       if (Subtarget->genExecuteOnly()) {
2680         assert(Subtarget->useMovt() &&
2681                "long-calls with execute-only requires movt and movw!");
2682         ++NumMovwMovt;
2683         Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2684                              DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2685       } else {
2686         // Create a constant pool entry for the callee address
2687         unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2688         ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(
2689             *DAG.getContext(), Sym, ARMPCLabelIndex, 0);
2690 
2691         // Get the address of the callee into a register
2692         SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2693         Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2694         Callee = DAG.getLoad(
2695             PtrVt, dl, DAG.getEntryNode(), Addr,
2696             MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2697       }
2698     }
2699   } else if (isa<GlobalAddressSDNode>(Callee)) {
2700     if (!PreferIndirect) {
2701       isDirect = true;
2702       bool isDef = GVal->isStrongDefinitionForLinker();
2703 
2704       // ARM call to a local ARM function is predicable.
2705       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2706       // tBX takes a register source operand.
2707       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2708         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2709         Callee = DAG.getNode(
2710             ARMISD::WrapperPIC, dl, PtrVt,
2711             DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2712         Callee = DAG.getLoad(
2713             PtrVt, dl, DAG.getEntryNode(), Callee,
2714             MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
2715             MachineMemOperand::MODereferenceable |
2716                 MachineMemOperand::MOInvariant);
2717       } else if (Subtarget->isTargetCOFF()) {
2718         assert(Subtarget->isTargetWindows() &&
2719                "Windows is the only supported COFF target");
2720         unsigned TargetFlags = ARMII::MO_NO_FLAG;
2721         if (GVal->hasDLLImportStorageClass())
2722           TargetFlags = ARMII::MO_DLLIMPORT;
2723         else if (!TM.shouldAssumeDSOLocal(*GVal->getParent(), GVal))
2724           TargetFlags = ARMII::MO_COFFSTUB;
2725         Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, /*offset=*/0,
2726                                             TargetFlags);
2727         if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2728           Callee =
2729               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2730                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2731                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2732       } else {
2733         Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, 0);
2734       }
2735     }
2736   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2737     isDirect = true;
2738     // tBX takes a register source operand.
2739     const char *Sym = S->getSymbol();
2740     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2741       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2742       ARMConstantPoolValue *CPV =
2743         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2744                                       ARMPCLabelIndex, 4);
2745       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2746       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2747       Callee = DAG.getLoad(
2748           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2749           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2750       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2751       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2752     } else {
2753       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2754     }
2755   }
2756 
2757   if (isCmseNSCall) {
2758     assert(!isARMFunc && !isDirect &&
2759            "Cannot handle call to ARM function or direct call");
2760     if (NumBytes > 0) {
2761       DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
2762                                      "call to non-secure function would "
2763                                      "require passing arguments on stack",
2764                                      dl.getDebugLoc());
2765       DAG.getContext()->diagnose(Diag);
2766     }
2767     if (isStructRet) {
2768       DiagnosticInfoUnsupported Diag(
2769           DAG.getMachineFunction().getFunction(),
2770           "call to non-secure function would return value through pointer",
2771           dl.getDebugLoc());
2772       DAG.getContext()->diagnose(Diag);
2773     }
2774   }
2775 
2776   // FIXME: handle tail calls differently.
2777   unsigned CallOpc;
2778   if (Subtarget->isThumb()) {
2779     if (GuardWithBTI)
2780       CallOpc = ARMISD::t2CALL_BTI;
2781     else if (isCmseNSCall)
2782       CallOpc = ARMISD::tSECALL;
2783     else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2784       CallOpc = ARMISD::CALL_NOLINK;
2785     else
2786       CallOpc = ARMISD::CALL;
2787   } else {
2788     if (!isDirect && !Subtarget->hasV5TOps())
2789       CallOpc = ARMISD::CALL_NOLINK;
2790     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2791              // Emit regular call when code size is the priority
2792              !Subtarget->hasMinSize())
2793       // "mov lr, pc; b _foo" to avoid confusing the RSP
2794       CallOpc = ARMISD::CALL_NOLINK;
2795     else
2796       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2797   }
2798 
2799   // We don't usually want to end the call-sequence here because we would tidy
2800   // the frame up *after* the call, however in the ABI-changing tail-call case
2801   // we've carefully laid out the parameters so that when sp is reset they'll be
2802   // in the correct location.
2803   if (isTailCall && !isSibCall) {
2804     Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, dl);
2805     InFlag = Chain.getValue(1);
2806   }
2807 
2808   std::vector<SDValue> Ops;
2809   Ops.push_back(Chain);
2810   Ops.push_back(Callee);
2811 
2812   if (isTailCall) {
2813     Ops.push_back(DAG.getTargetConstant(SPDiff, dl, MVT::i32));
2814   }
2815 
2816   // Add argument registers to the end of the list so that they are known live
2817   // into the call.
2818   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2819     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2820                                   RegsToPass[i].second.getValueType()));
2821 
2822   // Add a register mask operand representing the call-preserved registers.
2823   const uint32_t *Mask;
2824   const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2825   if (isThisReturn) {
2826     // For 'this' returns, use the R0-preserving mask if applicable
2827     Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2828     if (!Mask) {
2829       // Set isThisReturn to false if the calling convention is not one that
2830       // allows 'returned' to be modeled in this way, so LowerCallResult does
2831       // not try to pass 'this' straight through
2832       isThisReturn = false;
2833       Mask = ARI->getCallPreservedMask(MF, CallConv);
2834     }
2835   } else
2836     Mask = ARI->getCallPreservedMask(MF, CallConv);
2837 
2838   assert(Mask && "Missing call preserved mask for calling convention");
2839   Ops.push_back(DAG.getRegisterMask(Mask));
2840 
2841   if (InFlag.getNode())
2842     Ops.push_back(InFlag);
2843 
2844   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2845   if (isTailCall) {
2846     MF.getFrameInfo().setHasTailCall();
2847     SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2848     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2849     return Ret;
2850   }
2851 
2852   // Returns a chain and a flag for retval copy to use.
2853   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2854   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2855   InFlag = Chain.getValue(1);
2856   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2857 
2858   // If we're guaranteeing tail-calls will be honoured, the callee must
2859   // pop its own argument stack on return. But this call is *not* a tail call so
2860   // we need to undo that after it returns to restore the status-quo.
2861   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
2862   uint64_t CalleePopBytes =
2863       canGuaranteeTCO(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : -1ULL;
2864 
2865   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InFlag, dl);
2866   if (!Ins.empty())
2867     InFlag = Chain.getValue(1);
2868 
2869   // Handle result values, copying them out of physregs into vregs that we
2870   // return.
2871   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2872                          InVals, isThisReturn,
2873                          isThisReturn ? OutVals[0] : SDValue());
2874 }
2875 
2876 /// HandleByVal - Every parameter *after* a byval parameter is passed
2877 /// on the stack.  Remember the next parameter register to allocate,
2878 /// and then confiscate the rest of the parameter registers to insure
2879 /// this.
2880 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2881                                     Align Alignment) const {
2882   // Byval (as with any stack) slots are always at least 4 byte aligned.
2883   Alignment = std::max(Alignment, Align(4));
2884 
2885   unsigned Reg = State->AllocateReg(GPRArgRegs);
2886   if (!Reg)
2887     return;
2888 
2889   unsigned AlignInRegs = Alignment.value() / 4;
2890   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2891   for (unsigned i = 0; i < Waste; ++i)
2892     Reg = State->AllocateReg(GPRArgRegs);
2893 
2894   if (!Reg)
2895     return;
2896 
2897   unsigned Excess = 4 * (ARM::R4 - Reg);
2898 
2899   // Special case when NSAA != SP and parameter size greater than size of
2900   // all remained GPR regs. In that case we can't split parameter, we must
2901   // send it to stack. We also must set NCRN to R4, so waste all
2902   // remained registers.
2903   const unsigned NSAAOffset = State->getNextStackOffset();
2904   if (NSAAOffset != 0 && Size > Excess) {
2905     while (State->AllocateReg(GPRArgRegs))
2906       ;
2907     return;
2908   }
2909 
2910   // First register for byval parameter is the first register that wasn't
2911   // allocated before this method call, so it would be "reg".
2912   // If parameter is small enough to be saved in range [reg, r4), then
2913   // the end (first after last) register would be reg + param-size-in-regs,
2914   // else parameter would be splitted between registers and stack,
2915   // end register would be r4 in this case.
2916   unsigned ByValRegBegin = Reg;
2917   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2918   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2919   // Note, first register is allocated in the beginning of function already,
2920   // allocate remained amount of registers we need.
2921   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2922     State->AllocateReg(GPRArgRegs);
2923   // A byval parameter that is split between registers and memory needs its
2924   // size truncated here.
2925   // In the case where the entire structure fits in registers, we set the
2926   // size in memory to zero.
2927   Size = std::max<int>(Size - Excess, 0);
2928 }
2929 
2930 /// MatchingStackOffset - Return true if the given stack call argument is
2931 /// already available in the same position (relatively) of the caller's
2932 /// incoming argument stack.
2933 static
2934 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2935                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2936                          const TargetInstrInfo *TII) {
2937   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2938   int FI = std::numeric_limits<int>::max();
2939   if (Arg.getOpcode() == ISD::CopyFromReg) {
2940     Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2941     if (!VR.isVirtual())
2942       return false;
2943     MachineInstr *Def = MRI->getVRegDef(VR);
2944     if (!Def)
2945       return false;
2946     if (!Flags.isByVal()) {
2947       if (!TII->isLoadFromStackSlot(*Def, FI))
2948         return false;
2949     } else {
2950       return false;
2951     }
2952   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2953     if (Flags.isByVal())
2954       // ByVal argument is passed in as a pointer but it's now being
2955       // dereferenced. e.g.
2956       // define @foo(%struct.X* %A) {
2957       //   tail call @bar(%struct.X* byval %A)
2958       // }
2959       return false;
2960     SDValue Ptr = Ld->getBasePtr();
2961     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2962     if (!FINode)
2963       return false;
2964     FI = FINode->getIndex();
2965   } else
2966     return false;
2967 
2968   assert(FI != std::numeric_limits<int>::max());
2969   if (!MFI.isFixedObjectIndex(FI))
2970     return false;
2971   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2972 }
2973 
2974 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2975 /// for tail call optimization. Targets which want to do tail call
2976 /// optimization should implement this function.
2977 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2978     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2979     bool isCalleeStructRet, bool isCallerStructRet,
2980     const SmallVectorImpl<ISD::OutputArg> &Outs,
2981     const SmallVectorImpl<SDValue> &OutVals,
2982     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2983     const bool isIndirect) const {
2984   MachineFunction &MF = DAG.getMachineFunction();
2985   const Function &CallerF = MF.getFunction();
2986   CallingConv::ID CallerCC = CallerF.getCallingConv();
2987 
2988   assert(Subtarget->supportsTailCall());
2989 
2990   // Indirect tail calls cannot be optimized for Thumb1 if the args
2991   // to the call take up r0-r3. The reason is that there are no legal registers
2992   // left to hold the pointer to the function to be called.
2993   // Similarly, if the function uses return address sign and authentication,
2994   // r12 is needed to hold the PAC and is not available to hold the callee
2995   // address.
2996   if (Outs.size() >= 4 &&
2997       (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect)) {
2998     if (Subtarget->isThumb1Only())
2999       return false;
3000     // Conservatively assume the function spills LR.
3001     if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(true))
3002       return false;
3003   }
3004 
3005   // Look for obvious safe cases to perform tail call optimization that do not
3006   // require ABI changes. This is what gcc calls sibcall.
3007 
3008   // Exception-handling functions need a special set of instructions to indicate
3009   // a return to the hardware. Tail-calling another function would probably
3010   // break this.
3011   if (CallerF.hasFnAttribute("interrupt"))
3012     return false;
3013 
3014   if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt))
3015     return CalleeCC == CallerCC;
3016 
3017   // Also avoid sibcall optimization if either caller or callee uses struct
3018   // return semantics.
3019   if (isCalleeStructRet || isCallerStructRet)
3020     return false;
3021 
3022   // Externally-defined functions with weak linkage should not be
3023   // tail-called on ARM when the OS does not support dynamic
3024   // pre-emption of symbols, as the AAELF spec requires normal calls
3025   // to undefined weak functions to be replaced with a NOP or jump to the
3026   // next instruction. The behaviour of branch instructions in this
3027   // situation (as used for tail calls) is implementation-defined, so we
3028   // cannot rely on the linker replacing the tail call with a return.
3029   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3030     const GlobalValue *GV = G->getGlobal();
3031     const Triple &TT = getTargetMachine().getTargetTriple();
3032     if (GV->hasExternalWeakLinkage() &&
3033         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3034       return false;
3035   }
3036 
3037   // Check that the call results are passed in the same way.
3038   LLVMContext &C = *DAG.getContext();
3039   if (!CCState::resultsCompatible(
3040           getEffectiveCallingConv(CalleeCC, isVarArg),
3041           getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
3042           CCAssignFnForReturn(CalleeCC, isVarArg),
3043           CCAssignFnForReturn(CallerCC, CallerF.isVarArg())))
3044     return false;
3045   // The callee has to preserve all registers the caller needs to preserve.
3046   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3047   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3048   if (CalleeCC != CallerCC) {
3049     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3050     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3051       return false;
3052   }
3053 
3054   // If Caller's vararg or byval argument has been split between registers and
3055   // stack, do not perform tail call, since part of the argument is in caller's
3056   // local frame.
3057   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
3058   if (AFI_Caller->getArgRegsSaveSize())
3059     return false;
3060 
3061   // If the callee takes no arguments then go on to check the results of the
3062   // call.
3063   if (!Outs.empty()) {
3064     // Check if stack adjustment is needed. For now, do not do this if any
3065     // argument is passed on the stack.
3066     SmallVector<CCValAssign, 16> ArgLocs;
3067     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3068     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3069     if (CCInfo.getNextStackOffset()) {
3070       // Check if the arguments are already laid out in the right way as
3071       // the caller's fixed stack objects.
3072       MachineFrameInfo &MFI = MF.getFrameInfo();
3073       const MachineRegisterInfo *MRI = &MF.getRegInfo();
3074       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
3075       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
3076            i != e;
3077            ++i, ++realArgIdx) {
3078         CCValAssign &VA = ArgLocs[i];
3079         EVT RegVT = VA.getLocVT();
3080         SDValue Arg = OutVals[realArgIdx];
3081         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3082         if (VA.getLocInfo() == CCValAssign::Indirect)
3083           return false;
3084         if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) {
3085           // f64 and vector types are split into multiple registers or
3086           // register/stack-slot combinations.  The types will not match
3087           // the registers; give up on memory f64 refs until we figure
3088           // out what to do about this.
3089           if (!VA.isRegLoc())
3090             return false;
3091           if (!ArgLocs[++i].isRegLoc())
3092             return false;
3093           if (RegVT == MVT::v2f64) {
3094             if (!ArgLocs[++i].isRegLoc())
3095               return false;
3096             if (!ArgLocs[++i].isRegLoc())
3097               return false;
3098           }
3099         } else if (!VA.isRegLoc()) {
3100           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3101                                    MFI, MRI, TII))
3102             return false;
3103         }
3104       }
3105     }
3106 
3107     const MachineRegisterInfo &MRI = MF.getRegInfo();
3108     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3109       return false;
3110   }
3111 
3112   return true;
3113 }
3114 
3115 bool
3116 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3117                                   MachineFunction &MF, bool isVarArg,
3118                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3119                                   LLVMContext &Context) const {
3120   SmallVector<CCValAssign, 16> RVLocs;
3121   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3122   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3123 }
3124 
3125 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3126                                     const SDLoc &DL, SelectionDAG &DAG) {
3127   const MachineFunction &MF = DAG.getMachineFunction();
3128   const Function &F = MF.getFunction();
3129 
3130   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
3131 
3132   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
3133   // version of the "preferred return address". These offsets affect the return
3134   // instruction if this is a return from PL1 without hypervisor extensions.
3135   //    IRQ/FIQ: +4     "subs pc, lr, #4"
3136   //    SWI:     0      "subs pc, lr, #0"
3137   //    ABORT:   +4     "subs pc, lr, #4"
3138   //    UNDEF:   +4/+2  "subs pc, lr, #0"
3139   // UNDEF varies depending on where the exception came from ARM or Thumb
3140   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
3141 
3142   int64_t LROffset;
3143   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
3144       IntKind == "ABORT")
3145     LROffset = 4;
3146   else if (IntKind == "SWI" || IntKind == "UNDEF")
3147     LROffset = 0;
3148   else
3149     report_fatal_error("Unsupported interrupt attribute. If present, value "
3150                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
3151 
3152   RetOps.insert(RetOps.begin() + 1,
3153                 DAG.getConstant(LROffset, DL, MVT::i32, false));
3154 
3155   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
3156 }
3157 
3158 SDValue
3159 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3160                                bool isVarArg,
3161                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3162                                const SmallVectorImpl<SDValue> &OutVals,
3163                                const SDLoc &dl, SelectionDAG &DAG) const {
3164   // CCValAssign - represent the assignment of the return value to a location.
3165   SmallVector<CCValAssign, 16> RVLocs;
3166 
3167   // CCState - Info about the registers and stack slots.
3168   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3169                  *DAG.getContext());
3170 
3171   // Analyze outgoing return values.
3172   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3173 
3174   SDValue Flag;
3175   SmallVector<SDValue, 4> RetOps;
3176   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
3177   bool isLittleEndian = Subtarget->isLittle();
3178 
3179   MachineFunction &MF = DAG.getMachineFunction();
3180   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3181   AFI->setReturnRegsCount(RVLocs.size());
3182 
3183  // Report error if cmse entry function returns structure through first ptr arg.
3184   if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
3185     // Note: using an empty SDLoc(), as the first line of the function is a
3186     // better place to report than the last line.
3187     DiagnosticInfoUnsupported Diag(
3188         DAG.getMachineFunction().getFunction(),
3189         "secure entry function would return value through pointer",
3190         SDLoc().getDebugLoc());
3191     DAG.getContext()->diagnose(Diag);
3192   }
3193 
3194   // Copy the result values into the output registers.
3195   for (unsigned i = 0, realRVLocIdx = 0;
3196        i != RVLocs.size();
3197        ++i, ++realRVLocIdx) {
3198     CCValAssign &VA = RVLocs[i];
3199     assert(VA.isRegLoc() && "Can only return in registers!");
3200 
3201     SDValue Arg = OutVals[realRVLocIdx];
3202     bool ReturnF16 = false;
3203 
3204     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
3205       // Half-precision return values can be returned like this:
3206       //
3207       // t11 f16 = fadd ...
3208       // t12: i16 = bitcast t11
3209       //   t13: i32 = zero_extend t12
3210       // t14: f32 = bitcast t13  <~~~~~~~ Arg
3211       //
3212       // to avoid code generation for bitcasts, we simply set Arg to the node
3213       // that produces the f16 value, t11 in this case.
3214       //
3215       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
3216         SDValue ZE = Arg.getOperand(0);
3217         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
3218           SDValue BC = ZE.getOperand(0);
3219           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
3220             Arg = BC.getOperand(0);
3221             ReturnF16 = true;
3222           }
3223         }
3224       }
3225     }
3226 
3227     switch (VA.getLocInfo()) {
3228     default: llvm_unreachable("Unknown loc info!");
3229     case CCValAssign::Full: break;
3230     case CCValAssign::BCvt:
3231       if (!ReturnF16)
3232         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3233       break;
3234     }
3235 
3236     // Mask f16 arguments if this is a CMSE nonsecure entry.
3237     auto RetVT = Outs[realRVLocIdx].ArgVT;
3238     if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
3239       if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
3240         Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
3241       } else {
3242         auto LocBits = VA.getLocVT().getSizeInBits();
3243         auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
3244         SDValue Mask =
3245             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
3246         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
3247         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
3248         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3249       }
3250     }
3251 
3252     if (VA.needsCustom() &&
3253         (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
3254       if (VA.getLocVT() == MVT::v2f64) {
3255         // Extract the first half and return it in two registers.
3256         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3257                                    DAG.getConstant(0, dl, MVT::i32));
3258         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
3259                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
3260 
3261         Chain =
3262             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3263                              HalfGPRs.getValue(isLittleEndian ? 0 : 1), Flag);
3264         Flag = Chain.getValue(1);
3265         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3266         VA = RVLocs[++i]; // skip ahead to next loc
3267         Chain =
3268             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3269                              HalfGPRs.getValue(isLittleEndian ? 1 : 0), Flag);
3270         Flag = Chain.getValue(1);
3271         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3272         VA = RVLocs[++i]; // skip ahead to next loc
3273 
3274         // Extract the 2nd half and fall through to handle it as an f64 value.
3275         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3276                           DAG.getConstant(1, dl, MVT::i32));
3277       }
3278       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
3279       // available.
3280       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
3281                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
3282       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3283                                fmrrd.getValue(isLittleEndian ? 0 : 1), Flag);
3284       Flag = Chain.getValue(1);
3285       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3286       VA = RVLocs[++i]; // skip ahead to next loc
3287       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3288                                fmrrd.getValue(isLittleEndian ? 1 : 0), Flag);
3289     } else
3290       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
3291 
3292     // Guarantee that all emitted copies are
3293     // stuck together, avoiding something bad.
3294     Flag = Chain.getValue(1);
3295     RetOps.push_back(DAG.getRegister(
3296         VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
3297   }
3298   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3299   const MCPhysReg *I =
3300       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3301   if (I) {
3302     for (; *I; ++I) {
3303       if (ARM::GPRRegClass.contains(*I))
3304         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3305       else if (ARM::DPRRegClass.contains(*I))
3306         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3307       else
3308         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3309     }
3310   }
3311 
3312   // Update chain and glue.
3313   RetOps[0] = Chain;
3314   if (Flag.getNode())
3315     RetOps.push_back(Flag);
3316 
3317   // CPUs which aren't M-class use a special sequence to return from
3318   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3319   // though we use "subs pc, lr, #N").
3320   //
3321   // M-class CPUs actually use a normal return sequence with a special
3322   // (hardware-provided) value in LR, so the normal code path works.
3323   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3324       !Subtarget->isMClass()) {
3325     if (Subtarget->isThumb1Only())
3326       report_fatal_error("interrupt attribute is not supported in Thumb1");
3327     return LowerInterruptReturn(RetOps, dl, DAG);
3328   }
3329 
3330   ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_FLAG :
3331                                                             ARMISD::RET_FLAG;
3332   return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
3333 }
3334 
3335 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
3336   if (N->getNumValues() != 1)
3337     return false;
3338   if (!N->hasNUsesOfValue(1, 0))
3339     return false;
3340 
3341   SDValue TCChain = Chain;
3342   SDNode *Copy = *N->use_begin();
3343   if (Copy->getOpcode() == ISD::CopyToReg) {
3344     // If the copy has a glue operand, we conservatively assume it isn't safe to
3345     // perform a tail call.
3346     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3347       return false;
3348     TCChain = Copy->getOperand(0);
3349   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
3350     SDNode *VMov = Copy;
3351     // f64 returned in a pair of GPRs.
3352     SmallPtrSet<SDNode*, 2> Copies;
3353     for (SDNode *U : VMov->uses()) {
3354       if (U->getOpcode() != ISD::CopyToReg)
3355         return false;
3356       Copies.insert(U);
3357     }
3358     if (Copies.size() > 2)
3359       return false;
3360 
3361     for (SDNode *U : VMov->uses()) {
3362       SDValue UseChain = U->getOperand(0);
3363       if (Copies.count(UseChain.getNode()))
3364         // Second CopyToReg
3365         Copy = U;
3366       else {
3367         // We are at the top of this chain.
3368         // If the copy has a glue operand, we conservatively assume it
3369         // isn't safe to perform a tail call.
3370         if (U->getOperand(U->getNumOperands() - 1).getValueType() == MVT::Glue)
3371           return false;
3372         // First CopyToReg
3373         TCChain = UseChain;
3374       }
3375     }
3376   } else if (Copy->getOpcode() == ISD::BITCAST) {
3377     // f32 returned in a single GPR.
3378     if (!Copy->hasOneUse())
3379       return false;
3380     Copy = *Copy->use_begin();
3381     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
3382       return false;
3383     // If the copy has a glue operand, we conservatively assume it isn't safe to
3384     // perform a tail call.
3385     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3386       return false;
3387     TCChain = Copy->getOperand(0);
3388   } else {
3389     return false;
3390   }
3391 
3392   bool HasRet = false;
3393   for (const SDNode *U : Copy->uses()) {
3394     if (U->getOpcode() != ARMISD::RET_FLAG &&
3395         U->getOpcode() != ARMISD::INTRET_FLAG)
3396       return false;
3397     HasRet = true;
3398   }
3399 
3400   if (!HasRet)
3401     return false;
3402 
3403   Chain = TCChain;
3404   return true;
3405 }
3406 
3407 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3408   if (!Subtarget->supportsTailCall())
3409     return false;
3410 
3411   if (!CI->isTailCall())
3412     return false;
3413 
3414   return true;
3415 }
3416 
3417 // Trying to write a 64 bit value so need to split into two 32 bit values first,
3418 // and pass the lower and high parts through.
3419 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
3420   SDLoc DL(Op);
3421   SDValue WriteValue = Op->getOperand(2);
3422 
3423   // This function is only supposed to be called for i64 type argument.
3424   assert(WriteValue.getValueType() == MVT::i64
3425           && "LowerWRITE_REGISTER called for non-i64 type argument.");
3426 
3427   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3428                            DAG.getConstant(0, DL, MVT::i32));
3429   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3430                            DAG.getConstant(1, DL, MVT::i32));
3431   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3432   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3433 }
3434 
3435 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3436 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3437 // one of the above mentioned nodes. It has to be wrapped because otherwise
3438 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3439 // be used to form addressing mode. These wrapped nodes will be selected
3440 // into MOVi.
3441 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3442                                              SelectionDAG &DAG) const {
3443   EVT PtrVT = Op.getValueType();
3444   // FIXME there is no actual debug info here
3445   SDLoc dl(Op);
3446   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3447   SDValue Res;
3448 
3449   // When generating execute-only code Constant Pools must be promoted to the
3450   // global data section. It's a bit ugly that we can't share them across basic
3451   // blocks, but this way we guarantee that execute-only behaves correct with
3452   // position-independent addressing modes.
3453   if (Subtarget->genExecuteOnly()) {
3454     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3455     auto T = const_cast<Type*>(CP->getType());
3456     auto C = const_cast<Constant*>(CP->getConstVal());
3457     auto M = const_cast<Module*>(DAG.getMachineFunction().
3458                                  getFunction().getParent());
3459     auto GV = new GlobalVariable(
3460                     *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3461                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3462                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3463                     Twine(AFI->createPICLabelUId())
3464                   );
3465     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3466                                             dl, PtrVT);
3467     return LowerGlobalAddress(GA, DAG);
3468   }
3469 
3470   // The 16-bit ADR instruction can only encode offsets that are multiples of 4,
3471   // so we need to align to at least 4 bytes when we don't have 32-bit ADR.
3472   Align CPAlign = CP->getAlign();
3473   if (Subtarget->isThumb1Only())
3474     CPAlign = std::max(CPAlign, Align(4));
3475   if (CP->isMachineConstantPoolEntry())
3476     Res =
3477         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CPAlign);
3478   else
3479     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CPAlign);
3480   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3481 }
3482 
3483 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3484   return MachineJumpTableInfo::EK_Inline;
3485 }
3486 
3487 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3488                                              SelectionDAG &DAG) const {
3489   MachineFunction &MF = DAG.getMachineFunction();
3490   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3491   unsigned ARMPCLabelIndex = 0;
3492   SDLoc DL(Op);
3493   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3494   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3495   SDValue CPAddr;
3496   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3497   if (!IsPositionIndependent) {
3498     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
3499   } else {
3500     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3501     ARMPCLabelIndex = AFI->createPICLabelUId();
3502     ARMConstantPoolValue *CPV =
3503       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3504                                       ARMCP::CPBlockAddress, PCAdj);
3505     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3506   }
3507   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3508   SDValue Result = DAG.getLoad(
3509       PtrVT, DL, DAG.getEntryNode(), CPAddr,
3510       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3511   if (!IsPositionIndependent)
3512     return Result;
3513   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3514   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3515 }
3516 
3517 /// Convert a TLS address reference into the correct sequence of loads
3518 /// and calls to compute the variable's address for Darwin, and return an
3519 /// SDValue containing the final node.
3520 
3521 /// Darwin only has one TLS scheme which must be capable of dealing with the
3522 /// fully general situation, in the worst case. This means:
3523 ///     + "extern __thread" declaration.
3524 ///     + Defined in a possibly unknown dynamic library.
3525 ///
3526 /// The general system is that each __thread variable has a [3 x i32] descriptor
3527 /// which contains information used by the runtime to calculate the address. The
3528 /// only part of this the compiler needs to know about is the first word, which
3529 /// contains a function pointer that must be called with the address of the
3530 /// entire descriptor in "r0".
3531 ///
3532 /// Since this descriptor may be in a different unit, in general access must
3533 /// proceed along the usual ARM rules. A common sequence to produce is:
3534 ///
3535 ///     movw rT1, :lower16:_var$non_lazy_ptr
3536 ///     movt rT1, :upper16:_var$non_lazy_ptr
3537 ///     ldr r0, [rT1]
3538 ///     ldr rT2, [r0]
3539 ///     blx rT2
3540 ///     [...address now in r0...]
3541 SDValue
3542 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3543                                                SelectionDAG &DAG) const {
3544   assert(Subtarget->isTargetDarwin() &&
3545          "This function expects a Darwin target");
3546   SDLoc DL(Op);
3547 
3548   // First step is to get the address of the actua global symbol. This is where
3549   // the TLS descriptor lives.
3550   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3551 
3552   // The first entry in the descriptor is a function pointer that we must call
3553   // to obtain the address of the variable.
3554   SDValue Chain = DAG.getEntryNode();
3555   SDValue FuncTLVGet = DAG.getLoad(
3556       MVT::i32, DL, Chain, DescAddr,
3557       MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
3558       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3559           MachineMemOperand::MOInvariant);
3560   Chain = FuncTLVGet.getValue(1);
3561 
3562   MachineFunction &F = DAG.getMachineFunction();
3563   MachineFrameInfo &MFI = F.getFrameInfo();
3564   MFI.setAdjustsStack(true);
3565 
3566   // TLS calls preserve all registers except those that absolutely must be
3567   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3568   // silly).
3569   auto TRI =
3570       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3571   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3572   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3573 
3574   // Finally, we can make the call. This is just a degenerate version of a
3575   // normal AArch64 call node: r0 takes the address of the descriptor, and
3576   // returns the address of the variable in this thread.
3577   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3578   Chain =
3579       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3580                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3581                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3582   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3583 }
3584 
3585 SDValue
3586 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3587                                                 SelectionDAG &DAG) const {
3588   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3589 
3590   SDValue Chain = DAG.getEntryNode();
3591   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3592   SDLoc DL(Op);
3593 
3594   // Load the current TEB (thread environment block)
3595   SDValue Ops[] = {Chain,
3596                    DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3597                    DAG.getTargetConstant(15, DL, MVT::i32),
3598                    DAG.getTargetConstant(0, DL, MVT::i32),
3599                    DAG.getTargetConstant(13, DL, MVT::i32),
3600                    DAG.getTargetConstant(0, DL, MVT::i32),
3601                    DAG.getTargetConstant(2, DL, MVT::i32)};
3602   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3603                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
3604 
3605   SDValue TEB = CurrentTEB.getValue(0);
3606   Chain = CurrentTEB.getValue(1);
3607 
3608   // Load the ThreadLocalStoragePointer from the TEB
3609   // A pointer to the TLS array is located at offset 0x2c from the TEB.
3610   SDValue TLSArray =
3611       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3612   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3613 
3614   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3615   // offset into the TLSArray.
3616 
3617   // Load the TLS index from the C runtime
3618   SDValue TLSIndex =
3619       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3620   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3621   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3622 
3623   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3624                               DAG.getConstant(2, DL, MVT::i32));
3625   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3626                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3627                             MachinePointerInfo());
3628 
3629   // Get the offset of the start of the .tls section (section base)
3630   const auto *GA = cast<GlobalAddressSDNode>(Op);
3631   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3632   SDValue Offset = DAG.getLoad(
3633       PtrVT, DL, Chain,
3634       DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3635                   DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
3636       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3637 
3638   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3639 }
3640 
3641 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3642 SDValue
3643 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3644                                                  SelectionDAG &DAG) const {
3645   SDLoc dl(GA);
3646   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3647   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3648   MachineFunction &MF = DAG.getMachineFunction();
3649   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3650   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3651   ARMConstantPoolValue *CPV =
3652     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3653                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3654   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3655   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3656   Argument = DAG.getLoad(
3657       PtrVT, dl, DAG.getEntryNode(), Argument,
3658       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3659   SDValue Chain = Argument.getValue(1);
3660 
3661   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3662   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3663 
3664   // call __tls_get_addr.
3665   ArgListTy Args;
3666   ArgListEntry Entry;
3667   Entry.Node = Argument;
3668   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3669   Args.push_back(Entry);
3670 
3671   // FIXME: is there useful debug info available here?
3672   TargetLowering::CallLoweringInfo CLI(DAG);
3673   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3674       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3675       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3676 
3677   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3678   return CallResult.first;
3679 }
3680 
3681 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3682 // "local exec" model.
3683 SDValue
3684 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3685                                         SelectionDAG &DAG,
3686                                         TLSModel::Model model) const {
3687   const GlobalValue *GV = GA->getGlobal();
3688   SDLoc dl(GA);
3689   SDValue Offset;
3690   SDValue Chain = DAG.getEntryNode();
3691   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3692   // Get the Thread Pointer
3693   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3694 
3695   if (model == TLSModel::InitialExec) {
3696     MachineFunction &MF = DAG.getMachineFunction();
3697     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3698     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3699     // Initial exec model.
3700     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3701     ARMConstantPoolValue *CPV =
3702       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3703                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3704                                       true);
3705     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3706     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3707     Offset = DAG.getLoad(
3708         PtrVT, dl, Chain, Offset,
3709         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3710     Chain = Offset.getValue(1);
3711 
3712     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3713     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3714 
3715     Offset = DAG.getLoad(
3716         PtrVT, dl, Chain, Offset,
3717         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3718   } else {
3719     // local exec model
3720     assert(model == TLSModel::LocalExec);
3721     ARMConstantPoolValue *CPV =
3722       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3723     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3724     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3725     Offset = DAG.getLoad(
3726         PtrVT, dl, Chain, Offset,
3727         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3728   }
3729 
3730   // The address of the thread local variable is the add of the thread
3731   // pointer with the offset of the variable.
3732   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3733 }
3734 
3735 SDValue
3736 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3737   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3738   if (DAG.getTarget().useEmulatedTLS())
3739     return LowerToTLSEmulatedModel(GA, DAG);
3740 
3741   if (Subtarget->isTargetDarwin())
3742     return LowerGlobalTLSAddressDarwin(Op, DAG);
3743 
3744   if (Subtarget->isTargetWindows())
3745     return LowerGlobalTLSAddressWindows(Op, DAG);
3746 
3747   // TODO: implement the "local dynamic" model
3748   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3749   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3750 
3751   switch (model) {
3752     case TLSModel::GeneralDynamic:
3753     case TLSModel::LocalDynamic:
3754       return LowerToTLSGeneralDynamicModel(GA, DAG);
3755     case TLSModel::InitialExec:
3756     case TLSModel::LocalExec:
3757       return LowerToTLSExecModels(GA, DAG, model);
3758   }
3759   llvm_unreachable("bogus TLS model");
3760 }
3761 
3762 /// Return true if all users of V are within function F, looking through
3763 /// ConstantExprs.
3764 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3765   SmallVector<const User*,4> Worklist(V->users());
3766   while (!Worklist.empty()) {
3767     auto *U = Worklist.pop_back_val();
3768     if (isa<ConstantExpr>(U)) {
3769       append_range(Worklist, U->users());
3770       continue;
3771     }
3772 
3773     auto *I = dyn_cast<Instruction>(U);
3774     if (!I || I->getParent()->getParent() != F)
3775       return false;
3776   }
3777   return true;
3778 }
3779 
3780 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3781                                      const GlobalValue *GV, SelectionDAG &DAG,
3782                                      EVT PtrVT, const SDLoc &dl) {
3783   // If we're creating a pool entry for a constant global with unnamed address,
3784   // and the global is small enough, we can emit it inline into the constant pool
3785   // to save ourselves an indirection.
3786   //
3787   // This is a win if the constant is only used in one function (so it doesn't
3788   // need to be duplicated) or duplicating the constant wouldn't increase code
3789   // size (implying the constant is no larger than 4 bytes).
3790   const Function &F = DAG.getMachineFunction().getFunction();
3791 
3792   // We rely on this decision to inline being idemopotent and unrelated to the
3793   // use-site. We know that if we inline a variable at one use site, we'll
3794   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3795   // doesn't know about this optimization, so bail out if it's enabled else
3796   // we could decide to inline here (and thus never emit the GV) but require
3797   // the GV from fast-isel generated code.
3798   if (!EnableConstpoolPromotion ||
3799       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3800       return SDValue();
3801 
3802   auto *GVar = dyn_cast<GlobalVariable>(GV);
3803   if (!GVar || !GVar->hasInitializer() ||
3804       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3805       !GVar->hasLocalLinkage())
3806     return SDValue();
3807 
3808   // If we inline a value that contains relocations, we move the relocations
3809   // from .data to .text. This is not allowed in position-independent code.
3810   auto *Init = GVar->getInitializer();
3811   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3812       Init->needsDynamicRelocation())
3813     return SDValue();
3814 
3815   // The constant islands pass can only really deal with alignment requests
3816   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3817   // any type wanting greater alignment requirements than 4 bytes. We also
3818   // can only promote constants that are multiples of 4 bytes in size or
3819   // are paddable to a multiple of 4. Currently we only try and pad constants
3820   // that are strings for simplicity.
3821   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3822   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3823   Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
3824   unsigned RequiredPadding = 4 - (Size % 4);
3825   bool PaddingPossible =
3826     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3827   if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
3828       Size == 0)
3829     return SDValue();
3830 
3831   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3832   MachineFunction &MF = DAG.getMachineFunction();
3833   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3834 
3835   // We can't bloat the constant pool too much, else the ConstantIslands pass
3836   // may fail to converge. If we haven't promoted this global yet (it may have
3837   // multiple uses), and promoting it would increase the constant pool size (Sz
3838   // > 4), ensure we have space to do so up to MaxTotal.
3839   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3840     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3841         ConstpoolPromotionMaxTotal)
3842       return SDValue();
3843 
3844   // This is only valid if all users are in a single function; we can't clone
3845   // the constant in general. The LLVM IR unnamed_addr allows merging
3846   // constants, but not cloning them.
3847   //
3848   // We could potentially allow cloning if we could prove all uses of the
3849   // constant in the current function don't care about the address, like
3850   // printf format strings. But that isn't implemented for now.
3851   if (!allUsersAreInFunction(GVar, &F))
3852     return SDValue();
3853 
3854   // We're going to inline this global. Pad it out if needed.
3855   if (RequiredPadding != 4) {
3856     StringRef S = CDAInit->getAsString();
3857 
3858     SmallVector<uint8_t,16> V(S.size());
3859     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3860     while (RequiredPadding--)
3861       V.push_back(0);
3862     Init = ConstantDataArray::get(*DAG.getContext(), V);
3863   }
3864 
3865   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3866   SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
3867   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3868     AFI->markGlobalAsPromotedToConstantPool(GVar);
3869     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3870                                       PaddedSize - 4);
3871   }
3872   ++NumConstpoolPromoted;
3873   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3874 }
3875 
3876 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3877   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3878     if (!(GV = GA->getAliaseeObject()))
3879       return false;
3880   if (const auto *V = dyn_cast<GlobalVariable>(GV))
3881     return V->isConstant();
3882   return isa<Function>(GV);
3883 }
3884 
3885 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3886                                               SelectionDAG &DAG) const {
3887   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3888   default: llvm_unreachable("unknown object format");
3889   case Triple::COFF:
3890     return LowerGlobalAddressWindows(Op, DAG);
3891   case Triple::ELF:
3892     return LowerGlobalAddressELF(Op, DAG);
3893   case Triple::MachO:
3894     return LowerGlobalAddressDarwin(Op, DAG);
3895   }
3896 }
3897 
3898 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3899                                                  SelectionDAG &DAG) const {
3900   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3901   SDLoc dl(Op);
3902   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3903   const TargetMachine &TM = getTargetMachine();
3904   bool IsRO = isReadOnly(GV);
3905 
3906   // promoteToConstantPool only if not generating XO text section
3907   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3908     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3909       return V;
3910 
3911   if (isPositionIndependent()) {
3912     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3913     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3914                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3915     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3916     if (UseGOT_PREL)
3917       Result =
3918           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3919                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3920     return Result;
3921   } else if (Subtarget->isROPI() && IsRO) {
3922     // PC-relative.
3923     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3924     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3925     return Result;
3926   } else if (Subtarget->isRWPI() && !IsRO) {
3927     // SB-relative.
3928     SDValue RelAddr;
3929     if (Subtarget->useMovt()) {
3930       ++NumMovwMovt;
3931       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3932       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3933     } else { // use literal pool for address constant
3934       ARMConstantPoolValue *CPV =
3935         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3936       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3937       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3938       RelAddr = DAG.getLoad(
3939           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3940           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3941     }
3942     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3943     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3944     return Result;
3945   }
3946 
3947   // If we have T2 ops, we can materialize the address directly via movt/movw
3948   // pair. This is always cheaper.
3949   if (Subtarget->useMovt()) {
3950     ++NumMovwMovt;
3951     // FIXME: Once remat is capable of dealing with instructions with register
3952     // operands, expand this into two nodes.
3953     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3954                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3955   } else {
3956     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
3957     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3958     return DAG.getLoad(
3959         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3960         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3961   }
3962 }
3963 
3964 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3965                                                     SelectionDAG &DAG) const {
3966   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3967          "ROPI/RWPI not currently supported for Darwin");
3968   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3969   SDLoc dl(Op);
3970   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3971 
3972   if (Subtarget->useMovt())
3973     ++NumMovwMovt;
3974 
3975   // FIXME: Once remat is capable of dealing with instructions with register
3976   // operands, expand this into multiple nodes
3977   unsigned Wrapper =
3978       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3979 
3980   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3981   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3982 
3983   if (Subtarget->isGVIndirectSymbol(GV))
3984     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3985                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3986   return Result;
3987 }
3988 
3989 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3990                                                      SelectionDAG &DAG) const {
3991   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3992   assert(Subtarget->useMovt() &&
3993          "Windows on ARM expects to use movw/movt");
3994   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3995          "ROPI/RWPI not currently supported for Windows");
3996 
3997   const TargetMachine &TM = getTargetMachine();
3998   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3999   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
4000   if (GV->hasDLLImportStorageClass())
4001     TargetFlags = ARMII::MO_DLLIMPORT;
4002   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
4003     TargetFlags = ARMII::MO_COFFSTUB;
4004   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4005   SDValue Result;
4006   SDLoc DL(Op);
4007 
4008   ++NumMovwMovt;
4009 
4010   // FIXME: Once remat is capable of dealing with instructions with register
4011   // operands, expand this into two nodes.
4012   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
4013                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
4014                                                   TargetFlags));
4015   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
4016     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4017                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4018   return Result;
4019 }
4020 
4021 SDValue
4022 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
4023   SDLoc dl(Op);
4024   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
4025   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
4026                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
4027                      Op.getOperand(1), Val);
4028 }
4029 
4030 SDValue
4031 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
4032   SDLoc dl(Op);
4033   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
4034                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
4035 }
4036 
4037 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
4038                                                       SelectionDAG &DAG) const {
4039   SDLoc dl(Op);
4040   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
4041                      Op.getOperand(0));
4042 }
4043 
4044 SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
4045     SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
4046   unsigned IntNo =
4047       cast<ConstantSDNode>(
4048           Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
4049           ->getZExtValue();
4050   switch (IntNo) {
4051     default:
4052       return SDValue();  // Don't custom lower most intrinsics.
4053     case Intrinsic::arm_gnu_eabi_mcount: {
4054       MachineFunction &MF = DAG.getMachineFunction();
4055       EVT PtrVT = getPointerTy(DAG.getDataLayout());
4056       SDLoc dl(Op);
4057       SDValue Chain = Op.getOperand(0);
4058       // call "\01__gnu_mcount_nc"
4059       const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
4060       const uint32_t *Mask =
4061           ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
4062       assert(Mask && "Missing call preserved mask for calling convention");
4063       // Mark LR an implicit live-in.
4064       Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4065       SDValue ReturnAddress =
4066           DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
4067       constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
4068       SDValue Callee =
4069           DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
4070       SDValue RegisterMask = DAG.getRegisterMask(Mask);
4071       if (Subtarget->isThumb())
4072         return SDValue(
4073             DAG.getMachineNode(
4074                 ARM::tBL_PUSHLR, dl, ResultTys,
4075                 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
4076                  DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
4077             0);
4078       return SDValue(
4079           DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
4080                              {ReturnAddress, Callee, RegisterMask, Chain}),
4081           0);
4082     }
4083   }
4084 }
4085 
4086 SDValue
4087 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
4088                                           const ARMSubtarget *Subtarget) const {
4089   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4090   SDLoc dl(Op);
4091   switch (IntNo) {
4092   default: return SDValue();    // Don't custom lower most intrinsics.
4093   case Intrinsic::thread_pointer: {
4094     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4095     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
4096   }
4097   case Intrinsic::arm_cls: {
4098     const SDValue &Operand = Op.getOperand(1);
4099     const EVT VTy = Op.getValueType();
4100     SDValue SRA =
4101         DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
4102     SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
4103     SDValue SHL =
4104         DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
4105     SDValue OR =
4106         DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
4107     SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
4108     return Result;
4109   }
4110   case Intrinsic::arm_cls64: {
4111     // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
4112     //          else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
4113     const SDValue &Operand = Op.getOperand(1);
4114     const EVT VTy = Op.getValueType();
4115 
4116     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
4117                              DAG.getConstant(1, dl, VTy));
4118     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
4119                              DAG.getConstant(0, dl, VTy));
4120     SDValue Constant0 = DAG.getConstant(0, dl, VTy);
4121     SDValue Constant1 = DAG.getConstant(1, dl, VTy);
4122     SDValue Constant31 = DAG.getConstant(31, dl, VTy);
4123     SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
4124     SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
4125     SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
4126     SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
4127     SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
4128     SDValue CheckLo =
4129         DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
4130     SDValue HiIsZero =
4131         DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
4132     SDValue AdjustedLo =
4133         DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
4134     SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
4135     SDValue Result =
4136         DAG.getSelect(dl, VTy, CheckLo,
4137                       DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
4138     return Result;
4139   }
4140   case Intrinsic::eh_sjlj_lsda: {
4141     MachineFunction &MF = DAG.getMachineFunction();
4142     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4143     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
4144     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4145     SDValue CPAddr;
4146     bool IsPositionIndependent = isPositionIndependent();
4147     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
4148     ARMConstantPoolValue *CPV =
4149       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
4150                                       ARMCP::CPLSDA, PCAdj);
4151     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
4152     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
4153     SDValue Result = DAG.getLoad(
4154         PtrVT, dl, DAG.getEntryNode(), CPAddr,
4155         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4156 
4157     if (IsPositionIndependent) {
4158       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
4159       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
4160     }
4161     return Result;
4162   }
4163   case Intrinsic::arm_neon_vabs:
4164     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
4165                         Op.getOperand(1));
4166   case Intrinsic::arm_neon_vmulls:
4167   case Intrinsic::arm_neon_vmullu: {
4168     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
4169       ? ARMISD::VMULLs : ARMISD::VMULLu;
4170     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4171                        Op.getOperand(1), Op.getOperand(2));
4172   }
4173   case Intrinsic::arm_neon_vminnm:
4174   case Intrinsic::arm_neon_vmaxnm: {
4175     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
4176       ? ISD::FMINNUM : ISD::FMAXNUM;
4177     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4178                        Op.getOperand(1), Op.getOperand(2));
4179   }
4180   case Intrinsic::arm_neon_vminu:
4181   case Intrinsic::arm_neon_vmaxu: {
4182     if (Op.getValueType().isFloatingPoint())
4183       return SDValue();
4184     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
4185       ? ISD::UMIN : ISD::UMAX;
4186     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4187                          Op.getOperand(1), Op.getOperand(2));
4188   }
4189   case Intrinsic::arm_neon_vmins:
4190   case Intrinsic::arm_neon_vmaxs: {
4191     // v{min,max}s is overloaded between signed integers and floats.
4192     if (!Op.getValueType().isFloatingPoint()) {
4193       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4194         ? ISD::SMIN : ISD::SMAX;
4195       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4196                          Op.getOperand(1), Op.getOperand(2));
4197     }
4198     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4199       ? ISD::FMINIMUM : ISD::FMAXIMUM;
4200     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4201                        Op.getOperand(1), Op.getOperand(2));
4202   }
4203   case Intrinsic::arm_neon_vtbl1:
4204     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
4205                        Op.getOperand(1), Op.getOperand(2));
4206   case Intrinsic::arm_neon_vtbl2:
4207     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
4208                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4209   case Intrinsic::arm_mve_pred_i2v:
4210   case Intrinsic::arm_mve_pred_v2i:
4211     return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
4212                        Op.getOperand(1));
4213   case Intrinsic::arm_mve_vreinterpretq:
4214     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
4215                        Op.getOperand(1));
4216   case Intrinsic::arm_mve_lsll:
4217     return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
4218                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4219   case Intrinsic::arm_mve_asrl:
4220     return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
4221                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4222   }
4223 }
4224 
4225 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
4226                                  const ARMSubtarget *Subtarget) {
4227   SDLoc dl(Op);
4228   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
4229   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
4230   if (SSID == SyncScope::SingleThread)
4231     return Op;
4232 
4233   if (!Subtarget->hasDataBarrier()) {
4234     // Some ARMv6 cpus can support data barriers with an mcr instruction.
4235     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4236     // here.
4237     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
4238            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4239     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
4240                        DAG.getConstant(0, dl, MVT::i32));
4241   }
4242 
4243   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
4244   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
4245   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
4246   if (Subtarget->isMClass()) {
4247     // Only a full system barrier exists in the M-class architectures.
4248     Domain = ARM_MB::SY;
4249   } else if (Subtarget->preferISHSTBarriers() &&
4250              Ord == AtomicOrdering::Release) {
4251     // Swift happens to implement ISHST barriers in a way that's compatible with
4252     // Release semantics but weaker than ISH so we'd be fools not to use
4253     // it. Beware: other processors probably don't!
4254     Domain = ARM_MB::ISHST;
4255   }
4256 
4257   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
4258                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4259                      DAG.getConstant(Domain, dl, MVT::i32));
4260 }
4261 
4262 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
4263                              const ARMSubtarget *Subtarget) {
4264   // ARM pre v5TE and Thumb1 does not have preload instructions.
4265   if (!(Subtarget->isThumb2() ||
4266         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
4267     // Just preserve the chain.
4268     return Op.getOperand(0);
4269 
4270   SDLoc dl(Op);
4271   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
4272   if (!isRead &&
4273       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4274     // ARMv7 with MP extension has PLDW.
4275     return Op.getOperand(0);
4276 
4277   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4278   if (Subtarget->isThumb()) {
4279     // Invert the bits.
4280     isRead = ~isRead & 1;
4281     isData = ~isData & 1;
4282   }
4283 
4284   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
4285                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
4286                      DAG.getConstant(isData, dl, MVT::i32));
4287 }
4288 
4289 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
4290   MachineFunction &MF = DAG.getMachineFunction();
4291   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
4292 
4293   // vastart just stores the address of the VarArgsFrameIndex slot into the
4294   // memory location argument.
4295   SDLoc dl(Op);
4296   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4297   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4298   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4299   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
4300                       MachinePointerInfo(SV));
4301 }
4302 
4303 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
4304                                                 CCValAssign &NextVA,
4305                                                 SDValue &Root,
4306                                                 SelectionDAG &DAG,
4307                                                 const SDLoc &dl) const {
4308   MachineFunction &MF = DAG.getMachineFunction();
4309   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4310 
4311   const TargetRegisterClass *RC;
4312   if (AFI->isThumb1OnlyFunction())
4313     RC = &ARM::tGPRRegClass;
4314   else
4315     RC = &ARM::GPRRegClass;
4316 
4317   // Transform the arguments stored in physical registers into virtual ones.
4318   Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4319   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4320 
4321   SDValue ArgValue2;
4322   if (NextVA.isMemLoc()) {
4323     MachineFrameInfo &MFI = MF.getFrameInfo();
4324     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
4325 
4326     // Create load node to retrieve arguments from the stack.
4327     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4328     ArgValue2 = DAG.getLoad(
4329         MVT::i32, dl, Root, FIN,
4330         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4331   } else {
4332     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
4333     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4334   }
4335   if (!Subtarget->isLittle())
4336     std::swap (ArgValue, ArgValue2);
4337   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
4338 }
4339 
4340 // The remaining GPRs hold either the beginning of variable-argument
4341 // data, or the beginning of an aggregate passed by value (usually
4342 // byval).  Either way, we allocate stack slots adjacent to the data
4343 // provided by our caller, and store the unallocated registers there.
4344 // If this is a variadic function, the va_list pointer will begin with
4345 // these values; otherwise, this reassembles a (byval) structure that
4346 // was split between registers and memory.
4347 // Return: The frame index registers were stored into.
4348 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
4349                                       const SDLoc &dl, SDValue &Chain,
4350                                       const Value *OrigArg,
4351                                       unsigned InRegsParamRecordIdx,
4352                                       int ArgOffset, unsigned ArgSize) const {
4353   // Currently, two use-cases possible:
4354   // Case #1. Non-var-args function, and we meet first byval parameter.
4355   //          Setup first unallocated register as first byval register;
4356   //          eat all remained registers
4357   //          (these two actions are performed by HandleByVal method).
4358   //          Then, here, we initialize stack frame with
4359   //          "store-reg" instructions.
4360   // Case #2. Var-args function, that doesn't contain byval parameters.
4361   //          The same: eat all remained unallocated registers,
4362   //          initialize stack frame.
4363 
4364   MachineFunction &MF = DAG.getMachineFunction();
4365   MachineFrameInfo &MFI = MF.getFrameInfo();
4366   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4367   unsigned RBegin, REnd;
4368   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
4369     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
4370   } else {
4371     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4372     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
4373     REnd = ARM::R4;
4374   }
4375 
4376   if (REnd != RBegin)
4377     ArgOffset = -4 * (ARM::R4 - RBegin);
4378 
4379   auto PtrVT = getPointerTy(DAG.getDataLayout());
4380   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
4381   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
4382 
4383   SmallVector<SDValue, 4> MemOps;
4384   const TargetRegisterClass *RC =
4385       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
4386 
4387   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
4388     Register VReg = MF.addLiveIn(Reg, RC);
4389     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4390     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4391                                  MachinePointerInfo(OrigArg, 4 * i));
4392     MemOps.push_back(Store);
4393     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
4394   }
4395 
4396   if (!MemOps.empty())
4397     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4398   return FrameIndex;
4399 }
4400 
4401 // Setup stack frame, the va_list pointer will start from.
4402 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
4403                                              const SDLoc &dl, SDValue &Chain,
4404                                              unsigned ArgOffset,
4405                                              unsigned TotalArgRegsSaveSize,
4406                                              bool ForceMutable) const {
4407   MachineFunction &MF = DAG.getMachineFunction();
4408   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4409 
4410   // Try to store any remaining integer argument regs
4411   // to their spots on the stack so that they may be loaded by dereferencing
4412   // the result of va_next.
4413   // If there is no regs to be stored, just point address after last
4414   // argument passed via stack.
4415   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
4416                                   CCInfo.getInRegsParamsCount(),
4417                                   CCInfo.getNextStackOffset(),
4418                                   std::max(4U, TotalArgRegsSaveSize));
4419   AFI->setVarArgsFrameIndex(FrameIndex);
4420 }
4421 
4422 bool ARMTargetLowering::splitValueIntoRegisterParts(
4423     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4424     unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4425   bool IsABIRegCopy = CC.has_value();
4426   EVT ValueVT = Val.getValueType();
4427   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4428       PartVT == MVT::f32) {
4429     unsigned ValueBits = ValueVT.getSizeInBits();
4430     unsigned PartBits = PartVT.getSizeInBits();
4431     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
4432     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
4433     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
4434     Parts[0] = Val;
4435     return true;
4436   }
4437   return false;
4438 }
4439 
4440 SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4441     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
4442     MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
4443   bool IsABIRegCopy = CC.has_value();
4444   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4445       PartVT == MVT::f32) {
4446     unsigned ValueBits = ValueVT.getSizeInBits();
4447     unsigned PartBits = PartVT.getSizeInBits();
4448     SDValue Val = Parts[0];
4449 
4450     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
4451     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
4452     Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
4453     return Val;
4454   }
4455   return SDValue();
4456 }
4457 
4458 SDValue ARMTargetLowering::LowerFormalArguments(
4459     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4460     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4461     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4462   MachineFunction &MF = DAG.getMachineFunction();
4463   MachineFrameInfo &MFI = MF.getFrameInfo();
4464 
4465   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4466 
4467   // Assign locations to all of the incoming arguments.
4468   SmallVector<CCValAssign, 16> ArgLocs;
4469   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4470                  *DAG.getContext());
4471   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
4472 
4473   SmallVector<SDValue, 16> ArgValues;
4474   SDValue ArgValue;
4475   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4476   unsigned CurArgIdx = 0;
4477 
4478   // Initially ArgRegsSaveSize is zero.
4479   // Then we increase this value each time we meet byval parameter.
4480   // We also increase this value in case of varargs function.
4481   AFI->setArgRegsSaveSize(0);
4482 
4483   // Calculate the amount of stack space that we need to allocate to store
4484   // byval and variadic arguments that are passed in registers.
4485   // We need to know this before we allocate the first byval or variadic
4486   // argument, as they will be allocated a stack slot below the CFA (Canonical
4487   // Frame Address, the stack pointer at entry to the function).
4488   unsigned ArgRegBegin = ARM::R4;
4489   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4490     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4491       break;
4492 
4493     CCValAssign &VA = ArgLocs[i];
4494     unsigned Index = VA.getValNo();
4495     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4496     if (!Flags.isByVal())
4497       continue;
4498 
4499     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4500     unsigned RBegin, REnd;
4501     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4502     ArgRegBegin = std::min(ArgRegBegin, RBegin);
4503 
4504     CCInfo.nextInRegsParam();
4505   }
4506   CCInfo.rewindByValRegsInfo();
4507 
4508   int lastInsIndex = -1;
4509   if (isVarArg && MFI.hasVAStart()) {
4510     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4511     if (RegIdx != std::size(GPRArgRegs))
4512       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4513   }
4514 
4515   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4516   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4517   auto PtrVT = getPointerTy(DAG.getDataLayout());
4518 
4519   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4520     CCValAssign &VA = ArgLocs[i];
4521     if (Ins[VA.getValNo()].isOrigArg()) {
4522       std::advance(CurOrigArg,
4523                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4524       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4525     }
4526     // Arguments stored in registers.
4527     if (VA.isRegLoc()) {
4528       EVT RegVT = VA.getLocVT();
4529 
4530       if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
4531         // f64 and vector types are split up into multiple registers or
4532         // combinations of registers and stack slots.
4533         SDValue ArgValue1 =
4534             GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4535         VA = ArgLocs[++i]; // skip ahead to next loc
4536         SDValue ArgValue2;
4537         if (VA.isMemLoc()) {
4538           int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4539           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4540           ArgValue2 = DAG.getLoad(
4541               MVT::f64, dl, Chain, FIN,
4542               MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4543         } else {
4544           ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4545         }
4546         ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4547         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4548                                ArgValue1, DAG.getIntPtrConstant(0, dl));
4549         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4550                                ArgValue2, DAG.getIntPtrConstant(1, dl));
4551       } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
4552         ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4553       } else {
4554         const TargetRegisterClass *RC;
4555 
4556         if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4557           RC = &ARM::HPRRegClass;
4558         else if (RegVT == MVT::f32)
4559           RC = &ARM::SPRRegClass;
4560         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4561                  RegVT == MVT::v4bf16)
4562           RC = &ARM::DPRRegClass;
4563         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4564                  RegVT == MVT::v8bf16)
4565           RC = &ARM::QPRRegClass;
4566         else if (RegVT == MVT::i32)
4567           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4568                                            : &ARM::GPRRegClass;
4569         else
4570           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4571 
4572         // Transform the arguments in physical registers into virtual ones.
4573         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4574         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4575 
4576         // If this value is passed in r0 and has the returned attribute (e.g.
4577         // C++ 'structors), record this fact for later use.
4578         if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4579           AFI->setPreservesR0();
4580         }
4581       }
4582 
4583       // If this is an 8 or 16-bit value, it is really passed promoted
4584       // to 32 bits.  Insert an assert[sz]ext to capture this, then
4585       // truncate to the right size.
4586       switch (VA.getLocInfo()) {
4587       default: llvm_unreachable("Unknown loc info!");
4588       case CCValAssign::Full: break;
4589       case CCValAssign::BCvt:
4590         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4591         break;
4592       case CCValAssign::SExt:
4593         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
4594                                DAG.getValueType(VA.getValVT()));
4595         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4596         break;
4597       case CCValAssign::ZExt:
4598         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
4599                                DAG.getValueType(VA.getValVT()));
4600         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4601         break;
4602       }
4603 
4604       // f16 arguments have their size extended to 4 bytes and passed as if they
4605       // had been copied to the LSBs of a 32-bit register.
4606       // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4607       if (VA.needsCustom() &&
4608           (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
4609         ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
4610 
4611       InVals.push_back(ArgValue);
4612     } else { // VA.isRegLoc()
4613       // Only arguments passed on the stack should make it here.
4614       assert(VA.isMemLoc());
4615       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4616 
4617       int index = VA.getValNo();
4618 
4619       // Some Ins[] entries become multiple ArgLoc[] entries.
4620       // Process them only once.
4621       if (index != lastInsIndex)
4622         {
4623           ISD::ArgFlagsTy Flags = Ins[index].Flags;
4624           // FIXME: For now, all byval parameter objects are marked mutable.
4625           // This can be changed with more analysis.
4626           // In case of tail call optimization mark all arguments mutable.
4627           // Since they could be overwritten by lowering of arguments in case of
4628           // a tail call.
4629           if (Flags.isByVal()) {
4630             assert(Ins[index].isOrigArg() &&
4631                    "Byval arguments cannot be implicit");
4632             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4633 
4634             int FrameIndex = StoreByValRegs(
4635                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4636                 VA.getLocMemOffset(), Flags.getByValSize());
4637             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4638             CCInfo.nextInRegsParam();
4639           } else {
4640             unsigned FIOffset = VA.getLocMemOffset();
4641             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4642                                            FIOffset, true);
4643 
4644             // Create load nodes to retrieve arguments from the stack.
4645             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4646             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4647                                          MachinePointerInfo::getFixedStack(
4648                                              DAG.getMachineFunction(), FI)));
4649           }
4650           lastInsIndex = index;
4651         }
4652     }
4653   }
4654 
4655   // varargs
4656   if (isVarArg && MFI.hasVAStart()) {
4657     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset(),
4658                          TotalArgRegsSaveSize);
4659     if (AFI->isCmseNSEntryFunction()) {
4660       DiagnosticInfoUnsupported Diag(
4661           DAG.getMachineFunction().getFunction(),
4662           "secure entry function must not be variadic", dl.getDebugLoc());
4663       DAG.getContext()->diagnose(Diag);
4664     }
4665   }
4666 
4667   unsigned StackArgSize = CCInfo.getNextStackOffset();
4668   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
4669   if (canGuaranteeTCO(CallConv, TailCallOpt)) {
4670     // The only way to guarantee a tail call is if the callee restores its
4671     // argument area, but it must also keep the stack aligned when doing so.
4672     const DataLayout &DL = DAG.getDataLayout();
4673     StackArgSize = alignTo(StackArgSize, DL.getStackAlignment());
4674 
4675     AFI->setArgumentStackToRestore(StackArgSize);
4676   }
4677   AFI->setArgumentStackSize(StackArgSize);
4678 
4679   if (CCInfo.getNextStackOffset() > 0 && AFI->isCmseNSEntryFunction()) {
4680     DiagnosticInfoUnsupported Diag(
4681         DAG.getMachineFunction().getFunction(),
4682         "secure entry function requires arguments on stack", dl.getDebugLoc());
4683     DAG.getContext()->diagnose(Diag);
4684   }
4685 
4686   return Chain;
4687 }
4688 
4689 /// isFloatingPointZero - Return true if this is +0.0.
4690 static bool isFloatingPointZero(SDValue Op) {
4691   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4692     return CFP->getValueAPF().isPosZero();
4693   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4694     // Maybe this has already been legalized into the constant pool?
4695     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4696       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4697       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4698         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4699           return CFP->getValueAPF().isPosZero();
4700     }
4701   } else if (Op->getOpcode() == ISD::BITCAST &&
4702              Op->getValueType(0) == MVT::f64) {
4703     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4704     // created by LowerConstantFP().
4705     SDValue BitcastOp = Op->getOperand(0);
4706     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4707         isNullConstant(BitcastOp->getOperand(0)))
4708       return true;
4709   }
4710   return false;
4711 }
4712 
4713 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4714 /// the given operands.
4715 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4716                                      SDValue &ARMcc, SelectionDAG &DAG,
4717                                      const SDLoc &dl) const {
4718   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4719     unsigned C = RHSC->getZExtValue();
4720     if (!isLegalICmpImmediate((int32_t)C)) {
4721       // Constant does not fit, try adjusting it by one.
4722       switch (CC) {
4723       default: break;
4724       case ISD::SETLT:
4725       case ISD::SETGE:
4726         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4727           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4728           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4729         }
4730         break;
4731       case ISD::SETULT:
4732       case ISD::SETUGE:
4733         if (C != 0 && isLegalICmpImmediate(C-1)) {
4734           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4735           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4736         }
4737         break;
4738       case ISD::SETLE:
4739       case ISD::SETGT:
4740         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4741           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4742           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4743         }
4744         break;
4745       case ISD::SETULE:
4746       case ISD::SETUGT:
4747         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4748           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4749           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4750         }
4751         break;
4752       }
4753     }
4754   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4755              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4756     // In ARM and Thumb-2, the compare instructions can shift their second
4757     // operand.
4758     CC = ISD::getSetCCSwappedOperands(CC);
4759     std::swap(LHS, RHS);
4760   }
4761 
4762   // Thumb1 has very limited immediate modes, so turning an "and" into a
4763   // shift can save multiple instructions.
4764   //
4765   // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4766   // into "((x << n) >> n)".  But that isn't necessarily profitable on its
4767   // own. If it's the operand to an unsigned comparison with an immediate,
4768   // we can eliminate one of the shifts: we transform
4769   // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4770   //
4771   // We avoid transforming cases which aren't profitable due to encoding
4772   // details:
4773   //
4774   // 1. C2 fits into the immediate field of a cmp, and the transformed version
4775   // would not; in that case, we're essentially trading one immediate load for
4776   // another.
4777   // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4778   // 3. C2 is zero; we have other code for this special case.
4779   //
4780   // FIXME: Figure out profitability for Thumb2; we usually can't save an
4781   // instruction, since the AND is always one instruction anyway, but we could
4782   // use narrow instructions in some cases.
4783   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4784       LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4785       LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4786       !isSignedIntSetCC(CC)) {
4787     unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4788     auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4789     uint64_t RHSV = RHSC->getZExtValue();
4790     if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4791       unsigned ShiftBits = countLeadingZeros(Mask);
4792       if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4793         SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4794         LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4795         RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4796       }
4797     }
4798   }
4799 
4800   // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4801   // single "lsls x, c+1".  The shift sets the "C" and "Z" flags the same
4802   // way a cmp would.
4803   // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4804   // some tweaks to the heuristics for the previous and->shift transform.
4805   // FIXME: Optimize cases where the LHS isn't a shift.
4806   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4807       isa<ConstantSDNode>(RHS) &&
4808       cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4809       CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4810       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4811     unsigned ShiftAmt =
4812       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4813     SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4814                                 DAG.getVTList(MVT::i32, MVT::i32),
4815                                 LHS.getOperand(0),
4816                                 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4817     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4818                                      Shift.getValue(1), SDValue());
4819     ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4820     return Chain.getValue(1);
4821   }
4822 
4823   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4824 
4825   // If the RHS is a constant zero then the V (overflow) flag will never be
4826   // set. This can allow us to simplify GE to PL or LT to MI, which can be
4827   // simpler for other passes (like the peephole optimiser) to deal with.
4828   if (isNullConstant(RHS)) {
4829     switch (CondCode) {
4830       default: break;
4831       case ARMCC::GE:
4832         CondCode = ARMCC::PL;
4833         break;
4834       case ARMCC::LT:
4835         CondCode = ARMCC::MI;
4836         break;
4837     }
4838   }
4839 
4840   ARMISD::NodeType CompareType;
4841   switch (CondCode) {
4842   default:
4843     CompareType = ARMISD::CMP;
4844     break;
4845   case ARMCC::EQ:
4846   case ARMCC::NE:
4847     // Uses only Z Flag
4848     CompareType = ARMISD::CMPZ;
4849     break;
4850   }
4851   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4852   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4853 }
4854 
4855 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4856 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4857                                      SelectionDAG &DAG, const SDLoc &dl,
4858                                      bool Signaling) const {
4859   assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4860   SDValue Cmp;
4861   if (!isFloatingPointZero(RHS))
4862     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
4863                       dl, MVT::Glue, LHS, RHS);
4864   else
4865     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
4866                       dl, MVT::Glue, LHS);
4867   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4868 }
4869 
4870 /// duplicateCmp - Glue values can have only one use, so this function
4871 /// duplicates a comparison node.
4872 SDValue
4873 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4874   unsigned Opc = Cmp.getOpcode();
4875   SDLoc DL(Cmp);
4876   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4877     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4878 
4879   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4880   Cmp = Cmp.getOperand(0);
4881   Opc = Cmp.getOpcode();
4882   if (Opc == ARMISD::CMPFP)
4883     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4884   else {
4885     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4886     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4887   }
4888   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4889 }
4890 
4891 // This function returns three things: the arithmetic computation itself
4892 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
4893 // comparison and the condition code define the case in which the arithmetic
4894 // computation *does not* overflow.
4895 std::pair<SDValue, SDValue>
4896 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4897                                  SDValue &ARMcc) const {
4898   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
4899 
4900   SDValue Value, OverflowCmp;
4901   SDValue LHS = Op.getOperand(0);
4902   SDValue RHS = Op.getOperand(1);
4903   SDLoc dl(Op);
4904 
4905   // FIXME: We are currently always generating CMPs because we don't support
4906   // generating CMN through the backend. This is not as good as the natural
4907   // CMP case because it causes a register dependency and cannot be folded
4908   // later.
4909 
4910   switch (Op.getOpcode()) {
4911   default:
4912     llvm_unreachable("Unknown overflow instruction!");
4913   case ISD::SADDO:
4914     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4915     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4916     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4917     break;
4918   case ISD::UADDO:
4919     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4920     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4921     // We do not use it in the USUBO case as Value may not be used.
4922     Value = DAG.getNode(ARMISD::ADDC, dl,
4923                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4924                 .getValue(0);
4925     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4926     break;
4927   case ISD::SSUBO:
4928     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4929     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4930     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4931     break;
4932   case ISD::USUBO:
4933     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4934     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4935     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4936     break;
4937   case ISD::UMULO:
4938     // We generate a UMUL_LOHI and then check if the high word is 0.
4939     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4940     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4941                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4942                         LHS, RHS);
4943     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4944                               DAG.getConstant(0, dl, MVT::i32));
4945     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4946     break;
4947   case ISD::SMULO:
4948     // We generate a SMUL_LOHI and then check if all the bits of the high word
4949     // are the same as the sign bit of the low word.
4950     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4951     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4952                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4953                         LHS, RHS);
4954     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4955                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4956                                           Value.getValue(0),
4957                                           DAG.getConstant(31, dl, MVT::i32)));
4958     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4959     break;
4960   } // switch (...)
4961 
4962   return std::make_pair(Value, OverflowCmp);
4963 }
4964 
4965 SDValue
4966 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4967   // Let legalize expand this if it isn't a legal type yet.
4968   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4969     return SDValue();
4970 
4971   SDValue Value, OverflowCmp;
4972   SDValue ARMcc;
4973   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4974   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4975   SDLoc dl(Op);
4976   // We use 0 and 1 as false and true values.
4977   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4978   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4979   EVT VT = Op.getValueType();
4980 
4981   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4982                                  ARMcc, CCR, OverflowCmp);
4983 
4984   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4985   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4986 }
4987 
4988 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4989                                               SelectionDAG &DAG) {
4990   SDLoc DL(BoolCarry);
4991   EVT CarryVT = BoolCarry.getValueType();
4992 
4993   // This converts the boolean value carry into the carry flag by doing
4994   // ARMISD::SUBC Carry, 1
4995   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4996                               DAG.getVTList(CarryVT, MVT::i32),
4997                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4998   return Carry.getValue(1);
4999 }
5000 
5001 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
5002                                               SelectionDAG &DAG) {
5003   SDLoc DL(Flags);
5004 
5005   // Now convert the carry flag into a boolean carry. We do this
5006   // using ARMISD:ADDE 0, 0, Carry
5007   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
5008                      DAG.getConstant(0, DL, MVT::i32),
5009                      DAG.getConstant(0, DL, MVT::i32), Flags);
5010 }
5011 
5012 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
5013                                              SelectionDAG &DAG) const {
5014   // Let legalize expand this if it isn't a legal type yet.
5015   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
5016     return SDValue();
5017 
5018   SDValue LHS = Op.getOperand(0);
5019   SDValue RHS = Op.getOperand(1);
5020   SDLoc dl(Op);
5021 
5022   EVT VT = Op.getValueType();
5023   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5024   SDValue Value;
5025   SDValue Overflow;
5026   switch (Op.getOpcode()) {
5027   default:
5028     llvm_unreachable("Unknown overflow instruction!");
5029   case ISD::UADDO:
5030     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
5031     // Convert the carry flag into a boolean value.
5032     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5033     break;
5034   case ISD::USUBO: {
5035     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
5036     // Convert the carry flag into a boolean value.
5037     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5038     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
5039     // value. So compute 1 - C.
5040     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
5041                            DAG.getConstant(1, dl, MVT::i32), Overflow);
5042     break;
5043   }
5044   }
5045 
5046   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
5047 }
5048 
5049 static SDValue LowerADDSUBSAT(SDValue Op, SelectionDAG &DAG,
5050                               const ARMSubtarget *Subtarget) {
5051   EVT VT = Op.getValueType();
5052   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
5053     return SDValue();
5054   if (!VT.isSimple())
5055     return SDValue();
5056 
5057   unsigned NewOpcode;
5058   switch (VT.getSimpleVT().SimpleTy) {
5059   default:
5060     return SDValue();
5061   case MVT::i8:
5062     switch (Op->getOpcode()) {
5063     case ISD::UADDSAT:
5064       NewOpcode = ARMISD::UQADD8b;
5065       break;
5066     case ISD::SADDSAT:
5067       NewOpcode = ARMISD::QADD8b;
5068       break;
5069     case ISD::USUBSAT:
5070       NewOpcode = ARMISD::UQSUB8b;
5071       break;
5072     case ISD::SSUBSAT:
5073       NewOpcode = ARMISD::QSUB8b;
5074       break;
5075     }
5076     break;
5077   case MVT::i16:
5078     switch (Op->getOpcode()) {
5079     case ISD::UADDSAT:
5080       NewOpcode = ARMISD::UQADD16b;
5081       break;
5082     case ISD::SADDSAT:
5083       NewOpcode = ARMISD::QADD16b;
5084       break;
5085     case ISD::USUBSAT:
5086       NewOpcode = ARMISD::UQSUB16b;
5087       break;
5088     case ISD::SSUBSAT:
5089       NewOpcode = ARMISD::QSUB16b;
5090       break;
5091     }
5092     break;
5093   }
5094 
5095   SDLoc dl(Op);
5096   SDValue Add =
5097       DAG.getNode(NewOpcode, dl, MVT::i32,
5098                   DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
5099                   DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
5100   return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
5101 }
5102 
5103 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
5104   SDValue Cond = Op.getOperand(0);
5105   SDValue SelectTrue = Op.getOperand(1);
5106   SDValue SelectFalse = Op.getOperand(2);
5107   SDLoc dl(Op);
5108   unsigned Opc = Cond.getOpcode();
5109 
5110   if (Cond.getResNo() == 1 &&
5111       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5112        Opc == ISD::USUBO)) {
5113     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5114       return SDValue();
5115 
5116     SDValue Value, OverflowCmp;
5117     SDValue ARMcc;
5118     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5119     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5120     EVT VT = Op.getValueType();
5121 
5122     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
5123                    OverflowCmp, DAG);
5124   }
5125 
5126   // Convert:
5127   //
5128   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
5129   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
5130   //
5131   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
5132     const ConstantSDNode *CMOVTrue =
5133       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
5134     const ConstantSDNode *CMOVFalse =
5135       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
5136 
5137     if (CMOVTrue && CMOVFalse) {
5138       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
5139       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
5140 
5141       SDValue True;
5142       SDValue False;
5143       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
5144         True = SelectTrue;
5145         False = SelectFalse;
5146       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
5147         True = SelectFalse;
5148         False = SelectTrue;
5149       }
5150 
5151       if (True.getNode() && False.getNode()) {
5152         EVT VT = Op.getValueType();
5153         SDValue ARMcc = Cond.getOperand(2);
5154         SDValue CCR = Cond.getOperand(3);
5155         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
5156         assert(True.getValueType() == VT);
5157         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
5158       }
5159     }
5160   }
5161 
5162   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
5163   // undefined bits before doing a full-word comparison with zero.
5164   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
5165                      DAG.getConstant(1, dl, Cond.getValueType()));
5166 
5167   return DAG.getSelectCC(dl, Cond,
5168                          DAG.getConstant(0, dl, Cond.getValueType()),
5169                          SelectTrue, SelectFalse, ISD::SETNE);
5170 }
5171 
5172 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
5173                                  bool &swpCmpOps, bool &swpVselOps) {
5174   // Start by selecting the GE condition code for opcodes that return true for
5175   // 'equality'
5176   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
5177       CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
5178     CondCode = ARMCC::GE;
5179 
5180   // and GT for opcodes that return false for 'equality'.
5181   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
5182            CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
5183     CondCode = ARMCC::GT;
5184 
5185   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
5186   // to swap the compare operands.
5187   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
5188       CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
5189     swpCmpOps = true;
5190 
5191   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
5192   // If we have an unordered opcode, we need to swap the operands to the VSEL
5193   // instruction (effectively negating the condition).
5194   //
5195   // This also has the effect of swapping which one of 'less' or 'greater'
5196   // returns true, so we also swap the compare operands. It also switches
5197   // whether we return true for 'equality', so we compensate by picking the
5198   // opposite condition code to our original choice.
5199   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
5200       CC == ISD::SETUGT) {
5201     swpCmpOps = !swpCmpOps;
5202     swpVselOps = !swpVselOps;
5203     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
5204   }
5205 
5206   // 'ordered' is 'anything but unordered', so use the VS condition code and
5207   // swap the VSEL operands.
5208   if (CC == ISD::SETO) {
5209     CondCode = ARMCC::VS;
5210     swpVselOps = true;
5211   }
5212 
5213   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
5214   // code and swap the VSEL operands. Also do this if we don't care about the
5215   // unordered case.
5216   if (CC == ISD::SETUNE || CC == ISD::SETNE) {
5217     CondCode = ARMCC::EQ;
5218     swpVselOps = true;
5219   }
5220 }
5221 
5222 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
5223                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
5224                                    SDValue Cmp, SelectionDAG &DAG) const {
5225   if (!Subtarget->hasFP64() && VT == MVT::f64) {
5226     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5227                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
5228     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5229                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
5230 
5231     SDValue TrueLow = TrueVal.getValue(0);
5232     SDValue TrueHigh = TrueVal.getValue(1);
5233     SDValue FalseLow = FalseVal.getValue(0);
5234     SDValue FalseHigh = FalseVal.getValue(1);
5235 
5236     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
5237                               ARMcc, CCR, Cmp);
5238     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
5239                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
5240 
5241     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
5242   } else {
5243     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
5244                        Cmp);
5245   }
5246 }
5247 
5248 static bool isGTorGE(ISD::CondCode CC) {
5249   return CC == ISD::SETGT || CC == ISD::SETGE;
5250 }
5251 
5252 static bool isLTorLE(ISD::CondCode CC) {
5253   return CC == ISD::SETLT || CC == ISD::SETLE;
5254 }
5255 
5256 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5257 // All of these conditions (and their <= and >= counterparts) will do:
5258 //          x < k ? k : x
5259 //          x > k ? x : k
5260 //          k < x ? x : k
5261 //          k > x ? k : x
5262 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
5263                             const SDValue TrueVal, const SDValue FalseVal,
5264                             const ISD::CondCode CC, const SDValue K) {
5265   return (isGTorGE(CC) &&
5266           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
5267          (isLTorLE(CC) &&
5268           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
5269 }
5270 
5271 // Check if two chained conditionals could be converted into SSAT or USAT.
5272 //
5273 // SSAT can replace a set of two conditional selectors that bound a number to an
5274 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5275 //
5276 //     x < -k ? -k : (x > k ? k : x)
5277 //     x < -k ? -k : (x < k ? x : k)
5278 //     x > -k ? (x > k ? k : x) : -k
5279 //     x < k ? (x < -k ? -k : x) : k
5280 //     etc.
5281 //
5282 // LLVM canonicalizes these to either a min(max()) or a max(min())
5283 // pattern. This function tries to match one of these and will return a SSAT
5284 // node if successful.
5285 //
5286 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
5287 // is a power of 2.
5288 static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) {
5289   EVT VT = Op.getValueType();
5290   SDValue V1 = Op.getOperand(0);
5291   SDValue K1 = Op.getOperand(1);
5292   SDValue TrueVal1 = Op.getOperand(2);
5293   SDValue FalseVal1 = Op.getOperand(3);
5294   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5295 
5296   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5297   if (Op2.getOpcode() != ISD::SELECT_CC)
5298     return SDValue();
5299 
5300   SDValue V2 = Op2.getOperand(0);
5301   SDValue K2 = Op2.getOperand(1);
5302   SDValue TrueVal2 = Op2.getOperand(2);
5303   SDValue FalseVal2 = Op2.getOperand(3);
5304   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
5305 
5306   SDValue V1Tmp = V1;
5307   SDValue V2Tmp = V2;
5308 
5309   // Check that the registers and the constants match a max(min()) or min(max())
5310   // pattern
5311   if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
5312       K2 != FalseVal2 ||
5313       !((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2))))
5314     return SDValue();
5315 
5316   // Check that the constant in the lower-bound check is
5317   // the opposite of the constant in the upper-bound check
5318   // in 1's complement.
5319   if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5320     return SDValue();
5321 
5322   int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5323   int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5324   int64_t PosVal = std::max(Val1, Val2);
5325   int64_t NegVal = std::min(Val1, Val2);
5326 
5327   if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
5328       !isPowerOf2_64(PosVal + 1))
5329     return SDValue();
5330 
5331   // Handle the difference between USAT (unsigned) and SSAT (signed)
5332   // saturation
5333   // At this point, PosVal is guaranteed to be positive
5334   uint64_t K = PosVal;
5335   SDLoc dl(Op);
5336   if (Val1 == ~Val2)
5337     return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp,
5338                        DAG.getConstant(countTrailingOnes(K), dl, VT));
5339   if (NegVal == 0)
5340     return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp,
5341                        DAG.getConstant(countTrailingOnes(K), dl, VT));
5342 
5343   return SDValue();
5344 }
5345 
5346 // Check if a condition of the type x < k ? k : x can be converted into a
5347 // bit operation instead of conditional moves.
