1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMBaseInstrInfo.h"
10 #include "ARMFeatures.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMBaseInfo.h"
13 #include "MCTargetDesc/ARMInstPrinter.h"
14 #include "MCTargetDesc/ARMMCExpr.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "TargetInfo/ARMTargetInfo.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/StringSet.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
40 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSubtargetInfo.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/SubtargetFeature.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Support/ARMBuildAttributes.h"
49 #include "llvm/Support/ARMEHABI.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/SMLoc.h"
56 #include "llvm/Support/TargetParser.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <utility>
67 #include <vector>
68 
69 #define DEBUG_TYPE "asm-parser"
70 
71 using namespace llvm;
72 
73 namespace llvm {
74 extern const MCInstrDesc ARMInsts[];
75 } // end namespace llvm
76 
77 namespace {
78 
79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
80 
81 static cl::opt<ImplicitItModeTy> ImplicitItMode(
82     "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
83     cl::desc("Allow conditional instructions outdside of an IT block"),
84     cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
85                           "Accept in both ISAs, emit implicit ITs in Thumb"),
86                clEnumValN(ImplicitItModeTy::Never, "never",
87                           "Warn in ARM, reject in Thumb"),
88                clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
89                           "Accept in ARM, reject in Thumb"),
90                clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
91                           "Warn in ARM, emit implicit ITs in Thumb")));
92 
93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
94                                         cl::init(false));
95 
96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
97 
98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
99   // Position==0 means we're not in an IT block at all. Position==1
100   // means we want the first state bit, which is always 0 (Then).
101   // Position==2 means we want the second state bit, stored at bit 3
102   // of Mask, and so on downwards. So (5 - Position) will shift the
103   // right bit down to bit 0, including the always-0 bit at bit 4 for
104   // the mandatory initial Then.
105   return (Mask >> (5 - Position) & 1);
106 }
107 
108 class UnwindContext {
109   using Locs = SmallVector<SMLoc, 4>;
110 
111   MCAsmParser &Parser;
112   Locs FnStartLocs;
113   Locs CantUnwindLocs;
114   Locs PersonalityLocs;
115   Locs PersonalityIndexLocs;
116   Locs HandlerDataLocs;
117   int FPReg;
118 
119 public:
120   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
121 
122   bool hasFnStart() const { return !FnStartLocs.empty(); }
123   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
124   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
125 
126   bool hasPersonality() const {
127     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
128   }
129 
130   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
131   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
132   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
133   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
134   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
135 
136   void saveFPReg(int Reg) { FPReg = Reg; }
137   int getFPReg() const { return FPReg; }
138 
139   void emitFnStartLocNotes() const {
140     for (const SMLoc &Loc : FnStartLocs)
141       Parser.Note(Loc, ".fnstart was specified here");
142   }
143 
144   void emitCantUnwindLocNotes() const {
145     for (const SMLoc &Loc : CantUnwindLocs)
146       Parser.Note(Loc, ".cantunwind was specified here");
147   }
148 
149   void emitHandlerDataLocNotes() const {
150     for (const SMLoc &Loc : HandlerDataLocs)
151       Parser.Note(Loc, ".handlerdata was specified here");
152   }
153 
154   void emitPersonalityLocNotes() const {
155     for (Locs::const_iterator PI = PersonalityLocs.begin(),
156                               PE = PersonalityLocs.end(),
157                               PII = PersonalityIndexLocs.begin(),
158                               PIE = PersonalityIndexLocs.end();
159          PI != PE || PII != PIE;) {
160       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
161         Parser.Note(*PI++, ".personality was specified here");
162       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
163         Parser.Note(*PII++, ".personalityindex was specified here");
164       else
165         llvm_unreachable(".personality and .personalityindex cannot be "
166                          "at the same location");
167     }
168   }
169 
170   void reset() {
171     FnStartLocs = Locs();
172     CantUnwindLocs = Locs();
173     PersonalityLocs = Locs();
174     HandlerDataLocs = Locs();
175     PersonalityIndexLocs = Locs();
176     FPReg = ARM::SP;
177   }
178 };
179 
180 // Various sets of ARM instruction mnemonics which are used by the asm parser
181 class ARMMnemonicSets {
182   StringSet<> CDE;
183   StringSet<> CDEWithVPTSuffix;
184 public:
185   ARMMnemonicSets(const MCSubtargetInfo &STI);
186 
187   /// Returns true iff a given mnemonic is a CDE instruction
188   bool isCDEInstr(StringRef Mnemonic) {
189     // Quick check before searching the set
190     if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx"))
191       return false;
192     return CDE.count(Mnemonic);
193   }
194 
195   /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction
196   /// (possibly with a predication suffix "e" or "t")
197   bool isVPTPredicableCDEInstr(StringRef Mnemonic) {
198     if (!Mnemonic.startswith("vcx"))
199       return false;
200     return CDEWithVPTSuffix.count(Mnemonic);
201   }
202 
203   /// Returns true iff a given mnemonic is an IT-predicable CDE instruction
204   /// (possibly with a condition suffix)
205   bool isITPredicableCDEInstr(StringRef Mnemonic) {
206     if (!Mnemonic.startswith("cx"))
207       return false;
208     return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") ||
209            Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") ||
210            Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da");
211   }
212 
213   /// Return true iff a given mnemonic is an integer CDE instruction with
214   /// dual-register destination
215   bool isCDEDualRegInstr(StringRef Mnemonic) {
216     if (!Mnemonic.startswith("cx"))
217       return false;
218     return Mnemonic == "cx1d" || Mnemonic == "cx1da" ||
219            Mnemonic == "cx2d" || Mnemonic == "cx2da" ||
220            Mnemonic == "cx3d" || Mnemonic == "cx3da";
221   }
222 };
223 
224 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) {
225   for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da",
226                              "cx2", "cx2a", "cx2d", "cx2da",
227                              "cx3", "cx3a", "cx3d", "cx3da", })
228     CDE.insert(Mnemonic);
229   for (StringRef Mnemonic :
230        {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) {
231     CDE.insert(Mnemonic);
232     CDEWithVPTSuffix.insert(Mnemonic);
233     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t");
234     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e");
235   }
236 }
237 
238 class ARMAsmParser : public MCTargetAsmParser {
239   const MCRegisterInfo *MRI;
240   UnwindContext UC;
241   ARMMnemonicSets MS;
242 
243   ARMTargetStreamer &getTargetStreamer() {
244     assert(getParser().getStreamer().getTargetStreamer() &&
245            "do not have a target streamer");
246     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
247     return static_cast<ARMTargetStreamer &>(TS);
248   }
249 
250   // Map of register aliases registers via the .req directive.
251   StringMap<unsigned> RegisterReqs;
252 
253   bool NextSymbolIsThumb;
254 
255   bool useImplicitITThumb() const {
256     return ImplicitItMode == ImplicitItModeTy::Always ||
257            ImplicitItMode == ImplicitItModeTy::ThumbOnly;
258   }
259 
260   bool useImplicitITARM() const {
261     return ImplicitItMode == ImplicitItModeTy::Always ||
262            ImplicitItMode == ImplicitItModeTy::ARMOnly;
263   }
264 
265   struct {
266     ARMCC::CondCodes Cond;    // Condition for IT block.
267     unsigned Mask:4;          // Condition mask for instructions.
268                               // Starting at first 1 (from lsb).
269                               //   '1'  condition as indicated in IT.
270                               //   '0'  inverse of condition (else).
271                               // Count of instructions in IT block is
272                               // 4 - trailingzeroes(mask)
273                               // Note that this does not have the same encoding
274                               // as in the IT instruction, which also depends
275                               // on the low bit of the condition code.
276 
277     unsigned CurPosition;     // Current position in parsing of IT
278                               // block. In range [0,4], with 0 being the IT
279                               // instruction itself. Initialized according to
280                               // count of instructions in block.  ~0U if no
281                               // active IT block.