5348 // Currently this is allowed given:
5349 // - The conditions and values match up
5350 // - k is 0 or -1 (all ones)
5351 // This function will not check the last condition, thats up to the caller
5352 // It returns true if the transformation can be made, and in such case
5353 // returns x in V, and k in SatK.
5354 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
5355                                          SDValue &SatK)
5356 {
5357   SDValue LHS = Op.getOperand(0);
5358   SDValue RHS = Op.getOperand(1);
5359   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5360   SDValue TrueVal = Op.getOperand(2);
5361   SDValue FalseVal = Op.getOperand(3);
5362 
5363   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
5364                                                ? &RHS
5365                                                : nullptr;
5366 
5367   // No constant operation in comparison, early out
5368   if (!K)
5369     return false;
5370 
5371   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5372   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5373   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
5374 
5375   // If the constant on left and right side, or variable on left and right,
5376   // does not match, early out
5377   if (*K != KTmp || V != VTmp)
5378     return false;
5379 
5380   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
5381     SatK = *K;
5382     return true;
5383   }
5384 
5385   return false;
5386 }
5387 
5388 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
5389   if (VT == MVT::f32)
5390     return !Subtarget->hasVFP2Base();
5391   if (VT == MVT::f64)
5392     return !Subtarget->hasFP64();
5393   if (VT == MVT::f16)
5394     return !Subtarget->hasFullFP16();
5395   return false;
5396 }
5397 
5398 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5399   EVT VT = Op.getValueType();
5400   SDLoc dl(Op);
5401 
5402   // Try to convert two saturating conditional selects into a single SSAT
5403   if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2())
5404     if (SDValue SatValue = LowerSaturatingConditional(Op, DAG))
5405       return SatValue;
5406 
5407   // Try to convert expressions of the form x < k ? k : x (and similar forms)
5408   // into more efficient bit operations, which is possible when k is 0 or -1
5409   // On ARM and Thumb-2 which have flexible operand 2 this will result in
5410   // single instructions. On Thumb the shift and the bit operation will be two
5411   // instructions.
5412   // Only allow this transformation on full-width (32-bit) operations
5413   SDValue LowerSatConstant;
5414   SDValue SatValue;
5415   if (VT == MVT::i32 &&
5416       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
5417     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
5418                                  DAG.getConstant(31, dl, VT));
5419     if (isNullConstant(LowerSatConstant)) {
5420       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
5421                                       DAG.getAllOnesConstant(dl, VT));
5422       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
5423     } else if (isAllOnesConstant(LowerSatConstant))
5424       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
5425   }
5426 
5427   SDValue LHS = Op.getOperand(0);
5428   SDValue RHS = Op.getOperand(1);
5429   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5430   SDValue TrueVal = Op.getOperand(2);
5431   SDValue FalseVal = Op.getOperand(3);
5432   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
5433   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
5434 
5435   if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5436       LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
5437     unsigned TVal = CTVal->getZExtValue();
5438     unsigned FVal = CFVal->getZExtValue();
5439     unsigned Opcode = 0;
5440 
5441     if (TVal == ~FVal) {
5442       Opcode = ARMISD::CSINV;
5443     } else if (TVal == ~FVal + 1) {
5444       Opcode = ARMISD::CSNEG;
5445     } else if (TVal + 1 == FVal) {
5446       Opcode = ARMISD::CSINC;
5447     } else if (TVal == FVal + 1) {
5448       Opcode = ARMISD::CSINC;
5449       std::swap(TrueVal, FalseVal);
5450       std::swap(TVal, FVal);
5451       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5452     }
5453 
5454     if (Opcode) {
5455       // If one of the constants is cheaper than another, materialise the
5456       // cheaper one and let the csel generate the other.
5457       if (Opcode != ARMISD::CSINC &&
5458           HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
5459         std::swap(TrueVal, FalseVal);
5460         std::swap(TVal, FVal);
5461         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5462       }
5463 
5464       // Attempt to use ZR checking TVal is 0, possibly inverting the condition
5465       // to get there. CSINC not is invertable like the other two (~(~a) == a,
5466       // -(-a) == a, but (a+1)+1 != a).
5467       if (FVal == 0 && Opcode != ARMISD::CSINC) {
5468         std::swap(TrueVal, FalseVal);
5469         std::swap(TVal, FVal);
5470         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5471       }
5472 
5473       // Drops F's value because we can get it by inverting/negating TVal.
5474       FalseVal = TrueVal;
5475 
5476       SDValue ARMcc;
5477       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5478       EVT VT = TrueVal.getValueType();
5479       return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5480     }
5481   }
5482 
5483   if (isUnsupportedFloatingType(LHS.getValueType())) {
5484     DAG.getTargetLoweringInfo().softenSetCCOperands(
5485         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5486 
5487     // If softenSetCCOperands only returned one value, we should compare it to
5488     // zero.
5489     if (!RHS.getNode()) {
5490       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5491       CC = ISD::SETNE;
5492     }
5493   }
5494 
5495   if (LHS.getValueType() == MVT::i32) {
5496     // Try to generate VSEL on ARMv8.
5497     // The VSEL instruction can't use all the usual ARM condition
5498     // codes: it only has two bits to select the condition code, so it's
5499     // constrained to use only GE, GT, VS and EQ.
5500     //
5501     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5502     // swap the operands of the previous compare instruction (effectively
5503     // inverting the compare condition, swapping 'less' and 'greater') and
5504     // sometimes need to swap the operands to the VSEL (which inverts the
5505     // condition in the sense of firing whenever the previous condition didn't)
5506     if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5507                                         TrueVal.getValueType() == MVT::f32 ||
5508                                         TrueVal.getValueType() == MVT::f64)) {
5509       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5510       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5511           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5512         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5513         std::swap(TrueVal, FalseVal);
5514       }
5515     }
5516 
5517     SDValue ARMcc;
5518     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5519     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5520     // Choose GE over PL, which vsel does now support
5521     if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
5522       ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5523     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5524   }
5525 
5526   ARMCC::CondCodes CondCode, CondCode2;
5527   FPCCToARMCC(CC, CondCode, CondCode2);
5528 
5529   // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5530   // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5531   // must use VSEL (limited condition codes), due to not having conditional f16
5532   // moves.
5533   if (Subtarget->hasFPARMv8Base() &&
5534       !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5535       (TrueVal.getValueType() == MVT::f16 ||
5536        TrueVal.getValueType() == MVT::f32 ||
5537        TrueVal.getValueType() == MVT::f64)) {
5538     bool swpCmpOps = false;
5539     bool swpVselOps = false;
5540     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5541 
5542     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5543         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5544       if (swpCmpOps)
5545         std::swap(LHS, RHS);
5546       if (swpVselOps)
5547         std::swap(TrueVal, FalseVal);
5548     }
5549   }
5550 
5551   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5552   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5553   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5554   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5555   if (CondCode2 != ARMCC::AL) {
5556     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5557     // FIXME: Needs another CMP because flag can have but one use.
5558     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5559     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5560   }
5561   return Result;
5562 }
5563 
5564 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5565 /// to morph to an integer compare sequence.
5566 static bool canChangeToInt(SDValue Op, bool &SeenZero,
5567                            const ARMSubtarget *Subtarget) {
5568   SDNode *N = Op.getNode();
5569   if (!N->hasOneUse())
5570     // Otherwise it requires moving the value from fp to integer registers.
5571     return false;
5572   if (!N->getNumValues())
5573     return false;
5574   EVT VT = Op.getValueType();
5575   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5576     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5577     // vmrs are very slow, e.g. cortex-a8.
5578     return false;
5579 
5580   if (isFloatingPointZero(Op)) {
5581     SeenZero = true;
5582     return true;
5583   }
5584   return ISD::isNormalLoad(N);
5585 }
5586 
5587 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5588   if (isFloatingPointZero(Op))
5589     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5590 
5591   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5592     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5593                        Ld->getPointerInfo(), Ld->getAlign(),
5594                        Ld->getMemOperand()->getFlags());
5595 
5596   llvm_unreachable("Unknown VFP cmp argument!");
5597 }
5598 
5599 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5600                            SDValue &RetVal1, SDValue &RetVal2) {
5601   SDLoc dl(Op);
5602 
5603   if (isFloatingPointZero(Op)) {
5604     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5605     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5606     return;
5607   }
5608 
5609   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5610     SDValue Ptr = Ld->getBasePtr();
5611     RetVal1 =
5612         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5613                     Ld->getAlign(), Ld->getMemOperand()->getFlags());
5614 
5615     EVT PtrType = Ptr.getValueType();
5616     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5617                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5618     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5619                           Ld->getPointerInfo().getWithOffset(4),
5620                           commonAlignment(Ld->getAlign(), 4),
5621                           Ld->getMemOperand()->getFlags());
5622     return;
5623   }
5624 
5625   llvm_unreachable("Unknown VFP cmp argument!");
5626 }
5627 
5628 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5629 /// f32 and even f64 comparisons to integer ones.
5630 SDValue
5631 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5632   SDValue Chain = Op.getOperand(0);
5633   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5634   SDValue LHS = Op.getOperand(2);
5635   SDValue RHS = Op.getOperand(3);
5636   SDValue Dest = Op.getOperand(4);
5637   SDLoc dl(Op);
5638 
5639   bool LHSSeenZero = false;
5640   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5641   bool RHSSeenZero = false;
5642   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5643   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5644     // If unsafe fp math optimization is enabled and there are no other uses of
5645     // the CMP operands, and the condition code is EQ or NE, we can optimize it
5646     // to an integer comparison.
5647     if (CC == ISD::SETOEQ)
5648       CC = ISD::SETEQ;
5649     else if (CC == ISD::SETUNE)
5650       CC = ISD::SETNE;
5651 
5652     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5653     SDValue ARMcc;
5654     if (LHS.getValueType() == MVT::f32) {
5655       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5656                         bitcastf32Toi32(LHS, DAG), Mask);
5657       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5658                         bitcastf32Toi32(RHS, DAG), Mask);
5659       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5660       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5661       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5662                          Chain, Dest, ARMcc, CCR, Cmp);
5663     }
5664 
5665     SDValue LHS1, LHS2;
5666     SDValue RHS1, RHS2;
5667     expandf64Toi32(LHS, DAG, LHS1, LHS2);
5668     expandf64Toi32(RHS, DAG, RHS1, RHS2);
5669     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5670     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5671     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5672     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5673     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5674     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5675     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5676   }
5677 
5678   return SDValue();
5679 }
5680 
5681 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5682   SDValue Chain = Op.getOperand(0);
5683   SDValue Cond = Op.getOperand(1);
5684   SDValue Dest = Op.getOperand(2);
5685   SDLoc dl(Op);
5686 
5687   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5688   // instruction.
5689   unsigned Opc = Cond.getOpcode();
5690   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5691                       !Subtarget->isThumb1Only();
5692   if (Cond.getResNo() == 1 &&
5693       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5694        Opc == ISD::USUBO || OptimizeMul)) {
5695     // Only lower legal XALUO ops.
5696     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5697       return SDValue();
5698 
5699     // The actual operation with overflow check.
5700     SDValue Value, OverflowCmp;
5701     SDValue ARMcc;
5702     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5703 
5704     // Reverse the condition code.
5705     ARMCC::CondCodes CondCode =
5706         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5707     CondCode = ARMCC::getOppositeCondition(CondCode);
5708     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5709     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5710 
5711     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5712                        OverflowCmp);
5713   }
5714 
5715   return SDValue();
5716 }
5717 
5718 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5719   SDValue Chain = Op.getOperand(0);
5720   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5721   SDValue LHS = Op.getOperand(2);
5722   SDValue RHS = Op.getOperand(3);
5723   SDValue Dest = Op.getOperand(4);
5724   SDLoc dl(Op);
5725 
5726   if (isUnsupportedFloatingType(LHS.getValueType())) {
5727     DAG.getTargetLoweringInfo().softenSetCCOperands(
5728         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5729 
5730     // If softenSetCCOperands only returned one value, we should compare it to
5731     // zero.
5732     if (!RHS.getNode()) {
5733       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5734       CC = ISD::SETNE;
5735     }
5736   }
5737 
5738   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5739   // instruction.
5740   unsigned Opc = LHS.getOpcode();
5741   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5742                       !Subtarget->isThumb1Only();
5743   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5744       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5745        Opc == ISD::USUBO || OptimizeMul) &&
5746       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5747     // Only lower legal XALUO ops.
5748     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5749       return SDValue();
5750 
5751     // The actual operation with overflow check.
5752     SDValue Value, OverflowCmp;
5753     SDValue ARMcc;
5754     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5755 
5756     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5757       // Reverse the condition code.
5758       ARMCC::CondCodes CondCode =
5759           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5760       CondCode = ARMCC::getOppositeCondition(CondCode);
5761       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5762     }
5763     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5764 
5765     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5766                        OverflowCmp);
5767   }
5768 
5769   if (LHS.getValueType() == MVT::i32) {
5770     SDValue ARMcc;
5771     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5772     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5773     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5774                        Chain, Dest, ARMcc, CCR, Cmp);
5775   }
5776 
5777   if (getTargetMachine().Options.UnsafeFPMath &&
5778       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5779        CC == ISD::SETNE || CC == ISD::SETUNE)) {
5780     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5781       return Result;
5782   }
5783 
5784   ARMCC::CondCodes CondCode, CondCode2;
5785   FPCCToARMCC(CC, CondCode, CondCode2);
5786 
5787   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5788   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5789   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5790   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5791   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5792   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5793   if (CondCode2 != ARMCC::AL) {
5794     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5795     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5796     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5797   }
5798   return Res;
5799 }
5800 
5801 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5802   SDValue Chain = Op.getOperand(0);
5803   SDValue Table = Op.getOperand(1);
5804   SDValue Index = Op.getOperand(2);
5805   SDLoc dl(Op);
5806 
5807   EVT PTy = getPointerTy(DAG.getDataLayout());
5808   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5809   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5810   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5811   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5812   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5813   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5814     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5815     // which does another jump to the destination. This also makes it easier
5816     // to translate it to TBB / TBH later (Thumb2 only).
5817     // FIXME: This might not work if the function is extremely large.
5818     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5819                        Addr, Op.getOperand(2), JTI);
5820   }
5821   if (isPositionIndependent() || Subtarget->isROPI()) {
5822     Addr =
5823         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5824                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5825     Chain = Addr.getValue(1);
5826     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5827     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5828   } else {
5829     Addr =
5830         DAG.getLoad(PTy, dl, Chain, Addr,
5831                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5832     Chain = Addr.getValue(1);
5833     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5834   }
5835 }
5836 
5837 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5838   EVT VT = Op.getValueType();
5839   SDLoc dl(Op);
5840 
5841   if (Op.getValueType().getVectorElementType() == MVT::i32) {
5842     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5843       return Op;
5844     return DAG.UnrollVectorOp(Op.getNode());
5845   }
5846 
5847   const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
5848 
5849   EVT NewTy;
5850   const EVT OpTy = Op.getOperand(0).getValueType();
5851   if (OpTy == MVT::v4f32)
5852     NewTy = MVT::v4i32;
5853   else if (OpTy == MVT::v4f16 && HasFullFP16)
5854     NewTy = MVT::v4i16;
5855   else if (OpTy == MVT::v8f16 && HasFullFP16)
5856     NewTy = MVT::v8i16;
5857   else
5858     llvm_unreachable("Invalid type for custom lowering!");
5859 
5860   if (VT != MVT::v4i16 && VT != MVT::v8i16)
5861     return DAG.UnrollVectorOp(Op.getNode());
5862 
5863   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5864   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5865 }
5866 
5867 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5868   EVT VT = Op.getValueType();
5869   if (VT.isVector())
5870     return LowerVectorFP_TO_INT(Op, DAG);
5871 
5872   bool IsStrict = Op->isStrictFPOpcode();
5873   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5874 
5875   if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5876     RTLIB::Libcall LC;
5877     if (Op.getOpcode() == ISD::FP_TO_SINT ||
5878         Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5879       LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5880                               Op.getValueType());
5881     else
5882       LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5883                               Op.getValueType());
5884     SDLoc Loc(Op);
5885     MakeLibCallOptions CallOptions;
5886     SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5887     SDValue Result;
5888     std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5889                                           CallOptions, Loc, Chain);
5890     return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5891   }
5892 
5893   // FIXME: Remove this when we have strict fp instruction selection patterns
5894   if (IsStrict) {
5895     SDLoc Loc(Op);
5896     SDValue Result =
5897         DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5898                                                              : ISD::FP_TO_UINT,
5899                     Loc, Op.getValueType(), SrcVal);
5900     return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5901   }
5902 
5903   return Op;
5904 }
5905 
5906 static SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
5907                                   const ARMSubtarget *Subtarget) {
5908   EVT VT = Op.getValueType();
5909   EVT ToVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
5910   EVT FromVT = Op.getOperand(0).getValueType();
5911 
5912   if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f32)
5913     return Op;
5914   if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f64 &&
5915       Subtarget->hasFP64())
5916     return Op;
5917   if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f16 &&
5918       Subtarget->hasFullFP16())
5919     return Op;
5920   if (VT == MVT::v4i32 && ToVT == MVT::i32 && FromVT == MVT::v4f32 &&
5921       Subtarget->hasMVEFloatOps())
5922     return Op;
5923   if (VT == MVT::v8i16 && ToVT == MVT::i16 && FromVT == MVT::v8f16 &&
5924       Subtarget->hasMVEFloatOps())
5925     return Op;
5926 
5927   if (FromVT != MVT::v4f32 && FromVT != MVT::v8f16)
5928     return SDValue();
5929 
5930   SDLoc DL(Op);
5931   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
5932   unsigned BW = ToVT.getScalarSizeInBits() - IsSigned;
5933   SDValue CVT = DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
5934                             DAG.getValueType(VT.getScalarType()));
5935   SDValue Max = DAG.getNode(IsSigned ? ISD::SMIN : ISD::UMIN, DL, VT, CVT,
5936                             DAG.getConstant((1 << BW) - 1, DL, VT));
5937   if (IsSigned)
5938     Max = DAG.getNode(ISD::SMAX, DL, VT, Max,
5939                       DAG.getConstant(-(1 << BW), DL, VT));
5940   return Max;
5941 }
5942 
5943 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5944   EVT VT = Op.getValueType();
5945   SDLoc dl(Op);
5946 
5947   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5948     if (VT.getVectorElementType() == MVT::f32)
5949       return Op;
5950     return DAG.UnrollVectorOp(Op.getNode());
5951   }
5952 
5953   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5954           Op.getOperand(0).getValueType() == MVT::v8i16) &&
5955          "Invalid type for custom lowering!");
5956 
5957   const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
5958 
5959   EVT DestVecType;
5960   if (VT == MVT::v4f32)
5961     DestVecType = MVT::v4i32;
5962   else if (VT == MVT::v4f16 && HasFullFP16)
5963     DestVecType = MVT::v4i16;
5964   else if (VT == MVT::v8f16 && HasFullFP16)
5965     DestVecType = MVT::v8i16;
5966   else
5967     return DAG.UnrollVectorOp(Op.getNode());
5968 
5969   unsigned CastOpc;
5970   unsigned Opc;
5971   switch (Op.getOpcode()) {
5972   default: llvm_unreachable("Invalid opcode!");
5973   case ISD::SINT_TO_FP:
5974     CastOpc = ISD::SIGN_EXTEND;
5975     Opc = ISD::SINT_TO_FP;
5976     break;
5977   case ISD::UINT_TO_FP:
5978     CastOpc = ISD::ZERO_EXTEND;
5979     Opc = ISD::UINT_TO_FP;
5980     break;
5981   }
5982 
5983   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5984   return DAG.getNode(Opc, dl, VT, Op);
5985 }
5986 
5987 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5988   EVT VT = Op.getValueType();
5989   if (VT.isVector())
5990     return LowerVectorINT_TO_FP(Op, DAG);
5991   if (isUnsupportedFloatingType(VT)) {
5992     RTLIB::Libcall LC;
5993     if (Op.getOpcode() == ISD::SINT_TO_FP)
5994       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5995                               Op.getValueType());
5996     else
5997       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5998                               Op.getValueType());
5999     MakeLibCallOptions CallOptions;
6000     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
6001                        CallOptions, SDLoc(Op)).first;
6002   }
6003 
6004   return Op;
6005 }
6006 
6007 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6008   // Implement fcopysign with a fabs and a conditional fneg.
6009   SDValue Tmp0 = Op.getOperand(0);
6010   SDValue Tmp1 = Op.getOperand(1);
6011   SDLoc dl(Op);
6012   EVT VT = Op.getValueType();
6013   EVT SrcVT = Tmp1.getValueType();
6014   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
6015     Tmp0.getOpcode() == ARMISD::VMOVDRR;
6016   bool UseNEON = !InGPR && Subtarget->hasNEON();
6017 
6018   if (UseNEON) {
6019     // Use VBSL to copy the sign bit.
6020     unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
6021     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
6022                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
6023     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
6024     if (VT == MVT::f64)
6025       Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6026                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
6027                          DAG.getConstant(32, dl, MVT::i32));
6028     else /*if (VT == MVT::f32)*/
6029       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
6030     if (SrcVT == MVT::f32) {
6031       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
6032       if (VT == MVT::f64)
6033         Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6034                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
6035                            DAG.getConstant(32, dl, MVT::i32));
6036     } else if (VT == MVT::f32)
6037       Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
6038                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
6039                          DAG.getConstant(32, dl, MVT::i32));
6040     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
6041     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
6042 
6043     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
6044                                             dl, MVT::i32);
6045     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
6046     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
6047                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
6048 
6049     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
6050                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
6051                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
6052     if (VT == MVT::f32) {
6053       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
6054       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
6055                         DAG.getConstant(0, dl, MVT::i32));
6056     } else {
6057       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
6058     }
6059 
6060     return Res;
6061   }
6062 
6063   // Bitcast operand 1 to i32.
6064   if (SrcVT == MVT::f64)
6065     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6066                        Tmp1).getValue(1);
6067   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
6068 
6069   // Or in the signbit with integer operations.
6070   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
6071   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
6072   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
6073   if (VT == MVT::f32) {
6074     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
6075                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
6076     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
6077                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
6078   }
6079 
6080   // f64: Or the high part with signbit and then combine two parts.
6081   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6082                      Tmp0);
6083   SDValue Lo = Tmp0.getValue(0);
6084   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
6085   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
6086   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
6087 }
6088 
6089 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
6090   MachineFunction &MF = DAG.getMachineFunction();
6091   MachineFrameInfo &MFI = MF.getFrameInfo();
6092   MFI.setReturnAddressIsTaken(true);
6093 
6094   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
6095     return SDValue();
6096 
6097   EVT VT = Op.getValueType();
6098   SDLoc dl(Op);
6099   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6100   if (Depth) {
6101     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6102     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
6103     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
6104                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
6105                        MachinePointerInfo());
6106   }
6107 
6108   // Return LR, which contains the return address. Mark it an implicit live-in.
6109   Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
6110   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
6111 }
6112 
6113 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
6114   const ARMBaseRegisterInfo &ARI =
6115     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
6116   MachineFunction &MF = DAG.getMachineFunction();
6117   MachineFrameInfo &MFI = MF.getFrameInfo();
6118   MFI.setFrameAddressIsTaken(true);
6119 
6120   EVT VT = Op.getValueType();
6121   SDLoc dl(Op);  // FIXME probably not meaningful
6122   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6123   Register FrameReg = ARI.getFrameRegister(MF);
6124   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6125   while (Depth--)
6126     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
6127                             MachinePointerInfo());
6128   return FrameAddr;
6129 }
6130 
6131 // FIXME? Maybe this could be a TableGen attribute on some registers and
6132 // this table could be generated automatically from RegInfo.
6133 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
6134                                               const MachineFunction &MF) const {
6135   Register Reg = StringSwitch<unsigned>(RegName)
6136                        .Case("sp", ARM::SP)
6137                        .Default(0);
6138   if (Reg)
6139     return Reg;
6140   report_fatal_error(Twine("Invalid register name \""
6141                               + StringRef(RegName)  + "\"."));
6142 }
6143 
6144 // Result is 64 bit value so split into two 32 bit values and return as a
6145 // pair of values.
6146 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
6147                                 SelectionDAG &DAG) {
6148   SDLoc DL(N);
6149 
6150   // This function is only supposed to be called for i64 type destination.
6151   assert(N->getValueType(0) == MVT::i64
6152           && "ExpandREAD_REGISTER called for non-i64 type result.");
6153 
6154   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
6155                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
6156                              N->getOperand(0),
6157                              N->getOperand(1));
6158 
6159   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
6160                     Read.getValue(1)));
6161   Results.push_back(Read.getOperand(0));
6162 }
6163 
6164 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
6165 /// When \p DstVT, the destination type of \p BC, is on the vector
6166 /// register bank and the source of bitcast, \p Op, operates on the same bank,
6167 /// it might be possible to combine them, such that everything stays on the
6168 /// vector register bank.
6169 /// \p return The node that would replace \p BT, if the combine
6170 /// is possible.
6171 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
6172                                                 SelectionDAG &DAG) {
6173   SDValue Op = BC->getOperand(0);
6174   EVT DstVT = BC->getValueType(0);
6175 
6176   // The only vector instruction that can produce a scalar (remember,
6177   // since the bitcast was about to be turned into VMOVDRR, the source
6178   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
6179   // Moreover, we can do this combine only if there is one use.
6180   // Finally, if the destination type is not a vector, there is not
6181   // much point on forcing everything on the vector bank.
6182   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6183       !Op.hasOneUse())
6184     return SDValue();
6185 
6186   // If the index is not constant, we will introduce an additional
6187   // multiply that will stick.
6188   // Give up in that case.
6189   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6190   if (!Index)
6191     return SDValue();
6192   unsigned DstNumElt = DstVT.getVectorNumElements();
6193 
6194   // Compute the new index.
6195   const APInt &APIntIndex = Index->getAPIntValue();
6196   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
6197   NewIndex *= APIntIndex;
6198   // Check if the new constant index fits into i32.
6199   if (NewIndex.getBitWidth() > 32)
6200     return SDValue();
6201 
6202   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
6203   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
6204   SDLoc dl(Op);
6205   SDValue ExtractSrc = Op.getOperand(0);
6206   EVT VecVT = EVT::getVectorVT(
6207       *DAG.getContext(), DstVT.getScalarType(),
6208       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
6209   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
6210   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
6211                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
6212 }
6213 
6214 /// ExpandBITCAST - If the target supports VFP, this function is called to
6215 /// expand a bit convert where either the source or destination type is i64 to
6216 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
6217 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
6218 /// vectors), since the legalizer won't know what to do with that.
6219 SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
6220                                          const ARMSubtarget *Subtarget) const {
6221   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6222   SDLoc dl(N);
6223   SDValue Op = N->getOperand(0);
6224 
6225   // This function is only supposed to be called for i16 and i64 types, either
6226   // as the source or destination of the bit convert.
6227   EVT SrcVT = Op.getValueType();
6228   EVT DstVT = N->getValueType(0);
6229 
6230   if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
6231       (DstVT == MVT::f16 || DstVT == MVT::bf16))
6232     return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(),
6233                      DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op));
6234 
6235   if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
6236       (SrcVT == MVT::f16 || SrcVT == MVT::bf16))
6237     return DAG.getNode(
6238         ISD::TRUNCATE, SDLoc(N), DstVT,
6239         MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op));
6240 
6241   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
6242     return SDValue();
6243 
6244   // Turn i64->f64 into VMOVDRR.
6245   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
6246     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
6247     // if we can combine the bitcast with its source.
6248     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
6249       return Val;
6250 
6251     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
6252                              DAG.getConstant(0, dl, MVT::i32));
6253     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
6254                              DAG.getConstant(1, dl, MVT::i32));
6255     return DAG.getNode(ISD::BITCAST, dl, DstVT,
6256                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
6257   }
6258 
6259   // Turn f64->i64 into VMOVRRD.
6260   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
6261     SDValue Cvt;
6262     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
6263         SrcVT.getVectorNumElements() > 1)
6264       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6265                         DAG.getVTList(MVT::i32, MVT::i32),
6266                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
6267     else
6268       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6269                         DAG.getVTList(MVT::i32, MVT::i32), Op);
6270     // Merge the pieces into a single i64 value.
6271     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
6272   }
6273 
6274   return SDValue();
6275 }
6276 
6277 /// getZeroVector - Returns a vector of specified type with all zero elements.
6278 /// Zero vectors are used to represent vector negation and in those cases
6279 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
6280 /// not support i64 elements, so sometimes the zero vectors will need to be
6281 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
6282 /// zero vector.
6283 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
6284   assert(VT.isVector() && "Expected a vector type");
6285   // The canonical modified immediate encoding of a zero vector is....0!
6286   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
6287   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6288   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
6289   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6290 }
6291 
6292 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
6293 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6294 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
6295                                                 SelectionDAG &DAG) const {
6296   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6297   EVT VT = Op.getValueType();
6298   unsigned VTBits = VT.getSizeInBits();
6299   SDLoc dl(Op);
6300   SDValue ShOpLo = Op.getOperand(0);
6301   SDValue ShOpHi = Op.getOperand(1);
6302   SDValue ShAmt  = Op.getOperand(2);
6303   SDValue ARMcc;
6304   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6305   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
6306 
6307   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
6308 
6309   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6310                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6311   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
6312   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6313                                    DAG.getConstant(VTBits, dl, MVT::i32));
6314   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
6315   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6316   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
6317   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6318                             ISD::SETGE, ARMcc, DAG, dl);
6319   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
6320                            ARMcc, CCR, CmpLo);
6321 
6322   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
6323   SDValue HiBigShift = Opc == ISD::SRA
6324                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
6325                                          DAG.getConstant(VTBits - 1, dl, VT))
6326                            : DAG.getConstant(0, dl, VT);
6327   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6328                             ISD::SETGE, ARMcc, DAG, dl);
6329   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6330                            ARMcc, CCR, CmpHi);
6331 
6332   SDValue Ops[2] = { Lo, Hi };
6333   return DAG.getMergeValues(Ops, dl);
6334 }
6335 
6336 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
6337 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6338 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
6339                                                SelectionDAG &DAG) const {
6340   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6341   EVT VT = Op.getValueType();
6342   unsigned VTBits = VT.getSizeInBits();
6343   SDLoc dl(Op);
6344   SDValue ShOpLo = Op.getOperand(0);
6345   SDValue ShOpHi = Op.getOperand(1);
6346   SDValue ShAmt  = Op.getOperand(2);
6347   SDValue ARMcc;
6348   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6349 
6350   assert(Op.getOpcode() == ISD::SHL_PARTS);
6351   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6352                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6353   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
6354   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
6355   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6356 
6357   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6358                                    DAG.getConstant(VTBits, dl, MVT::i32));
6359   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
6360   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6361                             ISD::SETGE, ARMcc, DAG, dl);
6362   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6363                            ARMcc, CCR, CmpHi);
6364 
6365   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6366                           ISD::SETGE, ARMcc, DAG, dl);
6367   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6368   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
6369                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
6370 
6371   SDValue Ops[2] = { Lo, Hi };
6372   return DAG.getMergeValues(Ops, dl);
6373 }
6374 
6375 SDValue ARMTargetLowering::LowerGET_ROUNDING(SDValue Op,
6376                                              SelectionDAG &DAG) const {
6377   // The rounding mode is in bits 23:22 of the FPSCR.
6378   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
6379   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
6380   // so that the shift + and get folded into a bitfield extract.
6381   SDLoc dl(Op);
6382   SDValue Chain = Op.getOperand(0);
6383   SDValue Ops[] = {Chain,
6384                    DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
6385 
6386   SDValue FPSCR =
6387       DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops);
6388   Chain = FPSCR.getValue(1);
6389   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
6390                                   DAG.getConstant(1U << 22, dl, MVT::i32));
6391   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
6392                               DAG.getConstant(22, dl, MVT::i32));
6393   SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
6394                             DAG.getConstant(3, dl, MVT::i32));
6395   return DAG.getMergeValues({And, Chain}, dl);
6396 }
6397 
6398 SDValue ARMTargetLowering::LowerSET_ROUNDING(SDValue Op,
6399                                              SelectionDAG &DAG) const {
6400   SDLoc DL(Op);
6401   SDValue Chain = Op->getOperand(0);
6402   SDValue RMValue = Op->getOperand(1);
6403 
6404   // The rounding mode is in bits 23:22 of the FPSCR.
6405   // The llvm.set.rounding argument value to ARM rounding mode value mapping
6406   // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
6407   // ((arg - 1) & 3) << 22).
6408   //
6409   // It is expected that the argument of llvm.set.rounding is within the
6410   // segment [0, 3], so NearestTiesToAway (4) is not handled here. It is
6411   // responsibility of the code generated llvm.set.rounding to ensure this
6412   // condition.
6413 
6414   // Calculate new value of FPSCR[23:22].
6415   RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
6416                         DAG.getConstant(1, DL, MVT::i32));
6417   RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
6418                         DAG.getConstant(0x3, DL, MVT::i32));
6419   RMValue = DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
6420                         DAG.getConstant(ARM::RoundingBitsPos, DL, MVT::i32));
6421 
6422   // Get current value of FPSCR.
6423   SDValue Ops[] = {Chain,
6424                    DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6425   SDValue FPSCR =
6426       DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6427   Chain = FPSCR.getValue(1);
6428   FPSCR = FPSCR.getValue(0);
6429 
6430   // Put new rounding mode into FPSCR[23:22].
6431   const unsigned RMMask = ~(ARM::Rounding::rmMask << ARM::RoundingBitsPos);
6432   FPSCR = DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
6433                       DAG.getConstant(RMMask, DL, MVT::i32));
6434   FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCR, RMValue);
6435   SDValue Ops2[] = {
6436       Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
6437   return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6438 }
6439 
6440 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
6441                          const ARMSubtarget *ST) {
6442   SDLoc dl(N);
6443   EVT VT = N->getValueType(0);
6444   if (VT.isVector() && ST->hasNEON()) {
6445 
6446     // Compute the least significant set bit: LSB = X & -X
6447     SDValue X = N->getOperand(0);
6448     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
6449     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
6450 
6451     EVT ElemTy = VT.getVectorElementType();
6452 
6453     if (ElemTy == MVT::i8) {
6454       // Compute with: cttz(x) = ctpop(lsb - 1)
6455       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6456                                 DAG.getTargetConstant(1, dl, ElemTy));
6457       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6458       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6459     }
6460 
6461     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
6462         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
6463       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
6464       unsigned NumBits = ElemTy.getSizeInBits();
6465       SDValue WidthMinus1 =
6466           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6467                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
6468       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
6469       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
6470     }
6471 
6472     // Compute with: cttz(x) = ctpop(lsb - 1)
6473 
6474     // Compute LSB - 1.
6475     SDValue Bits;
6476     if (ElemTy == MVT::i64) {
6477       // Load constant 0xffff'ffff'ffff'ffff to register.
6478       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6479                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
6480       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
6481     } else {
6482       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6483                                 DAG.getTargetConstant(1, dl, ElemTy));
6484       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6485     }
6486     return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6487   }
6488 
6489   if (!ST->hasV6T2Ops())
6490     return SDValue();
6491 
6492   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
6493   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
6494 }
6495 
6496 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
6497                           const ARMSubtarget *ST) {
6498   EVT VT = N->getValueType(0);
6499   SDLoc DL(N);
6500 
6501   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
6502   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6503           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6504          "Unexpected type for custom ctpop lowering");
6505 
6506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6507   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6508   SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6509   Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6510 
6511   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6512   unsigned EltSize = 8;
6513   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6514   while (EltSize != VT.getScalarSizeInBits()) {
6515     SmallVector<SDValue, 8> Ops;
6516     Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6517                                   TLI.getPointerTy(DAG.getDataLayout())));
6518     Ops.push_back(Res);
6519 
6520     EltSize *= 2;
6521     NumElts /= 2;
6522     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6523     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6524   }
6525 
6526   return Res;
6527 }
6528 
6529 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6530 /// operand of a vector shift operation, where all the elements of the
6531 /// build_vector must have the same constant integer value.
6532 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6533   // Ignore bit_converts.
6534   while (Op.getOpcode() == ISD::BITCAST)
6535     Op = Op.getOperand(0);
6536   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6537   APInt SplatBits, SplatUndef;
6538   unsigned SplatBitSize;
6539   bool HasAnyUndefs;
6540   if (!BVN ||
6541       !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6542                             ElementBits) ||
6543       SplatBitSize > ElementBits)
6544     return false;
6545   Cnt = SplatBits.getSExtValue();
6546   return true;
6547 }
6548 
6549 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6550 /// operand of a vector shift left operation.  That value must be in the range:
6551 ///   0 <= Value < ElementBits for a left shift; or
6552 ///   0 <= Value <= ElementBits for a long left shift.
6553 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6554   assert(VT.isVector() && "vector shift count is not a vector type");
6555   int64_t ElementBits = VT.getScalarSizeInBits();
6556   if (!getVShiftImm(Op, ElementBits, Cnt))
6557     return false;
6558   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6559 }
6560 
6561 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6562 /// operand of a vector shift right operation.  For a shift opcode, the value
6563 /// is positive, but for an intrinsic the value count must be negative. The
6564 /// absolute value must be in the range:
6565 ///   1 <= |Value| <= ElementBits for a right shift; or
6566 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6567 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6568                          int64_t &Cnt) {
6569   assert(VT.isVector() && "vector shift count is not a vector type");
6570   int64_t ElementBits = VT.getScalarSizeInBits();
6571   if (!getVShiftImm(Op, ElementBits, Cnt))
6572     return false;
6573   if (!isIntrinsic)
6574     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6575   if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6576     Cnt = -Cnt;
6577     return true;
6578   }
6579   return false;
6580 }
6581 
6582 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6583                           const ARMSubtarget *ST) {
6584   EVT VT = N->getValueType(0);
6585   SDLoc dl(N);
6586   int64_t Cnt;
6587 
6588   if (!VT.isVector())
6589     return SDValue();
6590 
6591   // We essentially have two forms here. Shift by an immediate and shift by a
6592   // vector register (there are also shift by a gpr, but that is just handled
6593   // with a tablegen pattern). We cannot easily match shift by an immediate in
6594   // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6595   // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6596   // signed or unsigned, and a negative shift indicates a shift right).
6597   if (N->getOpcode() == ISD::SHL) {
6598     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6599       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6600                          DAG.getConstant(Cnt, dl, MVT::i32));
6601     return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6602                        N->getOperand(1));
6603   }
6604 
6605   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6606          "unexpected vector shift opcode");
6607 
6608   if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6609     unsigned VShiftOpc =
6610         (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6611     return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6612                        DAG.getConstant(Cnt, dl, MVT::i32));
6613   }
6614 
6615   // Other right shifts we don't have operations for (we use a shift left by a
6616   // negative number).
6617   EVT ShiftVT = N->getOperand(1).getValueType();
6618   SDValue NegatedCount = DAG.getNode(
6619       ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6620   unsigned VShiftOpc =
6621       (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6622   return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6623 }
6624 
6625 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6626                                 const ARMSubtarget *ST) {
6627   EVT VT = N->getValueType(0);
6628   SDLoc dl(N);
6629 
6630   // We can get here for a node like i32 = ISD::SHL i32, i64
6631   if (VT != MVT::i64)
6632     return SDValue();
6633 
6634   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6635           N->getOpcode() == ISD::SHL) &&
6636          "Unknown shift to lower!");
6637 
6638   unsigned ShOpc = N->getOpcode();
6639   if (ST->hasMVEIntegerOps()) {
6640     SDValue ShAmt = N->getOperand(1);
6641     unsigned ShPartsOpc = ARMISD::LSLL;
6642     ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6643 
6644     // If the shift amount is greater than 32 or has a greater bitwidth than 64
6645     // then do the default optimisation
6646     if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
6647         (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
6648       return SDValue();
6649 
6650     // Extract the lower 32 bits of the shift amount if it's not an i32
6651     if (ShAmt->getValueType(0) != MVT::i32)
6652       ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6653 
6654     if (ShOpc == ISD::SRL) {
6655       if (!Con)
6656         // There is no t2LSRLr instruction so negate and perform an lsll if the
6657         // shift amount is in a register, emulating a right shift.
6658         ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6659                             DAG.getConstant(0, dl, MVT::i32), ShAmt);
6660       else
6661         // Else generate an lsrl on the immediate shift amount
6662         ShPartsOpc = ARMISD::LSRL;
6663     } else if (ShOpc == ISD::SRA)
6664       ShPartsOpc = ARMISD::ASRL;
6665 
6666     // Lower 32 bits of the destination/source
6667     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6668                              DAG.getConstant(0, dl, MVT::i32));
6669     // Upper 32 bits of the destination/source
6670     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6671                              DAG.getConstant(1, dl, MVT::i32));
6672 
6673     // Generate the shift operation as computed above
6674     Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6675                      ShAmt);
6676     // The upper 32 bits come from the second return value of lsll
6677     Hi = SDValue(Lo.getNode(), 1);
6678     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6679   }
6680 
6681   // We only lower SRA, SRL of 1 here, all others use generic lowering.
6682   if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6683     return SDValue();
6684 
6685   // If we are in thumb mode, we don't have RRX.
6686   if (ST->isThumb1Only())
6687     return SDValue();
6688 
6689   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
6690   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6691                            DAG.getConstant(0, dl, MVT::i32));
6692   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6693                            DAG.getConstant(1, dl, MVT::i32));
6694 
6695   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6696   // captures the result into a carry flag.
6697   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
6698   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
6699 
6700   // The low part is an ARMISD::RRX operand, which shifts the carry in.
6701   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6702 
6703   // Merge the pieces into a single i64 value.
6704  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6705 }
6706 
6707 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6708                            const ARMSubtarget *ST) {
6709   bool Invert = false;
6710   bool Swap = false;
6711   unsigned Opc = ARMCC::AL;
6712 
6713   SDValue Op0 = Op.getOperand(0);
6714   SDValue Op1 = Op.getOperand(1);
6715   SDValue CC = Op.getOperand(2);
6716   EVT VT = Op.getValueType();
6717   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6718   SDLoc dl(Op);
6719 
6720   EVT CmpVT;
6721   if (ST->hasNEON())
6722     CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6723   else {
6724     assert(ST->hasMVEIntegerOps() &&
6725            "No hardware support for integer vector comparison!");
6726 
6727     if (Op.getValueType().getVectorElementType() != MVT::i1)
6728       return SDValue();
6729 
6730     // Make sure we expand floating point setcc to scalar if we do not have
6731     // mve.fp, so that we can handle them from there.
6732     if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6733       return SDValue();
6734 
6735     CmpVT = VT;
6736   }
6737 
6738   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6739       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6740     // Special-case integer 64-bit equality comparisons. They aren't legal,
6741     // but they can be lowered with a few vector instructions.
6742     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6743     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6744     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6745     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6746     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6747                               DAG.getCondCode(ISD::SETEQ));
6748     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6749     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6750     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6751     if (SetCCOpcode == ISD::SETNE)
6752       Merged = DAG.getNOT(dl, Merged, CmpVT);
6753     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6754     return Merged;
6755   }
6756 
6757   if (CmpVT.getVectorElementType() == MVT::i64)
6758     // 64-bit comparisons are not legal in general.
6759     return SDValue();
6760 
6761   if (Op1.getValueType().isFloatingPoint()) {
6762     switch (SetCCOpcode) {
6763     default: llvm_unreachable("Illegal FP comparison");
6764     case ISD::SETUNE:
6765     case ISD::SETNE:
6766       if (ST->hasMVEFloatOps()) {
6767         Opc = ARMCC::NE; break;
6768       } else {
6769         Invert = true; [[fallthrough]];
6770       }
6771     case ISD::SETOEQ:
6772     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6773     case ISD::SETOLT:
6774     case ISD::SETLT: Swap = true; [[fallthrough]];
6775     case ISD::SETOGT:
6776     case ISD::SETGT:  Opc = ARMCC::GT; break;
6777     case ISD::SETOLE:
6778     case ISD::SETLE:  Swap = true; [[fallthrough]];
6779     case ISD::SETOGE:
6780     case ISD::SETGE: Opc = ARMCC::GE; break;
6781     case ISD::SETUGE: Swap = true; [[fallthrough]];
6782     case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6783     case ISD::SETUGT: Swap = true; [[fallthrough]];
6784     case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6785     case ISD::SETUEQ: Invert = true; [[fallthrough]];
6786     case ISD::SETONE: {
6787       // Expand this to (OLT | OGT).
6788       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6789                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6790       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6791                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6792       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6793       if (Invert)
6794         Result = DAG.getNOT(dl, Result, VT);
6795       return Result;
6796     }
6797     case ISD::SETUO: Invert = true; [[fallthrough]];
6798     case ISD::SETO: {
6799       // Expand this to (OLT | OGE).
6800       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6801                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6802       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6803                                    DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6804       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6805       if (Invert)
6806         Result = DAG.getNOT(dl, Result, VT);
6807       return Result;
6808     }
6809     }
6810   } else {
6811     // Integer comparisons.
6812     switch (SetCCOpcode) {
6813     default: llvm_unreachable("Illegal integer comparison");
6814     case ISD::SETNE:
6815       if (ST->hasMVEIntegerOps()) {
6816         Opc = ARMCC::NE; break;
6817       } else {
6818         Invert = true; [[fallthrough]];
6819       }
6820     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6821     case ISD::SETLT:  Swap = true; [[fallthrough]];
6822     case ISD::SETGT:  Opc = ARMCC::GT; break;
6823     case ISD::SETLE:  Swap = true; [[fallthrough]];
6824     case ISD::SETGE:  Opc = ARMCC::GE; break;
6825     case ISD::SETULT: Swap = true; [[fallthrough]];
6826     case ISD::SETUGT: Opc = ARMCC::HI; break;
6827     case ISD::SETULE: Swap = true; [[fallthrough]];
6828     case ISD::SETUGE: Opc = ARMCC::HS; break;
6829     }
6830 
6831     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6832     if (ST->hasNEON() && Opc == ARMCC::EQ) {
6833       SDValue AndOp;
6834       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6835         AndOp = Op0;
6836       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6837         AndOp = Op1;
6838 
6839       // Ignore bitconvert.
6840       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6841         AndOp = AndOp.getOperand(0);
6842 
6843       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6844         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6845         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6846         SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6847         if (!Invert)
6848           Result = DAG.getNOT(dl, Result, VT);
6849         return Result;
6850       }
6851     }
6852   }
6853 
6854   if (Swap)
6855     std::swap(Op0, Op1);
6856 
6857   // If one of the operands is a constant vector zero, attempt to fold the
6858   // comparison to a specialized compare-against-zero form.
6859   if (ISD::isBuildVectorAllZeros(Op0.getNode()) &&
6860       (Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::EQ ||
6861        Opc == ARMCC::NE)) {
6862     if (Opc == ARMCC::GE)
6863       Opc = ARMCC::LE;
6864     else if (Opc == ARMCC::GT)
6865       Opc = ARMCC::LT;
6866     std::swap(Op0, Op1);
6867   }
6868 
6869   SDValue Result;
6870   if (ISD::isBuildVectorAllZeros(Op1.getNode()) &&
6871       (Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::LE ||
6872        Opc == ARMCC::LT || Opc == ARMCC::NE || Opc == ARMCC::EQ))
6873     Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, Op0,
6874                          DAG.getConstant(Opc, dl, MVT::i32));
6875   else
6876     Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6877                          DAG.getConstant(Opc, dl, MVT::i32));
6878 
6879   Result = DAG.getSExtOrTrunc(Result, dl, VT);
6880 
6881   if (Invert)
6882     Result = DAG.getNOT(dl, Result, VT);
6883 
6884   return Result;
6885 }
6886 
6887 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6888   SDValue LHS = Op.getOperand(0);
6889   SDValue RHS = Op.getOperand(1);
6890   SDValue Carry = Op.getOperand(2);
6891   SDValue Cond = Op.getOperand(3);
6892   SDLoc DL(Op);
6893 
6894   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6895 
6896   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6897   // have to invert the carry first.
6898   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6899                       DAG.getConstant(1, DL, MVT::i32), Carry);
6900   // This converts the boolean value carry into the carry flag.
6901   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6902 
6903   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6904   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6905 
6906   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6907   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6908   SDValue ARMcc = DAG.getConstant(
6909       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6910   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6911   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6912                                    Cmp.getValue(1), SDValue());
6913   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6914                      CCR, Chain.getValue(1));
6915 }
6916 
6917 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6918 /// valid vector constant for a NEON or MVE instruction with a "modified
6919 /// immediate" operand (e.g., VMOV).  If so, return the encoded value.
6920 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6921                                  unsigned SplatBitSize, SelectionDAG &DAG,
6922                                  const SDLoc &dl, EVT &VT, EVT VectorVT,
6923                                  VMOVModImmType type) {
6924   unsigned OpCmode, Imm;
6925   bool is128Bits = VectorVT.is128BitVector();
6926 
6927   // SplatBitSize is set to the smallest size that splats the vector, so a
6928   // zero vector will always have SplatBitSize == 8.  However, NEON modified
6929   // immediate instructions others than VMOV do not support the 8-bit encoding
6930   // of a zero vector, and the default encoding of zero is supposed to be the
6931   // 32-bit version.
6932   if (SplatBits == 0)
6933     SplatBitSize = 32;
6934 
6935   switch (SplatBitSize) {
6936   case 8:
6937     if (type != VMOVModImm)
6938       return SDValue();
6939     // Any 1-byte value is OK.  Op=0, Cmode=1110.
6940     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6941     OpCmode = 0xe;
6942     Imm = SplatBits;
6943     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6944     break;
6945 
6946   case 16:
6947     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6948     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6949     if ((SplatBits & ~0xff) == 0) {
6950       // Value = 0x00nn: Op=x, Cmode=100x.
6951       OpCmode = 0x8;
6952       Imm = SplatBits;
6953       break;
6954     }
6955     if ((SplatBits & ~0xff00) == 0) {
6956       // Value = 0xnn00: Op=x, Cmode=101x.
6957       OpCmode = 0xa;
6958       Imm = SplatBits >> 8;
6959       break;
6960     }
6961     return SDValue();
6962 
6963   case 32:
6964     // NEON's 32-bit VMOV supports splat values where:
6965     // * only one byte is nonzero, or
6966     // * the least significant byte is 0xff and the second byte is nonzero, or
6967     // * the least significant 2 bytes are 0xff and the third is nonzero.
6968     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6969     if ((SplatBits & ~0xff) == 0) {
6970       // Value = 0x000000nn: Op=x, Cmode=000x.
6971       OpCmode = 0;
6972       Imm = SplatBits;
6973       break;
6974     }
6975     if ((SplatBits & ~0xff00) == 0) {
6976       // Value = 0x0000nn00: Op=x, Cmode=001x.
6977       OpCmode = 0x2;
6978       Imm = SplatBits >> 8;
6979       break;
6980     }
6981     if ((SplatBits & ~0xff0000) == 0) {
6982       // Value = 0x00nn0000: Op=x, Cmode=010x.
6983       OpCmode = 0x4;
6984       Imm = SplatBits >> 16;
6985       break;
6986     }
6987     if ((SplatBits & ~0xff000000) == 0) {
6988       // Value = 0xnn000000: Op=x, Cmode=011x.
6989       OpCmode = 0x6;
6990       Imm = SplatBits >> 24;
6991       break;
6992     }
6993 
6994     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6995     if (type == OtherModImm) return SDValue();
6996 
6997     if ((SplatBits & ~0xffff) == 0 &&
6998         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6999       // Value = 0x0000nnff: Op=x, Cmode=1100.
7000       OpCmode = 0xc;
7001       Imm = SplatBits >> 8;
7002       break;
7003     }
7004 
7005     // cmode == 0b1101 is not supported for MVE VMVN
7006     if (type == MVEVMVNModImm)
7007       return SDValue();
7008 
7009     if ((SplatBits & ~0xffffff) == 0 &&
7010         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
7011       // Value = 0x00nnffff: Op=x, Cmode=1101.
7012       OpCmode = 0xd;
7013       Imm = SplatBits >> 16;
7014       break;
7015     }
7016 
7017     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
7018     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
7019     // VMOV.I32.  A (very) minor optimization would be to replicate the value
7020     // and fall through here to test for a valid 64-bit splat.  But, then the
7021     // caller would also need to check and handle the change in size.
7022     return SDValue();
7023 
7024   case 64: {
7025     if (type != VMOVModImm)
7026       return SDValue();
7027     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
7028     uint64_t BitMask = 0xff;
7029     unsigned ImmMask = 1;
7030     Imm = 0;
7031     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
7032       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
7033         Imm |= ImmMask;
7034       } else if ((SplatBits & BitMask) != 0) {
7035         return SDValue();
7036       }
7037       BitMask <<= 8;
7038       ImmMask <<= 1;
7039     }
7040 
7041     if (DAG.getDataLayout().isBigEndian()) {
7042       // Reverse the order of elements within the vector.
7043       unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8;
7044       unsigned Mask = (1 << BytesPerElem) - 1;
7045       unsigned NumElems = 8 / BytesPerElem;
7046       unsigned NewImm = 0;
7047       for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) {
7048         unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask);
7049         NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem;
7050       }
7051       Imm = NewImm;
7052     }
7053 
7054     // Op=1, Cmode=1110.
7055     OpCmode = 0x1e;
7056     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
7057     break;
7058   }
7059 
7060   default:
7061     llvm_unreachable("unexpected size for isVMOVModifiedImm");
7062   }
7063 
7064   unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
7065   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
7066 }
7067 
7068 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
7069                                            const ARMSubtarget *ST) const {
7070   EVT VT = Op.getValueType();
7071   bool IsDouble = (VT == MVT::f64);
7072   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
7073   const APFloat &FPVal = CFP->getValueAPF();
7074 
7075   // Prevent floating-point constants from using literal loads
7076   // when execute-only is enabled.
7077   if (ST->genExecuteOnly()) {
7078     // If we can represent the constant as an immediate, don't lower it
7079     if (isFPImmLegal(FPVal, VT))
7080       return Op;
7081     // Otherwise, construct as integer, and move to float register
7082     APInt INTVal = FPVal.bitcastToAPInt();
7083     SDLoc DL(CFP);
7084     switch (VT.getSimpleVT().SimpleTy) {
7085       default:
7086         llvm_unreachable("Unknown floating point type!");
7087         break;
7088       case MVT::f64: {
7089         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
7090         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
7091         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
7092       }
7093       case MVT::f32:
7094           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
7095               DAG.getConstant(INTVal, DL, MVT::i32));
7096     }
7097   }
7098 
7099   if (!ST->hasVFP3Base())
7100     return SDValue();
7101 
7102   // Use the default (constant pool) lowering for double constants when we have
7103   // an SP-only FPU
7104   if (IsDouble && !Subtarget->hasFP64())
7105     return SDValue();
7106 
7107   // Try splatting with a VMOV.f32...
7108   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
7109 
7110   if (ImmVal != -1) {
7111     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
7112       // We have code in place to select a valid ConstantFP already, no need to
7113       // do any mangling.
7114       return Op;
7115     }
7116 
7117     // It's a float and we are trying to use NEON operations where
7118     // possible. Lower it to a splat followed by an extract.
7119     SDLoc DL(Op);
7120     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
7121     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
7122                                       NewVal);
7123     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
7124                        DAG.getConstant(0, DL, MVT::i32));
7125   }
7126 
7127   // The rest of our options are NEON only, make sure that's allowed before
7128   // proceeding..
7129   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
7130     return SDValue();
7131 
7132   EVT VMovVT;
7133   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
7134 
7135   // It wouldn't really be worth bothering for doubles except for one very
7136   // important value, which does happen to match: 0.0. So make sure we don't do
7137   // anything stupid.
7138   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
7139     return SDValue();
7140 
7141   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
7142   SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
7143                                      VMovVT, VT, VMOVModImm);
7144   if (NewVal != SDValue()) {
7145     SDLoc DL(Op);
7146     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
7147                                       NewVal);
7148     if (IsDouble)
7149       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7150 
7151     // It's a float: cast and extract a vector element.
7152     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7153                                        VecConstant);
7154     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7155                        DAG.getConstant(0, DL, MVT::i32));
7156   }
7157 
7158   // Finally, try a VMVN.i32
7159   NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
7160                              VT, VMVNModImm);
7161   if (NewVal != SDValue()) {
7162     SDLoc DL(Op);
7163     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
7164 
7165     if (IsDouble)
7166       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7167 
7168     // It's a float: cast and extract a vector element.
7169     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7170                                        VecConstant);
7171     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7172                        DAG.getConstant(0, DL, MVT::i32));
7173   }
7174 
7175   return SDValue();
7176 }
7177 
7178 // check if an VEXT instruction can handle the shuffle mask when the
7179 // vector sources of the shuffle are the same.
7180 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
7181   unsigned NumElts = VT.getVectorNumElements();
7182 
7183   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
7184   if (M[0] < 0)
7185     return false;
7186 
7187   Imm = M[0];
7188 
7189   // If this is a VEXT shuffle, the immediate value is the index of the first
7190   // element.  The other shuffle indices must be the successive elements after
7191   // the first one.
7192   unsigned ExpectedElt = Imm;
7193   for (unsigned i = 1; i < NumElts; ++i) {
7194     // Increment the expected index.  If it wraps around, just follow it
7195     // back to index zero and keep going.
7196     ++ExpectedElt;
7197     if (ExpectedElt == NumElts)
7198       ExpectedElt = 0;
7199 
7200     if (M[i] < 0) continue; // ignore UNDEF indices
7201     if (ExpectedElt != static_cast<unsigned>(M[i]))
7202       return false;
7203   }
7204 
7205   return true;
7206 }
7207 
7208 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
7209                        bool &ReverseVEXT, unsigned &Imm) {
7210   unsigned NumElts = VT.getVectorNumElements();
7211   ReverseVEXT = false;
7212 
7213   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
7214   if (M[0] < 0)
7215     return false;
7216 
7217   Imm = M[0];
7218 
7219   // If this is a VEXT shuffle, the immediate value is the index of the first
7220   // element.  The other shuffle indices must be the successive elements after
7221   // the first one.
7222   unsigned ExpectedElt = Imm;
7223   for (unsigned i = 1; i < NumElts; ++i) {
7224     // Increment the expected index.  If it wraps around, it may still be
7225     // a VEXT but the source vectors must be swapped.
7226     ExpectedElt += 1;
7227     if (ExpectedElt == NumElts * 2) {
7228       ExpectedElt = 0;
7229       ReverseVEXT = true;
7230     }
7231 
7232     if (M[i] < 0) continue; // ignore UNDEF indices
7233     if (ExpectedElt != static_cast<unsigned>(M[i]))
7234       return false;
7235   }
7236 
7237   // Adjust the index value if the source operands will be swapped.
7238   if (ReverseVEXT)
7239     Imm -= NumElts;
7240 
7241   return true;
7242 }
7243 
7244 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
7245   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
7246   // range, then 0 is placed into the resulting vector. So pretty much any mask
7247   // of 8 elements can work here.
7248   return VT == MVT::v8i8 && M.size() == 8;
7249 }
7250 
7251 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
7252                                unsigned Index) {
7253   if (Mask.size() == Elements * 2)
7254     return Index / Elements;
7255   return Mask[Index] == 0 ? 0 : 1;
7256 }
7257 
7258 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
7259 // checking that pairs of elements in the shuffle mask represent the same index
7260 // in each vector, incrementing the expected index by 2 at each step.
7261 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
7262 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
7263 //  v2={e,f,g,h}
7264 // WhichResult gives the offset for each element in the mask based on which
7265 // of the two results it belongs to.
7266 //
7267 // The transpose can be represented either as:
7268 // result1 = shufflevector v1, v2, result1_shuffle_mask
7269 // result2 = shufflevector v1, v2, result2_shuffle_mask
7270 // where v1/v2 and the shuffle masks have the same number of elements
7271 // (here WhichResult (see below) indicates which result is being checked)
7272 //
7273 // or as:
7274 // results = shufflevector v1, v2, shuffle_mask
7275 // where both results are returned in one vector and the shuffle mask has twice
7276 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
7277 // want to check the low half and high half of the shuffle mask as if it were
7278 // the other case
7279 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7280   unsigned EltSz = VT.getScalarSizeInBits();
7281   if (EltSz == 64)
7282     return false;
7283 
7284   unsigned NumElts = VT.getVectorNumElements();
7285   if (M.size() != NumElts && M.size() != NumElts*2)
7286     return false;
7287 
7288   // If the mask is twice as long as the input vector then we need to check the
7289   // upper and lower parts of the mask with a matching value for WhichResult
7290   // FIXME: A mask with only even values will be rejected in case the first
7291   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
7292   // M[0] is used to determine WhichResult
7293   for (unsigned i = 0; i < M.size(); i += NumElts) {
7294     WhichResult = SelectPairHalf(NumElts, M, i);
7295     for (unsigned j = 0; j < NumElts; j += 2) {
7296       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7297           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
7298         return false;
7299     }
7300   }
7301 
7302   if (M.size() == NumElts*2)
7303     WhichResult = 0;
7304 
7305   return true;
7306 }
7307 
7308 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
7309 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7310 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
7311 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7312   unsigned EltSz = VT.getScalarSizeInBits();
7313   if (EltSz == 64)
7314     return false;
7315 
7316   unsigned NumElts = VT.getVectorNumElements();
7317   if (M.size() != NumElts && M.size() != NumElts*2)
7318     return false;
7319 
7320   for (unsigned i = 0; i < M.size(); i += NumElts) {
7321     WhichResult = SelectPairHalf(NumElts, M, i);
7322     for (unsigned j = 0; j < NumElts; j += 2) {
7323       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7324           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
7325         return false;
7326     }
7327   }
7328 
7329   if (M.size() == NumElts*2)
7330     WhichResult = 0;
7331 
7332   return true;
7333 }
7334 
7335 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
7336 // that the mask elements are either all even and in steps of size 2 or all odd
7337 // and in steps of size 2.
7338 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
7339 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
7340 //  v2={e,f,g,h}
7341 // Requires similar checks to that of isVTRNMask with
7342 // respect the how results are returned.
7343 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7344   unsigned EltSz = VT.getScalarSizeInBits();
7345   if (EltSz == 64)
7346     return false;
7347 
7348   unsigned NumElts = VT.getVectorNumElements();
7349   if (M.size() != NumElts && M.size() != NumElts*2)
7350     return false;
7351 
7352   for (unsigned i = 0; i < M.size(); i += NumElts) {
7353     WhichResult = SelectPairHalf(NumElts, M, i);
7354     for (unsigned j = 0; j < NumElts; ++j) {
7355       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
7356         return false;
7357     }
7358   }
7359 
7360   if (M.size() == NumElts*2)
7361     WhichResult = 0;
7362 
7363   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7364   if (VT.is64BitVector() && EltSz == 32)
7365     return false;
7366 
7367   return true;
7368 }
7369 
7370 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
7371 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7372 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
7373 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7374   unsigned EltSz = VT.getScalarSizeInBits();
7375   if (EltSz == 64)
7376     return false;
7377 
7378   unsigned NumElts = VT.getVectorNumElements();
7379   if (M.size() != NumElts && M.size() != NumElts*2)
7380     return false;
7381 
7382   unsigned Half = NumElts / 2;
7383   for (unsigned i = 0; i < M.size(); i += NumElts) {
7384     WhichResult = SelectPairHalf(NumElts, M, i);
7385     for (unsigned j = 0; j < NumElts; j += Half) {
7386       unsigned Idx = WhichResult;
7387       for (unsigned k = 0; k < Half; ++k) {
7388         int MIdx = M[i + j + k];
7389         if (MIdx >= 0 && (unsigned) MIdx != Idx)
7390           return false;
7391         Idx += 2;
7392       }
7393     }
7394   }
7395 
7396   if (M.size() == NumElts*2)
7397     WhichResult = 0;
7398 
7399   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7400   if (VT.is64BitVector() && EltSz == 32)
7401     return false;
7402 
7403   return true;
7404 }
7405 
7406 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
7407 // that pairs of elements of the shufflemask represent the same index in each
7408 // vector incrementing sequentially through the vectors.
7409 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
7410 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
7411 //  v2={e,f,g,h}
7412 // Requires similar checks to that of isVTRNMask with respect the how results
7413 // are returned.
7414 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7415   unsigned EltSz = VT.getScalarSizeInBits();
7416   if (EltSz == 64)
7417     return false;
7418 
7419   unsigned NumElts = VT.getVectorNumElements();
7420   if (M.size() != NumElts && M.size() != NumElts*2)
7421     return false;
7422 
7423   for (unsigned i = 0; i < M.size(); i += NumElts) {
7424     WhichResult = SelectPairHalf(NumElts, M, i);
7425     unsigned Idx = WhichResult * NumElts / 2;
7426     for (unsigned j = 0; j < NumElts; j += 2) {
7427       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7428           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
7429         return false;
7430       Idx += 1;
7431     }
7432   }
7433 
7434   if (M.size() == NumElts*2)
7435     WhichResult = 0;
7436 
7437   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7438   if (VT.is64BitVector() && EltSz == 32)
7439     return false;
7440 
7441   return true;
7442 }
7443 
7444 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
7445 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7446 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
7447 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7448   unsigned EltSz = VT.getScalarSizeInBits();
7449   if (EltSz == 64)
7450     return false;
7451 
7452   unsigned NumElts = VT.getVectorNumElements();
7453   if (M.size() != NumElts && M.size() != NumElts*2)
7454     return false;
7455 
7456   for (unsigned i = 0; i < M.size(); i += NumElts) {
7457     WhichResult = SelectPairHalf(NumElts, M, i);
7458     unsigned Idx = WhichResult * NumElts / 2;
7459     for (unsigned j = 0; j < NumElts; j += 2) {
7460       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7461           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
7462         return false;
7463       Idx += 1;
7464     }
7465   }
7466 
7467   if (M.size() == NumElts*2)
7468     WhichResult = 0;
7469 
7470   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7471   if (VT.is64BitVector() && EltSz == 32)
7472     return false;
7473 
7474   return true;
7475 }
7476 
7477 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7478 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
7479 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
7480                                            unsigned &WhichResult,
7481                                            bool &isV_UNDEF) {
7482   isV_UNDEF = false;
7483   if (isVTRNMask(ShuffleMask, VT, WhichResult))
7484     return ARMISD::VTRN;
7485   if (isVUZPMask(ShuffleMask, VT, WhichResult))
7486     return ARMISD::VUZP;
7487   if (isVZIPMask(ShuffleMask, VT, WhichResult))
7488     return ARMISD::VZIP;
7489 
7490   isV_UNDEF = true;
7491   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7492     return ARMISD::VTRN;
7493   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7494     return ARMISD::VUZP;
7495   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7496     return ARMISD::VZIP;
7497 
7498   return 0;
7499 }
7500 
7501 /// \return true if this is a reverse operation on an vector.
7502 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7503   unsigned NumElts = VT.getVectorNumElements();
7504   // Make sure the mask has the right size.
7505   if (NumElts != M.size())
7506       return false;
7507 
7508   // Look for <15, ..., 3, -1, 1, 0>.
7509   for (unsigned i = 0; i != NumElts; ++i)
7510     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7511       return false;
7512 
7513   return true;
7514 }
7515 
7516 static bool isTruncMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7517   unsigned NumElts = VT.getVectorNumElements();
7518   // Make sure the mask has the right size.
7519   if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7520     return false;
7521 
7522   // Half-width truncation patterns (e.g. v4i32 -> v8i16):
7523   // !Top &&  SingleSource: <0, 2, 4, 6, 0, 2, 4, 6>
7524   // !Top && !SingleSource: <0, 2, 4, 6, 8, 10, 12, 14>
7525   //  Top &&  SingleSource: <1, 3, 5, 7, 1, 3, 5, 7>
7526   //  Top && !SingleSource: <1, 3, 5, 7, 9, 11, 13, 15>
7527   int Ofs = Top ? 1 : 0;
7528   int Upper = SingleSource ? 0 : NumElts;
7529   for (int i = 0, e = NumElts / 2; i != e; ++i) {
7530     if (M[i] >= 0 && M[i] != (i * 2) + Ofs)
7531       return false;
7532     if (M[i + e] >= 0 && M[i + e] != (i * 2) + Ofs + Upper)
7533       return false;
7534   }
7535   return true;
7536 }
7537 
7538 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7539   unsigned NumElts = VT.getVectorNumElements();
7540   // Make sure the mask has the right size.
7541   if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7542     return false;
7543 
7544   // If Top
7545   //   Look for <0, N, 2, N+2, 4, N+4, ..>.
7546   //   This inserts Input2 into Input1
7547   // else if not Top
7548   //   Look for <0, N+1, 2, N+3, 4, N+5, ..>
7549   //   This inserts Input1 into Input2
7550   unsigned Offset = Top ? 0 : 1;
7551   unsigned N = SingleSource ? 0 : NumElts;
7552   for (unsigned i = 0; i < NumElts; i += 2) {
7553     if (M[i] >= 0 && M[i] != (int)i)
7554       return false;
7555     if (M[i + 1] >= 0 && M[i + 1] != (int)(N + i + Offset))
7556       return false;
7557   }
7558 
7559   return true;
7560 }
7561 
7562 static bool isVMOVNTruncMask(ArrayRef<int> M, EVT ToVT, bool rev) {
7563   unsigned NumElts = ToVT.getVectorNumElements();
7564   if (NumElts != M.size())
7565     return false;
7566 
7567   // Test if the Trunc can be convertable to a VMOVN with this shuffle. We are
7568   // looking for patterns of:
7569   // !rev: 0 N/2 1 N/2+1 2 N/2+2 ...
7570   //  rev: N/2 0 N/2+1 1 N/2+2 2 ...
7571 
7572   unsigned Off0 = rev ? NumElts / 2 : 0;
7573   unsigned Off1 = rev ? 0 : NumElts / 2;
7574   for (unsigned i = 0; i < NumElts; i += 2) {
7575     if (M[i] >= 0 && M[i] != (int)(Off0 + i / 2))
7576       return false;
7577     if (M[i + 1] >= 0 && M[i + 1] != (int)(Off1 + i / 2))
7578       return false;
7579   }
7580 
7581   return true;
7582 }
7583 
7584 // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
7585 // from a pair of inputs. For example:
7586 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7587 //             FP_ROUND(EXTRACT_ELT(Y, 0),
7588 //             FP_ROUND(EXTRACT_ELT(X, 1),
7589 //             FP_ROUND(EXTRACT_ELT(Y, 1), ...)
7590 static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG,
7591                                          const ARMSubtarget *ST) {
7592   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7593   if (!ST->hasMVEFloatOps())
7594     return SDValue();
7595 
7596   SDLoc dl(BV);
7597   EVT VT = BV.getValueType();
7598   if (VT != MVT::v8f16)
7599     return SDValue();
7600 
7601   // We are looking for a buildvector of fptrunc elements, where all the
7602   // elements are interleavingly extracted from two sources. Check the first two
7603   // items are valid enough and extract some info from them (they are checked
7604   // properly in the loop below).
7605   if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND ||
7606       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7607       BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
7608     return SDValue();
7609   if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND ||
7610       BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7611       BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
7612     return SDValue();
7613   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7614   SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0);
7615   if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32)
7616     return SDValue();
7617 
7618   // Check all the values in the BuildVector line up with our expectations.
7619   for (unsigned i = 1; i < 4; i++) {
7620     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7621       return Trunc.getOpcode() == ISD::FP_ROUND &&
7622              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7623              Trunc.getOperand(0).getOperand(0) == Op &&
7624              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7625     };
7626     if (!Check(BV.getOperand(i * 2 + 0), Op0, i))
7627       return SDValue();
7628     if (!Check(BV.getOperand(i * 2 + 1), Op1, i))
7629       return SDValue();
7630   }
7631 
7632   SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0,
7633                            DAG.getConstant(0, dl, MVT::i32));
7634   return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1,
7635                      DAG.getConstant(1, dl, MVT::i32));
7636 }
7637 
7638 // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
7639 // from a single input on alternating lanes. For example:
7640 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7641 //             FP_ROUND(EXTRACT_ELT(X, 2),
7642 //             FP_ROUND(EXTRACT_ELT(X, 4), ...)
7643 static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG,
7644                                        const ARMSubtarget *ST) {
7645   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7646   if (!ST->hasMVEFloatOps())
7647     return SDValue();
7648 
7649   SDLoc dl(BV);
7650   EVT VT = BV.getValueType();
7651   if (VT != MVT::v4f32)
7652     return SDValue();
7653 
7654   // We are looking for a buildvector of fptext elements, where all the
7655   // elements are alternating lanes from a single source. For example <0,2,4,6>
7656   // or <1,3,5,7>. Check the first two items are valid enough and extract some
7657   // info from them (they are checked properly in the loop below).
7658   if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND ||
7659       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7660     return SDValue();
7661   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7662   int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1);
7663   if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1))
7664     return SDValue();
7665 
7666   // Check all the values in the BuildVector line up with our expectations.
7667   for (unsigned i = 1; i < 4; i++) {
7668     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7669       return Trunc.getOpcode() == ISD::FP_EXTEND &&
7670              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7671              Trunc.getOperand(0).getOperand(0) == Op &&
7672              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7673     };
7674     if (!Check(BV.getOperand(i), Op0, 2 * i + Offset))
7675       return SDValue();
7676   }
7677 
7678   return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0,
7679                      DAG.getConstant(Offset, dl, MVT::i32));
7680 }
7681 
7682 // If N is an integer constant that can be moved into a register in one
7683 // instruction, return an SDValue of such a constant (will become a MOV
7684 // instruction).  Otherwise return null.
7685 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7686                                      const ARMSubtarget *ST, const SDLoc &dl) {
7687   uint64_t Val;
7688   if (!isa<ConstantSDNode>(N))
7689     return SDValue();
7690   Val = cast<ConstantSDNode>(N)->getZExtValue();
7691 
7692   if (ST->isThumb1Only()) {
7693     if (Val <= 255 || ~Val <= 255)
7694       return DAG.getConstant(Val, dl, MVT::i32);
7695   } else {
7696     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7697       return DAG.getConstant(Val, dl, MVT::i32);
7698   }
7699   return SDValue();
7700 }
7701 
7702 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7703                                     const ARMSubtarget *ST) {
7704   SDLoc dl(Op);
7705   EVT VT = Op.getValueType();
7706 
7707   assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7708 
7709   unsigned NumElts = VT.getVectorNumElements();
7710   unsigned BoolMask;
7711   unsigned BitsPerBool;
7712   if (NumElts == 2) {
7713     BitsPerBool = 8;
7714     BoolMask = 0xff;
7715   } else if (NumElts == 4) {
7716     BitsPerBool = 4;
7717     BoolMask = 0xf;
7718   } else if (NumElts == 8) {
7719     BitsPerBool = 2;
7720     BoolMask = 0x3;
7721   } else if (NumElts == 16) {
7722     BitsPerBool = 1;
7723     BoolMask = 0x1;
7724   } else
7725     return SDValue();
7726 
7727   // If this is a single value copied into all lanes (a splat), we can just sign
7728   // extend that single value
7729   SDValue FirstOp = Op.getOperand(0);
7730   if (!isa<ConstantSDNode>(FirstOp) &&
7731       llvm::all_of(llvm::drop_begin(Op->ops()), [&FirstOp](const SDUse &U) {
7732         return U.get().isUndef() || U.get() == FirstOp;
7733       })) {
7734     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7735                               DAG.getValueType(MVT::i1));
7736     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7737   }
7738 
7739   // First create base with bits set where known
7740   unsigned Bits32 = 0;
7741   for (unsigned i = 0; i < NumElts; ++i) {
7742     SDValue V = Op.getOperand(i);
7743     if (!isa<ConstantSDNode>(V) && !V.isUndef())
7744       continue;
7745     bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
7746     if (BitSet)
7747       Bits32 |= BoolMask << (i * BitsPerBool);
7748   }
7749 
7750   // Add in unknown nodes
7751   SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7752                              DAG.getConstant(Bits32, dl, MVT::i32));
7753   for (unsigned i = 0; i < NumElts; ++i) {
7754     SDValue V = Op.getOperand(i);
7755     if (isa<ConstantSDNode>(V) || V.isUndef())
7756       continue;
7757     Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7758                        DAG.getConstant(i, dl, MVT::i32));
7759   }
7760 
7761   return Base;
7762 }
7763 
7764 static SDValue LowerBUILD_VECTORToVIDUP(SDValue Op, SelectionDAG &DAG,
7765                                         const ARMSubtarget *ST) {
7766   if (!ST->hasMVEIntegerOps())
7767     return SDValue();
7768 
7769   // We are looking for a buildvector where each element is Op[0] + i*N
7770   EVT VT = Op.getValueType();
7771   SDValue Op0 = Op.getOperand(0);
7772   unsigned NumElts = VT.getVectorNumElements();
7773 
7774   // Get the increment value from operand 1
7775   SDValue Op1 = Op.getOperand(1);
7776   if (Op1.getOpcode() != ISD::ADD || Op1.getOperand(0) != Op0 ||
7777       !isa<ConstantSDNode>(Op1.getOperand(1)))
7778     return SDValue();
7779   unsigned N = Op1.getConstantOperandVal(1);
7780   if (N != 1 && N != 2 && N != 4 && N != 8)
7781     return SDValue();
7782 
7783   // Check that each other operand matches
7784   for (unsigned I = 2; I < NumElts; I++) {
7785     SDValue OpI = Op.getOperand(I);
7786     if (OpI.getOpcode() != ISD::ADD || OpI.getOperand(0) != Op0 ||
7787         !isa<ConstantSDNode>(OpI.getOperand(1)) ||
7788         OpI.getConstantOperandVal(1) != I * N)
7789       return SDValue();
7790   }
7791 
7792   SDLoc DL(Op);
7793   return DAG.getNode(ARMISD::VIDUP, DL, DAG.getVTList(VT, MVT::i32), Op0,
7794                      DAG.getConstant(N, DL, MVT::i32));
7795 }
7796 
7797 // Returns true if the operation N can be treated as qr instruction variant at
7798 // operand Op.
7799 static bool IsQRMVEInstruction(const SDNode *N, const SDNode *Op) {
7800   switch (N->getOpcode()) {
7801   case ISD::ADD:
7802   case ISD::MUL:
7803   case ISD::SADDSAT:
7804   case ISD::UADDSAT:
7805     return true;
7806   case ISD::SUB:
7807   case ISD::SSUBSAT:
7808   case ISD::USUBSAT:
7809     return N->getOperand(1).getNode() == Op;
7810   case ISD::INTRINSIC_WO_CHAIN:
7811     switch (N->getConstantOperandVal(0)) {
7812     case Intrinsic::arm_mve_add_predicated:
7813     case Intrinsic::arm_mve_mul_predicated:
7814     case Intrinsic::arm_mve_qadd_predicated:
7815     case Intrinsic::arm_mve_vhadd:
7816     case Intrinsic::arm_mve_hadd_predicated:
7817     case Intrinsic::arm_mve_vqdmulh:
7818     case Intrinsic::arm_mve_qdmulh_predicated:
7819     case Intrinsic::arm_mve_vqrdmulh:
7820     case Intrinsic::arm_mve_qrdmulh_predicated:
7821     case Intrinsic::arm_mve_vqdmull:
7822     case Intrinsic::arm_mve_vqdmull_predicated:
7823       return true;
7824     case Intrinsic::arm_mve_sub_predicated:
7825     case Intrinsic::arm_mve_qsub_predicated:
7826     case Intrinsic::arm_mve_vhsub:
7827     case Intrinsic::arm_mve_hsub_predicated:
7828       return N->getOperand(2).getNode() == Op;
7829     default:
7830       return false;
7831     }
7832   default:
7833     return false;
7834   }
7835 }
7836 
7837 // If this is a case we can't handle, return null and let the default
7838 // expansion code take care of it.
7839 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7840                                              const ARMSubtarget *ST) const {
7841   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7842   SDLoc dl(Op);
7843   EVT VT = Op.getValueType();
7844 
7845   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7846     return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7847 
7848   if (SDValue R = LowerBUILD_VECTORToVIDUP(Op, DAG, ST))
7849     return R;
7850 
7851   APInt SplatBits, SplatUndef;
7852   unsigned SplatBitSize;
7853   bool HasAnyUndefs;
7854   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7855     if (SplatUndef.isAllOnes())
7856       return DAG.getUNDEF(VT);
7857 
7858     // If all the users of this constant splat are qr instruction variants,
7859     // generate a vdup of the constant.
7860     if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == SplatBitSize &&
7861         (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32) &&
7862         all_of(BVN->uses(),
7863                [BVN](const SDNode *U) { return IsQRMVEInstruction(U, BVN); })) {
7864       EVT DupVT = SplatBitSize == 32   ? MVT::v4i32
7865                   : SplatBitSize == 16 ? MVT::v8i16
7866                                        : MVT::v16i8;
7867       SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
7868       SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
7869       return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
7870     }
7871 
7872     if ((ST->hasNEON() && SplatBitSize <= 64) ||
7873         (ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
7874       // Check if an immediate VMOV works.
7875       EVT VmovVT;
7876       SDValue Val =
7877           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
7878                             SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm);
7879 
7880       if (Val.getNode()) {
7881         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7882         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7883       }
7884 
7885       // Try an immediate VMVN.
7886       uint64_t NegatedImm = (~SplatBits).getZExtValue();
7887       Val = isVMOVModifiedImm(
7888           NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
7889           VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
7890       if (Val.getNode()) {
7891         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
7892         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7893       }
7894 
7895       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7896       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7897         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
7898         if (ImmVal != -1) {
7899           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
7900           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
7901         }
7902       }
7903 
7904       // If we are under MVE, generate a VDUP(constant), bitcast to the original
7905       // type.
7906       if (ST->hasMVEIntegerOps() &&
7907           (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32)) {
7908         EVT DupVT = SplatBitSize == 32   ? MVT::v4i32
7909                     : SplatBitSize == 16 ? MVT::v8i16
7910                                          : MVT::v16i8;
7911         SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
7912         SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
7913         return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
7914       }
7915     }
7916   }
7917 
7918   // Scan through the operands to see if only one value is used.
7919   //
7920   // As an optimisation, even if more than one value is used it may be more
7921   // profitable to splat with one value then change some lanes.
7922   //
7923   // Heuristically we decide to do this if the vector has a "dominant" value,
7924   // defined as splatted to more than half of the lanes.
7925   unsigned NumElts = VT.getVectorNumElements();
7926   bool isOnlyLowElement = true;
7927   bool usesOnlyOneValue = true;
7928   bool hasDominantValue = false;
7929   bool isConstant = true;
7930 
7931   // Map of the number of times a particular SDValue appears in the
7932   // element list.
7933   DenseMap<SDValue, unsigned> ValueCounts;
7934   SDValue Value;
7935   for (unsigned i = 0; i < NumElts; ++i) {
7936     SDValue V = Op.getOperand(i);
7937     if (V.isUndef())
7938       continue;
7939     if (i > 0)
7940       isOnlyLowElement = false;
7941     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7942       isConstant = false;
7943 
7944     ValueCounts.insert(std::make_pair(V, 0));
7945     unsigned &Count = ValueCounts[V];
7946 
7947     // Is this value dominant? (takes up more than half of the lanes)
7948     if (++Count > (NumElts / 2)) {
7949       hasDominantValue = true;
7950       Value = V;
7951     }
7952   }
7953   if (ValueCounts.size() != 1)
7954     usesOnlyOneValue = false;
7955   if (!Value.getNode() && !ValueCounts.empty())
7956     Value = ValueCounts.begin()->first;
7957 
7958   if (ValueCounts.empty())
7959     return DAG.getUNDEF(VT);
7960 
7961   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7962   // Keep going if we are hitting this case.
7963   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
7964     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7965 
7966   unsigned EltSize = VT.getScalarSizeInBits();
7967 
7968   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
7969   // i32 and try again.