282 
283     bool IsExplicit;          // true  - The IT instruction was present in the
284                               //         input, we should not modify it.
285                               // false - The IT instruction was added
286                               //         implicitly, we can extend it if that
287                               //         would be legal.
288   } ITState;
289 
290   SmallVector<MCInst, 4> PendingConditionalInsts;
291 
292   void flushPendingInstructions(MCStreamer &Out) override {
293     if (!inImplicitITBlock()) {
294       assert(PendingConditionalInsts.size() == 0);
295       return;
296     }
297 
298     // Emit the IT instruction
299     MCInst ITInst;
300     ITInst.setOpcode(ARM::t2IT);
301     ITInst.addOperand(MCOperand::createImm(ITState.Cond));
302     ITInst.addOperand(MCOperand::createImm(ITState.Mask));
303     Out.emitInstruction(ITInst, getSTI());
304 
305     // Emit the conditonal instructions
306     assert(PendingConditionalInsts.size() <= 4);
307     for (const MCInst &Inst : PendingConditionalInsts) {
308       Out.emitInstruction(Inst, getSTI());
309     }
310     PendingConditionalInsts.clear();
311 
312     // Clear the IT state
313     ITState.Mask = 0;
314     ITState.CurPosition = ~0U;
315   }
316 
317   bool inITBlock() { return ITState.CurPosition != ~0U; }
318   bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
319   bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
320 
321   bool lastInITBlock() {
322     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
323   }
324 
325   void forwardITPosition() {
326     if (!inITBlock()) return;
327     // Move to the next instruction in the IT block, if there is one. If not,
328     // mark the block as done, except for implicit IT blocks, which we leave
329     // open until we find an instruction that can't be added to it.
330     unsigned TZ = countTrailingZeros(ITState.Mask);
331     if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
332       ITState.CurPosition = ~0U; // Done with the IT block after this.
333   }
334 
335   // Rewind the state of the current IT block, removing the last slot from it.
336   void rewindImplicitITPosition() {
337     assert(inImplicitITBlock());
338     assert(ITState.CurPosition > 1);
339     ITState.CurPosition--;
340     unsigned TZ = countTrailingZeros(ITState.Mask);
341     unsigned NewMask = 0;
342     NewMask |= ITState.Mask & (0xC << TZ);
343     NewMask |= 0x2 << TZ;
344     ITState.Mask = NewMask;
345   }
346 
347   // Rewind the state of the current IT block, removing the last slot from it.
348   // If we were at the first slot, this closes the IT block.
349   void discardImplicitITBlock() {
350     assert(inImplicitITBlock());
351     assert(ITState.CurPosition == 1);
352     ITState.CurPosition = ~0U;
353   }
354 
355   // Return the low-subreg of a given Q register.
356   unsigned getDRegFromQReg(unsigned QReg) const {
357     return MRI->getSubReg(QReg, ARM::dsub_0);
358   }
359 
360   // Get the condition code corresponding to the current IT block slot.
361   ARMCC::CondCodes currentITCond() {
362     unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
363     return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
364   }
365 
366   // Invert the condition of the current IT block slot without changing any
367   // other slots in the same block.
368   void invertCurrentITCondition() {
369     if (ITState.CurPosition == 1) {
370       ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
371     } else {
372       ITState.Mask ^= 1 << (5 - ITState.CurPosition);
373     }
374   }
375 
376   // Returns true if the current IT block is full (all 4 slots used).
377   bool isITBlockFull() {
378     return inITBlock() && (ITState.Mask & 1);
379   }
380 
381   // Extend the current implicit IT block to have one more slot with the given
382   // condition code.
383   void extendImplicitITBlock(ARMCC::CondCodes Cond) {
384     assert(inImplicitITBlock());
385     assert(!isITBlockFull());
386     assert(Cond == ITState.Cond ||
387            Cond == ARMCC::getOppositeCondition(ITState.Cond));
388     unsigned TZ = countTrailingZeros(ITState.Mask);
389     unsigned NewMask = 0;
390     // Keep any existing condition bits.
391     NewMask |= ITState.Mask & (0xE << TZ);
392     // Insert the new condition bit.
393     NewMask |= (Cond != ITState.Cond) << TZ;
394     // Move the trailing 1 down one bit.
395     NewMask |= 1 << (TZ - 1);
396     ITState.Mask = NewMask;
397   }
398 
399   // Create a new implicit IT block with a dummy condition code.
400   void startImplicitITBlock() {
401     assert(!inITBlock());
402     ITState.Cond = ARMCC::AL;
403     ITState.Mask = 8;
404     ITState.CurPosition = 1;
405     ITState.IsExplicit = false;
406   }
407 
408   // Create a new explicit IT block with the given condition and mask.
409   // The mask should be in the format used in ARMOperand and
410   // MCOperand, with a 1 implying 'e', regardless of the low bit of
411   // the condition.
412   void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
413     assert(!inITBlock());
414     ITState.Cond = Cond;
415     ITState.Mask = Mask;
416     ITState.CurPosition = 0;
417     ITState.IsExplicit = true;
418   }
419 
420   struct {
421     unsigned Mask : 4;
422     unsigned CurPosition;
423   } VPTState;
424   bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
425   void forwardVPTPosition() {
426     if (!inVPTBlock()) return;
427     unsigned TZ = countTrailingZeros(VPTState.Mask);
428     if (++VPTState.CurPosition == 5 - TZ)
429       VPTState.CurPosition = ~0U;
430   }
431 
432   void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
433     return getParser().Note(L, Msg, Range);
434   }
435 
436   bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
437     return getParser().Warning(L, Msg, Range);
438   }
439 
440   bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
441     return getParser().Error(L, Msg, Range);
442   }
443 
444   bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
445                            unsigned ListNo, bool IsARPop = false);
446   bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
447                            unsigned ListNo);
448 
449   int tryParseRegister();
450   bool tryParseRegisterWithWriteBack(OperandVector &);
451   int tryParseShiftRegister(OperandVector &);
452   bool parseRegisterList(OperandVector &, bool EnforceOrder = true,
453                          bool AllowRAAC = false);
454   bool parseMemory(OperandVector &);
455   bool parseOperand(OperandVector &, StringRef Mnemonic);
456   bool parseImmExpr(int64_t &Out);
457   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
458   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
459                               unsigned &ShiftAmount);
460   bool parseLiteralValues(unsigned Size, SMLoc L);
461   bool parseDirectiveThumb(SMLoc L);
462   bool parseDirectiveARM(SMLoc L);
463   bool parseDirectiveThumbFunc(SMLoc L);
464   bool parseDirectiveCode(SMLoc L);
465   bool parseDirectiveSyntax(SMLoc L);
466   bool parseDirectiveReq(StringRef Name, SMLoc L);
467   bool parseDirectiveUnreq(SMLoc L);
468   bool parseDirectiveArch(SMLoc L);
469   bool parseDirectiveEabiAttr(SMLoc L);
470   bool parseDirectiveCPU(SMLoc L);
471   bool parseDirectiveFPU(SMLoc L);
472   bool parseDirectiveFnStart(SMLoc L);
473   bool parseDirectiveFnEnd(SMLoc L);
474   bool parseDirectiveCantUnwind(SMLoc L);
475   bool parseDirectivePersonality(SMLoc L);
476   bool parseDirectiveHandlerData(SMLoc L);
477   bool parseDirectiveSetFP(SMLoc L);
478   bool parseDirectivePad(SMLoc L);
479   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
480   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
481   bool parseDirectiveLtorg(SMLoc L);
482   bool parseDirectiveEven(SMLoc L);
483   bool parseDirectivePersonalityIndex(SMLoc L);
484   bool parseDirectiveUnwindRaw(SMLoc L);
485   bool parseDirectiveTLSDescSeq(SMLoc L);
486   bool parseDirectiveMovSP(SMLoc L);
487   bool parseDirectiveObjectArch(SMLoc L);
488   bool parseDirectiveArchExtension(SMLoc L);
489   bool parseDirectiveAlign(SMLoc L);
490   bool parseDirectiveThumbSet(SMLoc L);
491 
492   bool parseDirectiveSEHAllocStack(SMLoc L, bool Wide);
493   bool parseDirectiveSEHSaveRegs(SMLoc L, bool Wide);
494   bool parseDirectiveSEHSaveSP(SMLoc L);
495   bool parseDirectiveSEHSaveFRegs(SMLoc L);
496   bool parseDirectiveSEHSaveLR(SMLoc L);
497   bool parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment);
498   bool parseDirectiveSEHNop(SMLoc L, bool Wide);
499   bool parseDirectiveSEHEpilogStart(SMLoc L, bool Condition);
500   bool parseDirectiveSEHEpilogEnd(SMLoc L);
501   bool parseDirectiveSEHCustom(SMLoc L);
502 
503   bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
504   StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
505                           unsigned &PredicationCode,
506                           unsigned &VPTPredicationCode, bool &CarrySetting,
507                           unsigned &ProcessorIMod, StringRef &ITMask);
508   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
509                              StringRef FullInst, bool &CanAcceptCarrySet,
510                              bool &CanAcceptPredicationCode,
511                              bool &CanAcceptVPTPredicationCode);
512   bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc);
513 
514   void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
515                                      OperandVector &Operands);
516   bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands);
517 
518   bool isThumb() const {
519     // FIXME: Can tablegen auto-generate this?