7970   if (hasDominantValue && EltSize <= 32) {
7971     if (!isConstant) {
7972       SDValue N;
7973 
7974       // If we are VDUPing a value that comes directly from a vector, that will
7975       // cause an unnecessary move to and from a GPR, where instead we could
7976       // just use VDUPLANE. We can only do this if the lane being extracted
7977       // is at a constant index, as the VDUP from lane instructions only have
7978       // constant-index forms.
7979       ConstantSDNode *constIndex;
7980       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7981           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
7982         // We need to create a new undef vector to use for the VDUPLANE if the
7983         // size of the vector from which we get the value is different than the
7984         // size of the vector that we need to create. We will insert the element
7985         // such that the register coalescer will remove unnecessary copies.
7986         if (VT != Value->getOperand(0).getValueType()) {
7987           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
7988                              VT.getVectorNumElements();
7989           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7990                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
7991                         Value, DAG.getConstant(index, dl, MVT::i32)),
7992                            DAG.getConstant(index, dl, MVT::i32));
7993         } else
7994           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7995                         Value->getOperand(0), Value->getOperand(1));
7996       } else
7997         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
7998 
7999       if (!usesOnlyOneValue) {
8000         // The dominant value was splatted as 'N', but we now have to insert
8001         // all differing elements.
8002         for (unsigned I = 0; I < NumElts; ++I) {
8003           if (Op.getOperand(I) == Value)
8004             continue;
8005           SmallVector<SDValue, 3> Ops;
8006           Ops.push_back(N);
8007           Ops.push_back(Op.getOperand(I));
8008           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
8009           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
8010         }
8011       }
8012       return N;
8013     }
8014     if (VT.getVectorElementType().isFloatingPoint()) {
8015       SmallVector<SDValue, 8> Ops;
8016       MVT FVT = VT.getVectorElementType().getSimpleVT();
8017       assert(FVT == MVT::f32 || FVT == MVT::f16);
8018       MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
8019       for (unsigned i = 0; i < NumElts; ++i)
8020         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
8021                                   Op.getOperand(i)));
8022       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
8023       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
8024       Val = LowerBUILD_VECTOR(Val, DAG, ST);
8025       if (Val.getNode())
8026         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8027     }
8028     if (usesOnlyOneValue) {
8029       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
8030       if (isConstant && Val.getNode())
8031         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
8032     }
8033   }
8034 
8035   // If all elements are constants and the case above didn't get hit, fall back
8036   // to the default expansion, which will generate a load from the constant
8037   // pool.
8038   if (isConstant)
8039     return SDValue();
8040 
8041   // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
8042   // vmovn). Empirical tests suggest this is rarely worth it for vectors of
8043   // length <= 2.
8044   if (NumElts >= 4)
8045     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
8046       return shuffle;
8047 
8048   // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
8049   // VCVT's
8050   if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget))
8051     return VCVT;
8052   if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget))
8053     return VCVT;
8054 
8055   if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
8056     // If we haven't found an efficient lowering, try splitting a 128-bit vector
8057     // into two 64-bit vectors; we might discover a better way to lower it.
8058     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
8059     EVT ExtVT = VT.getVectorElementType();
8060     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
8061     SDValue Lower = DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[0], NumElts / 2));
8062     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
8063       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
8064     SDValue Upper =
8065         DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[NumElts / 2], NumElts / 2));
8066     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
8067       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
8068     if (Lower && Upper)
8069       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
8070   }
8071 
8072   // Vectors with 32- or 64-bit elements can be built by directly assigning
8073   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
8074   // will be legalized.
8075   if (EltSize >= 32) {
8076     // Do the expansion with floating-point types, since that is what the VFP
8077     // registers are defined to use, and since i64 is not legal.
8078     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8079     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8080     SmallVector<SDValue, 8> Ops;
8081     for (unsigned i = 0; i < NumElts; ++i)
8082       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
8083     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8084     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8085   }
8086 
8087   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
8088   // know the default expansion would otherwise fall back on something even
8089   // worse. For a vector with one or two non-undef values, that's
8090   // scalar_to_vector for the elements followed by a shuffle (provided the
8091   // shuffle is valid for the target) and materialization element by element
8092   // on the stack followed by a load for everything else.
8093   if (!isConstant && !usesOnlyOneValue) {
8094     SDValue Vec = DAG.getUNDEF(VT);
8095     for (unsigned i = 0 ; i < NumElts; ++i) {
8096       SDValue V = Op.getOperand(i);
8097       if (V.isUndef())
8098         continue;
8099       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
8100       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
8101     }
8102     return Vec;
8103   }
8104 
8105   return SDValue();
8106 }
8107 
8108 // Gather data to see if the operation can be modelled as a
8109 // shuffle in combination with VEXTs.
8110 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
8111                                               SelectionDAG &DAG) const {
8112   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
8113   SDLoc dl(Op);
8114   EVT VT = Op.getValueType();
8115   unsigned NumElts = VT.getVectorNumElements();
8116 
8117   struct ShuffleSourceInfo {
8118     SDValue Vec;
8119     unsigned MinElt = std::numeric_limits<unsigned>::max();
8120     unsigned MaxElt = 0;
8121 
8122     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
8123     // be compatible with the shuffle we intend to construct. As a result
8124     // ShuffleVec will be some sliding window into the original Vec.
8125     SDValue ShuffleVec;
8126 
8127     // Code should guarantee that element i in Vec starts at element "WindowBase
8128     // + i * WindowScale in ShuffleVec".
8129     int WindowBase = 0;
8130     int WindowScale = 1;
8131 
8132     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
8133 
8134     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
8135   };
8136 
8137   // First gather all vectors used as an immediate source for this BUILD_VECTOR
8138   // node.
8139   SmallVector<ShuffleSourceInfo, 2> Sources;
8140   for (unsigned i = 0; i < NumElts; ++i) {
8141     SDValue V = Op.getOperand(i);
8142     if (V.isUndef())
8143       continue;
8144     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
8145       // A shuffle can only come from building a vector from various
8146       // elements of other vectors.
8147       return SDValue();
8148     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
8149       // Furthermore, shuffles require a constant mask, whereas extractelts
8150       // accept variable indices.
8151       return SDValue();
8152     }
8153 
8154     // Add this element source to the list if it's not already there.
8155     SDValue SourceVec = V.getOperand(0);
8156     auto Source = llvm::find(Sources, SourceVec);
8157     if (Source == Sources.end())
8158       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
8159 
8160     // Update the minimum and maximum lane number seen.
8161     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
8162     Source->MinElt = std::min(Source->MinElt, EltNo);
8163     Source->MaxElt = std::max(Source->MaxElt, EltNo);
8164   }
8165 
8166   // Currently only do something sane when at most two source vectors
8167   // are involved.
8168   if (Sources.size() > 2)
8169     return SDValue();
8170 
8171   // Find out the smallest element size among result and two sources, and use
8172   // it as element size to build the shuffle_vector.
8173   EVT SmallestEltTy = VT.getVectorElementType();
8174   for (auto &Source : Sources) {
8175     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
8176     if (SrcEltTy.bitsLT(SmallestEltTy))
8177       SmallestEltTy = SrcEltTy;
8178   }
8179   unsigned ResMultiplier =
8180       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
8181   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
8182   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
8183 
8184   // If the source vector is too wide or too narrow, we may nevertheless be able
8185   // to construct a compatible shuffle either by concatenating it with UNDEF or
8186   // extracting a suitable range of elements.
8187   for (auto &Src : Sources) {
8188     EVT SrcVT = Src.ShuffleVec.getValueType();
8189 
8190     uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
8191     uint64_t VTSize = VT.getFixedSizeInBits();
8192     if (SrcVTSize == VTSize)
8193       continue;
8194 
8195     // This stage of the search produces a source with the same element type as
8196     // the original, but with a total width matching the BUILD_VECTOR output.
8197     EVT EltVT = SrcVT.getVectorElementType();
8198     unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
8199     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
8200 
8201     if (SrcVTSize < VTSize) {
8202       if (2 * SrcVTSize != VTSize)
8203         return SDValue();
8204       // We can pad out the smaller vector for free, so if it's part of a
8205       // shuffle...
8206       Src.ShuffleVec =
8207           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
8208                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
8209       continue;
8210     }
8211 
8212     if (SrcVTSize != 2 * VTSize)
8213       return SDValue();
8214 
8215     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
8216       // Span too large for a VEXT to cope
8217       return SDValue();
8218     }
8219 
8220     if (Src.MinElt >= NumSrcElts) {
8221       // The extraction can just take the second half
8222       Src.ShuffleVec =
8223           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8224                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
8225       Src.WindowBase = -NumSrcElts;
8226     } else if (Src.MaxElt < NumSrcElts) {
8227       // The extraction can just take the first half
8228       Src.ShuffleVec =
8229           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8230                       DAG.getConstant(0, dl, MVT::i32));
8231     } else {
8232       // An actual VEXT is needed
8233       SDValue VEXTSrc1 =
8234           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8235                       DAG.getConstant(0, dl, MVT::i32));
8236       SDValue VEXTSrc2 =
8237           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8238                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
8239 
8240       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
8241                                    VEXTSrc2,
8242                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
8243       Src.WindowBase = -Src.MinElt;
8244     }
8245   }
8246 
8247   // Another possible incompatibility occurs from the vector element types. We
8248   // can fix this by bitcasting the source vectors to the same type we intend
8249   // for the shuffle.
8250   for (auto &Src : Sources) {
8251     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
8252     if (SrcEltTy == SmallestEltTy)
8253       continue;
8254     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
8255     Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec);
8256     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
8257     Src.WindowBase *= Src.WindowScale;
8258   }
8259 
8260   // Final check before we try to actually produce a shuffle.
8261   LLVM_DEBUG(for (auto Src
8262                   : Sources)
8263                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
8264 
8265   // The stars all align, our next step is to produce the mask for the shuffle.
8266   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
8267   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
8268   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
8269     SDValue Entry = Op.getOperand(i);
8270     if (Entry.isUndef())
8271       continue;
8272 
8273     auto Src = llvm::find(Sources, Entry.getOperand(0));
8274     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
8275 
8276     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
8277     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
8278     // segment.
8279     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
8280     int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
8281                                VT.getScalarSizeInBits());
8282     int LanesDefined = BitsDefined / BitsPerShuffleLane;
8283 
8284     // This source is expected to fill ResMultiplier lanes of the final shuffle,
8285     // starting at the appropriate offset.
8286     int *LaneMask = &Mask[i * ResMultiplier];
8287 
8288     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
8289     ExtractBase += NumElts * (Src - Sources.begin());
8290     for (int j = 0; j < LanesDefined; ++j)
8291       LaneMask[j] = ExtractBase + j;
8292   }
8293 
8294 
8295   // We can't handle more than two sources. This should have already
8296   // been checked before this point.
8297   assert(Sources.size() <= 2 && "Too many sources!");
8298 
8299   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
8300   for (unsigned i = 0; i < Sources.size(); ++i)
8301     ShuffleOps[i] = Sources[i].ShuffleVec;
8302 
8303   SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
8304                                             ShuffleOps[1], Mask, DAG);
8305   if (!Shuffle)
8306     return SDValue();
8307   return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle);
8308 }
8309 
8310 enum ShuffleOpCodes {
8311   OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8312   OP_VREV,
8313   OP_VDUP0,
8314   OP_VDUP1,
8315   OP_VDUP2,
8316   OP_VDUP3,
8317   OP_VEXT1,
8318   OP_VEXT2,
8319   OP_VEXT3,
8320   OP_VUZPL, // VUZP, left result
8321   OP_VUZPR, // VUZP, right result
8322   OP_VZIPL, // VZIP, left result
8323   OP_VZIPR, // VZIP, right result
8324   OP_VTRNL, // VTRN, left result
8325   OP_VTRNR  // VTRN, right result
8326 };
8327 
8328 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
8329   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8330   switch (OpNum) {
8331   case OP_COPY:
8332   case OP_VREV:
8333   case OP_VDUP0:
8334   case OP_VDUP1:
8335   case OP_VDUP2:
8336   case OP_VDUP3:
8337     return true;
8338   }
8339   return false;
8340 }
8341 
8342 /// isShuffleMaskLegal - Targets can use this to indicate that they only
8343 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8344 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8345 /// are assumed to be legal.
8346 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
8347   if (VT.getVectorNumElements() == 4 &&
8348       (VT.is128BitVector() || VT.is64BitVector())) {
8349     unsigned PFIndexes[4];
8350     for (unsigned i = 0; i != 4; ++i) {
8351       if (M[i] < 0)
8352         PFIndexes[i] = 8;
8353       else
8354         PFIndexes[i] = M[i];
8355     }
8356 
8357     // Compute the index in the perfect shuffle table.
8358     unsigned PFTableIndex =
8359       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8360     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8361     unsigned Cost = (PFEntry >> 30);
8362 
8363     if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
8364       return true;
8365   }
8366 
8367   bool ReverseVEXT, isV_UNDEF;
8368   unsigned Imm, WhichResult;
8369 
8370   unsigned EltSize = VT.getScalarSizeInBits();
8371   if (EltSize >= 32 ||
8372       ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8373       ShuffleVectorInst::isIdentityMask(M) ||
8374       isVREVMask(M, VT, 64) ||
8375       isVREVMask(M, VT, 32) ||
8376       isVREVMask(M, VT, 16))
8377     return true;
8378   else if (Subtarget->hasNEON() &&
8379            (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
8380             isVTBLMask(M, VT) ||
8381             isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
8382     return true;
8383   else if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8384            isReverseMask(M, VT))
8385     return true;
8386   else if (Subtarget->hasMVEIntegerOps() &&
8387            (isVMOVNMask(M, VT, true, false) ||
8388             isVMOVNMask(M, VT, false, false) || isVMOVNMask(M, VT, true, true)))
8389     return true;
8390   else if (Subtarget->hasMVEIntegerOps() &&
8391            (isTruncMask(M, VT, false, false) ||
8392             isTruncMask(M, VT, false, true) ||
8393             isTruncMask(M, VT, true, false) || isTruncMask(M, VT, true, true)))
8394     return true;
8395   else
8396     return false;
8397 }
8398 
8399 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8400 /// the specified operations to build the shuffle.
8401 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8402                                       SDValue RHS, SelectionDAG &DAG,
8403                                       const SDLoc &dl) {
8404   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8405   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8406   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8407 
8408   if (OpNum == OP_COPY) {
8409     if (LHSID == (1*9+2)*9+3) return LHS;
8410     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8411     return RHS;
8412   }
8413 
8414   SDValue OpLHS, OpRHS;
8415   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8416   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8417   EVT VT = OpLHS.getValueType();
8418 
8419   switch (OpNum) {
8420   default: llvm_unreachable("Unknown shuffle opcode!");
8421   case OP_VREV:
8422     // VREV divides the vector in half and swaps within the half.
8423     if (VT.getScalarSizeInBits() == 32)
8424       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
8425     // vrev <4 x i16> -> VREV32
8426     if (VT.getScalarSizeInBits() == 16)
8427       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
8428     // vrev <4 x i8> -> VREV16
8429     assert(VT.getScalarSizeInBits() == 8);
8430     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
8431   case OP_VDUP0:
8432   case OP_VDUP1:
8433   case OP_VDUP2:
8434   case OP_VDUP3:
8435     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8436                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
8437   case OP_VEXT1:
8438   case OP_VEXT2:
8439   case OP_VEXT3:
8440     return DAG.getNode(ARMISD::VEXT, dl, VT,
8441                        OpLHS, OpRHS,
8442                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
8443   case OP_VUZPL:
8444   case OP_VUZPR:
8445     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
8446                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
8447   case OP_VZIPL:
8448   case OP_VZIPR:
8449     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
8450                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
8451   case OP_VTRNL:
8452   case OP_VTRNR:
8453     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
8454                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
8455   }
8456 }
8457 
8458 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
8459                                        ArrayRef<int> ShuffleMask,
8460                                        SelectionDAG &DAG) {
8461   // Check to see if we can use the VTBL instruction.
8462   SDValue V1 = Op.getOperand(0);
8463   SDValue V2 = Op.getOperand(1);
8464   SDLoc DL(Op);
8465 
8466   SmallVector<SDValue, 8> VTBLMask;
8467   for (int I : ShuffleMask)
8468     VTBLMask.push_back(DAG.getConstant(I, DL, MVT::i32));
8469 
8470   if (V2.getNode()->isUndef())
8471     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
8472                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8473 
8474   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
8475                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8476 }
8477 
8478 static SDValue LowerReverse_VECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
8479   SDLoc DL(Op);
8480   EVT VT = Op.getValueType();
8481 
8482   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8483          "Expect an v8i16/v16i8 type");
8484   SDValue OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, Op.getOperand(0));
8485   // For a v16i8 type: After the VREV, we have got <7, ..., 0, 15, ..., 8>. Now,
8486   // extract the first 8 bytes into the top double word and the last 8 bytes
8487   // into the bottom double word, through a new vector shuffle that will be
8488   // turned into a VEXT on Neon, or a couple of VMOVDs on MVE.
8489   std::vector<int> NewMask;
8490   for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8491     NewMask.push_back(VT.getVectorNumElements() / 2 + i);
8492   for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8493     NewMask.push_back(i);
8494   return DAG.getVectorShuffle(VT, DL, OpLHS, OpLHS, NewMask);
8495 }
8496 
8497 static EVT getVectorTyFromPredicateVector(EVT VT) {
8498   switch (VT.getSimpleVT().SimpleTy) {
8499   case MVT::v2i1:
8500     return MVT::v2f64;
8501   case MVT::v4i1:
8502     return MVT::v4i32;
8503   case MVT::v8i1:
8504     return MVT::v8i16;
8505   case MVT::v16i1:
8506     return MVT::v16i8;
8507   default:
8508     llvm_unreachable("Unexpected vector predicate type");
8509   }
8510 }
8511 
8512 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
8513                                     SelectionDAG &DAG) {
8514   // Converting from boolean predicates to integers involves creating a vector
8515   // of all ones or all zeroes and selecting the lanes based upon the real
8516   // predicate.
8517   SDValue AllOnes =
8518       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
8519   AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
8520 
8521   SDValue AllZeroes =
8522       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
8523   AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
8524 
8525   // Get full vector type from predicate type
8526   EVT NewVT = getVectorTyFromPredicateVector(VT);
8527 
8528   SDValue RecastV1;
8529   // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
8530   // this to a v16i1. This cannot be done with an ordinary bitcast because the
8531   // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
8532   // since we know in hardware the sizes are really the same.
8533   if (VT != MVT::v16i1)
8534     RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
8535   else
8536     RecastV1 = Pred;
8537 
8538   // Select either all ones or zeroes depending upon the real predicate bits.
8539   SDValue PredAsVector =
8540       DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
8541 
8542   // Recast our new predicate-as-integer v16i8 vector into something
8543   // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
8544   return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
8545 }
8546 
8547 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
8548                                       const ARMSubtarget *ST) {
8549   EVT VT = Op.getValueType();
8550   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8551   ArrayRef<int> ShuffleMask = SVN->getMask();
8552 
8553   assert(ST->hasMVEIntegerOps() &&
8554          "No support for vector shuffle of boolean predicates");
8555 
8556   SDValue V1 = Op.getOperand(0);
8557   SDValue V2 = Op.getOperand(1);
8558   SDLoc dl(Op);
8559   if (isReverseMask(ShuffleMask, VT)) {
8560     SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
8561     SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
8562     SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
8563                               DAG.getConstant(16, dl, MVT::i32));
8564     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
8565   }
8566 
8567   // Until we can come up with optimised cases for every single vector
8568   // shuffle in existence we have chosen the least painful strategy. This is
8569   // to essentially promote the boolean predicate to a 8-bit integer, where
8570   // each predicate represents a byte. Then we fall back on a normal integer
8571   // vector shuffle and convert the result back into a predicate vector. In
8572   // many cases the generated code might be even better than scalar code
8573   // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
8574   // fields in a register into 8 other arbitrary 2-bit fields!
8575   SDValue PredAsVector1 = PromoteMVEPredVector(dl, V1, VT, DAG);
8576   EVT NewVT = PredAsVector1.getValueType();
8577   SDValue PredAsVector2 = V2.isUndef() ? DAG.getUNDEF(NewVT)
8578                                        : PromoteMVEPredVector(dl, V2, VT, DAG);
8579   assert(PredAsVector2.getValueType() == NewVT &&
8580          "Expected identical vector type in expanded i1 shuffle!");
8581 
8582   // Do the shuffle!
8583   SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector1,
8584                                           PredAsVector2, ShuffleMask);
8585 
8586   // Now return the result of comparing the shuffled vector with zero,
8587   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. For a v2i1
8588   // we convert to a v4i1 compare to fill in the two halves of the i64 as i32s.
8589   if (VT == MVT::v2i1) {
8590     SDValue BC = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Shuffled);
8591     SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, BC,
8592                               DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8593     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
8594   }
8595   return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
8596                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8597 }
8598 
8599 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
8600                                             ArrayRef<int> ShuffleMask,
8601                                             SelectionDAG &DAG) {
8602   // Attempt to lower the vector shuffle using as many whole register movs as
8603   // possible. This is useful for types smaller than 32bits, which would
8604   // often otherwise become a series for grp movs.
8605   SDLoc dl(Op);
8606   EVT VT = Op.getValueType();
8607   if (VT.getScalarSizeInBits() >= 32)
8608     return SDValue();
8609 
8610   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8611          "Unexpected vector type");
8612   int NumElts = VT.getVectorNumElements();
8613   int QuarterSize = NumElts / 4;
8614   // The four final parts of the vector, as i32's
8615   SDValue Parts[4];
8616 
8617   // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
8618   // <u,u,u,u>), returning the vmov lane index
8619   auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
8620     // Detect which mov lane this would be from the first non-undef element.
8621     int MovIdx = -1;
8622     for (int i = 0; i < Length; i++) {
8623       if (ShuffleMask[Start + i] >= 0) {
8624         if (ShuffleMask[Start + i] % Length != i)
8625           return -1;
8626         MovIdx = ShuffleMask[Start + i] / Length;
8627         break;
8628       }
8629     }
8630     // If all items are undef, leave this for other combines
8631     if (MovIdx == -1)
8632       return -1;
8633     // Check the remaining values are the correct part of the same mov
8634     for (int i = 1; i < Length; i++) {
8635       if (ShuffleMask[Start + i] >= 0 &&
8636           (ShuffleMask[Start + i] / Length != MovIdx ||
8637            ShuffleMask[Start + i] % Length != i))
8638         return -1;
8639     }
8640     return MovIdx;
8641   };
8642 
8643   for (int Part = 0; Part < 4; ++Part) {
8644     // Does this part look like a mov
8645     int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
8646     if (Elt != -1) {
8647       SDValue Input = Op->getOperand(0);
8648       if (Elt >= 4) {
8649         Input = Op->getOperand(1);
8650         Elt -= 4;
8651       }
8652       SDValue BitCast = DAG.getBitcast(MVT::v4f32, Input);
8653       Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, BitCast,
8654                                 DAG.getConstant(Elt, dl, MVT::i32));
8655     }
8656   }
8657 
8658   // Nothing interesting found, just return
8659   if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
8660     return SDValue();
8661 
8662   // The other parts need to be built with the old shuffle vector, cast to a
8663   // v4i32 and extract_vector_elts
8664   if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
8665     SmallVector<int, 16> NewShuffleMask;
8666     for (int Part = 0; Part < 4; ++Part)
8667       for (int i = 0; i < QuarterSize; i++)
8668         NewShuffleMask.push_back(
8669             Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
8670     SDValue NewShuffle = DAG.getVectorShuffle(
8671         VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
8672     SDValue BitCast = DAG.getBitcast(MVT::v4f32, NewShuffle);
8673 
8674     for (int Part = 0; Part < 4; ++Part)
8675       if (!Parts[Part])
8676         Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32,
8677                                   BitCast, DAG.getConstant(Part, dl, MVT::i32));
8678   }
8679   // Build a vector out of the various parts and bitcast it back to the original
8680   // type.
8681   SDValue NewVec = DAG.getNode(ARMISD::BUILD_VECTOR, dl, MVT::v4f32, Parts);
8682   return DAG.getBitcast(VT, NewVec);
8683 }
8684 
8685 static SDValue LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op,
8686                                               ArrayRef<int> ShuffleMask,
8687                                               SelectionDAG &DAG) {
8688   SDValue V1 = Op.getOperand(0);
8689   SDValue V2 = Op.getOperand(1);
8690   EVT VT = Op.getValueType();
8691   unsigned NumElts = VT.getVectorNumElements();
8692 
8693   // An One-Off Identity mask is one that is mostly an identity mask from as
8694   // single source but contains a single element out-of-place, either from a
8695   // different vector or from another position in the same vector. As opposed to
8696   // lowering this via a ARMISD::BUILD_VECTOR we can generate an extract/insert
8697   // pair directly.
8698   auto isOneOffIdentityMask = [](ArrayRef<int> Mask, EVT VT, int BaseOffset,
8699                                  int &OffElement) {
8700     OffElement = -1;
8701     int NonUndef = 0;
8702     for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
8703       if (Mask[i] == -1)
8704         continue;
8705       NonUndef++;
8706       if (Mask[i] != i + BaseOffset) {
8707         if (OffElement == -1)
8708           OffElement = i;
8709         else
8710           return false;
8711       }
8712     }
8713     return NonUndef > 2 && OffElement != -1;
8714   };
8715   int OffElement;
8716   SDValue VInput;
8717   if (isOneOffIdentityMask(ShuffleMask, VT, 0, OffElement))
8718     VInput = V1;
8719   else if (isOneOffIdentityMask(ShuffleMask, VT, NumElts, OffElement))
8720     VInput = V2;
8721   else
8722     return SDValue();
8723 
8724   SDLoc dl(Op);
8725   EVT SVT = VT.getScalarType() == MVT::i8 || VT.getScalarType() == MVT::i16
8726                 ? MVT::i32
8727                 : VT.getScalarType();
8728   SDValue Elt = DAG.getNode(
8729       ISD::EXTRACT_VECTOR_ELT, dl, SVT,
8730       ShuffleMask[OffElement] < (int)NumElts ? V1 : V2,
8731       DAG.getVectorIdxConstant(ShuffleMask[OffElement] % NumElts, dl));
8732   return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, VInput, Elt,
8733                      DAG.getVectorIdxConstant(OffElement % NumElts, dl));
8734 }
8735 
8736 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
8737                                    const ARMSubtarget *ST) {
8738   SDValue V1 = Op.getOperand(0);
8739   SDValue V2 = Op.getOperand(1);
8740   SDLoc dl(Op);
8741   EVT VT = Op.getValueType();
8742   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8743   unsigned EltSize = VT.getScalarSizeInBits();
8744 
8745   if (ST->hasMVEIntegerOps() && EltSize == 1)
8746     return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
8747 
8748   // Convert shuffles that are directly supported on NEON to target-specific
8749   // DAG nodes, instead of keeping them as shuffles and matching them again
8750   // during code selection.  This is more efficient and avoids the possibility
8751   // of inconsistencies between legalization and selection.
8752   // FIXME: floating-point vectors should be canonicalized to integer vectors
8753   // of the same time so that they get CSEd properly.
8754   ArrayRef<int> ShuffleMask = SVN->getMask();
8755 
8756   if (EltSize <= 32) {
8757     if (SVN->isSplat()) {
8758       int Lane = SVN->getSplatIndex();
8759       // If this is undef splat, generate it via "just" vdup, if possible.
8760       if (Lane == -1) Lane = 0;
8761 
8762       // Test if V1 is a SCALAR_TO_VECTOR.
8763       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8764         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8765       }
8766       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
8767       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
8768       // reaches it).
8769       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
8770           !isa<ConstantSDNode>(V1.getOperand(0))) {
8771         bool IsScalarToVector = true;
8772         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
8773           if (!V1.getOperand(i).isUndef()) {
8774             IsScalarToVector = false;
8775             break;
8776           }
8777         if (IsScalarToVector)
8778           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8779       }
8780       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
8781                          DAG.getConstant(Lane, dl, MVT::i32));
8782     }
8783 
8784     bool ReverseVEXT = false;
8785     unsigned Imm = 0;
8786     if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
8787       if (ReverseVEXT)
8788         std::swap(V1, V2);
8789       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
8790                          DAG.getConstant(Imm, dl, MVT::i32));
8791     }
8792 
8793     if (isVREVMask(ShuffleMask, VT, 64))
8794       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
8795     if (isVREVMask(ShuffleMask, VT, 32))
8796       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
8797     if (isVREVMask(ShuffleMask, VT, 16))
8798       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
8799 
8800     if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
8801       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
8802                          DAG.getConstant(Imm, dl, MVT::i32));
8803     }
8804 
8805     // Check for Neon shuffles that modify both input vectors in place.
8806     // If both results are used, i.e., if there are two shuffles with the same
8807     // source operands and with masks corresponding to both results of one of
8808     // these operations, DAG memoization will ensure that a single node is
8809     // used for both shuffles.
8810     unsigned WhichResult = 0;
8811     bool isV_UNDEF = false;
8812     if (ST->hasNEON()) {
8813       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8814               ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8815         if (isV_UNDEF)
8816           V2 = V1;
8817         return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8818             .getValue(WhichResult);
8819       }
8820     }
8821     if (ST->hasMVEIntegerOps()) {
8822       if (isVMOVNMask(ShuffleMask, VT, false, false))
8823         return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8824                            DAG.getConstant(0, dl, MVT::i32));
8825       if (isVMOVNMask(ShuffleMask, VT, true, false))
8826         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8827                            DAG.getConstant(1, dl, MVT::i32));
8828       if (isVMOVNMask(ShuffleMask, VT, true, true))
8829         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V1,
8830                            DAG.getConstant(1, dl, MVT::i32));
8831     }
8832 
8833     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8834     // shuffles that produce a result larger than their operands with:
8835     //   shuffle(concat(v1, undef), concat(v2, undef))
8836     // ->
8837     //   shuffle(concat(v1, v2), undef)
8838     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8839     //
8840     // This is useful in the general case, but there are special cases where
8841     // native shuffles produce larger results: the two-result ops.
8842     //
8843     // Look through the concat when lowering them:
8844     //   shuffle(concat(v1, v2), undef)
8845     // ->
8846     //   concat(VZIP(v1, v2):0, :1)
8847     //
8848     if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8849       SDValue SubV1 = V1->getOperand(0);
8850       SDValue SubV2 = V1->getOperand(1);
8851       EVT SubVT = SubV1.getValueType();
8852 
8853       // We expect these to have been canonicalized to -1.
8854       assert(llvm::all_of(ShuffleMask, [&](int i) {
8855         return i < (int)VT.getVectorNumElements();
8856       }) && "Unexpected shuffle index into UNDEF operand!");
8857 
8858       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8859               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8860         if (isV_UNDEF)
8861           SubV2 = SubV1;
8862         assert((WhichResult == 0) &&
8863                "In-place shuffle of concat can only have one result!");
8864         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8865                                   SubV1, SubV2);
8866         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8867                            Res.getValue(1));
8868       }
8869     }
8870   }
8871 
8872   if (ST->hasMVEIntegerOps() && EltSize <= 32) {
8873     if (SDValue V = LowerVECTOR_SHUFFLEUsingOneOff(Op, ShuffleMask, DAG))
8874       return V;
8875 
8876     for (bool Top : {false, true}) {
8877       for (bool SingleSource : {false, true}) {
8878         if (isTruncMask(ShuffleMask, VT, Top, SingleSource)) {
8879           MVT FromSVT = MVT::getIntegerVT(EltSize * 2);
8880           MVT FromVT = MVT::getVectorVT(FromSVT, ShuffleMask.size() / 2);
8881           SDValue Lo = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT, V1);
8882           SDValue Hi = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT,
8883                                    SingleSource ? V1 : V2);
8884           if (Top) {
8885             SDValue Amt = DAG.getConstant(EltSize, dl, FromVT);
8886             Lo = DAG.getNode(ISD::SRL, dl, FromVT, Lo, Amt);
8887             Hi = DAG.getNode(ISD::SRL, dl, FromVT, Hi, Amt);
8888           }
8889           return DAG.getNode(ARMISD::MVETRUNC, dl, VT, Lo, Hi);
8890         }
8891       }
8892     }
8893   }
8894 
8895   // If the shuffle is not directly supported and it has 4 elements, use
8896   // the PerfectShuffle-generated table to synthesize it from other shuffles.
8897   unsigned NumElts = VT.getVectorNumElements();
8898   if (NumElts == 4) {
8899     unsigned PFIndexes[4];
8900     for (unsigned i = 0; i != 4; ++i) {
8901       if (ShuffleMask[i] < 0)
8902         PFIndexes[i] = 8;
8903       else
8904         PFIndexes[i] = ShuffleMask[i];
8905     }
8906 
8907     // Compute the index in the perfect shuffle table.
8908     unsigned PFTableIndex =
8909       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8910     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8911     unsigned Cost = (PFEntry >> 30);
8912 
8913     if (Cost <= 4) {
8914       if (ST->hasNEON())
8915         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8916       else if (isLegalMVEShuffleOp(PFEntry)) {
8917         unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8918         unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8919         unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
8920         unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
8921         if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
8922           return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8923       }
8924     }
8925   }
8926 
8927   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
8928   if (EltSize >= 32) {
8929     // Do the expansion with floating-point types, since that is what the VFP
8930     // registers are defined to use, and since i64 is not legal.
8931     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8932     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8933     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
8934     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
8935     SmallVector<SDValue, 8> Ops;
8936     for (unsigned i = 0; i < NumElts; ++i) {
8937       if (ShuffleMask[i] < 0)
8938         Ops.push_back(DAG.getUNDEF(EltVT));
8939       else
8940         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
8941                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
8942                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
8943                                                   dl, MVT::i32)));
8944     }
8945     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8946     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8947   }
8948 
8949   if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8950       isReverseMask(ShuffleMask, VT))
8951     return LowerReverse_VECTOR_SHUFFLE(Op, DAG);
8952 
8953   if (ST->hasNEON() && VT == MVT::v8i8)
8954     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
8955       return NewOp;
8956 
8957   if (ST->hasMVEIntegerOps())
8958     if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
8959       return NewOp;
8960 
8961   return SDValue();
8962 }
8963 
8964 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8965                                          const ARMSubtarget *ST) {
8966   EVT VecVT = Op.getOperand(0).getValueType();
8967   SDLoc dl(Op);
8968 
8969   assert(ST->hasMVEIntegerOps() &&
8970          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8971 
8972   SDValue Conv =
8973       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8974   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8975   unsigned LaneWidth =
8976       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8977   unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
8978   SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
8979                             Op.getOperand(1), DAG.getValueType(MVT::i1));
8980   SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
8981                             DAG.getConstant(~Mask, dl, MVT::i32));
8982   return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
8983 }
8984 
8985 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8986                                                   SelectionDAG &DAG) const {
8987   // INSERT_VECTOR_ELT is legal only for immediate indexes.
8988   SDValue Lane = Op.getOperand(2);
8989   if (!isa<ConstantSDNode>(Lane))
8990     return SDValue();
8991 
8992   SDValue Elt = Op.getOperand(1);
8993   EVT EltVT = Elt.getValueType();
8994 
8995   if (Subtarget->hasMVEIntegerOps() &&
8996       Op.getValueType().getScalarSizeInBits() == 1)
8997     return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
8998 
8999   if (getTypeAction(*DAG.getContext(), EltVT) ==
9000       TargetLowering::TypePromoteFloat) {
9001     // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
9002     // but the type system will try to do that if we don't intervene.
9003     // Reinterpret any such vector-element insertion as one with the
9004     // corresponding integer types.
9005 
9006     SDLoc dl(Op);
9007 
9008     EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
9009     assert(getTypeAction(*DAG.getContext(), IEltVT) !=
9010            TargetLowering::TypePromoteFloat);
9011 
9012     SDValue VecIn = Op.getOperand(0);
9013     EVT VecVT = VecIn.getValueType();
9014     EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
9015                                   VecVT.getVectorNumElements());
9016 
9017     SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
9018     SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
9019     SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
9020                                   IVecIn, IElt, Lane);
9021     return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
9022   }
9023 
9024   return Op;
9025 }
9026 
9027 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
9028                                           const ARMSubtarget *ST) {
9029   EVT VecVT = Op.getOperand(0).getValueType();
9030   SDLoc dl(Op);
9031 
9032   assert(ST->hasMVEIntegerOps() &&
9033          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
9034 
9035   SDValue Conv =
9036       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
9037   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9038   unsigned LaneWidth =
9039       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
9040   SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
9041                               DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
9042   return Shift;
9043 }
9044 
9045 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
9046                                        const ARMSubtarget *ST) {
9047   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
9048   SDValue Lane = Op.getOperand(1);
9049   if (!isa<ConstantSDNode>(Lane))
9050     return SDValue();
9051 
9052   SDValue Vec = Op.getOperand(0);
9053   EVT VT = Vec.getValueType();
9054 
9055   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
9056     return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
9057 
9058   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
9059     SDLoc dl(Op);
9060     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
9061   }
9062 
9063   return Op;
9064 }
9065 
9066 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
9067                                       const ARMSubtarget *ST) {
9068   SDLoc dl(Op);
9069   assert(Op.getValueType().getScalarSizeInBits() == 1 &&
9070          "Unexpected custom CONCAT_VECTORS lowering");
9071   assert(isPowerOf2_32(Op.getNumOperands()) &&
9072          "Unexpected custom CONCAT_VECTORS lowering");
9073   assert(ST->hasMVEIntegerOps() &&
9074          "CONCAT_VECTORS lowering only supported for MVE");
9075 
9076   auto ConcatPair = [&](SDValue V1, SDValue V2) {
9077     EVT Op1VT = V1.getValueType();
9078     EVT Op2VT = V2.getValueType();
9079     assert(Op1VT == Op2VT && "Operand types don't match!");
9080     EVT VT = Op1VT.getDoubleNumVectorElementsVT(*DAG.getContext());
9081 
9082     SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
9083     SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
9084 
9085     // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
9086     // promoted to v8i16, etc.
9087     MVT ElType =
9088         getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9089     unsigned NumElts = 2 * Op1VT.getVectorNumElements();
9090 
9091     // Extract the vector elements from Op1 and Op2 one by one and truncate them
9092     // to be the right size for the destination. For example, if Op1 is v4i1
9093     // then the promoted vector is v4i32. The result of concatenation gives a
9094     // v8i1, which when promoted is v8i16. That means each i32 element from Op1
9095     // needs truncating to i16 and inserting in the result.
9096     EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
9097     SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
9098     auto ExtractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
9099       EVT NewVT = NewV.getValueType();
9100       EVT ConcatVT = ConVec.getValueType();
9101       for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
9102         SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
9103                                   DAG.getIntPtrConstant(i, dl));
9104         ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
9105                              DAG.getConstant(j, dl, MVT::i32));
9106       }
9107       return ConVec;
9108     };
9109     unsigned j = 0;
9110     ConVec = ExtractInto(NewV1, ConVec, j);
9111     ConVec = ExtractInto(NewV2, ConVec, j);
9112 
9113     // Now return the result of comparing the subvector with zero, which will
9114     // generate a real predicate, i.e. v4i1, v8i1 or v16i1. For a v2i1 we
9115     // convert to a v4i1 compare to fill in the two halves of the i64 as i32s.
9116     if (VT == MVT::v2i1) {
9117       SDValue BC = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, ConVec);
9118       SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, BC,
9119                                 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9120       return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
9121     }
9122     return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
9123                        DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9124   };
9125 
9126   // Concat each pair of subvectors and pack into the lower half of the array.
9127   SmallVector<SDValue> ConcatOps(Op->op_begin(), Op->op_end());
9128   while (ConcatOps.size() > 1) {
9129     for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) {
9130       SDValue V1 = ConcatOps[I];
9131       SDValue V2 = ConcatOps[I + 1];
9132       ConcatOps[I / 2] = ConcatPair(V1, V2);
9133     }
9134     ConcatOps.resize(ConcatOps.size() / 2);
9135   }
9136   return ConcatOps[0];
9137 }
9138 
9139 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
9140                                    const ARMSubtarget *ST) {
9141   EVT VT = Op->getValueType(0);
9142   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
9143     return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
9144 
9145   // The only time a CONCAT_VECTORS operation can have legal types is when
9146   // two 64-bit vectors are concatenated to a 128-bit vector.
9147   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
9148          "unexpected CONCAT_VECTORS");
9149   SDLoc dl(Op);
9150   SDValue Val = DAG.getUNDEF(MVT::v2f64);
9151   SDValue Op0 = Op.getOperand(0);
9152   SDValue Op1 = Op.getOperand(1);
9153   if (!Op0.isUndef())
9154     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9155                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
9156                       DAG.getIntPtrConstant(0, dl));
9157   if (!Op1.isUndef())
9158     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9159                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
9160                       DAG.getIntPtrConstant(1, dl));
9161   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
9162 }
9163 
9164 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
9165                                       const ARMSubtarget *ST) {
9166   SDValue V1 = Op.getOperand(0);
9167   SDValue V2 = Op.getOperand(1);
9168   SDLoc dl(Op);
9169   EVT VT = Op.getValueType();
9170   EVT Op1VT = V1.getValueType();
9171   unsigned NumElts = VT.getVectorNumElements();
9172   unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
9173 
9174   assert(VT.getScalarSizeInBits() == 1 &&
9175          "Unexpected custom EXTRACT_SUBVECTOR lowering");
9176   assert(ST->hasMVEIntegerOps() &&
9177          "EXTRACT_SUBVECTOR lowering only supported for MVE");
9178 
9179   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
9180 
9181   // We now have Op1 promoted to a vector of integers, where v8i1 gets
9182   // promoted to v8i16, etc.
9183 
9184   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9185 
9186   if (NumElts == 2) {
9187     EVT SubVT = MVT::v4i32;
9188     SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9189     for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j += 2) {
9190       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9191                                 DAG.getIntPtrConstant(i, dl));
9192       SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9193                            DAG.getConstant(j, dl, MVT::i32));
9194       SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9195                            DAG.getConstant(j + 1, dl, MVT::i32));
9196     }
9197     SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, SubVec,
9198                               DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9199     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
9200   }
9201 
9202   EVT SubVT = MVT::getVectorVT(ElType, NumElts);
9203   SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9204   for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
9205     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9206                               DAG.getIntPtrConstant(i, dl));
9207     SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9208                          DAG.getConstant(j, dl, MVT::i32));
9209   }
9210 
9211   // Now return the result of comparing the subvector with zero,
9212   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9213   return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
9214                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9215 }
9216 
9217 // Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0).
9218 static SDValue LowerTruncatei1(SDNode *N, SelectionDAG &DAG,
9219                                const ARMSubtarget *ST) {
9220   assert(ST->hasMVEIntegerOps() && "Expected MVE!");
9221   EVT VT = N->getValueType(0);
9222   assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) &&
9223          "Expected a vector i1 type!");
9224   SDValue Op = N->getOperand(0);
9225   EVT FromVT = Op.getValueType();
9226   SDLoc DL(N);
9227 
9228   SDValue And =
9229       DAG.getNode(ISD::AND, DL, FromVT, Op, DAG.getConstant(1, DL, FromVT));
9230   return DAG.getNode(ISD::SETCC, DL, VT, And, DAG.getConstant(0, DL, FromVT),
9231                      DAG.getCondCode(ISD::SETNE));
9232 }
9233 
9234 static SDValue LowerTruncate(SDNode *N, SelectionDAG &DAG,
9235                              const ARMSubtarget *Subtarget) {
9236   if (!Subtarget->hasMVEIntegerOps())
9237     return SDValue();
9238 
9239   EVT ToVT = N->getValueType(0);
9240   if (ToVT.getScalarType() == MVT::i1)
9241     return LowerTruncatei1(N, DAG, Subtarget);
9242 
9243   // MVE does not have a single instruction to perform the truncation of a v4i32
9244   // into the lower half of a v8i16, in the same way that a NEON vmovn would.
9245   // Most of the instructions in MVE follow the 'Beats' system, where moving
9246   // values from different lanes is usually something that the instructions
9247   // avoid.
9248   //
9249   // Instead it has top/bottom instructions such as VMOVLT/B and VMOVNT/B,
9250   // which take a the top/bottom half of a larger lane and extend it (or do the
9251   // opposite, truncating into the top/bottom lane from a larger lane). Note
9252   // that because of the way we widen lanes, a v4i16 is really a v4i32 using the
9253   // bottom 16bits from each vector lane. This works really well with T/B
9254   // instructions, but that doesn't extend to v8i32->v8i16 where the lanes need
9255   // to move order.
9256   //
9257   // But truncates and sext/zext are always going to be fairly common from llvm.
9258   // We have several options for how to deal with them:
9259   // - Wherever possible combine them into an instruction that makes them
9260   //   "free". This includes loads/stores, which can perform the trunc as part
9261   //   of the memory operation. Or certain shuffles that can be turned into
9262   //   VMOVN/VMOVL.
9263   // - Lane Interleaving to transform blocks surrounded by ext/trunc. So
9264   //   trunc(mul(sext(a), sext(b))) may become
9265   //   VMOVNT(VMUL(VMOVLB(a), VMOVLB(b)), VMUL(VMOVLT(a), VMOVLT(b))). (Which in
9266   //   this case can use VMULL). This is performed in the
9267   //   MVELaneInterleavingPass.
9268   // - Otherwise we have an option. By default we would expand the
9269   //   zext/sext/trunc into a series of lane extract/inserts going via GPR
9270   //   registers. One for each vector lane in the vector. This can obviously be
9271   //   very expensive.
9272   // - The other option is to use the fact that loads/store can extend/truncate
9273   //   to turn a trunc into two truncating stack stores and a stack reload. This
9274   //   becomes 3 back-to-back memory operations, but at least that is less than
9275   //   all the insert/extracts.
9276   //
9277   // In order to do the last, we convert certain trunc's into MVETRUNC, which
9278   // are either optimized where they can be, or eventually lowered into stack
9279   // stores/loads. This prevents us from splitting a v8i16 trunc into two stores
9280   // two early, where other instructions would be better, and stops us from
9281   // having to reconstruct multiple buildvector shuffles into loads/stores.
9282   if (ToVT != MVT::v8i16 && ToVT != MVT::v16i8)
9283     return SDValue();
9284   EVT FromVT = N->getOperand(0).getValueType();
9285   if (FromVT != MVT::v8i32 && FromVT != MVT::v16i16)
9286     return SDValue();
9287 
9288   SDValue Lo, Hi;
9289   std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
9290   SDLoc DL(N);
9291   return DAG.getNode(ARMISD::MVETRUNC, DL, ToVT, Lo, Hi);
9292 }
9293 
9294 static SDValue LowerVectorExtend(SDNode *N, SelectionDAG &DAG,
9295                                  const ARMSubtarget *Subtarget) {
9296   if (!Subtarget->hasMVEIntegerOps())
9297     return SDValue();
9298 
9299   // See LowerTruncate above for an explanation of MVEEXT/MVETRUNC.
9300 
9301   EVT ToVT = N->getValueType(0);
9302   if (ToVT != MVT::v16i32 && ToVT != MVT::v8i32 && ToVT != MVT::v16i16)
9303     return SDValue();
9304   SDValue Op = N->getOperand(0);
9305   EVT FromVT = Op.getValueType();
9306   if (FromVT != MVT::v8i16 && FromVT != MVT::v16i8)
9307     return SDValue();
9308 
9309   SDLoc DL(N);
9310   EVT ExtVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
9311   if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8)
9312     ExtVT = MVT::v8i16;
9313 
9314   unsigned Opcode =
9315       N->getOpcode() == ISD::SIGN_EXTEND ? ARMISD::MVESEXT : ARMISD::MVEZEXT;
9316   SDValue Ext = DAG.getNode(Opcode, DL, DAG.getVTList(ExtVT, ExtVT), Op);
9317   SDValue Ext1 = Ext.getValue(1);
9318 
9319   if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8) {
9320     Ext = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext);
9321     Ext1 = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext1);
9322   }
9323 
9324   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Ext, Ext1);
9325 }
9326 
9327 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
9328 /// element has been zero/sign-extended, depending on the isSigned parameter,
9329 /// from an integer type half its size.
9330 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
9331                                    bool isSigned) {
9332   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
9333   EVT VT = N->getValueType(0);
9334   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
9335     SDNode *BVN = N->getOperand(0).getNode();
9336     if (BVN->getValueType(0) != MVT::v4i32 ||
9337         BVN->getOpcode() != ISD::BUILD_VECTOR)
9338       return false;
9339     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9340     unsigned HiElt = 1 - LoElt;
9341     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
9342     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
9343     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
9344     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
9345     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
9346       return false;
9347     if (isSigned) {
9348       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
9349           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
9350         return true;
9351     } else {
9352       if (Hi0->isZero() && Hi1->isZero())
9353         return true;
9354     }
9355     return false;
9356   }
9357 
9358   if (N->getOpcode() != ISD::BUILD_VECTOR)
9359     return false;
9360 
9361   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9362     SDNode *Elt = N->getOperand(i).getNode();
9363     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
9364       unsigned EltSize = VT.getScalarSizeInBits();
9365       unsigned HalfSize = EltSize / 2;
9366       if (isSigned) {
9367         if (!isIntN(HalfSize, C->getSExtValue()))
9368           return false;
9369       } else {
9370         if (!isUIntN(HalfSize, C->getZExtValue()))
9371           return false;
9372       }
9373       continue;
9374     }
9375     return false;
9376   }
9377 
9378   return true;
9379 }
9380 
9381 /// isSignExtended - Check if a node is a vector value that is sign-extended
9382 /// or a constant BUILD_VECTOR with sign-extended elements.
9383 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
9384   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
9385     return true;
9386   if (isExtendedBUILD_VECTOR(N, DAG, true))
9387     return true;
9388   return false;
9389 }
9390 
9391 /// isZeroExtended - Check if a node is a vector value that is zero-extended (or
9392 /// any-extended) or a constant BUILD_VECTOR with zero-extended elements.
9393 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
9394   if (N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND ||
9395       ISD::isZEXTLoad(N))
9396     return true;
9397   if (isExtendedBUILD_VECTOR(N, DAG, false))
9398     return true;
9399   return false;
9400 }
9401 
9402 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
9403   if (OrigVT.getSizeInBits() >= 64)
9404     return OrigVT;
9405 
9406   assert(OrigVT.isSimple() && "Expecting a simple value type");
9407 
9408   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
9409   switch (OrigSimpleTy) {
9410   default: llvm_unreachable("Unexpected Vector Type");
9411   case MVT::v2i8:
9412   case MVT::v2i16:
9413      return MVT::v2i32;
9414   case MVT::v4i8:
9415     return  MVT::v4i16;
9416   }
9417 }
9418 
9419 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
9420 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
9421 /// We insert the required extension here to get the vector to fill a D register.
9422 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
9423                                             const EVT &OrigTy,
9424                                             const EVT &ExtTy,
9425                                             unsigned ExtOpcode) {
9426   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
9427   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
9428   // 64-bits we need to insert a new extension so that it will be 64-bits.
9429   assert(ExtTy.is128BitVector() && "Unexpected extension size");
9430   if (OrigTy.getSizeInBits() >= 64)
9431     return N;
9432 
9433   // Must extend size to at least 64 bits to be used as an operand for VMULL.
9434   EVT NewVT = getExtensionTo64Bits(OrigTy);
9435 
9436   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
9437 }
9438 
9439 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
9440 /// does not do any sign/zero extension. If the original vector is less
9441 /// than 64 bits, an appropriate extension will be added after the load to
9442 /// reach a total size of 64 bits. We have to add the extension separately
9443 /// because ARM does not have a sign/zero extending load for vectors.
9444 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
9445   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
9446 
9447   // The load already has the right type.
9448   if (ExtendedTy == LD->getMemoryVT())
9449     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
9450                        LD->getBasePtr(), LD->getPointerInfo(), LD->getAlign(),
9451                        LD->getMemOperand()->getFlags());
9452 
9453   // We need to create a zextload/sextload. We cannot just create a load
9454   // followed by a zext/zext node because LowerMUL is also run during normal
9455   // operation legalization where we can't create illegal types.
9456   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
9457                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
9458                         LD->getMemoryVT(), LD->getAlign(),
9459                         LD->getMemOperand()->getFlags());
9460 }
9461 
9462 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
9463 /// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return
9464 /// the unextended value. The unextended vector should be 64 bits so that it can
9465 /// be used as an operand to a VMULL instruction. If the original vector size
9466 /// before extension is less than 64 bits we add a an extension to resize
9467 /// the vector to 64 bits.
9468 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
9469   if (N->getOpcode() == ISD::SIGN_EXTEND ||
9470       N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
9471     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
9472                                         N->getOperand(0)->getValueType(0),
9473                                         N->getValueType(0),
9474                                         N->getOpcode());
9475 
9476   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9477     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
9478            "Expected extending load");
9479 
9480     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
9481     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
9482     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9483     SDValue extLoad =
9484         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
9485     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
9486 
9487     return newLoad;
9488   }
9489 
9490   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
9491   // have been legalized as a BITCAST from v4i32.
9492   if (N->getOpcode() == ISD::BITCAST) {
9493     SDNode *BVN = N->getOperand(0).getNode();
9494     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
9495            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
9496     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9497     return DAG.getBuildVector(
9498         MVT::v2i32, SDLoc(N),
9499         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
9500   }
9501   // Construct a new BUILD_VECTOR with elements truncated to half the size.
9502   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
9503   EVT VT = N->getValueType(0);
9504   unsigned EltSize = VT.getScalarSizeInBits() / 2;
9505   unsigned NumElts = VT.getVectorNumElements();
9506   MVT TruncVT = MVT::getIntegerVT(EltSize);
9507   SmallVector<SDValue, 8> Ops;
9508   SDLoc dl(N);
9509   for (unsigned i = 0; i != NumElts; ++i) {
9510     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
9511     const APInt &CInt = C->getAPIntValue();
9512     // Element types smaller than 32 bits are not legal, so use i32 elements.
9513     // The values are implicitly truncated so sext vs. zext doesn't matter.
9514     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
9515   }
9516   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
9517 }
9518 
9519 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
9520   unsigned Opcode = N->getOpcode();
9521   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9522     SDNode *N0 = N->getOperand(0).getNode();
9523     SDNode *N1 = N->getOperand(1).getNode();
9524     return N0->hasOneUse() && N1->hasOneUse() &&
9525       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
9526   }
9527   return false;
9528 }
9529 
9530 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
9531   unsigned Opcode = N->getOpcode();
9532   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9533     SDNode *N0 = N->getOperand(0).getNode();
9534     SDNode *N1 = N->getOperand(1).getNode();
9535     return N0->hasOneUse() && N1->hasOneUse() &&
9536       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
9537   }
9538   return false;
9539 }
9540 
9541 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
9542   // Multiplications are only custom-lowered for 128-bit vectors so that
9543   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
9544   EVT VT = Op.getValueType();
9545   assert(VT.is128BitVector() && VT.isInteger() &&
9546          "unexpected type for custom-lowering ISD::MUL");
9547   SDNode *N0 = Op.getOperand(0).getNode();
9548   SDNode *N1 = Op.getOperand(1).getNode();
9549   unsigned NewOpc = 0;
9550   bool isMLA = false;
9551   bool isN0SExt = isSignExtended(N0, DAG);
9552   bool isN1SExt = isSignExtended(N1, DAG);
9553   if (isN0SExt && isN1SExt)
9554     NewOpc = ARMISD::VMULLs;
9555   else {
9556     bool isN0ZExt = isZeroExtended(N0, DAG);
9557     bool isN1ZExt = isZeroExtended(N1, DAG);
9558     if (isN0ZExt && isN1ZExt)
9559       NewOpc = ARMISD::VMULLu;
9560     else if (isN1SExt || isN1ZExt) {
9561       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
9562       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
9563       if (isN1SExt && isAddSubSExt(N0, DAG)) {
9564         NewOpc = ARMISD::VMULLs;
9565         isMLA = true;
9566       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
9567         NewOpc = ARMISD::VMULLu;
9568         isMLA = true;
9569       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
9570         std::swap(N0, N1);
9571         NewOpc = ARMISD::VMULLu;
9572         isMLA = true;
9573       }
9574     }
9575 
9576     if (!NewOpc) {
9577       if (VT == MVT::v2i64)
9578         // Fall through to expand this.  It is not legal.
9579         return SDValue();
9580       else
9581         // Other vector multiplications are legal.
9582         return Op;
9583     }
9584   }
9585 
9586   // Legalize to a VMULL instruction.
9587   SDLoc DL(Op);
9588   SDValue Op0;
9589   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
9590   if (!isMLA) {
9591     Op0 = SkipExtensionForVMULL(N0, DAG);
9592     assert(Op0.getValueType().is64BitVector() &&
9593            Op1.getValueType().is64BitVector() &&
9594            "unexpected types for extended operands to VMULL");
9595     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
9596   }
9597 
9598   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
9599   // isel lowering to take advantage of no-stall back to back vmul + vmla.
9600   //   vmull q0, d4, d6
9601   //   vmlal q0, d5, d6
9602   // is faster than
9603   //   vaddl q0, d4, d5
9604   //   vmovl q1, d6
9605   //   vmul  q0, q0, q1
9606   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
9607   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
9608   EVT Op1VT = Op1.getValueType();
9609   return DAG.getNode(N0->getOpcode(), DL, VT,
9610                      DAG.getNode(NewOpc, DL, VT,
9611                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
9612                      DAG.getNode(NewOpc, DL, VT,
9613                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
9614 }
9615 
9616 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
9617                               SelectionDAG &DAG) {
9618   // TODO: Should this propagate fast-math-flags?
9619 
9620   // Convert to float
9621   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
9622   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
9623   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
9624   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
9625   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
9626   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
9627   // Get reciprocal estimate.
9628   // float4 recip = vrecpeq_f32(yf);
9629   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9630                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9631                    Y);
9632   // Because char has a smaller range than uchar, we can actually get away
9633   // without any newton steps.  This requires that we use a weird bias
9634   // of 0xb000, however (again, this has been exhaustively tested).
9635   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
9636   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
9637   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
9638   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
9639   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
9640   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
9641   // Convert back to short.
9642   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
9643   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
9644   return X;
9645 }
9646 
9647 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
9648                                SelectionDAG &DAG) {
9649   // TODO: Should this propagate fast-math-flags?
9650 
9651   SDValue N2;
9652   // Convert to float.
9653   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
9654   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
9655   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
9656   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
9657   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9658   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9659 
9660   // Use reciprocal estimate and one refinement step.
9661   // float4 recip = vrecpeq_f32(yf);
9662   // recip *= vrecpsq_f32(yf, recip);
9663   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9664                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9665                    N1);
9666   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9667                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9668                    N1, N2);
9669   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9670   // Because short has a smaller range than ushort, we can actually get away
9671   // with only a single newton step.  This requires that we use a weird bias
9672   // of 89, however (again, this has been exhaustively tested).
9673   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
9674   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9675   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9676   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
9677   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9678   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9679   // Convert back to integer and return.
9680   // return vmovn_s32(vcvt_s32_f32(result));
9681   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9682   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9683   return N0;
9684 }
9685 
9686 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
9687                          const ARMSubtarget *ST) {
9688   EVT VT = Op.getValueType();
9689   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9690          "unexpected type for custom-lowering ISD::SDIV");
9691 
9692   SDLoc dl(Op);
9693   SDValue N0 = Op.getOperand(0);
9694   SDValue N1 = Op.getOperand(1);
9695   SDValue N2, N3;
9696 
9697   if (VT == MVT::v8i8) {
9698     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
9699     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
9700 
9701     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9702                      DAG.getIntPtrConstant(4, dl));
9703     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9704                      DAG.getIntPtrConstant(4, dl));
9705     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9706                      DAG.getIntPtrConstant(0, dl));
9707     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9708                      DAG.getIntPtrConstant(0, dl));
9709 
9710     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
9711     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
9712 
9713     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9714     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9715 
9716     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
9717     return N0;
9718   }
9719   return LowerSDIV_v4i16(N0, N1, dl, DAG);
9720 }
9721 
9722 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
9723                          const ARMSubtarget *ST) {
9724   // TODO: Should this propagate fast-math-flags?
9725   EVT VT = Op.getValueType();
9726   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9727          "unexpected type for custom-lowering ISD::UDIV");
9728 
9729   SDLoc dl(Op);
9730   SDValue N0 = Op.getOperand(0);
9731   SDValue N1 = Op.getOperand(1);
9732   SDValue N2, N3;
9733 
9734   if (VT == MVT::v8i8) {
9735     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
9736     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
9737 
9738     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9739                      DAG.getIntPtrConstant(4, dl));
9740     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9741                      DAG.getIntPtrConstant(4, dl));
9742     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9743                      DAG.getIntPtrConstant(0, dl));
9744     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9745                      DAG.getIntPtrConstant(0, dl));
9746 
9747     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
9748     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
9749 
9750     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9751     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9752 
9753     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
9754                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
9755                                      MVT::i32),
9756                      N0);
9757     return N0;
9758   }
9759 
9760   // v4i16 sdiv ... Convert to float.
9761   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
9762   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
9763   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
9764   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
9765   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9766   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9767 
9768   // Use reciprocal estimate and two refinement steps.
9769   // float4 recip = vrecpeq_f32(yf);
9770   // recip *= vrecpsq_f32(yf, recip);
9771   // recip *= vrecpsq_f32(yf, recip);
9772   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9773                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9774                    BN1);
9775   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9776                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9777                    BN1, N2);
9778   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9779   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9780                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9781                    BN1, N2);
9782   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9783   // Simply multiplying by the reciprocal estimate can leave us a few ulps
9784   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
9785   // and that it will never cause us to return an answer too large).
9786   // float4 result = as_float4(as_int4(xf*recip) + 2);
9787   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9788   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9789   N1 = DAG.getConstant(2, dl, MVT::v4i32);
9790   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9791   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9792   // Convert back to integer and return.
9793   // return vmovn_u32(vcvt_s32_f32(result));
9794   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9795   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9796   return N0;
9797 }
9798 
9799 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
9800   SDNode *N = Op.getNode();
9801   EVT VT = N->getValueType(0);
9802   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9803 
9804   SDValue Carry = Op.getOperand(2);
9805 
9806   SDLoc DL(Op);
9807 
9808   SDValue Result;
9809   if (Op.getOpcode() == ISD::ADDCARRY) {
9810     // This converts the boolean value carry into the carry flag.
9811     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9812 
9813     // Do the addition proper using the carry flag we wanted.
9814     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
9815                          Op.getOperand(1), Carry);
9816 
9817     // Now convert the carry flag into a boolean value.
9818     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9819   } else {
9820     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
9821     // have to invert the carry first.
9822     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9823                         DAG.getConstant(1, DL, MVT::i32), Carry);
9824     // This converts the boolean value carry into the carry flag.
9825     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9826 
9827     // Do the subtraction proper using the carry flag we wanted.
9828     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
9829                          Op.getOperand(1), Carry);
9830 
9831     // Now convert the carry flag into a boolean value.
9832     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9833     // But the carry returned by ARMISD::SUBE is not a borrow as expected
9834     // by ISD::SUBCARRY, so compute 1 - C.
9835     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9836                         DAG.getConstant(1, DL, MVT::i32), Carry);
9837   }
9838 
9839   // Return both values.
9840   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
9841 }
9842 
9843 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
9844   assert(Subtarget->isTargetDarwin());
9845 
9846   // For iOS, we want to call an alternative entry point: __sincos_stret,
9847   // return values are passed via sret.
9848   SDLoc dl(Op);
9849   SDValue Arg = Op.getOperand(0);
9850   EVT ArgVT = Arg.getValueType();
9851   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9852   auto PtrVT = getPointerTy(DAG.getDataLayout());
9853 
9854   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9855   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9856 
9857   // Pair of floats / doubles used to pass the result.
9858   Type *RetTy = StructType::get(ArgTy, ArgTy);
9859   auto &DL = DAG.getDataLayout();
9860 
9861   ArgListTy Args;
9862   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
9863   SDValue SRet;
9864   if (ShouldUseSRet) {
9865     // Create stack object for sret.
9866     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
9867     const Align StackAlign = DL.getPrefTypeAlign(RetTy);
9868     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
9869     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
9870 
9871     ArgListEntry Entry;
9872     Entry.Node = SRet;
9873     Entry.Ty = RetTy->getPointerTo();
9874     Entry.IsSExt = false;
9875     Entry.IsZExt = false;
9876     Entry.IsSRet = true;
9877     Args.push_back(Entry);
9878     RetTy = Type::getVoidTy(*DAG.getContext());
9879   }
9880 
9881   ArgListEntry Entry;
9882   Entry.Node = Arg;
9883   Entry.Ty = ArgTy;
9884   Entry.IsSExt = false;
9885   Entry.IsZExt = false;
9886   Args.push_back(Entry);
9887 
9888   RTLIB::Libcall LC =
9889       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
9890   const char *LibcallName = getLibcallName(LC);
9891   CallingConv::ID CC = getLibcallCallingConv(LC);
9892   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
9893 
9894   TargetLowering::CallLoweringInfo CLI(DAG);
9895   CLI.setDebugLoc(dl)
9896       .setChain(DAG.getEntryNode())
9897       .setCallee(CC, RetTy, Callee, std::move(Args))
9898       .setDiscardResult(ShouldUseSRet);
9899   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
9900 
9901   if (!ShouldUseSRet)
9902     return CallResult.first;
9903 
9904   SDValue LoadSin =
9905       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
9906 
9907   // Address of cos field.
9908   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
9909                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
9910   SDValue LoadCos =
9911       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
9912 
9913   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
9914   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
9915                      LoadSin.getValue(0), LoadCos.getValue(0));
9916 }
9917 
9918 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
9919                                                   bool Signed,
9920                                                   SDValue &Chain) const {
9921   EVT VT = Op.getValueType();
9922   assert((VT == MVT::i32 || VT == MVT::i64) &&
9923          "unexpected type for custom lowering DIV");
9924   SDLoc dl(Op);
9925 
9926   const auto &DL = DAG.getDataLayout();
9927   const auto &TLI = DAG.getTargetLoweringInfo();
9928 
9929   const char *Name = nullptr;
9930   if (Signed)
9931     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
9932   else
9933     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
9934 
9935   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
9936 
9937   ARMTargetLowering::ArgListTy Args;
9938 
9939   for (auto AI : {1, 0}) {
9940     ArgListEntry Arg;
9941     Arg.Node = Op.getOperand(AI);
9942     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
9943     Args.push_back(Arg);
9944   }
9945 
9946   CallLoweringInfo CLI(DAG);
9947   CLI.setDebugLoc(dl)
9948     .setChain(Chain)
9949     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
9950                ES, std::move(Args));
9951 
9952   return LowerCallTo(CLI).first;
9953 }
9954 
9955 // This is a code size optimisation: return the original SDIV node to
9956 // DAGCombiner when we don't want to expand SDIV into a sequence of
9957 // instructions, and an empty node otherwise which will cause the
9958 // SDIV to be expanded in DAGCombine.
9959 SDValue
9960 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
9961                                  SelectionDAG &DAG,
9962                                  SmallVectorImpl<SDNode *> &Created) const {
9963   // TODO: Support SREM
9964   if (N->getOpcode() != ISD::SDIV)
9965     return SDValue();
9966 
9967   const auto &ST = DAG.getSubtarget<ARMSubtarget>();
9968   const bool MinSize = ST.hasMinSize();
9969   const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
9970                                       : ST.hasDivideInARMMode();
9971 
9972   // Don't touch vector types; rewriting this may lead to scalarizing
9973   // the int divs.
9974   if (N->getOperand(0).getValueType().isVector())
9975     return SDValue();
9976 
9977   // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
9978   // hwdiv support for this to be really profitable.
9979   if (!(MinSize && HasDivide))
9980     return SDValue();
9981 
9982   // ARM mode is a bit simpler than Thumb: we can handle large power
9983   // of 2 immediates with 1 mov instruction; no further checks required,
9984   // just return the sdiv node.
9985   if (!ST.isThumb())
9986     return SDValue(N, 0);
9987 
9988   // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
9989   // and thus lose the code size benefits of a MOVS that requires only 2.
9990   // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
9991   // but as it's doing exactly this, it's not worth the trouble to get TTI.
9992   if (Divisor.sgt(128))
9993     return SDValue();
9994 
9995   return SDValue(N, 0);
9996 }
9997 
9998 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
9999                                             bool Signed) const {
10000   assert(Op.getValueType() == MVT::i32 &&
10001          "unexpected type for custom lowering DIV");
10002   SDLoc dl(Op);
10003 
10004   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
10005                                DAG.getEntryNode(), Op.getOperand(1));
10006 
10007   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
10008 }
10009 
10010 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
10011   SDLoc DL(N);
10012   SDValue Op = N->getOperand(1);
10013   if (N->getValueType(0) == MVT::i32)
10014     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
10015   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
10016                            DAG.getConstant(0, DL, MVT::i32));
10017   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
10018                            DAG.getConstant(1, DL, MVT::i32));
10019   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
10020                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
10021 }
10022 
10023 void ARMTargetLowering::ExpandDIV_Windows(
10024     SDValue Op, SelectionDAG &DAG, bool Signed,
10025     SmallVectorImpl<SDValue> &Results) const {
10026   const auto &DL = DAG.getDataLayout();
10027   const auto &TLI = DAG.getTargetLoweringInfo();
10028 
10029   assert(Op.getValueType() == MVT::i64 &&
10030          "unexpected type for custom lowering DIV");
10031   SDLoc dl(Op);
10032 
10033   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
10034 
10035   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
10036 
10037   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
10038   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
10039                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
10040   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
10041 
10042   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper));
10043 }
10044 
10045 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
10046   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
10047   EVT MemVT = LD->getMemoryVT();
10048   assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10049           MemVT == MVT::v16i1) &&
10050          "Expected a predicate type!");
10051   assert(MemVT == Op.getValueType());
10052   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
10053          "Expected a non-extending load");
10054   assert(LD->isUnindexed() && "Expected a unindexed load");
10055 
10056   // The basic MVE VLDR on a v2i1/v4i1/v8i1 actually loads the entire 16bit
10057   // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
10058   // need to make sure that 8/4/2 bits are actually loaded into the correct
10059   // place, which means loading the value and then shuffling the values into
10060   // the bottom bits of the predicate.
10061   // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
10062   // for BE).
10063   // Speaking of BE, apparently the rest of llvm will assume a reverse order to
10064   // a natural VMSR(load), so needs to be reversed.
10065 
10066   SDLoc dl(Op);
10067   SDValue Load = DAG.getExtLoad(
10068       ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
10069       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
10070       LD->getMemOperand());
10071   SDValue Val = Load;
10072   if (DAG.getDataLayout().isBigEndian())
10073     Val = DAG.getNode(ISD::SRL, dl, MVT::i32,
10074                       DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Load),
10075                       DAG.getConstant(32 - MemVT.getSizeInBits(), dl, MVT::i32));
10076   SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Val);
10077   if (MemVT != MVT::v16i1)
10078     Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
10079                        DAG.getConstant(0, dl, MVT::i32));
10080   return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
10081 }
10082 
10083 void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
10084                                   SelectionDAG &DAG) const {
10085   LoadSDNode *LD = cast<LoadSDNode>(N);
10086   EVT MemVT = LD->getMemoryVT();
10087   assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
10088 
10089   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10090       !Subtarget->isThumb1Only() && LD->isVolatile()) {
10091     SDLoc dl(N);
10092     SDValue Result = DAG.getMemIntrinsicNode(
10093         ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
10094         {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
10095     SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1);
10096     SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0);
10097     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
10098     Results.append({Pair, Result.getValue(2)});
10099   }
10100 }
10101 
10102 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
10103   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10104   EVT MemVT = ST->getMemoryVT();
10105   assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10106           MemVT == MVT::v16i1) &&
10107          "Expected a predicate type!");
10108   assert(MemVT == ST->getValue().getValueType());
10109   assert(!ST->isTruncatingStore() && "Expected a non-extending store");
10110   assert(ST->isUnindexed() && "Expected a unindexed store");
10111 
10112   // Only store the v2i1 or v4i1 or v8i1 worth of bits, via a buildvector with
10113   // top bits unset and a scalar store.
10114   SDLoc dl(Op);
10115   SDValue Build = ST->getValue();
10116   if (MemVT != MVT::v16i1) {
10117     SmallVector<SDValue, 16> Ops;
10118     for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++) {
10119       unsigned Elt = DAG.getDataLayout().isBigEndian()
10120                          ? MemVT.getVectorNumElements() - I - 1
10121                          : I;
10122       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
10123                                 DAG.getConstant(Elt, dl, MVT::i32)));
10124     }
10125     for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
10126       Ops.push_back(DAG.getUNDEF(MVT::i32));
10127     Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
10128   }
10129   SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
10130   if (MemVT == MVT::v16i1 && DAG.getDataLayout().isBigEndian())
10131     GRP = DAG.getNode(ISD::SRL, dl, MVT::i32,
10132                       DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, GRP),
10133                       DAG.getConstant(16, dl, MVT::i32));
10134   return DAG.getTruncStore(
10135       ST->getChain(), dl, GRP, ST->getBasePtr(),
10136       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
10137       ST->getMemOperand());
10138 }
10139 
10140 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
10141                           const ARMSubtarget *Subtarget) {
10142   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10143   EVT MemVT = ST->getMemoryVT();
10144   assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
10145 
10146   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10147       !Subtarget->isThumb1Only() && ST->isVolatile()) {
10148     SDNode *N = Op.getNode();
10149     SDLoc dl(N);
10150 
10151     SDValue Lo = DAG.getNode(
10152         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10153         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl,
10154                               MVT::i32));
10155     SDValue Hi = DAG.getNode(
10156         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10157         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl,
10158                               MVT::i32));
10159 
10160     return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
10161                                    {ST->getChain(), Lo, Hi, ST->getBasePtr()},
10162                                    MemVT, ST->getMemOperand());
10163   } else if (Subtarget->hasMVEIntegerOps() &&
10164              ((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10165                MemVT == MVT::v16i1))) {
10166     return LowerPredicateStore(Op, DAG);
10167   }
10168 
10169   return SDValue();
10170 }
10171 
10172 static bool isZeroVector(SDValue N) {
10173   return (ISD::isBuildVectorAllZeros(N.getNode()) ||
10174           (N->getOpcode() == ARMISD::VMOVIMM &&
10175            isNullConstant(N->getOperand(0))));
10176 }
10177 
10178 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
10179   MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
10180   MVT VT = Op.getSimpleValueType();
10181   SDValue Mask = N->getMask();
10182   SDValue PassThru = N->getPassThru();
10183   SDLoc dl(Op);
10184 
10185   if (isZeroVector(PassThru))
10186     return Op;
10187 
10188   // MVE Masked loads use zero as the passthru value. Here we convert undef to
10189   // zero too, and other values are lowered to a select.
10190   SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
10191                                 DAG.getTargetConstant(0, dl, MVT::i32));
10192   SDValue NewLoad = DAG.getMaskedLoad(
10193       VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
10194       N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
10195       N->getExtensionType(), N->isExpandingLoad());
10196   SDValue Combo = NewLoad;
10197   bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST ||
10198                              PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
10199                             isZeroVector(PassThru->getOperand(0));
10200   if (!PassThru.isUndef() && !PassThruIsCastZero)
10201     Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
10202   return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
10203 }
10204 
10205 static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG,
10206                               const ARMSubtarget *ST) {
10207   if (!ST->hasMVEIntegerOps())
10208     return SDValue();
10209 
10210   SDLoc dl(Op);
10211   unsigned BaseOpcode = 0;
10212   switch (Op->getOpcode()) {
10213   default: llvm_unreachable("Expected VECREDUCE opcode");
10214   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
10215   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
10216   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
10217   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
10218   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
10219   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
10220   case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
10221   case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
10222   }
10223 
10224   SDValue Op0 = Op->getOperand(0);
10225   EVT VT = Op0.getValueType();
10226   EVT EltVT = VT.getVectorElementType();
10227   unsigned NumElts = VT.getVectorNumElements();
10228   unsigned NumActiveLanes = NumElts;
10229 
10230   assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10231           NumActiveLanes == 2) &&
10232          "Only expected a power 2 vector size");
10233 
10234   // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
10235   // allows us to easily extract vector elements from the lanes.
10236   while (NumActiveLanes > 4) {
10237     unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32;
10238     SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0);
10239     Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev);
10240     NumActiveLanes /= 2;
10241   }
10242 
10243   SDValue Res;
10244   if (NumActiveLanes == 4) {
10245     // The remaining 4 elements are summed sequentially
10246     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10247                               DAG.getConstant(0 * NumElts / 4, dl, MVT::i32));
10248     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10249                               DAG.getConstant(1 * NumElts / 4, dl, MVT::i32));
10250     SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10251                               DAG.getConstant(2 * NumElts / 4, dl, MVT::i32));
10252     SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10253                               DAG.getConstant(3 * NumElts / 4, dl, MVT::i32));
10254     SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10255     SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags());
10256     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags());
10257   } else {
10258     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10259                               DAG.getConstant(0, dl, MVT::i32));
10260     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10261                               DAG.getConstant(1, dl, MVT::i32));
10262     Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10263   }
10264 
10265   // Result type may be wider than element type.
10266   if (EltVT != Op->getValueType(0))
10267     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res);
10268   return Res;
10269 }
10270 
10271 static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG,
10272                                const ARMSubtarget *ST) {
10273   if (!ST->hasMVEFloatOps())
10274     return SDValue();
10275   return LowerVecReduce(Op, DAG, ST);
10276 }
10277 
10278 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
10279   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering()))
10280     // Acquire/Release load/store is not legal for targets without a dmb or
10281     // equivalent available.
10282     return SDValue();
10283 
10284   // Monotonic load/store is legal for all targets.
10285   return Op;
10286 }
10287 
10288 static void ReplaceREADCYCLECOUNTER(SDNode *N,
10289                                     SmallVectorImpl<SDValue> &Results,
10290                                     SelectionDAG &DAG,
10291                                     const ARMSubtarget *Subtarget) {
10292   SDLoc DL(N);
10293   // Under Power Management extensions, the cycle-count is:
10294   //    mrc p15, #0, <Rt>, c9, c13, #0
10295   SDValue Ops[] = { N->getOperand(0), // Chain
10296                     DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
10297                     DAG.getTargetConstant(15, DL, MVT::i32),
10298                     DAG.getTargetConstant(0, DL, MVT::i32),
10299                     DAG.getTargetConstant(9, DL, MVT::i32),
10300                     DAG.getTargetConstant(13, DL, MVT::i32),
10301                     DAG.getTargetConstant(0, DL, MVT::i32)
10302   };
10303 
10304   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
10305                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
10306   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
10307                                 DAG.getConstant(0, DL, MVT::i32)));
10308   Results.push_back(Cycles32.getValue(1));
10309 }
10310 
10311 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
10312   SDLoc dl(V.getNode());
10313   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
10314   SDValue VHi = DAG.getAnyExtOrTrunc(
10315       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
10316       dl, MVT::i32);
10317   bool isBigEndian = DAG.getDataLayout().isBigEndian();
10318   if (isBigEndian)
10319     std::swap (VLo, VHi);
10320   SDValue RegClass =
10321       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
10322   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
10323   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
10324   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
10325   return SDValue(
10326       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
10327 }
10328 
10329 static void ReplaceCMP_SWAP_64Results(SDNode *N,
10330                                        SmallVectorImpl<SDValue> & Results,
10331                                        SelectionDAG &DAG) {
10332   assert(N->getValueType(0) == MVT::i64 &&
10333          "AtomicCmpSwap on types less than 64 should be legal");
10334   SDValue Ops[] = {N->getOperand(1),
10335                    createGPRPairNode(DAG, N->getOperand(2)),
10336                    createGPRPairNode(DAG, N->getOperand(3)),
10337                    N->getOperand(0)};
10338   SDNode *CmpSwap = DAG.getMachineNode(
10339       ARM::CMP_SWAP_64, SDLoc(N),
10340       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
10341 
10342   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
10343   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
10344 
10345   bool isBigEndian = DAG.getDataLayout().isBigEndian();
10346 
10347   SDValue Lo =
10348       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
10349                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10350   SDValue Hi =
10351       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
10352                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10353   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi));
10354   Results.push_back(SDValue(CmpSwap, 2));
10355 }
10356 
10357 SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
10358   SDLoc dl(Op);
10359   EVT VT = Op.getValueType();
10360   SDValue Chain = Op.getOperand(0);
10361   SDValue LHS = Op.getOperand(1);
10362   SDValue RHS = Op.getOperand(2);
10363   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
10364   bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
10365 
10366   // If we don't have instructions of this float type then soften to a libcall
10367   // and use SETCC instead.
10368   if (isUnsupportedFloatingType(LHS.getValueType())) {
10369     DAG.getTargetLoweringInfo().softenSetCCOperands(
10370       DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
10371     if (!RHS.getNode()) {
10372       RHS = DAG.getConstant(0, dl, LHS.getValueType());
10373       CC = ISD::SETNE;
10374     }
10375     SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
10376                                  DAG.getCondCode(CC));
10377     return DAG.getMergeValues({Result, Chain}, dl);
10378   }
10379 
10380   ARMCC::CondCodes CondCode, CondCode2;
10381   FPCCToARMCC(CC, CondCode, CondCode2);
10382 
10383   // FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
10384   // in CMPFP and CMPFPE, but instead it should be made explicit by these
10385   // instructions using a chain instead of glue. This would also fix the problem
10386   // here (and also in LowerSELECT_CC) where we generate two comparisons when
10387   // CondCode2 != AL.