520     return getSTI().getFeatureBits()[ARM::ModeThumb];
521   }
522 
523   bool isThumbOne() const {
524     return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
525   }
526 
527   bool isThumbTwo() const {
528     return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
529   }
530 
531   bool hasThumb() const {
532     return getSTI().getFeatureBits()[ARM::HasV4TOps];
533   }
534 
535   bool hasThumb2() const {
536     return getSTI().getFeatureBits()[ARM::FeatureThumb2];
537   }
538 
539   bool hasV6Ops() const {
540     return getSTI().getFeatureBits()[ARM::HasV6Ops];
541   }
542 
543   bool hasV6T2Ops() const {
544     return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
545   }
546 
547   bool hasV6MOps() const {
548     return getSTI().getFeatureBits()[ARM::HasV6MOps];
549   }
550 
551   bool hasV7Ops() const {
552     return getSTI().getFeatureBits()[ARM::HasV7Ops];
553   }
554 
555   bool hasV8Ops() const {
556     return getSTI().getFeatureBits()[ARM::HasV8Ops];
557   }
558 
559   bool hasV8MBaseline() const {
560     return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
561   }
562 
563   bool hasV8MMainline() const {
564     return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
565   }
566   bool hasV8_1MMainline() const {
567     return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
568   }
569   bool hasMVE() const {
570     return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
571   }
572   bool hasMVEFloat() const {
573     return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
574   }
575   bool hasCDE() const {
576     return getSTI().getFeatureBits()[ARM::HasCDEOps];
577   }
578   bool has8MSecExt() const {
579     return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
580   }
581 
582   bool hasARM() const {
583     return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
584   }
585 
586   bool hasDSP() const {
587     return getSTI().getFeatureBits()[ARM::FeatureDSP];
588   }
589 
590   bool hasD32() const {
591     return getSTI().getFeatureBits()[ARM::FeatureD32];
592   }
593 
594   bool hasV8_1aOps() const {
595     return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
596   }
597 
598   bool hasRAS() const {
599     return getSTI().getFeatureBits()[ARM::FeatureRAS];
600   }
601 
602   void SwitchMode() {
603     MCSubtargetInfo &STI = copySTI();
604     auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
605     setAvailableFeatures(FB);
606   }
607 
608   void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
609 
610   bool isMClass() const {
611     return getSTI().getFeatureBits()[ARM::FeatureMClass];
612   }
613 
614   /// @name Auto-generated Match Functions
615   /// {
616 
617 #define GET_ASSEMBLER_HEADER
618 #include "ARMGenAsmMatcher.inc"
619 
620   /// }
621 
622   OperandMatchResultTy parseITCondCode(OperandVector &);
623   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
624   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
625   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
626   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
627   OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
628   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
629   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
630   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
631   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
632   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
633                                    int High);
634   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
635     return parsePKHImm(O, "lsl", 0, 31);
636   }
637   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
638     return parsePKHImm(O, "asr", 1, 32);
639   }
640   OperandMatchResultTy parseSetEndImm(OperandVector &);
641   OperandMatchResultTy parseShifterImm(OperandVector &);
642   OperandMatchResultTy parseRotImm(OperandVector &);
643   OperandMatchResultTy parseModImm(OperandVector &);
644   OperandMatchResultTy parseBitfield(OperandVector &);
645   OperandMatchResultTy parsePostIdxReg(OperandVector &);
646   OperandMatchResultTy parseAM3Offset(OperandVector &);
647   OperandMatchResultTy parseFPImm(OperandVector &);
648   OperandMatchResultTy parseVectorList(OperandVector &);
649   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
650                                        SMLoc &EndLoc);
651 
652   // Asm Match Converter Methods
653   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
654   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
655   void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
656 
657   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
658   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
659   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
660   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
661   bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
662   bool isITBlockTerminator(MCInst &Inst) const;
663   void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
664   bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
665                         bool Load, bool ARMMode, bool Writeback);
666 
667 public:
668   enum ARMMatchResultTy {
669     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
670     Match_RequiresNotITBlock,
671     Match_RequiresV6,
672     Match_RequiresThumb2,
673     Match_RequiresV8,
674     Match_RequiresFlagSetting,
675 #define GET_OPERAND_DIAGNOSTIC_TYPES
676 #include "ARMGenAsmMatcher.inc"
677 
678   };
679 
680   ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
681                const MCInstrInfo &MII, const MCTargetOptions &Options)
682     : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) {
683     MCAsmParserExtension::Initialize(Parser);
684 
685     // Cache the MCRegisterInfo.
686     MRI = getContext().getRegisterInfo();
687 
688     // Initialize the set of available features.
689     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
690 
691     // Add build attributes based on the selected target.
692     if (AddBuildAttributes)
693       getTargetStreamer().emitTargetAttributes(STI);
694 
695     // Not in an ITBlock to start with.
696     ITState.CurPosition = ~0U;
697 
698     VPTState.CurPosition = ~0U;
699 
700     NextSymbolIsThumb = false;
701   }
702 
703   // Implementation of the MCTargetAsmParser interface:
704   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
705   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
706                                         SMLoc &EndLoc) override;
707   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
708                         SMLoc NameLoc, OperandVector &Operands) override;
709   bool ParseDirective(AsmToken DirectiveID) override;
710 
711   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
712                                       unsigned Kind) override;
713   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
714 
715   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
716                                OperandVector &Operands, MCStreamer &Out,
717                                uint64_t &ErrorInfo,
718                                bool MatchingInlineAsm) override;
719   unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
720                             SmallVectorImpl<NearMissInfo> &NearMisses,
721                             bool MatchingInlineAsm, bool &EmitInITBlock,
722                             MCStreamer &Out);
723 
724   struct NearMissMessage {
725     SMLoc Loc;
726     SmallString<128> Message;
727   };
728 
729   const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
730 
731   void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
732                         SmallVectorImpl<NearMissMessage> &NearMissesOut,
733                         SMLoc IDLoc, OperandVector &Operands);
734   void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
735                         OperandVector &Operands);
736 
737   void doBeforeLabelEmit(MCSymbol *Symbol) override;
738 
739   void onLabelParsed(MCSymbol *Symbol) override;
740 };
741 
742 /// ARMOperand - Instances of this class represent a parsed ARM machine
743 /// operand.