10388   SDValue True = DAG.getConstant(1, dl, VT);
10389   SDValue False =  DAG.getConstant(0, dl, VT);
10390   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
10391   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
10392   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10393   SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
10394   if (CondCode2 != ARMCC::AL) {
10395     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
10396     Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10397     Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
10398   }
10399   return DAG.getMergeValues({Result, Chain}, dl);
10400 }
10401 
10402 SDValue ARMTargetLowering::LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const {
10403   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10404 
10405   EVT VT = getPointerTy(DAG.getDataLayout());
10406   SDLoc DL(Op);
10407   int FI = MFI.CreateFixedObject(4, 0, false);
10408   return DAG.getFrameIndex(FI, VT);
10409 }
10410 
10411 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10412   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
10413   switch (Op.getOpcode()) {
10414   default: llvm_unreachable("Don't know how to custom lower this!");
10415   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
10416   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10417   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
10418   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10419   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10420   case ISD::SELECT:        return LowerSELECT(Op, DAG);
10421   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
10422   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
10423   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
10424   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
10425   case ISD::VASTART:       return LowerVASTART(Op, DAG);
10426   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
10427   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
10428   case ISD::SINT_TO_FP:
10429   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
10430   case ISD::STRICT_FP_TO_SINT:
10431   case ISD::STRICT_FP_TO_UINT:
10432   case ISD::FP_TO_SINT:
10433   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
10434   case ISD::FP_TO_SINT_SAT:
10435   case ISD::FP_TO_UINT_SAT: return LowerFP_TO_INT_SAT(Op, DAG, Subtarget);
10436   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
10437   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
10438   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
10439   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
10440   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
10441   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
10442   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
10443   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
10444                                                                Subtarget);
10445   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
10446   case ISD::SHL:
10447   case ISD::SRL:
10448   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
10449   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
10450   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
10451   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
10452   case ISD::SRL_PARTS:
10453   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
10454   case ISD::CTTZ:
10455   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
10456   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
10457   case ISD::SETCC:         return LowerVSETCC(Op, DAG, Subtarget);
10458   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
10459   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
10460   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
10461   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
10462   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
10463   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10464   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
10465   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
10466   case ISD::TRUNCATE:      return LowerTruncate(Op.getNode(), DAG, Subtarget);
10467   case ISD::SIGN_EXTEND:
10468   case ISD::ZERO_EXTEND:   return LowerVectorExtend(Op.getNode(), DAG, Subtarget);
10469   case ISD::GET_ROUNDING:  return LowerGET_ROUNDING(Op, DAG);
10470   case ISD::SET_ROUNDING:  return LowerSET_ROUNDING(Op, DAG);
10471   case ISD::MUL:           return LowerMUL(Op, DAG);
10472   case ISD::SDIV:
10473     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10474       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
10475     return LowerSDIV(Op, DAG, Subtarget);
10476   case ISD::UDIV:
10477     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10478       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
10479     return LowerUDIV(Op, DAG, Subtarget);
10480   case ISD::ADDCARRY:
10481   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
10482   case ISD::SADDO:
10483   case ISD::SSUBO:
10484     return LowerSignedALUO(Op, DAG);
10485   case ISD::UADDO:
10486   case ISD::USUBO:
10487     return LowerUnsignedALUO(Op, DAG);
10488   case ISD::SADDSAT:
10489   case ISD::SSUBSAT:
10490   case ISD::UADDSAT:
10491   case ISD::USUBSAT:
10492     return LowerADDSUBSAT(Op, DAG, Subtarget);
10493   case ISD::LOAD:
10494     return LowerPredicateLoad(Op, DAG);
10495   case ISD::STORE:
10496     return LowerSTORE(Op, DAG, Subtarget);
10497   case ISD::MLOAD:
10498     return LowerMLOAD(Op, DAG);
10499   case ISD::VECREDUCE_MUL:
10500   case ISD::VECREDUCE_AND:
10501   case ISD::VECREDUCE_OR:
10502   case ISD::VECREDUCE_XOR:
10503     return LowerVecReduce(Op, DAG, Subtarget);
10504   case ISD::VECREDUCE_FADD:
10505   case ISD::VECREDUCE_FMUL:
10506   case ISD::VECREDUCE_FMIN:
10507   case ISD::VECREDUCE_FMAX:
10508     return LowerVecReduceF(Op, DAG, Subtarget);
10509   case ISD::ATOMIC_LOAD:
10510   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
10511   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
10512   case ISD::SDIVREM:
10513   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
10514   case ISD::DYNAMIC_STACKALLOC:
10515     if (Subtarget->isTargetWindows())
10516       return LowerDYNAMIC_STACKALLOC(Op, DAG);
10517     llvm_unreachable("Don't know how to custom lower this!");
10518   case ISD::STRICT_FP_ROUND:
10519   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
10520   case ISD::STRICT_FP_EXTEND:
10521   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
10522   case ISD::STRICT_FSETCC:
10523   case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
10524   case ISD::SPONENTRY:
10525     return LowerSPONENTRY(Op, DAG);
10526   case ARMISD::WIN__DBZCHK: return SDValue();
10527   }
10528 }
10529 
10530 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
10531                                  SelectionDAG &DAG) {
10532   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10533   unsigned Opc = 0;
10534   if (IntNo == Intrinsic::arm_smlald)
10535     Opc = ARMISD::SMLALD;
10536   else if (IntNo == Intrinsic::arm_smlaldx)
10537     Opc = ARMISD::SMLALDX;
10538   else if (IntNo == Intrinsic::arm_smlsld)
10539     Opc = ARMISD::SMLSLD;
10540   else if (IntNo == Intrinsic::arm_smlsldx)
10541     Opc = ARMISD::SMLSLDX;
10542   else
10543     return;
10544 
10545   SDLoc dl(N);
10546   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10547                            N->getOperand(3),
10548                            DAG.getConstant(0, dl, MVT::i32));
10549   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10550                            N->getOperand(3),
10551                            DAG.getConstant(1, dl, MVT::i32));
10552 
10553   SDValue LongMul = DAG.getNode(Opc, dl,
10554                                 DAG.getVTList(MVT::i32, MVT::i32),
10555                                 N->getOperand(1), N->getOperand(2),
10556                                 Lo, Hi);
10557   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
10558                                 LongMul.getValue(0), LongMul.getValue(1)));
10559 }
10560 
10561 /// ReplaceNodeResults - Replace the results of node with an illegal result
10562 /// type with new values built out of custom code.
10563 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
10564                                            SmallVectorImpl<SDValue> &Results,
10565                                            SelectionDAG &DAG) const {
10566   SDValue Res;
10567   switch (N->getOpcode()) {
10568   default:
10569     llvm_unreachable("Don't know how to custom expand this!");
10570   case ISD::READ_REGISTER:
10571     ExpandREAD_REGISTER(N, Results, DAG);
10572     break;
10573   case ISD::BITCAST:
10574     Res = ExpandBITCAST(N, DAG, Subtarget);
10575     break;
10576   case ISD::SRL:
10577   case ISD::SRA:
10578   case ISD::SHL:
10579     Res = Expand64BitShift(N, DAG, Subtarget);
10580     break;
10581   case ISD::SREM:
10582   case ISD::UREM:
10583     Res = LowerREM(N, DAG);
10584     break;
10585   case ISD::SDIVREM:
10586   case ISD::UDIVREM:
10587     Res = LowerDivRem(SDValue(N, 0), DAG);
10588     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
10589     Results.push_back(Res.getValue(0));
10590     Results.push_back(Res.getValue(1));
10591     return;
10592   case ISD::SADDSAT:
10593   case ISD::SSUBSAT:
10594   case ISD::UADDSAT:
10595   case ISD::USUBSAT:
10596     Res = LowerADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
10597     break;
10598   case ISD::READCYCLECOUNTER:
10599     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
10600     return;
10601   case ISD::UDIV:
10602   case ISD::SDIV:
10603     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
10604     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
10605                              Results);
10606   case ISD::ATOMIC_CMP_SWAP:
10607     ReplaceCMP_SWAP_64Results(N, Results, DAG);
10608     return;
10609   case ISD::INTRINSIC_WO_CHAIN:
10610     return ReplaceLongIntrinsic(N, Results, DAG);
10611   case ISD::LOAD:
10612     LowerLOAD(N, Results, DAG);
10613     break;
10614   case ISD::TRUNCATE:
10615     Res = LowerTruncate(N, DAG, Subtarget);
10616     break;
10617   case ISD::SIGN_EXTEND:
10618   case ISD::ZERO_EXTEND:
10619     Res = LowerVectorExtend(N, DAG, Subtarget);
10620     break;
10621   case ISD::FP_TO_SINT_SAT:
10622   case ISD::FP_TO_UINT_SAT:
10623     Res = LowerFP_TO_INT_SAT(SDValue(N, 0), DAG, Subtarget);
10624     break;
10625   }
10626   if (Res.getNode())
10627     Results.push_back(Res);
10628 }
10629 
10630 //===----------------------------------------------------------------------===//
10631 //                           ARM Scheduler Hooks
10632 //===----------------------------------------------------------------------===//
10633 
10634 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
10635 /// registers the function context.
10636 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
10637                                                MachineBasicBlock *MBB,
10638                                                MachineBasicBlock *DispatchBB,
10639                                                int FI) const {
10640   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
10641          "ROPI/RWPI not currently supported with SjLj");
10642   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10643   DebugLoc dl = MI.getDebugLoc();
10644   MachineFunction *MF = MBB->getParent();
10645   MachineRegisterInfo *MRI = &MF->getRegInfo();
10646   MachineConstantPool *MCP = MF->getConstantPool();
10647   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
10648   const Function &F = MF->getFunction();
10649 
10650   bool isThumb = Subtarget->isThumb();
10651   bool isThumb2 = Subtarget->isThumb2();
10652 
10653   unsigned PCLabelId = AFI->createPICLabelUId();
10654   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
10655   ARMConstantPoolValue *CPV =
10656     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
10657   unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4));
10658 
10659   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
10660                                            : &ARM::GPRRegClass;
10661 
10662   // Grab constant pool and fixed stack memory operands.
10663   MachineMemOperand *CPMMO =
10664       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10665                                MachineMemOperand::MOLoad, 4, Align(4));
10666 
10667   MachineMemOperand *FIMMOSt =
10668       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
10669                                MachineMemOperand::MOStore, 4, Align(4));
10670 
10671   // Load the address of the dispatch MBB into the jump buffer.
10672   if (isThumb2) {
10673     // Incoming value: jbuf
10674     //   ldr.n  r5, LCPI1_1
10675     //   orr    r5, r5, #1
10676     //   add    r5, pc
10677     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
10678     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10679     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
10680         .addConstantPoolIndex(CPI)
10681         .addMemOperand(CPMMO)
10682         .add(predOps(ARMCC::AL));
10683     // Set the low bit because of thumb mode.
10684     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10685     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
10686         .addReg(NewVReg1, RegState::Kill)
10687         .addImm(0x01)
10688         .add(predOps(ARMCC::AL))
10689         .add(condCodeOp());
10690     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10691     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
10692       .addReg(NewVReg2, RegState::Kill)
10693       .addImm(PCLabelId);
10694     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
10695         .addReg(NewVReg3, RegState::Kill)
10696         .addFrameIndex(FI)
10697         .addImm(36) // &jbuf[1] :: pc
10698         .addMemOperand(FIMMOSt)
10699         .add(predOps(ARMCC::AL));
10700   } else if (isThumb) {
10701     // Incoming value: jbuf
10702     //   ldr.n  r1, LCPI1_4
10703     //   add    r1, pc
10704     //   mov    r2, #1
10705     //   orrs   r1, r2
10706     //   add    r2, $jbuf, #+4 ; &jbuf[1]
10707     //   str    r1, [r2]
10708     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10709     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
10710         .addConstantPoolIndex(CPI)
10711         .addMemOperand(CPMMO)
10712         .add(predOps(ARMCC::AL));
10713     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10714     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
10715       .addReg(NewVReg1, RegState::Kill)
10716       .addImm(PCLabelId);
10717     // Set the low bit because of thumb mode.
10718     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10719     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
10720         .addReg(ARM::CPSR, RegState::Define)
10721         .addImm(1)
10722         .add(predOps(ARMCC::AL));
10723     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10724     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
10725         .addReg(ARM::CPSR, RegState::Define)
10726         .addReg(NewVReg2, RegState::Kill)
10727         .addReg(NewVReg3, RegState::Kill)
10728         .add(predOps(ARMCC::AL));
10729     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10730     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
10731             .addFrameIndex(FI)
10732             .addImm(36); // &jbuf[1] :: pc
10733     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
10734         .addReg(NewVReg4, RegState::Kill)
10735         .addReg(NewVReg5, RegState::Kill)
10736         .addImm(0)
10737         .addMemOperand(FIMMOSt)
10738         .add(predOps(ARMCC::AL));
10739   } else {
10740     // Incoming value: jbuf
10741     //   ldr  r1, LCPI1_1
10742     //   add  r1, pc, r1
10743     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
10744     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10745     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
10746         .addConstantPoolIndex(CPI)
10747         .addImm(0)
10748         .addMemOperand(CPMMO)
10749         .add(predOps(ARMCC::AL));
10750     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10751     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
10752         .addReg(NewVReg1, RegState::Kill)
10753         .addImm(PCLabelId)
10754         .add(predOps(ARMCC::AL));
10755     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
10756         .addReg(NewVReg2, RegState::Kill)
10757         .addFrameIndex(FI)
10758         .addImm(36) // &jbuf[1] :: pc
10759         .addMemOperand(FIMMOSt)
10760         .add(predOps(ARMCC::AL));
10761   }
10762 }
10763 
10764 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
10765                                               MachineBasicBlock *MBB) const {
10766   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10767   DebugLoc dl = MI.getDebugLoc();
10768   MachineFunction *MF = MBB->getParent();
10769   MachineRegisterInfo *MRI = &MF->getRegInfo();
10770   MachineFrameInfo &MFI = MF->getFrameInfo();
10771   int FI = MFI.getFunctionContextIndex();
10772 
10773   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
10774                                                         : &ARM::GPRnopcRegClass;
10775 
10776   // Get a mapping of the call site numbers to all of the landing pads they're
10777   // associated with.
10778   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
10779   unsigned MaxCSNum = 0;
10780   for (MachineBasicBlock &BB : *MF) {
10781     if (!BB.isEHPad())
10782       continue;
10783 
10784     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
10785     // pad.
10786     for (MachineInstr &II : BB) {
10787       if (!II.isEHLabel())
10788         continue;
10789 
10790       MCSymbol *Sym = II.getOperand(0).getMCSymbol();
10791       if (!MF->hasCallSiteLandingPad(Sym)) continue;
10792 
10793       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
10794       for (unsigned Idx : CallSiteIdxs) {
10795         CallSiteNumToLPad[Idx].push_back(&BB);
10796         MaxCSNum = std::max(MaxCSNum, Idx);
10797       }
10798       break;
10799     }
10800   }
10801 
10802   // Get an ordered list of the machine basic blocks for the jump table.
10803   std::vector<MachineBasicBlock*> LPadList;
10804   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
10805   LPadList.reserve(CallSiteNumToLPad.size());
10806   for (unsigned I = 1; I <= MaxCSNum; ++I) {
10807     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
10808     for (MachineBasicBlock *MBB : MBBList) {
10809       LPadList.push_back(MBB);
10810       InvokeBBs.insert(MBB->pred_begin(), MBB->pred_end());
10811     }
10812   }
10813 
10814   assert(!LPadList.empty() &&
10815          "No landing pad destinations for the dispatch jump table!");
10816 
10817   // Create the jump table and associated information.
10818   MachineJumpTableInfo *JTI =
10819     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
10820   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
10821 
10822   // Create the MBBs for the dispatch code.
10823 
10824   // Shove the dispatch's address into the return slot in the function context.
10825   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
10826   DispatchBB->setIsEHPad();
10827 
10828   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10829   unsigned trap_opcode;
10830   if (Subtarget->isThumb())
10831     trap_opcode = ARM::tTRAP;
10832   else
10833     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
10834 
10835   BuildMI(TrapBB, dl, TII->get(trap_opcode));
10836   DispatchBB->addSuccessor(TrapBB);
10837 
10838   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
10839   DispatchBB->addSuccessor(DispContBB);
10840 
10841   // Insert and MBBs.
10842   MF->insert(MF->end(), DispatchBB);
10843   MF->insert(MF->end(), DispContBB);
10844   MF->insert(MF->end(), TrapBB);
10845 
10846   // Insert code into the entry block that creates and registers the function
10847   // context.
10848   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
10849 
10850   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
10851       MachinePointerInfo::getFixedStack(*MF, FI),
10852       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4));
10853 
10854   MachineInstrBuilder MIB;
10855   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
10856 
10857   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
10858   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
10859 
10860   // Add a register mask with no preserved registers.  This results in all
10861   // registers being marked as clobbered. This can't work if the dispatch block
10862   // is in a Thumb1 function and is linked with ARM code which uses the FP
10863   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
10864   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
10865 
10866   bool IsPositionIndependent = isPositionIndependent();
10867   unsigned NumLPads = LPadList.size();
10868   if (Subtarget->isThumb2()) {
10869     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10870     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
10871         .addFrameIndex(FI)
10872         .addImm(4)
10873         .addMemOperand(FIMMOLd)
10874         .add(predOps(ARMCC::AL));
10875 
10876     if (NumLPads < 256) {
10877       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
10878           .addReg(NewVReg1)
10879           .addImm(LPadList.size())
10880           .add(predOps(ARMCC::AL));
10881     } else {
10882       Register VReg1 = MRI->createVirtualRegister(TRC);
10883       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
10884           .addImm(NumLPads & 0xFFFF)
10885           .add(predOps(ARMCC::AL));
10886 
10887       unsigned VReg2 = VReg1;
10888       if ((NumLPads & 0xFFFF0000) != 0) {
10889         VReg2 = MRI->createVirtualRegister(TRC);
10890         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
10891             .addReg(VReg1)
10892             .addImm(NumLPads >> 16)
10893             .add(predOps(ARMCC::AL));
10894       }
10895 
10896       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
10897           .addReg(NewVReg1)
10898           .addReg(VReg2)
10899           .add(predOps(ARMCC::AL));
10900     }
10901 
10902     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
10903       .addMBB(TrapBB)
10904       .addImm(ARMCC::HI)
10905       .addReg(ARM::CPSR);
10906 
10907     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10908     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
10909         .addJumpTableIndex(MJTI)
10910         .add(predOps(ARMCC::AL));
10911 
10912     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10913     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
10914         .addReg(NewVReg3, RegState::Kill)
10915         .addReg(NewVReg1)
10916         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
10917         .add(predOps(ARMCC::AL))
10918         .add(condCodeOp());
10919 
10920     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
10921       .addReg(NewVReg4, RegState::Kill)
10922       .addReg(NewVReg1)
10923       .addJumpTableIndex(MJTI);
10924   } else if (Subtarget->isThumb()) {
10925     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10926     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
10927         .addFrameIndex(FI)
10928         .addImm(1)
10929         .addMemOperand(FIMMOLd)
10930         .add(predOps(ARMCC::AL));
10931 
10932     if (NumLPads < 256) {
10933       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
10934           .addReg(NewVReg1)
10935           .addImm(NumLPads)
10936           .add(predOps(ARMCC::AL));
10937     } else {
10938       MachineConstantPool *ConstantPool = MF->getConstantPool();
10939       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10940       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
10941 
10942       // MachineConstantPool wants an explicit alignment.
10943       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10944       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10945 
10946       Register VReg1 = MRI->createVirtualRegister(TRC);
10947       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
10948           .addReg(VReg1, RegState::Define)
10949           .addConstantPoolIndex(Idx)
10950           .add(predOps(ARMCC::AL));
10951       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
10952           .addReg(NewVReg1)
10953           .addReg(VReg1)
10954           .add(predOps(ARMCC::AL));
10955     }
10956 
10957     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
10958       .addMBB(TrapBB)
10959       .addImm(ARMCC::HI)
10960       .addReg(ARM::CPSR);
10961 
10962     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10963     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
10964         .addReg(ARM::CPSR, RegState::Define)
10965         .addReg(NewVReg1)
10966         .addImm(2)
10967         .add(predOps(ARMCC::AL));
10968 
10969     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10970     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
10971         .addJumpTableIndex(MJTI)
10972         .add(predOps(ARMCC::AL));
10973 
10974     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10975     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
10976         .addReg(ARM::CPSR, RegState::Define)
10977         .addReg(NewVReg2, RegState::Kill)
10978         .addReg(NewVReg3)
10979         .add(predOps(ARMCC::AL));
10980 
10981     MachineMemOperand *JTMMOLd =
10982         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
10983                                  MachineMemOperand::MOLoad, 4, Align(4));
10984 
10985     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10986     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
10987         .addReg(NewVReg4, RegState::Kill)
10988         .addImm(0)
10989         .addMemOperand(JTMMOLd)
10990         .add(predOps(ARMCC::AL));
10991 
10992     unsigned NewVReg6 = NewVReg5;
10993     if (IsPositionIndependent) {
10994       NewVReg6 = MRI->createVirtualRegister(TRC);
10995       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
10996           .addReg(ARM::CPSR, RegState::Define)
10997           .addReg(NewVReg5, RegState::Kill)
10998           .addReg(NewVReg3)
10999           .add(predOps(ARMCC::AL));
11000     }
11001 
11002     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
11003       .addReg(NewVReg6, RegState::Kill)
11004       .addJumpTableIndex(MJTI);
11005   } else {
11006     Register NewVReg1 = MRI->createVirtualRegister(TRC);
11007     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
11008         .addFrameIndex(FI)
11009         .addImm(4)
11010         .addMemOperand(FIMMOLd)
11011         .add(predOps(ARMCC::AL));
11012 
11013     if (NumLPads < 256) {
11014       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
11015           .addReg(NewVReg1)
11016           .addImm(NumLPads)
11017           .add(predOps(ARMCC::AL));
11018     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
11019       Register VReg1 = MRI->createVirtualRegister(TRC);
11020       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
11021           .addImm(NumLPads & 0xFFFF)
11022           .add(predOps(ARMCC::AL));
11023 
11024       unsigned VReg2 = VReg1;
11025       if ((NumLPads & 0xFFFF0000) != 0) {
11026         VReg2 = MRI->createVirtualRegister(TRC);
11027         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
11028             .addReg(VReg1)
11029             .addImm(NumLPads >> 16)
11030             .add(predOps(ARMCC::AL));
11031       }
11032 
11033       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
11034           .addReg(NewVReg1)
11035           .addReg(VReg2)
11036           .add(predOps(ARMCC::AL));
11037     } else {
11038       MachineConstantPool *ConstantPool = MF->getConstantPool();
11039       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11040       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
11041 
11042       // MachineConstantPool wants an explicit alignment.
11043       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11044       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11045 
11046       Register VReg1 = MRI->createVirtualRegister(TRC);
11047       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
11048           .addReg(VReg1, RegState::Define)
11049           .addConstantPoolIndex(Idx)
11050           .addImm(0)
11051           .add(predOps(ARMCC::AL));
11052       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
11053           .addReg(NewVReg1)
11054           .addReg(VReg1, RegState::Kill)
11055           .add(predOps(ARMCC::AL));
11056     }
11057 
11058     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
11059       .addMBB(TrapBB)
11060       .addImm(ARMCC::HI)
11061       .addReg(ARM::CPSR);
11062 
11063     Register NewVReg3 = MRI->createVirtualRegister(TRC);
11064     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
11065         .addReg(NewVReg1)
11066         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
11067         .add(predOps(ARMCC::AL))
11068         .add(condCodeOp());
11069     Register NewVReg4 = MRI->createVirtualRegister(TRC);
11070     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
11071         .addJumpTableIndex(MJTI)
11072         .add(predOps(ARMCC::AL));
11073 
11074     MachineMemOperand *JTMMOLd =
11075         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
11076                                  MachineMemOperand::MOLoad, 4, Align(4));
11077     Register NewVReg5 = MRI->createVirtualRegister(TRC);
11078     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
11079         .addReg(NewVReg3, RegState::Kill)
11080         .addReg(NewVReg4)
11081         .addImm(0)
11082         .addMemOperand(JTMMOLd)
11083         .add(predOps(ARMCC::AL));
11084 
11085     if (IsPositionIndependent) {
11086       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
11087         .addReg(NewVReg5, RegState::Kill)
11088         .addReg(NewVReg4)
11089         .addJumpTableIndex(MJTI);
11090     } else {
11091       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
11092         .addReg(NewVReg5, RegState::Kill)
11093         .addJumpTableIndex(MJTI);
11094     }
11095   }
11096 
11097   // Add the jump table entries as successors to the MBB.
11098   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
11099   for (MachineBasicBlock *CurMBB : LPadList) {
11100     if (SeenMBBs.insert(CurMBB).second)
11101       DispContBB->addSuccessor(CurMBB);
11102   }
11103 
11104   // N.B. the order the invoke BBs are processed in doesn't matter here.
11105   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
11106   SmallVector<MachineBasicBlock*, 64> MBBLPads;
11107   for (MachineBasicBlock *BB : InvokeBBs) {
11108 
11109     // Remove the landing pad successor from the invoke block and replace it
11110     // with the new dispatch block.
11111     SmallVector<MachineBasicBlock*, 4> Successors(BB->successors());
11112     while (!Successors.empty()) {
11113       MachineBasicBlock *SMBB = Successors.pop_back_val();
11114       if (SMBB->isEHPad()) {
11115         BB->removeSuccessor(SMBB);
11116         MBBLPads.push_back(SMBB);
11117       }
11118     }
11119 
11120     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
11121     BB->normalizeSuccProbs();
11122 
11123     // Find the invoke call and mark all of the callee-saved registers as
11124     // 'implicit defined' so that they're spilled. This prevents code from
11125     // moving instructions to before the EH block, where they will never be
11126     // executed.
11127     for (MachineBasicBlock::reverse_iterator
11128            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
11129       if (!II->isCall()) continue;
11130 
11131       DenseMap<unsigned, bool> DefRegs;
11132       for (MachineInstr::mop_iterator
11133              OI = II->operands_begin(), OE = II->operands_end();
11134            OI != OE; ++OI) {
11135         if (!OI->isReg()) continue;
11136         DefRegs[OI->getReg()] = true;
11137       }
11138 
11139       MachineInstrBuilder MIB(*MF, &*II);
11140 
11141       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
11142         unsigned Reg = SavedRegs[i];
11143         if (Subtarget->isThumb2() &&
11144             !ARM::tGPRRegClass.contains(Reg) &&
11145             !ARM::hGPRRegClass.contains(Reg))
11146           continue;
11147         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
11148           continue;
11149         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
11150           continue;
11151         if (!DefRegs[Reg])
11152           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
11153       }
11154 
11155       break;
11156     }
11157   }
11158 
11159   // Mark all former landing pads as non-landing pads. The dispatch is the only
11160   // landing pad now.
11161   for (MachineBasicBlock *MBBLPad : MBBLPads)
11162     MBBLPad->setIsEHPad(false);
11163 
11164   // The instruction is gone now.
11165   MI.eraseFromParent();
11166 }
11167 
11168 static
11169 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
11170   for (MachineBasicBlock *S : MBB->successors())
11171     if (S != Succ)
11172       return S;
11173   llvm_unreachable("Expecting a BB with two successors!");
11174 }
11175 
11176 /// Return the load opcode for a given load size. If load size >= 8,
11177 /// neon opcode will be returned.
11178 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
11179   if (LdSize >= 8)
11180     return LdSize == 16 ? ARM::VLD1q32wb_fixed
11181                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
11182   if (IsThumb1)
11183     return LdSize == 4 ? ARM::tLDRi
11184                        : LdSize == 2 ? ARM::tLDRHi
11185                                      : LdSize == 1 ? ARM::tLDRBi : 0;
11186   if (IsThumb2)
11187     return LdSize == 4 ? ARM::t2LDR_POST
11188                        : LdSize == 2 ? ARM::t2LDRH_POST
11189                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
11190   return LdSize == 4 ? ARM::LDR_POST_IMM
11191                      : LdSize == 2 ? ARM::LDRH_POST
11192                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
11193 }
11194 
11195 /// Return the store opcode for a given store size. If store size >= 8,
11196 /// neon opcode will be returned.
11197 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
11198   if (StSize >= 8)
11199     return StSize == 16 ? ARM::VST1q32wb_fixed
11200                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
11201   if (IsThumb1)
11202     return StSize == 4 ? ARM::tSTRi
11203                        : StSize == 2 ? ARM::tSTRHi
11204                                      : StSize == 1 ? ARM::tSTRBi : 0;
11205   if (IsThumb2)
11206     return StSize == 4 ? ARM::t2STR_POST
11207                        : StSize == 2 ? ARM::t2STRH_POST
11208                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
11209   return StSize == 4 ? ARM::STR_POST_IMM
11210                      : StSize == 2 ? ARM::STRH_POST
11211                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
11212 }
11213 
11214 /// Emit a post-increment load operation with given size. The instructions
11215 /// will be added to BB at Pos.
11216 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11217                        const TargetInstrInfo *TII, const DebugLoc &dl,
11218                        unsigned LdSize, unsigned Data, unsigned AddrIn,
11219                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11220   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
11221   assert(LdOpc != 0 && "Should have a load opcode");
11222   if (LdSize >= 8) {
11223     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11224         .addReg(AddrOut, RegState::Define)
11225         .addReg(AddrIn)
11226         .addImm(0)
11227         .add(predOps(ARMCC::AL));
11228   } else if (IsThumb1) {
11229     // load + update AddrIn
11230     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11231         .addReg(AddrIn)
11232         .addImm(0)
11233         .add(predOps(ARMCC::AL));
11234     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11235         .add(t1CondCodeOp())
11236         .addReg(AddrIn)
11237         .addImm(LdSize)
11238         .add(predOps(ARMCC::AL));
11239   } else if (IsThumb2) {
11240     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11241         .addReg(AddrOut, RegState::Define)
11242         .addReg(AddrIn)
11243         .addImm(LdSize)
11244         .add(predOps(ARMCC::AL));
11245   } else { // arm
11246     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11247         .addReg(AddrOut, RegState::Define)
11248         .addReg(AddrIn)
11249         .addReg(0)
11250         .addImm(LdSize)
11251         .add(predOps(ARMCC::AL));
11252   }
11253 }
11254 
11255 /// Emit a post-increment store operation with given size. The instructions
11256 /// will be added to BB at Pos.
11257 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11258                        const TargetInstrInfo *TII, const DebugLoc &dl,
11259                        unsigned StSize, unsigned Data, unsigned AddrIn,
11260                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11261   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
11262   assert(StOpc != 0 && "Should have a store opcode");
11263   if (StSize >= 8) {
11264     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11265         .addReg(AddrIn)
11266         .addImm(0)
11267         .addReg(Data)
11268         .add(predOps(ARMCC::AL));
11269   } else if (IsThumb1) {
11270     // store + update AddrIn
11271     BuildMI(*BB, Pos, dl, TII->get(StOpc))
11272         .addReg(Data)
11273         .addReg(AddrIn)
11274         .addImm(0)
11275         .add(predOps(ARMCC::AL));
11276     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11277         .add(t1CondCodeOp())
11278         .addReg(AddrIn)
11279         .addImm(StSize)
11280         .add(predOps(ARMCC::AL));
11281   } else if (IsThumb2) {
11282     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11283         .addReg(Data)
11284         .addReg(AddrIn)
11285         .addImm(StSize)
11286         .add(predOps(ARMCC::AL));
11287   } else { // arm
11288     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11289         .addReg(Data)
11290         .addReg(AddrIn)
11291         .addReg(0)
11292         .addImm(StSize)
11293         .add(predOps(ARMCC::AL));
11294   }
11295 }
11296 
11297 MachineBasicBlock *
11298 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
11299                                    MachineBasicBlock *BB) const {
11300   // This pseudo instruction has 3 operands: dst, src, size
11301   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
11302   // Otherwise, we will generate unrolled scalar copies.
11303   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11304   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11305   MachineFunction::iterator It = ++BB->getIterator();
11306 
11307   Register dest = MI.getOperand(0).getReg();
11308   Register src = MI.getOperand(1).getReg();
11309   unsigned SizeVal = MI.getOperand(2).getImm();
11310   unsigned Alignment = MI.getOperand(3).getImm();
11311   DebugLoc dl = MI.getDebugLoc();
11312 
11313   MachineFunction *MF = BB->getParent();
11314   MachineRegisterInfo &MRI = MF->getRegInfo();
11315   unsigned UnitSize = 0;
11316   const TargetRegisterClass *TRC = nullptr;
11317   const TargetRegisterClass *VecTRC = nullptr;
11318 
11319   bool IsThumb1 = Subtarget->isThumb1Only();
11320   bool IsThumb2 = Subtarget->isThumb2();
11321   bool IsThumb = Subtarget->isThumb();
11322 
11323   if (Alignment & 1) {
11324     UnitSize = 1;
11325   } else if (Alignment & 2) {
11326     UnitSize = 2;
11327   } else {
11328     // Check whether we can use NEON instructions.
11329     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
11330         Subtarget->hasNEON()) {
11331       if ((Alignment % 16 == 0) && SizeVal >= 16)
11332         UnitSize = 16;
11333       else if ((Alignment % 8 == 0) && SizeVal >= 8)
11334         UnitSize = 8;
11335     }
11336     // Can't use NEON instructions.
11337     if (UnitSize == 0)
11338       UnitSize = 4;
11339   }
11340 
11341   // Select the correct opcode and register class for unit size load/store
11342   bool IsNeon = UnitSize >= 8;
11343   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
11344   if (IsNeon)
11345     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
11346                             : UnitSize == 8 ? &ARM::DPRRegClass
11347                                             : nullptr;
11348 
11349   unsigned BytesLeft = SizeVal % UnitSize;
11350   unsigned LoopSize = SizeVal - BytesLeft;
11351 
11352   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
11353     // Use LDR and STR to copy.
11354     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
11355     // [destOut] = STR_POST(scratch, destIn, UnitSize)
11356     unsigned srcIn = src;
11357     unsigned destIn = dest;
11358     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
11359       Register srcOut = MRI.createVirtualRegister(TRC);
11360       Register destOut = MRI.createVirtualRegister(TRC);
11361       Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11362       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
11363                  IsThumb1, IsThumb2);
11364       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
11365                  IsThumb1, IsThumb2);
11366       srcIn = srcOut;
11367       destIn = destOut;
11368     }
11369 
11370     // Handle the leftover bytes with LDRB and STRB.
11371     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
11372     // [destOut] = STRB_POST(scratch, destIn, 1)
11373     for (unsigned i = 0; i < BytesLeft; i++) {
11374       Register srcOut = MRI.createVirtualRegister(TRC);
11375       Register destOut = MRI.createVirtualRegister(TRC);
11376       Register scratch = MRI.createVirtualRegister(TRC);
11377       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
11378                  IsThumb1, IsThumb2);
11379       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
11380                  IsThumb1, IsThumb2);
11381       srcIn = srcOut;
11382       destIn = destOut;
11383     }
11384     MI.eraseFromParent(); // The instruction is gone now.
11385     return BB;
11386   }
11387 
11388   // Expand the pseudo op to a loop.
11389   // thisMBB:
11390   //   ...
11391   //   movw varEnd, # --> with thumb2
11392   //   movt varEnd, #
11393   //   ldrcp varEnd, idx --> without thumb2
11394   //   fallthrough --> loopMBB
11395   // loopMBB:
11396   //   PHI varPhi, varEnd, varLoop
11397   //   PHI srcPhi, src, srcLoop
11398   //   PHI destPhi, dst, destLoop
11399   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11400   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
11401   //   subs varLoop, varPhi, #UnitSize
11402   //   bne loopMBB
11403   //   fallthrough --> exitMBB
11404   // exitMBB:
11405   //   epilogue to handle left-over bytes
11406   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11407   //   [destOut] = STRB_POST(scratch, destLoop, 1)
11408   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11409   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11410   MF->insert(It, loopMBB);
11411   MF->insert(It, exitMBB);
11412 
11413   // Transfer the remainder of BB and its successor edges to exitMBB.
11414   exitMBB->splice(exitMBB->begin(), BB,
11415                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11416   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11417 
11418   // Load an immediate to varEnd.
11419   Register varEnd = MRI.createVirtualRegister(TRC);
11420   if (Subtarget->useMovt()) {
11421     unsigned Vtmp = varEnd;
11422     if ((LoopSize & 0xFFFF0000) != 0)
11423       Vtmp = MRI.createVirtualRegister(TRC);
11424     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
11425         .addImm(LoopSize & 0xFFFF)
11426         .add(predOps(ARMCC::AL));
11427 
11428     if ((LoopSize & 0xFFFF0000) != 0)
11429       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
11430           .addReg(Vtmp)
11431           .addImm(LoopSize >> 16)
11432           .add(predOps(ARMCC::AL));
11433   } else {
11434     MachineConstantPool *ConstantPool = MF->getConstantPool();
11435     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11436     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
11437 
11438     // MachineConstantPool wants an explicit alignment.
11439     Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11440     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11441     MachineMemOperand *CPMMO =
11442         MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
11443                                  MachineMemOperand::MOLoad, 4, Align(4));
11444 
11445     if (IsThumb)
11446       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
11447           .addReg(varEnd, RegState::Define)
11448           .addConstantPoolIndex(Idx)
11449           .add(predOps(ARMCC::AL))
11450           .addMemOperand(CPMMO);
11451     else
11452       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
11453           .addReg(varEnd, RegState::Define)
11454           .addConstantPoolIndex(Idx)
11455           .addImm(0)
11456           .add(predOps(ARMCC::AL))
11457           .addMemOperand(CPMMO);
11458   }
11459   BB->addSuccessor(loopMBB);
11460 
11461   // Generate the loop body:
11462   //   varPhi = PHI(varLoop, varEnd)
11463   //   srcPhi = PHI(srcLoop, src)
11464   //   destPhi = PHI(destLoop, dst)
11465   MachineBasicBlock *entryBB = BB;
11466   BB = loopMBB;
11467   Register varLoop = MRI.createVirtualRegister(TRC);
11468   Register varPhi = MRI.createVirtualRegister(TRC);
11469   Register srcLoop = MRI.createVirtualRegister(TRC);
11470   Register srcPhi = MRI.createVirtualRegister(TRC);
11471   Register destLoop = MRI.createVirtualRegister(TRC);
11472   Register destPhi = MRI.createVirtualRegister(TRC);
11473 
11474   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
11475     .addReg(varLoop).addMBB(loopMBB)
11476     .addReg(varEnd).addMBB(entryBB);
11477   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
11478     .addReg(srcLoop).addMBB(loopMBB)
11479     .addReg(src).addMBB(entryBB);
11480   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
11481     .addReg(destLoop).addMBB(loopMBB)
11482     .addReg(dest).addMBB(entryBB);
11483 
11484   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11485   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
11486   Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11487   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
11488              IsThumb1, IsThumb2);
11489   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
11490              IsThumb1, IsThumb2);
11491 
11492   // Decrement loop variable by UnitSize.
11493   if (IsThumb1) {
11494     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
11495         .add(t1CondCodeOp())
11496         .addReg(varPhi)
11497         .addImm(UnitSize)
11498         .add(predOps(ARMCC::AL));
11499   } else {
11500     MachineInstrBuilder MIB =
11501         BuildMI(*BB, BB->end(), dl,
11502                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
11503     MIB.addReg(varPhi)
11504         .addImm(UnitSize)
11505         .add(predOps(ARMCC::AL))
11506         .add(condCodeOp());
11507     MIB->getOperand(5).setReg(ARM::CPSR);
11508     MIB->getOperand(5).setIsDef(true);
11509   }
11510   BuildMI(*BB, BB->end(), dl,
11511           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
11512       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
11513 
11514   // loopMBB can loop back to loopMBB or fall through to exitMBB.
11515   BB->addSuccessor(loopMBB);
11516   BB->addSuccessor(exitMBB);
11517 
11518   // Add epilogue to handle BytesLeft.
11519   BB = exitMBB;
11520   auto StartOfExit = exitMBB->begin();
11521 
11522   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11523   //   [destOut] = STRB_POST(scratch, destLoop, 1)
11524   unsigned srcIn = srcLoop;
11525   unsigned destIn = destLoop;
11526   for (unsigned i = 0; i < BytesLeft; i++) {
11527     Register srcOut = MRI.createVirtualRegister(TRC);
11528     Register destOut = MRI.createVirtualRegister(TRC);
11529     Register scratch = MRI.createVirtualRegister(TRC);
11530     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
11531                IsThumb1, IsThumb2);
11532     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
11533                IsThumb1, IsThumb2);
11534     srcIn = srcOut;
11535     destIn = destOut;
11536   }
11537 
11538   MI.eraseFromParent(); // The instruction is gone now.
11539   return BB;
11540 }
11541 
11542 MachineBasicBlock *
11543 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
11544                                        MachineBasicBlock *MBB) const {
11545   const TargetMachine &TM = getTargetMachine();
11546   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
11547   DebugLoc DL = MI.getDebugLoc();
11548 
11549   assert(Subtarget->isTargetWindows() &&
11550          "__chkstk is only supported on Windows");
11551   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
11552 
11553   // __chkstk takes the number of words to allocate on the stack in R4, and
11554   // returns the stack adjustment in number of bytes in R4.  This will not
11555   // clober any other registers (other than the obvious lr).
11556   //
11557   // Although, technically, IP should be considered a register which may be
11558   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
11559   // thumb-2 environment, so there is no interworking required.  As a result, we
11560   // do not expect a veneer to be emitted by the linker, clobbering IP.
11561   //
11562   // Each module receives its own copy of __chkstk, so no import thunk is
11563   // required, again, ensuring that IP is not clobbered.
11564   //
11565   // Finally, although some linkers may theoretically provide a trampoline for
11566   // out of range calls (which is quite common due to a 32M range limitation of
11567   // branches for Thumb), we can generate the long-call version via
11568   // -mcmodel=large, alleviating the need for the trampoline which may clobber
11569   // IP.
11570 
11571   switch (TM.getCodeModel()) {
11572   case CodeModel::Tiny:
11573     llvm_unreachable("Tiny code model not available on ARM.");
11574   case CodeModel::Small:
11575   case CodeModel::Medium:
11576   case CodeModel::Kernel:
11577     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
11578         .add(predOps(ARMCC::AL))
11579         .addExternalSymbol("__chkstk")
11580         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11581         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11582         .addReg(ARM::R12,
11583                 RegState::Implicit | RegState::Define | RegState::Dead)
11584         .addReg(ARM::CPSR,
11585                 RegState::Implicit | RegState::Define | RegState::Dead);
11586     break;
11587   case CodeModel::Large: {
11588     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11589     Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11590 
11591     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
11592       .addExternalSymbol("__chkstk");
11593     BuildMI(*MBB, MI, DL, TII.get(gettBLXrOpcode(*MBB->getParent())))
11594         .add(predOps(ARMCC::AL))
11595         .addReg(Reg, RegState::Kill)
11596         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11597         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11598         .addReg(ARM::R12,
11599                 RegState::Implicit | RegState::Define | RegState::Dead)
11600         .addReg(ARM::CPSR,
11601                 RegState::Implicit | RegState::Define | RegState::Dead);
11602     break;
11603   }
11604   }
11605 
11606   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
11607       .addReg(ARM::SP, RegState::Kill)
11608       .addReg(ARM::R4, RegState::Kill)
11609       .setMIFlags(MachineInstr::FrameSetup)
11610       .add(predOps(ARMCC::AL))
11611       .add(condCodeOp());
11612 
11613   MI.eraseFromParent();
11614   return MBB;
11615 }
11616 
11617 MachineBasicBlock *
11618 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
11619                                        MachineBasicBlock *MBB) const {
11620   DebugLoc DL = MI.getDebugLoc();
11621   MachineFunction *MF = MBB->getParent();
11622   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11623 
11624   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
11625   MF->insert(++MBB->getIterator(), ContBB);
11626   ContBB->splice(ContBB->begin(), MBB,
11627                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11628   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
11629   MBB->addSuccessor(ContBB);
11630 
11631   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
11632   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
11633   MF->push_back(TrapBB);
11634   MBB->addSuccessor(TrapBB);
11635 
11636   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
11637       .addReg(MI.getOperand(0).getReg())
11638       .addImm(0)
11639       .add(predOps(ARMCC::AL));
11640   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
11641       .addMBB(TrapBB)
11642       .addImm(ARMCC::EQ)
11643       .addReg(ARM::CPSR);
11644 
11645   MI.eraseFromParent();
11646   return ContBB;
11647 }
11648 
11649 // The CPSR operand of SelectItr might be missing a kill marker
11650 // because there were multiple uses of CPSR, and ISel didn't know
11651 // which to mark. Figure out whether SelectItr should have had a
11652 // kill marker, and set it if it should. Returns the correct kill
11653 // marker value.
11654 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
11655                                    MachineBasicBlock* BB,
11656                                    const TargetRegisterInfo* TRI) {
11657   // Scan forward through BB for a use/def of CPSR.
11658   MachineBasicBlock::iterator miI(std::next(SelectItr));
11659   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
11660     const MachineInstr& mi = *miI;
11661     if (mi.readsRegister(ARM::CPSR))
11662       return false;
11663     if (mi.definesRegister(ARM::CPSR))
11664       break; // Should have kill-flag - update below.
11665   }
11666 
11667   // If we hit the end of the block, check whether CPSR is live into a
11668   // successor.
11669   if (miI == BB->end()) {
11670     for (MachineBasicBlock *Succ : BB->successors())
11671       if (Succ->isLiveIn(ARM::CPSR))
11672         return false;
11673   }
11674 
11675   // We found a def, or hit the end of the basic block and CPSR wasn't live
11676   // out. SelectMI should have a kill flag on CPSR.
11677   SelectItr->addRegisterKilled(ARM::CPSR, TRI);
11678   return true;
11679 }
11680 
11681 /// Adds logic in loop entry MBB to calculate loop iteration count and adds
11682 /// t2WhileLoopSetup and t2WhileLoopStart to generate WLS loop
11683 static Register genTPEntry(MachineBasicBlock *TpEntry,
11684                            MachineBasicBlock *TpLoopBody,
11685                            MachineBasicBlock *TpExit, Register OpSizeReg,
11686                            const TargetInstrInfo *TII, DebugLoc Dl,
11687                            MachineRegisterInfo &MRI) {
11688   // Calculates loop iteration count = ceil(n/16) = (n + 15) >> 4.
11689   Register AddDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11690   BuildMI(TpEntry, Dl, TII->get(ARM::t2ADDri), AddDestReg)
11691       .addUse(OpSizeReg)
11692       .addImm(15)
11693       .add(predOps(ARMCC::AL))
11694       .addReg(0);
11695 
11696   Register LsrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11697   BuildMI(TpEntry, Dl, TII->get(ARM::t2LSRri), LsrDestReg)
11698       .addUse(AddDestReg, RegState::Kill)
11699       .addImm(4)
11700       .add(predOps(ARMCC::AL))
11701       .addReg(0);
11702 
11703   Register TotalIterationsReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11704   BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopSetup), TotalIterationsReg)
11705       .addUse(LsrDestReg, RegState::Kill);
11706 
11707   BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopStart))
11708       .addUse(TotalIterationsReg)
11709       .addMBB(TpExit);
11710 
11711   BuildMI(TpEntry, Dl, TII->get(ARM::t2B))
11712       .addMBB(TpLoopBody)
11713       .add(predOps(ARMCC::AL));
11714 
11715   return TotalIterationsReg;
11716 }
11717 
11718 /// Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and
11719 /// t2DoLoopEnd. These are used by later passes to generate tail predicated
11720 /// loops.
11721 static void genTPLoopBody(MachineBasicBlock *TpLoopBody,
11722                           MachineBasicBlock *TpEntry, MachineBasicBlock *TpExit,
11723                           const TargetInstrInfo *TII, DebugLoc Dl,
11724                           MachineRegisterInfo &MRI, Register OpSrcReg,
11725                           Register OpDestReg, Register ElementCountReg,
11726                           Register TotalIterationsReg, bool IsMemcpy) {
11727   // First insert 4 PHI nodes for: Current pointer to Src (if memcpy), Dest
11728   // array, loop iteration counter, predication counter.
11729 
11730   Register SrcPhiReg, CurrSrcReg;
11731   if (IsMemcpy) {
11732     //  Current position in the src array
11733     SrcPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11734     CurrSrcReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11735     BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), SrcPhiReg)
11736         .addUse(OpSrcReg)
11737         .addMBB(TpEntry)
11738         .addUse(CurrSrcReg)
11739         .addMBB(TpLoopBody);
11740   }
11741 
11742   // Current position in the dest array
11743   Register DestPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11744   Register CurrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11745   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), DestPhiReg)
11746       .addUse(OpDestReg)
11747       .addMBB(TpEntry)
11748       .addUse(CurrDestReg)
11749       .addMBB(TpLoopBody);
11750 
11751   // Current loop counter
11752   Register LoopCounterPhiReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11753   Register RemainingLoopIterationsReg =
11754       MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11755   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), LoopCounterPhiReg)
11756       .addUse(TotalIterationsReg)
11757       .addMBB(TpEntry)
11758       .addUse(RemainingLoopIterationsReg)
11759       .addMBB(TpLoopBody);
11760 
11761   // Predication counter
11762   Register PredCounterPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11763   Register RemainingElementsReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11764   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), PredCounterPhiReg)
11765       .addUse(ElementCountReg)
11766       .addMBB(TpEntry)
11767       .addUse(RemainingElementsReg)
11768       .addMBB(TpLoopBody);
11769 
11770   // Pass predication counter to VCTP
11771   Register VccrReg = MRI.createVirtualRegister(&ARM::VCCRRegClass);
11772   BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VCTP8), VccrReg)
11773       .addUse(PredCounterPhiReg)
11774       .addImm(ARMVCC::None)
11775       .addReg(0)
11776       .addReg(0);
11777 
11778   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2SUBri), RemainingElementsReg)
11779       .addUse(PredCounterPhiReg)
11780       .addImm(16)
11781       .add(predOps(ARMCC::AL))
11782       .addReg(0);
11783 
11784   // VLDRB (only if memcpy) and VSTRB instructions, predicated using VPR
11785   Register SrcValueReg;
11786   if (IsMemcpy) {
11787     SrcValueReg = MRI.createVirtualRegister(&ARM::MQPRRegClass);
11788     BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VLDRBU8_post))
11789         .addDef(CurrSrcReg)
11790         .addDef(SrcValueReg)
11791         .addReg(SrcPhiReg)
11792         .addImm(16)
11793         .addImm(ARMVCC::Then)
11794         .addUse(VccrReg)
11795         .addReg(0);
11796   } else
11797     SrcValueReg = OpSrcReg;
11798 
11799   BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VSTRBU8_post))
11800       .addDef(CurrDestReg)
11801       .addUse(SrcValueReg)
11802       .addReg(DestPhiReg)
11803       .addImm(16)
11804       .addImm(ARMVCC::Then)
11805       .addUse(VccrReg)
11806       .addReg(0);
11807 
11808   // Add the pseudoInstrs for decrementing the loop counter and marking the
11809   // end:t2DoLoopDec and t2DoLoopEnd
11810   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopDec), RemainingLoopIterationsReg)
11811       .addUse(LoopCounterPhiReg)
11812       .addImm(1);
11813 
11814   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopEnd))
11815       .addUse(RemainingLoopIterationsReg)
11816       .addMBB(TpLoopBody);
11817 
11818   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2B))
11819       .addMBB(TpExit)
11820       .add(predOps(ARMCC::AL));
11821 }
11822 
11823 MachineBasicBlock *
11824 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11825                                                MachineBasicBlock *BB) const {
11826   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11827   DebugLoc dl = MI.getDebugLoc();
11828   bool isThumb2 = Subtarget->isThumb2();
11829   switch (MI.getOpcode()) {
11830   default: {
11831     MI.print(errs());
11832     llvm_unreachable("Unexpected instr type to insert");
11833   }
11834 
11835   // Thumb1 post-indexed loads are really just single-register LDMs.
11836   case ARM::tLDR_postidx: {
11837     MachineOperand Def(MI.getOperand(1));
11838     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
11839         .add(Def)  // Rn_wb
11840         .add(MI.getOperand(2))  // Rn
11841         .add(MI.getOperand(3))  // PredImm
11842         .add(MI.getOperand(4))  // PredReg
11843         .add(MI.getOperand(0))  // Rt
11844         .cloneMemRefs(MI);
11845     MI.eraseFromParent();
11846     return BB;
11847   }
11848 
11849   case ARM::MVE_MEMCPYLOOPINST:
11850   case ARM::MVE_MEMSETLOOPINST: {
11851 
11852     // Transformation below expands MVE_MEMCPYLOOPINST/MVE_MEMSETLOOPINST Pseudo
11853     // into a Tail Predicated (TP) Loop. It adds the instructions to calculate
11854     // the iteration count =ceil(size_in_bytes/16)) in the TP entry block and
11855     // adds the relevant instructions in the TP loop Body for generation of a
11856     // WLSTP loop.
11857 
11858     // Below is relevant portion of the CFG after the transformation.
11859     // The Machine Basic Blocks are shown along with branch conditions (in
11860     // brackets). Note that TP entry/exit MBBs depict the entry/exit of this
11861     // portion of the CFG and may not necessarily be the entry/exit of the
11862     // function.
11863 
11864     //             (Relevant) CFG after transformation:
11865     //               TP entry MBB
11866     //                   |
11867     //          |-----------------|
11868     //       (n <= 0)          (n > 0)
11869     //          |                 |
11870     //          |         TP loop Body MBB<--|
11871     //          |                |           |
11872     //           \               |___________|
11873     //            \             /
11874     //              TP exit MBB
11875 
11876     MachineFunction *MF = BB->getParent();
11877     MachineFunctionProperties &Properties = MF->getProperties();
11878     MachineRegisterInfo &MRI = MF->getRegInfo();
11879 
11880     Register OpDestReg = MI.getOperand(0).getReg();
11881     Register OpSrcReg = MI.getOperand(1).getReg();
11882     Register OpSizeReg = MI.getOperand(2).getReg();
11883 
11884     // Allocate the required MBBs and add to parent function.
11885     MachineBasicBlock *TpEntry = BB;
11886     MachineBasicBlock *TpLoopBody = MF->CreateMachineBasicBlock();
11887     MachineBasicBlock *TpExit;
11888 
11889     MF->push_back(TpLoopBody);
11890 
11891     // If any instructions are present in the current block after
11892     // MVE_MEMCPYLOOPINST or MVE_MEMSETLOOPINST, split the current block and
11893     // move the instructions into the newly created exit block. If there are no
11894     // instructions add an explicit branch to the FallThrough block and then
11895     // split.
11896     //
11897     // The split is required for two reasons:
11898     // 1) A terminator(t2WhileLoopStart) will be placed at that site.
11899     // 2) Since a TPLoopBody will be added later, any phis in successive blocks
11900     //    need to be updated. splitAt() already handles this.
11901     TpExit = BB->splitAt(MI, false);
11902     if (TpExit == BB) {
11903       assert(BB->canFallThrough() && "Exit Block must be Fallthrough of the "
11904                                      "block containing memcpy/memset Pseudo");
11905       TpExit = BB->getFallThrough();
11906       BuildMI(BB, dl, TII->get(ARM::t2B))
11907           .addMBB(TpExit)
11908           .add(predOps(ARMCC::AL));
11909       TpExit = BB->splitAt(MI, false);
11910     }
11911 
11912     // Add logic for iteration count
11913     Register TotalIterationsReg =
11914         genTPEntry(TpEntry, TpLoopBody, TpExit, OpSizeReg, TII, dl, MRI);
11915 
11916     // Add the vectorized (and predicated) loads/store instructions
11917     bool IsMemcpy = MI.getOpcode() == ARM::MVE_MEMCPYLOOPINST;
11918     genTPLoopBody(TpLoopBody, TpEntry, TpExit, TII, dl, MRI, OpSrcReg,
11919                   OpDestReg, OpSizeReg, TotalIterationsReg, IsMemcpy);
11920 
11921     // Required to avoid conflict with the MachineVerifier during testing.
11922     Properties.reset(MachineFunctionProperties::Property::NoPHIs);
11923 
11924     // Connect the blocks
11925     TpEntry->addSuccessor(TpLoopBody);
11926     TpLoopBody->addSuccessor(TpLoopBody);
11927     TpLoopBody->addSuccessor(TpExit);
11928 
11929     // Reorder for a more natural layout
11930     TpLoopBody->moveAfter(TpEntry);
11931     TpExit->moveAfter(TpLoopBody);
11932 
11933     // Finally, remove the memcpy Psuedo Instruction
11934     MI.eraseFromParent();
11935 
11936     // Return the exit block as it may contain other instructions requiring a
11937     // custom inserter
11938     return TpExit;
11939   }
11940 
11941   // The Thumb2 pre-indexed stores have the same MI operands, they just
11942   // define them differently in the .td files from the isel patterns, so
11943   // they need pseudos.
11944   case ARM::t2STR_preidx:
11945     MI.setDesc(TII->get(ARM::t2STR_PRE));
11946     return BB;
11947   case ARM::t2STRB_preidx:
11948     MI.setDesc(TII->get(ARM::t2STRB_PRE));
11949     return BB;
11950   case ARM::t2STRH_preidx:
11951     MI.setDesc(TII->get(ARM::t2STRH_PRE));
11952     return BB;
11953 
11954   case ARM::STRi_preidx:
11955   case ARM::STRBi_preidx: {
11956     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
11957                                                          : ARM::STRB_PRE_IMM;
11958     // Decode the offset.
11959     unsigned Offset = MI.getOperand(4).getImm();
11960     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
11961     Offset = ARM_AM::getAM2Offset(Offset);
11962     if (isSub)
11963       Offset = -Offset;
11964 
11965     MachineMemOperand *MMO = *MI.memoperands_begin();
11966     BuildMI(*BB, MI, dl, TII->get(NewOpc))
11967         .add(MI.getOperand(0)) // Rn_wb
11968         .add(MI.getOperand(1)) // Rt
11969         .add(MI.getOperand(2)) // Rn
11970         .addImm(Offset)        // offset (skip GPR==zero_reg)
11971         .add(MI.getOperand(5)) // pred
11972         .add(MI.getOperand(6))
11973         .addMemOperand(MMO);
11974     MI.eraseFromParent();
11975     return BB;
11976   }
11977   case ARM::STRr_preidx:
11978   case ARM::STRBr_preidx:
11979   case ARM::STRH_preidx: {
11980     unsigned NewOpc;
11981     switch (MI.getOpcode()) {
11982     default: llvm_unreachable("unexpected opcode!");
11983     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
11984     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
11985     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
11986     }
11987     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
11988     for (const MachineOperand &MO : MI.operands())
11989       MIB.add(MO);
11990     MI.eraseFromParent();
11991     return BB;
11992   }
11993 
11994   case ARM::tMOVCCr_pseudo: {
11995     // To "insert" a SELECT_CC instruction, we actually have to insert the
11996     // diamond control-flow pattern.  The incoming instruction knows the
11997     // destination vreg to set, the condition code register to branch on, the
11998     // true/false values to select between, and a branch opcode to use.
11999     const BasicBlock *LLVM_BB = BB->getBasicBlock();
12000     MachineFunction::iterator It = ++BB->getIterator();
12001 
12002     //  thisMBB:
12003     //  ...
12004     //   TrueVal = ...
12005     //   cmpTY ccX, r1, r2
12006     //   bCC copy1MBB
12007     //   fallthrough --> copy0MBB
12008     MachineBasicBlock *thisMBB  = BB;
12009     MachineFunction *F = BB->getParent();
12010     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12011     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
12012     F->insert(It, copy0MBB);
12013     F->insert(It, sinkMBB);
12014 
12015     // Check whether CPSR is live past the tMOVCCr_pseudo.
12016     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
12017     if (!MI.killsRegister(ARM::CPSR) &&
12018         !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
12019       copy0MBB->addLiveIn(ARM::CPSR);
12020       sinkMBB->addLiveIn(ARM::CPSR);
12021     }
12022 
12023     // Transfer the remainder of BB and its successor edges to sinkMBB.
12024     sinkMBB->splice(sinkMBB->begin(), BB,
12025                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12026     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12027 
12028     BB->addSuccessor(copy0MBB);
12029     BB->addSuccessor(sinkMBB);
12030 
12031     BuildMI(BB, dl, TII->get(ARM::tBcc))
12032         .addMBB(sinkMBB)
12033         .addImm(MI.getOperand(3).getImm())
12034         .addReg(MI.getOperand(4).getReg());
12035 
12036     //  copy0MBB:
12037     //   %FalseValue = ...
12038     //   # fallthrough to sinkMBB
12039     BB = copy0MBB;
12040 
12041     // Update machine-CFG edges
12042     BB->addSuccessor(sinkMBB);
12043 
12044     //  sinkMBB:
12045     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12046     //  ...
12047     BB = sinkMBB;
12048     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
12049         .addReg(MI.getOperand(1).getReg())
12050         .addMBB(copy0MBB)
12051         .addReg(MI.getOperand(2).getReg())
12052         .addMBB(thisMBB);
12053 
12054     MI.eraseFromParent(); // The pseudo instruction is gone now.
12055     return BB;
12056   }
12057 
12058   case ARM::BCCi64:
12059   case ARM::BCCZi64: {
12060     // If there is an unconditional branch to the other successor, remove it.
12061     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
12062 
12063     // Compare both parts that make up the double comparison separately for
12064     // equality.
12065     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
12066 
12067     Register LHS1 = MI.getOperand(1).getReg();
12068     Register LHS2 = MI.getOperand(2).getReg();
12069     if (RHSisZero) {
12070       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12071           .addReg(LHS1)
12072           .addImm(0)
12073           .add(predOps(ARMCC::AL));
12074       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12075         .addReg(LHS2).addImm(0)
12076         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
12077     } else {
12078       Register RHS1 = MI.getOperand(3).getReg();
12079       Register RHS2 = MI.getOperand(4).getReg();
12080       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12081           .addReg(LHS1)
12082           .addReg(RHS1)
12083           .add(predOps(ARMCC::AL));
12084       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12085         .addReg(LHS2).addReg(RHS2)
12086         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
12087     }
12088 
12089     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
12090     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
12091     if (MI.getOperand(0).getImm() == ARMCC::NE)
12092       std::swap(destMBB, exitMBB);
12093 
12094     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
12095       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
12096     if (isThumb2)
12097       BuildMI(BB, dl, TII->get(ARM::t2B))
12098           .addMBB(exitMBB)
12099           .add(predOps(ARMCC::AL));
12100     else
12101       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
12102 
12103     MI.eraseFromParent(); // The pseudo instruction is gone now.
12104     return BB;
12105   }
12106 
12107   case ARM::Int_eh_sjlj_setjmp:
12108   case ARM::Int_eh_sjlj_setjmp_nofp:
12109   case ARM::tInt_eh_sjlj_setjmp:
12110   case ARM::t2Int_eh_sjlj_setjmp:
12111   case ARM::t2Int_eh_sjlj_setjmp_nofp:
12112     return BB;
12113 
12114   case ARM::Int_eh_sjlj_setup_dispatch:
12115     EmitSjLjDispatchBlock(MI, BB);
12116     return BB;
12117 
12118   case ARM::ABS:
12119   case ARM::t2ABS: {
12120     // To insert an ABS instruction, we have to insert the
12121     // diamond control-flow pattern.  The incoming instruction knows the
12122     // source vreg to test against 0, the destination vreg to set,
12123     // the condition code register to branch on, the
12124     // true/false values to select between, and a branch opcode to use.
12125     // It transforms
12126     //     V1 = ABS V0
12127     // into
12128     //     V2 = MOVS V0
12129     //     BCC                      (branch to SinkBB if V0 >= 0)
12130     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
12131     //     SinkBB: V1 = PHI(V2, V3)
12132     const BasicBlock *LLVM_BB = BB->getBasicBlock();
12133     MachineFunction::iterator BBI = ++BB->getIterator();
12134     MachineFunction *Fn = BB->getParent();
12135     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
12136     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
12137     Fn->insert(BBI, RSBBB);
12138     Fn->insert(BBI, SinkBB);
12139 
12140     Register ABSSrcReg = MI.getOperand(1).getReg();
12141     Register ABSDstReg = MI.getOperand(0).getReg();
12142     bool ABSSrcKIll = MI.getOperand(1).isKill();
12143     bool isThumb2 = Subtarget->isThumb2();
12144     MachineRegisterInfo &MRI = Fn->getRegInfo();
12145     // In Thumb mode S must not be specified if source register is the SP or
12146     // PC and if destination register is the SP, so restrict register class
12147     Register NewRsbDstReg = MRI.createVirtualRegister(
12148         isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
12149 
12150     // Transfer the remainder of BB and its successor edges to sinkMBB.
12151     SinkBB->splice(SinkBB->begin(), BB,
12152                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
12153     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
12154 
12155     BB->addSuccessor(RSBBB);
12156     BB->addSuccessor(SinkBB);
12157 
12158     // fall through to SinkMBB
12159     RSBBB->addSuccessor(SinkBB);
12160 
12161     // insert a cmp at the end of BB
12162     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12163         .addReg(ABSSrcReg)
12164         .addImm(0)
12165         .add(predOps(ARMCC::AL));
12166 
12167     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
12168     BuildMI(BB, dl,
12169       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
12170       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
12171 
12172     // insert rsbri in RSBBB
12173     // Note: BCC and rsbri will be converted into predicated rsbmi
12174     // by if-conversion pass
12175     BuildMI(*RSBBB, RSBBB->begin(), dl,
12176             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
12177         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
12178         .addImm(0)
12179         .add(predOps(ARMCC::AL))
12180         .add(condCodeOp());
12181 
12182     // insert PHI in SinkBB,
12183     // reuse ABSDstReg to not change uses of ABS instruction
12184     BuildMI(*SinkBB, SinkBB->begin(), dl,
12185       TII->get(ARM::PHI), ABSDstReg)
12186       .addReg(NewRsbDstReg).addMBB(RSBBB)
12187       .addReg(ABSSrcReg).addMBB(BB);
12188 
12189     // remove ABS instruction
12190     MI.eraseFromParent();
12191 
12192     // return last added BB
12193     return SinkBB;
12194   }
12195   case ARM::COPY_STRUCT_BYVAL_I32:
12196     ++NumLoopByVals;
12197     return EmitStructByval(MI, BB);
12198   case ARM::WIN__CHKSTK:
12199     return EmitLowered__chkstk(MI, BB);
12200   case ARM::WIN__DBZCHK:
12201     return EmitLowered__dbzchk(MI, BB);
12202   }
12203 }
12204 
12205 /// Attaches vregs to MEMCPY that it will use as scratch registers
12206 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
12207 /// instead of as a custom inserter because we need the use list from the SDNode.
12208 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
12209                                     MachineInstr &MI, const SDNode *Node) {
12210   bool isThumb1 = Subtarget->isThumb1Only();
12211 
12212   DebugLoc DL = MI.getDebugLoc();
12213   MachineFunction *MF = MI.getParent()->getParent();
12214   MachineRegisterInfo &MRI = MF->getRegInfo();
12215   MachineInstrBuilder MIB(*MF, MI);
12216 
12217   // If the new dst/src is unused mark it as dead.
12218   if (!Node->hasAnyUseOfValue(0)) {
12219     MI.getOperand(0).setIsDead(true);
12220   }
12221   if (!Node->hasAnyUseOfValue(1)) {
12222     MI.getOperand(1).setIsDead(true);
12223   }
12224 
12225   // The MEMCPY both defines and kills the scratch registers.
12226   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
12227     Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
12228                                                          : &ARM::GPRRegClass);
12229     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
12230   }
12231 }
12232 
12233 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
12234                                                       SDNode *Node) const {
12235   if (MI.getOpcode() == ARM::MEMCPY) {
12236     attachMEMCPYScratchRegs(Subtarget, MI, Node);
12237     return;
12238   }
12239 
12240   const MCInstrDesc *MCID = &MI.getDesc();
12241   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
12242   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
12243   // operand is still set to noreg. If needed, set the optional operand's
12244   // register to CPSR, and remove the redundant implicit def.
12245   //
12246   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
12247 
12248   // Rename pseudo opcodes.
12249   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
12250   unsigned ccOutIdx;
12251   if (NewOpc) {
12252     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
12253     MCID = &TII->get(NewOpc);
12254 
12255     assert(MCID->getNumOperands() ==
12256            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
12257         && "converted opcode should be the same except for cc_out"
12258            " (and, on Thumb1, pred)");
12259 
12260     MI.setDesc(*MCID);
12261 
12262     // Add the optional cc_out operand
12263     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
12264 
12265     // On Thumb1, move all input operands to the end, then add the predicate
12266     if (Subtarget->isThumb1Only()) {
12267       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
12268         MI.addOperand(MI.getOperand(1));
12269         MI.removeOperand(1);
12270       }
12271 
12272       // Restore the ties
12273       for (unsigned i = MI.getNumOperands(); i--;) {
12274         const MachineOperand& op = MI.getOperand(i);
12275         if (op.isReg() && op.isUse()) {
12276           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
12277           if (DefIdx != -1)
12278             MI.tieOperands(DefIdx, i);
12279         }
12280       }
12281 
12282       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
12283       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
12284       ccOutIdx = 1;
12285     } else
12286       ccOutIdx = MCID->getNumOperands() - 1;
12287   } else
12288     ccOutIdx = MCID->getNumOperands() - 1;
12289 
12290   // Any ARM instruction that sets the 's' bit should specify an optional
12291   // "cc_out" operand in the last operand position.
12292   if (!MI.hasOptionalDef() || !MCID->operands()[ccOutIdx].isOptionalDef()) {
12293     assert(!NewOpc && "Optional cc_out operand required");
12294     return;
12295   }
12296   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
12297   // since we already have an optional CPSR def.
12298   bool definesCPSR = false;
12299   bool deadCPSR = false;
12300   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
12301        ++i) {
12302     const MachineOperand &MO = MI.getOperand(i);
12303     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
12304       definesCPSR = true;
12305       if (MO.isDead())
12306         deadCPSR = true;
12307       MI.removeOperand(i);
12308       break;
12309     }
12310   }
12311   if (!definesCPSR) {
12312     assert(!NewOpc && "Optional cc_out operand required");
12313     return;
12314   }
12315   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
12316   if (deadCPSR) {
12317     assert(!MI.getOperand(ccOutIdx).getReg() &&
12318            "expect uninitialized optional cc_out operand");
12319     // Thumb1 instructions must have the S bit even if the CPSR is dead.
12320     if (!Subtarget->isThumb1Only())
12321       return;
12322   }
12323 
12324   // If this instruction was defined with an optional CPSR def and its dag node
12325   // had a live implicit CPSR def, then activate the optional CPSR def.
12326   MachineOperand &MO = MI.getOperand(ccOutIdx);
12327   MO.setReg(ARM::CPSR);
12328   MO.setIsDef(true);
12329 }
12330 
12331 //===----------------------------------------------------------------------===//
12332 //                           ARM Optimization Hooks
12333 //===----------------------------------------------------------------------===//
12334 
12335 // Helper function that checks if N is a null or all ones constant.
12336 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
12337   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
12338 }
12339 
12340 // Return true if N is conditionally 0 or all ones.
12341 // Detects these expressions where cc is an i1 value:
12342 //
12343 //   (select cc 0, y)   [AllOnes=0]
12344 //   (select cc y, 0)   [AllOnes=0]
12345 //   (zext cc)          [AllOnes=0]
12346 //   (sext cc)          [AllOnes=0/1]
12347 //   (select cc -1, y)  [AllOnes=1]
12348 //   (select cc y, -1)  [AllOnes=1]
12349 //
12350 // Invert is set when N is the null/all ones constant when CC is false.
12351 // OtherOp is set to the alternative value of N.
12352 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
12353                                        SDValue &CC, bool &Invert,
12354                                        SDValue &OtherOp,
12355                                        SelectionDAG &DAG) {
12356   switch (N->getOpcode()) {
12357   default: return false;
12358   case ISD::SELECT: {
12359     CC = N->getOperand(0);
12360     SDValue N1 = N->getOperand(1);
12361     SDValue N2 = N->getOperand(2);
12362     if (isZeroOrAllOnes(N1, AllOnes)) {
12363       Invert = false;
12364       OtherOp = N2;
12365       return true;
12366     }
12367     if (isZeroOrAllOnes(N2, AllOnes)) {
12368       Invert = true;
12369       OtherOp = N1;
12370       return true;
12371     }
12372     return false;
12373   }
12374   case ISD::ZERO_EXTEND:
12375     // (zext cc) can never be the all ones value.
12376     if (AllOnes)
12377       return false;
12378     [[fallthrough]];
12379   case ISD::SIGN_EXTEND: {
12380     SDLoc dl(N);
12381     EVT VT = N->getValueType(0);
12382     CC = N->getOperand(0);
12383     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
12384       return false;
12385     Invert = !AllOnes;
12386     if (AllOnes)
12387       // When looking for an AllOnes constant, N is an sext, and the 'other'
12388       // value is 0.
12389       OtherOp = DAG.getConstant(0, dl, VT);
12390     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12391       // When looking for a 0 constant, N can be zext or sext.
12392       OtherOp = DAG.getConstant(1, dl, VT);
12393     else
12394       OtherOp = DAG.getAllOnesConstant(dl, VT);
12395     return true;
12396   }
12397   }
12398 }
12399 
12400 // Combine a constant select operand into its use:
12401 //
12402 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
12403 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
12404 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
12405 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
12406 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
12407 //
12408 // The transform is rejected if the select doesn't have a constant operand that
12409 // is null, or all ones when AllOnes is set.
12410 //
12411 // Also recognize sext/zext from i1:
12412 //
12413 //   (add (zext cc), x) -> (select cc (add x, 1), x)
12414 //   (add (sext cc), x) -> (select cc (add x, -1), x)
12415 //
12416 // These transformations eventually create predicated instructions.
12417 //
12418 // @param N       The node to transform.
12419 // @param Slct    The N operand that is a select.
12420 // @param OtherOp The other N operand (x above).
12421 // @param DCI     Context.
12422 // @param AllOnes Require the select constant to be all ones instead of null.
12423 // @returns The new node, or SDValue() on failure.
12424 static
12425 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
12426                             TargetLowering::DAGCombinerInfo &DCI,
12427                             bool AllOnes = false) {
12428   SelectionDAG &DAG = DCI.DAG;
12429   EVT VT = N->getValueType(0);
12430   SDValue NonConstantVal;
12431   SDValue CCOp;
12432   bool SwapSelectOps;
12433   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
12434                                   NonConstantVal, DAG))
12435     return SDValue();
12436 
12437   // Slct is now know to be the desired identity constant when CC is true.
12438   SDValue TrueVal = OtherOp;
12439   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
12440                                  OtherOp, NonConstantVal);
12441   // Unless SwapSelectOps says CC should be false.
12442   if (SwapSelectOps)
12443     std::swap(TrueVal, FalseVal);
12444 
12445   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
12446                      CCOp, TrueVal, FalseVal);
12447 }
12448 
12449 // Attempt combineSelectAndUse on each operand of a commutative operator N.
12450 static
12451 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
12452                                        TargetLowering::DAGCombinerInfo &DCI) {
12453   SDValue N0 = N->getOperand(0);
12454   SDValue N1 = N->getOperand(1);
12455   if (N0.getNode()->hasOneUse())
12456     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
12457       return Result;
12458   if (N1.getNode()->hasOneUse())
12459     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
12460       return Result;
12461   return SDValue();
12462 }
12463 
12464 static bool IsVUZPShuffleNode(SDNode *N) {
12465   // VUZP shuffle node.
12466   if (N->getOpcode() == ARMISD::VUZP)
12467     return true;
12468 
12469   // "VUZP" on i32 is an alias for VTRN.
12470   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
12471     return true;
12472 
12473   return false;
12474 }
12475 
12476 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
12477                                  TargetLowering::DAGCombinerInfo &DCI,
12478                                  const ARMSubtarget *Subtarget) {
12479   // Look for ADD(VUZP.0, VUZP.1).
12480   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
12481       N0 == N1)
12482    return SDValue();
12483 
12484   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
12485   if (!N->getValueType(0).is64BitVector())
12486     return SDValue();
12487 
12488   // Generate vpadd.
12489   SelectionDAG &DAG = DCI.DAG;
12490   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12491   SDLoc dl(N);
12492   SDNode *Unzip = N0.getNode();
12493   EVT VT = N->getValueType(0);
12494 
12495   SmallVector<SDValue, 8> Ops;
12496   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
12497                                 TLI.getPointerTy(DAG.getDataLayout())));
12498   Ops.push_back(Unzip->getOperand(0));
12499   Ops.push_back(Unzip->getOperand(1));
12500 
12501   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12502 }
12503 
12504 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12505                                       TargetLowering::DAGCombinerInfo &DCI,
12506                                       const ARMSubtarget *Subtarget) {
12507   // Check for two extended operands.
12508   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
12509         N1.getOpcode() == ISD::SIGN_EXTEND) &&
12510       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
12511         N1.getOpcode() == ISD::ZERO_EXTEND))
12512     return SDValue();
12513 
12514   SDValue N00 = N0.getOperand(0);
12515   SDValue N10 = N1.getOperand(0);
12516 
12517   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
12518   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
12519       N00 == N10)
12520     return SDValue();
12521 
12522   // We only recognize Q register paddl here; this can't be reached until
12523   // after type legalization.
12524   if (!N00.getValueType().is64BitVector() ||
12525       !N0.getValueType().is128BitVector())
12526     return SDValue();
12527 
12528   // Generate vpaddl.
12529   SelectionDAG &DAG = DCI.DAG;
12530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12531   SDLoc dl(N);
12532   EVT VT = N->getValueType(0);
12533 
12534   SmallVector<SDValue, 8> Ops;
12535   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
12536   unsigned Opcode;
12537   if (N0.getOpcode() == ISD::SIGN_EXTEND)
12538     Opcode = Intrinsic::arm_neon_vpaddls;
12539   else
12540     Opcode = Intrinsic::arm_neon_vpaddlu;
12541   Ops.push_back(DAG.getConstant(Opcode, dl,
12542                                 TLI.getPointerTy(DAG.getDataLayout())));
12543   EVT ElemTy = N00.getValueType().getVectorElementType();
12544   unsigned NumElts = VT.getVectorNumElements();
12545   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
12546   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
12547                                N00.getOperand(0), N00.getOperand(1));
12548   Ops.push_back(Concat);
12549 
12550   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12551 }
12552 
12553 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
12554 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
12555 // much easier to match.
12556 static SDValue
12557 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12558                                TargetLowering::DAGCombinerInfo &DCI,
12559                                const ARMSubtarget *Subtarget) {
12560   // Only perform optimization if after legalize, and if NEON is available. We
12561   // also expected both operands to be BUILD_VECTORs.
12562   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
12563       || N0.getOpcode() != ISD::BUILD_VECTOR
12564       || N1.getOpcode() != ISD::BUILD_VECTOR)
12565     return SDValue();
12566 
12567   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
12568   EVT VT = N->getValueType(0);
12569   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
12570     return SDValue();
12571 
12572   // Check that the vector operands are of the right form.
12573   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
12574   // operands, where N is the size of the formed vector.
12575   // Each EXTRACT_VECTOR should have the same input vector and odd or even
12576   // index such that we have a pair wise add pattern.
12577 
12578   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
12579   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12580     return SDValue();
12581   SDValue Vec = N0->getOperand(0)->getOperand(0);
12582   SDNode *V = Vec.getNode();
12583   unsigned nextIndex = 0;
12584 
12585   // For each operands to the ADD which are BUILD_VECTORs,
12586   // check to see if each of their operands are an EXTRACT_VECTOR with
12587   // the same vector and appropriate index.
12588   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
12589     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
12590         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12591 
12592       SDValue ExtVec0 = N0->getOperand(i);
12593       SDValue ExtVec1 = N1->getOperand(i);
12594 
12595       // First operand is the vector, verify its the same.
12596       if (V != ExtVec0->getOperand(0).getNode() ||
12597           V != ExtVec1->getOperand(0).getNode())
12598         return SDValue();
12599 
12600       // Second is the constant, verify its correct.
12601       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
12602       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
12603 
12604       // For the constant, we want to see all the even or all the odd.
12605       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
12606           || C1->getZExtValue() != nextIndex+1)
12607         return SDValue();
12608 
12609       // Increment index.
12610       nextIndex+=2;
12611     } else
12612       return SDValue();
12613   }
12614 
12615   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
12616   // we're using the entire input vector, otherwise there's a size/legality
12617   // mismatch somewhere.
12618   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
12619       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
12620     return SDValue();
12621 
12622   // Create VPADDL node.
12623   SelectionDAG &DAG = DCI.DAG;
12624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12625 
12626   SDLoc dl(N);
12627 
12628   // Build operand list.
12629   SmallVector<SDValue, 8> Ops;
12630   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
12631                                 TLI.getPointerTy(DAG.getDataLayout())));
12632 
12633   // Input is the vector.
12634   Ops.push_back(Vec);
12635 
12636   // Get widened type and narrowed type.
12637   MVT widenType;
12638   unsigned numElem = VT.getVectorNumElements();
12639 
12640   EVT inputLaneType = Vec.getValueType().getVectorElementType();
12641   switch (inputLaneType.getSimpleVT().SimpleTy) {
12642     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
12643     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
12644     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
12645     default:
12646       llvm_unreachable("Invalid vector element type for padd optimization.");
12647   }
12648 
12649   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
12650   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
12651   return DAG.getNode(ExtOp, dl, VT, tmp);
12652 }
12653 
12654 static SDValue findMUL_LOHI(SDValue V) {
12655   if (V->getOpcode() == ISD::UMUL_LOHI ||
12656       V->getOpcode() == ISD::SMUL_LOHI)
12657     return V;
12658   return SDValue();
12659 }
12660 
12661 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
12662                                         TargetLowering::DAGCombinerInfo &DCI,
12663                                         const ARMSubtarget *Subtarget) {
12664   if (!Subtarget->hasBaseDSP())
12665     return SDValue();
12666 
12667   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
12668   // accumulates the product into a 64-bit value. The 16-bit values will
12669   // be sign extended somehow or SRA'd into 32-bit values
12670   // (addc (adde (mul 16bit, 16bit), lo), hi)
12671   SDValue Mul = AddcNode->getOperand(0);
12672   SDValue Lo = AddcNode->getOperand(1);
12673   if (Mul.getOpcode() != ISD::MUL) {
12674     Lo = AddcNode->getOperand(0);
12675     Mul = AddcNode->getOperand(1);
12676     if (Mul.getOpcode() != ISD::MUL)
12677       return SDValue();
12678   }
12679 
12680   SDValue SRA = AddeNode->getOperand(0);
12681   SDValue Hi = AddeNode->getOperand(1);
12682   if (SRA.getOpcode() != ISD::SRA) {
12683     SRA = AddeNode->getOperand(1);
12684     Hi = AddeNode->getOperand(0);
12685     if (SRA.getOpcode() != ISD::SRA)
12686       return SDValue();
12687   }
12688   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
12689     if (Const->getZExtValue() != 31)
12690       return SDValue();
12691   } else
12692     return SDValue();
12693 
12694   if (SRA.getOperand(0) != Mul)
12695     return SDValue();
12696 
12697   SelectionDAG &DAG = DCI.DAG;
12698   SDLoc dl(AddcNode);
12699   unsigned Opcode = 0;
12700   SDValue Op0;
12701   SDValue Op1;
12702 
12703   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
12704     Opcode = ARMISD::SMLALBB;
12705     Op0 = Mul.getOperand(0);
12706     Op1 = Mul.getOperand(1);
12707   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
12708     Opcode = ARMISD::SMLALBT;
12709     Op0 = Mul.getOperand(0);
12710     Op1 = Mul.getOperand(1).getOperand(0);
12711   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
12712     Opcode = ARMISD::SMLALTB;
12713     Op0 = Mul.getOperand(0).getOperand(0);
12714     Op1 = Mul.getOperand(1);
12715   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
12716     Opcode = ARMISD::SMLALTT;
12717     Op0 = Mul->getOperand(0).getOperand(0);
12718     Op1 = Mul->getOperand(1).getOperand(0);
12719   }
12720 
12721   if (!Op0 || !Op1)
12722     return SDValue();
12723 
12724   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
12725                               Op0, Op1, Lo, Hi);
12726   // Replace the ADDs' nodes uses by the MLA node's values.
12727   SDValue HiMLALResult(SMLAL.getNode(), 1);
12728   SDValue LoMLALResult(SMLAL.getNode(), 0);
12729 
12730   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
12731   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
12732 
12733   // Return original node to notify the driver to stop replacing.
12734   SDValue resNode(AddcNode, 0);
12735   return resNode;
12736 }
12737 
12738 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
12739                                      TargetLowering::DAGCombinerInfo &DCI,
12740                                      const ARMSubtarget *Subtarget) {
12741   // Look for multiply add opportunities.
12742   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
12743   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
12744   // a glue link from the first add to the second add.
12745   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
12746   // a S/UMLAL instruction.
12747   //                  UMUL_LOHI
12748   //                 / :lo    \ :hi
12749   //                V          \          [no multiline comment]
12750   //    loAdd ->  ADDC         |
12751   //                 \ :carry /
12752   //                  V      V
12753   //                    ADDE   <- hiAdd
12754   //
12755   // In the special case where only the higher part of a signed result is used
12756   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
12757   // a constant with the exact value of 0x80000000, we recognize we are dealing
12758   // with a "rounded multiply and add" (or subtract) and transform it into
12759   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
12760 
12761   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
12762           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
12763          "Expect an ADDE or SUBE");
12764 
12765   assert(AddeSubeNode->getNumOperands() == 3 &&
12766          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
12767          "ADDE node has the wrong inputs");
12768 
12769   // Check that we are chained to the right ADDC or SUBC node.
12770   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
12771   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12772        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
12773       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
12774        AddcSubcNode->getOpcode() != ARMISD::SUBC))
12775     return SDValue();
12776 
12777   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
12778   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
12779 
12780   // Check if the two operands are from the same mul_lohi node.
12781   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
12782     return SDValue();
12783 
12784   assert(AddcSubcNode->getNumValues() == 2 &&
12785          AddcSubcNode->getValueType(0) == MVT::i32 &&
12786          "Expect ADDC with two result values. First: i32");
12787 
12788   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
12789   // maybe a SMLAL which multiplies two 16-bit values.
12790   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12791       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
12792       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
12793       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
12794       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
12795     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
12796 
12797   // Check for the triangle shape.
12798   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
12799   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
12800 
12801   // Make sure that the ADDE/SUBE operands are not coming from the same node.
12802   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
12803     return SDValue();
12804 
12805   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
12806   bool IsLeftOperandMUL = false;
12807   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
12808   if (MULOp == SDValue())
12809     MULOp = findMUL_LOHI(AddeSubeOp1);
12810   else
12811     IsLeftOperandMUL = true;
12812   if (MULOp == SDValue())
12813     return SDValue();
12814 
12815   // Figure out the right opcode.
12816   unsigned Opc = MULOp->getOpcode();
12817   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
12818 
12819   // Figure out the high and low input values to the MLAL node.
12820   SDValue *HiAddSub = nullptr;
12821   SDValue *LoMul = nullptr;
12822   SDValue *LowAddSub = nullptr;
12823 
12824   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
12825   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
12826     return SDValue();
12827 
12828   if (IsLeftOperandMUL)
12829     HiAddSub = &AddeSubeOp1;
12830   else
12831     HiAddSub = &AddeSubeOp0;
12832 
12833   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
12834   // whose low result is fed to the ADDC/SUBC we are checking.
12835 
12836   if (AddcSubcOp0 == MULOp.getValue(0)) {
12837     LoMul = &AddcSubcOp0;
12838     LowAddSub = &AddcSubcOp1;
12839   }
12840   if (AddcSubcOp1 == MULOp.getValue(0)) {
12841     LoMul = &AddcSubcOp1;
12842     LowAddSub = &AddcSubcOp0;
12843   }
12844 
12845   if (!LoMul)
12846     return SDValue();
12847 
12848   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
12849   // the replacement below will create a cycle.
12850   if (AddcSubcNode == HiAddSub->getNode() ||
12851       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
12852     return SDValue();
12853 
12854   // Create the merged node.
12855   SelectionDAG &DAG = DCI.DAG;
12856 
12857   // Start building operand list.
12858   SmallVector<SDValue, 8> Ops;
12859   Ops.push_back(LoMul->getOperand(0));
12860   Ops.push_back(LoMul->getOperand(1));
12861 
12862   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
12863   // the case, we must be doing signed multiplication and only use the higher
12864   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
12865   // addition or subtraction with the value of 0x800000.
12866   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
12867       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
12868       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
12869       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
12870           0x80000000) {
12871     Ops.push_back(*HiAddSub);
12872     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
12873       FinalOpc = ARMISD::SMMLSR;
12874     } else {
12875       FinalOpc = ARMISD::SMMLAR;
12876     }
12877     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
12878     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
12879 
12880     return SDValue(AddeSubeNode, 0);
12881   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
12882     // SMMLS is generated during instruction selection and the rest of this
12883     // function can not handle the case where AddcSubcNode is a SUBC.
12884     return SDValue();
12885 
12886   // Finish building the operand list for {U/S}MLAL
12887   Ops.push_back(*LowAddSub);
12888   Ops.push_back(*HiAddSub);
12889 
12890   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
12891                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
12892 
12893   // Replace the ADDs' nodes uses by the MLA node's values.
12894   SDValue HiMLALResult(MLALNode.getNode(), 1);
12895   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
12896 
12897   SDValue LoMLALResult(MLALNode.getNode(), 0);
12898   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
12899 
12900   // Return original node to notify the driver to stop replacing.
12901   return SDValue(AddeSubeNode, 0);
12902 }
12903 
12904 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
12905                                       TargetLowering::DAGCombinerInfo &DCI,
12906                                       const ARMSubtarget *Subtarget) {
12907   // UMAAL is similar to UMLAL except that it adds two unsigned values.
12908   // While trying to combine for the other MLAL nodes, first search for the
12909   // chance to use UMAAL. Check if Addc uses a node which has already
12910   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
12911   // as the addend, and it's handled in PerformUMLALCombine.
12912 
12913   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
12914     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
12915 
12916   // Check that we have a glued ADDC node.
12917   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
12918   if (AddcNode->getOpcode() != ARMISD::ADDC)
12919     return SDValue();
12920 
12921   // Find the converted UMAAL or quit if it doesn't exist.
12922   SDNode *UmlalNode = nullptr;
12923   SDValue AddHi;
12924   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
12925     UmlalNode = AddcNode->getOperand(0).getNode();
12926     AddHi = AddcNode->getOperand(1);
12927   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
12928     UmlalNode = AddcNode->getOperand(1).getNode();
12929     AddHi = AddcNode->getOperand(0);
12930   } else {
12931     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
12932   }
12933 
12934   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
12935   // the ADDC as well as Zero.
12936   if (!isNullConstant(UmlalNode->getOperand(3)))
12937     return SDValue();
12938 
12939   if ((isNullConstant(AddeNode->getOperand(0)) &&
12940        AddeNode->getOperand(1).getNode() == UmlalNode) ||
12941       (AddeNode->getOperand(0).getNode() == UmlalNode &&
12942        isNullConstant(AddeNode->getOperand(1)))) {
12943     SelectionDAG &DAG = DCI.DAG;
12944     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
12945                       UmlalNode->getOperand(2), AddHi };
12946     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
12947                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
12948 
12949     // Replace the ADDs' nodes uses by the UMAAL node's values.
12950     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
12951     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
12952 
12953     // Return original node to notify the driver to stop replacing.
12954     return SDValue(AddeNode, 0);
12955   }
12956   return SDValue();
12957 }
12958 
12959 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
12960                                    const ARMSubtarget *Subtarget) {
12961   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
12962     return SDValue();
12963 
12964   // Check that we have a pair of ADDC and ADDE as operands.
12965   // Both addends of the ADDE must be zero.
12966   SDNode* AddcNode = N->getOperand(2).getNode();
12967   SDNode* AddeNode = N->getOperand(3).getNode();
12968   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
12969       (AddeNode->getOpcode() == ARMISD::ADDE) &&
12970       isNullConstant(AddeNode->getOperand(0)) &&
12971       isNullConstant(AddeNode->getOperand(1)) &&
12972       (AddeNode->getOperand(2).getNode() == AddcNode))
12973     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
12974                        DAG.getVTList(MVT::i32, MVT::i32),
12975                        {N->getOperand(0), N->getOperand(1),
12976                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
12977   else
12978     return SDValue();
12979 }
12980 
12981 static SDValue PerformAddcSubcCombine(SDNode *N,
12982                                       TargetLowering::DAGCombinerInfo &DCI,
12983                                       const ARMSubtarget *Subtarget) {
12984   SelectionDAG &DAG(DCI.DAG);
12985 
12986   if (N->getOpcode() == ARMISD::SUBC && N->hasAnyUseOfValue(1)) {
12987     // (SUBC (ADDE 0, 0, C), 1) -> C
12988     SDValue LHS = N->getOperand(0);
12989     SDValue RHS = N->getOperand(1);
12990     if (LHS->getOpcode() == ARMISD::ADDE &&
12991         isNullConstant(LHS->getOperand(0)) &&
12992         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
12993       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
12994     }
12995   }
12996 
12997   if (Subtarget->isThumb1Only()) {
12998     SDValue RHS = N->getOperand(1);
12999     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
13000       int32_t imm = C->getSExtValue();
13001       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
13002         SDLoc DL(N);
13003         RHS = DAG.getConstant(-imm, DL, MVT::i32);
13004         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
13005                                                            : ARMISD::ADDC;
13006         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
13007       }
13008     }
13009   }
13010 
13011   return SDValue();
13012 }
13013 
13014 static SDValue PerformAddeSubeCombine(SDNode *N,
13015                                       TargetLowering::DAGCombinerInfo &DCI,
13016                                       const ARMSubtarget *Subtarget) {
13017   if (Subtarget->isThumb1Only()) {
13018     SelectionDAG &DAG = DCI.DAG;
13019     SDValue RHS = N->getOperand(1);
13020     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
13021       int64_t imm = C->getSExtValue();
13022       if (imm < 0) {
13023         SDLoc DL(N);
13024 
13025         // The with-carry-in form matches bitwise not instead of the negation.
13026         // Effectively, the inverse interpretation of the carry flag already
13027         // accounts for part of the negation.
13028         RHS = DAG.getConstant(~imm, DL, MVT::i32);
13029 
13030         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
13031                                                            : ARMISD::ADDE;
13032         return DAG.getNode(Opcode, DL, N->getVTList(),
13033                            N->getOperand(0), RHS, N->getOperand(2));
13034       }
13035     }
13036   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
13037     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
13038   }
13039   return SDValue();
13040 }
13041 
13042 static SDValue PerformSELECTCombine(SDNode *N,
13043                                     TargetLowering::DAGCombinerInfo &DCI,
13044                                     const ARMSubtarget *Subtarget) {
13045   if (!Subtarget->hasMVEIntegerOps())
13046     return SDValue();
13047 
13048   SDLoc dl(N);
13049   SDValue SetCC;
13050   SDValue LHS;
13051   SDValue RHS;
13052   ISD::CondCode CC;
13053   SDValue TrueVal;
13054   SDValue FalseVal;
13055 
13056   if (N->getOpcode() == ISD::SELECT &&
13057       N->getOperand(0)->getOpcode() == ISD::SETCC) {
13058     SetCC = N->getOperand(0);
13059     LHS = SetCC->getOperand(0);
13060     RHS = SetCC->getOperand(1);
13061     CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
13062     TrueVal = N->getOperand(1);
13063     FalseVal = N->getOperand(2);
13064   } else if (N->getOpcode() == ISD::SELECT_CC) {
13065     LHS = N->getOperand(0);
13066     RHS = N->getOperand(1);
13067     CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
13068     TrueVal = N->getOperand(2);
13069     FalseVal = N->getOperand(3);
13070   } else {
13071     return SDValue();
13072   }
13073 
13074   unsigned int Opcode = 0;
13075   if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN ||
13076        FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) &&
13077       (CC == ISD::SETULT || CC == ISD::SETUGT)) {
13078     Opcode = ARMISD::VMINVu;
13079     if (CC == ISD::SETUGT)
13080       std::swap(TrueVal, FalseVal);
13081   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN ||
13082               FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) &&
13083              (CC == ISD::SETLT || CC == ISD::SETGT)) {
13084     Opcode = ARMISD::VMINVs;
13085     if (CC == ISD::SETGT)
13086       std::swap(TrueVal, FalseVal);
13087   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX ||
13088               FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) &&
13089              (CC == ISD::SETUGT || CC == ISD::SETULT)) {
13090     Opcode = ARMISD::VMAXVu;
13091     if (CC == ISD::SETULT)
13092       std::swap(TrueVal, FalseVal);
13093   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX ||
13094               FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) &&
13095              (CC == ISD::SETGT || CC == ISD::SETLT)) {
13096     Opcode = ARMISD::VMAXVs;
13097     if (CC == ISD::SETLT)
13098       std::swap(TrueVal, FalseVal);
13099   } else
13100     return SDValue();
13101 
13102   // Normalise to the right hand side being the vector reduction
13103   switch (TrueVal->getOpcode()) {
13104   case ISD::VECREDUCE_UMIN:
13105   case ISD::VECREDUCE_SMIN:
13106   case ISD::VECREDUCE_UMAX:
13107   case ISD::VECREDUCE_SMAX:
13108     std::swap(LHS, RHS);
13109     std::swap(TrueVal, FalseVal);
13110     break;
13111   }
13112 
13113   EVT VectorType = FalseVal->getOperand(0).getValueType();
13114 
13115   if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 &&
13116       VectorType != MVT::v4i32)
13117     return SDValue();
13118 
13119   EVT VectorScalarType = VectorType.getVectorElementType();
13120 
13121   // The values being selected must also be the ones being compared
13122   if (TrueVal != LHS || FalseVal != RHS)
13123     return SDValue();
13124 
13125   EVT LeftType = LHS->getValueType(0);
13126   EVT RightType = RHS->getValueType(0);
13127 
13128   // The types must match the reduced type too
13129   if (LeftType != VectorScalarType || RightType != VectorScalarType)
13130     return SDValue();
13131 
13132   // Legalise the scalar to an i32
13133   if (VectorScalarType != MVT::i32)
13134     LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
13135 
13136   // Generate the reduction as an i32 for legalisation purposes
13137   auto Reduction =
13138       DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0));
13139 
13140   // The result isn't actually an i32 so truncate it back to its original type
13141   if (VectorScalarType != MVT::i32)
13142     Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction);
13143 
13144   return Reduction;
13145 }
13146 
13147 // A special combine for the vqdmulh family of instructions. This is one of the
13148 // potential set of patterns that could patch this instruction. The base pattern
13149 // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))).
13150 // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))),
13151 // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as
13152 // the max is unnecessary.
13153 static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) {
13154   EVT VT = N->getValueType(0);
13155   SDValue Shft;
13156   ConstantSDNode *Clamp;
13157 
13158   if (!VT.isVector() || VT.getScalarSizeInBits() > 64)
13159     return SDValue();
13160 
13161   if (N->getOpcode() == ISD::SMIN) {
13162     Shft = N->getOperand(0);
13163     Clamp = isConstOrConstSplat(N->getOperand(1));
13164   } else if (N->getOpcode() == ISD::VSELECT) {
13165     // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin.
13166     SDValue Cmp = N->getOperand(0);
13167     if (Cmp.getOpcode() != ISD::SETCC ||
13168         cast<CondCodeSDNode>(Cmp.getOperand(2))->get() != ISD::SETLT ||
13169         Cmp.getOperand(0) != N->getOperand(1) ||
13170         Cmp.getOperand(1) != N->getOperand(2))
13171       return SDValue();
13172     Shft = N->getOperand(1);
13173     Clamp = isConstOrConstSplat(N->getOperand(2));
13174   } else
13175     return SDValue();
13176 
13177   if (!Clamp)
13178     return SDValue();
13179 
13180   MVT ScalarType;
13181   int ShftAmt = 0;
13182   switch (Clamp->getSExtValue()) {
13183   case (1 << 7) - 1:
13184     ScalarType = MVT::i8;
13185     ShftAmt = 7;
13186     break;
13187   case (1 << 15) - 1:
13188     ScalarType = MVT::i16;
13189     ShftAmt = 15;
13190     break;
13191   case (1ULL << 31) - 1:
13192     ScalarType = MVT::i32;
13193     ShftAmt = 31;
13194     break;
13195   default:
13196     return SDValue();
13197   }
13198 
13199   if (Shft.getOpcode() != ISD::SRA)
13200     return SDValue();
13201   ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1));
13202   if (!N1 || N1->getSExtValue() != ShftAmt)
13203     return SDValue();
13204 
13205   SDValue Mul = Shft.getOperand(0);
13206   if (Mul.getOpcode() != ISD::MUL)
13207     return SDValue();
13208 
13209   SDValue Ext0 = Mul.getOperand(0);
13210   SDValue Ext1 = Mul.getOperand(1);
13211   if (Ext0.getOpcode() != ISD::SIGN_EXTEND ||
13212       Ext1.getOpcode() != ISD::SIGN_EXTEND)
13213     return SDValue();
13214   EVT VecVT = Ext0.getOperand(0).getValueType();
13215   if (!VecVT.isPow2VectorType() || VecVT.getVectorNumElements() == 1)
13216     return SDValue();
13217   if (Ext1.getOperand(0).getValueType() != VecVT ||
13218       VecVT.getScalarType() != ScalarType ||
13219       VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2)
13220     return SDValue();
13221 
13222   SDLoc DL(Mul);
13223   unsigned LegalLanes = 128 / (ShftAmt + 1);
13224   EVT LegalVecVT = MVT::getVectorVT(ScalarType, LegalLanes);
13225   // For types smaller than legal vectors extend to be legal and only use needed
13226   // lanes.
13227   if (VecVT.getSizeInBits() < 128) {
13228     EVT ExtVecVT =
13229         MVT::getVectorVT(MVT::getIntegerVT(128 / VecVT.getVectorNumElements()),
13230                          VecVT.getVectorNumElements());
13231     SDValue Inp0 =
13232         DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext0.getOperand(0));
13233     SDValue Inp1 =
13234         DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext1.getOperand(0));
13235     Inp0 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp0);
13236     Inp1 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp1);
13237     SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13238     SDValue Trunc = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, ExtVecVT, VQDMULH);
13239     Trunc = DAG.getNode(ISD::TRUNCATE, DL, VecVT, Trunc);
13240     return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Trunc);
13241   }
13242 
13243   // For larger types, split into legal sized chunks.
13244   assert(VecVT.getSizeInBits() % 128 == 0 && "Expected a power2 type");
13245   unsigned NumParts = VecVT.getSizeInBits() / 128;
13246   SmallVector<SDValue> Parts;
13247   for (unsigned I = 0; I < NumParts; ++I) {
13248     SDValue Inp0 =
13249         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext0.getOperand(0),
13250                     DAG.getVectorIdxConstant(I * LegalLanes, DL));
13251     SDValue Inp1 =
13252         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext1.getOperand(0),
13253                     DAG.getVectorIdxConstant(I * LegalLanes, DL));
13254     SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13255     Parts.push_back(VQDMULH);
13256   }
13257   return DAG.getNode(ISD::SIGN_EXTEND, DL, VT,
13258                      DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Parts));
13259 }
13260 
13261 static SDValue PerformVSELECTCombine(SDNode *N,
13262                                      TargetLowering::DAGCombinerInfo &DCI,
13263                                      const ARMSubtarget *Subtarget) {
13264   if (!Subtarget->hasMVEIntegerOps())
13265     return SDValue();
13266 
13267   if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG))
13268     return V;
13269 
13270   // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs).
13271   //
13272   // We need to re-implement this optimization here as the implementation in the
13273   // Target-Independent DAGCombiner does not handle the kind of constant we make
13274   // (it calls isConstOrConstSplat with AllowTruncation set to false - and for
13275   // good reason, allowing truncation there would break other targets).
13276   //
13277   // Currently, this is only done for MVE, as it's the only target that benefits
13278   // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL).
13279   if (N->getOperand(0).getOpcode() != ISD::XOR)
13280     return SDValue();
13281   SDValue XOR = N->getOperand(0);
13282 
13283   // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s.
13284   // It is important to check with truncation allowed as the BUILD_VECTORs we
13285   // generate in those situations will truncate their operands.
13286   ConstantSDNode *Const =
13287       isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false,
13288                           /*AllowTruncation*/ true);
13289   if (!Const || !Const->isOne())
13290     return SDValue();
13291 
13292   // Rewrite into vselect(cond, rhs, lhs).
13293   SDValue Cond = XOR->getOperand(0);
13294   SDValue LHS = N->getOperand(1);
13295   SDValue RHS = N->getOperand(2);
13296   EVT Type = N->getValueType(0);
13297   return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS);
13298 }
13299 
13300 // Convert vsetcc([0,1,2,..], splat(n), ult) -> vctp n
13301 static SDValue PerformVSetCCToVCTPCombine(SDNode *N,
13302                                           TargetLowering::DAGCombinerInfo &DCI,
13303                                           const ARMSubtarget *Subtarget) {
13304   SDValue Op0 = N->getOperand(0);
13305   SDValue Op1 = N->getOperand(1);
13306   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13307   EVT VT = N->getValueType(0);
13308 
13309   if (!Subtarget->hasMVEIntegerOps() ||
13310       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13311     return SDValue();
13312 
13313   if (CC == ISD::SETUGE) {
13314     std::swap(Op0, Op1);
13315     CC = ISD::SETULT;
13316   }
13317 
13318   if (CC != ISD::SETULT || VT.getScalarSizeInBits() != 1 ||
13319       Op0.getOpcode() != ISD::BUILD_VECTOR)
13320     return SDValue();
13321 
13322   // Check first operand is BuildVector of 0,1,2,...
13323   for (unsigned I = 0; I < VT.getVectorNumElements(); I++) {
13324     if (!Op0.getOperand(I).isUndef() &&
13325         !(isa<ConstantSDNode>(Op0.getOperand(I)) &&
13326           Op0.getConstantOperandVal(I) == I))
13327       return SDValue();
13328   }
13329 
13330   // The second is a Splat of Op1S
13331   SDValue Op1S = DCI.DAG.getSplatValue(Op1);
13332   if (!Op1S)
13333     return SDValue();
13334 
13335   unsigned Opc;
13336   switch (VT.getVectorNumElements()) {
13337   case 2:
13338     Opc = Intrinsic::arm_mve_vctp64;
13339     break;
13340   case 4:
13341     Opc = Intrinsic::arm_mve_vctp32;
13342     break;
13343   case 8:
13344     Opc = Intrinsic::arm_mve_vctp16;
13345     break;
13346   case 16:
13347     Opc = Intrinsic::arm_mve_vctp8;
13348     break;
13349   default:
13350     return SDValue();
13351   }
13352 
13353   SDLoc DL(N);
13354   return DCI.DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13355                          DCI.DAG.getConstant(Opc, DL, MVT::i32),
13356                          DCI.DAG.getZExtOrTrunc(Op1S, DL, MVT::i32));
13357 }
13358 
13359 static SDValue PerformABSCombine(SDNode *N,
13360                                  TargetLowering::DAGCombinerInfo &DCI,
13361                                  const ARMSubtarget *Subtarget) {
13362   SelectionDAG &DAG = DCI.DAG;
13363   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13364 
13365   if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
13366     return SDValue();
13367 
13368   return TLI.expandABS(N, DAG);
13369 }
13370 
13371 /// PerformADDECombine - Target-specific dag combine transform from
13372 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
13373 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
13374 static SDValue PerformADDECombine(SDNode *N,
13375                                   TargetLowering::DAGCombinerInfo &DCI,
13376                                   const ARMSubtarget *Subtarget) {
13377   // Only ARM and Thumb2 support UMLAL/SMLAL.
13378   if (Subtarget->isThumb1Only())
13379     return PerformAddeSubeCombine(N, DCI, Subtarget);
13380 
13381   // Only perform the checks after legalize when the pattern is available.
13382   if (DCI.isBeforeLegalize()) return SDValue();
13383 
13384   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
13385 }
13386 
13387 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
13388 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
13389 /// called with the default operands, and if that fails, with commuted
13390 /// operands.
13391 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
13392                                           TargetLowering::DAGCombinerInfo &DCI,
13393                                           const ARMSubtarget *Subtarget){
13394   // Attempt to create vpadd for this add.
13395   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
13396     return Result;
13397 
13398   // Attempt to create vpaddl for this add.
13399   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
13400     return Result;
13401   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
13402                                                       Subtarget))
13403     return Result;
13404 
13405   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
13406   if (N0.getNode()->hasOneUse())
13407     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
13408       return Result;
13409   return SDValue();
13410 }
13411 
13412 static SDValue TryDistrubutionADDVecReduce(SDNode *N, SelectionDAG &DAG) {
13413   EVT VT = N->getValueType(0);
13414   SDValue N0 = N->getOperand(0);
13415   SDValue N1 = N->getOperand(1);
13416   SDLoc dl(N);
13417 
13418   auto IsVecReduce = [](SDValue Op) {
13419     switch (Op.getOpcode()) {
13420     case ISD::VECREDUCE_ADD:
13421     case ARMISD::VADDVs:
13422     case ARMISD::VADDVu:
13423     case ARMISD::VMLAVs:
13424     case ARMISD::VMLAVu:
13425       return true;
13426     }
13427     return false;
13428   };
13429 
13430   auto DistrubuteAddAddVecReduce = [&](SDValue N0, SDValue N1) {
13431     // Distribute add(X, add(vecreduce(Y), vecreduce(Z))) ->
13432     //   add(add(X, vecreduce(Y)), vecreduce(Z))
13433     // to make better use of vaddva style instructions.
13434     if (VT == MVT::i32 && N1.getOpcode() == ISD::ADD && !IsVecReduce(N0) &&
13435         IsVecReduce(N1.getOperand(0)) && IsVecReduce(N1.getOperand(1)) &&
13436         !isa<ConstantSDNode>(N0) && N1->hasOneUse()) {
13437       SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0, N1.getOperand(0));
13438       return DAG.getNode(ISD::ADD, dl, VT, Add0, N1.getOperand(1));
13439     }
13440     // And turn add(add(A, reduce(B)), add(C, reduce(D))) ->
13441     //   add(add(add(A, C), reduce(B)), reduce(D))
13442     if (VT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
13443         N1.getOpcode() == ISD::ADD && N0->hasOneUse() && N1->hasOneUse()) {
13444       unsigned N0RedOp = 0;
13445       if (!IsVecReduce(N0.getOperand(N0RedOp))) {
13446         N0RedOp = 1;
13447         if (!IsVecReduce(N0.getOperand(N0RedOp)))
13448           return SDValue();
13449       }
13450 
13451       unsigned N1RedOp = 0;
13452       if (!IsVecReduce(N1.getOperand(N1RedOp)))
13453         N1RedOp = 1;
13454       if (!IsVecReduce(N1.getOperand(N1RedOp)))
13455         return SDValue();
13456 
13457       SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0.getOperand(1 - N0RedOp),
13458                                  N1.getOperand(1 - N1RedOp));
13459       SDValue Add1 =
13460           DAG.getNode(ISD::ADD, dl, VT, Add0, N0.getOperand(N0RedOp));
13461       return DAG.getNode(ISD::ADD, dl, VT, Add1, N1.getOperand(N1RedOp));
13462     }
13463     return SDValue();
13464   };
13465   if (SDValue R = DistrubuteAddAddVecReduce(N0, N1))
13466     return R;
13467   if (SDValue R = DistrubuteAddAddVecReduce(N1, N0))
13468     return R;
13469 
13470   // Distribute add(vecreduce(load(Y)), vecreduce(load(Z)))
13471   // Or add(add(X, vecreduce(load(Y))), vecreduce(load(Z)))
13472   // by ascending load offsets. This can help cores prefetch if the order of
13473   // loads is more predictable.
13474   auto DistrubuteVecReduceLoad = [&](SDValue N0, SDValue N1, bool IsForward) {
13475     // Check if two reductions are known to load data where one is before/after
13476     // another. Return negative if N0 loads data before N1, positive if N1 is
13477     // before N0 and 0 otherwise if nothing is known.
13478     auto IsKnownOrderedLoad = [&](SDValue N0, SDValue N1) {
13479       // Look through to the first operand of a MUL, for the VMLA case.
13480       // Currently only looks at the first operand, in the hope they are equal.
13481       if (N0.getOpcode() == ISD::MUL)
13482         N0 = N0.getOperand(0);
13483       if (N1.getOpcode() == ISD::MUL)
13484         N1 = N1.getOperand(0);
13485 
13486       // Return true if the two operands are loads to the same object and the
13487       // offset of the first is known to be less than the offset of the second.
13488       LoadSDNode *Load0 = dyn_cast<LoadSDNode>(N0);
13489       LoadSDNode *Load1 = dyn_cast<LoadSDNode>(N1);
13490       if (!Load0 || !Load1 || Load0->getChain() != Load1->getChain() ||
13491           !Load0->isSimple() || !Load1->isSimple() || Load0->isIndexed() ||
13492           Load1->isIndexed())
13493         return 0;
13494 
13495       auto BaseLocDecomp0 = BaseIndexOffset::match(Load0, DAG);
13496       auto BaseLocDecomp1 = BaseIndexOffset::match(Load1, DAG);
13497 
13498       if (!BaseLocDecomp0.getBase() ||
13499           BaseLocDecomp0.getBase() != BaseLocDecomp1.getBase() ||
13500           !BaseLocDecomp0.hasValidOffset() || !BaseLocDecomp1.hasValidOffset())
13501         return 0;
13502       if (BaseLocDecomp0.getOffset() < BaseLocDecomp1.getOffset())
13503         return -1;
13504       if (BaseLocDecomp0.getOffset() > BaseLocDecomp1.getOffset())
13505         return 1;
13506       return 0;
13507     };
13508 
13509     SDValue X;
13510     if (N0.getOpcode() == ISD::ADD && N0->hasOneUse()) {
13511       if (IsVecReduce(N0.getOperand(0)) && IsVecReduce(N0.getOperand(1))) {
13512         int IsBefore = IsKnownOrderedLoad(N0.getOperand(0).getOperand(0),
13513                                          N0.getOperand(1).getOperand(0));
13514         if (IsBefore < 0) {
13515           X = N0.getOperand(0);
13516           N0 = N0.getOperand(1);
13517         } else if (IsBefore > 0) {
13518           X = N0.getOperand(1);
13519           N0 = N0.getOperand(0);
13520         } else
13521           return SDValue();
13522       } else if (IsVecReduce(N0.getOperand(0))) {
13523         X = N0.getOperand(1);
13524         N0 = N0.getOperand(0);
13525       } else if (IsVecReduce(N0.getOperand(1))) {
13526         X = N0.getOperand(0);
13527         N0 = N0.getOperand(1);
13528       } else
13529         return SDValue();
13530     } else if (IsForward && IsVecReduce(N0) && IsVecReduce(N1) &&
13531                IsKnownOrderedLoad(N0.getOperand(0), N1.getOperand(0)) < 0) {
13532       // Note this is backward to how you would expect. We create
13533       // add(reduce(load + 16), reduce(load + 0)) so that the
13534       // add(reduce(load+16), X) is combined into VADDVA(X, load+16)), leaving
13535       // the X as VADDV(load + 0)
13536       return DAG.getNode(ISD::ADD, dl, VT, N1, N0);
13537     } else
13538       return SDValue();
13539 
13540     if (!IsVecReduce(N0) || !IsVecReduce(N1))
13541       return SDValue();
13542 
13543     if (IsKnownOrderedLoad(N1.getOperand(0), N0.getOperand(0)) >= 0)
13544       return SDValue();
13545 
13546     // Switch from add(add(X, N0), N1) to add(add(X, N1), N0)
13547     SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, X, N1);
13548     return DAG.getNode(ISD::ADD, dl, VT, Add0, N0);
13549   };
13550   if (SDValue R = DistrubuteVecReduceLoad(N0, N1, true))
13551     return R;
13552   if (SDValue R = DistrubuteVecReduceLoad(N1, N0, false))
13553     return R;
13554   return SDValue();
13555 }
13556 
13557 static SDValue PerformADDVecReduce(SDNode *N, SelectionDAG &DAG,
13558                                    const ARMSubtarget *Subtarget) {
13559   if (!Subtarget->hasMVEIntegerOps())
13560     return SDValue();
13561 
13562   if (SDValue R = TryDistrubutionADDVecReduce(N, DAG))
13563     return R;
13564 
13565   EVT VT = N->getValueType(0);
13566   SDValue N0 = N->getOperand(0);
13567   SDValue N1 = N->getOperand(1);
13568   SDLoc dl(N);
13569 
13570   if (VT != MVT::i64)
13571     return SDValue();
13572 
13573   // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this
13574   // will look like:
13575   //   t1: i32,i32 = ARMISD::VADDLVs x
13576   //   t2: i64 = build_pair t1, t1:1
13577   //   t3: i64 = add t2, y
13578   // Otherwise we try to push the add up above VADDLVAx, to potentially allow
13579   // the add to be simplified seperately.
13580   // We also need to check for sext / zext and commutitive adds.
13581   auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA,
13582                            SDValue NB) {
13583     if (NB->getOpcode() != ISD::BUILD_PAIR)
13584       return SDValue();
13585     SDValue VecRed = NB->getOperand(0);
13586     if ((VecRed->getOpcode() != Opcode && VecRed->getOpcode() != OpcodeA) ||
13587         VecRed.getResNo() != 0 ||
13588         NB->getOperand(1) != SDValue(VecRed.getNode(), 1))
13589       return SDValue();
13590 
13591     if (VecRed->getOpcode() == OpcodeA) {
13592       // add(NA, VADDLVA(Inp), Y) -> VADDLVA(add(NA, Inp), Y)
13593       SDValue Inp = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
13594                                 VecRed.getOperand(0), VecRed.getOperand(1));
13595       NA = DAG.getNode(ISD::ADD, dl, MVT::i64, Inp, NA);
13596     }
13597 
13598     SmallVector<SDValue, 4> Ops;
13599     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
13600                               DAG.getConstant(0, dl, MVT::i32)));
13601     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
13602                               DAG.getConstant(1, dl, MVT::i32)));
13603     unsigned S = VecRed->getOpcode() == OpcodeA ? 2 : 0;
13604     for (unsigned I = S, E = VecRed.getNumOperands(); I < E; I++)
13605       Ops.push_back(VecRed->getOperand(I));
13606     SDValue Red =
13607         DAG.getNode(OpcodeA, dl, DAG.getVTList({MVT::i32, MVT::i32}), Ops);
13608     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red,
13609                        SDValue(Red.getNode(), 1));
13610   };
13611 
13612   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1))
13613     return M;
13614   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1))
13615     return M;
13616   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0))
13617     return M;
13618   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0))
13619     return M;
13620   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1))
13621     return M;
13622   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1))
13623     return M;
13624   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0))
13625     return M;
13626   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0))
13627     return M;
13628   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1))
13629     return M;
13630   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1))
13631     return M;
13632   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0))
13633     return M;
13634   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0))
13635     return M;
13636   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1))
13637     return M;
13638   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1))
13639     return M;
13640   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0))
13641     return M;
13642   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0))
13643     return M;
13644   return SDValue();
13645 }
13646 
13647 bool
13648 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
13649                                                  CombineLevel Level) const {
13650   assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
13651           N->getOpcode() == ISD::SRL) &&
13652          "Expected shift op");
13653 
13654   if (Level == BeforeLegalizeTypes)
13655     return true;
13656 
13657   if (N->getOpcode() != ISD::SHL)
13658     return true;
13659 
13660   if (Subtarget->isThumb1Only()) {
13661     // Avoid making expensive immediates by commuting shifts. (This logic
13662     // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
13663     // for free.)
13664     if (N->getOpcode() != ISD::SHL)
13665       return true;
13666     SDValue N1 = N->getOperand(0);
13667     if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
13668         N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
13669       return true;
13670     if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
13671       if (Const->getAPIntValue().ult(256))
13672         return false;
13673       if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
13674           Const->getAPIntValue().sgt(-256))
13675         return false;
13676     }
13677     return true;
13678   }
13679 
13680   // Turn off commute-with-shift transform after legalization, so it doesn't
13681   // conflict with PerformSHLSimplify.  (We could try to detect when
13682   // PerformSHLSimplify would trigger more precisely, but it isn't
13683   // really necessary.)
13684   return false;
13685 }
13686 
13687 bool ARMTargetLowering::isDesirableToCommuteXorWithShift(
13688     const SDNode *N) const {
13689   assert(N->getOpcode() == ISD::XOR &&
13690          (N->getOperand(0).getOpcode() == ISD::SHL ||
13691           N->getOperand(0).getOpcode() == ISD::SRL) &&
13692          "Expected XOR(SHIFT) pattern");
13693 
13694   // Only commute if the entire NOT mask is a hidden shifted mask.
13695   auto *XorC = dyn_cast<ConstantSDNode>(N->getOperand(1));
13696   auto *ShiftC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1));
13697   if (XorC && ShiftC) {
13698     unsigned MaskIdx, MaskLen;
13699     if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) {
13700       unsigned ShiftAmt = ShiftC->getZExtValue();
13701       unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
13702       if (N->getOperand(0).getOpcode() == ISD::SHL)
13703         return MaskIdx == ShiftAmt && MaskLen == (BitWidth - ShiftAmt);
13704       return MaskIdx == 0 && MaskLen == (BitWidth - ShiftAmt);
13705     }
13706   }
13707 
13708   return false;
13709 }
13710 
13711 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
13712     const SDNode *N, CombineLevel Level) const {
13713   assert(((N->getOpcode() == ISD::SHL &&
13714            N->getOperand(0).getOpcode() == ISD::SRL) ||
13715           (N->getOpcode() == ISD::SRL &&
13716            N->getOperand(0).getOpcode() == ISD::SHL)) &&
13717          "Expected shift-shift mask");
13718 
13719   if (!Subtarget->isThumb1Only())
13720     return true;
13721 
13722   if (Level == BeforeLegalizeTypes)
13723     return true;
13724 
13725   return false;
13726 }
13727 
13728 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
13729   if (!Subtarget->hasNEON()) {
13730     if (Subtarget->isThumb1Only())
13731       return VT.getScalarSizeInBits() <= 32;
13732     return true;
13733   }
13734   return VT.isScalarInteger();
13735 }
13736 
13737 bool ARMTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
13738                                              EVT VT) const {
13739   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
13740     return false;
13741 
13742   switch (FPVT.getSimpleVT().SimpleTy) {
13743   case MVT::f16:
13744     return Subtarget->hasVFP2Base();
13745   case MVT::f32:
13746     return Subtarget->hasVFP2Base();
13747   case MVT::f64:
13748     return Subtarget->hasFP64();
13749   case MVT::v4f32:
13750   case MVT::v8f16:
13751     return Subtarget->hasMVEFloatOps();
13752   default:
13753     return false;
13754   }
13755 }
13756 
13757 static SDValue PerformSHLSimplify(SDNode *N,
13758                                 TargetLowering::DAGCombinerInfo &DCI,
13759                                 const ARMSubtarget *ST) {
13760   // Allow the generic combiner to identify potential bswaps.
13761   if (DCI.isBeforeLegalize())
13762     return SDValue();
13763 
13764   // DAG combiner will fold:
13765   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
13766   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
13767   // Other code patterns that can be also be modified have the following form:
13768   // b + ((a << 1) | 510)
13769   // b + ((a << 1) & 510)
13770   // b + ((a << 1) ^ 510)
13771   // b + ((a << 1) + 510)
13772 
13773   // Many instructions can  perform the shift for free, but it requires both
13774   // the operands to be registers. If c1 << c2 is too large, a mov immediate
13775   // instruction will needed. So, unfold back to the original pattern if:
13776   // - if c1 and c2 are small enough that they don't require mov imms.
13777   // - the user(s) of the node can perform an shl
13778 
13779   // No shifted operands for 16-bit instructions.
13780   if (ST->isThumb() && ST->isThumb1Only())
13781     return SDValue();
13782 
13783   // Check that all the users could perform the shl themselves.
13784   for (auto *U : N->uses()) {
13785     switch(U->getOpcode()) {
13786     default:
13787       return SDValue();
13788     case ISD::SUB:
13789     case ISD::ADD:
13790     case ISD::AND:
13791     case ISD::OR:
13792     case ISD::XOR:
13793     case ISD::SETCC:
13794     case ARMISD::CMP:
13795       // Check that the user isn't already using a constant because there
13796       // aren't any instructions that support an immediate operand and a
13797       // shifted operand.
13798       if (isa<ConstantSDNode>(U->getOperand(0)) ||
13799           isa<ConstantSDNode>(U->getOperand(1)))
13800         return SDValue();
13801 
13802       // Check that it's not already using a shift.
13803       if (U->getOperand(0).getOpcode() == ISD::SHL ||
13804           U->getOperand(1).getOpcode() == ISD::SHL)
13805         return SDValue();
13806       break;
13807     }
13808   }
13809 
13810   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
13811       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
13812     return SDValue();
13813 
13814   if (N->getOperand(0).getOpcode() != ISD::SHL)
13815     return SDValue();
13816 
13817   SDValue SHL = N->getOperand(0);
13818 
13819   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
13820   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
13821   if (!C1ShlC2 || !C2)
13822     return SDValue();
13823 
13824   APInt C2Int = C2->getAPIntValue();
13825   APInt C1Int = C1ShlC2->getAPIntValue();
13826   unsigned C2Width = C2Int.getBitWidth();
13827   if (C2Int.uge(C2Width))
13828     return SDValue();
13829   uint64_t C2Value = C2Int.getZExtValue();
13830 
13831   // Check that performing a lshr will not lose any information.
13832   APInt Mask = APInt::getHighBitsSet(C2Width, C2Width - C2Value);
13833   if ((C1Int & Mask) != C1Int)
13834     return SDValue();
13835 
13836   // Shift the first constant.
13837   C1Int.lshrInPlace(C2Int);
13838 
13839   // The immediates are encoded as an 8-bit value that can be rotated.
13840   auto LargeImm = [](const APInt &Imm) {
13841     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
13842     return Imm.getBitWidth() - Zeros > 8;
13843   };
13844 
13845   if (LargeImm(C1Int) || LargeImm(C2Int))
13846     return SDValue();
13847 
13848   SelectionDAG &DAG = DCI.DAG;
13849   SDLoc dl(N);
13850   SDValue X = SHL.getOperand(0);
13851   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
13852                               DAG.getConstant(C1Int, dl, MVT::i32));
13853   // Shift left to compensate for the lshr of C1Int.
13854   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
13855 
13856   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
13857              SHL.dump(); N->dump());
13858   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
13859   return Res;
13860 }
13861 
13862 
13863 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
13864 ///
13865 static SDValue PerformADDCombine(SDNode *N,
13866                                  TargetLowering::DAGCombinerInfo &DCI,
13867                                  const ARMSubtarget *Subtarget) {
13868   SDValue N0 = N->getOperand(0);
13869   SDValue N1 = N->getOperand(1);
13870 
13871   // Only works one way, because it needs an immediate operand.
13872   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13873     return Result;
13874 
13875   if (SDValue Result = PerformADDVecReduce(N, DCI.DAG, Subtarget))
13876     return Result;
13877 
13878   // First try with the default operand order.
13879   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
13880     return Result;
13881 
13882   // If that didn't work, try again with the operands commuted.
13883   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
13884 }
13885 
13886 // Combine (sub 0, (csinc X, Y, CC)) -> (csinv -X, Y, CC)
13887 //   providing -X is as cheap as X (currently, just a constant).
13888 static SDValue PerformSubCSINCCombine(SDNode *N, SelectionDAG &DAG) {
13889   if (N->getValueType(0) != MVT::i32 || !isNullConstant(N->getOperand(0)))
13890     return SDValue();
13891   SDValue CSINC = N->getOperand(1);
13892   if (CSINC.getOpcode() != ARMISD::CSINC || !CSINC.hasOneUse())
13893     return SDValue();
13894 
13895   ConstantSDNode *X = dyn_cast<ConstantSDNode>(CSINC.getOperand(0));
13896   if (!X)
13897     return SDValue();
13898 
13899   return DAG.getNode(ARMISD::CSINV, SDLoc(N), MVT::i32,
13900                      DAG.getNode(ISD::SUB, SDLoc(N), MVT::i32, N->getOperand(0),
13901                                  CSINC.getOperand(0)),
13902                      CSINC.getOperand(1), CSINC.getOperand(2),
13903                      CSINC.getOperand(3));
13904 }
13905 
13906 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
13907 ///
13908 static SDValue PerformSUBCombine(SDNode *N,
13909                                  TargetLowering::DAGCombinerInfo &DCI,
13910                                  const ARMSubtarget *Subtarget) {
13911   SDValue N0 = N->getOperand(0);
13912   SDValue N1 = N->getOperand(1);
13913 
13914   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
13915   if (N1.getNode()->hasOneUse())
13916     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
13917       return Result;
13918 
13919   if (SDValue R = PerformSubCSINCCombine(N, DCI.DAG))
13920     return R;
13921 
13922   if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
13923     return SDValue();
13924 
13925   // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
13926   // so that we can readily pattern match more mve instructions which can use
13927   // a scalar operand.
13928   SDValue VDup = N->getOperand(1);
13929   if (VDup->getOpcode() != ARMISD::VDUP)
13930     return SDValue();
13931 
13932   SDValue VMov = N->getOperand(0);
13933   if (VMov->getOpcode() == ISD::BITCAST)
13934     VMov = VMov->getOperand(0);
13935 
13936   if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
13937     return SDValue();
13938 
13939   SDLoc dl(N);
13940   SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
13941                                    DCI.DAG.getConstant(0, dl, MVT::i32),
13942                                    VDup->getOperand(0));
13943   return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
13944 }
13945 
13946 /// PerformVMULCombine
13947 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
13948 /// special multiplier accumulator forwarding.
13949 ///   vmul d3, d0, d2
13950 ///   vmla d3, d1, d2
13951 /// is faster than
13952 ///   vadd d3, d0, d1
13953 ///   vmul d3, d3, d2
13954 //  However, for (A + B) * (A + B),
13955 //    vadd d2, d0, d1
13956 //    vmul d3, d0, d2
13957 //    vmla d3, d1, d2
13958 //  is slower than
13959 //    vadd d2, d0, d1
13960 //    vmul d3, d2, d2
13961 static SDValue PerformVMULCombine(SDNode *N,
13962                                   TargetLowering::DAGCombinerInfo &DCI,
13963                                   const ARMSubtarget *Subtarget) {
13964   if (!Subtarget->hasVMLxForwarding())
13965     return SDValue();
13966 
13967   SelectionDAG &DAG = DCI.DAG;
13968   SDValue N0 = N->getOperand(0);
13969   SDValue N1 = N->getOperand(1);
13970   unsigned Opcode = N0.getOpcode();
13971   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
13972       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
13973     Opcode = N1.getOpcode();
13974     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
13975         Opcode != ISD::FADD && Opcode != ISD::FSUB)
13976       return SDValue();
13977     std::swap(N0, N1);
13978   }
13979 
13980   if (N0 == N1)
13981     return SDValue();
13982 
13983   EVT VT = N->getValueType(0);
13984   SDLoc DL(N);
13985   SDValue N00 = N0->getOperand(0);
13986   SDValue N01 = N0->getOperand(1);
13987   return DAG.getNode(Opcode, DL, VT,
13988                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
13989                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
13990 }
13991 
13992 static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG,
13993                                       const ARMSubtarget *Subtarget) {
13994   EVT VT = N->getValueType(0);
13995   if (VT != MVT::v2i64)
13996     return SDValue();
13997 
13998   SDValue N0 = N->getOperand(0);
13999   SDValue N1 = N->getOperand(1);
14000 
14001   auto IsSignExt = [&](SDValue Op) {
14002     if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG)
14003       return SDValue();
14004     EVT VT = cast<VTSDNode>(Op->getOperand(1))->getVT();
14005     if (VT.getScalarSizeInBits() == 32)
14006       return Op->getOperand(0);
14007     return SDValue();
14008   };
14009   auto IsZeroExt = [&](SDValue Op) {
14010     // Zero extends are a little more awkward. At the point we are matching
14011     // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask.
14012     // That might be before of after a bitcast depending on how the and is
14013     // placed. Because this has to look through bitcasts, it is currently only
14014     // supported on LE.
14015     if (!Subtarget->isLittle())
14016       return SDValue();
14017 
14018     SDValue And = Op;
14019     if (And->getOpcode() == ISD::BITCAST)
14020       And = And->getOperand(0);
14021     if (And->getOpcode() != ISD::AND)
14022       return SDValue();
14023     SDValue Mask = And->getOperand(1);
14024     if (Mask->getOpcode() == ISD::BITCAST)
14025       Mask = Mask->getOperand(0);
14026 
14027     if (Mask->getOpcode() != ISD::BUILD_VECTOR ||
14028         Mask.getValueType() != MVT::v4i32)
14029       return SDValue();
14030     if (isAllOnesConstant(Mask->getOperand(0)) &&
14031         isNullConstant(Mask->getOperand(1)) &&
14032         isAllOnesConstant(Mask->getOperand(2)) &&
14033         isNullConstant(Mask->getOperand(3)))
14034       return And->getOperand(0);
14035     return SDValue();
14036   };
14037 
14038   SDLoc dl(N);
14039   if (SDValue Op0 = IsSignExt(N0)) {
14040     if (SDValue Op1 = IsSignExt(N1)) {
14041       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
14042       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
14043       return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a);
14044     }
14045   }
14046   if (SDValue Op0 = IsZeroExt(N0)) {
14047     if (SDValue Op1 = IsZeroExt(N1)) {
14048       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
14049       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
14050       return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a);
14051     }
14052   }
14053 
14054   return SDValue();
14055 }
14056 
14057 static SDValue PerformMULCombine(SDNode *N,
14058                                  TargetLowering::DAGCombinerInfo &DCI,
14059                                  const ARMSubtarget *Subtarget) {
14060   SelectionDAG &DAG = DCI.DAG;
14061 
14062   EVT VT = N->getValueType(0);
14063   if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64)
14064     return PerformMVEVMULLCombine(N, DAG, Subtarget);
14065 
14066   if (Subtarget->isThumb1Only())
14067     return SDValue();
14068 
14069   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14070     return SDValue();
14071 
14072   if (VT.is64BitVector() || VT.is128BitVector())
14073     return PerformVMULCombine(N, DCI, Subtarget);
14074   if (VT != MVT::i32)
14075     return SDValue();
14076 
14077   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14078   if (!C)
14079     return SDValue();
14080 
14081   int64_t MulAmt = C->getSExtValue();
14082   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
14083 
14084   ShiftAmt = ShiftAmt & (32 - 1);
14085   SDValue V = N->getOperand(0);
14086   SDLoc DL(N);
14087 
14088   SDValue Res;
14089   MulAmt >>= ShiftAmt;
14090 
14091   if (MulAmt >= 0) {
14092     if (isPowerOf2_32(MulAmt - 1)) {
14093       // (mul x, 2^N + 1) => (add (shl x, N), x)
14094       Res = DAG.getNode(ISD::ADD, DL, VT,
14095                         V,
14096                         DAG.getNode(ISD::SHL, DL, VT,
14097                                     V,
14098                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
14099                                                     MVT::i32)));
14100     } else if (isPowerOf2_32(MulAmt + 1)) {
14101       // (mul x, 2^N - 1) => (sub (shl x, N), x)
14102       Res = DAG.getNode(ISD::SUB, DL, VT,
14103                         DAG.getNode(ISD::SHL, DL, VT,
14104                                     V,
14105                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
14106                                                     MVT::i32)),
14107                         V);
14108     } else
14109       return SDValue();
14110   } else {
14111     uint64_t MulAmtAbs = -MulAmt;
14112     if (isPowerOf2_32(MulAmtAbs + 1)) {
14113       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
14114       Res = DAG.getNode(ISD::SUB, DL, VT,
14115                         V,
14116                         DAG.getNode(ISD::SHL, DL, VT,
14117                                     V,
14118                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
14119                                                     MVT::i32)));
14120     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
14121       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
14122       Res = DAG.getNode(ISD::ADD, DL, VT,
14123                         V,
14124                         DAG.getNode(ISD::SHL, DL, VT,
14125                                     V,
14126                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
14127                                                     MVT::i32)));
14128       Res = DAG.getNode(ISD::SUB, DL, VT,
14129                         DAG.getConstant(0, DL, MVT::i32), Res);
14130     } else
14131       return SDValue();
14132   }
14133 
14134   if (ShiftAmt != 0)
14135     Res = DAG.getNode(ISD::SHL, DL, VT,
14136                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
14137 
14138   // Do not add new nodes to DAG combiner worklist.
14139   DCI.CombineTo(N, Res, false);
14140   return SDValue();
14141 }
14142 
14143 static SDValue CombineANDShift(SDNode *N,
14144                                TargetLowering::DAGCombinerInfo &DCI,
14145                                const ARMSubtarget *Subtarget) {
14146   // Allow DAGCombine to pattern-match before we touch the canonical form.
14147   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14148     return SDValue();
14149 
14150   if (N->getValueType(0) != MVT::i32)
14151     return SDValue();
14152 
14153   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14154   if (!N1C)
14155     return SDValue();
14156 
14157   uint32_t C1 = (uint32_t)N1C->getZExtValue();
14158   // Don't transform uxtb/uxth.
14159   if (C1 == 255 || C1 == 65535)
14160     return SDValue();
14161 
14162   SDNode *N0 = N->getOperand(0).getNode();
14163   if (!N0->hasOneUse())
14164     return SDValue();
14165 
14166   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
14167     return SDValue();
14168 
14169   bool LeftShift = N0->getOpcode() == ISD::SHL;
14170 
14171   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
14172   if (!N01C)
14173     return SDValue();
14174 
14175   uint32_t C2 = (uint32_t)N01C->getZExtValue();
14176   if (!C2 || C2 >= 32)
14177     return SDValue();
14178 
14179   // Clear irrelevant bits in the mask.
14180   if (LeftShift)
14181     C1 &= (-1U << C2);
14182   else
14183     C1 &= (-1U >> C2);
14184 
14185   SelectionDAG &DAG = DCI.DAG;
14186   SDLoc DL(N);
14187 
14188   // We have a pattern of the form "(and (shl x, c2) c1)" or
14189   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
14190   // transform to a pair of shifts, to save materializing c1.
14191 
14192   // First pattern: right shift, then mask off leading bits.
14193   // FIXME: Use demanded bits?
14194   if (!LeftShift && isMask_32(C1)) {
14195     uint32_t C3 = countLeadingZeros(C1);
14196     if (C2 < C3) {
14197       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14198                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
14199       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14200                          DAG.getConstant(C3, DL, MVT::i32));
14201     }
14202   }
14203 
14204   // First pattern, reversed: left shift, then mask off trailing bits.
14205   if (LeftShift && isMask_32(~C1)) {
14206     uint32_t C3 = countTrailingZeros(C1);
14207     if (C2 < C3) {
14208       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14209                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
14210       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14211                          DAG.getConstant(C3, DL, MVT::i32));
14212     }
14213   }
14214 
14215   // Second pattern: left shift, then mask off leading bits.
14216   // FIXME: Use demanded bits?
14217   if (LeftShift && isShiftedMask_32(C1)) {
14218     uint32_t Trailing = countTrailingZeros(C1);
14219     uint32_t C3 = countLeadingZeros(C1);
14220     if (Trailing == C2 && C2 + C3 < 32) {
14221       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14222                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
14223       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14224                         DAG.getConstant(C3, DL, MVT::i32));
14225     }
14226   }
14227 
14228   // Second pattern, reversed: right shift, then mask off trailing bits.
14229   // FIXME: Handle other patterns of known/demanded bits.
14230   if (!LeftShift && isShiftedMask_32(C1)) {
14231     uint32_t Leading = countLeadingZeros(C1);
14232     uint32_t C3 = countTrailingZeros(C1);
14233     if (Leading == C2 && C2 + C3 < 32) {
14234       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14235                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
14236       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14237                          DAG.getConstant(C3, DL, MVT::i32));
14238     }
14239   }
14240 
14241   // FIXME: Transform "(and (shl x, c2) c1)" ->
14242   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
14243   // c1.
14244   return SDValue();
14245 }
14246 
14247 static SDValue PerformANDCombine(SDNode *N,
14248                                  TargetLowering::DAGCombinerInfo &DCI,
14249                                  const ARMSubtarget *Subtarget) {
14250   // Attempt to use immediate-form VBIC
14251   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14252   SDLoc dl(N);
14253   EVT VT = N->getValueType(0);
14254   SelectionDAG &DAG = DCI.DAG;
14255 
14256   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v2i1 ||
14257       VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1)
14258     return SDValue();
14259 
14260   APInt SplatBits, SplatUndef;
14261   unsigned SplatBitSize;
14262   bool HasAnyUndefs;
14263   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14264       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14265     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14266         SplatBitSize == 64) {
14267       EVT VbicVT;
14268       SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
14269                                       SplatUndef.getZExtValue(), SplatBitSize,
14270                                       DAG, dl, VbicVT, VT, OtherModImm);
14271       if (Val.getNode()) {
14272         SDValue Input =
14273           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
14274         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
14275         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
14276       }
14277     }
14278   }
14279 
14280   if (!Subtarget->isThumb1Only()) {
14281     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
14282     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
14283       return Result;
14284 
14285     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14286       return Result;
14287   }
14288 
14289   if (Subtarget->isThumb1Only())
14290     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
14291       return Result;
14292 
14293   return SDValue();
14294 }
14295 
14296 // Try combining OR nodes to SMULWB, SMULWT.
14297 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
14298                                          TargetLowering::DAGCombinerInfo &DCI,
14299                                          const ARMSubtarget *Subtarget) {
14300   if (!Subtarget->hasV6Ops() ||
14301       (Subtarget->isThumb() &&
14302        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
14303     return SDValue();
14304 
14305   SDValue SRL = OR->getOperand(0);
14306   SDValue SHL = OR->getOperand(1);
14307 
14308   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
14309     SRL = OR->getOperand(1);
14310     SHL = OR->getOperand(0);
14311   }
14312   if (!isSRL16(SRL) || !isSHL16(SHL))
14313     return SDValue();
14314 
14315   // The first operands to the shifts need to be the two results from the
14316   // same smul_lohi node.
14317   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
14318        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
14319     return SDValue();
14320 
14321   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
14322   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
14323       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
14324     return SDValue();
14325 
14326   // Now we have:
14327   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
14328   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
14329   // For SMUWB the 16-bit value will signed extended somehow.
14330   // For SMULWT only the SRA is required.
14331   // Check both sides of SMUL_LOHI
14332   SDValue OpS16 = SMULLOHI->getOperand(0);
14333   SDValue OpS32 = SMULLOHI->getOperand(1);
14334 
14335   SelectionDAG &DAG = DCI.DAG;
14336   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
14337     OpS16 = OpS32;
14338     OpS32 = SMULLOHI->getOperand(0);
14339   }
14340 
14341   SDLoc dl(OR);
14342   unsigned Opcode = 0;
14343   if (isS16(OpS16, DAG))
14344     Opcode = ARMISD::SMULWB;
14345   else if (isSRA16(OpS16)) {
14346     Opcode = ARMISD::SMULWT;
14347     OpS16 = OpS16->getOperand(0);
14348   }
14349   else
14350     return SDValue();
14351 
14352   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
14353   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
14354   return SDValue(OR, 0);
14355 }
14356 
14357 static SDValue PerformORCombineToBFI(SDNode *N,
14358                                      TargetLowering::DAGCombinerInfo &DCI,
14359                                      const ARMSubtarget *Subtarget) {
14360   // BFI is only available on V6T2+
14361   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
14362     return SDValue();
14363 
14364   EVT VT = N->getValueType(0);
14365   SDValue N0 = N->getOperand(0);
14366   SDValue N1 = N->getOperand(1);
14367   SelectionDAG &DAG = DCI.DAG;
14368   SDLoc DL(N);
14369   // 1) or (and A, mask), val => ARMbfi A, val, mask
14370   //      iff (val & mask) == val
14371   //
14372   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14373   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
14374   //          && mask == ~mask2
14375   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
14376   //          && ~mask == mask2
14377   //  (i.e., copy a bitfield value into another bitfield of the same width)
14378 
14379   if (VT != MVT::i32)
14380     return SDValue();
14381 
14382   SDValue N00 = N0.getOperand(0);
14383 
14384   // The value and the mask need to be constants so we can verify this is
14385   // actually a bitfield set. If the mask is 0xffff, we can do better
14386   // via a movt instruction, so don't use BFI in that case.
14387   SDValue MaskOp = N0.getOperand(1);
14388   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
14389   if (!MaskC)
14390     return SDValue();
14391   unsigned Mask = MaskC->getZExtValue();
14392   if (Mask == 0xffff)
14393     return SDValue();
14394   SDValue Res;
14395   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
14396   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14397   if (N1C) {
14398     unsigned Val = N1C->getZExtValue();
14399     if ((Val & ~Mask) != Val)
14400       return SDValue();
14401 
14402     if (ARM::isBitFieldInvertedMask(Mask)) {
14403       Val >>= countTrailingZeros(~Mask);
14404 
14405       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
14406                         DAG.getConstant(Val, DL, MVT::i32),
14407                         DAG.getConstant(Mask, DL, MVT::i32));
14408 
14409       DCI.CombineTo(N, Res, false);
14410       // Return value from the original node to inform the combiner than N is
14411       // now dead.
14412       return SDValue(N, 0);
14413     }
14414   } else if (N1.getOpcode() == ISD::AND) {
14415     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14416     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14417     if (!N11C)
14418       return SDValue();
14419     unsigned Mask2 = N11C->getZExtValue();
14420 
14421     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
14422     // as is to match.
14423     if (ARM::isBitFieldInvertedMask(Mask) &&
14424         (Mask == ~Mask2)) {
14425       // The pack halfword instruction works better for masks that fit it,
14426       // so use that when it's available.
14427       if (Subtarget->hasDSP() &&
14428           (Mask == 0xffff || Mask == 0xffff0000))
14429         return SDValue();
14430       // 2a
14431       unsigned amt = countTrailingZeros(Mask2);
14432       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
14433                         DAG.getConstant(amt, DL, MVT::i32));
14434       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
14435                         DAG.getConstant(Mask, DL, MVT::i32));
14436       DCI.CombineTo(N, Res, false);
14437       // Return value from the original node to inform the combiner than N is
14438       // now dead.
14439       return SDValue(N, 0);
14440     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
14441                (~Mask == Mask2)) {
14442       // The pack halfword instruction works better for masks that fit it,
14443       // so use that when it's available.
14444       if (Subtarget->hasDSP() &&
14445           (Mask2 == 0xffff || Mask2 == 0xffff0000))
14446         return SDValue();
14447       // 2b
14448       unsigned lsb = countTrailingZeros(Mask);
14449       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
14450                         DAG.getConstant(lsb, DL, MVT::i32));
14451       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
14452                         DAG.getConstant(Mask2, DL, MVT::i32));
14453       DCI.CombineTo(N, Res, false);
14454       // Return value from the original node to inform the combiner than N is
14455       // now dead.
14456       return SDValue(N, 0);
14457     }
14458   }
14459 
14460   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
14461       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
14462       ARM::isBitFieldInvertedMask(~Mask)) {
14463     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
14464     // where lsb(mask) == #shamt and masked bits of B are known zero.
14465     SDValue ShAmt = N00.getOperand(1);
14466     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
14467     unsigned LSB = countTrailingZeros(Mask);
14468     if (ShAmtC != LSB)
14469       return SDValue();
14470 
14471     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
14472                       DAG.getConstant(~Mask, DL, MVT::i32));
14473 
14474     DCI.CombineTo(N, Res, false);
14475     // Return value from the original node to inform the combiner than N is
14476     // now dead.
14477     return SDValue(N, 0);
14478   }
14479 
14480   return SDValue();
14481 }
14482 
14483 static bool isValidMVECond(unsigned CC, bool IsFloat) {
14484   switch (CC) {
14485   case ARMCC::EQ:
14486   case ARMCC::NE:
14487   case ARMCC::LE:
14488   case ARMCC::GT:
14489   case ARMCC::GE:
14490   case ARMCC::LT:
14491     return true;
14492   case ARMCC::HS:
14493   case ARMCC::HI:
14494     return !IsFloat;
14495   default:
14496     return false;
14497   };
14498 }
14499 
14500 static ARMCC::CondCodes getVCMPCondCode(SDValue N) {
14501   if (N->getOpcode() == ARMISD::VCMP)
14502     return (ARMCC::CondCodes)N->getConstantOperandVal(2);
14503   else if (N->getOpcode() == ARMISD::VCMPZ)
14504     return (ARMCC::CondCodes)N->getConstantOperandVal(1);
14505   else
14506     llvm_unreachable("Not a VCMP/VCMPZ!");
14507 }
14508 
14509 static bool CanInvertMVEVCMP(SDValue N) {
14510   ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N));
14511   return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint());
14512 }
14513 
14514 static SDValue PerformORCombine_i1(SDNode *N, SelectionDAG &DAG,
14515                                    const ARMSubtarget *Subtarget) {
14516   // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
14517   // together with predicates
14518   EVT VT = N->getValueType(0);
14519   SDLoc DL(N);
14520   SDValue N0 = N->getOperand(0);
14521   SDValue N1 = N->getOperand(1);
14522 
14523   auto IsFreelyInvertable = [&](SDValue V) {
14524     if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ)
14525       return CanInvertMVEVCMP(V);
14526     return false;
14527   };
14528 
14529   // At least one operand must be freely invertable.
14530   if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1)))
14531     return SDValue();
14532 
14533   SDValue NewN0 = DAG.getLogicalNOT(DL, N0, VT);
14534   SDValue NewN1 = DAG.getLogicalNOT(DL, N1, VT);
14535   SDValue And = DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1);
14536   return DAG.getLogicalNOT(DL, And, VT);
14537 }
14538 
14539 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
14540 static SDValue PerformORCombine(SDNode *N,
14541                                 TargetLowering::DAGCombinerInfo &DCI,
14542                                 const ARMSubtarget *Subtarget) {
14543   // Attempt to use immediate-form VORR
14544   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14545   SDLoc dl(N);
14546   EVT VT = N->getValueType(0);
14547   SelectionDAG &DAG = DCI.DAG;
14548 
14549   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14550     return SDValue();
14551 
14552   if (Subtarget->hasMVEIntegerOps() && (VT == MVT::v2i1 || VT == MVT::v4i1 ||
14553                                         VT == MVT::v8i1 || VT == MVT::v16i1))
14554     return PerformORCombine_i1(N, DAG, Subtarget);
14555 
14556   APInt SplatBits, SplatUndef;
14557   unsigned SplatBitSize;
14558   bool HasAnyUndefs;
14559   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14560       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14561     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14562         SplatBitSize == 64) {
14563       EVT VorrVT;
14564       SDValue Val =
14565           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
14566                             SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm);
14567       if (Val.getNode()) {
14568         SDValue Input =
14569           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
14570         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
14571         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
14572       }
14573     }
14574   }
14575 
14576   if (!Subtarget->isThumb1Only()) {
14577     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
14578     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14579       return Result;
14580     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
14581       return Result;
14582   }
14583 
14584   SDValue N0 = N->getOperand(0);
14585   SDValue N1 = N->getOperand(1);
14586 
14587   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
14588   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
14589       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14590 
14591     // The code below optimizes (or (and X, Y), Z).
14592     // The AND operand needs to have a single user to make these optimizations
14593     // profitable.
14594     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
14595       return SDValue();
14596 
14597     APInt SplatUndef;
14598     unsigned SplatBitSize;
14599     bool HasAnyUndefs;
14600 
14601     APInt SplatBits0, SplatBits1;
14602     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
14603     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
14604     // Ensure that the second operand of both ands are constants
14605     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
14606                                       HasAnyUndefs) && !HasAnyUndefs) {
14607         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
14608                                           HasAnyUndefs) && !HasAnyUndefs) {
14609             // Ensure that the bit width of the constants are the same and that
14610             // the splat arguments are logical inverses as per the pattern we
14611             // are trying to simplify.
14612             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
14613                 SplatBits0 == ~SplatBits1) {
14614                 // Canonicalize the vector type to make instruction selection
14615                 // simpler.
14616                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
14617                 SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT,
14618                                              N0->getOperand(1),
14619                                              N0->getOperand(0),
14620                                              N1->getOperand(0));
14621                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
14622             }
14623         }
14624     }
14625   }
14626 
14627   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
14628   // reasonable.
14629   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
14630     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
14631       return Res;
14632   }
14633 
14634   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14635     return Result;
14636 
14637   return SDValue();
14638 }
14639 
14640 static SDValue PerformXORCombine(SDNode *N,
14641                                  TargetLowering::DAGCombinerInfo &DCI,
14642                                  const ARMSubtarget *Subtarget) {
14643   EVT VT = N->getValueType(0);
14644   SelectionDAG &DAG = DCI.DAG;
14645 
14646   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14647     return SDValue();
14648 
14649   if (!Subtarget->isThumb1Only()) {
14650     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
14651     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14652       return Result;
14653 
14654     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14655       return Result;
14656   }
14657 
14658   if (Subtarget->hasMVEIntegerOps()) {
14659     // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition.
14660     SDValue N0 = N->getOperand(0);
14661     SDValue N1 = N->getOperand(1);
14662     const TargetLowering *TLI = Subtarget->getTargetLowering();
14663     if (TLI->isConstTrueVal(N1) &&
14664         (N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) {
14665       if (CanInvertMVEVCMP(N0)) {
14666         SDLoc DL(N0);
14667         ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0));
14668 
14669         SmallVector<SDValue, 4> Ops;
14670         Ops.push_back(N0->getOperand(0));
14671         if (N0->getOpcode() == ARMISD::VCMP)
14672           Ops.push_back(N0->getOperand(1));
14673         Ops.push_back(DAG.getConstant(CC, DL, MVT::i32));
14674         return DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops);
14675       }
14676     }
14677   }
14678 
14679   return SDValue();
14680 }
14681 
14682 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
14683 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
14684 // their position in "to" (Rd).
14685 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
14686   assert(N->getOpcode() == ARMISD::BFI);
14687 
14688   SDValue From = N->getOperand(1);
14689   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
14690   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
14691 
14692   // If the Base came from a SHR #C, we can deduce that it is really testing bit
14693   // #C in the base of the SHR.
14694   if (From->getOpcode() == ISD::SRL &&
14695       isa<ConstantSDNode>(From->getOperand(1))) {
14696     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
14697     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
14698     FromMask <<= Shift.getLimitedValue(31);
14699     From = From->getOperand(0);
14700   }
14701 
14702   return From;
14703 }
14704 
14705 // If A and B contain one contiguous set of bits, does A | B == A . B?
14706 //
14707 // Neither A nor B must be zero.
14708 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
14709   unsigned LastActiveBitInA =  A.countTrailingZeros();
14710   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
14711   return LastActiveBitInA - 1 == FirstActiveBitInB;
14712 }
14713 
14714 static SDValue FindBFIToCombineWith(SDNode *N) {
14715   // We have a BFI in N. Find a BFI it can combine with, if one exists.
14716   APInt ToMask, FromMask;
14717   SDValue From = ParseBFI(N, ToMask, FromMask);
14718   SDValue To = N->getOperand(0);
14719 
14720   SDValue V = To;
14721   if (V.getOpcode() != ARMISD::BFI)
14722     return SDValue();
14723 
14724   APInt NewToMask, NewFromMask;
14725   SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
14726   if (NewFrom != From)
14727     return SDValue();
14728 
14729   // Do the written bits conflict with any we've seen so far?
14730   if ((NewToMask & ToMask).getBoolValue())
14731     // Conflicting bits.
14732     return SDValue();
14733 
14734   // Are the new bits contiguous when combined with the old bits?
14735   if (BitsProperlyConcatenate(ToMask, NewToMask) &&
14736       BitsProperlyConcatenate(FromMask, NewFromMask))
14737     return V;
14738   if (BitsProperlyConcatenate(NewToMask, ToMask) &&
14739       BitsProperlyConcatenate(NewFromMask, FromMask))
14740     return V;
14741 
14742   return SDValue();
14743 }
14744 
14745 static SDValue PerformBFICombine(SDNode *N, SelectionDAG &DAG) {
14746   SDValue N0 = N->getOperand(0);
14747   SDValue N1 = N->getOperand(1);
14748 
14749   if (N1.getOpcode() == ISD::AND) {
14750     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
14751     // the bits being cleared by the AND are not demanded by the BFI.
14752     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14753     if (!N11C)
14754       return SDValue();
14755     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
14756     unsigned LSB = countTrailingZeros(~InvMask);
14757     unsigned Width = llvm::bit_width<unsigned>(~InvMask) - LSB;
14758     assert(Width <
14759                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
14760            "undefined behavior");
14761     unsigned Mask = (1u << Width) - 1;
14762     unsigned Mask2 = N11C->getZExtValue();
14763     if ((Mask & (~Mask2)) == 0)
14764       return DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
14765                          N->getOperand(0), N1.getOperand(0), N->getOperand(2));
14766     return SDValue();
14767   }
14768 
14769   // Look for another BFI to combine with.
14770   if (SDValue CombineBFI = FindBFIToCombineWith(N)) {
14771     // We've found a BFI.
14772     APInt ToMask1, FromMask1;
14773     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
14774 
14775     APInt ToMask2, FromMask2;
14776     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
14777     assert(From1 == From2);
14778     (void)From2;
14779 
14780     // Create a new BFI, combining the two together.
14781     APInt NewFromMask = FromMask1 | FromMask2;
14782     APInt NewToMask = ToMask1 | ToMask2;
14783 
14784     EVT VT = N->getValueType(0);
14785     SDLoc dl(N);
14786 
14787     if (NewFromMask[0] == 0)
14788       From1 = DAG.getNode(
14789           ISD::SRL, dl, VT, From1,
14790           DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
14791     return DAG.getNode(ARMISD::BFI, dl, VT, CombineBFI.getOperand(0), From1,
14792                        DAG.getConstant(~NewToMask, dl, VT));
14793   }
14794 
14795   // Reassociate BFI(BFI (A, B, M1), C, M2) to BFI(BFI (A, C, M2), B, M1) so
14796   // that lower bit insertions are performed first, providing that M1 and M2
14797   // do no overlap. This can allow multiple BFI instructions to be combined
14798   // together by the other folds above.
14799   if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
14800     APInt ToMask1 = ~N->getConstantOperandAPInt(2);
14801     APInt ToMask2 = ~N0.getConstantOperandAPInt(2);
14802 
14803     if (!N0.hasOneUse() || (ToMask1 & ToMask2) != 0 ||
14804         ToMask1.countLeadingZeros() < ToMask2.countLeadingZeros())
14805       return SDValue();
14806 
14807     EVT VT = N->getValueType(0);
14808     SDLoc dl(N);
14809     SDValue BFI1 = DAG.getNode(ARMISD::BFI, dl, VT, N0.getOperand(0),
14810                                N->getOperand(1), N->getOperand(2));
14811     return DAG.getNode(ARMISD::BFI, dl, VT, BFI1, N0.getOperand(1),
14812                        N0.getOperand(2));
14813   }
14814 
14815   return SDValue();
14816 }
14817 
14818 // Check that N is CMPZ(CSINC(0, 0, CC, X)),
14819 //              or CMPZ(CMOV(1, 0, CC, $cpsr, X))
14820 // return X if valid.
14821 static SDValue IsCMPZCSINC(SDNode *Cmp, ARMCC::CondCodes &CC) {
14822   if (Cmp->getOpcode() != ARMISD::CMPZ || !isNullConstant(Cmp->getOperand(1)))
14823     return SDValue();
14824   SDValue CSInc = Cmp->getOperand(0);
14825 
14826   // Ignore any `And 1` nodes that may not yet have been removed. We are
14827   // looking for a value that produces 1/0, so these have no effect on the
14828   // code.
14829   while (CSInc.getOpcode() == ISD::AND &&
14830          isa<ConstantSDNode>(CSInc.getOperand(1)) &&
14831          CSInc.getConstantOperandVal(1) == 1 && CSInc->hasOneUse())
14832     CSInc = CSInc.getOperand(0);
14833 
14834   if (CSInc.getOpcode() == ARMISD::CSINC &&
14835       isNullConstant(CSInc.getOperand(0)) &&
14836       isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
14837     CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
14838     return CSInc.getOperand(3);
14839   }
14840   if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(0)) &&
14841       isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
14842     CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
14843     return CSInc.getOperand(4);
14844   }
14845   if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(1)) &&
14846       isNullConstant(CSInc.getOperand(0)) && CSInc->hasOneUse()) {
14847     CC = ARMCC::getOppositeCondition(
14848         (ARMCC::CondCodes)CSInc.getConstantOperandVal(2));
14849     return CSInc.getOperand(4);
14850   }
14851   return SDValue();
14852 }
14853 
14854 static SDValue PerformCMPZCombine(SDNode *N, SelectionDAG &DAG) {
14855   // Given CMPZ(CSINC(C, 0, 0, EQ), 0), we can just use C directly. As in
14856   //       t92: glue = ARMISD::CMPZ t74, 0
14857   //     t93: i32 = ARMISD::CSINC 0, 0, 1, t92
14858   //   t96: glue = ARMISD::CMPZ t93, 0
14859   // t114: i32 = ARMISD::CSINV 0, 0, 0, t96
14860   ARMCC::CondCodes Cond;
14861   if (SDValue C = IsCMPZCSINC(N, Cond))
14862     if (Cond == ARMCC::EQ)
14863       return C;
14864   return SDValue();
14865 }
14866 
14867 static SDValue PerformCSETCombine(SDNode *N, SelectionDAG &DAG) {
14868   // Fold away an unneccessary CMPZ/CSINC
14869   // CSXYZ A, B, C1 (CMPZ (CSINC 0, 0, C2, D), 0) ->
14870   // if C1==EQ -> CSXYZ A, B, C2, D
14871   // if C1==NE -> CSXYZ A, B, NOT(C2), D
14872   ARMCC::CondCodes Cond;
14873   if (SDValue C = IsCMPZCSINC(N->getOperand(3).getNode(), Cond)) {
14874     if (N->getConstantOperandVal(2) == ARMCC::EQ)
14875       return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
14876                          N->getOperand(1),
14877                          DAG.getConstant(Cond, SDLoc(N), MVT::i32), C);
14878     if (N->getConstantOperandVal(2) == ARMCC::NE)
14879       return DAG.getNode(
14880           N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
14881           N->getOperand(1),
14882           DAG.getConstant(ARMCC::getOppositeCondition(Cond), SDLoc(N), MVT::i32), C);
14883   }
14884   return SDValue();
14885 }
14886 
14887 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
14888 /// ARMISD::VMOVRRD.
14889 static SDValue PerformVMOVRRDCombine(SDNode *N,
14890                                      TargetLowering::DAGCombinerInfo &DCI,
14891                                      const ARMSubtarget *Subtarget) {
14892   // vmovrrd(vmovdrr x, y) -> x,y
14893   SDValue InDouble = N->getOperand(0);
14894   if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
14895     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
14896 
14897   // vmovrrd(load f64) -> (load i32), (load i32)
14898   SDNode *InNode = InDouble.getNode();
14899   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
14900       InNode->getValueType(0) == MVT::f64 &&
14901       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
14902       !cast<LoadSDNode>(InNode)->isVolatile()) {
14903     // TODO: Should this be done for non-FrameIndex operands?
14904     LoadSDNode *LD = cast<LoadSDNode>(InNode);
14905 
14906     SelectionDAG &DAG = DCI.DAG;
14907     SDLoc DL(LD);
14908     SDValue BasePtr = LD->getBasePtr();
14909     SDValue NewLD1 =
14910         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
14911                     LD->getAlign(), LD->getMemOperand()->getFlags());
14912 
14913     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
14914                                     DAG.getConstant(4, DL, MVT::i32));
14915 
14916     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
14917                                  LD->getPointerInfo().getWithOffset(4),
14918                                  commonAlignment(LD->getAlign(), 4),
14919                                  LD->getMemOperand()->getFlags());
14920 
14921     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
14922     if (DCI.DAG.getDataLayout().isBigEndian())
14923       std::swap (NewLD1, NewLD2);
14924     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
14925     return Result;
14926   }
14927 
14928   // VMOVRRD(extract(..(build_vector(a, b, c, d)))) -> a,b or c,d
14929   // VMOVRRD(extract(insert_vector(insert_vector(.., a, l1), b, l2))) -> a,b
14930   if (InDouble.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
14931       isa<ConstantSDNode>(InDouble.getOperand(1))) {
14932     SDValue BV = InDouble.getOperand(0);
14933     // Look up through any nop bitcasts and vector_reg_casts. bitcasts may
14934     // change lane order under big endian.
14935     bool BVSwap = BV.getOpcode() == ISD::BITCAST;
14936     while (
14937         (BV.getOpcode() == ISD::BITCAST ||
14938          BV.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
14939         (BV.getValueType() == MVT::v2f64 || BV.getValueType() == MVT::v2i64)) {
14940       BVSwap = BV.getOpcode() == ISD::BITCAST;
14941       BV = BV.getOperand(0);
14942     }
14943     if (BV.getValueType() != MVT::v4i32)
14944       return SDValue();
14945 
14946     // Handle buildvectors, pulling out the correct lane depending on
14947     // endianness.
14948     unsigned Offset = InDouble.getConstantOperandVal(1) == 1 ? 2 : 0;
14949     if (BV.getOpcode() == ISD::BUILD_VECTOR) {
14950       SDValue Op0 = BV.getOperand(Offset);
14951       SDValue Op1 = BV.getOperand(Offset + 1);
14952       if (!Subtarget->isLittle() && BVSwap)
14953         std::swap(Op0, Op1);
14954 
14955       return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
14956     }
14957 
14958     // A chain of insert_vectors, grabbing the correct value of the chain of
14959     // inserts.
14960     SDValue Op0, Op1;
14961     while (BV.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14962       if (isa<ConstantSDNode>(BV.getOperand(2))) {
14963         if (BV.getConstantOperandVal(2) == Offset)
14964           Op0 = BV.getOperand(1);
14965         if (BV.getConstantOperandVal(2) == Offset + 1)
14966           Op1 = BV.getOperand(1);
14967       }
14968       BV = BV.getOperand(0);
14969     }
14970     if (!Subtarget->isLittle() && BVSwap)
14971       std::swap(Op0, Op1);
14972     if (Op0 && Op1)
14973       return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
14974   }
14975 
14976   return SDValue();
14977 }
14978 
14979 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
14980 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
14981 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
14982   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
14983   SDValue Op0 = N->getOperand(0);
14984   SDValue Op1 = N->getOperand(1);
14985   if (Op0.getOpcode() == ISD::BITCAST)
14986     Op0 = Op0.getOperand(0);
14987   if (Op1.getOpcode() == ISD::BITCAST)
14988     Op1 = Op1.getOperand(0);
14989   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
14990       Op0.getNode() == Op1.getNode() &&
14991       Op0.getResNo() == 0 && Op1.getResNo() == 1)
14992     return DAG.getNode(ISD::BITCAST, SDLoc(N),
14993                        N->getValueType(0), Op0.getOperand(0));
14994   return SDValue();
14995 }
14996 
14997 static SDValue PerformVMOVhrCombine(SDNode *N,
14998                                     TargetLowering::DAGCombinerInfo &DCI) {
14999   SDValue Op0 = N->getOperand(0);
15000 
15001   // VMOVhr (VMOVrh (X)) -> X
15002   if (Op0->getOpcode() == ARMISD::VMOVrh)
15003     return Op0->getOperand(0);
15004 
15005   // FullFP16: half values are passed in S-registers, and we don't
15006   // need any of the bitcast and moves:
15007   //
15008   //     t2: f32,ch = CopyFromReg t0, Register:f32 %0
15009   //   t5: i32 = bitcast t2
15010   // t18: f16 = ARMISD::VMOVhr t5
15011   if (Op0->getOpcode() == ISD::BITCAST) {
15012     SDValue Copy = Op0->getOperand(0);
15013     if (Copy.getValueType() == MVT::f32 &&
15014         Copy->getOpcode() == ISD::CopyFromReg) {
15015       SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1)};
15016       SDValue NewCopy =
15017           DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N), N->getValueType(0), Ops);
15018       return NewCopy;
15019     }
15020   }
15021 
15022   // fold (VMOVhr (load x)) -> (load (f16*)x)
15023   if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) {
15024     if (LN0->hasOneUse() && LN0->isUnindexed() &&
15025         LN0->getMemoryVT() == MVT::i16) {
15026       SDValue Load =
15027           DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(),
15028                           LN0->getBasePtr(), LN0->getMemOperand());
15029       DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
15030       DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1));
15031       return Load;
15032     }
15033   }
15034 
15035   // Only the bottom 16 bits of the source register are used.
15036   APInt DemandedMask = APInt::getLowBitsSet(32, 16);
15037   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15038   if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI))
15039     return SDValue(N, 0);
15040 
15041   return SDValue();
15042 }
15043 
15044 static SDValue PerformVMOVrhCombine(SDNode *N, SelectionDAG &DAG) {
15045   SDValue N0 = N->getOperand(0);
15046   EVT VT = N->getValueType(0);
15047 
15048   // fold (VMOVrh (fpconst x)) -> const x
15049   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0)) {
15050     APFloat V = C->getValueAPF();
15051     return DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT);
15052   }
15053 
15054   // fold (VMOVrh (load x)) -> (zextload (i16*)x)
15055   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
15056     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15057 
15058     SDValue Load =
15059         DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(),
15060                        LN0->getBasePtr(), MVT::i16, LN0->getMemOperand());
15061     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
15062     DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
15063     return Load;
15064   }
15065 
15066   // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n)
15067   if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15068       isa<ConstantSDNode>(N0->getOperand(1)))
15069     return DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0),
15070                        N0->getOperand(1));
15071 
15072   return SDValue();
15073 }
15074 
15075 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
15076 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
15077 /// i64 vector to have f64 elements, since the value can then be loaded
15078 /// directly into a VFP register.