744 class ARMOperand : public MCParsedAsmOperand {
745   enum KindTy {
746     k_CondCode,
747     k_VPTPred,
748     k_CCOut,
749     k_ITCondMask,
750     k_CoprocNum,
751     k_CoprocReg,
752     k_CoprocOption,
753     k_Immediate,
754     k_MemBarrierOpt,
755     k_InstSyncBarrierOpt,
756     k_TraceSyncBarrierOpt,
757     k_Memory,
758     k_PostIndexRegister,
759     k_MSRMask,
760     k_BankedReg,
761     k_ProcIFlags,
762     k_VectorIndex,
763     k_Register,
764     k_RegisterList,
765     k_RegisterListWithAPSR,
766     k_DPRRegisterList,
767     k_SPRRegisterList,
768     k_FPSRegisterListWithVPR,
769     k_FPDRegisterListWithVPR,
770     k_VectorList,
771     k_VectorListAllLanes,
772     k_VectorListIndexed,
773     k_ShiftedRegister,
774     k_ShiftedImmediate,
775     k_ShifterImmediate,
776     k_RotateImmediate,
777     k_ModifiedImmediate,
778     k_ConstantPoolImmediate,
779     k_BitfieldDescriptor,
780     k_Token,
781   } Kind;
782 
783   SMLoc StartLoc, EndLoc, AlignmentLoc;
784   SmallVector<unsigned, 8> Registers;
785 
786   struct CCOp {
787     ARMCC::CondCodes Val;
788   };
789 
790   struct VCCOp {
791     ARMVCC::VPTCodes Val;
792   };
793 
794   struct CopOp {
795     unsigned Val;
796   };
797 
798   struct CoprocOptionOp {
799     unsigned Val;
800   };
801 
802   struct ITMaskOp {
803     unsigned Mask:4;
804   };
805 
806   struct MBOptOp {
807     ARM_MB::MemBOpt Val;
808   };
809 
810   struct ISBOptOp {
811     ARM_ISB::InstSyncBOpt Val;
812   };
813 
814   struct TSBOptOp {
815     ARM_TSB::TraceSyncBOpt Val;
816   };
817 
818   struct IFlagsOp {
819     ARM_PROC::IFlags Val;
820   };
821 
822   struct MMaskOp {
823     unsigned Val;
824   };
825 
826   struct BankedRegOp {
827     unsigned Val;
828   };
829 
830   struct TokOp {
831     const char *Data;
832     unsigned Length;
833   };
834 
835   struct RegOp {
836     unsigned RegNum;
837   };
838 
839   // A vector register list is a sequential list of 1 to 4 registers.
840   struct VectorListOp {
841     unsigned RegNum;
842     unsigned Count;
843     unsigned LaneIndex;
844     bool isDoubleSpaced;
845   };
846 
847   struct VectorIndexOp {
848     unsigned Val;
849   };
850 
851   struct ImmOp {
852     const MCExpr *Val;
853   };
854 
855   /// Combined record for all forms of ARM address expressions.
856   struct MemoryOp {
857     unsigned BaseRegNum;
858     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
859     // was specified.
860     const MCExpr *OffsetImm;  // Offset immediate value
861     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
862     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
863     unsigned ShiftImm;        // shift for OffsetReg.
864     unsigned Alignment;       // 0 = no alignment specified
865     // n = alignment in bytes (2, 4, 8, 16, or 32)
866     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
867   };
868 
869   struct PostIdxRegOp {
870     unsigned RegNum;
871     bool isAdd;
872     ARM_AM::ShiftOpc ShiftTy;
873     unsigned ShiftImm;
874   };
875 
876   struct ShifterImmOp {
877     bool isASR;
878     unsigned Imm;
879   };
880 
881   struct RegShiftedRegOp {
882     ARM_AM::ShiftOpc ShiftTy;
883     unsigned SrcReg;
884     unsigned ShiftReg;
885     unsigned ShiftImm;
886   };
887 
888   struct RegShiftedImmOp {
889     ARM_AM::ShiftOpc ShiftTy;
890     unsigned SrcReg;
891     unsigned ShiftImm;
892   };
893 
894   struct RotImmOp {
895     unsigned Imm;
896   };
897 
898   struct ModImmOp {
899     unsigned Bits;
900     unsigned Rot;
901   };
902 
903   struct BitfieldOp {
904     unsigned LSB;
905     unsigned Width;
906   };
907 
908   union {
909     struct CCOp CC;
910     struct VCCOp VCC;
911     struct CopOp Cop;
912     struct CoprocOptionOp CoprocOption;
913     struct MBOptOp MBOpt;
914     struct ISBOptOp ISBOpt;
915     struct TSBOptOp TSBOpt;
916     struct ITMaskOp ITMask;
917     struct IFlagsOp IFlags;
918     struct MMaskOp MMask;
919     struct BankedRegOp BankedReg;
920     struct TokOp Tok;
921     struct RegOp Reg;
922     struct VectorListOp VectorList;
923     struct VectorIndexOp VectorIndex;
924     struct ImmOp Imm;
925     struct MemoryOp Memory;
926     struct PostIdxRegOp PostIdxReg;
927     struct ShifterImmOp ShifterImm;
928     struct RegShiftedRegOp RegShiftedReg;
929     struct RegShiftedImmOp RegShiftedImm;
930     struct RotImmOp RotImm;
931     struct ModImmOp ModImm;
932     struct BitfieldOp Bitfield;
933   };
934 
935 public:
936   ARMOperand(KindTy K) : Kind(K) {}
937 
938   /// getStartLoc - Get the location of the first token of this operand.
939   SMLoc getStartLoc() const override { return StartLoc; }
940 
941   /// getEndLoc - Get the location of the last token of this operand.
942   SMLoc getEndLoc() const override { return EndLoc; }
943 
944   /// getLocRange - Get the range between the first and last token of this
945   /// operand.
946   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
947 
948   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
949   SMLoc getAlignmentLoc() const {
950     assert(Kind == k_Memory && "Invalid access!");
951     return AlignmentLoc;
952   }
953 
954   ARMCC::CondCodes getCondCode() const {
955     assert(Kind == k_CondCode && "Invalid access!");
956     return CC.Val;
957   }
958 
959   ARMVCC::VPTCodes getVPTPred() const {
960     assert(isVPTPred() && "Invalid access!");
961     return VCC.Val;
962   }
963 
964   unsigned getCoproc() const {
965     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
966     return Cop.Val;
967   }
968 
969   StringRef getToken() const {
970     assert(Kind == k_Token && "Invalid access!");
971     return StringRef(Tok.Data, Tok.Length);
972   }
973 
974   unsigned getReg() const override {
975     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
976     return Reg.RegNum;
977   }
978 
979   const SmallVectorImpl<unsigned> &getRegList() const {
980     assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
981             Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
982             Kind == k_FPSRegisterListWithVPR ||
983             Kind == k_FPDRegisterListWithVPR) &&
984            "Invalid access!");
985     return Registers;
986   }
987 
988   const MCExpr *getImm() const {
989     assert(isImm() && "Invalid access!");
990     return Imm.Val;
991   }
992 
993   const MCExpr *getConstantPoolImm() const {
994     assert(isConstantPoolImm() && "Invalid access!");
995     return Imm.Val;
996   }
997 
998   unsigned getVectorIndex() const {
999     assert(Kind == k_VectorIndex && "Invalid access!");
1000     return VectorIndex.Val;
1001   }
1002 
1003   ARM_MB::MemBOpt getMemBarrierOpt() const {
1004     assert(Kind == k_MemBarrierOpt && "Invalid access!");
1005     return MBOpt.Val;
1006   }
1007 
1008   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
1009     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
1010     return ISBOpt.Val;
1011   }
1012 
1013   ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
1014     assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
1015     return TSBOpt.Val;
1016   }
1017 
1018   ARM_PROC::IFlags getProcIFlags() const {
1019     assert(Kind == k_ProcIFlags && "Invalid access!");
1020     return IFlags.Val;
1021   }
1022 
1023   unsigned getMSRMask() const {
1024     assert(Kind == k_MSRMask && "Invalid access!");
1025     return MMask.Val;
1026   }
1027 
1028   unsigned getBankedReg() const {
1029     assert(Kind == k_BankedReg && "Invalid access!");
1030     return BankedReg.Val;
1031   }
1032 
1033   bool isCoprocNum() const { return Kind == k_CoprocNum; }
1034   bool isCoprocReg() const { return Kind == k_CoprocReg; }
1035   bool isCoprocOption() const { return Kind == k_CoprocOption; }
1036   bool isCondCode() const { return Kind == k_CondCode; }
1037   bool isVPTPred() const { return Kind == k_VPTPred; }
1038   bool isCCOut() const { return Kind == k_CCOut; }
1039   bool isITMask() const { return Kind == k_ITCondMask; }
1040   bool isITCondCode() const { return Kind == k_CondCode; }
1041   bool isImm() const override {
1042     return Kind == k_Immediate;
1043   }
1044 
1045   bool isARMBranchTarget() const {
1046     if (!isImm()) return false;
1047 
1048     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1049       return CE->getValue() % 4 == 0;
1050     return true;
1051   }
1052 
1053 
1054   bool isThumbBranchTarget() const {