15079 static bool hasNormalLoadOperand(SDNode *N) {
15080   unsigned NumElts = N->getValueType(0).getVectorNumElements();
15081   for (unsigned i = 0; i < NumElts; ++i) {
15082     SDNode *Elt = N->getOperand(i).getNode();
15083     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
15084       return true;
15085   }
15086   return false;
15087 }
15088 
15089 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
15090 /// ISD::BUILD_VECTOR.
15091 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
15092                                           TargetLowering::DAGCombinerInfo &DCI,
15093                                           const ARMSubtarget *Subtarget) {
15094   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
15095   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
15096   // into a pair of GPRs, which is fine when the value is used as a scalar,
15097   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
15098   SelectionDAG &DAG = DCI.DAG;
15099   if (N->getNumOperands() == 2)
15100     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
15101       return RV;
15102 
15103   // Load i64 elements as f64 values so that type legalization does not split
15104   // them up into i32 values.
15105   EVT VT = N->getValueType(0);
15106   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
15107     return SDValue();
15108   SDLoc dl(N);
15109   SmallVector<SDValue, 8> Ops;
15110   unsigned NumElts = VT.getVectorNumElements();
15111   for (unsigned i = 0; i < NumElts; ++i) {
15112     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
15113     Ops.push_back(V);
15114     // Make the DAGCombiner fold the bitcast.
15115     DCI.AddToWorklist(V.getNode());
15116   }
15117   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
15118   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
15119   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
15120 }
15121 
15122 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
15123 static SDValue
15124 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15125   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
15126   // At that time, we may have inserted bitcasts from integer to float.
15127   // If these bitcasts have survived DAGCombine, change the lowering of this
15128   // BUILD_VECTOR in something more vector friendly, i.e., that does not
15129   // force to use floating point types.
15130 
15131   // Make sure we can change the type of the vector.
15132   // This is possible iff:
15133   // 1. The vector is only used in a bitcast to a integer type. I.e.,
15134   //    1.1. Vector is used only once.
15135   //    1.2. Use is a bit convert to an integer type.
15136   // 2. The size of its operands are 32-bits (64-bits are not legal).
15137   EVT VT = N->getValueType(0);
15138   EVT EltVT = VT.getVectorElementType();
15139 
15140   // Check 1.1. and 2.
15141   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
15142     return SDValue();
15143 
15144   // By construction, the input type must be float.
15145   assert(EltVT == MVT::f32 && "Unexpected type!");
15146 
15147   // Check 1.2.
15148   SDNode *Use = *N->use_begin();
15149   if (Use->getOpcode() != ISD::BITCAST ||
15150       Use->getValueType(0).isFloatingPoint())
15151     return SDValue();
15152 
15153   // Check profitability.
15154   // Model is, if more than half of the relevant operands are bitcast from
15155   // i32, turn the build_vector into a sequence of insert_vector_elt.
15156   // Relevant operands are everything that is not statically
15157   // (i.e., at compile time) bitcasted.
15158   unsigned NumOfBitCastedElts = 0;
15159   unsigned NumElts = VT.getVectorNumElements();
15160   unsigned NumOfRelevantElts = NumElts;
15161   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
15162     SDValue Elt = N->getOperand(Idx);
15163     if (Elt->getOpcode() == ISD::BITCAST) {
15164       // Assume only bit cast to i32 will go away.
15165       if (Elt->getOperand(0).getValueType() == MVT::i32)
15166         ++NumOfBitCastedElts;
15167     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
15168       // Constants are statically casted, thus do not count them as
15169       // relevant operands.
15170       --NumOfRelevantElts;
15171   }
15172 
15173   // Check if more than half of the elements require a non-free bitcast.
15174   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
15175     return SDValue();
15176 
15177   SelectionDAG &DAG = DCI.DAG;
15178   // Create the new vector type.
15179   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
15180   // Check if the type is legal.
15181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15182   if (!TLI.isTypeLegal(VecVT))
15183     return SDValue();
15184 
15185   // Combine:
15186   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
15187   // => BITCAST INSERT_VECTOR_ELT
15188   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
15189   //                      (BITCAST EN), N.
15190   SDValue Vec = DAG.getUNDEF(VecVT);
15191   SDLoc dl(N);
15192   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
15193     SDValue V = N->getOperand(Idx);
15194     if (V.isUndef())
15195       continue;
15196     if (V.getOpcode() == ISD::BITCAST &&
15197         V->getOperand(0).getValueType() == MVT::i32)
15198       // Fold obvious case.
15199       V = V.getOperand(0);
15200     else {
15201       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
15202       // Make the DAGCombiner fold the bitcasts.
15203       DCI.AddToWorklist(V.getNode());
15204     }
15205     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
15206     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
15207   }
15208   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
15209   // Make the DAGCombiner fold the bitcasts.
15210   DCI.AddToWorklist(Vec.getNode());
15211   return Vec;
15212 }
15213 
15214 static SDValue
15215 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15216   EVT VT = N->getValueType(0);
15217   SDValue Op = N->getOperand(0);
15218   SDLoc dl(N);
15219 
15220   // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
15221   if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
15222     // If the valuetypes are the same, we can remove the cast entirely.
15223     if (Op->getOperand(0).getValueType() == VT)
15224       return Op->getOperand(0);
15225     return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15226   }
15227 
15228   // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce
15229   // more VPNOT which might get folded as else predicates.
15230   if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) {
15231     SDValue X =
15232         DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15233     SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
15234                                 DCI.DAG.getConstant(65535, dl, MVT::i32));
15235     return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C);
15236   }
15237 
15238   // Only the bottom 16 bits of the source register are used.
15239   if (Op.getValueType() == MVT::i32) {
15240     APInt DemandedMask = APInt::getLowBitsSet(32, 16);
15241     const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15242     if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
15243       return SDValue(N, 0);
15244   }
15245   return SDValue();
15246 }
15247 
15248 static SDValue PerformVECTOR_REG_CASTCombine(SDNode *N, SelectionDAG &DAG,
15249                                              const ARMSubtarget *ST) {
15250   EVT VT = N->getValueType(0);
15251   SDValue Op = N->getOperand(0);
15252   SDLoc dl(N);
15253 
15254   // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST
15255   if (ST->isLittle())
15256     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
15257 
15258   // VECTOR_REG_CAST undef -> undef
15259   if (Op.isUndef())
15260     return DAG.getUNDEF(VT);
15261 
15262   // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x)
15263   if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) {
15264     // If the valuetypes are the same, we can remove the cast entirely.
15265     if (Op->getOperand(0).getValueType() == VT)
15266       return Op->getOperand(0);
15267     return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0));
15268   }
15269 
15270   return SDValue();
15271 }
15272 
15273 static SDValue PerformVCMPCombine(SDNode *N, SelectionDAG &DAG,
15274                                   const ARMSubtarget *Subtarget) {
15275   if (!Subtarget->hasMVEIntegerOps())
15276     return SDValue();
15277 
15278   EVT VT = N->getValueType(0);
15279   SDValue Op0 = N->getOperand(0);
15280   SDValue Op1 = N->getOperand(1);
15281   ARMCC::CondCodes Cond =
15282       (ARMCC::CondCodes)cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
15283   SDLoc dl(N);
15284 
15285   // vcmp X, 0, cc -> vcmpz X, cc
15286   if (isZeroVector(Op1))
15287     return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0, N->getOperand(2));
15288 
15289   unsigned SwappedCond = getSwappedCondition(Cond);
15290   if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
15291     // vcmp 0, X, cc -> vcmpz X, reversed(cc)
15292     if (isZeroVector(Op0))
15293       return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
15294                          DAG.getConstant(SwappedCond, dl, MVT::i32));
15295     // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
15296     if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
15297       return DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
15298                          DAG.getConstant(SwappedCond, dl, MVT::i32));
15299   }
15300 
15301   return SDValue();
15302 }
15303 
15304 /// PerformInsertEltCombine - Target-specific dag combine xforms for
15305 /// ISD::INSERT_VECTOR_ELT.
15306 static SDValue PerformInsertEltCombine(SDNode *N,
15307                                        TargetLowering::DAGCombinerInfo &DCI) {
15308   // Bitcast an i64 load inserted into a vector to f64.
15309   // Otherwise, the i64 value will be legalized to a pair of i32 values.
15310   EVT VT = N->getValueType(0);
15311   SDNode *Elt = N->getOperand(1).getNode();
15312   if (VT.getVectorElementType() != MVT::i64 ||
15313       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
15314     return SDValue();
15315 
15316   SelectionDAG &DAG = DCI.DAG;
15317   SDLoc dl(N);
15318   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
15319                                  VT.getVectorNumElements());
15320   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
15321   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
15322   // Make the DAGCombiner fold the bitcasts.
15323   DCI.AddToWorklist(Vec.getNode());
15324   DCI.AddToWorklist(V.getNode());
15325   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
15326                                Vec, V, N->getOperand(2));
15327   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
15328 }
15329 
15330 // Convert a pair of extracts from the same base vector to a VMOVRRD. Either
15331 // directly or bitcast to an integer if the original is a float vector.
15332 // extract(x, n); extract(x, n+1)  ->  VMOVRRD(extract v2f64 x, n/2)
15333 // bitcast(extract(x, n)); bitcast(extract(x, n+1))  ->  VMOVRRD(extract x, n/2)
15334 static SDValue
15335 PerformExtractEltToVMOVRRD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15336   EVT VT = N->getValueType(0);
15337   SDLoc dl(N);
15338 
15339   if (!DCI.isAfterLegalizeDAG() || VT != MVT::i32 ||
15340       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(MVT::f64))
15341     return SDValue();
15342 
15343   SDValue Ext = SDValue(N, 0);
15344   if (Ext.getOpcode() == ISD::BITCAST &&
15345       Ext.getOperand(0).getValueType() == MVT::f32)
15346     Ext = Ext.getOperand(0);
15347   if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
15348       !isa<ConstantSDNode>(Ext.getOperand(1)) ||
15349       Ext.getConstantOperandVal(1) % 2 != 0)
15350     return SDValue();
15351   if (Ext->use_size() == 1 &&
15352       (Ext->use_begin()->getOpcode() == ISD::SINT_TO_FP ||
15353        Ext->use_begin()->getOpcode() == ISD::UINT_TO_FP))
15354     return SDValue();
15355 
15356   SDValue Op0 = Ext.getOperand(0);
15357   EVT VecVT = Op0.getValueType();
15358   unsigned ResNo = Op0.getResNo();
15359   unsigned Lane = Ext.getConstantOperandVal(1);
15360   if (VecVT.getVectorNumElements() != 4)
15361     return SDValue();
15362 
15363   // Find another extract, of Lane + 1
15364   auto OtherIt = find_if(Op0->uses(), [&](SDNode *V) {
15365     return V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15366            isa<ConstantSDNode>(V->getOperand(1)) &&
15367            V->getConstantOperandVal(1) == Lane + 1 &&
15368            V->getOperand(0).getResNo() == ResNo;
15369   });
15370   if (OtherIt == Op0->uses().end())
15371     return SDValue();
15372 
15373   // For float extracts, we need to be converting to a i32 for both vector
15374   // lanes.
15375   SDValue OtherExt(*OtherIt, 0);
15376   if (OtherExt.getValueType() != MVT::i32) {
15377     if (OtherExt->use_size() != 1 ||
15378         OtherExt->use_begin()->getOpcode() != ISD::BITCAST ||
15379         OtherExt->use_begin()->getValueType(0) != MVT::i32)
15380       return SDValue();
15381     OtherExt = SDValue(*OtherExt->use_begin(), 0);
15382   }
15383 
15384   // Convert the type to a f64 and extract with a VMOVRRD.
15385   SDValue F64 = DCI.DAG.getNode(
15386       ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
15387       DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v2f64, Op0),
15388       DCI.DAG.getConstant(Ext.getConstantOperandVal(1) / 2, dl, MVT::i32));
15389   SDValue VMOVRRD =
15390       DCI.DAG.getNode(ARMISD::VMOVRRD, dl, {MVT::i32, MVT::i32}, F64);
15391 
15392   DCI.CombineTo(OtherExt.getNode(), SDValue(VMOVRRD.getNode(), 1));
15393   return VMOVRRD;
15394 }
15395 
15396 static SDValue PerformExtractEltCombine(SDNode *N,
15397                                         TargetLowering::DAGCombinerInfo &DCI,
15398                                         const ARMSubtarget *ST) {
15399   SDValue Op0 = N->getOperand(0);
15400   EVT VT = N->getValueType(0);
15401   SDLoc dl(N);
15402 
15403   // extract (vdup x) -> x
15404   if (Op0->getOpcode() == ARMISD::VDUP) {
15405     SDValue X = Op0->getOperand(0);
15406     if (VT == MVT::f16 && X.getValueType() == MVT::i32)
15407       return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X);
15408     if (VT == MVT::i32 && X.getValueType() == MVT::f16)
15409       return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X);
15410     if (VT == MVT::f32 && X.getValueType() == MVT::i32)
15411       return DCI.DAG.getNode(ISD::BITCAST, dl, VT, X);
15412 
15413     while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST)
15414       X = X->getOperand(0);
15415     if (X.getValueType() == VT)
15416       return X;
15417   }
15418 
15419   // extract ARM_BUILD_VECTOR -> x
15420   if (Op0->getOpcode() == ARMISD::BUILD_VECTOR &&
15421       isa<ConstantSDNode>(N->getOperand(1)) &&
15422       N->getConstantOperandVal(1) < Op0.getNumOperands()) {
15423     return Op0.getOperand(N->getConstantOperandVal(1));
15424   }
15425 
15426   // extract(bitcast(BUILD_VECTOR(VMOVDRR(a, b), ..))) -> a or b
15427   if (Op0.getValueType() == MVT::v4i32 &&
15428       isa<ConstantSDNode>(N->getOperand(1)) &&
15429       Op0.getOpcode() == ISD::BITCAST &&
15430       Op0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
15431       Op0.getOperand(0).getValueType() == MVT::v2f64) {
15432     SDValue BV = Op0.getOperand(0);
15433     unsigned Offset = N->getConstantOperandVal(1);
15434     SDValue MOV = BV.getOperand(Offset < 2 ? 0 : 1);
15435     if (MOV.getOpcode() == ARMISD::VMOVDRR)
15436       return MOV.getOperand(ST->isLittle() ? Offset % 2 : 1 - Offset % 2);
15437   }
15438 
15439   // extract x, n; extract x, n+1  ->  VMOVRRD x
15440   if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
15441     return R;
15442 
15443   // extract (MVETrunc(x)) -> extract x
15444   if (Op0->getOpcode() == ARMISD::MVETRUNC) {
15445     unsigned Idx = N->getConstantOperandVal(1);
15446     unsigned Vec =
15447         Idx / Op0->getOperand(0).getValueType().getVectorNumElements();
15448     unsigned SubIdx =
15449         Idx % Op0->getOperand(0).getValueType().getVectorNumElements();
15450     return DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Op0.getOperand(Vec),
15451                            DCI.DAG.getConstant(SubIdx, dl, MVT::i32));
15452   }
15453 
15454   return SDValue();
15455 }
15456 
15457 static SDValue PerformSignExtendInregCombine(SDNode *N, SelectionDAG &DAG) {
15458   SDValue Op = N->getOperand(0);
15459   EVT VT = N->getValueType(0);
15460 
15461   // sext_inreg(VGETLANEu) -> VGETLANEs
15462   if (Op.getOpcode() == ARMISD::VGETLANEu &&
15463       cast<VTSDNode>(N->getOperand(1))->getVT() ==
15464           Op.getOperand(0).getValueType().getScalarType())
15465     return DAG.getNode(ARMISD::VGETLANEs, SDLoc(N), VT, Op.getOperand(0),
15466                        Op.getOperand(1));
15467 
15468   return SDValue();
15469 }
15470 
15471 // When lowering complex nodes that we recognize, like VQDMULH and MULH, we
15472 // can end up with shuffle(binop(shuffle, shuffle)), that can be simplified to
15473 // binop as the shuffles cancel out.
15474 static SDValue FlattenVectorShuffle(ShuffleVectorSDNode *N, SelectionDAG &DAG) {
15475   EVT VT = N->getValueType(0);
15476   if (!N->getOperand(1).isUndef() || N->getOperand(0).getValueType() != VT)
15477     return SDValue();
15478   SDValue Op = N->getOperand(0);
15479 
15480   // Looking for binary operators that will have been folded from
15481   // truncates/extends.
15482   switch (Op.getOpcode()) {
15483   case ARMISD::VQDMULH:
15484   case ISD::MULHS:
15485   case ISD::MULHU:
15486   case ISD::ABDS:
15487   case ISD::ABDU:
15488   case ISD::AVGFLOORS:
15489   case ISD::AVGFLOORU:
15490   case ISD::AVGCEILS:
15491   case ISD::AVGCEILU:
15492     break;
15493   default:
15494     return SDValue();
15495   }
15496 
15497   ShuffleVectorSDNode *Op0 = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(0));
15498   ShuffleVectorSDNode *Op1 = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(1));
15499   if (!Op0 || !Op1 || !Op0->getOperand(1).isUndef() ||
15500       !Op1->getOperand(1).isUndef() || Op0->getMask() != Op1->getMask() ||
15501       Op0->getOperand(0).getValueType() != VT)
15502     return SDValue();
15503 
15504   // Check the mask turns into an identity shuffle.
15505   ArrayRef<int> NMask = N->getMask();
15506   ArrayRef<int> OpMask = Op0->getMask();
15507   for (int i = 0, e = NMask.size(); i != e; i++) {
15508     if (NMask[i] > 0 && OpMask[NMask[i]] > 0 && OpMask[NMask[i]] != i)
15509       return SDValue();
15510   }
15511 
15512   return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
15513                      Op0->getOperand(0), Op1->getOperand(0));
15514 }
15515 
15516 static SDValue
15517 PerformInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15518   SDValue Vec = N->getOperand(0);
15519   SDValue SubVec = N->getOperand(1);
15520   uint64_t IdxVal = N->getConstantOperandVal(2);
15521   EVT VecVT = Vec.getValueType();
15522   EVT SubVT = SubVec.getValueType();
15523 
15524   // Only do this for legal fixed vector types.
15525   if (!VecVT.isFixedLengthVector() ||
15526       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VecVT) ||
15527       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
15528     return SDValue();
15529 
15530   // Ignore widening patterns.
15531   if (IdxVal == 0 && Vec.isUndef())
15532     return SDValue();
15533 
15534   // Subvector must be half the width and an "aligned" insertion.
15535   unsigned NumSubElts = SubVT.getVectorNumElements();
15536   if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() ||
15537       (IdxVal != 0 && IdxVal != NumSubElts))
15538     return SDValue();
15539 
15540   // Fold insert_subvector -> concat_vectors
15541   // insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi))
15542   // insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub)
15543   SDLoc DL(N);
15544   SDValue Lo, Hi;
15545   if (IdxVal == 0) {
15546     Lo = SubVec;
15547     Hi = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15548                          DCI.DAG.getVectorIdxConstant(NumSubElts, DL));
15549   } else {
15550     Lo = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15551                          DCI.DAG.getVectorIdxConstant(0, DL));
15552     Hi = SubVec;
15553   }
15554   return DCI.DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi);
15555 }
15556 
15557 // shuffle(MVETrunc(x, y)) -> VMOVN(x, y)
15558 static SDValue PerformShuffleVMOVNCombine(ShuffleVectorSDNode *N,
15559                                           SelectionDAG &DAG) {
15560   SDValue Trunc = N->getOperand(0);
15561   EVT VT = Trunc.getValueType();
15562   if (Trunc.getOpcode() != ARMISD::MVETRUNC || !N->getOperand(1).isUndef())
15563     return SDValue();
15564 
15565   SDLoc DL(Trunc);
15566   if (isVMOVNTruncMask(N->getMask(), VT, false))
15567     return DAG.getNode(
15568         ARMISD::VMOVN, DL, VT,
15569         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15570         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15571         DAG.getConstant(1, DL, MVT::i32));
15572   else if (isVMOVNTruncMask(N->getMask(), VT, true))
15573     return DAG.getNode(
15574         ARMISD::VMOVN, DL, VT,
15575         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15576         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15577         DAG.getConstant(1, DL, MVT::i32));
15578   return SDValue();
15579 }
15580 
15581 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
15582 /// ISD::VECTOR_SHUFFLE.
15583 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
15584   if (SDValue R = FlattenVectorShuffle(cast<ShuffleVectorSDNode>(N), DAG))
15585     return R;
15586   if (SDValue R = PerformShuffleVMOVNCombine(cast<ShuffleVectorSDNode>(N), DAG))
15587     return R;
15588 
15589   // The LLVM shufflevector instruction does not require the shuffle mask
15590   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
15591   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
15592   // operands do not match the mask length, they are extended by concatenating
15593   // them with undef vectors.  That is probably the right thing for other
15594   // targets, but for NEON it is better to concatenate two double-register
15595   // size vector operands into a single quad-register size vector.  Do that
15596   // transformation here:
15597   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
15598   //   shuffle(concat(v1, v2), undef)
15599   SDValue Op0 = N->getOperand(0);
15600   SDValue Op1 = N->getOperand(1);
15601   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
15602       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
15603       Op0.getNumOperands() != 2 ||
15604       Op1.getNumOperands() != 2)
15605     return SDValue();
15606   SDValue Concat0Op1 = Op0.getOperand(1);
15607   SDValue Concat1Op1 = Op1.getOperand(1);
15608   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
15609     return SDValue();
15610   // Skip the transformation if any of the types are illegal.
15611   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15612   EVT VT = N->getValueType(0);
15613   if (!TLI.isTypeLegal(VT) ||
15614       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
15615       !TLI.isTypeLegal(Concat1Op1.getValueType()))
15616     return SDValue();
15617 
15618   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
15619                                   Op0.getOperand(0), Op1.getOperand(0));
15620   // Translate the shuffle mask.
15621   SmallVector<int, 16> NewMask;
15622   unsigned NumElts = VT.getVectorNumElements();
15623   unsigned HalfElts = NumElts/2;
15624   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
15625   for (unsigned n = 0; n < NumElts; ++n) {
15626     int MaskElt = SVN->getMaskElt(n);
15627     int NewElt = -1;
15628     if (MaskElt < (int)HalfElts)
15629       NewElt = MaskElt;
15630     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
15631       NewElt = HalfElts + MaskElt - NumElts;
15632     NewMask.push_back(NewElt);
15633   }
15634   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
15635                               DAG.getUNDEF(VT), NewMask);
15636 }
15637 
15638 /// Load/store instruction that can be merged with a base address
15639 /// update
15640 struct BaseUpdateTarget {
15641   SDNode *N;
15642   bool isIntrinsic;
15643   bool isStore;
15644   unsigned AddrOpIdx;
15645 };
15646 
15647 struct BaseUpdateUser {
15648   /// Instruction that updates a pointer
15649   SDNode *N;
15650   /// Pointer increment operand
15651   SDValue Inc;
15652   /// Pointer increment value if it is a constant, or 0 otherwise
15653   unsigned ConstInc;
15654 };
15655 
15656 static bool TryCombineBaseUpdate(struct BaseUpdateTarget &Target,
15657                                  struct BaseUpdateUser &User,
15658                                  bool SimpleConstIncOnly,
15659                                  TargetLowering::DAGCombinerInfo &DCI) {
15660   SelectionDAG &DAG = DCI.DAG;
15661   SDNode *N = Target.N;
15662   MemSDNode *MemN = cast<MemSDNode>(N);
15663   SDLoc dl(N);
15664 
15665   // Find the new opcode for the updating load/store.
15666   bool isLoadOp = true;
15667   bool isLaneOp = false;
15668   // Workaround for vst1x and vld1x intrinsics which do not have alignment
15669   // as an operand.
15670   bool hasAlignment = true;
15671   unsigned NewOpc = 0;
15672   unsigned NumVecs = 0;
15673   if (Target.isIntrinsic) {
15674     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
15675     switch (IntNo) {
15676     default:
15677       llvm_unreachable("unexpected intrinsic for Neon base update");
15678     case Intrinsic::arm_neon_vld1:
15679       NewOpc = ARMISD::VLD1_UPD;
15680       NumVecs = 1;
15681       break;
15682     case Intrinsic::arm_neon_vld2:
15683       NewOpc = ARMISD::VLD2_UPD;
15684       NumVecs = 2;
15685       break;
15686     case Intrinsic::arm_neon_vld3:
15687       NewOpc = ARMISD::VLD3_UPD;
15688       NumVecs = 3;
15689       break;
15690     case Intrinsic::arm_neon_vld4:
15691       NewOpc = ARMISD::VLD4_UPD;
15692       NumVecs = 4;
15693       break;
15694     case Intrinsic::arm_neon_vld1x2:
15695       NewOpc = ARMISD::VLD1x2_UPD;
15696       NumVecs = 2;
15697       hasAlignment = false;
15698       break;
15699     case Intrinsic::arm_neon_vld1x3:
15700       NewOpc = ARMISD::VLD1x3_UPD;
15701       NumVecs = 3;
15702       hasAlignment = false;
15703       break;
15704     case Intrinsic::arm_neon_vld1x4:
15705       NewOpc = ARMISD::VLD1x4_UPD;
15706       NumVecs = 4;
15707       hasAlignment = false;
15708       break;
15709     case Intrinsic::arm_neon_vld2dup:
15710       NewOpc = ARMISD::VLD2DUP_UPD;
15711       NumVecs = 2;
15712       break;
15713     case Intrinsic::arm_neon_vld3dup:
15714       NewOpc = ARMISD::VLD3DUP_UPD;
15715       NumVecs = 3;
15716       break;
15717     case Intrinsic::arm_neon_vld4dup:
15718       NewOpc = ARMISD::VLD4DUP_UPD;
15719       NumVecs = 4;
15720       break;
15721     case Intrinsic::arm_neon_vld2lane:
15722       NewOpc = ARMISD::VLD2LN_UPD;
15723       NumVecs = 2;
15724       isLaneOp = true;
15725       break;
15726     case Intrinsic::arm_neon_vld3lane:
15727       NewOpc = ARMISD::VLD3LN_UPD;
15728       NumVecs = 3;
15729       isLaneOp = true;
15730       break;
15731     case Intrinsic::arm_neon_vld4lane:
15732       NewOpc = ARMISD::VLD4LN_UPD;
15733       NumVecs = 4;
15734       isLaneOp = true;
15735       break;
15736     case Intrinsic::arm_neon_vst1:
15737       NewOpc = ARMISD::VST1_UPD;
15738       NumVecs = 1;
15739       isLoadOp = false;
15740       break;
15741     case Intrinsic::arm_neon_vst2:
15742       NewOpc = ARMISD::VST2_UPD;
15743       NumVecs = 2;
15744       isLoadOp = false;
15745       break;
15746     case Intrinsic::arm_neon_vst3:
15747       NewOpc = ARMISD::VST3_UPD;
15748       NumVecs = 3;
15749       isLoadOp = false;
15750       break;
15751     case Intrinsic::arm_neon_vst4:
15752       NewOpc = ARMISD::VST4_UPD;
15753       NumVecs = 4;
15754       isLoadOp = false;
15755       break;
15756     case Intrinsic::arm_neon_vst2lane:
15757       NewOpc = ARMISD::VST2LN_UPD;
15758       NumVecs = 2;
15759       isLoadOp = false;
15760       isLaneOp = true;
15761       break;
15762     case Intrinsic::arm_neon_vst3lane:
15763       NewOpc = ARMISD::VST3LN_UPD;
15764       NumVecs = 3;
15765       isLoadOp = false;
15766       isLaneOp = true;
15767       break;
15768     case Intrinsic::arm_neon_vst4lane:
15769       NewOpc = ARMISD::VST4LN_UPD;
15770       NumVecs = 4;
15771       isLoadOp = false;
15772       isLaneOp = true;
15773       break;
15774     case Intrinsic::arm_neon_vst1x2:
15775       NewOpc = ARMISD::VST1x2_UPD;
15776       NumVecs = 2;
15777       isLoadOp = false;
15778       hasAlignment = false;
15779       break;
15780     case Intrinsic::arm_neon_vst1x3:
15781       NewOpc = ARMISD::VST1x3_UPD;
15782       NumVecs = 3;
15783       isLoadOp = false;
15784       hasAlignment = false;
15785       break;
15786     case Intrinsic::arm_neon_vst1x4:
15787       NewOpc = ARMISD::VST1x4_UPD;
15788       NumVecs = 4;
15789       isLoadOp = false;
15790       hasAlignment = false;
15791       break;
15792     }
15793   } else {
15794     isLaneOp = true;
15795     switch (N->getOpcode()) {
15796     default:
15797       llvm_unreachable("unexpected opcode for Neon base update");
15798     case ARMISD::VLD1DUP:
15799       NewOpc = ARMISD::VLD1DUP_UPD;
15800       NumVecs = 1;
15801       break;
15802     case ARMISD::VLD2DUP:
15803       NewOpc = ARMISD::VLD2DUP_UPD;
15804       NumVecs = 2;
15805       break;
15806     case ARMISD::VLD3DUP:
15807       NewOpc = ARMISD::VLD3DUP_UPD;
15808       NumVecs = 3;
15809       break;
15810     case ARMISD::VLD4DUP:
15811       NewOpc = ARMISD::VLD4DUP_UPD;
15812       NumVecs = 4;
15813       break;
15814     case ISD::LOAD:
15815       NewOpc = ARMISD::VLD1_UPD;
15816       NumVecs = 1;
15817       isLaneOp = false;
15818       break;
15819     case ISD::STORE:
15820       NewOpc = ARMISD::VST1_UPD;
15821       NumVecs = 1;
15822       isLaneOp = false;
15823       isLoadOp = false;
15824       break;
15825     }
15826   }
15827 
15828   // Find the size of memory referenced by the load/store.
15829   EVT VecTy;
15830   if (isLoadOp) {
15831     VecTy = N->getValueType(0);
15832   } else if (Target.isIntrinsic) {
15833     VecTy = N->getOperand(Target.AddrOpIdx + 1).getValueType();
15834   } else {
15835     assert(Target.isStore &&
15836            "Node has to be a load, a store, or an intrinsic!");
15837     VecTy = N->getOperand(1).getValueType();
15838   }
15839 
15840   bool isVLDDUPOp =
15841       NewOpc == ARMISD::VLD1DUP_UPD || NewOpc == ARMISD::VLD2DUP_UPD ||
15842       NewOpc == ARMISD::VLD3DUP_UPD || NewOpc == ARMISD::VLD4DUP_UPD;
15843 
15844   unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
15845   if (isLaneOp || isVLDDUPOp)
15846     NumBytes /= VecTy.getVectorNumElements();
15847 
15848   if (NumBytes >= 3 * 16 && User.ConstInc != NumBytes) {
15849     // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
15850     // separate instructions that make it harder to use a non-constant update.
15851     return false;
15852   }
15853 
15854   if (SimpleConstIncOnly && User.ConstInc != NumBytes)
15855     return false;
15856 
15857   // OK, we found an ADD we can fold into the base update.
15858   // Now, create a _UPD node, taking care of not breaking alignment.
15859 
15860   EVT AlignedVecTy = VecTy;
15861   Align Alignment = MemN->getAlign();
15862 
15863   // If this is a less-than-standard-aligned load/store, change the type to
15864   // match the standard alignment.
15865   // The alignment is overlooked when selecting _UPD variants; and it's
15866   // easier to introduce bitcasts here than fix that.
15867   // There are 3 ways to get to this base-update combine:
15868   // - intrinsics: they are assumed to be properly aligned (to the standard
15869   //   alignment of the memory type), so we don't need to do anything.
15870   // - ARMISD::VLDx nodes: they are only generated from the aforementioned
15871   //   intrinsics, so, likewise, there's nothing to do.
15872   // - generic load/store instructions: the alignment is specified as an
15873   //   explicit operand, rather than implicitly as the standard alignment
15874   //   of the memory type (like the intrisics).  We need to change the
15875   //   memory type to match the explicit alignment.  That way, we don't
15876   //   generate non-standard-aligned ARMISD::VLDx nodes.
15877   if (isa<LSBaseSDNode>(N)) {
15878     if (Alignment.value() < VecTy.getScalarSizeInBits() / 8) {
15879       MVT EltTy = MVT::getIntegerVT(Alignment.value() * 8);
15880       assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
15881       assert(!isLaneOp && "Unexpected generic load/store lane.");
15882       unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
15883       AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
15884     }
15885     // Don't set an explicit alignment on regular load/stores that we want
15886     // to transform to VLD/VST 1_UPD nodes.
15887     // This matches the behavior of regular load/stores, which only get an
15888     // explicit alignment if the MMO alignment is larger than the standard
15889     // alignment of the memory type.
15890     // Intrinsics, however, always get an explicit alignment, set to the
15891     // alignment of the MMO.
15892     Alignment = Align(1);
15893   }
15894 
15895   // Create the new updating load/store node.
15896   // First, create an SDVTList for the new updating node's results.
15897   EVT Tys[6];
15898   unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
15899   unsigned n;
15900   for (n = 0; n < NumResultVecs; ++n)
15901     Tys[n] = AlignedVecTy;
15902   Tys[n++] = MVT::i32;
15903   Tys[n] = MVT::Other;
15904   SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2));
15905 
15906   // Then, gather the new node's operands.
15907   SmallVector<SDValue, 8> Ops;
15908   Ops.push_back(N->getOperand(0)); // incoming chain
15909   Ops.push_back(N->getOperand(Target.AddrOpIdx));
15910   Ops.push_back(User.Inc);
15911 
15912   if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
15913     // Try to match the intrinsic's signature
15914     Ops.push_back(StN->getValue());
15915   } else {
15916     // Loads (and of course intrinsics) match the intrinsics' signature,
15917     // so just add all but the alignment operand.
15918     unsigned LastOperand =
15919         hasAlignment ? N->getNumOperands() - 1 : N->getNumOperands();
15920     for (unsigned i = Target.AddrOpIdx + 1; i < LastOperand; ++i)
15921       Ops.push_back(N->getOperand(i));
15922   }
15923 
15924   // For all node types, the alignment operand is always the last one.
15925   Ops.push_back(DAG.getConstant(Alignment.value(), dl, MVT::i32));
15926 
15927   // If this is a non-standard-aligned STORE, the penultimate operand is the
15928   // stored value.  Bitcast it to the aligned type.
15929   if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
15930     SDValue &StVal = Ops[Ops.size() - 2];
15931     StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
15932   }
15933 
15934   EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
15935   SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
15936                                          MemN->getMemOperand());
15937 
15938   // Update the uses.
15939   SmallVector<SDValue, 5> NewResults;
15940   for (unsigned i = 0; i < NumResultVecs; ++i)
15941     NewResults.push_back(SDValue(UpdN.getNode(), i));
15942 
15943   // If this is an non-standard-aligned LOAD, the first result is the loaded
15944   // value.  Bitcast it to the expected result type.
15945   if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
15946     SDValue &LdVal = NewResults[0];
15947     LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
15948   }
15949 
15950   NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
15951   DCI.CombineTo(N, NewResults);
15952   DCI.CombineTo(User.N, SDValue(UpdN.getNode(), NumResultVecs));
15953 
15954   return true;
15955 }
15956 
15957 // If (opcode ptr inc) is and ADD-like instruction, return the
15958 // increment value. Otherwise return 0.
15959 static unsigned getPointerConstIncrement(unsigned Opcode, SDValue Ptr,
15960                                          SDValue Inc, const SelectionDAG &DAG) {
15961   ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
15962   if (!CInc)
15963     return 0;
15964 
15965   switch (Opcode) {
15966   case ARMISD::VLD1_UPD:
15967   case ISD::ADD:
15968     return CInc->getZExtValue();
15969   case ISD::OR: {
15970     if (DAG.haveNoCommonBitsSet(Ptr, Inc)) {
15971       // (OR ptr inc) is the same as (ADD ptr inc)
15972       return CInc->getZExtValue();
15973     }
15974     return 0;
15975   }
15976   default:
15977     return 0;
15978   }
15979 }
15980 
15981 static bool findPointerConstIncrement(SDNode *N, SDValue *Ptr, SDValue *CInc) {
15982   switch (N->getOpcode()) {
15983   case ISD::ADD:
15984   case ISD::OR: {
15985     if (isa<ConstantSDNode>(N->getOperand(1))) {
15986       *Ptr = N->getOperand(0);
15987       *CInc = N->getOperand(1);
15988       return true;
15989     }
15990     return false;
15991   }
15992   case ARMISD::VLD1_UPD: {
15993     if (isa<ConstantSDNode>(N->getOperand(2))) {
15994       *Ptr = N->getOperand(1);
15995       *CInc = N->getOperand(2);
15996       return true;
15997     }
15998     return false;
15999   }
16000   default:
16001     return false;
16002   }
16003 }
16004 
16005 static bool isValidBaseUpdate(SDNode *N, SDNode *User) {
16006   // Check that the add is independent of the load/store.
16007   // Otherwise, folding it would create a cycle. Search through Addr
16008   // as well, since the User may not be a direct user of Addr and
16009   // only share a base pointer.
16010   SmallPtrSet<const SDNode *, 32> Visited;
16011   SmallVector<const SDNode *, 16> Worklist;
16012   Worklist.push_back(N);
16013   Worklist.push_back(User);
16014   if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
16015       SDNode::hasPredecessorHelper(User, Visited, Worklist))
16016     return false;
16017   return true;
16018 }
16019 
16020 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
16021 /// NEON load/store intrinsics, and generic vector load/stores, to merge
16022 /// base address updates.
16023 /// For generic load/stores, the memory type is assumed to be a vector.
16024 /// The caller is assumed to have checked legality.
16025 static SDValue CombineBaseUpdate(SDNode *N,
16026                                  TargetLowering::DAGCombinerInfo &DCI) {
16027   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
16028                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
16029   const bool isStore = N->getOpcode() == ISD::STORE;
16030   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
16031   BaseUpdateTarget Target = {N, isIntrinsic, isStore, AddrOpIdx};
16032 
16033   SDValue Addr = N->getOperand(AddrOpIdx);
16034 
16035   SmallVector<BaseUpdateUser, 8> BaseUpdates;
16036 
16037   // Search for a use of the address operand that is an increment.
16038   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
16039          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
16040     SDNode *User = *UI;
16041     if (UI.getUse().getResNo() != Addr.getResNo() ||
16042         User->getNumOperands() != 2)
16043       continue;
16044 
16045     SDValue Inc = User->getOperand(UI.getOperandNo() == 1 ? 0 : 1);
16046     unsigned ConstInc =
16047         getPointerConstIncrement(User->getOpcode(), Addr, Inc, DCI.DAG);
16048 
16049     if (ConstInc || User->getOpcode() == ISD::ADD)
16050       BaseUpdates.push_back({User, Inc, ConstInc});
16051   }
16052 
16053   // If the address is a constant pointer increment itself, find
16054   // another constant increment that has the same base operand
16055   SDValue Base;
16056   SDValue CInc;
16057   if (findPointerConstIncrement(Addr.getNode(), &Base, &CInc)) {
16058     unsigned Offset =
16059         getPointerConstIncrement(Addr->getOpcode(), Base, CInc, DCI.DAG);
16060     for (SDNode::use_iterator UI = Base->use_begin(), UE = Base->use_end();
16061          UI != UE; ++UI) {
16062 
16063       SDNode *User = *UI;
16064       if (UI.getUse().getResNo() != Base.getResNo() || User == Addr.getNode() ||
16065           User->getNumOperands() != 2)
16066         continue;
16067 
16068       SDValue UserInc = User->getOperand(UI.getOperandNo() == 0 ? 1 : 0);
16069       unsigned UserOffset =
16070           getPointerConstIncrement(User->getOpcode(), Base, UserInc, DCI.DAG);
16071 
16072       if (!UserOffset || UserOffset <= Offset)
16073         continue;
16074 
16075       unsigned NewConstInc = UserOffset - Offset;
16076       SDValue NewInc = DCI.DAG.getConstant(NewConstInc, SDLoc(N), MVT::i32);
16077       BaseUpdates.push_back({User, NewInc, NewConstInc});
16078     }
16079   }
16080 
16081   // Try to fold the load/store with an update that matches memory
16082   // access size. This should work well for sequential loads.
16083   //
16084   // Filter out invalid updates as well.
16085   unsigned NumValidUpd = BaseUpdates.size();
16086   for (unsigned I = 0; I < NumValidUpd;) {
16087     BaseUpdateUser &User = BaseUpdates[I];
16088     if (!isValidBaseUpdate(N, User.N)) {
16089       --NumValidUpd;
16090       std::swap(BaseUpdates[I], BaseUpdates[NumValidUpd]);
16091       continue;
16092     }
16093 
16094     if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/true, DCI))
16095       return SDValue();
16096     ++I;
16097   }
16098   BaseUpdates.resize(NumValidUpd);
16099 
16100   // Try to fold with other users. Non-constant updates are considered
16101   // first, and constant updates are sorted to not break a sequence of
16102   // strided accesses (if there is any).
16103   std::stable_sort(BaseUpdates.begin(), BaseUpdates.end(),
16104                    [](const BaseUpdateUser &LHS, const BaseUpdateUser &RHS) {
16105                      return LHS.ConstInc < RHS.ConstInc;
16106                    });
16107   for (BaseUpdateUser &User : BaseUpdates) {
16108     if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/false, DCI))
16109       return SDValue();
16110   }
16111   return SDValue();
16112 }
16113 
16114 static SDValue PerformVLDCombine(SDNode *N,
16115                                  TargetLowering::DAGCombinerInfo &DCI) {
16116   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16117     return SDValue();
16118 
16119   return CombineBaseUpdate(N, DCI);
16120 }
16121 
16122 static SDValue PerformMVEVLDCombine(SDNode *N,
16123                                     TargetLowering::DAGCombinerInfo &DCI) {
16124   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16125     return SDValue();
16126 
16127   SelectionDAG &DAG = DCI.DAG;
16128   SDValue Addr = N->getOperand(2);
16129   MemSDNode *MemN = cast<MemSDNode>(N);
16130   SDLoc dl(N);
16131 
16132   // For the stores, where there are multiple intrinsics we only actually want
16133   // to post-inc the last of the them.
16134   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
16135   if (IntNo == Intrinsic::arm_mve_vst2q &&
16136       cast<ConstantSDNode>(N->getOperand(5))->getZExtValue() != 1)
16137     return SDValue();
16138   if (IntNo == Intrinsic::arm_mve_vst4q &&
16139       cast<ConstantSDNode>(N->getOperand(7))->getZExtValue() != 3)
16140     return SDValue();
16141 
16142   // Search for a use of the address operand that is an increment.
16143   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
16144                             UE = Addr.getNode()->use_end();
16145        UI != UE; ++UI) {
16146     SDNode *User = *UI;
16147     if (User->getOpcode() != ISD::ADD ||
16148         UI.getUse().getResNo() != Addr.getResNo())
16149       continue;
16150 
16151     // Check that the add is independent of the load/store.  Otherwise, folding
16152     // it would create a cycle. We can avoid searching through Addr as it's a
16153     // predecessor to both.
16154     SmallPtrSet<const SDNode *, 32> Visited;
16155     SmallVector<const SDNode *, 16> Worklist;
16156     Visited.insert(Addr.getNode());
16157     Worklist.push_back(N);
16158     Worklist.push_back(User);
16159     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
16160         SDNode::hasPredecessorHelper(User, Visited, Worklist))
16161       continue;
16162 
16163     // Find the new opcode for the updating load/store.
16164     bool isLoadOp = true;
16165     unsigned NewOpc = 0;
16166     unsigned NumVecs = 0;
16167     switch (IntNo) {
16168     default:
16169       llvm_unreachable("unexpected intrinsic for MVE VLDn combine");
16170     case Intrinsic::arm_mve_vld2q:
16171       NewOpc = ARMISD::VLD2_UPD;
16172       NumVecs = 2;
16173       break;
16174     case Intrinsic::arm_mve_vld4q:
16175       NewOpc = ARMISD::VLD4_UPD;
16176       NumVecs = 4;
16177       break;
16178     case Intrinsic::arm_mve_vst2q:
16179       NewOpc = ARMISD::VST2_UPD;
16180       NumVecs = 2;
16181       isLoadOp = false;
16182       break;
16183     case Intrinsic::arm_mve_vst4q:
16184       NewOpc = ARMISD::VST4_UPD;
16185       NumVecs = 4;
16186       isLoadOp = false;
16187       break;
16188     }
16189 
16190     // Find the size of memory referenced by the load/store.
16191     EVT VecTy;
16192     if (isLoadOp) {
16193       VecTy = N->getValueType(0);
16194     } else {
16195       VecTy = N->getOperand(3).getValueType();
16196     }
16197 
16198     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
16199 
16200     // If the increment is a constant, it must match the memory ref size.
16201     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
16202     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
16203     if (!CInc || CInc->getZExtValue() != NumBytes)
16204       continue;
16205 
16206     // Create the new updating load/store node.
16207     // First, create an SDVTList for the new updating node's results.
16208     EVT Tys[6];
16209     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16210     unsigned n;
16211     for (n = 0; n < NumResultVecs; ++n)
16212       Tys[n] = VecTy;
16213     Tys[n++] = MVT::i32;
16214     Tys[n] = MVT::Other;
16215     SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2));
16216 
16217     // Then, gather the new node's operands.
16218     SmallVector<SDValue, 8> Ops;
16219     Ops.push_back(N->getOperand(0)); // incoming chain
16220     Ops.push_back(N->getOperand(2)); // ptr
16221     Ops.push_back(Inc);
16222 
16223     for (unsigned i = 3; i < N->getNumOperands(); ++i)
16224       Ops.push_back(N->getOperand(i));
16225 
16226     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy,
16227                                            MemN->getMemOperand());
16228 
16229     // Update the uses.
16230     SmallVector<SDValue, 5> NewResults;
16231     for (unsigned i = 0; i < NumResultVecs; ++i)
16232       NewResults.push_back(SDValue(UpdN.getNode(), i));
16233 
16234     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
16235     DCI.CombineTo(N, NewResults);
16236     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
16237 
16238     break;
16239   }
16240 
16241   return SDValue();
16242 }
16243 
16244 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
16245 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
16246 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
16247 /// return true.
16248 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
16249   SelectionDAG &DAG = DCI.DAG;
16250   EVT VT = N->getValueType(0);
16251   // vldN-dup instructions only support 64-bit vectors for N > 1.
16252   if (!VT.is64BitVector())
16253     return false;
16254 
16255   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
16256   SDNode *VLD = N->getOperand(0).getNode();
16257   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
16258     return false;
16259   unsigned NumVecs = 0;
16260   unsigned NewOpc = 0;
16261   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
16262   if (IntNo == Intrinsic::arm_neon_vld2lane) {
16263     NumVecs = 2;
16264     NewOpc = ARMISD::VLD2DUP;
16265   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
16266     NumVecs = 3;
16267     NewOpc = ARMISD::VLD3DUP;
16268   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
16269     NumVecs = 4;
16270     NewOpc = ARMISD::VLD4DUP;
16271   } else {
16272     return false;
16273   }
16274 
16275   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
16276   // numbers match the load.
16277   unsigned VLDLaneNo =
16278     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
16279   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
16280        UI != UE; ++UI) {
16281     // Ignore uses of the chain result.
16282     if (UI.getUse().getResNo() == NumVecs)
16283       continue;
16284     SDNode *User = *UI;
16285     if (User->getOpcode() != ARMISD::VDUPLANE ||
16286         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
16287       return false;
16288   }
16289 
16290   // Create the vldN-dup node.
16291   EVT Tys[5];
16292   unsigned n;
16293   for (n = 0; n < NumVecs; ++n)
16294     Tys[n] = VT;
16295   Tys[n] = MVT::Other;
16296   SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumVecs + 1));
16297   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
16298   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
16299   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
16300                                            Ops, VLDMemInt->getMemoryVT(),
16301                                            VLDMemInt->getMemOperand());
16302 
16303   // Update the uses.
16304   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
16305        UI != UE; ++UI) {
16306     unsigned ResNo = UI.getUse().getResNo();
16307     // Ignore uses of the chain result.
16308     if (ResNo == NumVecs)
16309       continue;
16310     SDNode *User = *UI;
16311     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
16312   }
16313 
16314   // Now the vldN-lane intrinsic is dead except for its chain result.
16315   // Update uses of the chain.
16316   std::vector<SDValue> VLDDupResults;
16317   for (unsigned n = 0; n < NumVecs; ++n)
16318     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
16319   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
16320   DCI.CombineTo(VLD, VLDDupResults);
16321 
16322   return true;
16323 }
16324 
16325 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
16326 /// ARMISD::VDUPLANE.
16327 static SDValue PerformVDUPLANECombine(SDNode *N,
16328                                       TargetLowering::DAGCombinerInfo &DCI,
16329                                       const ARMSubtarget *Subtarget) {
16330   SDValue Op = N->getOperand(0);
16331   EVT VT = N->getValueType(0);
16332 
16333   // On MVE, we just convert the VDUPLANE to a VDUP with an extract.
16334   if (Subtarget->hasMVEIntegerOps()) {
16335     EVT ExtractVT = VT.getVectorElementType();
16336     // We need to ensure we are creating a legal type.
16337     if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT))
16338       ExtractVT = MVT::i32;
16339     SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT,
16340                               N->getOperand(0), N->getOperand(1));
16341     return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract);
16342   }
16343 
16344   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
16345   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
16346   if (CombineVLDDUP(N, DCI))
16347     return SDValue(N, 0);
16348 
16349   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
16350   // redundant.  Ignore bit_converts for now; element sizes are checked below.
16351   while (Op.getOpcode() == ISD::BITCAST)
16352     Op = Op.getOperand(0);
16353   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
16354     return SDValue();
16355 
16356   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
16357   unsigned EltSize = Op.getScalarValueSizeInBits();
16358   // The canonical VMOV for a zero vector uses a 32-bit element size.
16359   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16360   unsigned EltBits;
16361   if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
16362     EltSize = 8;
16363   if (EltSize > VT.getScalarSizeInBits())
16364     return SDValue();
16365 
16366   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
16367 }
16368 
16369 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
16370 static SDValue PerformVDUPCombine(SDNode *N, SelectionDAG &DAG,
16371                                   const ARMSubtarget *Subtarget) {
16372   SDValue Op = N->getOperand(0);
16373   SDLoc dl(N);
16374 
16375   if (Subtarget->hasMVEIntegerOps()) {
16376     // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will
16377     // need to come from a GPR.
16378     if (Op.getValueType() == MVT::f32)
16379       return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16380                          DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op));
16381     else if (Op.getValueType() == MVT::f16)
16382       return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16383                          DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op));
16384   }
16385 
16386   if (!Subtarget->hasNEON())
16387     return SDValue();
16388 
16389   // Match VDUP(LOAD) -> VLD1DUP.
16390   // We match this pattern here rather than waiting for isel because the
16391   // transform is only legal for unindexed loads.
16392   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
16393   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
16394       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
16395     SDValue Ops[] = {LD->getOperand(0), LD->getOperand(1),
16396                      DAG.getConstant(LD->getAlign().value(), SDLoc(N), MVT::i32)};
16397     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
16398     SDValue VLDDup =
16399         DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys, Ops,
16400                                 LD->getMemoryVT(), LD->getMemOperand());
16401     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
16402     return VLDDup;
16403   }
16404 
16405   return SDValue();
16406 }
16407 
16408 static SDValue PerformLOADCombine(SDNode *N,
16409                                   TargetLowering::DAGCombinerInfo &DCI,
16410                                   const ARMSubtarget *Subtarget) {
16411   EVT VT = N->getValueType(0);
16412 
16413   // If this is a legal vector load, try to combine it into a VLD1_UPD.
16414   if (Subtarget->hasNEON() && ISD::isNormalLoad(N) && VT.isVector() &&
16415       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16416     return CombineBaseUpdate(N, DCI);
16417 
16418   return SDValue();
16419 }
16420 
16421 // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
16422 // pack all of the elements in one place.  Next, store to memory in fewer
16423 // chunks.
16424 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
16425                                              SelectionDAG &DAG) {
16426   SDValue StVal = St->getValue();
16427   EVT VT = StVal.getValueType();
16428   if (!St->isTruncatingStore() || !VT.isVector())
16429     return SDValue();
16430   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16431   EVT StVT = St->getMemoryVT();
16432   unsigned NumElems = VT.getVectorNumElements();
16433   assert(StVT != VT && "Cannot truncate to the same type");
16434   unsigned FromEltSz = VT.getScalarSizeInBits();
16435   unsigned ToEltSz = StVT.getScalarSizeInBits();
16436 
16437   // From, To sizes and ElemCount must be pow of two
16438   if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
16439     return SDValue();
16440 
16441   // We are going to use the original vector elt for storing.
16442   // Accumulated smaller vector elements must be a multiple of the store size.
16443   if (0 != (NumElems * FromEltSz) % ToEltSz)
16444     return SDValue();
16445 
16446   unsigned SizeRatio = FromEltSz / ToEltSz;
16447   assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
16448 
16449   // Create a type on which we perform the shuffle.
16450   EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
16451                                    NumElems * SizeRatio);
16452   assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16453 
16454   SDLoc DL(St);
16455   SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
16456   SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16457   for (unsigned i = 0; i < NumElems; ++i)
16458     ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
16459                                                       : i * SizeRatio;
16460 
16461   // Can't shuffle using an illegal type.
16462   if (!TLI.isTypeLegal(WideVecVT))
16463     return SDValue();
16464 
16465   SDValue Shuff = DAG.getVectorShuffle(
16466       WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
16467   // At this point all of the data is stored at the bottom of the
16468   // register. We now need to save it to mem.
16469 
16470   // Find the largest store unit
16471   MVT StoreType = MVT::i8;
16472   for (MVT Tp : MVT::integer_valuetypes()) {
16473     if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
16474       StoreType = Tp;
16475   }
16476   // Didn't find a legal store type.
16477   if (!TLI.isTypeLegal(StoreType))
16478     return SDValue();
16479 
16480   // Bitcast the original vector into a vector of store-size units
16481   EVT StoreVecVT =
16482       EVT::getVectorVT(*DAG.getContext(), StoreType,
16483                        VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
16484   assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16485   SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
16486   SmallVector<SDValue, 8> Chains;
16487   SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
16488                                       TLI.getPointerTy(DAG.getDataLayout()));
16489   SDValue BasePtr = St->getBasePtr();
16490 
16491   // Perform one or more big stores into memory.
16492   unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
16493   for (unsigned I = 0; I < E; I++) {
16494     SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
16495                                  ShuffWide, DAG.getIntPtrConstant(I, DL));
16496     SDValue Ch =
16497         DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
16498                      St->getAlign(), St->getMemOperand()->getFlags());
16499     BasePtr =
16500         DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
16501     Chains.push_back(Ch);
16502   }
16503   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
16504 }
16505 
16506 // Try taking a single vector store from an fpround (which would otherwise turn
16507 // into an expensive buildvector) and splitting it into a series of narrowing
16508 // stores.
16509 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
16510                                                  SelectionDAG &DAG) {
16511   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16512     return SDValue();
16513   SDValue Trunc = St->getValue();
16514   if (Trunc->getOpcode() != ISD::FP_ROUND)
16515     return SDValue();
16516   EVT FromVT = Trunc->getOperand(0).getValueType();
16517   EVT ToVT = Trunc.getValueType();
16518   if (!ToVT.isVector())
16519     return SDValue();
16520   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
16521   EVT ToEltVT = ToVT.getVectorElementType();
16522   EVT FromEltVT = FromVT.getVectorElementType();
16523 
16524   if (FromEltVT != MVT::f32 || ToEltVT != MVT::f16)
16525     return SDValue();
16526 
16527   unsigned NumElements = 4;
16528   if (FromVT.getVectorNumElements() % NumElements != 0)
16529     return SDValue();
16530 
16531   // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so
16532   // use the VMOVN over splitting the store. We are looking for patterns of:
16533   // !rev: 0 N 1 N+1 2 N+2 ...
16534   //  rev: N 0 N+1 1 N+2 2 ...
16535   // The shuffle may either be a single source (in which case N = NumElts/2) or
16536   // two inputs extended with concat to the same size (in which case N =
16537   // NumElts).
16538   auto isVMOVNShuffle = [&](ShuffleVectorSDNode *SVN, bool Rev) {
16539     ArrayRef<int> M = SVN->getMask();
16540     unsigned NumElts = ToVT.getVectorNumElements();
16541     if (SVN->getOperand(1).isUndef())
16542       NumElts /= 2;
16543 
16544     unsigned Off0 = Rev ? NumElts : 0;
16545     unsigned Off1 = Rev ? 0 : NumElts;
16546 
16547     for (unsigned I = 0; I < NumElts; I += 2) {
16548       if (M[I] >= 0 && M[I] != (int)(Off0 + I / 2))
16549         return false;
16550       if (M[I + 1] >= 0 && M[I + 1] != (int)(Off1 + I / 2))
16551         return false;
16552     }
16553 
16554     return true;
16555   };
16556 
16557   if (auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc.getOperand(0)))
16558     if (isVMOVNShuffle(Shuffle, false) || isVMOVNShuffle(Shuffle, true))
16559       return SDValue();
16560 
16561   LLVMContext &C = *DAG.getContext();
16562   SDLoc DL(St);
16563   // Details about the old store
16564   SDValue Ch = St->getChain();
16565   SDValue BasePtr = St->getBasePtr();
16566   Align Alignment = St->getOriginalAlign();
16567   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16568   AAMDNodes AAInfo = St->getAAInfo();
16569 
16570   // We split the store into slices of NumElements. fp16 trunc stores are vcvt
16571   // and then stored as truncating integer stores.
16572   EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements);
16573   EVT NewToVT = EVT::getVectorVT(
16574       C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements);
16575 
16576   SmallVector<SDValue, 4> Stores;
16577   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
16578     unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
16579     SDValue NewPtr =
16580         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
16581 
16582     SDValue Extract =
16583         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
16584                     DAG.getConstant(i * NumElements, DL, MVT::i32));
16585 
16586     SDValue FPTrunc =
16587         DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16),
16588                     Extract, DAG.getConstant(0, DL, MVT::i32));
16589     Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc);
16590 
16591     SDValue Store = DAG.getTruncStore(
16592         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16593         NewToVT, Alignment, MMOFlags, AAInfo);
16594     Stores.push_back(Store);
16595   }
16596   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16597 }
16598 
16599 // Try taking a single vector store from an MVETRUNC (which would otherwise turn
16600 // into an expensive buildvector) and splitting it into a series of narrowing
16601 // stores.
16602 static SDValue PerformSplittingMVETruncToNarrowingStores(StoreSDNode *St,
16603                                                          SelectionDAG &DAG) {
16604   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16605     return SDValue();
16606   SDValue Trunc = St->getValue();
16607   if (Trunc->getOpcode() != ARMISD::MVETRUNC)
16608     return SDValue();
16609   EVT FromVT = Trunc->getOperand(0).getValueType();
16610   EVT ToVT = Trunc.getValueType();
16611 
16612   LLVMContext &C = *DAG.getContext();
16613   SDLoc DL(St);
16614   // Details about the old store
16615   SDValue Ch = St->getChain();
16616   SDValue BasePtr = St->getBasePtr();
16617   Align Alignment = St->getOriginalAlign();
16618   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16619   AAMDNodes AAInfo = St->getAAInfo();
16620 
16621   EVT NewToVT = EVT::getVectorVT(C, ToVT.getVectorElementType(),
16622                                  FromVT.getVectorNumElements());
16623 
16624   SmallVector<SDValue, 4> Stores;
16625   for (unsigned i = 0; i < Trunc.getNumOperands(); i++) {
16626     unsigned NewOffset =
16627         i * FromVT.getVectorNumElements() * ToVT.getScalarSizeInBits() / 8;
16628     SDValue NewPtr =
16629         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
16630 
16631     SDValue Extract = Trunc.getOperand(i);
16632     SDValue Store = DAG.getTruncStore(
16633         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16634         NewToVT, Alignment, MMOFlags, AAInfo);
16635     Stores.push_back(Store);
16636   }
16637   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16638 }
16639 
16640 // Given a floating point store from an extracted vector, with an integer
16641 // VGETLANE that already exists, store the existing VGETLANEu directly. This can
16642 // help reduce fp register pressure, doesn't require the fp extract and allows
16643 // use of more integer post-inc stores not available with vstr.
16644 static SDValue PerformExtractFpToIntStores(StoreSDNode *St, SelectionDAG &DAG) {
16645   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16646     return SDValue();
16647   SDValue Extract = St->getValue();
16648   EVT VT = Extract.getValueType();
16649   // For now only uses f16. This may be useful for f32 too, but that will
16650   // be bitcast(extract), not the VGETLANEu we currently check here.
16651   if (VT != MVT::f16 || Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16652     return SDValue();
16653 
16654   SDNode *GetLane =
16655       DAG.getNodeIfExists(ARMISD::VGETLANEu, DAG.getVTList(MVT::i32),
16656                           {Extract.getOperand(0), Extract.getOperand(1)});
16657   if (!GetLane)
16658     return SDValue();
16659 
16660   LLVMContext &C = *DAG.getContext();
16661   SDLoc DL(St);
16662   // Create a new integer store to replace the existing floating point version.
16663   SDValue Ch = St->getChain();
16664   SDValue BasePtr = St->getBasePtr();
16665   Align Alignment = St->getOriginalAlign();
16666   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16667   AAMDNodes AAInfo = St->getAAInfo();
16668   EVT NewToVT = EVT::getIntegerVT(C, VT.getSizeInBits());
16669   SDValue Store = DAG.getTruncStore(Ch, DL, SDValue(GetLane, 0), BasePtr,
16670                                     St->getPointerInfo(), NewToVT, Alignment,
16671                                     MMOFlags, AAInfo);
16672 
16673   return Store;
16674 }
16675 
16676 /// PerformSTORECombine - Target-specific dag combine xforms for
16677 /// ISD::STORE.
16678 static SDValue PerformSTORECombine(SDNode *N,
16679                                    TargetLowering::DAGCombinerInfo &DCI,
16680                                    const ARMSubtarget *Subtarget) {
16681   StoreSDNode *St = cast<StoreSDNode>(N);
16682   if (St->isVolatile())
16683     return SDValue();
16684   SDValue StVal = St->getValue();
16685   EVT VT = StVal.getValueType();
16686 
16687   if (Subtarget->hasNEON())
16688     if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
16689       return Store;
16690 
16691   if (Subtarget->hasMVEIntegerOps()) {
16692     if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
16693       return NewToken;
16694     if (SDValue NewChain = PerformExtractFpToIntStores(St, DCI.DAG))
16695       return NewChain;
16696     if (SDValue NewToken =
16697             PerformSplittingMVETruncToNarrowingStores(St, DCI.DAG))
16698       return NewToken;
16699   }
16700 
16701   if (!ISD::isNormalStore(St))
16702     return SDValue();
16703 
16704   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
16705   // ARM stores of arguments in the same cache line.
16706   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
16707       StVal.getNode()->hasOneUse()) {
16708     SelectionDAG  &DAG = DCI.DAG;
16709     bool isBigEndian = DAG.getDataLayout().isBigEndian();
16710     SDLoc DL(St);
16711     SDValue BasePtr = St->getBasePtr();
16712     SDValue NewST1 = DAG.getStore(
16713         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
16714         BasePtr, St->getPointerInfo(), St->getOriginalAlign(),
16715         St->getMemOperand()->getFlags());
16716 
16717     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
16718                                     DAG.getConstant(4, DL, MVT::i32));
16719     return DAG.getStore(NewST1.getValue(0), DL,
16720                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
16721                         OffsetPtr, St->getPointerInfo().getWithOffset(4),
16722                         St->getOriginalAlign(),
16723                         St->getMemOperand()->getFlags());
16724   }
16725 
16726   if (StVal.getValueType() == MVT::i64 &&
16727       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
16728 
16729     // Bitcast an i64 store extracted from a vector to f64.
16730     // Otherwise, the i64 value will be legalized to a pair of i32 values.
16731     SelectionDAG &DAG = DCI.DAG;
16732     SDLoc dl(StVal);
16733     SDValue IntVec = StVal.getOperand(0);
16734     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
16735                                    IntVec.getValueType().getVectorNumElements());
16736     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
16737     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
16738                                  Vec, StVal.getOperand(1));
16739     dl = SDLoc(N);
16740     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
16741     // Make the DAGCombiner fold the bitcasts.
16742     DCI.AddToWorklist(Vec.getNode());
16743     DCI.AddToWorklist(ExtElt.getNode());
16744     DCI.AddToWorklist(V.getNode());
16745     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
16746                         St->getPointerInfo(), St->getAlign(),
16747                         St->getMemOperand()->getFlags(), St->getAAInfo());
16748   }
16749 
16750   // If this is a legal vector store, try to combine it into a VST1_UPD.
16751   if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
16752       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16753     return CombineBaseUpdate(N, DCI);
16754 
16755   return SDValue();
16756 }
16757 
16758 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
16759 /// can replace combinations of VMUL and VCVT (floating-point to integer)
16760 /// when the VMUL has a constant operand that is a power of 2.
16761 ///
16762 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
16763 ///  vmul.f32        d16, d17, d16
16764 ///  vcvt.s32.f32    d16, d16
16765 /// becomes:
16766 ///  vcvt.s32.f32    d16, d16, #3
16767 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
16768                                   const ARMSubtarget *Subtarget) {
16769   if (!Subtarget->hasNEON())
16770     return SDValue();
16771 
16772   SDValue Op = N->getOperand(0);
16773   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
16774       Op.getOpcode() != ISD::FMUL)
16775     return SDValue();
16776 
16777   SDValue ConstVec = Op->getOperand(1);
16778   if (!isa<BuildVectorSDNode>(ConstVec))
16779     return SDValue();
16780 
16781   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
16782   uint32_t FloatBits = FloatTy.getSizeInBits();
16783   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
16784   uint32_t IntBits = IntTy.getSizeInBits();
16785   unsigned NumLanes = Op.getValueType().getVectorNumElements();
16786   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
16787     // These instructions only exist converting from f32 to i32. We can handle
16788     // smaller integers by generating an extra truncate, but larger ones would
16789     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
16790     // these intructions only support v2i32/v4i32 types.
16791     return SDValue();
16792   }
16793 
16794   BitVector UndefElements;
16795   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
16796   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
16797   if (C == -1 || C == 0 || C > 32)
16798     return SDValue();
16799 
16800   SDLoc dl(N);
16801   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
16802   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
16803     Intrinsic::arm_neon_vcvtfp2fxu;
16804   SDValue FixConv = DAG.getNode(
16805       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
16806       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
16807       DAG.getConstant(C, dl, MVT::i32));
16808 
16809   if (IntBits < FloatBits)
16810     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
16811 
16812   return FixConv;
16813 }
16814 
16815 static SDValue PerformFAddVSelectCombine(SDNode *N, SelectionDAG &DAG,
16816                                          const ARMSubtarget *Subtarget) {
16817   if (!Subtarget->hasMVEFloatOps())
16818     return SDValue();
16819 
16820   // Turn (fadd x, (vselect c, y, -0.0)) into (vselect c, (fadd x, y), x)
16821   // The second form can be more easily turned into a predicated vadd, and
16822   // possibly combined into a fma to become a predicated vfma.
16823   SDValue Op0 = N->getOperand(0);
16824   SDValue Op1 = N->getOperand(1);
16825   EVT VT = N->getValueType(0);
16826   SDLoc DL(N);
16827 
16828   // The identity element for a fadd is -0.0 or +0.0 when the nsz flag is set,
16829   // which these VMOV's represent.
16830   auto isIdentitySplat = [&](SDValue Op, bool NSZ) {
16831     if (Op.getOpcode() != ISD::BITCAST ||
16832         Op.getOperand(0).getOpcode() != ARMISD::VMOVIMM)
16833       return false;
16834     uint64_t ImmVal = Op.getOperand(0).getConstantOperandVal(0);
16835     if (VT == MVT::v4f32 && (ImmVal == 1664 || (ImmVal == 0 && NSZ)))
16836       return true;
16837     if (VT == MVT::v8f16 && (ImmVal == 2688 || (ImmVal == 0 && NSZ)))
16838       return true;
16839     return false;
16840   };
16841 
16842   if (Op0.getOpcode() == ISD::VSELECT && Op1.getOpcode() != ISD::VSELECT)
16843     std::swap(Op0, Op1);
16844 
16845   if (Op1.getOpcode() != ISD::VSELECT)
16846     return SDValue();
16847 
16848   SDNodeFlags FaddFlags = N->getFlags();
16849   bool NSZ = FaddFlags.hasNoSignedZeros();
16850   if (!isIdentitySplat(Op1.getOperand(2), NSZ))
16851     return SDValue();
16852 
16853   SDValue FAdd =
16854       DAG.getNode(ISD::FADD, DL, VT, Op0, Op1.getOperand(1), FaddFlags);
16855   return DAG.getNode(ISD::VSELECT, DL, VT, Op1.getOperand(0), FAdd, Op0, FaddFlags);
16856 }
16857 
16858 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
16859 /// can replace combinations of VCVT (integer to floating-point) and VDIV
16860 /// when the VDIV has a constant operand that is a power of 2.
16861 ///
16862 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
16863 ///  vcvt.f32.s32    d16, d16
16864 ///  vdiv.f32        d16, d17, d16
16865 /// becomes:
16866 ///  vcvt.f32.s32    d16, d16, #3
16867 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
16868                                   const ARMSubtarget *Subtarget) {
16869   if (!Subtarget->hasNEON())
16870     return SDValue();
16871 
16872   SDValue Op = N->getOperand(0);
16873   unsigned OpOpcode = Op.getNode()->getOpcode();
16874   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
16875       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
16876     return SDValue();
16877 
16878   SDValue ConstVec = N->getOperand(1);
16879   if (!isa<BuildVectorSDNode>(ConstVec))
16880     return SDValue();
16881 
16882   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
16883   uint32_t FloatBits = FloatTy.getSizeInBits();
16884   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
16885   uint32_t IntBits = IntTy.getSizeInBits();
16886   unsigned NumLanes = Op.getValueType().getVectorNumElements();
16887   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
16888     // These instructions only exist converting from i32 to f32. We can handle
16889     // smaller integers by generating an extra extend, but larger ones would
16890     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
16891     // these intructions only support v2i32/v4i32 types.
16892     return SDValue();
16893   }
16894 
16895   BitVector UndefElements;
16896   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
16897   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
16898   if (C == -1 || C == 0 || C > 32)
16899     return SDValue();
16900 
16901   SDLoc dl(N);
16902   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
16903   SDValue ConvInput = Op.getOperand(0);
16904   if (IntBits < FloatBits)
16905     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
16906                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
16907                             ConvInput);
16908 
16909   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
16910     Intrinsic::arm_neon_vcvtfxu2fp;
16911   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
16912                      Op.getValueType(),
16913                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
16914                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
16915 }
16916 
16917 static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG,
16918                                            const ARMSubtarget *ST) {
16919   if (!ST->hasMVEIntegerOps())
16920     return SDValue();
16921 
16922   assert(N->getOpcode() == ISD::VECREDUCE_ADD);
16923   EVT ResVT = N->getValueType(0);
16924   SDValue N0 = N->getOperand(0);
16925   SDLoc dl(N);
16926 
16927   // Try to turn vecreduce_add(add(x, y)) into vecreduce(x) + vecreduce(y)
16928   if (ResVT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
16929       (N0.getValueType() == MVT::v4i32 || N0.getValueType() == MVT::v8i16 ||
16930        N0.getValueType() == MVT::v16i8)) {
16931     SDValue Red0 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(0));
16932     SDValue Red1 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(1));
16933     return DAG.getNode(ISD::ADD, dl, ResVT, Red0, Red1);
16934   }
16935 
16936   // We are looking for something that will have illegal types if left alone,
16937   // but that we can convert to a single instruction under MVE. For example
16938   // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A
16939   // or
16940   // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B
16941 
16942   // The legal cases are:
16943   //   VADDV u/s 8/16/32
16944   //   VMLAV u/s 8/16/32
16945   //   VADDLV u/s 32
16946   //   VMLALV u/s 16/32
16947 
16948   // If the input vector is smaller than legal (v4i8/v4i16 for example) we can
16949   // extend it and use v4i32 instead.
16950   auto ExtTypeMatches = [](SDValue A, ArrayRef<MVT> ExtTypes) {
16951     EVT AVT = A.getValueType();
16952     return any_of(ExtTypes, [&](MVT Ty) {
16953       return AVT.getVectorNumElements() == Ty.getVectorNumElements() &&
16954              AVT.bitsLE(Ty);
16955     });
16956   };
16957   auto ExtendIfNeeded = [&](SDValue A, unsigned ExtendCode) {
16958     EVT AVT = A.getValueType();
16959     if (!AVT.is128BitVector())
16960       A = DAG.getNode(ExtendCode, dl,
16961                       AVT.changeVectorElementType(MVT::getIntegerVT(
16962                           128 / AVT.getVectorMinNumElements())),
16963                       A);
16964     return A;
16965   };
16966   auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes) {
16967     if (ResVT != RetTy || N0->getOpcode() != ExtendCode)
16968       return SDValue();
16969     SDValue A = N0->getOperand(0);
16970     if (ExtTypeMatches(A, ExtTypes))
16971       return ExtendIfNeeded(A, ExtendCode);
16972     return SDValue();
16973   };
16974   auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode,
16975                          ArrayRef<MVT> ExtTypes, SDValue &Mask) {
16976     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
16977         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
16978       return SDValue();
16979     Mask = N0->getOperand(0);
16980     SDValue Ext = N0->getOperand(1);
16981     if (Ext->getOpcode() != ExtendCode)
16982       return SDValue();
16983     SDValue A = Ext->getOperand(0);
16984     if (ExtTypeMatches(A, ExtTypes))
16985       return ExtendIfNeeded(A, ExtendCode);
16986     return SDValue();
16987   };
16988   auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
16989                      SDValue &A, SDValue &B) {
16990     // For a vmla we are trying to match a larger pattern:
16991     // ExtA = sext/zext A
16992     // ExtB = sext/zext B
16993     // Mul = mul ExtA, ExtB
16994     // vecreduce.add Mul
16995     // There might also be en extra extend between the mul and the addreduce, so
16996     // long as the bitwidth is high enough to make them equivalent (for example
16997     // original v8i16 might be mul at v8i32 and the reduce happens at v8i64).
16998     if (ResVT != RetTy)
16999       return false;
17000     SDValue Mul = N0;
17001     if (Mul->getOpcode() == ExtendCode &&
17002         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17003             ResVT.getScalarSizeInBits())
17004       Mul = Mul->getOperand(0);
17005     if (Mul->getOpcode() != ISD::MUL)
17006       return false;
17007     SDValue ExtA = Mul->getOperand(0);
17008     SDValue ExtB = Mul->getOperand(1);
17009     if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
17010       return false;
17011     A = ExtA->getOperand(0);
17012     B = ExtB->getOperand(0);
17013     if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
17014       A = ExtendIfNeeded(A, ExtendCode);
17015       B = ExtendIfNeeded(B, ExtendCode);
17016       return true;
17017     }
17018     return false;
17019   };
17020   auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
17021                      SDValue &A, SDValue &B, SDValue &Mask) {
17022     // Same as the pattern above with a select for the zero predicated lanes
17023     // ExtA = sext/zext A
17024     // ExtB = sext/zext B
17025     // Mul = mul ExtA, ExtB
17026     // N0 = select Mask, Mul, 0
17027     // vecreduce.add N0
17028     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
17029         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
17030       return false;
17031     Mask = N0->getOperand(0);
17032     SDValue Mul = N0->getOperand(1);
17033     if (Mul->getOpcode() == ExtendCode &&
17034         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17035             ResVT.getScalarSizeInBits())
17036       Mul = Mul->getOperand(0);
17037     if (Mul->getOpcode() != ISD::MUL)
17038       return false;
17039     SDValue ExtA = Mul->getOperand(0);
17040     SDValue ExtB = Mul->getOperand(1);
17041     if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
17042       return false;
17043     A = ExtA->getOperand(0);
17044     B = ExtB->getOperand(0);
17045     if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
17046       A = ExtendIfNeeded(A, ExtendCode);
17047       B = ExtendIfNeeded(B, ExtendCode);
17048       return true;
17049     }
17050     return false;
17051   };
17052   auto Create64bitNode = [&](unsigned Opcode, ArrayRef<SDValue> Ops) {
17053     // Split illegal MVT::v16i8->i64 vector reductions into two legal v8i16->i64
17054     // reductions. The operands are extended with MVEEXT, but as they are
17055     // reductions the lane orders do not matter. MVEEXT may be combined with
17056     // loads to produce two extending loads, or else they will be expanded to
17057     // VREV/VMOVL.
17058     EVT VT = Ops[0].getValueType();
17059     if (VT == MVT::v16i8) {
17060       assert((Opcode == ARMISD::VMLALVs || Opcode == ARMISD::VMLALVu) &&
17061              "Unexpected illegal long reduction opcode");
17062       bool IsUnsigned = Opcode == ARMISD::VMLALVu;
17063 
17064       SDValue Ext0 =
17065           DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
17066                       DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[0]);
17067       SDValue Ext1 =
17068           DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
17069                       DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[1]);
17070 
17071       SDValue MLA0 = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
17072                                  Ext0, Ext1);
17073       SDValue MLA1 =
17074           DAG.getNode(IsUnsigned ? ARMISD::VMLALVAu : ARMISD::VMLALVAs, dl,
17075                       DAG.getVTList(MVT::i32, MVT::i32), MLA0, MLA0.getValue(1),
17076                       Ext0.getValue(1), Ext1.getValue(1));
17077       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, MLA1, MLA1.getValue(1));
17078     }
17079     SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops);
17080     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node,
17081                        SDValue(Node.getNode(), 1));
17082   };
17083 
17084   SDValue A, B;
17085   SDValue Mask;
17086   if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
17087     return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B);
17088   if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
17089     return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B);
17090   if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17091               A, B))
17092     return Create64bitNode(ARMISD::VMLALVs, {A, B});
17093   if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17094               A, B))
17095     return Create64bitNode(ARMISD::VMLALVu, {A, B});
17096   if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B))
17097     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17098                        DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B));
17099   if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B))
17100     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17101                        DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B));
17102 
17103   if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
17104                   Mask))
17105     return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask);
17106   if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
17107                   Mask))
17108     return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask);
17109   if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
17110                   Mask))
17111     return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask});
17112   if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
17113                   Mask))
17114     return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask});
17115   if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask))
17116     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17117                        DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask));
17118   if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask))
17119     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17120                        DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask));
17121 
17122   if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}))
17123     return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A);
17124   if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}))
17125     return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A);
17126   if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}))
17127     return Create64bitNode(ARMISD::VADDLVs, {A});
17128   if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}))
17129     return Create64bitNode(ARMISD::VADDLVu, {A});
17130   if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}))
17131     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17132                        DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A));
17133   if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}))
17134     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17135                        DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A));
17136 
17137   if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
17138     return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask);
17139   if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
17140     return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask);
17141   if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}, Mask))
17142     return Create64bitNode(ARMISD::VADDLVps, {A, Mask});
17143   if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}, Mask))
17144     return Create64bitNode(ARMISD::VADDLVpu, {A, Mask});
17145   if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask))
17146     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17147                        DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask));
17148   if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask))
17149     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17150                        DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask));
17151 
17152   // Some complications. We can get a case where the two inputs of the mul are
17153   // the same, then the output sext will have been helpfully converted to a
17154   // zext. Turn it back.
17155   SDValue Op = N0;
17156   if (Op->getOpcode() == ISD::VSELECT)
17157     Op = Op->getOperand(1);
17158   if (Op->getOpcode() == ISD::ZERO_EXTEND &&
17159       Op->getOperand(0)->getOpcode() == ISD::MUL) {
17160     SDValue Mul = Op->getOperand(0);
17161     if (Mul->getOperand(0) == Mul->getOperand(1) &&
17162         Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) {
17163       SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul);
17164       if (Op != N0)
17165         Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0),
17166                           N0->getOperand(0), Ext, N0->getOperand(2));
17167       return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext);
17168     }
17169   }
17170 
17171   return SDValue();
17172 }
17173 
17174 static SDValue PerformVMOVNCombine(SDNode *N,
17175                                    TargetLowering::DAGCombinerInfo &DCI) {
17176   SDValue Op0 = N->getOperand(0);
17177   SDValue Op1 = N->getOperand(1);
17178   unsigned IsTop = N->getConstantOperandVal(2);
17179 
17180   // VMOVNT a undef -> a
17181   // VMOVNB a undef -> a
17182   // VMOVNB undef a -> a
17183   if (Op1->isUndef())
17184     return Op0;
17185   if (Op0->isUndef() && !IsTop)
17186     return Op1;
17187 
17188   // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b)
17189   // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b)
17190   if ((Op1->getOpcode() == ARMISD::VQMOVNs ||
17191        Op1->getOpcode() == ARMISD::VQMOVNu) &&
17192       Op1->getConstantOperandVal(2) == 0)
17193     return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0),
17194                            Op0, Op1->getOperand(1), N->getOperand(2));
17195 
17196   // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from
17197   // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting
17198   // into the top or bottom lanes.
17199   unsigned NumElts = N->getValueType(0).getVectorNumElements();
17200   APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1));
17201   APInt Op0DemandedElts =
17202       IsTop ? Op1DemandedElts
17203             : APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1));
17204 
17205   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17206   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI))
17207     return SDValue(N, 0);
17208   if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, DCI))
17209     return SDValue(N, 0);
17210 
17211   return SDValue();
17212 }
17213 
17214 static SDValue PerformVQMOVNCombine(SDNode *N,
17215                                     TargetLowering::DAGCombinerInfo &DCI) {
17216   SDValue Op0 = N->getOperand(0);
17217   unsigned IsTop = N->getConstantOperandVal(2);
17218 
17219   unsigned NumElts = N->getValueType(0).getVectorNumElements();
17220   APInt Op0DemandedElts =
17221       APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
17222                                      : APInt::getHighBitsSet(2, 1));
17223 
17224   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17225   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI))
17226     return SDValue(N, 0);
17227   return SDValue();
17228 }
17229 
17230 static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) {
17231   SDLoc DL(N);
17232   SDValue Op0 = N->getOperand(0);
17233   SDValue Op1 = N->getOperand(1);
17234 
17235   // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from
17236   // uses of the intrinsics.
17237   if (auto C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
17238     int ShiftAmt = C->getSExtValue();
17239     if (ShiftAmt == 0) {
17240       SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL);
17241       DAG.ReplaceAllUsesWith(N, Merge.getNode());
17242       return SDValue();
17243     }
17244 
17245     if (ShiftAmt >= -32 && ShiftAmt < 0) {
17246       unsigned NewOpcode =
17247           N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL;
17248       SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1,
17249                                      DAG.getConstant(-ShiftAmt, DL, MVT::i32));
17250       DAG.ReplaceAllUsesWith(N, NewShift.getNode());
17251       return NewShift;
17252     }
17253   }
17254 
17255   return SDValue();
17256 }
17257 
17258 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
17259 SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N,
17260                                                    DAGCombinerInfo &DCI) const {
17261   SelectionDAG &DAG = DCI.DAG;
17262   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
17263   switch (IntNo) {
17264   default:
17265     // Don't do anything for most intrinsics.
17266     break;
17267 
17268   // Vector shifts: check for immediate versions and lower them.
17269   // Note: This is done during DAG combining instead of DAG legalizing because
17270   // the build_vectors for 64-bit vector element shift counts are generally
17271   // not legal, and it is hard to see their values after they get legalized to
17272   // loads from a constant pool.