1055     if (!isImm()) return false;
1056 
1057     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1058       return CE->getValue() % 2 == 0;
1059     return true;
1060   }
1061 
1062   // checks whether this operand is an unsigned offset which fits is a field
1063   // of specified width and scaled by a specific number of bits
1064   template<unsigned width, unsigned scale>
1065   bool isUnsignedOffset() const {
1066     if (!isImm()) return false;
1067     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1068     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1069       int64_t Val = CE->getValue();
1070       int64_t Align = 1LL << scale;
1071       int64_t Max = Align * ((1LL << width) - 1);
1072       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
1073     }
1074     return false;
1075   }
1076 
1077   // checks whether this operand is an signed offset which fits is a field
1078   // of specified width and scaled by a specific number of bits
1079   template<unsigned width, unsigned scale>
1080   bool isSignedOffset() const {
1081     if (!isImm()) return false;
1082     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1083     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1084       int64_t Val = CE->getValue();
1085       int64_t Align = 1LL << scale;
1086       int64_t Max = Align * ((1LL << (width-1)) - 1);
1087       int64_t Min = -Align * (1LL << (width-1));
1088       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
1089     }
1090     return false;
1091   }
1092 
1093   // checks whether this operand is an offset suitable for the LE /
1094   // LETP instructions in Arm v8.1M
1095   bool isLEOffset() const {
1096     if (!isImm()) return false;
1097     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1098     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1099       int64_t Val = CE->getValue();
1100       return Val < 0 && Val >= -4094 && (Val & 1) == 0;
1101     }
1102     return false;
1103   }
1104 
1105   // checks whether this operand is a memory operand computed as an offset
1106   // applied to PC. the offset may have 8 bits of magnitude and is represented
1107   // with two bits of shift. textually it may be either [pc, #imm], #imm or
1108   // relocable expression...
1109   bool isThumbMemPC() const {
1110     int64_t Val = 0;
1111     if (isImm()) {
1112       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1113       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
1114       if (!CE) return false;
1115       Val = CE->getValue();
1116     }
1117     else if (isGPRMem()) {
1118       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
1119       if(Memory.BaseRegNum != ARM::PC) return false;
1120       if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
1121         Val = CE->getValue();
1122       else
1123         return false;
1124     }
1125     else return false;
1126     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
1127   }
1128 
1129   bool isFPImm() const {
1130     if (!isImm()) return false;
1131     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1132     if (!CE) return false;
1133     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1134     return Val != -1;
1135   }
1136 
1137   template<int64_t N, int64_t M>
1138   bool isImmediate() const {
1139     if (!isImm()) return false;
1140     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1141     if (!CE) return false;
1142     int64_t Value = CE->getValue();
1143     return Value >= N && Value <= M;
1144   }
1145 
1146   template<int64_t N, int64_t M>
1147   bool isImmediateS4() const {
1148     if (!isImm()) return false;
1149     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1150     if (!CE) return false;
1151     int64_t Value = CE->getValue();
1152     return ((Value & 3) == 0) && Value >= N && Value <= M;
1153   }
1154   template<int64_t N, int64_t M>
1155   bool isImmediateS2() const {
1156     if (!isImm()) return false;
1157     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1158     if (!CE) return false;
1159     int64_t Value = CE->getValue();
1160     return ((Value & 1) == 0) && Value >= N && Value <= M;
1161   }
1162   bool isFBits16() const {
1163     return isImmediate<0, 17>();
1164   }
1165   bool isFBits32() const {
1166     return isImmediate<1, 33>();
1167   }
1168   bool isImm8s4() const {
1169     return isImmediateS4<-1020, 1020>();
1170   }
1171   bool isImm7s4() const {
1172     return isImmediateS4<-508, 508>();
1173   }
1174   bool isImm7Shift0() const {
1175     return isImmediate<-127, 127>();
1176   }
1177   bool isImm7Shift1() const {
1178     return isImmediateS2<-255, 255>();
1179   }
1180   bool isImm7Shift2() const {
1181     return isImmediateS4<-511, 511>();
1182   }
1183   bool isImm7() const {
1184     return isImmediate<-127, 127>();
1185   }
1186   bool isImm0_1020s4() const {
1187     return isImmediateS4<0, 1020>();
1188   }
1189   bool isImm0_508s4() const {
1190     return isImmediateS4<0, 508>();
1191   }
1192   bool isImm0_508s4Neg() const {
1193     if (!isImm()) return false;
1194     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1195     if (!CE) return false;
1196     int64_t Value = -CE->getValue();
1197     // explicitly exclude zero. we want that to use the normal 0_508 version.
1198     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1199   }
1200 
1201   bool isImm0_4095Neg() const {
1202     if (!isImm()) return false;
1203     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1204     if (!CE) return false;
1205     // isImm0_4095Neg is used with 32-bit immediates only.
1206     // 32-bit immediates are zero extended to 64-bit when parsed,
1207     // thus simple -CE->getValue() results in a big negative number,
1208     // not a small positive number as intended
1209     if ((CE->getValue() >> 32) > 0) return false;
1210     uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1211     return Value > 0 && Value < 4096;
1212   }
1213 
1214   bool isImm0_7() const {
1215     return isImmediate<0, 7>();
1216   }
1217 
1218   bool isImm1_16() const {
1219     return isImmediate<1, 16>();
1220   }
1221 
1222   bool isImm1_32() const {
1223     return isImmediate<1, 32>();
1224   }
1225 
1226   bool isImm8_255() const {
1227     return isImmediate<8, 255>();
1228   }
1229 
1230   bool isImm256_65535Expr() const {
1231     if (!isImm()) return false;
1232     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1233     // If it's not a constant expression, it'll generate a fixup and be
1234     // handled later.
1235     if (!CE) return true;
1236     int64_t Value = CE->getValue();
1237     return Value >= 256 && Value < 65536;
1238   }
1239 
1240   bool isImm0_65535Expr() const {
1241     if (!isImm()) return false;
1242     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1243     // If it's not a constant expression, it'll generate a fixup and be
1244     // handled later.
1245     if (!CE) return true;
1246     int64_t Value = CE->getValue();
1247     return Value >= 0 && Value < 65536;
1248   }
1249 
1250   bool isImm24bit() const {
1251     return isImmediate<0, 0xffffff + 1>();
1252   }
1253 
1254   bool isImmThumbSR() const {
1255     return isImmediate<1, 33>();
1256   }
1257 
1258   template<int shift>
1259   bool isExpImmValue(uint64_t Value) const {
1260     uint64_t mask = (1 << shift) - 1;
1261     if ((Value & mask) != 0 || (Value >> shift) > 0xff)
1262       return false;
1263     return true;
1264   }
1265 
1266   template<int shift>
1267   bool isExpImm() const {
1268     if (!isImm()) return false;
1269     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1270     if (!CE) return false;
1271 
1272     return isExpImmValue<shift>(CE->getValue());
1273   }
1274 
1275   template<int shift, int size>
1276   bool isInvertedExpImm() const {
1277     if (!isImm()) return false;
1278     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1279     if (!CE) return false;
1280 
1281     uint64_t OriginalValue = CE->getValue();
1282     uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
1283     return isExpImmValue<shift>(InvertedValue);
1284   }
1285 
1286   bool isPKHLSLImm() const {
1287     return isImmediate<0, 32>();
1288   }
1289 
1290   bool isPKHASRImm() const {
1291     return isImmediate<0, 33>();
1292   }
1293 
1294   bool isAdrLabel() const {
1295     // If we have an immediate that's not a constant, treat it as a label
1296     // reference needing a fixup.
1297     if (isImm() && !isa<MCConstantExpr>(getImm()))
1298       return true;
1299 
1300     // If it is a constant, it must fit into a modified immediate encoding.
1301     if (!isImm()) return false;
1302     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1303     if (!CE) return false;
1304     int64_t Value = CE->getValue();
1305     return (ARM_AM::getSOImmVal(Value) != -1 ||
1306             ARM_AM::getSOImmVal(-Value) != -1);
1307   }
1308 
1309   bool isT2SOImm() const {
1310     // If we have an immediate that's not a constant, treat it as an expression
1311     // needing a fixup.
1312     if (isImm() && !isa<MCConstantExpr>(getImm())) {
1313       // We want to avoid matching :upper16: and :lower16: as we want these
1314       // expressions to match in isImm0_65535Expr()
1315       const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1316       return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1317                              ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1318     }
1319     if (!isImm()) return false;
1320     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1321     if (!CE) return false;
1322     int64_t Value = CE->getValue();
1323     return ARM_AM::getT2SOImmVal(Value) != -1;
1324   }
1325 
1326   bool isT2SOImmNot() const {
1327     if (!isImm()) return false;
1328     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1329     if (!CE) return false;
1330     int64_t Value = CE->getValue();
1331     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1332       ARM_AM::getT2SOImmVal(~Value) != -1;
1333   }
1334 
1335   bool isT2SOImmNeg() const {
1336     if (!isImm()) return false;
1337     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1338     if (!CE) return false;
1339     int64_t Value = CE->getValue();
1340     // Only use this when not representable as a plain so_imm.
1341     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1342       ARM_AM::getT2SOImmVal(-Value) != -1;
1343   }
1344 
1345   bool isSetEndImm() const {
1346     if (!isImm()) return false;
1347     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1348     if (!CE) return false;
1349     int64_t Value = CE->getValue();
1350     return Value == 1 || Value == 0;
1351   }
1352 
1353   bool isReg() const override { return Kind == k_Register; }
1354   bool isRegList() const { return Kind == k_RegisterList; }
1355   bool isRegListWithAPSR() const {
1356     return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
1357   }
1358   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1359   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1360   bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
1361   bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
1362   bool isToken() const override { return Kind == k_Token; }
1363   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1364   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1365   bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1366   bool isMem() const override {
1367       return isGPRMem() || isMVEMem();
1368   }
1369   bool isMVEMem() const {
1370     if (Kind != k_Memory)
1371       return false;
1372     if (Memory.BaseRegNum &&
1373         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
1374         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
1375       return false;
1376     if (Memory.OffsetRegNum &&
1377         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1378             Memory.OffsetRegNum))
1379       return false;
1380     return true;
1381   }
1382   bool isGPRMem() const {
1383     if (Kind != k_Memory)
1384       return false;
1385     if (Memory.BaseRegNum &&
1386         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1387       return false;
1388     if (Memory.OffsetRegNum &&
1389         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1390       return false;
1391     return true;
1392   }
1393   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1394   bool isRegShiftedReg() const {
1395     return Kind == k_ShiftedRegister &&
1396            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1397                RegShiftedReg.SrcReg) &&
1398            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1399                RegShiftedReg.ShiftReg);
1400   }
1401   bool isRegShiftedImm() const {
1402     return Kind == k_ShiftedImmediate &&
1403            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1404                RegShiftedImm.SrcReg);
1405   }
1406   bool isRotImm() const { return Kind == k_RotateImmediate; }
1407 
1408   template<unsigned Min, unsigned Max>
1409   bool isPowerTwoInRange() const {
1410     if (!isImm()) return false;
1411     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1412     if (!CE) return false;
1413     int64_t Value = CE->getValue();
1414     return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
1415            Value >= Min && Value <= Max;
1416   }
1417   bool isModImm() const { return Kind == k_ModifiedImmediate; }
1418 
1419   bool isModImmNot() const {
1420     if (!isImm()) return false;
1421     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1422     if (!CE) return false;
1423     int64_t Value = CE->getValue();
1424     return ARM_AM::getSOImmVal(~Value) != -1;
1425   }
1426 
1427   bool isModImmNeg() const {
1428     if (!isImm()) return false;
1429     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1430     if (!CE) return false;
1431     int64_t Value = CE->getValue();
1432     return ARM_AM::getSOImmVal(Value) == -1 &&
1433       ARM_AM::getSOImmVal(-Value) != -1;
1434   }
1435 
1436   bool isThumbModImmNeg1_7() const {
1437     if (!isImm()) return false;
1438     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1439     if (!CE) return false;
1440     int32_t Value = -(int32_t)CE->getValue();
1441     return 0 < Value && Value < 8;
1442   }
1443 
1444   bool isThumbModImmNeg8_255() const {
1445     if (!isImm()) return false;
1446     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1447     if (!CE) return false;
1448     int32_t Value = -(int32_t)CE->getValue();
1449     return 7 < Value && Value < 256;
1450   }
1451 
1452   bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1453   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1454   bool isPostIdxRegShifted() const {
1455     return Kind == k_PostIndexRegister &&
1456            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1457   }
1458   bool isPostIdxReg() const {
1459     return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1460   }
1461   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1462     if (!isGPRMem())
1463       return false;
1464     // No offset of any kind.
1465     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1466      (alignOK || Memory.Alignment == Alignment);
1467   }
1468   bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
1469     if (!isGPRMem())
1470       return false;
1471 
1472     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1473             Memory.BaseRegNum))
1474       return false;
1475 
1476     // No offset of any kind.
1477     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1478      (alignOK || Memory.Alignment == Alignment);
1479   }
1480   bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
1481     if (!isGPRMem())
1482       return false;
1483 
1484     if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
1485             Memory.BaseRegNum))
1486       return false;
1487 
1488     // No offset of any kind.
1489     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1490      (alignOK || Memory.Alignment == Alignment);
1491   }
1492   bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
1493     if (!isGPRMem())
1494       return false;
1495 
1496     if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
1497             Memory.BaseRegNum))
1498       return false;
1499 
1500     // No offset of any kind.
1501     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1502      (alignOK || Memory.Alignment == Alignment);
1503   }
1504   bool isMemPCRelImm12() const {
1505     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1506       return false;
1507     // Base register must be PC.
1508     if (Memory.BaseRegNum != ARM::PC)
1509       return false;
1510     // Immediate offset in range [-4095, 4095].