17273   case Intrinsic::arm_neon_vshifts:
17274   case Intrinsic::arm_neon_vshiftu:
17275   case Intrinsic::arm_neon_vrshifts:
17276   case Intrinsic::arm_neon_vrshiftu:
17277   case Intrinsic::arm_neon_vrshiftn:
17278   case Intrinsic::arm_neon_vqshifts:
17279   case Intrinsic::arm_neon_vqshiftu:
17280   case Intrinsic::arm_neon_vqshiftsu:
17281   case Intrinsic::arm_neon_vqshiftns:
17282   case Intrinsic::arm_neon_vqshiftnu:
17283   case Intrinsic::arm_neon_vqshiftnsu:
17284   case Intrinsic::arm_neon_vqrshiftns:
17285   case Intrinsic::arm_neon_vqrshiftnu:
17286   case Intrinsic::arm_neon_vqrshiftnsu: {
17287     EVT VT = N->getOperand(1).getValueType();
17288     int64_t Cnt;
17289     unsigned VShiftOpc = 0;
17290 
17291     switch (IntNo) {
17292     case Intrinsic::arm_neon_vshifts:
17293     case Intrinsic::arm_neon_vshiftu:
17294       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
17295         VShiftOpc = ARMISD::VSHLIMM;
17296         break;
17297       }
17298       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
17299         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
17300                                                           : ARMISD::VSHRuIMM);
17301         break;
17302       }
17303       return SDValue();
17304 
17305     case Intrinsic::arm_neon_vrshifts:
17306     case Intrinsic::arm_neon_vrshiftu:
17307       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
17308         break;
17309       return SDValue();
17310 
17311     case Intrinsic::arm_neon_vqshifts:
17312     case Intrinsic::arm_neon_vqshiftu:
17313       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17314         break;
17315       return SDValue();
17316 
17317     case Intrinsic::arm_neon_vqshiftsu:
17318       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17319         break;
17320       llvm_unreachable("invalid shift count for vqshlu intrinsic");
17321 
17322     case Intrinsic::arm_neon_vrshiftn:
17323     case Intrinsic::arm_neon_vqshiftns:
17324     case Intrinsic::arm_neon_vqshiftnu:
17325     case Intrinsic::arm_neon_vqshiftnsu:
17326     case Intrinsic::arm_neon_vqrshiftns:
17327     case Intrinsic::arm_neon_vqrshiftnu:
17328     case Intrinsic::arm_neon_vqrshiftnsu:
17329       // Narrowing shifts require an immediate right shift.
17330       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
17331         break;
17332       llvm_unreachable("invalid shift count for narrowing vector shift "
17333                        "intrinsic");
17334 
17335     default:
17336       llvm_unreachable("unhandled vector shift");
17337     }
17338 
17339     switch (IntNo) {
17340     case Intrinsic::arm_neon_vshifts:
17341     case Intrinsic::arm_neon_vshiftu:
17342       // Opcode already set above.
17343       break;
17344     case Intrinsic::arm_neon_vrshifts:
17345       VShiftOpc = ARMISD::VRSHRsIMM;
17346       break;
17347     case Intrinsic::arm_neon_vrshiftu:
17348       VShiftOpc = ARMISD::VRSHRuIMM;
17349       break;
17350     case Intrinsic::arm_neon_vrshiftn:
17351       VShiftOpc = ARMISD::VRSHRNIMM;
17352       break;
17353     case Intrinsic::arm_neon_vqshifts:
17354       VShiftOpc = ARMISD::VQSHLsIMM;
17355       break;
17356     case Intrinsic::arm_neon_vqshiftu:
17357       VShiftOpc = ARMISD::VQSHLuIMM;
17358       break;
17359     case Intrinsic::arm_neon_vqshiftsu:
17360       VShiftOpc = ARMISD::VQSHLsuIMM;
17361       break;
17362     case Intrinsic::arm_neon_vqshiftns:
17363       VShiftOpc = ARMISD::VQSHRNsIMM;
17364       break;
17365     case Intrinsic::arm_neon_vqshiftnu:
17366       VShiftOpc = ARMISD::VQSHRNuIMM;
17367       break;
17368     case Intrinsic::arm_neon_vqshiftnsu:
17369       VShiftOpc = ARMISD::VQSHRNsuIMM;
17370       break;
17371     case Intrinsic::arm_neon_vqrshiftns:
17372       VShiftOpc = ARMISD::VQRSHRNsIMM;
17373       break;
17374     case Intrinsic::arm_neon_vqrshiftnu:
17375       VShiftOpc = ARMISD::VQRSHRNuIMM;
17376       break;
17377     case Intrinsic::arm_neon_vqrshiftnsu:
17378       VShiftOpc = ARMISD::VQRSHRNsuIMM;
17379       break;
17380     }
17381 
17382     SDLoc dl(N);
17383     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17384                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
17385   }
17386 
17387   case Intrinsic::arm_neon_vshiftins: {
17388     EVT VT = N->getOperand(1).getValueType();
17389     int64_t Cnt;
17390     unsigned VShiftOpc = 0;
17391 
17392     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
17393       VShiftOpc = ARMISD::VSLIIMM;
17394     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
17395       VShiftOpc = ARMISD::VSRIIMM;
17396     else {
17397       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
17398     }
17399 
17400     SDLoc dl(N);
17401     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17402                        N->getOperand(1), N->getOperand(2),
17403                        DAG.getConstant(Cnt, dl, MVT::i32));
17404   }
17405 
17406   case Intrinsic::arm_neon_vqrshifts:
17407   case Intrinsic::arm_neon_vqrshiftu:
17408     // No immediate versions of these to check for.
17409     break;
17410 
17411   case Intrinsic::arm_mve_vqdmlah:
17412   case Intrinsic::arm_mve_vqdmlash:
17413   case Intrinsic::arm_mve_vqrdmlah:
17414   case Intrinsic::arm_mve_vqrdmlash:
17415   case Intrinsic::arm_mve_vmla_n_predicated:
17416   case Intrinsic::arm_mve_vmlas_n_predicated:
17417   case Intrinsic::arm_mve_vqdmlah_predicated:
17418   case Intrinsic::arm_mve_vqdmlash_predicated:
17419   case Intrinsic::arm_mve_vqrdmlah_predicated:
17420   case Intrinsic::arm_mve_vqrdmlash_predicated: {
17421     // These intrinsics all take an i32 scalar operand which is narrowed to the
17422     // size of a single lane of the vector type they return. So we don't need
17423     // any bits of that operand above that point, which allows us to eliminate
17424     // uxth/sxth.
17425     unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
17426     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17427     if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI))
17428       return SDValue();
17429     break;
17430   }
17431 
17432   case Intrinsic::arm_mve_minv:
17433   case Intrinsic::arm_mve_maxv:
17434   case Intrinsic::arm_mve_minav:
17435   case Intrinsic::arm_mve_maxav:
17436   case Intrinsic::arm_mve_minv_predicated:
17437   case Intrinsic::arm_mve_maxv_predicated:
17438   case Intrinsic::arm_mve_minav_predicated:
17439   case Intrinsic::arm_mve_maxav_predicated: {
17440     // These intrinsics all take an i32 scalar operand which is narrowed to the
17441     // size of a single lane of the vector type they take as the other input.
17442     unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits();
17443     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17444     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
17445       return SDValue();
17446     break;
17447   }
17448 
17449   case Intrinsic::arm_mve_addv: {
17450     // Turn this intrinsic straight into the appropriate ARMISD::VADDV node,
17451     // which allow PerformADDVecReduce to turn it into VADDLV when possible.
17452     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
17453     unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs;
17454     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1));
17455   }
17456 
17457   case Intrinsic::arm_mve_addlv:
17458   case Intrinsic::arm_mve_addlv_predicated: {
17459     // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR
17460     // which recombines the two outputs into an i64
17461     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
17462     unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ?
17463                     (Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) :
17464                     (Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps);
17465 
17466     SmallVector<SDValue, 4> Ops;
17467     for (unsigned i = 1, e = N->getNumOperands(); i < e; i++)
17468       if (i != 2)                      // skip the unsigned flag
17469         Ops.push_back(N->getOperand(i));
17470 
17471     SDLoc dl(N);
17472     SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops);
17473     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0),
17474                        val.getValue(1));
17475   }
17476   }
17477 
17478   return SDValue();
17479 }
17480 
17481 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
17482 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
17483 /// combining instead of DAG legalizing because the build_vectors for 64-bit
17484 /// vector element shift counts are generally not legal, and it is hard to see
17485 /// their values after they get legalized to loads from a constant pool.
17486 static SDValue PerformShiftCombine(SDNode *N,
17487                                    TargetLowering::DAGCombinerInfo &DCI,
17488                                    const ARMSubtarget *ST) {
17489   SelectionDAG &DAG = DCI.DAG;
17490   EVT VT = N->getValueType(0);
17491 
17492   if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
17493       N->getOperand(0)->getOpcode() == ISD::AND &&
17494       N->getOperand(0)->hasOneUse()) {
17495     if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
17496       return SDValue();
17497     // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
17498     // usually show up because instcombine prefers to canonicalize it to
17499     // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
17500     // out of GEP lowering in some cases.
17501     SDValue N0 = N->getOperand(0);
17502     ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
17503     if (!ShiftAmtNode)
17504       return SDValue();
17505     uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
17506     ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
17507     if (!AndMaskNode)
17508       return SDValue();
17509     uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
17510     // Don't transform uxtb/uxth.
17511     if (AndMask == 255 || AndMask == 65535)
17512       return SDValue();
17513     if (isMask_32(AndMask)) {
17514       uint32_t MaskedBits = countLeadingZeros(AndMask);
17515       if (MaskedBits > ShiftAmt) {
17516         SDLoc DL(N);
17517         SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
17518                                   DAG.getConstant(MaskedBits, DL, MVT::i32));
17519         return DAG.getNode(
17520             ISD::SRL, DL, MVT::i32, SHL,
17521             DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
17522       }
17523     }
17524   }
17525 
17526   // Nothing to be done for scalar shifts.
17527   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17528   if (!VT.isVector() || !TLI.isTypeLegal(VT))
17529     return SDValue();
17530   if (ST->hasMVEIntegerOps())
17531     return SDValue();
17532 
17533   int64_t Cnt;
17534 
17535   switch (N->getOpcode()) {
17536   default: llvm_unreachable("unexpected shift opcode");
17537 
17538   case ISD::SHL:
17539     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
17540       SDLoc dl(N);
17541       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
17542                          DAG.getConstant(Cnt, dl, MVT::i32));
17543     }
17544     break;
17545 
17546   case ISD::SRA:
17547   case ISD::SRL:
17548     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
17549       unsigned VShiftOpc =
17550           (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
17551       SDLoc dl(N);
17552       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
17553                          DAG.getConstant(Cnt, dl, MVT::i32));
17554     }
17555   }
17556   return SDValue();
17557 }
17558 
17559 // Look for a sign/zero/fpextend extend of a larger than legal load. This can be
17560 // split into multiple extending loads, which are simpler to deal with than an
17561 // arbitrary extend. For fp extends we use an integer extending load and a VCVTL
17562 // to convert the type to an f32.
17563 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
17564   SDValue N0 = N->getOperand(0);
17565   if (N0.getOpcode() != ISD::LOAD)
17566     return SDValue();
17567   LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
17568   if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
17569       LD->getExtensionType() != ISD::NON_EXTLOAD)
17570     return SDValue();
17571   EVT FromVT = LD->getValueType(0);
17572   EVT ToVT = N->getValueType(0);
17573   if (!ToVT.isVector())
17574     return SDValue();
17575   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
17576   EVT ToEltVT = ToVT.getVectorElementType();
17577   EVT FromEltVT = FromVT.getVectorElementType();
17578 
17579   unsigned NumElements = 0;
17580   if (ToEltVT == MVT::i32 && FromEltVT == MVT::i8)
17581     NumElements = 4;
17582   if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16)
17583     NumElements = 4;
17584   if (NumElements == 0 ||
17585       (FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) ||
17586       FromVT.getVectorNumElements() % NumElements != 0 ||
17587       !isPowerOf2_32(NumElements))
17588     return SDValue();
17589 
17590   LLVMContext &C = *DAG.getContext();
17591   SDLoc DL(LD);
17592   // Details about the old load
17593   SDValue Ch = LD->getChain();
17594   SDValue BasePtr = LD->getBasePtr();
17595   Align Alignment = LD->getOriginalAlign();
17596   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
17597   AAMDNodes AAInfo = LD->getAAInfo();
17598 
17599   ISD::LoadExtType NewExtType =
17600       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
17601   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
17602   EVT NewFromVT = EVT::getVectorVT(
17603       C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
17604   EVT NewToVT = EVT::getVectorVT(
17605       C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
17606 
17607   SmallVector<SDValue, 4> Loads;
17608   SmallVector<SDValue, 4> Chains;
17609   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
17610     unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
17611     SDValue NewPtr =
17612         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
17613 
17614     SDValue NewLoad =
17615         DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
17616                     LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
17617                     Alignment, MMOFlags, AAInfo);
17618     Loads.push_back(NewLoad);
17619     Chains.push_back(SDValue(NewLoad.getNode(), 1));
17620   }
17621 
17622   // Float truncs need to extended with VCVTB's into their floating point types.
17623   if (FromEltVT == MVT::f16) {
17624     SmallVector<SDValue, 4> Extends;
17625 
17626     for (unsigned i = 0; i < Loads.size(); i++) {
17627       SDValue LoadBC =
17628           DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]);
17629       SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC,
17630                                   DAG.getConstant(0, DL, MVT::i32));
17631       Extends.push_back(FPExt);
17632     }
17633 
17634     Loads = Extends;
17635   }
17636 
17637   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
17638   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
17639   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads);
17640 }
17641 
17642 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
17643 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
17644 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
17645                                     const ARMSubtarget *ST) {
17646   SDValue N0 = N->getOperand(0);
17647 
17648   // Check for sign- and zero-extensions of vector extract operations of 8- and
17649   // 16-bit vector elements. NEON and MVE support these directly. They are
17650   // handled during DAG combining because type legalization will promote them
17651   // to 32-bit types and it is messy to recognize the operations after that.
17652   if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
17653       N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
17654     SDValue Vec = N0.getOperand(0);
17655     SDValue Lane = N0.getOperand(1);
17656     EVT VT = N->getValueType(0);
17657     EVT EltVT = N0.getValueType();
17658     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17659 
17660     if (VT == MVT::i32 &&
17661         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
17662         TLI.isTypeLegal(Vec.getValueType()) &&
17663         isa<ConstantSDNode>(Lane)) {
17664 
17665       unsigned Opc = 0;
17666       switch (N->getOpcode()) {
17667       default: llvm_unreachable("unexpected opcode");
17668       case ISD::SIGN_EXTEND:
17669         Opc = ARMISD::VGETLANEs;
17670         break;
17671       case ISD::ZERO_EXTEND:
17672       case ISD::ANY_EXTEND:
17673         Opc = ARMISD::VGETLANEu;
17674         break;
17675       }
17676       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
17677     }
17678   }
17679 
17680   if (ST->hasMVEIntegerOps())
17681     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17682       return NewLoad;
17683 
17684   return SDValue();
17685 }
17686 
17687 static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG,
17688                                       const ARMSubtarget *ST) {
17689   if (ST->hasMVEFloatOps())
17690     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17691       return NewLoad;
17692 
17693   return SDValue();
17694 }
17695 
17696 // Lower smin(smax(x, C1), C2) to ssat or usat, if they have saturating
17697 // constant bounds.
17698 static SDValue PerformMinMaxToSatCombine(SDValue Op, SelectionDAG &DAG,
17699                                          const ARMSubtarget *Subtarget) {
17700   if ((Subtarget->isThumb() || !Subtarget->hasV6Ops()) &&
17701       !Subtarget->isThumb2())
17702     return SDValue();
17703 
17704   EVT VT = Op.getValueType();
17705   SDValue Op0 = Op.getOperand(0);
17706 
17707   if (VT != MVT::i32 ||
17708       (Op0.getOpcode() != ISD::SMIN && Op0.getOpcode() != ISD::SMAX) ||
17709       !isa<ConstantSDNode>(Op.getOperand(1)) ||
17710       !isa<ConstantSDNode>(Op0.getOperand(1)))
17711     return SDValue();
17712 
17713   SDValue Min = Op;
17714   SDValue Max = Op0;
17715   SDValue Input = Op0.getOperand(0);
17716   if (Min.getOpcode() == ISD::SMAX)
17717     std::swap(Min, Max);
17718 
17719   APInt MinC = Min.getConstantOperandAPInt(1);
17720   APInt MaxC = Max.getConstantOperandAPInt(1);
17721 
17722   if (Min.getOpcode() != ISD::SMIN || Max.getOpcode() != ISD::SMAX ||
17723       !(MinC + 1).isPowerOf2())
17724     return SDValue();
17725 
17726   SDLoc DL(Op);
17727   if (MinC == ~MaxC)
17728     return DAG.getNode(ARMISD::SSAT, DL, VT, Input,
17729                        DAG.getConstant(MinC.countTrailingOnes(), DL, VT));
17730   if (MaxC == 0)
17731     return DAG.getNode(ARMISD::USAT, DL, VT, Input,
17732                        DAG.getConstant(MinC.countTrailingOnes(), DL, VT));
17733 
17734   return SDValue();
17735 }
17736 
17737 /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating
17738 /// saturates.
17739 static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG,
17740                                     const ARMSubtarget *ST) {
17741   EVT VT = N->getValueType(0);
17742   SDValue N0 = N->getOperand(0);
17743 
17744   if (VT == MVT::i32)
17745     return PerformMinMaxToSatCombine(SDValue(N, 0), DAG, ST);
17746 
17747   if (!ST->hasMVEIntegerOps())
17748     return SDValue();
17749 
17750   if (SDValue V = PerformVQDMULHCombine(N, DAG))
17751     return V;
17752 
17753   if (VT != MVT::v4i32 && VT != MVT::v8i16)
17754     return SDValue();
17755 
17756   auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) {
17757     // Check one is a smin and the other is a smax
17758     if (Min->getOpcode() != ISD::SMIN)
17759       std::swap(Min, Max);
17760     if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX)
17761       return false;
17762 
17763     APInt SaturateC;
17764     if (VT == MVT::v4i32)
17765       SaturateC = APInt(32, (1 << 15) - 1, true);
17766     else //if (VT == MVT::v8i16)
17767       SaturateC = APInt(16, (1 << 7) - 1, true);
17768 
17769     APInt MinC, MaxC;
17770     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
17771         MinC != SaturateC)
17772       return false;
17773     if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) ||
17774         MaxC != ~SaturateC)
17775       return false;
17776     return true;
17777   };
17778 
17779   if (IsSignedSaturate(N, N0.getNode())) {
17780     SDLoc DL(N);
17781     MVT ExtVT, HalfVT;
17782     if (VT == MVT::v4i32) {
17783       HalfVT = MVT::v8i16;
17784       ExtVT = MVT::v4i16;
17785     } else { // if (VT == MVT::v8i16)
17786       HalfVT = MVT::v16i8;
17787       ExtVT = MVT::v8i8;
17788     }
17789 
17790     // Create a VQMOVNB with undef top lanes, then signed extended into the top
17791     // half. That extend will hopefully be removed if only the bottom bits are
17792     // demanded (though a truncating store, for example).
17793     SDValue VQMOVN =
17794         DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT),
17795                     N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32));
17796     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
17797     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast,
17798                        DAG.getValueType(ExtVT));
17799   }
17800 
17801   auto IsUnsignedSaturate = [&](SDNode *Min) {
17802     // For unsigned, we just need to check for <= 0xffff
17803     if (Min->getOpcode() != ISD::UMIN)
17804       return false;
17805 
17806     APInt SaturateC;
17807     if (VT == MVT::v4i32)
17808       SaturateC = APInt(32, (1 << 16) - 1, true);
17809     else //if (VT == MVT::v8i16)
17810       SaturateC = APInt(16, (1 << 8) - 1, true);
17811 
17812     APInt MinC;
17813     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
17814         MinC != SaturateC)
17815       return false;
17816     return true;
17817   };
17818 
17819   if (IsUnsignedSaturate(N)) {
17820     SDLoc DL(N);
17821     MVT HalfVT;
17822     unsigned ExtConst;
17823     if (VT == MVT::v4i32) {
17824       HalfVT = MVT::v8i16;
17825       ExtConst = 0x0000FFFF;
17826     } else { //if (VT == MVT::v8i16)
17827       HalfVT = MVT::v16i8;
17828       ExtConst = 0x00FF;
17829     }
17830 
17831     // Create a VQMOVNB with undef top lanes, then ZExt into the top half with
17832     // an AND. That extend will hopefully be removed if only the bottom bits are
17833     // demanded (though a truncating store, for example).
17834     SDValue VQMOVN =
17835         DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0,
17836                     DAG.getConstant(0, DL, MVT::i32));
17837     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
17838     return DAG.getNode(ISD::AND, DL, VT, Bitcast,
17839                        DAG.getConstant(ExtConst, DL, VT));
17840   }
17841 
17842   return SDValue();
17843 }
17844 
17845 static const APInt *isPowerOf2Constant(SDValue V) {
17846   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
17847   if (!C)
17848     return nullptr;
17849   const APInt *CV = &C->getAPIntValue();
17850   return CV->isPowerOf2() ? CV : nullptr;
17851 }
17852 
17853 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
17854   // If we have a CMOV, OR and AND combination such as:
17855   //   if (x & CN)
17856   //     y |= CM;
17857   //
17858   // And:
17859   //   * CN is a single bit;
17860   //   * All bits covered by CM are known zero in y
17861   //
17862   // Then we can convert this into a sequence of BFI instructions. This will
17863   // always be a win if CM is a single bit, will always be no worse than the
17864   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
17865   // three bits (due to the extra IT instruction).
17866 
17867   SDValue Op0 = CMOV->getOperand(0);
17868   SDValue Op1 = CMOV->getOperand(1);
17869   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
17870   auto CC = CCNode->getAPIntValue().getLimitedValue();
17871   SDValue CmpZ = CMOV->getOperand(4);
17872 
17873   // The compare must be against zero.
17874   if (!isNullConstant(CmpZ->getOperand(1)))
17875     return SDValue();
17876 
17877   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
17878   SDValue And = CmpZ->getOperand(0);
17879   if (And->getOpcode() != ISD::AND)
17880     return SDValue();
17881   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
17882   if (!AndC)
17883     return SDValue();
17884   SDValue X = And->getOperand(0);
17885 
17886   if (CC == ARMCC::EQ) {
17887     // We're performing an "equal to zero" compare. Swap the operands so we
17888     // canonicalize on a "not equal to zero" compare.
17889     std::swap(Op0, Op1);
17890   } else {
17891     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
17892   }
17893 
17894   if (Op1->getOpcode() != ISD::OR)
17895     return SDValue();
17896 
17897   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
17898   if (!OrC)
17899     return SDValue();
17900   SDValue Y = Op1->getOperand(0);
17901 
17902   if (Op0 != Y)
17903     return SDValue();
17904 
17905   // Now, is it profitable to continue?
17906   APInt OrCI = OrC->getAPIntValue();
17907   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
17908   if (OrCI.countPopulation() > Heuristic)
17909     return SDValue();
17910 
17911   // Lastly, can we determine that the bits defined by OrCI
17912   // are zero in Y?
17913   KnownBits Known = DAG.computeKnownBits(Y);
17914   if ((OrCI & Known.Zero) != OrCI)
17915     return SDValue();
17916 
17917   // OK, we can do the combine.
17918   SDValue V = Y;
17919   SDLoc dl(X);
17920   EVT VT = X.getValueType();
17921   unsigned BitInX = AndC->logBase2();
17922 
17923   if (BitInX != 0) {
17924     // We must shift X first.
17925     X = DAG.getNode(ISD::SRL, dl, VT, X,
17926                     DAG.getConstant(BitInX, dl, VT));
17927   }
17928 
17929   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
17930        BitInY < NumActiveBits; ++BitInY) {
17931     if (OrCI[BitInY] == 0)
17932       continue;
17933     APInt Mask(VT.getSizeInBits(), 0);
17934     Mask.setBit(BitInY);
17935     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
17936                     // Confusingly, the operand is an *inverted* mask.
17937                     DAG.getConstant(~Mask, dl, VT));
17938   }
17939 
17940   return V;
17941 }
17942 
17943 // Given N, the value controlling the conditional branch, search for the loop
17944 // intrinsic, returning it, along with how the value is used. We need to handle
17945 // patterns such as the following:
17946 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
17947 // (brcond (setcc (loop.decrement), 0, eq), exit)
17948 // (brcond (setcc (loop.decrement), 0, ne), header)
17949 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
17950                                    bool &Negate) {
17951   switch (N->getOpcode()) {
17952   default:
17953     break;
17954   case ISD::XOR: {
17955     if (!isa<ConstantSDNode>(N.getOperand(1)))
17956       return SDValue();
17957     if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
17958       return SDValue();
17959     Negate = !Negate;
17960     return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
17961   }
17962   case ISD::SETCC: {
17963     auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
17964     if (!Const)
17965       return SDValue();
17966     if (Const->isZero())
17967       Imm = 0;
17968     else if (Const->isOne())
17969       Imm = 1;
17970     else
17971       return SDValue();
17972     CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
17973     return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
17974   }
17975   case ISD::INTRINSIC_W_CHAIN: {
17976     unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
17977     if (IntOp != Intrinsic::test_start_loop_iterations &&
17978         IntOp != Intrinsic::loop_decrement_reg)
17979       return SDValue();
17980     return N;
17981   }
17982   }
17983   return SDValue();
17984 }
17985 
17986 static SDValue PerformHWLoopCombine(SDNode *N,
17987                                     TargetLowering::DAGCombinerInfo &DCI,
17988                                     const ARMSubtarget *ST) {
17989 
17990   // The hwloop intrinsics that we're interested are used for control-flow,
17991   // either for entering or exiting the loop:
17992   // - test.start.loop.iterations will test whether its operand is zero. If it
17993   //   is zero, the proceeding branch should not enter the loop.
17994   // - loop.decrement.reg also tests whether its operand is zero. If it is
17995   //   zero, the proceeding branch should not branch back to the beginning of
17996   //   the loop.
17997   // So here, we need to check that how the brcond is using the result of each
17998   // of the intrinsics to ensure that we're branching to the right place at the
17999   // right time.
18000 
18001   ISD::CondCode CC;
18002   SDValue Cond;
18003   int Imm = 1;
18004   bool Negate = false;
18005   SDValue Chain = N->getOperand(0);
18006   SDValue Dest;
18007 
18008   if (N->getOpcode() == ISD::BRCOND) {
18009     CC = ISD::SETEQ;
18010     Cond = N->getOperand(1);
18011     Dest = N->getOperand(2);
18012   } else {
18013     assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
18014     CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
18015     Cond = N->getOperand(2);
18016     Dest = N->getOperand(4);
18017     if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
18018       if (!Const->isOne() && !Const->isZero())
18019         return SDValue();
18020       Imm = Const->getZExtValue();
18021     } else
18022       return SDValue();
18023   }
18024 
18025   SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
18026   if (!Int)
18027     return SDValue();
18028 
18029   if (Negate)
18030     CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
18031 
18032   auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
18033     return (CC == ISD::SETEQ && Imm == 0) ||
18034            (CC == ISD::SETNE && Imm == 1) ||
18035            (CC == ISD::SETLT && Imm == 1) ||
18036            (CC == ISD::SETULT && Imm == 1);
18037   };
18038 
18039   auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
18040     return (CC == ISD::SETEQ && Imm == 1) ||
18041            (CC == ISD::SETNE && Imm == 0) ||
18042            (CC == ISD::SETGT && Imm == 0) ||
18043            (CC == ISD::SETUGT && Imm == 0) ||
18044            (CC == ISD::SETGE && Imm == 1) ||
18045            (CC == ISD::SETUGE && Imm == 1);
18046   };
18047 
18048   assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
18049          "unsupported condition");
18050 
18051   SDLoc dl(Int);
18052   SelectionDAG &DAG = DCI.DAG;
18053   SDValue Elements = Int.getOperand(2);
18054   unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
18055   assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
18056           && "expected single br user");
18057   SDNode *Br = *N->use_begin();
18058   SDValue OtherTarget = Br->getOperand(1);
18059 
18060   // Update the unconditional branch to branch to the given Dest.
18061   auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
18062     SDValue NewBrOps[] = { Br->getOperand(0), Dest };
18063     SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
18064     DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
18065   };
18066 
18067   if (IntOp == Intrinsic::test_start_loop_iterations) {
18068     SDValue Res;
18069     SDValue Setup = DAG.getNode(ARMISD::WLSSETUP, dl, MVT::i32, Elements);
18070     // We expect this 'instruction' to branch when the counter is zero.
18071     if (IsTrueIfZero(CC, Imm)) {
18072       SDValue Ops[] = {Chain, Setup, Dest};
18073       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
18074     } else {
18075       // The logic is the reverse of what we need for WLS, so find the other
18076       // basic block target: the target of the proceeding br.
18077       UpdateUncondBr(Br, Dest, DAG);
18078 
18079       SDValue Ops[] = {Chain, Setup, OtherTarget};
18080       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
18081     }
18082     // Update LR count to the new value
18083     DAG.ReplaceAllUsesOfValueWith(Int.getValue(0), Setup);
18084     // Update chain
18085     DAG.ReplaceAllUsesOfValueWith(Int.getValue(2), Int.getOperand(0));
18086     return Res;
18087   } else {
18088     SDValue Size = DAG.getTargetConstant(
18089       cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
18090     SDValue Args[] = { Int.getOperand(0), Elements, Size, };
18091     SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
18092                                   DAG.getVTList(MVT::i32, MVT::Other), Args);
18093     DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
18094 
18095     // We expect this instruction to branch when the count is not zero.
18096     SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
18097 
18098     // Update the unconditional branch to target the loop preheader if we've
18099     // found the condition has been reversed.
18100     if (Target == OtherTarget)
18101       UpdateUncondBr(Br, Dest, DAG);
18102 
18103     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
18104                         SDValue(LoopDec.getNode(), 1), Chain);
18105 
18106     SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
18107     return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
18108   }
18109   return SDValue();
18110 }
18111 
18112 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
18113 SDValue
18114 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
18115   SDValue Cmp = N->getOperand(4);
18116   if (Cmp.getOpcode() != ARMISD::CMPZ)
18117     // Only looking at NE cases.
18118     return SDValue();
18119 
18120   EVT VT = N->getValueType(0);
18121   SDLoc dl(N);
18122   SDValue LHS = Cmp.getOperand(0);
18123   SDValue RHS = Cmp.getOperand(1);
18124   SDValue Chain = N->getOperand(0);
18125   SDValue BB = N->getOperand(1);
18126   SDValue ARMcc = N->getOperand(2);
18127   ARMCC::CondCodes CC =
18128     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
18129 
18130   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
18131   // -> (brcond Chain BB CC CPSR Cmp)
18132   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
18133       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
18134       LHS->getOperand(0)->hasOneUse()) {
18135     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
18136     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
18137     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
18138     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
18139     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
18140         (LHS01C && LHS01C->getZExtValue() == 1) &&
18141         (LHS1C && LHS1C->getZExtValue() == 1) &&
18142         (RHSC && RHSC->getZExtValue() == 0)) {
18143       return DAG.getNode(
18144           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
18145           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
18146     }
18147   }
18148 
18149   return SDValue();
18150 }
18151 
18152 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
18153 SDValue
18154 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
18155   SDValue Cmp = N->getOperand(4);
18156   if (Cmp.getOpcode() != ARMISD::CMPZ)
18157     // Only looking at EQ and NE cases.
18158     return SDValue();
18159 
18160   EVT VT = N->getValueType(0);
18161   SDLoc dl(N);
18162   SDValue LHS = Cmp.getOperand(0);
18163   SDValue RHS = Cmp.getOperand(1);
18164   SDValue FalseVal = N->getOperand(0);
18165   SDValue TrueVal = N->getOperand(1);
18166   SDValue ARMcc = N->getOperand(2);
18167   ARMCC::CondCodes CC =
18168     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
18169 
18170   // BFI is only available on V6T2+.
18171   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
18172     SDValue R = PerformCMOVToBFICombine(N, DAG);
18173     if (R)
18174       return R;
18175   }
18176 
18177   // Simplify
18178   //   mov     r1, r0
18179   //   cmp     r1, x
18180   //   mov     r0, y
18181   //   moveq   r0, x
18182   // to
18183   //   cmp     r0, x
18184   //   movne   r0, y
18185   //
18186   //   mov     r1, r0
18187   //   cmp     r1, x
18188   //   mov     r0, x
18189   //   movne   r0, y
18190   // to
18191   //   cmp     r0, x
18192   //   movne   r0, y
18193   /// FIXME: Turn this into a target neutral optimization?
18194   SDValue Res;
18195   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
18196     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
18197                       N->getOperand(3), Cmp);
18198   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
18199     SDValue ARMcc;
18200     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
18201     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
18202                       N->getOperand(3), NewCmp);
18203   }
18204 
18205   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
18206   // -> (cmov F T CC CPSR Cmp)
18207   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
18208     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
18209     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
18210     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
18211     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
18212         (LHS1C && LHS1C->getZExtValue() == 1) &&
18213         (RHSC && RHSC->getZExtValue() == 0)) {
18214       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
18215                          LHS->getOperand(2), LHS->getOperand(3),
18216                          LHS->getOperand(4));
18217     }
18218   }
18219 
18220   if (!VT.isInteger())
18221       return SDValue();
18222 
18223   // Fold away an unneccessary CMPZ/CMOV
18224   // CMOV A, B, C1, $cpsr, (CMPZ (CMOV 1, 0, C2, D), 0) ->
18225   // if C1==EQ -> CMOV A, B, C2, $cpsr, D
18226   // if C1==NE -> CMOV A, B, NOT(C2), $cpsr, D
18227   if (N->getConstantOperandVal(2) == ARMCC::EQ ||
18228       N->getConstantOperandVal(2) == ARMCC::NE) {
18229     ARMCC::CondCodes Cond;
18230     if (SDValue C = IsCMPZCSINC(N->getOperand(4).getNode(), Cond)) {
18231       if (N->getConstantOperandVal(2) == ARMCC::NE)
18232         Cond = ARMCC::getOppositeCondition(Cond);
18233       return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
18234                          N->getOperand(1),
18235                          DAG.getTargetConstant(Cond, SDLoc(N), MVT::i32),
18236                          N->getOperand(3), C);
18237     }
18238   }
18239 
18240   // Materialize a boolean comparison for integers so we can avoid branching.
18241   if (isNullConstant(FalseVal)) {
18242     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
18243       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
18244         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
18245         // right 5 bits will make that 32 be 1, otherwise it will be 0.
18246         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
18247         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18248         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
18249                           DAG.getConstant(5, dl, MVT::i32));
18250       } else {
18251         // CMOV 0, 1, ==, (CMPZ x, y) ->
18252         //     (ADDCARRY (SUB x, y), t:0, t:1)
18253         // where t = (SUBCARRY 0, (SUB x, y), 0)
18254         //
18255         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
18256         // x != y. In other words, a carry C == 1 when x == y, C == 0
18257         // otherwise.
18258         // The final ADDCARRY computes
18259         //     x - y + (0 - (x - y)) + C == C
18260         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18261         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18262         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
18263         // ISD::SUBCARRY returns a borrow but we want the carry here
18264         // actually.
18265         SDValue Carry =
18266             DAG.getNode(ISD::SUB, dl, MVT::i32,
18267                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
18268         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
18269       }
18270     } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
18271                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
18272       // This seems pointless but will allow us to combine it further below.
18273       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
18274       SDValue Sub =
18275           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18276       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
18277                                           Sub.getValue(1), SDValue());
18278       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
18279                         N->getOperand(3), CPSRGlue.getValue(1));
18280       FalseVal = Sub;
18281     }
18282   } else if (isNullConstant(TrueVal)) {
18283     if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
18284         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
18285       // This seems pointless but will allow us to combine it further below
18286       // Note that we change == for != as this is the dual for the case above.
18287       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
18288       SDValue Sub =
18289           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18290       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
18291                                           Sub.getValue(1), SDValue());
18292       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
18293                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
18294                         N->getOperand(3), CPSRGlue.getValue(1));
18295       FalseVal = Sub;
18296     }
18297   }
18298 
18299   // On Thumb1, the DAG above may be further combined if z is a power of 2
18300   // (z == 2 ^ K).
18301   // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
18302   // t1 = (USUBO (SUB x, y), 1)
18303   // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
18304   // Result = if K != 0 then (SHL t2:0, K) else t2:0
18305   //
18306   // This also handles the special case of comparing against zero; it's
18307   // essentially, the same pattern, except there's no SUBS:
18308   // CMOV x, z, !=, (CMPZ x, 0) ->
18309   // t1 = (USUBO x, 1)
18310   // t2 = (SUBCARRY x, t1:0, t1:1)
18311   // Result = if K != 0 then (SHL t2:0, K) else t2:0
18312   const APInt *TrueConst;
18313   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
18314       ((FalseVal.getOpcode() == ARMISD::SUBS &&
18315         FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
18316        (FalseVal == LHS && isNullConstant(RHS))) &&
18317       (TrueConst = isPowerOf2Constant(TrueVal))) {
18318     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18319     unsigned ShiftAmount = TrueConst->logBase2();
18320     if (ShiftAmount)
18321       TrueVal = DAG.getConstant(1, dl, VT);
18322     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
18323     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
18324 
18325     if (ShiftAmount)
18326       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
18327                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
18328   }
18329 
18330   if (Res.getNode()) {
18331     KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
18332     // Capture demanded bits information that would be otherwise lost.
18333     if (Known.Zero == 0xfffffffe)
18334       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18335                         DAG.getValueType(MVT::i1));
18336     else if (Known.Zero == 0xffffff00)
18337       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18338                         DAG.getValueType(MVT::i8));
18339     else if (Known.Zero == 0xffff0000)
18340       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18341                         DAG.getValueType(MVT::i16));
18342   }
18343 
18344   return Res;
18345 }
18346 
18347 static SDValue PerformBITCASTCombine(SDNode *N,
18348                                      TargetLowering::DAGCombinerInfo &DCI,
18349                                      const ARMSubtarget *ST) {
18350   SelectionDAG &DAG = DCI.DAG;
18351   SDValue Src = N->getOperand(0);
18352   EVT DstVT = N->getValueType(0);
18353 
18354   // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE.
18355   if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) {
18356     EVT SrcVT = Src.getValueType();
18357     if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits())
18358       return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0));
18359   }
18360 
18361   // We may have a bitcast of something that has already had this bitcast
18362   // combine performed on it, so skip past any VECTOR_REG_CASTs.
18363   while (Src.getOpcode() == ARMISD::VECTOR_REG_CAST)
18364     Src = Src.getOperand(0);
18365 
18366   // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that
18367   // would be generated is at least the width of the element type.
18368   EVT SrcVT = Src.getValueType();
18369   if ((Src.getOpcode() == ARMISD::VMOVIMM ||
18370        Src.getOpcode() == ARMISD::VMVNIMM ||
18371        Src.getOpcode() == ARMISD::VMOVFPIMM) &&
18372       SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() &&
18373       DAG.getDataLayout().isBigEndian())
18374     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src);
18375 
18376   // bitcast(extract(x, n)); bitcast(extract(x, n+1))  ->  VMOVRRD x
18377   if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
18378     return R;
18379 
18380   return SDValue();
18381 }
18382 
18383 // Some combines for the MVETrunc truncations legalizer helper. Also lowers the
18384 // node into stack operations after legalizeOps.
18385 SDValue ARMTargetLowering::PerformMVETruncCombine(
18386     SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18387   SelectionDAG &DAG = DCI.DAG;
18388   EVT VT = N->getValueType(0);
18389   SDLoc DL(N);
18390 
18391   // MVETrunc(Undef, Undef) -> Undef
18392   if (all_of(N->ops(), [](SDValue Op) { return Op.isUndef(); }))
18393     return DAG.getUNDEF(VT);
18394 
18395   // MVETrunc(MVETrunc a b, MVETrunc c, d) -> MVETrunc
18396   if (N->getNumOperands() == 2 &&
18397       N->getOperand(0).getOpcode() == ARMISD::MVETRUNC &&
18398       N->getOperand(1).getOpcode() == ARMISD::MVETRUNC)
18399     return DAG.getNode(ARMISD::MVETRUNC, DL, VT, N->getOperand(0).getOperand(0),
18400                        N->getOperand(0).getOperand(1),
18401                        N->getOperand(1).getOperand(0),
18402                        N->getOperand(1).getOperand(1));
18403 
18404   // MVETrunc(shuffle, shuffle) -> VMOVN
18405   if (N->getNumOperands() == 2 &&
18406       N->getOperand(0).getOpcode() == ISD::VECTOR_SHUFFLE &&
18407       N->getOperand(1).getOpcode() == ISD::VECTOR_SHUFFLE) {
18408     auto *S0 = cast<ShuffleVectorSDNode>(N->getOperand(0).getNode());
18409     auto *S1 = cast<ShuffleVectorSDNode>(N->getOperand(1).getNode());
18410 
18411     if (S0->getOperand(0) == S1->getOperand(0) &&
18412         S0->getOperand(1) == S1->getOperand(1)) {
18413       // Construct complete shuffle mask
18414       SmallVector<int, 8> Mask(S0->getMask());
18415       Mask.append(S1->getMask().begin(), S1->getMask().end());
18416 
18417       if (isVMOVNTruncMask(Mask, VT, false))
18418         return DAG.getNode(
18419             ARMISD::VMOVN, DL, VT,
18420             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18421             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18422             DAG.getConstant(1, DL, MVT::i32));
18423       if (isVMOVNTruncMask(Mask, VT, true))
18424         return DAG.getNode(
18425             ARMISD::VMOVN, DL, VT,
18426             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18427             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18428             DAG.getConstant(1, DL, MVT::i32));
18429     }
18430   }
18431 
18432   // For MVETrunc of a buildvector or shuffle, it can be beneficial to lower the
18433   // truncate to a buildvector to allow the generic optimisations to kick in.
18434   if (all_of(N->ops(), [](SDValue Op) {
18435         return Op.getOpcode() == ISD::BUILD_VECTOR ||
18436                Op.getOpcode() == ISD::VECTOR_SHUFFLE ||
18437                (Op.getOpcode() == ISD::BITCAST &&
18438                 Op.getOperand(0).getOpcode() == ISD::BUILD_VECTOR);
18439       })) {
18440     SmallVector<SDValue, 8> Extracts;
18441     for (unsigned Op = 0; Op < N->getNumOperands(); Op++) {
18442       SDValue O = N->getOperand(Op);
18443       for (unsigned i = 0; i < O.getValueType().getVectorNumElements(); i++) {
18444         SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, O,
18445                                   DAG.getConstant(i, DL, MVT::i32));
18446         Extracts.push_back(Ext);
18447       }
18448     }
18449     return DAG.getBuildVector(VT, DL, Extracts);
18450   }
18451 
18452   // If we are late in the legalization process and nothing has optimised
18453   // the trunc to anything better, lower it to a stack store and reload,
18454   // performing the truncation whilst keeping the lanes in the correct order:
18455   //   VSTRH.32 a, stack; VSTRH.32 b, stack+8; VLDRW.32 stack;
18456   if (!DCI.isAfterLegalizeDAG())
18457     return SDValue();
18458 
18459   SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::Fixed(16), Align(4));
18460   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18461   int NumIns = N->getNumOperands();
18462   assert((NumIns == 2 || NumIns == 4) &&
18463          "Expected 2 or 4 inputs to an MVETrunc");
18464   EVT StoreVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
18465   if (N->getNumOperands() == 4)
18466     StoreVT = StoreVT.getHalfNumVectorElementsVT(*DAG.getContext());
18467 
18468   SmallVector<SDValue> Chains;
18469   for (int I = 0; I < NumIns; I++) {
18470     SDValue Ptr = DAG.getNode(
18471         ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18472         DAG.getConstant(I * 16 / NumIns, DL, StackPtr.getValueType()));
18473     MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18474         DAG.getMachineFunction(), SPFI, I * 16 / NumIns);
18475     SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), DL, N->getOperand(I),
18476                                    Ptr, MPI, StoreVT, Align(4));
18477     Chains.push_back(Ch);
18478   }
18479 
18480   SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18481   MachinePointerInfo MPI =
18482       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18483   return DAG.getLoad(VT, DL, Chain, StackPtr, MPI, Align(4));
18484 }
18485 
18486 // Take a MVEEXT(load x) and split that into (extload x, extload x+8)
18487 static SDValue PerformSplittingMVEEXTToWideningLoad(SDNode *N,
18488                                                     SelectionDAG &DAG) {
18489   SDValue N0 = N->getOperand(0);
18490   LoadSDNode *LD = dyn_cast<LoadSDNode>(N0.getNode());
18491   if (!LD || !LD->isSimple() || !N0.hasOneUse() || LD->isIndexed())
18492     return SDValue();
18493 
18494   EVT FromVT = LD->getMemoryVT();
18495   EVT ToVT = N->getValueType(0);
18496   if (!ToVT.isVector())
18497     return SDValue();
18498   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements() * 2);
18499   EVT ToEltVT = ToVT.getVectorElementType();
18500   EVT FromEltVT = FromVT.getVectorElementType();
18501 
18502   unsigned NumElements = 0;
18503   if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
18504     NumElements = 4;
18505   if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
18506     NumElements = 8;
18507   assert(NumElements != 0);
18508 
18509   ISD::LoadExtType NewExtType =
18510       N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
18511   if (LD->getExtensionType() != ISD::NON_EXTLOAD &&
18512       LD->getExtensionType() != ISD::EXTLOAD &&
18513       LD->getExtensionType() != NewExtType)
18514     return SDValue();
18515 
18516   LLVMContext &C = *DAG.getContext();
18517   SDLoc DL(LD);
18518   // Details about the old load
18519   SDValue Ch = LD->getChain();
18520   SDValue BasePtr = LD->getBasePtr();
18521   Align Alignment = LD->getOriginalAlign();
18522   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
18523   AAMDNodes AAInfo = LD->getAAInfo();
18524 
18525   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
18526   EVT NewFromVT = EVT::getVectorVT(
18527       C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
18528   EVT NewToVT = EVT::getVectorVT(
18529       C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
18530 
18531   SmallVector<SDValue, 4> Loads;
18532   SmallVector<SDValue, 4> Chains;
18533   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
18534     unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
18535     SDValue NewPtr =
18536         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
18537 
18538     SDValue NewLoad =
18539         DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
18540                     LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
18541                     Alignment, MMOFlags, AAInfo);
18542     Loads.push_back(NewLoad);
18543     Chains.push_back(SDValue(NewLoad.getNode(), 1));
18544   }
18545 
18546   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18547   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
18548   return DAG.getMergeValues(Loads, DL);
18549 }
18550 
18551 // Perform combines for MVEEXT. If it has not be optimized to anything better
18552 // before lowering, it gets converted to stack store and extloads performing the
18553 // extend whilst still keeping the same lane ordering.
18554 SDValue ARMTargetLowering::PerformMVEExtCombine(
18555     SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18556   SelectionDAG &DAG = DCI.DAG;
18557   EVT VT = N->getValueType(0);
18558   SDLoc DL(N);
18559   assert(N->getNumValues() == 2 && "Expected MVEEXT with 2 elements");
18560   assert((VT == MVT::v4i32 || VT == MVT::v8i16) && "Unexpected MVEEXT type");
18561 
18562   EVT ExtVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18563       *DAG.getContext());
18564   auto Extend = [&](SDValue V) {
18565     SDValue VVT = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, V);
18566     return N->getOpcode() == ARMISD::MVESEXT
18567                ? DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, VVT,
18568                              DAG.getValueType(ExtVT))
18569                : DAG.getZeroExtendInReg(VVT, DL, ExtVT);
18570   };
18571 
18572   // MVEEXT(VDUP) -> SIGN_EXTEND_INREG(VDUP)
18573   if (N->getOperand(0).getOpcode() == ARMISD::VDUP) {
18574     SDValue Ext = Extend(N->getOperand(0));
18575     return DAG.getMergeValues({Ext, Ext}, DL);
18576   }
18577 
18578   // MVEEXT(shuffle) -> SIGN_EXTEND_INREG/ZERO_EXTEND_INREG
18579   if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0))) {
18580     ArrayRef<int> Mask = SVN->getMask();
18581     assert(Mask.size() == 2 * VT.getVectorNumElements());
18582     assert(Mask.size() == SVN->getValueType(0).getVectorNumElements());
18583     unsigned Rev = VT == MVT::v4i32 ? ARMISD::VREV32 : ARMISD::VREV16;
18584     SDValue Op0 = SVN->getOperand(0);
18585     SDValue Op1 = SVN->getOperand(1);
18586 
18587     auto CheckInregMask = [&](int Start, int Offset) {
18588       for (int Idx = 0, E = VT.getVectorNumElements(); Idx < E; ++Idx)
18589         if (Mask[Start + Idx] >= 0 && Mask[Start + Idx] != Idx * 2 + Offset)
18590           return false;
18591       return true;
18592     };
18593     SDValue V0 = SDValue(N, 0);
18594     SDValue V1 = SDValue(N, 1);
18595     if (CheckInregMask(0, 0))
18596       V0 = Extend(Op0);
18597     else if (CheckInregMask(0, 1))
18598       V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18599     else if (CheckInregMask(0, Mask.size()))
18600       V0 = Extend(Op1);
18601     else if (CheckInregMask(0, Mask.size() + 1))
18602       V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18603 
18604     if (CheckInregMask(VT.getVectorNumElements(), Mask.size()))
18605       V1 = Extend(Op1);
18606     else if (CheckInregMask(VT.getVectorNumElements(), Mask.size() + 1))
18607       V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18608     else if (CheckInregMask(VT.getVectorNumElements(), 0))
18609       V1 = Extend(Op0);
18610     else if (CheckInregMask(VT.getVectorNumElements(), 1))
18611       V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18612 
18613     if (V0.getNode() != N || V1.getNode() != N)
18614       return DAG.getMergeValues({V0, V1}, DL);
18615   }
18616 
18617   // MVEEXT(load) -> extload, extload
18618   if (N->getOperand(0)->getOpcode() == ISD::LOAD)
18619     if (SDValue L = PerformSplittingMVEEXTToWideningLoad(N, DAG))
18620       return L;
18621 
18622   if (!DCI.isAfterLegalizeDAG())
18623     return SDValue();
18624 
18625   // Lower to a stack store and reload:
18626   //  VSTRW.32 a, stack; VLDRH.32 stack; VLDRH.32 stack+8;
18627   SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::Fixed(16), Align(4));
18628   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18629   int NumOuts = N->getNumValues();
18630   assert((NumOuts == 2 || NumOuts == 4) &&
18631          "Expected 2 or 4 outputs to an MVEEXT");
18632   EVT LoadVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18633       *DAG.getContext());
18634   if (N->getNumOperands() == 4)
18635     LoadVT = LoadVT.getHalfNumVectorElementsVT(*DAG.getContext());
18636 
18637   MachinePointerInfo MPI =
18638       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18639   SDValue Chain = DAG.getStore(DAG.getEntryNode(), DL, N->getOperand(0),
18640                                StackPtr, MPI, Align(4));
18641 
18642   SmallVector<SDValue> Loads;
18643   for (int I = 0; I < NumOuts; I++) {
18644     SDValue Ptr = DAG.getNode(
18645         ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18646         DAG.getConstant(I * 16 / NumOuts, DL, StackPtr.getValueType()));
18647     MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18648         DAG.getMachineFunction(), SPFI, I * 16 / NumOuts);
18649     SDValue Load = DAG.getExtLoad(
18650         N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL,
18651         VT, Chain, Ptr, MPI, LoadVT, Align(4));
18652     Loads.push_back(Load);
18653   }
18654 
18655   return DAG.getMergeValues(Loads, DL);
18656 }
18657 
18658 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
18659                                              DAGCombinerInfo &DCI) const {
18660   switch (N->getOpcode()) {
18661   default: break;
18662   case ISD::SELECT_CC:
18663   case ISD::SELECT:     return PerformSELECTCombine(N, DCI, Subtarget);
18664   case ISD::VSELECT:    return PerformVSELECTCombine(N, DCI, Subtarget);
18665   case ISD::SETCC:      return PerformVSetCCToVCTPCombine(N, DCI, Subtarget);
18666   case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
18667   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
18668   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
18669   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
18670   case ISD::SUB:        return PerformSUBCombine(N, DCI, Subtarget);
18671   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
18672   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
18673   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
18674   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
18675   case ISD::BRCOND:
18676   case ISD::BR_CC:      return PerformHWLoopCombine(N, DCI, Subtarget);
18677   case ARMISD::ADDC:
18678   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
18679   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
18680   case ARMISD::BFI:     return PerformBFICombine(N, DCI.DAG);
18681   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
18682   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
18683   case ARMISD::VMOVhr:  return PerformVMOVhrCombine(N, DCI);
18684   case ARMISD::VMOVrh:  return PerformVMOVrhCombine(N, DCI.DAG);
18685   case ISD::STORE:      return PerformSTORECombine(N, DCI, Subtarget);
18686   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
18687   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
18688   case ISD::EXTRACT_VECTOR_ELT:
18689     return PerformExtractEltCombine(N, DCI, Subtarget);
18690   case ISD::SIGN_EXTEND_INREG: return PerformSignExtendInregCombine(N, DCI.DAG);
18691   case ISD::INSERT_SUBVECTOR: return PerformInsertSubvectorCombine(N, DCI);
18692   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
18693   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget);
18694   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI.DAG, Subtarget);
18695   case ISD::FP_TO_SINT:
18696   case ISD::FP_TO_UINT:
18697     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
18698   case ISD::FADD:
18699     return PerformFAddVSelectCombine(N, DCI.DAG, Subtarget);
18700   case ISD::FDIV:
18701     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
18702   case ISD::INTRINSIC_WO_CHAIN:
18703     return PerformIntrinsicCombine(N, DCI);
18704   case ISD::SHL:
18705   case ISD::SRA:
18706   case ISD::SRL:
18707     return PerformShiftCombine(N, DCI, Subtarget);
18708   case ISD::SIGN_EXTEND:
18709   case ISD::ZERO_EXTEND:
18710   case ISD::ANY_EXTEND:
18711     return PerformExtendCombine(N, DCI.DAG, Subtarget);
18712   case ISD::FP_EXTEND:
18713     return PerformFPExtendCombine(N, DCI.DAG, Subtarget);
18714   case ISD::SMIN:
18715   case ISD::UMIN:
18716   case ISD::SMAX:
18717   case ISD::UMAX:
18718     return PerformMinMaxCombine(N, DCI.DAG, Subtarget);
18719   case ARMISD::CMOV:
18720     return PerformCMOVCombine(N, DCI.DAG);
18721   case ARMISD::BRCOND:
18722     return PerformBRCONDCombine(N, DCI.DAG);
18723   case ARMISD::CMPZ:
18724     return PerformCMPZCombine(N, DCI.DAG);
18725   case ARMISD::CSINC:
18726   case ARMISD::CSINV:
18727   case ARMISD::CSNEG:
18728     return PerformCSETCombine(N, DCI.DAG);
18729   case ISD::LOAD:
18730     return PerformLOADCombine(N, DCI, Subtarget);
18731   case ARMISD::VLD1DUP:
18732   case ARMISD::VLD2DUP:
18733   case ARMISD::VLD3DUP:
18734   case ARMISD::VLD4DUP:
18735     return PerformVLDCombine(N, DCI);
18736   case ARMISD::BUILD_VECTOR:
18737     return PerformARMBUILD_VECTORCombine(N, DCI);
18738   case ISD::BITCAST:
18739     return PerformBITCASTCombine(N, DCI, Subtarget);
18740   case ARMISD::PREDICATE_CAST:
18741     return PerformPREDICATE_CASTCombine(N, DCI);
18742   case ARMISD::VECTOR_REG_CAST:
18743     return PerformVECTOR_REG_CASTCombine(N, DCI.DAG, Subtarget);
18744   case ARMISD::MVETRUNC:
18745     return PerformMVETruncCombine(N, DCI);
18746   case ARMISD::MVESEXT:
18747   case ARMISD::MVEZEXT:
18748     return PerformMVEExtCombine(N, DCI);
18749   case ARMISD::VCMP:
18750     return PerformVCMPCombine(N, DCI.DAG, Subtarget);
18751   case ISD::VECREDUCE_ADD:
18752     return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget);
18753   case ARMISD::VMOVN:
18754     return PerformVMOVNCombine(N, DCI);
18755   case ARMISD::VQMOVNs:
18756   case ARMISD::VQMOVNu:
18757     return PerformVQMOVNCombine(N, DCI);
18758   case ARMISD::ASRL:
18759   case ARMISD::LSRL:
18760   case ARMISD::LSLL:
18761     return PerformLongShiftCombine(N, DCI.DAG);
18762   case ARMISD::SMULWB: {
18763     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18764     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
18765     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
18766       return SDValue();
18767     break;
18768   }
18769   case ARMISD::SMULWT: {
18770     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18771     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
18772     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
18773       return SDValue();
18774     break;
18775   }
18776   case ARMISD::SMLALBB:
18777   case ARMISD::QADD16b:
18778   case ARMISD::QSUB16b:
18779   case ARMISD::UQADD16b:
18780   case ARMISD::UQSUB16b: {
18781     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18782     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
18783     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
18784         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
18785       return SDValue();
18786     break;
18787   }
18788   case ARMISD::SMLALBT: {
18789     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
18790     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
18791     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
18792     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
18793     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
18794         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
18795       return SDValue();
18796     break;
18797   }
18798   case ARMISD::SMLALTB: {
18799     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
18800     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
18801     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
18802     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
18803     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
18804         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
18805       return SDValue();
18806     break;
18807   }
18808   case ARMISD::SMLALTT: {
18809     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18810     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
18811     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
18812         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
18813       return SDValue();
18814     break;
18815   }
18816   case ARMISD::QADD8b:
18817   case ARMISD::QSUB8b:
18818   case ARMISD::UQADD8b:
18819   case ARMISD::UQSUB8b: {
18820     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18821     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
18822     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
18823         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
18824       return SDValue();
18825     break;
18826   }
18827   case ISD::INTRINSIC_VOID:
18828   case ISD::INTRINSIC_W_CHAIN:
18829     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
18830     case Intrinsic::arm_neon_vld1:
18831     case Intrinsic::arm_neon_vld1x2:
18832     case Intrinsic::arm_neon_vld1x3:
18833     case Intrinsic::arm_neon_vld1x4:
18834     case Intrinsic::arm_neon_vld2:
18835     case Intrinsic::arm_neon_vld3:
18836     case Intrinsic::arm_neon_vld4:
18837     case Intrinsic::arm_neon_vld2lane:
18838     case Intrinsic::arm_neon_vld3lane:
18839     case Intrinsic::arm_neon_vld4lane:
18840     case Intrinsic::arm_neon_vld2dup:
18841     case Intrinsic::arm_neon_vld3dup:
18842     case Intrinsic::arm_neon_vld4dup:
18843     case Intrinsic::arm_neon_vst1:
18844     case Intrinsic::arm_neon_vst1x2:
18845     case Intrinsic::arm_neon_vst1x3:
18846     case Intrinsic::arm_neon_vst1x4:
18847     case Intrinsic::arm_neon_vst2:
18848     case Intrinsic::arm_neon_vst3:
18849     case Intrinsic::arm_neon_vst4:
18850     case Intrinsic::arm_neon_vst2lane:
18851     case Intrinsic::arm_neon_vst3lane:
18852     case Intrinsic::arm_neon_vst4lane:
18853       return PerformVLDCombine(N, DCI);
18854     case Intrinsic::arm_mve_vld2q:
18855     case Intrinsic::arm_mve_vld4q:
18856     case Intrinsic::arm_mve_vst2q:
18857     case Intrinsic::arm_mve_vst4q:
18858       return PerformMVEVLDCombine(N, DCI);
18859     default: break;
18860     }
18861     break;
18862   }
18863   return SDValue();
18864 }
18865 
18866 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
18867                                                           EVT VT) const {
18868   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
18869 }
18870 
18871 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
18872                                                        Align Alignment,
18873                                                        MachineMemOperand::Flags,
18874                                                        unsigned *Fast) const {
18875   // Depends what it gets converted into if the type is weird.
18876   if (!VT.isSimple())
18877     return false;
18878 
18879   // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
18880   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
18881   auto Ty = VT.getSimpleVT().SimpleTy;
18882 
18883   if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
18884     // Unaligned access can use (for example) LRDB, LRDH, LDR
18885     if (AllowsUnaligned) {
18886       if (Fast)
18887         *Fast = Subtarget->hasV7Ops();
18888       return true;
18889     }
18890   }
18891 
18892   if (Ty == MVT::f64 || Ty == MVT::v2f64) {
18893     // For any little-endian targets with neon, we can support unaligned ld/st
18894     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
18895     // A big-endian target may also explicitly support unaligned accesses
18896     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
18897       if (Fast)
18898         *Fast = 1;
18899       return true;
18900     }
18901   }
18902 
18903   if (!Subtarget->hasMVEIntegerOps())
18904     return false;
18905 
18906   // These are for predicates
18907   if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1 ||
18908        Ty == MVT::v2i1)) {
18909     if (Fast)
18910       *Fast = 1;
18911     return true;
18912   }
18913 
18914   // These are for truncated stores/narrowing loads. They are fine so long as
18915   // the alignment is at least the size of the item being loaded
18916   if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
18917       Alignment >= VT.getScalarSizeInBits() / 8) {
18918     if (Fast)
18919       *Fast = true;
18920     return true;
18921   }
18922 
18923   // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
18924   // VSTRW.U32 all store the vector register in exactly the same format, and
18925   // differ only in the range of their immediate offset field and the required
18926   // alignment. So there is always a store that can be used, regardless of
18927   // actual type.
18928   //
18929   // For big endian, that is not the case. But can still emit a (VSTRB.U8;
18930   // VREV64.8) pair and get the same effect. This will likely be better than
18931   // aligning the vector through the stack.
18932   if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
18933       Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
18934       Ty == MVT::v2f64) {
18935     if (Fast)
18936       *Fast = 1;
18937     return true;
18938   }
18939 
18940   return false;
18941 }
18942 
18943 
18944 EVT ARMTargetLowering::getOptimalMemOpType(
18945     const MemOp &Op, const AttributeList &FuncAttributes) const {
18946   // See if we can use NEON instructions for this...
18947   if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() &&
18948       !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) {
18949     unsigned Fast;
18950     if (Op.size() >= 16 &&
18951         (Op.isAligned(Align(16)) ||
18952          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, Align(1),
18953                                          MachineMemOperand::MONone, &Fast) &&
18954           Fast))) {
18955       return MVT::v2f64;
18956     } else if (Op.size() >= 8 &&
18957                (Op.isAligned(Align(8)) ||
18958                 (allowsMisalignedMemoryAccesses(
18959                      MVT::f64, 0, Align(1), MachineMemOperand::MONone, &Fast) &&
18960                  Fast))) {
18961       return MVT::f64;
18962     }
18963   }
18964 
18965   // Let the target-independent logic figure it out.
18966   return MVT::Other;
18967 }
18968 
18969 // 64-bit integers are split into their high and low parts and held in two
18970 // different registers, so the trunc is free since the low register can just
18971 // be used.
18972 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
18973   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
18974     return false;
18975   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
18976   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
18977   return (SrcBits == 64 && DestBits == 32);
18978 }
18979 
18980 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
18981   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
18982       !DstVT.isInteger())
18983     return false;
18984   unsigned SrcBits = SrcVT.getSizeInBits();
18985   unsigned DestBits = DstVT.getSizeInBits();
18986   return (SrcBits == 64 && DestBits == 32);
18987 }
18988 
18989 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
18990   if (Val.getOpcode() != ISD::LOAD)
18991     return false;
18992 
18993   EVT VT1 = Val.getValueType();
18994   if (!VT1.isSimple() || !VT1.isInteger() ||
18995       !VT2.isSimple() || !VT2.isInteger())
18996     return false;
18997 
18998   switch (VT1.getSimpleVT().SimpleTy) {
18999   default: break;
19000   case MVT::i1:
19001   case MVT::i8:
19002   case MVT::i16:
19003     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
19004     return true;
19005   }
19006 
19007   return false;
19008 }
19009 
19010 bool ARMTargetLowering::isFNegFree(EVT VT) const {
19011   if (!VT.isSimple())
19012     return false;
19013 
19014   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
19015   // negate values directly (fneg is free). So, we don't want to let the DAG
19016   // combiner rewrite fneg into xors and some other instructions.  For f16 and
19017   // FullFP16 argument passing, some bitcast nodes may be introduced,
19018   // triggering this DAG combine rewrite, so we are avoiding that with this.
19019   switch (VT.getSimpleVT().SimpleTy) {
19020   default: break;
19021   case MVT::f16:
19022     return Subtarget->hasFullFP16();
19023   }
19024 
19025   return false;
19026 }
19027 
19028 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
19029 /// of the vector elements.
19030 static bool areExtractExts(Value *Ext1, Value *Ext2) {
19031   auto areExtDoubled = [](Instruction *Ext) {
19032     return Ext->getType()->getScalarSizeInBits() ==
19033            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
19034   };
19035 
19036   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
19037       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
19038       !areExtDoubled(cast<Instruction>(Ext1)) ||
19039       !areExtDoubled(cast<Instruction>(Ext2)))
19040     return false;
19041 
19042   return true;
19043 }
19044 
19045 /// Check if sinking \p I's operands to I's basic block is profitable, because
19046 /// the operands can be folded into a target instruction, e.g.
19047 /// sext/zext can be folded into vsubl.
19048 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
19049                                            SmallVectorImpl<Use *> &Ops) const {
19050   if (!I->getType()->isVectorTy())
19051     return false;
19052 
19053   if (Subtarget->hasNEON()) {
19054     switch (I->getOpcode()) {
19055     case Instruction::Sub:
19056     case Instruction::Add: {
19057       if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
19058         return false;
19059       Ops.push_back(&I->getOperandUse(0));
19060       Ops.push_back(&I->getOperandUse(1));
19061       return true;
19062     }
19063     default:
19064       return false;
19065     }
19066   }
19067 
19068   if (!Subtarget->hasMVEIntegerOps())
19069     return false;
19070 
19071   auto IsFMSMul = [&](Instruction *I) {
19072     if (!I->hasOneUse())
19073       return false;
19074     auto *Sub = cast<Instruction>(*I->users().begin());
19075     return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(1) == I;
19076   };
19077   auto IsFMS = [&](Instruction *I) {
19078     if (match(I->getOperand(0), m_FNeg(m_Value())) ||
19079         match(I->getOperand(1), m_FNeg(m_Value())))
19080       return true;
19081     return false;
19082   };
19083 
19084   auto IsSinker = [&](Instruction *I, int Operand) {
19085     switch (I->getOpcode()) {
19086     case Instruction::Add:
19087     case Instruction::Mul:
19088     case Instruction::FAdd:
19089     case Instruction::ICmp:
19090     case Instruction::FCmp:
19091       return true;
19092     case Instruction::FMul:
19093       return !IsFMSMul(I);
19094     case Instruction::Sub:
19095     case Instruction::FSub:
19096     case Instruction::Shl:
19097     case Instruction::LShr:
19098     case Instruction::AShr:
19099       return Operand == 1;
19100     case Instruction::Call:
19101       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
19102         switch (II->getIntrinsicID()) {
19103         case Intrinsic::fma:
19104           return !IsFMS(I);
19105         case Intrinsic::sadd_sat:
19106         case Intrinsic::uadd_sat:
19107         case Intrinsic::arm_mve_add_predicated:
19108         case Intrinsic::arm_mve_mul_predicated:
19109         case Intrinsic::arm_mve_qadd_predicated:
19110         case Intrinsic::arm_mve_vhadd:
19111         case Intrinsic::arm_mve_hadd_predicated:
19112         case Intrinsic::arm_mve_vqdmull:
19113         case Intrinsic::arm_mve_vqdmull_predicated:
19114         case Intrinsic::arm_mve_vqdmulh:
19115         case Intrinsic::arm_mve_qdmulh_predicated:
19116         case Intrinsic::arm_mve_vqrdmulh:
19117         case Intrinsic::arm_mve_qrdmulh_predicated:
19118         case Intrinsic::arm_mve_fma_predicated:
19119           return true;
19120         case Intrinsic::ssub_sat:
19121         case Intrinsic::usub_sat:
19122         case Intrinsic::arm_mve_sub_predicated:
19123         case Intrinsic::arm_mve_qsub_predicated:
19124         case Intrinsic::arm_mve_hsub_predicated:
19125         case Intrinsic::arm_mve_vhsub:
19126           return Operand == 1;
19127         default:
19128           return false;
19129         }
19130       }
19131       return false;
19132     default:
19133       return false;
19134     }
19135   };
19136 
19137   for (auto OpIdx : enumerate(I->operands())) {
19138     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
19139     // Make sure we are not already sinking this operand
19140     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
19141       continue;
19142 
19143     Instruction *Shuffle = Op;
19144     if (Shuffle->getOpcode() == Instruction::BitCast)
19145       Shuffle = dyn_cast<Instruction>(Shuffle->getOperand(0));
19146     // We are looking for a splat that can be sunk.
19147     if (!Shuffle ||
19148         !match(Shuffle, m_Shuffle(
19149                             m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
19150                             m_Undef(), m_ZeroMask())))
19151       continue;
19152     if (!IsSinker(I, OpIdx.index()))
19153       continue;
19154 
19155     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
19156     // and vector registers
19157     for (Use &U : Op->uses()) {
19158       Instruction *Insn = cast<Instruction>(U.getUser());
19159       if (!IsSinker(Insn, U.getOperandNo()))
19160         return false;
19161     }
19162 
19163     Ops.push_back(&Shuffle->getOperandUse(0));
19164     if (Shuffle != Op)
19165       Ops.push_back(&Op->getOperandUse(0));
19166     Ops.push_back(&OpIdx.value());
19167   }
19168   return true;
19169 }
19170 
19171 Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const {
19172   if (!Subtarget->hasMVEIntegerOps())
19173     return nullptr;
19174   Type *SVIType = SVI->getType();
19175   Type *ScalarType = SVIType->getScalarType();
19176 
19177   if (ScalarType->isFloatTy())
19178     return Type::getInt32Ty(SVIType->getContext());
19179   if (ScalarType->isHalfTy())
19180     return Type::getInt16Ty(SVIType->getContext());
19181   return nullptr;
19182 }
19183 
19184 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
19185   EVT VT = ExtVal.getValueType();
19186 
19187   if (!isTypeLegal(VT))
19188     return false;
19189 
19190   if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
19191     if (Ld->isExpandingLoad())
19192       return false;
19193   }
19194 
19195   if (Subtarget->hasMVEIntegerOps())
19196     return true;
19197 
19198   // Don't create a loadext if we can fold the extension into a wide/long
19199   // instruction.
19200   // If there's more than one user instruction, the loadext is desirable no
19201   // matter what.  There can be two uses by the same instruction.
19202   if (ExtVal->use_empty() ||
19203       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
19204     return true;
19205 
19206   SDNode *U = *ExtVal->use_begin();
19207   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
19208        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
19209     return false;
19210 
19211   return true;
19212 }
19213 
19214 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
19215   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
19216     return false;
19217 
19218   if (!isTypeLegal(EVT::getEVT(Ty1)))
19219     return false;
19220 
19221   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
19222 
19223   // Assuming the caller doesn't have a zeroext or signext return parameter,
19224   // truncation all the way down to i1 is valid.
19225   return true;
19226 }
19227 
19228 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
19229 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
19230 /// expanded to FMAs when this method returns true, otherwise fmuladd is
19231 /// expanded to fmul + fadd.
19232 ///
19233 /// ARM supports both fused and unfused multiply-add operations; we already
19234 /// lower a pair of fmul and fadd to the latter so it's not clear that there
19235 /// would be a gain or that the gain would be worthwhile enough to risk
19236 /// correctness bugs.
19237 ///
19238 /// For MVE, we set this to true as it helps simplify the need for some
19239 /// patterns (and we don't have the non-fused floating point instruction).
19240 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
19241                                                    EVT VT) const {
19242   if (!VT.isSimple())
19243     return false;
19244 
19245   switch (VT.getSimpleVT().SimpleTy) {
19246   case MVT::v4f32:
19247   case MVT::v8f16:
19248     return Subtarget->hasMVEFloatOps();
19249   case MVT::f16:
19250     return Subtarget->useFPVFMx16();
19251   case MVT::f32:
19252     return Subtarget->useFPVFMx();
19253   case MVT::f64:
19254     return Subtarget->useFPVFMx64();
19255   default:
19256     break;
19257   }
19258 
19259   return false;
19260 }
19261 
19262 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
19263   if (V < 0)
19264     return false;
19265 
19266   unsigned Scale = 1;
19267   switch (VT.getSimpleVT().SimpleTy) {
19268   case MVT::i1:
19269   case MVT::i8:
19270     // Scale == 1;
19271     break;
19272   case MVT::i16:
19273     // Scale == 2;
19274     Scale = 2;
19275     break;
19276   default:
19277     // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
19278     // Scale == 4;
19279     Scale = 4;
19280     break;
19281   }
19282 
19283   if ((V & (Scale - 1)) != 0)
19284     return false;
19285   return isUInt<5>(V / Scale);
19286 }
19287 
19288 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
19289                                       const ARMSubtarget *Subtarget) {
19290   if (!VT.isInteger() && !VT.isFloatingPoint())
19291     return false;
19292   if (VT.isVector() && Subtarget->hasNEON())
19293     return false;
19294   if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
19295       !Subtarget->hasMVEFloatOps())
19296     return false;
19297 
19298   bool IsNeg = false;
19299   if (V < 0) {
19300     IsNeg = true;
19301     V = -V;
19302   }
19303 
19304   unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
19305 
19306   // MVE: size * imm7
19307   if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
19308     switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
19309     case MVT::i32:
19310     case MVT::f32:
19311       return isShiftedUInt<7,2>(V);
19312     case MVT::i16:
19313     case MVT::f16:
19314       return isShiftedUInt<7,1>(V);
19315     case MVT::i8:
19316       return isUInt<7>(V);
19317     default:
19318       return false;
19319     }
19320   }
19321 
19322   // half VLDR: 2 * imm8
19323   if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
19324     return isShiftedUInt<8, 1>(V);
19325   // VLDR and LDRD: 4 * imm8
19326   if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
19327     return isShiftedUInt<8, 2>(V);
19328 
19329   if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
19330     // + imm12 or - imm8
19331     if (IsNeg)
19332       return isUInt<8>(V);
19333     return isUInt<12>(V);
19334   }
19335 
19336   return false;
19337 }
19338 
19339 /// isLegalAddressImmediate - Return true if the integer value can be used
19340 /// as the offset of the target addressing mode for load / store of the
19341 /// given type.
19342 static bool isLegalAddressImmediate(int64_t V, EVT VT,
19343                                     const ARMSubtarget *Subtarget) {
19344   if (V == 0)
19345     return true;
19346 
19347   if (!VT.isSimple())
19348     return false;
19349 
19350   if (Subtarget->isThumb1Only())
19351     return isLegalT1AddressImmediate(V, VT);
19352   else if (Subtarget->isThumb2())
19353     return isLegalT2AddressImmediate(V, VT, Subtarget);
19354 
19355   // ARM mode.
19356   if (V < 0)
19357     V = - V;
19358   switch (VT.getSimpleVT().SimpleTy) {
19359   default: return false;
19360   case MVT::i1:
19361   case MVT::i8:
19362   case MVT::i32:
19363     // +- imm12
19364     return isUInt<12>(V);
19365   case MVT::i16:
19366     // +- imm8
19367     return isUInt<8>(V);
19368   case MVT::f32:
19369   case MVT::f64:
19370     if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
19371       return false;
19372     return isShiftedUInt<8, 2>(V);
19373   }
19374 }
19375 
19376 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
19377                                                       EVT VT) const {
19378   int Scale = AM.Scale;
19379   if (Scale < 0)
19380     return false;
19381 
19382   switch (VT.getSimpleVT().SimpleTy) {
19383   default: return false;
19384   case MVT::i1:
19385   case MVT::i8:
19386   case MVT::i16:
19387   case MVT::i32:
19388     if (Scale == 1)
19389       return true;
19390     // r + r << imm
19391     Scale = Scale & ~1;
19392     return Scale == 2 || Scale == 4 || Scale == 8;
19393   case MVT::i64:
19394     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
19395     // version in Thumb mode.
19396     // r + r
19397     if (Scale == 1)
19398       return true;
19399     // r * 2 (this can be lowered to r + r).
19400     if (!AM.HasBaseReg && Scale == 2)
19401       return true;
19402     return false;
19403   case MVT::isVoid:
19404     // Note, we allow "void" uses (basically, uses that aren't loads or
19405     // stores), because arm allows folding a scale into many arithmetic
19406     // operations.  This should be made more precise and revisited later.
19407 
19408     // Allow r << imm, but the imm has to be a multiple of two.
19409     if (Scale & 1) return false;
19410     return isPowerOf2_32(Scale);
19411   }
19412 }
19413 
19414 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
19415                                                       EVT VT) const {
19416   const int Scale = AM.Scale;
19417 
19418   // Negative scales are not supported in Thumb1.
19419   if (Scale < 0)
19420     return false;
19421 
19422   // Thumb1 addressing modes do not support register scaling excepting the
19423   // following cases:
19424   // 1. Scale == 1 means no scaling.
19425   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
19426   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
19427 }
19428 
19429 /// isLegalAddressingMode - Return true if the addressing mode represented
19430 /// by AM is legal for this target, for a load/store of the specified type.
19431 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
19432                                               const AddrMode &AM, Type *Ty,
19433                                               unsigned AS, Instruction *I) const {
19434   EVT VT = getValueType(DL, Ty, true);
19435   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
19436     return false;
19437 
19438   // Can never fold addr of global into load/store.
19439   if (AM.BaseGV)
19440     return false;
19441 
19442   switch (AM.Scale) {
19443   case 0:  // no scale reg, must be "r+i" or "r", or "i".
19444     break;
19445   default:
19446     // ARM doesn't support any R+R*scale+imm addr modes.
19447     if (AM.BaseOffs)
19448       return false;
19449 
19450     if (!VT.isSimple())
19451       return false;
19452 
19453     if (Subtarget->isThumb1Only())
19454       return isLegalT1ScaledAddressingMode(AM, VT);
19455 
19456     if (Subtarget->isThumb2())
19457       return isLegalT2ScaledAddressingMode(AM, VT);
19458 
19459     int Scale = AM.Scale;
19460     switch (VT.getSimpleVT().SimpleTy) {
19461     default: return false;
19462     case MVT::i1:
19463     case MVT::i8:
19464     case MVT::i32:
19465       if (Scale < 0) Scale = -Scale;
19466       if (Scale == 1)
19467         return true;
19468       // r + r << imm
19469       return isPowerOf2_32(Scale & ~1);
19470     case MVT::i16:
19471     case MVT::i64:
19472       // r +/- r
19473       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
19474         return true;
19475       // r * 2 (this can be lowered to r + r).
19476       if (!AM.HasBaseReg && Scale == 2)
19477         return true;
19478       return false;
19479 
19480     case MVT::isVoid:
19481       // Note, we allow "void" uses (basically, uses that aren't loads or
19482       // stores), because arm allows folding a scale into many arithmetic
19483       // operations.  This should be made more precise and revisited later.
19484 
19485       // Allow r << imm, but the imm has to be a multiple of two.
19486       if (Scale & 1) return false;
19487       return isPowerOf2_32(Scale);
19488     }
19489   }
19490   return true;
19491 }
19492 
19493 /// isLegalICmpImmediate - Return true if the specified immediate is legal
19494 /// icmp immediate, that is the target has icmp instructions which can compare
19495 /// a register against the immediate without having to materialize the
19496 /// immediate into a register.
19497 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
19498   // Thumb2 and ARM modes can use cmn for negative immediates.
19499   if (!Subtarget->isThumb())
19500     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
19501            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
19502   if (Subtarget->isThumb2())
19503     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
19504            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
19505   // Thumb1 doesn't have cmn, and only 8-bit immediates.
19506   return Imm >= 0 && Imm <= 255;
19507 }
19508 
19509 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
19510 /// *or sub* immediate, that is the target has add or sub instructions which can
19511 /// add a register with the immediate without having to materialize the
19512 /// immediate into a register.
19513 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
19514   // Same encoding for add/sub, just flip the sign.
19515   int64_t AbsImm = std::abs(Imm);
19516   if (!Subtarget->isThumb())
19517     return ARM_AM::getSOImmVal(AbsImm) != -1;
19518   if (Subtarget->isThumb2())
19519     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
19520   // Thumb1 only has 8-bit unsigned immediate.
19521   return AbsImm >= 0 && AbsImm <= 255;
19522 }
19523 
19524 // Return false to prevent folding
19525 // (mul (add r, c0), c1) -> (add (mul r, c1), c0*c1) in DAGCombine,
19526 // if the folding leads to worse code.
19527 bool ARMTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
19528                                                     SDValue ConstNode) const {
19529   // Let the DAGCombiner decide for vector types and large types.
19530   const EVT VT = AddNode.getValueType();
19531   if (VT.isVector() || VT.getScalarSizeInBits() > 32)
19532     return true;
19533 
19534   // It is worse if c0 is legal add immediate, while c1*c0 is not
19535   // and has to be composed by at least two instructions.
19536   const ConstantSDNode *C0Node = cast<ConstantSDNode>(AddNode.getOperand(1));
19537   const ConstantSDNode *C1Node = cast<ConstantSDNode>(ConstNode);
19538   const int64_t C0 = C0Node->getSExtValue();
19539   APInt CA = C0Node->getAPIntValue() * C1Node->getAPIntValue();
19540   if (!isLegalAddImmediate(C0) || isLegalAddImmediate(CA.getSExtValue()))
19541     return true;
19542   if (ConstantMaterializationCost((unsigned)CA.getZExtValue(), Subtarget) > 1)
19543     return false;
19544 
19545   // Default to true and let the DAGCombiner decide.
19546   return true;
19547 }
19548 
19549 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
19550                                       bool isSEXTLoad, SDValue &Base,
19551                                       SDValue &Offset, bool &isInc,
19552                                       SelectionDAG &DAG) {
19553   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19554     return false;
19555 
19556   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
19557     // AddressingMode 3
19558     Base = Ptr->getOperand(0);
19559     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19560       int RHSC = (int)RHS->getZExtValue();
19561       if (RHSC < 0 && RHSC > -256) {
19562         assert(Ptr->getOpcode() == ISD::ADD);
19563         isInc = false;
19564         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19565         return true;
19566       }
19567     }
19568     isInc = (Ptr->getOpcode() == ISD::ADD);
19569     Offset = Ptr->getOperand(1);
19570     return true;
19571   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
19572     // AddressingMode 2
19573     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19574       int RHSC = (int)RHS->getZExtValue();
19575       if (RHSC < 0 && RHSC > -0x1000) {
19576         assert(Ptr->getOpcode() == ISD::ADD);
19577         isInc = false;
19578         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19579         Base = Ptr->getOperand(0);
19580         return true;
19581       }
19582     }
19583 
19584     if (Ptr->getOpcode() == ISD::ADD) {
19585       isInc = true;
19586       ARM_AM::ShiftOpc ShOpcVal=
19587         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
19588       if (ShOpcVal != ARM_AM::no_shift) {
19589         Base = Ptr->getOperand(1);
19590         Offset = Ptr->getOperand(0);
19591       } else {
19592         Base = Ptr->getOperand(0);
19593         Offset = Ptr->getOperand(1);
19594       }
19595       return true;
19596     }
19597 
19598     isInc = (Ptr->getOpcode() == ISD::ADD);
19599     Base = Ptr->getOperand(0);
19600     Offset = Ptr->getOperand(1);
19601     return true;
19602   }
19603 
19604   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
19605   return false;
19606 }
19607 
19608 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
19609                                      bool isSEXTLoad, SDValue &Base,
19610                                      SDValue &Offset, bool &isInc,
19611                                      SelectionDAG &DAG) {
19612   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19613     return false;
19614 
19615   Base = Ptr->getOperand(0);
19616   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19617     int RHSC = (int)RHS->getZExtValue();
19618     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
19619       assert(Ptr->getOpcode() == ISD::ADD);
19620       isInc = false;
19621       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19622       return true;
19623     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
19624       isInc = Ptr->getOpcode() == ISD::ADD;
19625       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19626       return true;
19627     }
19628   }
19629 
19630   return false;
19631 }
19632 
19633 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment,
19634                                       bool isSEXTLoad, bool IsMasked, bool isLE,
19635                                       SDValue &Base, SDValue &Offset,
19636                                       bool &isInc, SelectionDAG &DAG) {
19637   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19638     return false;
19639   if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
19640     return false;
19641 
19642   // We allow LE non-masked loads to change the type (for example use a vldrb.8
19643   // as opposed to a vldrw.32). This can allow extra addressing modes or
19644   // alignments for what is otherwise an equivalent instruction.