1511     if (!Memory.OffsetImm) return true;
1512     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1513       int64_t Val = CE->getValue();
1514       return (Val > -4096 && Val < 4096) ||
1515              (Val == std::numeric_limits<int32_t>::min());
1516     }
1517     return false;
1518   }
1519 
1520   bool isAlignedMemory() const {
1521     return isMemNoOffset(true);
1522   }
1523 
1524   bool isAlignedMemoryNone() const {
1525     return isMemNoOffset(false, 0);
1526   }
1527 
1528   bool isDupAlignedMemoryNone() const {
1529     return isMemNoOffset(false, 0);
1530   }
1531 
1532   bool isAlignedMemory16() const {
1533     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1534       return true;
1535     return isMemNoOffset(false, 0);
1536   }
1537 
1538   bool isDupAlignedMemory16() const {
1539     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1540       return true;
1541     return isMemNoOffset(false, 0);
1542   }
1543 
1544   bool isAlignedMemory32() const {
1545     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1546       return true;
1547     return isMemNoOffset(false, 0);
1548   }
1549 
1550   bool isDupAlignedMemory32() const {
1551     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1552       return true;
1553     return isMemNoOffset(false, 0);
1554   }
1555 
1556   bool isAlignedMemory64() const {
1557     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1558       return true;
1559     return isMemNoOffset(false, 0);
1560   }
1561 
1562   bool isDupAlignedMemory64() const {
1563     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1564       return true;
1565     return isMemNoOffset(false, 0);
1566   }
1567 
1568   bool isAlignedMemory64or128() const {
1569     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1570       return true;
1571     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1572       return true;
1573     return isMemNoOffset(false, 0);
1574   }
1575 
1576   bool isDupAlignedMemory64or128() const {
1577     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1578       return true;
1579     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1580       return true;
1581     return isMemNoOffset(false, 0);
1582   }
1583 
1584   bool isAlignedMemory64or128or256() const {
1585     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1586       return true;
1587     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1588       return true;
1589     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1590       return true;
1591     return isMemNoOffset(false, 0);
1592   }
1593 
1594   bool isAddrMode2() const {
1595     if (!isGPRMem() || Memory.Alignment != 0) return false;
1596     // Check for register offset.
1597     if (Memory.OffsetRegNum) return true;
1598     // Immediate offset in range [-4095, 4095].
1599     if (!Memory.OffsetImm) return true;
1600     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1601       int64_t Val = CE->getValue();
1602       return Val > -4096 && Val < 4096;
1603     }
1604     return false;
1605   }
1606 
1607   bool isAM2OffsetImm() const {
1608     if (!isImm()) return false;
1609     // Immediate offset in range [-4095, 4095].
1610     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1611     if (!CE) return false;
1612     int64_t Val = CE->getValue();
1613     return (Val == std::numeric_limits<int32_t>::min()) ||
1614            (Val > -4096 && Val < 4096);
1615   }
1616 
1617   bool isAddrMode3() const {
1618     // If we have an immediate that's not a constant, treat it as a label
1619     // reference needing a fixup. If it is a constant, it's something else
1620     // and we reject it.
1621     if (isImm() && !isa<MCConstantExpr>(getImm()))
1622       return true;
1623     if (!isGPRMem() || Memory.Alignment != 0) return false;
1624     // No shifts are legal for AM3.
1625     if (Memory.ShiftType != ARM_AM::no_shift) return false;
1626     // Check for register offset.
1627     if (Memory.OffsetRegNum) return true;
1628     // Immediate offset in range [-255, 255].
1629     if (!Memory.OffsetImm) return true;
1630     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1631       int64_t Val = CE->getValue();
1632       // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and
1633       // we have to check for this too.
1634       return (Val > -256 && Val < 256) ||
1635              Val == std::numeric_limits<int32_t>::min();
1636     }
1637     return false;
1638   }
1639 
1640   bool isAM3Offset() const {
1641     if (isPostIdxReg())
1642       return true;
1643     if (!isImm())
1644       return false;
1645     // Immediate offset in range [-255, 255].
1646     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1647     if (!CE) return false;
1648     int64_t Val = CE->getValue();
1649     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1650     return (Val > -256 && Val < 256) ||
1651            Val == std::numeric_limits<int32_t>::min();
1652   }
1653 
1654   bool isAddrMode5() const {
1655     // If we have an immediate that's not a constant, treat it as a label
1656     // reference needing a fixup. If it is a constant, it's something else
1657     // and we reject it.
1658     if (isImm() && !isa<MCConstantExpr>(getImm()))
1659       return true;
1660     if (!isGPRMem() || Memory.Alignment != 0) return false;
1661     // Check for register offset.
1662     if (Memory.OffsetRegNum) return false;
1663     // Immediate offset in range [-1020, 1020] and a multiple of 4.
1664     if (!Memory.OffsetImm) return true;
1665     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1666       int64_t Val = CE->getValue();
1667       return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1668              Val == std::numeric_limits<int32_t>::min();
1669     }
1670     return false;
1671   }
1672 
1673   bool isAddrMode5FP16() const {
1674     // If we have an immediate that's not a constant, treat it as a label
1675     // reference needing a fixup. If it is a constant, it's something else
1676     // and we reject it.
1677     if (isImm() && !isa<MCConstantExpr>(getImm()))
1678       return true;
1679     if (!isGPRMem() || Memory.Alignment != 0) return false;
1680     // Check for register offset.
1681     if (Memory.OffsetRegNum) return false;
1682     // Immediate offset in range [-510, 510] and a multiple of 2.
1683     if (!Memory.OffsetImm) return true;
1684     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1685       int64_t Val = CE->getValue();
1686       return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1687              Val == std::numeric_limits<int32_t>::min();
1688     }
1689     return false;
1690   }
1691 
1692   bool isMemTBB() const {
1693     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1694         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1695       return false;
1696     return true;
1697   }
1698 
1699   bool isMemTBH() const {
1700     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1701         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1702         Memory.Alignment != 0 )
1703       return false;
1704     return true;
1705   }
1706 
1707   bool isMemRegOffset() const {
1708     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1709       return false;
1710     return true;
1711   }
1712 
1713   bool isT2MemRegOffset() const {
1714     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1715         Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1716       return false;
1717     // Only lsl #{0, 1, 2, 3} allowed.
1718     if (Memory.ShiftType == ARM_AM::no_shift)
1719       return true;
1720     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1721       return false;
1722     return true;
1723   }
1724 
1725   bool isMemThumbRR() const {
1726     // Thumb reg+reg addressing is simple. Just two registers, a base and
1727     // an offset. No shifts, negations or any other complicating factors.
1728     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1729         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1730       return false;
1731     return isARMLowRegister(Memory.BaseRegNum) &&
1732       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1733   }
1734 
1735   bool isMemThumbRIs4() const {
1736     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1737         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1738       return false;
1739     // Immediate offset, multiple of 4 in range [0, 124].
1740     if (!Memory.OffsetImm) return true;
1741     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1742       int64_t Val = CE->getValue();
1743       return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1744     }
1745     return false;
1746   }
1747 
1748   bool isMemThumbRIs2() const {
1749     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1750         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1751       return false;
1752     // Immediate offset, multiple of 4 in range [0, 62].
1753     if (!Memory.OffsetImm) return true;
1754     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1755       int64_t Val = CE->getValue();
1756       return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1757     }
1758     return false;
1759   }
1760 
1761   bool isMemThumbRIs1() const {
1762     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1763         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1764       return false;
1765     // Immediate offset in range [0, 31].
1766     if (!Memory.OffsetImm) return true;
1767     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1768       int64_t Val = CE->getValue();
1769       return Val >= 0 && Val <= 31;
1770     }
1771     return false;
1772   }
1773 
1774   bool isMemThumbSPI() const {
1775     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1776         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1777       return false;
1778     // Immediate offset, multiple of 4 in range [0, 1020].
1779     if (!Memory.OffsetImm) return true;
1780     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1781       int64_t Val = CE->getValue();
1782       return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1783     }
1784     return false;
1785   }
1786 
1787   bool isMemImm8s4Offset() const {
1788     // If we have an immediate that's not a constant, treat it as a label
1789     // reference needing a fixup. If it is a constant, it's something else
1790     // and we reject it.
1791     if (isImm() && !isa<MCConstantExpr>(getImm()))
1792       return true;
1793     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1794       return false;
1795     // Immediate offset a multiple of 4 in range [-1020, 1020].
1796     if (!Memory.OffsetImm) return true;
1797     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1798       int64_t Val = CE->getValue();
1799       // Special case, #-0 is std::numeric_limits<int32_t>::min().
1800       return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1801              Val == std::numeric_limits<int32_t>::min();
1802     }
1803     return false;
1804   }
1805 
1806   bool isMemImm7s4Offset() const {
1807     // If we have an immediate that's not a constant, treat it as a label
1808     // reference needing a fixup. If it is a constant, it's something else
1809     // and we reject it.