19645   bool CanChangeType = isLE && !IsMasked;
19646 
19647   ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
19648   int RHSC = (int)RHS->getZExtValue();
19649 
19650   auto IsInRange = [&](int RHSC, int Limit, int Scale) {
19651     if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
19652       assert(Ptr->getOpcode() == ISD::ADD);
19653       isInc = false;
19654       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19655       return true;
19656     } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
19657       isInc = Ptr->getOpcode() == ISD::ADD;
19658       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19659       return true;
19660     }
19661     return false;
19662   };
19663 
19664   // Try to find a matching instruction based on s/zext, Alignment, Offset and
19665   // (in BE/masked) type.
19666   Base = Ptr->getOperand(0);
19667   if (VT == MVT::v4i16) {
19668     if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2))
19669       return true;
19670   } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
19671     if (IsInRange(RHSC, 0x80, 1))
19672       return true;
19673   } else if (Alignment >= 4 &&
19674              (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
19675              IsInRange(RHSC, 0x80, 4))
19676     return true;
19677   else if (Alignment >= 2 &&
19678            (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
19679            IsInRange(RHSC, 0x80, 2))
19680     return true;
19681   else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
19682     return true;
19683   return false;
19684 }
19685 
19686 /// getPreIndexedAddressParts - returns true by value, base pointer and
19687 /// offset pointer and addressing mode by reference if the node's address
19688 /// can be legally represented as pre-indexed load / store address.
19689 bool
19690 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
19691                                              SDValue &Offset,
19692                                              ISD::MemIndexedMode &AM,
19693                                              SelectionDAG &DAG) const {
19694   if (Subtarget->isThumb1Only())
19695     return false;
19696 
19697   EVT VT;
19698   SDValue Ptr;
19699   Align Alignment;
19700   bool isSEXTLoad = false;
19701   bool IsMasked = false;
19702   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19703     Ptr = LD->getBasePtr();
19704     VT = LD->getMemoryVT();
19705     Alignment = LD->getAlign();
19706     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19707   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19708     Ptr = ST->getBasePtr();
19709     VT = ST->getMemoryVT();
19710     Alignment = ST->getAlign();
19711   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19712     Ptr = LD->getBasePtr();
19713     VT = LD->getMemoryVT();
19714     Alignment = LD->getAlign();
19715     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19716     IsMasked = true;
19717   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
19718     Ptr = ST->getBasePtr();
19719     VT = ST->getMemoryVT();
19720     Alignment = ST->getAlign();
19721     IsMasked = true;
19722   } else
19723     return false;
19724 
19725   bool isInc;
19726   bool isLegal = false;
19727   if (VT.isVector())
19728     isLegal = Subtarget->hasMVEIntegerOps() &&
19729               getMVEIndexedAddressParts(
19730                   Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked,
19731                   Subtarget->isLittle(), Base, Offset, isInc, DAG);
19732   else {
19733     if (Subtarget->isThumb2())
19734       isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19735                                          Offset, isInc, DAG);
19736     else
19737       isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19738                                           Offset, isInc, DAG);
19739   }
19740   if (!isLegal)
19741     return false;
19742 
19743   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
19744   return true;
19745 }
19746 
19747 /// getPostIndexedAddressParts - returns true by value, base pointer and
19748 /// offset pointer and addressing mode by reference if this node can be
19749 /// combined with a load / store to form a post-indexed load / store.
19750 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
19751                                                    SDValue &Base,
19752                                                    SDValue &Offset,
19753                                                    ISD::MemIndexedMode &AM,
19754                                                    SelectionDAG &DAG) const {
19755   EVT VT;
19756   SDValue Ptr;
19757   Align Alignment;
19758   bool isSEXTLoad = false, isNonExt;
19759   bool IsMasked = false;
19760   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19761     VT = LD->getMemoryVT();
19762     Ptr = LD->getBasePtr();
19763     Alignment = LD->getAlign();
19764     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19765     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
19766   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19767     VT = ST->getMemoryVT();
19768     Ptr = ST->getBasePtr();
19769     Alignment = ST->getAlign();
19770     isNonExt = !ST->isTruncatingStore();
19771   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19772     VT = LD->getMemoryVT();
19773     Ptr = LD->getBasePtr();
19774     Alignment = LD->getAlign();
19775     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19776     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
19777     IsMasked = true;
19778   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
19779     VT = ST->getMemoryVT();
19780     Ptr = ST->getBasePtr();
19781     Alignment = ST->getAlign();
19782     isNonExt = !ST->isTruncatingStore();
19783     IsMasked = true;
19784   } else
19785     return false;
19786 
19787   if (Subtarget->isThumb1Only()) {
19788     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
19789     // must be non-extending/truncating, i32, with an offset of 4.
19790     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
19791     if (Op->getOpcode() != ISD::ADD || !isNonExt)
19792       return false;
19793     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
19794     if (!RHS || RHS->getZExtValue() != 4)
19795       return false;
19796     if (Alignment < Align(4))
19797       return false;
19798 
19799     Offset = Op->getOperand(1);
19800     Base = Op->getOperand(0);
19801     AM = ISD::POST_INC;
19802     return true;
19803   }
19804 
19805   bool isInc;
19806   bool isLegal = false;
19807   if (VT.isVector())
19808     isLegal = Subtarget->hasMVEIntegerOps() &&
19809               getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked,
19810                                         Subtarget->isLittle(), Base, Offset,
19811                                         isInc, DAG);
19812   else {
19813     if (Subtarget->isThumb2())
19814       isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
19815                                          isInc, DAG);
19816     else
19817       isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
19818                                           isInc, DAG);
19819   }
19820   if (!isLegal)
19821     return false;
19822 
19823   if (Ptr != Base) {
19824     // Swap base ptr and offset to catch more post-index load / store when
19825     // it's legal. In Thumb2 mode, offset must be an immediate.
19826     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
19827         !Subtarget->isThumb2())
19828       std::swap(Base, Offset);
19829 
19830     // Post-indexed load / store update the base pointer.
19831     if (Ptr != Base)
19832       return false;
19833   }
19834 
19835   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
19836   return true;
19837 }
19838 
19839 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
19840                                                       KnownBits &Known,
19841                                                       const APInt &DemandedElts,
19842                                                       const SelectionDAG &DAG,
19843                                                       unsigned Depth) const {
19844   unsigned BitWidth = Known.getBitWidth();
19845   Known.resetAll();
19846   switch (Op.getOpcode()) {
19847   default: break;
19848   case ARMISD::ADDC:
19849   case ARMISD::ADDE:
19850   case ARMISD::SUBC:
19851   case ARMISD::SUBE:
19852     // Special cases when we convert a carry to a boolean.
19853     if (Op.getResNo() == 0) {
19854       SDValue LHS = Op.getOperand(0);
19855       SDValue RHS = Op.getOperand(1);
19856       // (ADDE 0, 0, C) will give us a single bit.
19857       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
19858           isNullConstant(RHS)) {
19859         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
19860         return;
19861       }
19862     }
19863     break;
19864   case ARMISD::CMOV: {
19865     // Bits are known zero/one if known on the LHS and RHS.
19866     Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
19867     if (Known.isUnknown())
19868       return;
19869 
19870     KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
19871     Known = KnownBits::commonBits(Known, KnownRHS);
19872     return;
19873   }
19874   case ISD::INTRINSIC_W_CHAIN: {
19875     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
19876     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
19877     switch (IntID) {
19878     default: return;
19879     case Intrinsic::arm_ldaex:
19880     case Intrinsic::arm_ldrex: {
19881       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
19882       unsigned MemBits = VT.getScalarSizeInBits();
19883       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
19884       return;
19885     }
19886     }
19887   }
19888   case ARMISD::BFI: {
19889     // Conservatively, we can recurse down the first operand
19890     // and just mask out all affected bits.
19891     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
19892 
19893     // The operand to BFI is already a mask suitable for removing the bits it
19894     // sets.
19895     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
19896     const APInt &Mask = CI->getAPIntValue();
19897     Known.Zero &= Mask;
19898     Known.One &= Mask;
19899     return;
19900   }
19901   case ARMISD::VGETLANEs:
19902   case ARMISD::VGETLANEu: {
19903     const SDValue &SrcSV = Op.getOperand(0);
19904     EVT VecVT = SrcSV.getValueType();
19905     assert(VecVT.isVector() && "VGETLANE expected a vector type");
19906     const unsigned NumSrcElts = VecVT.getVectorNumElements();
19907     ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
19908     assert(Pos->getAPIntValue().ult(NumSrcElts) &&
19909            "VGETLANE index out of bounds");
19910     unsigned Idx = Pos->getZExtValue();
19911     APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
19912     Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
19913 
19914     EVT VT = Op.getValueType();
19915     const unsigned DstSz = VT.getScalarSizeInBits();
19916     const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
19917     (void)SrcSz;
19918     assert(SrcSz == Known.getBitWidth());
19919     assert(DstSz > SrcSz);
19920     if (Op.getOpcode() == ARMISD::VGETLANEs)
19921       Known = Known.sext(DstSz);
19922     else {
19923       Known = Known.zext(DstSz);
19924     }
19925     assert(DstSz == Known.getBitWidth());
19926     break;
19927   }
19928   case ARMISD::VMOVrh: {
19929     KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
19930     assert(KnownOp.getBitWidth() == 16);
19931     Known = KnownOp.zext(32);
19932     break;
19933   }
19934   case ARMISD::CSINC:
19935   case ARMISD::CSINV:
19936   case ARMISD::CSNEG: {
19937     KnownBits KnownOp0 = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
19938     KnownBits KnownOp1 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
19939 
19940     // The result is either:
19941     // CSINC: KnownOp0 or KnownOp1 + 1
19942     // CSINV: KnownOp0 or ~KnownOp1
19943     // CSNEG: KnownOp0 or KnownOp1 * -1
19944     if (Op.getOpcode() == ARMISD::CSINC)
19945       KnownOp1 = KnownBits::computeForAddSub(
19946           true, false, KnownOp1, KnownBits::makeConstant(APInt(32, 1)));
19947     else if (Op.getOpcode() == ARMISD::CSINV)
19948       std::swap(KnownOp1.Zero, KnownOp1.One);
19949     else if (Op.getOpcode() == ARMISD::CSNEG)
19950       KnownOp1 = KnownBits::mul(
19951           KnownOp1, KnownBits::makeConstant(APInt(32, -1)));
19952 
19953     Known = KnownBits::commonBits(KnownOp0, KnownOp1);
19954     break;
19955   }
19956   }
19957 }
19958 
19959 bool ARMTargetLowering::targetShrinkDemandedConstant(
19960     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
19961     TargetLoweringOpt &TLO) const {
19962   // Delay optimization, so we don't have to deal with illegal types, or block
19963   // optimizations.
19964   if (!TLO.LegalOps)
19965     return false;
19966 
19967   // Only optimize AND for now.
19968   if (Op.getOpcode() != ISD::AND)
19969     return false;
19970 
19971   EVT VT = Op.getValueType();
19972 
19973   // Ignore vectors.
19974   if (VT.isVector())
19975     return false;
19976 
19977   assert(VT == MVT::i32 && "Unexpected integer type");
19978 
19979   // Make sure the RHS really is a constant.
19980   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
19981   if (!C)
19982     return false;
19983 
19984   unsigned Mask = C->getZExtValue();
19985 
19986   unsigned Demanded = DemandedBits.getZExtValue();
19987   unsigned ShrunkMask = Mask & Demanded;
19988   unsigned ExpandedMask = Mask | ~Demanded;
19989 
19990   // If the mask is all zeros, let the target-independent code replace the
19991   // result with zero.
19992   if (ShrunkMask == 0)
19993     return false;
19994 
19995   // If the mask is all ones, erase the AND. (Currently, the target-independent
19996   // code won't do this, so we have to do it explicitly to avoid an infinite
19997   // loop in obscure cases.)
19998   if (ExpandedMask == ~0U)
19999     return TLO.CombineTo(Op, Op.getOperand(0));
20000 
20001   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
20002     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
20003   };
20004   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
20005     if (NewMask == Mask)
20006       return true;
20007     SDLoc DL(Op);
20008     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
20009     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
20010     return TLO.CombineTo(Op, NewOp);
20011   };
20012 
20013   // Prefer uxtb mask.
20014   if (IsLegalMask(0xFF))
20015     return UseMask(0xFF);
20016 
20017   // Prefer uxth mask.
20018   if (IsLegalMask(0xFFFF))
20019     return UseMask(0xFFFF);
20020 
20021   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
20022   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
20023   if (ShrunkMask < 256)
20024     return UseMask(ShrunkMask);
20025 
20026   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
20027   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
20028   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
20029     return UseMask(ExpandedMask);
20030 
20031   // Potential improvements:
20032   //
20033   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
20034   // We could try to prefer Thumb1 immediates which can be lowered to a
20035   // two-instruction sequence.
20036   // We could try to recognize more legal ARM/Thumb2 immediates here.
20037 
20038   return false;
20039 }
20040 
20041 bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode(
20042     SDValue Op, const APInt &OriginalDemandedBits,
20043     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
20044     unsigned Depth) const {
20045   unsigned Opc = Op.getOpcode();
20046 
20047   switch (Opc) {
20048   case ARMISD::ASRL:
20049   case ARMISD::LSRL: {
20050     // If this is result 0 and the other result is unused, see if the demand
20051     // bits allow us to shrink this long shift into a standard small shift in
20052     // the opposite direction.
20053     if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) &&
20054         isa<ConstantSDNode>(Op->getOperand(2))) {
20055       unsigned ShAmt = Op->getConstantOperandVal(2);
20056       if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf(APInt::getAllOnes(32)
20057                                                         << (32 - ShAmt)))
20058         return TLO.CombineTo(
20059             Op, TLO.DAG.getNode(
20060                     ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1),
20061                     TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32)));
20062     }
20063     break;
20064   }
20065   case ARMISD::VBICIMM: {
20066     SDValue Op0 = Op.getOperand(0);
20067     unsigned ModImm = Op.getConstantOperandVal(1);
20068     unsigned EltBits = 0;
20069     uint64_t Mask = ARM_AM::decodeVMOVModImm(ModImm, EltBits);
20070     if ((OriginalDemandedBits & Mask) == 0)
20071       return TLO.CombineTo(Op, Op0);
20072   }
20073   }
20074 
20075   return TargetLowering::SimplifyDemandedBitsForTargetNode(
20076       Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
20077 }
20078 
20079 //===----------------------------------------------------------------------===//
20080 //                           ARM Inline Assembly Support
20081 //===----------------------------------------------------------------------===//
20082 
20083 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
20084   // Looking for "rev" which is V6+.
20085   if (!Subtarget->hasV6Ops())
20086     return false;
20087 
20088   InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
20089   std::string AsmStr = IA->getAsmString();
20090   SmallVector<StringRef, 4> AsmPieces;
20091   SplitString(AsmStr, AsmPieces, ";\n");
20092 
20093   switch (AsmPieces.size()) {
20094   default: return false;
20095   case 1:
20096     AsmStr = std::string(AsmPieces[0]);
20097     AsmPieces.clear();
20098     SplitString(AsmStr, AsmPieces, " \t,");
20099 
20100     // rev $0, $1
20101     if (AsmPieces.size() == 3 &&
20102         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
20103         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
20104       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
20105       if (Ty && Ty->getBitWidth() == 32)
20106         return IntrinsicLowering::LowerToByteSwap(CI);
20107     }
20108     break;
20109   }
20110 
20111   return false;
20112 }
20113 
20114 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
20115   // At this point, we have to lower this constraint to something else, so we
20116   // lower it to an "r" or "w". However, by doing this we will force the result
20117   // to be in register, while the X constraint is much more permissive.
20118   //
20119   // Although we are correct (we are free to emit anything, without
20120   // constraints), we might break use cases that would expect us to be more
20121   // efficient and emit something else.
20122   if (!Subtarget->hasVFP2Base())
20123     return "r";
20124   if (ConstraintVT.isFloatingPoint())
20125     return "w";
20126   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
20127      (ConstraintVT.getSizeInBits() == 64 ||
20128       ConstraintVT.getSizeInBits() == 128))
20129     return "w";
20130 
20131   return "r";
20132 }
20133 
20134 /// getConstraintType - Given a constraint letter, return the type of
20135 /// constraint it is for this target.
20136 ARMTargetLowering::ConstraintType
20137 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
20138   unsigned S = Constraint.size();
20139   if (S == 1) {
20140     switch (Constraint[0]) {
20141     default:  break;
20142     case 'l': return C_RegisterClass;
20143     case 'w': return C_RegisterClass;
20144     case 'h': return C_RegisterClass;
20145     case 'x': return C_RegisterClass;
20146     case 't': return C_RegisterClass;
20147     case 'j': return C_Immediate; // Constant for movw.
20148     // An address with a single base register. Due to the way we
20149     // currently handle addresses it is the same as an 'r' memory constraint.
20150     case 'Q': return C_Memory;
20151     }
20152   } else if (S == 2) {
20153     switch (Constraint[0]) {
20154     default: break;
20155     case 'T': return C_RegisterClass;
20156     // All 'U+' constraints are addresses.
20157     case 'U': return C_Memory;
20158     }
20159   }
20160   return TargetLowering::getConstraintType(Constraint);
20161 }
20162 
20163 /// Examine constraint type and operand type and determine a weight value.
20164 /// This object must already have been set up with the operand type
20165 /// and the current alternative constraint selected.
20166 TargetLowering::ConstraintWeight
20167 ARMTargetLowering::getSingleConstraintMatchWeight(
20168     AsmOperandInfo &info, const char *constraint) const {
20169   ConstraintWeight weight = CW_Invalid;
20170   Value *CallOperandVal = info.CallOperandVal;
20171     // If we don't have a value, we can't do a match,
20172     // but allow it at the lowest weight.
20173   if (!CallOperandVal)
20174     return CW_Default;
20175   Type *type = CallOperandVal->getType();
20176   // Look at the constraint type.
20177   switch (*constraint) {
20178   default:
20179     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
20180     break;
20181   case 'l':
20182     if (type->isIntegerTy()) {
20183       if (Subtarget->isThumb())
20184         weight = CW_SpecificReg;
20185       else
20186         weight = CW_Register;
20187     }
20188     break;
20189   case 'w':
20190     if (type->isFloatingPointTy())
20191       weight = CW_Register;
20192     break;
20193   }
20194   return weight;
20195 }
20196 
20197 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
20198 
20199 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
20200     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
20201   switch (Constraint.size()) {
20202   case 1:
20203     // GCC ARM Constraint Letters
20204     switch (Constraint[0]) {
20205     case 'l': // Low regs or general regs.
20206       if (Subtarget->isThumb())
20207         return RCPair(0U, &ARM::tGPRRegClass);
20208       return RCPair(0U, &ARM::GPRRegClass);
20209     case 'h': // High regs or no regs.
20210       if (Subtarget->isThumb())
20211         return RCPair(0U, &ARM::hGPRRegClass);
20212       break;
20213     case 'r':
20214       if (Subtarget->isThumb1Only())
20215         return RCPair(0U, &ARM::tGPRRegClass);
20216       return RCPair(0U, &ARM::GPRRegClass);
20217     case 'w':
20218       if (VT == MVT::Other)
20219         break;
20220       if (VT == MVT::f16 || VT == MVT::bf16)
20221         return RCPair(0U, &ARM::HPRRegClass);
20222       if (VT == MVT::f32)
20223         return RCPair(0U, &ARM::SPRRegClass);
20224       if (VT.getSizeInBits() == 64)
20225         return RCPair(0U, &ARM::DPRRegClass);
20226       if (VT.getSizeInBits() == 128)
20227         return RCPair(0U, &ARM::QPRRegClass);
20228       break;
20229     case 'x':
20230       if (VT == MVT::Other)
20231         break;
20232       if (VT == MVT::f32)
20233         return RCPair(0U, &ARM::SPR_8RegClass);
20234       if (VT.getSizeInBits() == 64)
20235         return RCPair(0U, &ARM::DPR_8RegClass);
20236       if (VT.getSizeInBits() == 128)
20237         return RCPair(0U, &ARM::QPR_8RegClass);
20238       break;
20239     case 't':
20240       if (VT == MVT::Other)
20241         break;
20242       if (VT == MVT::f16 || VT == MVT::bf16)
20243         return RCPair(0U, &ARM::HPRRegClass);
20244       if (VT == MVT::f32 || VT == MVT::i32)
20245         return RCPair(0U, &ARM::SPRRegClass);
20246       if (VT.getSizeInBits() == 64)
20247         return RCPair(0U, &ARM::DPR_VFP2RegClass);
20248       if (VT.getSizeInBits() == 128)
20249         return RCPair(0U, &ARM::QPR_VFP2RegClass);
20250       break;
20251     }
20252     break;
20253 
20254   case 2:
20255     if (Constraint[0] == 'T') {
20256       switch (Constraint[1]) {
20257       default:
20258         break;
20259       case 'e':
20260         return RCPair(0U, &ARM::tGPREvenRegClass);
20261       case 'o':
20262         return RCPair(0U, &ARM::tGPROddRegClass);
20263       }
20264     }
20265     break;
20266 
20267   default:
20268     break;
20269   }
20270 
20271   if (StringRef("{cc}").equals_insensitive(Constraint))
20272     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
20273 
20274   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
20275 }
20276 
20277 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
20278 /// vector.  If it is invalid, don't add anything to Ops.
20279 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
20280                                                      std::string &Constraint,
20281                                                      std::vector<SDValue>&Ops,
20282                                                      SelectionDAG &DAG) const {
20283   SDValue Result;
20284 
20285   // Currently only support length 1 constraints.
20286   if (Constraint.length() != 1) return;
20287 
20288   char ConstraintLetter = Constraint[0];
20289   switch (ConstraintLetter) {
20290   default: break;
20291   case 'j':
20292   case 'I': case 'J': case 'K': case 'L':
20293   case 'M': case 'N': case 'O':
20294     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
20295     if (!C)
20296       return;
20297 
20298     int64_t CVal64 = C->getSExtValue();
20299     int CVal = (int) CVal64;
20300     // None of these constraints allow values larger than 32 bits.  Check
20301     // that the value fits in an int.
20302     if (CVal != CVal64)
20303       return;
20304 
20305     switch (ConstraintLetter) {
20306       case 'j':
20307         // Constant suitable for movw, must be between 0 and
20308         // 65535.
20309         if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
20310           if (CVal >= 0 && CVal <= 65535)
20311             break;
20312         return;
20313       case 'I':
20314         if (Subtarget->isThumb1Only()) {
20315           // This must be a constant between 0 and 255, for ADD
20316           // immediates.
20317           if (CVal >= 0 && CVal <= 255)
20318             break;
20319         } else if (Subtarget->isThumb2()) {
20320           // A constant that can be used as an immediate value in a
20321           // data-processing instruction.
20322           if (ARM_AM::getT2SOImmVal(CVal) != -1)
20323             break;
20324         } else {
20325           // A constant that can be used as an immediate value in a
20326           // data-processing instruction.
20327           if (ARM_AM::getSOImmVal(CVal) != -1)
20328             break;
20329         }
20330         return;
20331 
20332       case 'J':
20333         if (Subtarget->isThumb1Only()) {
20334           // This must be a constant between -255 and -1, for negated ADD
20335           // immediates. This can be used in GCC with an "n" modifier that
20336           // prints the negated value, for use with SUB instructions. It is
20337           // not useful otherwise but is implemented for compatibility.
20338           if (CVal >= -255 && CVal <= -1)
20339             break;
20340         } else {
20341           // This must be a constant between -4095 and 4095. It is not clear
20342           // what this constraint is intended for. Implemented for
20343           // compatibility with GCC.
20344           if (CVal >= -4095 && CVal <= 4095)
20345             break;
20346         }
20347         return;
20348 
20349       case 'K':
20350         if (Subtarget->isThumb1Only()) {
20351           // A 32-bit value where only one byte has a nonzero value. Exclude
20352           // zero to match GCC. This constraint is used by GCC internally for
20353           // constants that can be loaded with a move/shift combination.
20354           // It is not useful otherwise but is implemented for compatibility.
20355           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
20356             break;
20357         } else if (Subtarget->isThumb2()) {
20358           // A constant whose bitwise inverse can be used as an immediate
20359           // value in a data-processing instruction. This can be used in GCC
20360           // with a "B" modifier that prints the inverted value, for use with
20361           // BIC and MVN instructions. It is not useful otherwise but is
20362           // implemented for compatibility.
20363           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
20364             break;
20365         } else {
20366           // A constant whose bitwise inverse can be used as an immediate
20367           // value in a data-processing instruction. This can be used in GCC
20368           // with a "B" modifier that prints the inverted value, for use with
20369           // BIC and MVN instructions. It is not useful otherwise but is
20370           // implemented for compatibility.
20371           if (ARM_AM::getSOImmVal(~CVal) != -1)
20372             break;
20373         }
20374         return;
20375 
20376       case 'L':
20377         if (Subtarget->isThumb1Only()) {
20378           // This must be a constant between -7 and 7,
20379           // for 3-operand ADD/SUB immediate instructions.
20380           if (CVal >= -7 && CVal < 7)
20381             break;
20382         } else if (Subtarget->isThumb2()) {
20383           // A constant whose negation can be used as an immediate value in a
20384           // data-processing instruction. This can be used in GCC with an "n"
20385           // modifier that prints the negated value, for use with SUB
20386           // instructions. It is not useful otherwise but is implemented for
20387           // compatibility.
20388           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
20389             break;
20390         } else {
20391           // A constant whose negation can be used as an immediate value in a
20392           // data-processing instruction. This can be used in GCC with an "n"
20393           // modifier that prints the negated value, for use with SUB
20394           // instructions. It is not useful otherwise but is implemented for
20395           // compatibility.
20396           if (ARM_AM::getSOImmVal(-CVal) != -1)
20397             break;
20398         }
20399         return;
20400 
20401       case 'M':
20402         if (Subtarget->isThumb1Only()) {
20403           // This must be a multiple of 4 between 0 and 1020, for
20404           // ADD sp + immediate.
20405           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
20406             break;
20407         } else {
20408           // A power of two or a constant between 0 and 32.  This is used in
20409           // GCC for the shift amount on shifted register operands, but it is
20410           // useful in general for any shift amounts.
20411           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
20412             break;
20413         }
20414         return;
20415 
20416       case 'N':
20417         if (Subtarget->isThumb1Only()) {
20418           // This must be a constant between 0 and 31, for shift amounts.
20419           if (CVal >= 0 && CVal <= 31)
20420             break;
20421         }
20422         return;
20423 
20424       case 'O':
20425         if (Subtarget->isThumb1Only()) {
20426           // This must be a multiple of 4 between -508 and 508, for
20427           // ADD/SUB sp = sp + immediate.
20428           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
20429             break;
20430         }
20431         return;
20432     }
20433     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
20434     break;
20435   }
20436 
20437   if (Result.getNode()) {
20438     Ops.push_back(Result);
20439     return;
20440   }
20441   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
20442 }
20443 
20444 static RTLIB::Libcall getDivRemLibcall(
20445     const SDNode *N, MVT::SimpleValueType SVT) {
20446   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20447           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
20448          "Unhandled Opcode in getDivRemLibcall");
20449   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20450                   N->getOpcode() == ISD::SREM;
20451   RTLIB::Libcall LC;
20452   switch (SVT) {
20453   default: llvm_unreachable("Unexpected request for libcall!");
20454   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
20455   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
20456   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
20457   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
20458   }
20459   return LC;
20460 }
20461 
20462 static TargetLowering::ArgListTy getDivRemArgList(
20463     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
20464   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20465           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
20466          "Unhandled Opcode in getDivRemArgList");
20467   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20468                   N->getOpcode() == ISD::SREM;
20469   TargetLowering::ArgListTy Args;
20470   TargetLowering::ArgListEntry Entry;
20471   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
20472     EVT ArgVT = N->getOperand(i).getValueType();
20473     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
20474     Entry.Node = N->getOperand(i);
20475     Entry.Ty = ArgTy;
20476     Entry.IsSExt = isSigned;
20477     Entry.IsZExt = !isSigned;
20478     Args.push_back(Entry);
20479   }
20480   if (Subtarget->isTargetWindows() && Args.size() >= 2)
20481     std::swap(Args[0], Args[1]);
20482   return Args;
20483 }
20484 
20485 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
20486   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
20487           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
20488           Subtarget->isTargetWindows()) &&
20489          "Register-based DivRem lowering only");
20490   unsigned Opcode = Op->getOpcode();
20491   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
20492          "Invalid opcode for Div/Rem lowering");
20493   bool isSigned = (Opcode == ISD::SDIVREM);
20494   EVT VT = Op->getValueType(0);
20495   SDLoc dl(Op);
20496 
20497   if (VT == MVT::i64 && isa<ConstantSDNode>(Op.getOperand(1))) {
20498     SmallVector<SDValue> Result;
20499     if (expandDIVREMByConstant(Op.getNode(), Result, MVT::i32, DAG)) {
20500         SDValue Res0 =
20501             DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[0], Result[1]);
20502         SDValue Res1 =
20503             DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[2], Result[3]);
20504         return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
20505                            {Res0, Res1});
20506     }
20507   }
20508 
20509   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
20510 
20511   // If the target has hardware divide, use divide + multiply + subtract:
20512   //     div = a / b
20513   //     rem = a - b * div
20514   //     return {div, rem}
20515   // This should be lowered into UDIV/SDIV + MLS later on.
20516   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
20517                                         : Subtarget->hasDivideInARMMode();
20518   if (hasDivide && Op->getValueType(0).isSimple() &&
20519       Op->getSimpleValueType(0) == MVT::i32) {
20520     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
20521     const SDValue Dividend = Op->getOperand(0);
20522     const SDValue Divisor = Op->getOperand(1);
20523     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
20524     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
20525     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
20526 
20527     SDValue Values[2] = {Div, Rem};
20528     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
20529   }
20530 
20531   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
20532                                        VT.getSimpleVT().SimpleTy);
20533   SDValue InChain = DAG.getEntryNode();
20534 
20535   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
20536                                                     DAG.getContext(),
20537                                                     Subtarget);
20538 
20539   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20540                                          getPointerTy(DAG.getDataLayout()));
20541 
20542   Type *RetTy = StructType::get(Ty, Ty);
20543 
20544   if (Subtarget->isTargetWindows())
20545     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
20546 
20547   TargetLowering::CallLoweringInfo CLI(DAG);
20548   CLI.setDebugLoc(dl).setChain(InChain)
20549     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
20550     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
20551 
20552   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
20553   return CallInfo.first;
20554 }
20555 
20556 // Lowers REM using divmod helpers
20557 // see RTABI section 4.2/4.3
20558 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
20559   EVT VT = N->getValueType(0);
20560 
20561   if (VT == MVT::i64 && isa<ConstantSDNode>(N->getOperand(1))) {
20562     SmallVector<SDValue> Result;
20563     if (expandDIVREMByConstant(N, Result, MVT::i32, DAG))
20564         return DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), N->getValueType(0),
20565                            Result[0], Result[1]);
20566   }
20567 
20568   // Build return types (div and rem)
20569   std::vector<Type*> RetTyParams;
20570   Type *RetTyElement;
20571 
20572   switch (VT.getSimpleVT().SimpleTy) {
20573   default: llvm_unreachable("Unexpected request for libcall!");
20574   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
20575   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
20576   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
20577   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
20578   }
20579 
20580   RetTyParams.push_back(RetTyElement);
20581   RetTyParams.push_back(RetTyElement);
20582   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
20583   Type *RetTy = StructType::get(*DAG.getContext(), ret);
20584 
20585   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
20586                                                              SimpleTy);
20587   SDValue InChain = DAG.getEntryNode();
20588   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
20589                                                     Subtarget);
20590   bool isSigned = N->getOpcode() == ISD::SREM;
20591   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20592                                          getPointerTy(DAG.getDataLayout()));
20593 
20594   if (Subtarget->isTargetWindows())
20595     InChain = WinDBZCheckDenominator(DAG, N, InChain);
20596 
20597   // Lower call
20598   CallLoweringInfo CLI(DAG);
20599   CLI.setChain(InChain)
20600      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
20601      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
20602   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
20603 
20604   // Return second (rem) result operand (first contains div)
20605   SDNode *ResNode = CallResult.first.getNode();
20606   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
20607   return ResNode->getOperand(1);
20608 }
20609 
20610 SDValue
20611 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
20612   assert(Subtarget->isTargetWindows() && "unsupported target platform");
20613   SDLoc DL(Op);
20614 
20615   // Get the inputs.
20616   SDValue Chain = Op.getOperand(0);
20617   SDValue Size  = Op.getOperand(1);
20618 
20619   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
20620           "no-stack-arg-probe")) {
20621     MaybeAlign Align =
20622         cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
20623     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20624     Chain = SP.getValue(1);
20625     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
20626     if (Align)
20627       SP =
20628           DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
20629                       DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32));
20630     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
20631     SDValue Ops[2] = { SP, Chain };
20632     return DAG.getMergeValues(Ops, DL);
20633   }
20634 
20635   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
20636                               DAG.getConstant(2, DL, MVT::i32));
20637 
20638   SDValue Flag;
20639   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
20640   Flag = Chain.getValue(1);
20641 
20642   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
20643   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
20644 
20645   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20646   Chain = NewSP.getValue(1);
20647 
20648   SDValue Ops[2] = { NewSP, Chain };
20649   return DAG.getMergeValues(Ops, DL);
20650 }
20651 
20652 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
20653   bool IsStrict = Op->isStrictFPOpcode();
20654   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20655   const unsigned DstSz = Op.getValueType().getSizeInBits();
20656   const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
20657   assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
20658          "Unexpected type for custom-lowering FP_EXTEND");
20659 
20660   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20661          "With both FP DP and 16, any FP conversion is legal!");
20662 
20663   assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
20664          "With FP16, 16 to 32 conversion is legal!");
20665 
20666   // Converting from 32 -> 64 is valid if we have FP64.
20667   if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
20668     // FIXME: Remove this when we have strict fp instruction selection patterns
20669     if (IsStrict) {
20670       SDLoc Loc(Op);
20671       SDValue Result = DAG.getNode(ISD::FP_EXTEND,
20672                                    Loc, Op.getValueType(), SrcVal);
20673       return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
20674     }
20675     return Op;
20676   }
20677 
20678   // Either we are converting from 16 -> 64, without FP16 and/or
20679   // FP.double-precision or without Armv8-fp. So we must do it in two
20680   // steps.
20681   // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
20682   // without FP16. So we must do a function call.
20683   SDLoc Loc(Op);
20684   RTLIB::Libcall LC;
20685   MakeLibCallOptions CallOptions;
20686   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20687   for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
20688     bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
20689     MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
20690     MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
20691     if (Supported) {
20692       if (IsStrict) {
20693         SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
20694                              {DstVT, MVT::Other}, {Chain, SrcVal});
20695         Chain = SrcVal.getValue(1);
20696       } else {
20697         SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
20698       }
20699     } else {
20700       LC = RTLIB::getFPEXT(SrcVT, DstVT);
20701       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20702              "Unexpected type for custom-lowering FP_EXTEND");
20703       std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20704                                             Loc, Chain);
20705     }
20706   }
20707 
20708   return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
20709 }
20710 
20711 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
20712   bool IsStrict = Op->isStrictFPOpcode();
20713 
20714   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20715   EVT SrcVT = SrcVal.getValueType();
20716   EVT DstVT = Op.getValueType();
20717   const unsigned DstSz = Op.getValueType().getSizeInBits();
20718   const unsigned SrcSz = SrcVT.getSizeInBits();
20719   (void)DstSz;
20720   assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
20721          "Unexpected type for custom-lowering FP_ROUND");
20722 
20723   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20724          "With both FP DP and 16, any FP conversion is legal!");
20725 
20726   SDLoc Loc(Op);
20727 
20728   // Instruction from 32 -> 16 if hasFP16 is valid
20729   if (SrcSz == 32 && Subtarget->hasFP16())
20730     return Op;
20731 
20732   // Lib call from 32 -> 16 / 64 -> [32, 16]
20733   RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
20734   assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20735          "Unexpected type for custom-lowering FP_ROUND");
20736   MakeLibCallOptions CallOptions;
20737   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20738   SDValue Result;
20739   std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20740                                         Loc, Chain);
20741   return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
20742 }
20743 
20744 bool
20745 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
20746   // The ARM target isn't yet aware of offsets.
20747   return false;
20748 }
20749 
20750 bool ARM::isBitFieldInvertedMask(unsigned v) {
20751   if (v == 0xffffffff)
20752     return false;
20753 
20754   // there can be 1's on either or both "outsides", all the "inside"
20755   // bits must be 0's
20756   return isShiftedMask_32(~v);
20757 }
20758 
20759 /// isFPImmLegal - Returns true if the target can instruction select the
20760 /// specified FP immediate natively. If false, the legalizer will
20761 /// materialize the FP immediate as a load from a constant pool.
20762 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
20763                                      bool ForCodeSize) const {
20764   if (!Subtarget->hasVFP3Base())
20765     return false;
20766   if (VT == MVT::f16 && Subtarget->hasFullFP16())
20767     return ARM_AM::getFP16Imm(Imm) != -1;
20768   if (VT == MVT::f32 && Subtarget->hasFullFP16() &&
20769       ARM_AM::getFP32FP16Imm(Imm) != -1)
20770     return true;
20771   if (VT == MVT::f32)
20772     return ARM_AM::getFP32Imm(Imm) != -1;
20773   if (VT == MVT::f64 && Subtarget->hasFP64())
20774     return ARM_AM::getFP64Imm(Imm) != -1;
20775   return false;
20776 }
20777 
20778 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
20779 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
20780 /// specified in the intrinsic calls.
20781 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
20782                                            const CallInst &I,
20783                                            MachineFunction &MF,
20784                                            unsigned Intrinsic) const {
20785   switch (Intrinsic) {
20786   case Intrinsic::arm_neon_vld1:
20787   case Intrinsic::arm_neon_vld2:
20788   case Intrinsic::arm_neon_vld3:
20789   case Intrinsic::arm_neon_vld4:
20790   case Intrinsic::arm_neon_vld2lane:
20791   case Intrinsic::arm_neon_vld3lane:
20792   case Intrinsic::arm_neon_vld4lane:
20793   case Intrinsic::arm_neon_vld2dup:
20794   case Intrinsic::arm_neon_vld3dup:
20795   case Intrinsic::arm_neon_vld4dup: {
20796     Info.opc = ISD::INTRINSIC_W_CHAIN;
20797     // Conservatively set memVT to the entire set of vectors loaded.
20798     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20799     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
20800     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20801     Info.ptrVal = I.getArgOperand(0);
20802     Info.offset = 0;
20803     Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
20804     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
20805     // volatile loads with NEON intrinsics not supported
20806     Info.flags = MachineMemOperand::MOLoad;
20807     return true;
20808   }
20809   case Intrinsic::arm_neon_vld1x2:
20810   case Intrinsic::arm_neon_vld1x3:
20811   case Intrinsic::arm_neon_vld1x4: {
20812     Info.opc = ISD::INTRINSIC_W_CHAIN;
20813     // Conservatively set memVT to the entire set of vectors loaded.
20814     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20815     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
20816     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20817     Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
20818     Info.offset = 0;
20819     Info.align.reset();
20820     // volatile loads with NEON intrinsics not supported
20821     Info.flags = MachineMemOperand::MOLoad;
20822     return true;
20823   }
20824   case Intrinsic::arm_neon_vst1:
20825   case Intrinsic::arm_neon_vst2:
20826   case Intrinsic::arm_neon_vst3:
20827   case Intrinsic::arm_neon_vst4:
20828   case Intrinsic::arm_neon_vst2lane:
20829   case Intrinsic::arm_neon_vst3lane:
20830   case Intrinsic::arm_neon_vst4lane: {
20831     Info.opc = ISD::INTRINSIC_VOID;
20832     // Conservatively set memVT to the entire set of vectors stored.
20833     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20834     unsigned NumElts = 0;
20835     for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
20836       Type *ArgTy = I.getArgOperand(ArgI)->getType();
20837       if (!ArgTy->isVectorTy())
20838         break;
20839       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
20840     }
20841     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20842     Info.ptrVal = I.getArgOperand(0);
20843     Info.offset = 0;
20844     Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
20845     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
20846     // volatile stores with NEON intrinsics not supported
20847     Info.flags = MachineMemOperand::MOStore;
20848     return true;
20849   }
20850   case Intrinsic::arm_neon_vst1x2:
20851   case Intrinsic::arm_neon_vst1x3:
20852   case Intrinsic::arm_neon_vst1x4: {
20853     Info.opc = ISD::INTRINSIC_VOID;
20854     // Conservatively set memVT to the entire set of vectors stored.
20855     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20856     unsigned NumElts = 0;
20857     for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
20858       Type *ArgTy = I.getArgOperand(ArgI)->getType();
20859       if (!ArgTy->isVectorTy())
20860         break;
20861       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
20862     }
20863     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20864     Info.ptrVal = I.getArgOperand(0);
20865     Info.offset = 0;
20866     Info.align.reset();
20867     // volatile stores with NEON intrinsics not supported
20868     Info.flags = MachineMemOperand::MOStore;
20869     return true;
20870   }
20871   case Intrinsic::arm_mve_vld2q:
20872   case Intrinsic::arm_mve_vld4q: {
20873     Info.opc = ISD::INTRINSIC_W_CHAIN;
20874     // Conservatively set memVT to the entire set of vectors loaded.
20875     Type *VecTy = cast<StructType>(I.getType())->getElementType(1);
20876     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
20877     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
20878     Info.ptrVal = I.getArgOperand(0);
20879     Info.offset = 0;
20880     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
20881     // volatile loads with MVE intrinsics not supported
20882     Info.flags = MachineMemOperand::MOLoad;
20883     return true;
20884   }
20885   case Intrinsic::arm_mve_vst2q:
20886   case Intrinsic::arm_mve_vst4q: {
20887     Info.opc = ISD::INTRINSIC_VOID;
20888     // Conservatively set memVT to the entire set of vectors stored.
20889     Type *VecTy = I.getArgOperand(1)->getType();
20890     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4;
20891     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
20892     Info.ptrVal = I.getArgOperand(0);
20893     Info.offset = 0;
20894     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
20895     // volatile stores with MVE intrinsics not supported
20896     Info.flags = MachineMemOperand::MOStore;
20897     return true;
20898   }
20899   case Intrinsic::arm_mve_vldr_gather_base:
20900   case Intrinsic::arm_mve_vldr_gather_base_predicated: {
20901     Info.opc = ISD::INTRINSIC_W_CHAIN;
20902     Info.ptrVal = nullptr;
20903     Info.memVT = MVT::getVT(I.getType());
20904     Info.align = Align(1);
20905     Info.flags |= MachineMemOperand::MOLoad;
20906     return true;
20907   }
20908   case Intrinsic::arm_mve_vldr_gather_base_wb:
20909   case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
20910     Info.opc = ISD::INTRINSIC_W_CHAIN;
20911     Info.ptrVal = nullptr;
20912     Info.memVT = MVT::getVT(I.getType()->getContainedType(0));
20913     Info.align = Align(1);
20914     Info.flags |= MachineMemOperand::MOLoad;
20915     return true;
20916   }
20917   case Intrinsic::arm_mve_vldr_gather_offset:
20918   case Intrinsic::arm_mve_vldr_gather_offset_predicated: {
20919     Info.opc = ISD::INTRINSIC_W_CHAIN;
20920     Info.ptrVal = nullptr;
20921     MVT DataVT = MVT::getVT(I.getType());
20922     unsigned MemSize = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
20923     Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
20924                                   DataVT.getVectorNumElements());
20925     Info.align = Align(1);
20926     Info.flags |= MachineMemOperand::MOLoad;
20927     return true;
20928   }
20929   case Intrinsic::arm_mve_vstr_scatter_base:
20930   case Intrinsic::arm_mve_vstr_scatter_base_predicated: {
20931     Info.opc = ISD::INTRINSIC_VOID;
20932     Info.ptrVal = nullptr;
20933     Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
20934     Info.align = Align(1);
20935     Info.flags |= MachineMemOperand::MOStore;
20936     return true;
20937   }
20938   case Intrinsic::arm_mve_vstr_scatter_base_wb:
20939   case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated: {
20940     Info.opc = ISD::INTRINSIC_W_CHAIN;
20941     Info.ptrVal = nullptr;
20942     Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
20943     Info.align = Align(1);
20944     Info.flags |= MachineMemOperand::MOStore;
20945     return true;
20946   }
20947   case Intrinsic::arm_mve_vstr_scatter_offset:
20948   case Intrinsic::arm_mve_vstr_scatter_offset_predicated: {
20949     Info.opc = ISD::INTRINSIC_VOID;
20950     Info.ptrVal = nullptr;
20951     MVT DataVT = MVT::getVT(I.getArgOperand(2)->getType());
20952     unsigned MemSize = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
20953     Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
20954                                   DataVT.getVectorNumElements());
20955     Info.align = Align(1);
20956     Info.flags |= MachineMemOperand::MOStore;
20957     return true;
20958   }
20959   case Intrinsic::arm_ldaex:
20960   case Intrinsic::arm_ldrex: {
20961     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20962     Type *ValTy = I.getParamElementType(0);
20963     Info.opc = ISD::INTRINSIC_W_CHAIN;
20964     Info.memVT = MVT::getVT(ValTy);
20965     Info.ptrVal = I.getArgOperand(0);
20966     Info.offset = 0;
20967     Info.align = DL.getABITypeAlign(ValTy);
20968     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
20969     return true;
20970   }
20971   case Intrinsic::arm_stlex:
20972   case Intrinsic::arm_strex: {
20973     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20974     Type *ValTy = I.getParamElementType(1);
20975     Info.opc = ISD::INTRINSIC_W_CHAIN;
20976     Info.memVT = MVT::getVT(ValTy);
20977     Info.ptrVal = I.getArgOperand(1);
20978     Info.offset = 0;
20979     Info.align = DL.getABITypeAlign(ValTy);
20980     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
20981     return true;
20982   }
20983   case Intrinsic::arm_stlexd:
20984   case Intrinsic::arm_strexd:
20985     Info.opc = ISD::INTRINSIC_W_CHAIN;
20986     Info.memVT = MVT::i64;
20987     Info.ptrVal = I.getArgOperand(2);
20988     Info.offset = 0;
20989     Info.align = Align(8);
20990     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
20991     return true;
20992 
20993   case Intrinsic::arm_ldaexd:
20994   case Intrinsic::arm_ldrexd:
20995     Info.opc = ISD::INTRINSIC_W_CHAIN;
20996     Info.memVT = MVT::i64;
20997     Info.ptrVal = I.getArgOperand(0);
20998     Info.offset = 0;
20999     Info.align = Align(8);
21000     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
21001     return true;
21002 
21003   default:
21004     break;
21005   }
21006 
21007   return false;
21008 }
21009 
21010 /// Returns true if it is beneficial to convert a load of a constant
21011 /// to just the constant itself.
21012 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
21013                                                           Type *Ty) const {
21014   assert(Ty->isIntegerTy());
21015 
21016   unsigned Bits = Ty->getPrimitiveSizeInBits();
21017   if (Bits == 0 || Bits > 32)
21018     return false;
21019   return true;
21020 }
21021 
21022 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
21023                                                 unsigned Index) const {
21024   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
21025     return false;
21026 
21027   return (Index == 0 || Index == ResVT.getVectorNumElements());
21028 }
21029 
21030 Instruction *ARMTargetLowering::makeDMB(IRBuilderBase &Builder,
21031                                         ARM_MB::MemBOpt Domain) const {
21032   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21033 
21034   // First, if the target has no DMB, see what fallback we can use.
21035   if (!Subtarget->hasDataBarrier()) {
21036     // Some ARMv6 cpus can support data barriers with an mcr instruction.
21037     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
21038     // here.
21039     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
21040       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
21041       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
21042                         Builder.getInt32(0), Builder.getInt32(7),
21043                         Builder.getInt32(10), Builder.getInt32(5)};
21044       return Builder.CreateCall(MCR, args);
21045     } else {
21046       // Instead of using barriers, atomic accesses on these subtargets use
21047       // libcalls.
21048       llvm_unreachable("makeDMB on a target so old that it has no barriers");
21049     }
21050   } else {
21051     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
21052     // Only a full system barrier exists in the M-class architectures.
21053     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
21054     Constant *CDomain = Builder.getInt32(Domain);
21055     return Builder.CreateCall(DMB, CDomain);
21056   }
21057 }
21058 
21059 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
21060 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
21061                                                  Instruction *Inst,
21062                                                  AtomicOrdering Ord) const {
21063   switch (Ord) {
21064   case AtomicOrdering::NotAtomic:
21065   case AtomicOrdering::Unordered:
21066     llvm_unreachable("Invalid fence: unordered/non-atomic");
21067   case AtomicOrdering::Monotonic:
21068   case AtomicOrdering::Acquire:
21069     return nullptr; // Nothing to do
21070   case AtomicOrdering::SequentiallyConsistent:
21071     if (!Inst->hasAtomicStore())
21072       return nullptr; // Nothing to do
21073     [[fallthrough]];
21074   case AtomicOrdering::Release:
21075   case AtomicOrdering::AcquireRelease:
21076     if (Subtarget->preferISHSTBarriers())
21077       return makeDMB(Builder, ARM_MB::ISHST);
21078     // FIXME: add a comment with a link to documentation justifying this.
21079     else
21080       return makeDMB(Builder, ARM_MB::ISH);
21081   }
21082   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
21083 }
21084 
21085 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
21086                                                   Instruction *Inst,
21087                                                   AtomicOrdering Ord) const {
21088   switch (Ord) {
21089   case AtomicOrdering::NotAtomic:
21090   case AtomicOrdering::Unordered:
21091     llvm_unreachable("Invalid fence: unordered/not-atomic");
21092   case AtomicOrdering::Monotonic:
21093   case AtomicOrdering::Release:
21094     return nullptr; // Nothing to do
21095   case AtomicOrdering::Acquire:
21096   case AtomicOrdering::AcquireRelease:
21097   case AtomicOrdering::SequentiallyConsistent:
21098     return makeDMB(Builder, ARM_MB::ISH);
21099   }
21100   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
21101 }
21102 
21103 // Loads and stores less than 64-bits are already atomic; ones above that
21104 // are doomed anyway, so defer to the default libcall and blame the OS when
21105 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21106 // anything for those.
21107 TargetLoweringBase::AtomicExpansionKind
21108 ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
21109   bool has64BitAtomicStore;
21110   if (Subtarget->isMClass())
21111     has64BitAtomicStore = false;
21112   else if (Subtarget->isThumb())
21113     has64BitAtomicStore = Subtarget->hasV7Ops();
21114   else
21115     has64BitAtomicStore = Subtarget->hasV6Ops();
21116 
21117   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
21118   return Size == 64 && has64BitAtomicStore ? AtomicExpansionKind::Expand
21119                                            : AtomicExpansionKind::None;
21120 }
21121 
21122 // Loads and stores less than 64-bits are already atomic; ones above that
21123 // are doomed anyway, so defer to the default libcall and blame the OS when
21124 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21125 // anything for those.
21126 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
21127 // guarantee, see DDI0406C ARM architecture reference manual,
21128 // sections A8.8.72-74 LDRD)
21129 TargetLowering::AtomicExpansionKind
21130 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
21131   bool has64BitAtomicLoad;
21132   if (Subtarget->isMClass())
21133     has64BitAtomicLoad = false;
21134   else if (Subtarget->isThumb())
21135     has64BitAtomicLoad = Subtarget->hasV7Ops();
21136   else
21137     has64BitAtomicLoad = Subtarget->hasV6Ops();
21138 
21139   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
21140   return (Size == 64 && has64BitAtomicLoad) ? AtomicExpansionKind::LLOnly
21141                                             : AtomicExpansionKind::None;
21142 }
21143 
21144 // For the real atomic operations, we have ldrex/strex up to 32 bits,
21145 // and up to 64 bits on the non-M profiles
21146 TargetLowering::AtomicExpansionKind
21147 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
21148   if (AI->isFloatingPointOperation())
21149     return AtomicExpansionKind::CmpXChg;
21150 
21151   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
21152   bool hasAtomicRMW;
21153   if (Subtarget->isMClass())
21154     hasAtomicRMW = Subtarget->hasV8MBaselineOps();
21155   else if (Subtarget->isThumb())
21156     hasAtomicRMW = Subtarget->hasV7Ops();
21157   else
21158     hasAtomicRMW = Subtarget->hasV6Ops();
21159   if (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW) {
21160     // At -O0, fast-regalloc cannot cope with the live vregs necessary to
21161     // implement atomicrmw without spilling. If the target address is also on
21162     // the stack and close enough to the spill slot, this can lead to a
21163     // situation where the monitor always gets cleared and the atomic operation
21164     // can never succeed. So at -O0 lower this operation to a CAS loop.
21165     if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
21166       return AtomicExpansionKind::CmpXChg;
21167     return AtomicExpansionKind::LLSC;
21168   }
21169   return AtomicExpansionKind::None;
21170 }
21171 
21172 // Similar to shouldExpandAtomicRMWInIR, ldrex/strex can be used  up to 32
21173 // bits, and up to 64 bits on the non-M profiles.
21174 TargetLowering::AtomicExpansionKind
21175 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
21176   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
21177   // implement cmpxchg without spilling. If the address being exchanged is also
21178   // on the stack and close enough to the spill slot, this can lead to a
21179   // situation where the monitor always gets cleared and the atomic operation
21180   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
21181   unsigned Size = AI->getOperand(1)->getType()->getPrimitiveSizeInBits();
21182   bool HasAtomicCmpXchg;
21183   if (Subtarget->isMClass())
21184     HasAtomicCmpXchg = Subtarget->hasV8MBaselineOps();
21185   else if (Subtarget->isThumb())
21186     HasAtomicCmpXchg = Subtarget->hasV7Ops();
21187   else
21188     HasAtomicCmpXchg = Subtarget->hasV6Ops();
21189   if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg &&
21190       Size <= (Subtarget->isMClass() ? 32U : 64U))
21191     return AtomicExpansionKind::LLSC;
21192   return AtomicExpansionKind::None;
21193 }
21194 
21195 bool ARMTargetLowering::shouldInsertFencesForAtomic(
21196     const Instruction *I) const {
21197   return InsertFencesForAtomic;
21198 }
21199 
21200 bool ARMTargetLowering::useLoadStackGuardNode() const {
21201   // ROPI/RWPI are not supported currently.
21202   return !Subtarget->isROPI() && !Subtarget->isRWPI();
21203 }
21204 
21205 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
21206   if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21207     return TargetLowering::insertSSPDeclarations(M);
21208 
21209   // MSVC CRT has a global variable holding security cookie.
21210   M.getOrInsertGlobal("__security_cookie",
21211                       Type::getInt8PtrTy(M.getContext()));
21212 
21213   // MSVC CRT has a function to validate security cookie.
21214   FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
21215       "__security_check_cookie", Type::getVoidTy(M.getContext()),
21216       Type::getInt8PtrTy(M.getContext()));
21217   if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
21218     F->addParamAttr(0, Attribute::AttrKind::InReg);
21219 }
21220 
21221 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
21222   // MSVC CRT has a global variable holding security cookie.
21223   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21224     return M.getGlobalVariable("__security_cookie");
21225   return TargetLowering::getSDagStackGuard(M);
21226 }
21227 
21228 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
21229   // MSVC CRT has a function to validate security cookie.
21230   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21231     return M.getFunction("__security_check_cookie");
21232   return TargetLowering::getSSPStackGuardCheck(M);
21233 }
21234 
21235 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
21236                                                   unsigned &Cost) const {
21237   // If we do not have NEON, vector types are not natively supported.
21238   if (!Subtarget->hasNEON())
21239     return false;
21240 
21241   // Floating point values and vector values map to the same register file.
21242   // Therefore, although we could do a store extract of a vector type, this is
21243   // better to leave at float as we have more freedom in the addressing mode for
21244   // those.
21245   if (VectorTy->isFPOrFPVectorTy())
21246     return false;
21247 
21248   // If the index is unknown at compile time, this is very expensive to lower
21249   // and it is not possible to combine the store with the extract.
21250   if (!isa<ConstantInt>(Idx))
21251     return false;
21252 
21253   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
21254   unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedValue();
21255   // We can do a store + vector extract on any vector that fits perfectly in a D
21256   // or Q register.
21257   if (BitWidth == 64 || BitWidth == 128) {
21258     Cost = 0;
21259     return true;
21260   }
21261   return false;
21262 }
21263 
21264 bool ARMTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
21265   return Subtarget->hasV6T2Ops();
21266 }
21267 
21268 bool ARMTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
21269   return Subtarget->hasV6T2Ops();
21270 }
21271 
21272 bool ARMTargetLowering::isMaskAndCmp0FoldingBeneficial(
21273     const Instruction &AndI) const {
21274   if (!Subtarget->hasV7Ops())
21275     return false;
21276 
21277   // Sink the `and` instruction only if the mask would fit into a modified
21278   // immediate operand.
21279   ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
21280   if (!Mask || Mask->getValue().getBitWidth() > 32u)
21281     return false;
21282   auto MaskVal = unsigned(Mask->getValue().getZExtValue());
21283   return (Subtarget->isThumb2() ? ARM_AM::getT2SOImmVal(MaskVal)
21284                                 : ARM_AM::getSOImmVal(MaskVal)) != -1;
21285 }
21286 
21287 TargetLowering::ShiftLegalizationStrategy
21288 ARMTargetLowering::preferredShiftLegalizationStrategy(
21289     SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const {
21290   if (Subtarget->hasMinSize() && !Subtarget->isTargetWindows())
21291     return ShiftLegalizationStrategy::LowerToLibcall;
21292   return TargetLowering::preferredShiftLegalizationStrategy(DAG, N,
21293                                                             ExpansionFactor);
21294 }
21295 
21296 Value *ARMTargetLowering::emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
21297                                          Value *Addr,
21298                                          AtomicOrdering Ord) const {
21299   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21300   bool IsAcquire = isAcquireOrStronger(Ord);
21301 
21302   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
21303   // intrinsic must return {i32, i32} and we have to recombine them into a
21304   // single i64 here.
21305   if (ValueTy->getPrimitiveSizeInBits() == 64) {
21306     Intrinsic::ID Int =
21307         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
21308     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
21309 
21310     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
21311     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
21312 
21313     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
21314     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
21315     if (!Subtarget->isLittle())
21316       std::swap (Lo, Hi);
21317     Lo = Builder.CreateZExt(Lo, ValueTy, "lo64");
21318     Hi = Builder.CreateZExt(Hi, ValueTy, "hi64");
21319     return Builder.CreateOr(
21320         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValueTy, 32)), "val64");
21321   }
21322 
21323   Type *Tys[] = { Addr->getType() };
21324   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
21325   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
21326   CallInst *CI = Builder.CreateCall(Ldrex, Addr);
21327 
21328   CI->addParamAttr(
21329       0, Attribute::get(M->getContext(), Attribute::ElementType, ValueTy));
21330   return Builder.CreateTruncOrBitCast(CI, ValueTy);
21331 }
21332 
21333 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
21334     IRBuilderBase &Builder) const {
21335   if (!Subtarget->hasV7Ops())
21336     return;
21337   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21338   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
21339 }
21340 
21341 Value *ARMTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
21342                                                Value *Val, Value *Addr,
21343                                                AtomicOrdering Ord) const {
21344   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21345   bool IsRelease = isReleaseOrStronger(Ord);
21346 
21347   // Since the intrinsics must have legal type, the i64 intrinsics take two
21348   // parameters: "i32, i32". We must marshal Val into the appropriate form
21349   // before the call.
21350   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
21351     Intrinsic::ID Int =
21352         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
21353     Function *Strex = Intrinsic::getDeclaration(M, Int);
21354     Type *Int32Ty = Type::getInt32Ty(M->getContext());
21355 
21356     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
21357     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
21358     if (!Subtarget->isLittle())
21359       std::swap(Lo, Hi);
21360     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
21361     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
21362   }
21363 
21364   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
21365   Type *Tys[] = { Addr->getType() };
21366   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
21367 
21368   CallInst *CI = Builder.CreateCall(
21369       Strex, {Builder.CreateZExtOrBitCast(
21370                   Val, Strex->getFunctionType()->getParamType(0)),
21371               Addr});
21372   CI->addParamAttr(1, Attribute::get(M->getContext(), Attribute::ElementType,
21373                                      Val->getType()));
21374   return CI;
21375 }
21376 
21377 
21378 bool ARMTargetLowering::alignLoopsWithOptSize() const {
21379   return Subtarget->isMClass();
21380 }
21381 
21382 /// A helper function for determining the number of interleaved accesses we
21383 /// will generate when lowering accesses of the given type.
21384 unsigned
21385 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
21386                                              const DataLayout &DL) const {
21387   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
21388 }
21389 
21390 bool ARMTargetLowering::isLegalInterleavedAccessType(
21391     unsigned Factor, FixedVectorType *VecTy, Align Alignment,
21392     const DataLayout &DL) const {
21393 
21394   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
21395   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
21396 
21397   if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
21398     return false;
21399 
21400   // Ensure the vector doesn't have f16 elements. Even though we could do an
21401   // i16 vldN, we can't hold the f16 vectors and will end up converting via
21402   // f32.
21403   if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
21404     return false;
21405   if (Subtarget->hasMVEIntegerOps() && Factor == 3)
21406     return false;
21407 
21408   // Ensure the number of vector elements is greater than 1.
21409   if (VecTy->getNumElements() < 2)
21410     return false;
21411 
21412   // Ensure the element type is legal.
21413   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
21414     return false;
21415   // And the alignment if high enough under MVE.
21416   if (Subtarget->hasMVEIntegerOps() && Alignment < ElSize / 8)
21417     return false;
21418 
21419   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
21420   // 128 will be split into multiple interleaved accesses.
21421   if (Subtarget->hasNEON() && VecSize == 64)
21422     return true;
21423   return VecSize % 128 == 0;
21424 }
21425 
21426 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
21427   if (Subtarget->hasNEON())
21428     return 4;
21429   if (Subtarget->hasMVEIntegerOps())
21430     return MVEMaxSupportedInterleaveFactor;
21431   return TargetLoweringBase::getMaxSupportedInterleaveFactor();
21432 }
21433 
21434 /// Lower an interleaved load into a vldN intrinsic.
21435 ///
21436 /// E.g. Lower an interleaved load (Factor = 2):
21437 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
21438 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
21439 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
21440 ///
21441 ///      Into:
21442 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
21443 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
21444 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
21445 bool ARMTargetLowering::lowerInterleavedLoad(
21446     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
21447     ArrayRef<unsigned> Indices, unsigned Factor) const {
21448   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21449          "Invalid interleave factor");
21450   assert(!Shuffles.empty() && "Empty shufflevector input");
21451   assert(Shuffles.size() == Indices.size() &&
21452          "Unmatched number of shufflevectors and indices");
21453 
21454   auto *VecTy = cast<FixedVectorType>(Shuffles[0]->getType());
21455   Type *EltTy = VecTy->getElementType();
21456 
21457   const DataLayout &DL = LI->getModule()->getDataLayout();
21458   Align Alignment = LI->getAlign();
21459 
21460   // Skip if we do not have NEON and skip illegal vector types. We can
21461   // "legalize" wide vector types into multiple interleaved accesses as long as
21462   // the vector types are divisible by 128.
21463   if (!isLegalInterleavedAccessType(Factor, VecTy, Alignment, DL))
21464     return false;
21465 
21466   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
21467 
21468   // A pointer vector can not be the return type of the ldN intrinsics. Need to
21469   // load integer vectors first and then convert to pointer vectors.
21470   if (EltTy->isPointerTy())
21471     VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy);
21472 
21473   IRBuilder<> Builder(LI);
21474 
21475   // The base address of the load.
21476   Value *BaseAddr = LI->getPointerOperand();
21477 
21478   if (NumLoads > 1) {
21479     // If we're going to generate more than one load, reset the sub-vector type
21480     // to something legal.
21481     VecTy = FixedVectorType::get(VecTy->getElementType(),
21482                                  VecTy->getNumElements() / NumLoads);
21483 
21484     // We will compute the pointer operand of each load from the original base
21485     // address using GEPs. Cast the base address to a pointer to the scalar
21486     // element type.
21487     BaseAddr = Builder.CreateBitCast(
21488         BaseAddr,
21489         VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace()));
21490   }
21491 
21492   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
21493 
21494   auto createLoadIntrinsic = [&](Value *BaseAddr) {
21495     if (Subtarget->hasNEON()) {
21496       Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
21497       Type *Tys[] = {VecTy, Int8Ptr};
21498       static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
21499                                                 Intrinsic::arm_neon_vld3,
21500                                                 Intrinsic::arm_neon_vld4};
21501       Function *VldnFunc =
21502           Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
21503 
21504       SmallVector<Value *, 2> Ops;
21505       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
21506       Ops.push_back(Builder.getInt32(LI->getAlign().value()));
21507 
21508       return Builder.CreateCall(VldnFunc, Ops, "vldN");
21509     } else {
21510       assert((Factor == 2 || Factor == 4) &&
21511              "expected interleave factor of 2 or 4 for MVE");
21512       Intrinsic::ID LoadInts =
21513           Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
21514       Type *VecEltTy =
21515           VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace());
21516       Type *Tys[] = {VecTy, VecEltTy};
21517       Function *VldnFunc =
21518           Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
21519 
21520       SmallVector<Value *, 2> Ops;
21521       Ops.push_back(Builder.CreateBitCast(BaseAddr, VecEltTy));
21522       return Builder.CreateCall(VldnFunc, Ops, "vldN");
21523     }
21524   };
21525 
21526   // Holds sub-vectors extracted from the load intrinsic return values. The
21527   // sub-vectors are associated with the shufflevector instructions they will
21528   // replace.
21529   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
21530 
21531   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
21532     // If we're generating more than one load, compute the base address of
21533     // subsequent loads as an offset from the previous.
21534     if (LoadCount > 0)
21535       BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr,
21536                                             VecTy->getNumElements() * Factor);
21537 
21538     CallInst *VldN = createLoadIntrinsic(BaseAddr);
21539 
21540     // Replace uses of each shufflevector with the corresponding vector loaded
21541     // by ldN.
21542     for (unsigned i = 0; i < Shuffles.size(); i++) {
21543       ShuffleVectorInst *SV = Shuffles[i];
21544       unsigned Index = Indices[i];
21545 
21546       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
21547 
21548       // Convert the integer vector to pointer vector if the element is pointer.
21549       if (EltTy->isPointerTy())
21550         SubVec = Builder.CreateIntToPtr(
21551             SubVec,
21552             FixedVectorType::get(SV->getType()->getElementType(), VecTy));
21553 
21554       SubVecs[SV].push_back(SubVec);
21555     }
21556   }
21557 
21558   // Replace uses of the shufflevector instructions with the sub-vectors
21559   // returned by the load intrinsic. If a shufflevector instruction is
21560   // associated with more than one sub-vector, those sub-vectors will be
21561   // concatenated into a single wide vector.
21562   for (ShuffleVectorInst *SVI : Shuffles) {
21563     auto &SubVec = SubVecs[SVI];
21564     auto *WideVec =
21565         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
21566     SVI->replaceAllUsesWith(WideVec);
21567   }
21568 
21569   return true;
21570 }
21571 
21572 /// Lower an interleaved store into a vstN intrinsic.
21573 ///
21574 /// E.g. Lower an interleaved store (Factor = 3):
21575 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
21576 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
21577 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
21578 ///
21579 ///      Into:
21580 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
21581 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
21582 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
21583 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21584 ///
21585 /// Note that the new shufflevectors will be removed and we'll only generate one
21586 /// vst3 instruction in CodeGen.
21587 ///
21588 /// Example for a more general valid mask (Factor 3). Lower:
21589 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
21590 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
21591 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
21592 ///
21593 ///      Into:
21594 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
21595 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
21596 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
21597 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21598 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
21599                                               ShuffleVectorInst *SVI,
21600                                               unsigned Factor) const {
21601   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21602          "Invalid interleave factor");
21603 
21604   auto *VecTy = cast<FixedVectorType>(SVI->getType());
21605   assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
21606 
21607   unsigned LaneLen = VecTy->getNumElements() / Factor;
21608   Type *EltTy = VecTy->getElementType();
21609   auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
21610 
21611   const DataLayout &DL = SI->getModule()->getDataLayout();
21612   Align Alignment = SI->getAlign();
21613 
21614   // Skip if we do not have NEON and skip illegal vector types. We can
21615   // "legalize" wide vector types into multiple interleaved accesses as long as
21616   // the vector types are divisible by 128.
21617   if (!isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
21618     return false;
21619 
21620   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
21621 
21622   Value *Op0 = SVI->getOperand(0);
21623   Value *Op1 = SVI->getOperand(1);
21624   IRBuilder<> Builder(SI);
21625 
21626   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
21627   // vectors to integer vectors.
21628   if (EltTy->isPointerTy()) {
21629     Type *IntTy = DL.getIntPtrType(EltTy);
21630 
21631     // Convert to the corresponding integer vector.
21632     auto *IntVecTy =
21633         FixedVectorType::get(IntTy, cast<FixedVectorType>(Op0->getType()));
21634     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
21635     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
21636 
21637     SubVecTy = FixedVectorType::get(IntTy, LaneLen);
21638   }
21639 
21640   // The base address of the store.
21641   Value *BaseAddr = SI->getPointerOperand();
21642 
21643   if (NumStores > 1) {
21644     // If we're going to generate more than one store, reset the lane length
21645     // and sub-vector type to something legal.
21646     LaneLen /= NumStores;
21647     SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
21648 
21649     // We will compute the pointer operand of each store from the original base
21650     // address using GEPs. Cast the base address to a pointer to the scalar
21651     // element type.
21652     BaseAddr = Builder.CreateBitCast(
21653         BaseAddr,
21654         SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace()));
21655   }
21656 
21657   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
21658 
21659   auto Mask = SVI->getShuffleMask();
21660 
21661   auto createStoreIntrinsic = [&](Value *BaseAddr,
21662                                   SmallVectorImpl<Value *> &Shuffles) {
21663     if (Subtarget->hasNEON()) {
21664       static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
21665                                                  Intrinsic::arm_neon_vst3,
21666                                                  Intrinsic::arm_neon_vst4};
21667       Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
21668       Type *Tys[] = {Int8Ptr, SubVecTy};
21669 
21670       Function *VstNFunc = Intrinsic::getDeclaration(
21671           SI->getModule(), StoreInts[Factor - 2], Tys);
21672 
21673       SmallVector<Value *, 6> Ops;
21674       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
21675       append_range(Ops, Shuffles);
21676       Ops.push_back(Builder.getInt32(SI->getAlign().value()));
21677       Builder.CreateCall(VstNFunc, Ops);
21678     } else {
21679       assert((Factor == 2 || Factor == 4) &&
21680              "expected interleave factor of 2 or 4 for MVE");
21681       Intrinsic::ID StoreInts =
21682           Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
21683       Type *EltPtrTy = SubVecTy->getElementType()->getPointerTo(
21684           SI->getPointerAddressSpace());
21685       Type *Tys[] = {EltPtrTy, SubVecTy};
21686       Function *VstNFunc =
21687           Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
21688 
21689       SmallVector<Value *, 6> Ops;
21690       Ops.push_back(Builder.CreateBitCast(BaseAddr, EltPtrTy));
21691       append_range(Ops, Shuffles);
21692       for (unsigned F = 0; F < Factor; F++) {
21693         Ops.push_back(Builder.getInt32(F));
21694         Builder.CreateCall(VstNFunc, Ops);
21695         Ops.pop_back();
21696       }
21697     }
21698   };
21699 
21700   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
21701     // If we generating more than one store, we compute the base address of
21702     // subsequent stores as an offset from the previous.
21703     if (StoreCount > 0)
21704       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
21705                                             BaseAddr, LaneLen * Factor);
21706 
21707     SmallVector<Value *, 4> Shuffles;
21708 
21709     // Split the shufflevector operands into sub vectors for the new vstN call.
21710     for (unsigned i = 0; i < Factor; i++) {
21711       unsigned IdxI = StoreCount * LaneLen * Factor + i;
21712       if (Mask[IdxI] >= 0) {
21713         Shuffles.push_back(Builder.CreateShuffleVector(
21714             Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)));
21715       } else {
21716         unsigned StartMask = 0;
21717         for (unsigned j = 1; j < LaneLen; j++) {
21718           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
21719           if (Mask[IdxJ * Factor + IdxI] >= 0) {
21720             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
21721             break;
21722           }
21723         }
21724         // Note: If all elements in a chunk are undefs, StartMask=0!
21725         // Note: Filling undef gaps with random elements is ok, since
21726         // those elements were being written anyway (with undefs).
21727         // In the case of all undefs we're defaulting to using elems from 0
21728         // Note: StartMask cannot be negative, it's checked in
21729         // isReInterleaveMask
21730         Shuffles.push_back(Builder.CreateShuffleVector(
21731             Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)));
21732       }
21733     }
21734 
21735     createStoreIntrinsic(BaseAddr, Shuffles);
21736   }
21737   return true;
21738 }
21739 
21740 enum HABaseType {
21741   HA_UNKNOWN = 0,
21742   HA_FLOAT,
21743   HA_DOUBLE,
21744   HA_VECT64,
21745   HA_VECT128
21746 };
21747 
21748 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
21749                                    uint64_t &Members) {
21750   if (auto *ST = dyn_cast<StructType>(Ty)) {
21751     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
21752       uint64_t SubMembers = 0;
21753       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
21754         return false;
21755       Members += SubMembers;
21756     }
21757   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
21758     uint64_t SubMembers = 0;
21759     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
21760       return false;
21761     Members += SubMembers * AT->getNumElements();
21762   } else if (Ty->isFloatTy()) {
21763     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
21764       return false;
21765     Members = 1;
21766     Base = HA_FLOAT;
21767   } else if (Ty->isDoubleTy()) {
21768     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
21769       return false;
21770     Members = 1;
21771     Base = HA_DOUBLE;
21772   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
21773     Members = 1;
21774     switch (Base) {
21775     case HA_FLOAT:
21776     case HA_DOUBLE:
21777       return false;
21778     case HA_VECT64:
21779       return VT->getPrimitiveSizeInBits().getFixedValue() == 64;
21780     case HA_VECT128:
21781       return VT->getPrimitiveSizeInBits().getFixedValue() == 128;
21782     case HA_UNKNOWN:
21783       switch (VT->getPrimitiveSizeInBits().getFixedValue()) {
21784       case 64:
21785         Base = HA_VECT64;
21786         return true;
21787       case 128:
21788         Base = HA_VECT128;
21789         return true;
21790       default:
21791         return false;
21792       }
21793     }
21794   }
21795 
21796   return (Members > 0 && Members <= 4);
21797 }
21798 
21799 /// Return the correct alignment for the current calling convention.
21800 Align ARMTargetLowering::getABIAlignmentForCallingConv(
21801     Type *ArgTy, const DataLayout &DL) const {
21802   const Align ABITypeAlign = DL.getABITypeAlign(ArgTy);
21803   if (!ArgTy->isVectorTy())
21804     return ABITypeAlign;
21805 
21806   // Avoid over-aligning vector parameters. It would require realigning the
21807   // stack and waste space for no real benefit.
21808   return std::min(ABITypeAlign, DL.getStackAlignment());
21809 }
21810 
21811 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
21812 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
21813 /// passing according to AAPCS rules.
21814 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
21815     Type *Ty, CallingConv::ID CallConv, bool isVarArg,
21816     const DataLayout &DL) const {
21817   if (getEffectiveCallingConv(CallConv, isVarArg) !=
21818       CallingConv::ARM_AAPCS_VFP)
21819     return false;
21820 
21821   HABaseType Base = HA_UNKNOWN;
21822   uint64_t Members = 0;
21823   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
21824   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
21825 
21826   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
21827   return IsHA || IsIntArray;
21828 }
21829 
21830 Register ARMTargetLowering::getExceptionPointerRegister(
21831     const Constant *PersonalityFn) const {
21832   // Platforms which do not use SjLj EH may return values in these registers
21833   // via the personality function.
21834   return Subtarget->useSjLjEH() ? Register() : ARM::R0;
21835 }
21836 
21837 Register ARMTargetLowering::getExceptionSelectorRegister(
21838     const Constant *PersonalityFn) const {
21839   // Platforms which do not use SjLj EH may return values in these registers
21840   // via the personality function.
21841   return Subtarget->useSjLjEH() ? Register() : ARM::R1;
21842 }
21843 
21844 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
21845   // Update IsSplitCSR in ARMFunctionInfo.
21846   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
21847   AFI->setIsSplitCSR(true);
21848 }
21849 
21850 void ARMTargetLowering::insertCopiesSplitCSR(
21851     MachineBasicBlock *Entry,
21852     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
21853   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
21854   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
21855   if (!IStart)
21856     return;
21857 
21858   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
21859   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
21860   MachineBasicBlock::iterator MBBI = Entry->begin();
21861   for (const MCPhysReg *I = IStart; *I; ++I) {
21862     const TargetRegisterClass *RC = nullptr;
21863     if (ARM::GPRRegClass.contains(*I))
21864       RC = &ARM::GPRRegClass;
21865     else if (ARM::DPRRegClass.contains(*I))
21866       RC = &ARM::DPRRegClass;
21867     else
21868       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
21869 
21870     Register NewVR = MRI->createVirtualRegister(RC);
21871     // Create copy from CSR to a virtual register.
21872     // FIXME: this currently does not emit CFI pseudo-instructions, it works
21873     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
21874     // nounwind. If we want to generalize this later, we may need to emit
21875     // CFI pseudo-instructions.
21876     assert(Entry->getParent()->getFunction().hasFnAttribute(
21877                Attribute::NoUnwind) &&
21878            "Function should be nounwind in insertCopiesSplitCSR!");
21879     Entry->addLiveIn(*I);
21880     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
21881         .addReg(*I);
21882 
21883     // Insert the copy-back instructions right before the terminator.
21884     for (auto *Exit : Exits)
21885       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
21886               TII->get(TargetOpcode::COPY), *I)
21887           .addReg(NewVR);
21888   }
21889 }
21890 
21891 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
21892   MF.getFrameInfo().computeMaxCallFrameSize(MF);
21893   TargetLoweringBase::finalizeLowering(MF);
21894 }
21895 
21896 bool ARMTargetLowering::isComplexDeinterleavingSupported() const {
21897   return Subtarget->hasMVEIntegerOps();
21898 }
21899 
21900 bool ARMTargetLowering::isComplexDeinterleavingOperationSupported(
21901     ComplexDeinterleavingOperation Operation, Type *Ty) const {
21902   auto *VTy = dyn_cast<FixedVectorType>(Ty);
21903   if (!VTy)
21904     return false;
21905 
21906   auto *ScalarTy = VTy->getScalarType();
21907   unsigned NumElements = VTy->getNumElements();
21908 
21909   unsigned VTyWidth = VTy->getScalarSizeInBits() * NumElements;
21910   if (VTyWidth < 128 || !llvm::isPowerOf2_32(VTyWidth))
21911     return false;
21912 
21913   // Both VCADD and VCMUL/VCMLA support the same types, F16 and F32
21914   if (ScalarTy->isHalfTy() || ScalarTy->isFloatTy())
21915     return Subtarget->hasMVEFloatOps();
21916 
21917   if (Operation != ComplexDeinterleavingOperation::CAdd)
21918     return false;
21919 
21920   return Subtarget->hasMVEIntegerOps() &&
21921          (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
21922           ScalarTy->isIntegerTy(32));
21923 }
21924 
21925 Value *ARMTargetLowering::createComplexDeinterleavingIR(
21926     Instruction *I, ComplexDeinterleavingOperation OperationType,
21927     ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
21928     Value *Accumulator) const {
21929 
21930   FixedVectorType *Ty = cast<FixedVectorType>(InputA->getType());
21931 
21932   IRBuilder<> B(I);
21933 
21934   unsigned TyWidth = Ty->getScalarSizeInBits() * Ty->getNumElements();
21935 
21936   assert(TyWidth >= 128 && "Width of vector type must be at least 128 bits");
21937 
21938   if (TyWidth > 128) {
21939     int Stride = Ty->getNumElements() / 2;
21940     auto SplitSeq = llvm::seq<int>(0, Ty->getNumElements());
21941     auto SplitSeqVec = llvm::to_vector(SplitSeq);
21942     ArrayRef<int> LowerSplitMask(&SplitSeqVec[0], Stride);
21943     ArrayRef<int> UpperSplitMask(&SplitSeqVec[Stride], Stride);
21944 
21945     auto *LowerSplitA = B.CreateShuffleVector(InputA, LowerSplitMask);
21946     auto *LowerSplitB = B.CreateShuffleVector(InputB, LowerSplitMask);
21947     auto *UpperSplitA = B.CreateShuffleVector(InputA, UpperSplitMask);
21948     auto *UpperSplitB = B.CreateShuffleVector(InputB, UpperSplitMask);
21949     Value *LowerSplitAcc = nullptr;
21950     Value *UpperSplitAcc = nullptr;
21951 
21952     if (Accumulator) {
21953       LowerSplitAcc = B.CreateShuffleVector(Accumulator, LowerSplitMask);
21954       UpperSplitAcc = B.CreateShuffleVector(Accumulator, UpperSplitMask);
21955     }
21956 
21957     auto *LowerSplitInt = createComplexDeinterleavingIR(
21958         I, OperationType, Rotation, LowerSplitA, LowerSplitB, LowerSplitAcc);
21959     auto *UpperSplitInt = createComplexDeinterleavingIR(
21960         I, OperationType, Rotation, UpperSplitA, UpperSplitB, UpperSplitAcc);
21961 
21962     ArrayRef<int> JoinMask(&SplitSeqVec[0], Ty->getNumElements());
21963     return B.CreateShuffleVector(LowerSplitInt, UpperSplitInt, JoinMask);
21964   }
21965 
21966   auto *IntTy = Type::getInt32Ty(B.getContext());
21967 
21968   ConstantInt *ConstRotation = nullptr;
21969   if (OperationType == ComplexDeinterleavingOperation::CMulPartial) {
21970     ConstRotation = ConstantInt::get(IntTy, (int)Rotation);
21971 
21972     if (Accumulator)
21973       return B.CreateIntrinsic(Intrinsic::arm_mve_vcmlaq, Ty,
21974                                {ConstRotation, Accumulator, InputB, InputA});
21975     return B.CreateIntrinsic(Intrinsic::arm_mve_vcmulq, Ty,
21976                              {ConstRotation, InputB, InputA});
21977   }
21978 
21979   if (OperationType == ComplexDeinterleavingOperation::CAdd) {
21980     // 1 means the value is not halved.
21981     auto *ConstHalving = ConstantInt::get(IntTy, 1);
21982 
21983     if (Rotation == ComplexDeinterleavingRotation::Rotation_90)
21984       ConstRotation = ConstantInt::get(IntTy, 0);
21985     else if (Rotation == ComplexDeinterleavingRotation::Rotation_270)
21986       ConstRotation = ConstantInt::get(IntTy, 1);
21987 
21988     if (!ConstRotation)
21989       return nullptr; // Invalid rotation for arm_mve_vcaddq
21990 
21991     return B.CreateIntrinsic(Intrinsic::arm_mve_vcaddq, Ty,
21992                              {ConstHalving, ConstRotation, InputA, InputB});
21993   }
21994 
21995   return nullptr;
21996 }
21997