1810     if (isImm() && !isa<MCConstantExpr>(getImm()))
1811       return true;
1812     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1813         !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1814             Memory.BaseRegNum))
1815       return false;
1816     // Immediate offset a multiple of 4 in range [-508, 508].
1817     if (!Memory.OffsetImm) return true;
1818     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1819       int64_t Val = CE->getValue();
1820       // Special case, #-0 is INT32_MIN.
1821       return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
1822     }
1823     return false;
1824   }
1825 
1826   bool isMemImm0_1020s4Offset() const {
1827     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1828       return false;
1829     // Immediate offset a multiple of 4 in range [0, 1020].
1830     if (!Memory.OffsetImm) return true;
1831     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1832       int64_t Val = CE->getValue();
1833       return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1834     }
1835     return false;
1836   }
1837 
1838   bool isMemImm8Offset() const {
1839     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1840       return false;
1841     // Base reg of PC isn't allowed for these encodings.
1842     if (Memory.BaseRegNum == ARM::PC) return false;
1843     // Immediate offset in range [-255, 255].
1844     if (!Memory.OffsetImm) return true;
1845     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1846       int64_t Val = CE->getValue();
1847       return (Val == std::numeric_limits<int32_t>::min()) ||
1848              (Val > -256 && Val < 256);
1849     }
1850     return false;
1851   }
1852 
1853   template<unsigned Bits, unsigned RegClassID>
1854   bool isMemImm7ShiftedOffset() const {
1855     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1856         !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
1857       return false;
1858 
1859     // Expect an immediate offset equal to an element of the range
1860     // [-127, 127], shifted left by Bits.
1861 
1862     if (!Memory.OffsetImm) return true;
1863     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1864       int64_t Val = CE->getValue();
1865 
1866       // INT32_MIN is a special-case value (indicating the encoding with
1867       // zero offset and the subtract bit set)
1868       if (Val == INT32_MIN)
1869         return true;
1870 
1871       unsigned Divisor = 1U << Bits;
1872 
1873       // Check that the low bits are zero
1874       if (Val % Divisor != 0)
1875         return false;
1876 
1877       // Check that the remaining offset is within range.
1878       Val /= Divisor;
1879       return (Val >= -127 && Val <= 127);
1880     }
1881     return false;
1882   }
1883 
1884   template <int shift> bool isMemRegRQOffset() const {
1885     if (!isMVEMem() || Memory.OffsetImm != nullptr || Memory.Alignment != 0)
1886       return false;
1887 
1888     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1889             Memory.BaseRegNum))
1890       return false;
1891     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1892             Memory.OffsetRegNum))
1893       return false;
1894 
1895     if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
1896       return false;
1897 
1898     if (shift > 0 &&
1899         (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
1900       return false;
1901 
1902     return true;
1903   }
1904 
1905   template <int shift> bool isMemRegQOffset() const {
1906     if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1907       return false;
1908 
1909     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1910             Memory.BaseRegNum))
1911       return false;
1912 
1913     if (!Memory.OffsetImm)
1914       return true;
1915     static_assert(shift < 56,
1916                   "Such that we dont shift by a value higher than 62");
1917     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1918       int64_t Val = CE->getValue();
1919 
1920       // The value must be a multiple of (1 << shift)
1921       if ((Val & ((1U << shift) - 1)) != 0)
1922         return false;
1923 
1924       // And be in the right range, depending on the amount that it is shifted
1925       // by.  Shift 0, is equal to 7 unsigned bits, the sign bit is set
1926       // separately.
1927       int64_t Range = (1U << (7 + shift)) - 1;
1928       return (Val == INT32_MIN) || (Val > -Range && Val < Range);
1929     }
1930     return false;
1931   }
1932 
1933   bool isMemPosImm8Offset() const {
1934     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1935       return false;
1936     // Immediate offset in range [0, 255].
1937     if (!Memory.OffsetImm) return true;
1938     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1939       int64_t Val = CE->getValue();
1940       return Val >= 0 && Val < 256;
1941     }
1942     return false;
1943   }
1944 
1945   bool isMemNegImm8Offset() const {
1946     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1947       return false;
1948     // Base reg of PC isn't allowed for these encodings.
1949     if (Memory.BaseRegNum == ARM::PC) return false;
1950     // Immediate offset in range [-255, -1].
1951     if (!Memory.OffsetImm) return false;
1952     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1953       int64_t Val = CE->getValue();
1954       return (Val == std::numeric_limits<int32_t>::min()) ||
1955              (Val > -256 && Val < 0);
1956     }
1957     return false;
1958   }
1959 
1960   bool isMemUImm12Offset() const {
1961     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1962       return false;
1963     // Immediate offset in range [0, 4095].
1964     if (!Memory.OffsetImm) return true;
1965     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1966       int64_t Val = CE->getValue();
1967       return (Val >= 0 && Val < 4096);
1968     }
1969     return false;
1970   }
1971 
1972   bool isMemImm12Offset() const {
1973     // If we have an immediate that's not a constant, treat it as a label
1974     // reference needing a fixup. If it is a constant, it's something else
1975     // and we reject it.
1976 
1977     if (isImm() && !isa<MCConstantExpr>(getImm()))
1978       return true;
1979 
1980     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1981       return false;
1982     // Immediate offset in range [-4095, 4095].
1983     if (!Memory.OffsetImm) return true;
1984     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1985       int64_t Val = CE->getValue();
1986       return (Val > -4096 && Val < 4096) ||
1987              (Val == std::numeric_limits<int32_t>::min());
1988     }
1989     // If we have an immediate that's not a constant, treat it as a
1990     // symbolic expression needing a fixup.
1991     return true;
1992   }
1993 
1994   bool isConstPoolAsmImm() const {
1995     // Delay processing of Constant Pool Immediate, this will turn into
1996     // a constant. Match no other operand
1997     return (isConstantPoolImm());
1998   }
1999 
2000   bool isPostIdxImm8() const {
2001     if (!isImm()) return false;
2002     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2003     if (!CE) return false;
2004     int64_t Val = CE->getValue();
2005     return (Val > -256 && Val < 256) ||
2006            (Val == std::numeric_limits<int32_t>::min());
2007   }
2008 
2009   bool isPostIdxImm8s4() const {
2010     if (!isImm()) return false;
2011     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2012     if (!CE) return false;
2013     int64_t Val = CE->getValue();
2014     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
2015            (Val == std::numeric_limits<int32_t>::min());
2016   }
2017 
2018   bool isMSRMask() const { return Kind == k_MSRMask; }
2019   bool isBankedReg() const { return Kind == k_BankedReg; }
2020   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
2021 
2022   // NEON operands.
2023   bool isSingleSpacedVectorList() const {
2024     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
2025   }
2026 
2027   bool isDoubleSpacedVectorList() const {
2028     return Kind == k_VectorList && VectorList.isDoubleSpaced;
2029   }
2030 
2031   bool isVecListOneD() const {
2032     if (!isSingleSpacedVectorList()) return false;
2033     return VectorList.Count == 1;
2034   }
2035 
2036   bool isVecListTwoMQ() const {
2037     return isSingleSpacedVectorList() && VectorList.Count == 2 &&
2038            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2039                VectorList.RegNum);
2040   }
2041 
2042   bool isVecListDPair() const {
2043     if (!isSingleSpacedVectorList()) return false;
2044     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2045               .contains(VectorList.RegNum));
2046   }
2047 
2048   bool isVecListThreeD() const {
2049     if (!isSingleSpacedVectorList()) return false;
2050     return VectorList.Count == 3;
2051   }
2052 
2053   bool isVecListFourD() const {
2054     if (!isSingleSpacedVectorList()) return false;
2055     return VectorList.Count == 4;
2056   }
2057 
2058   bool isVecListDPairSpaced() const {
2059     if (Kind != k_VectorList) return false;
2060     if (isSingleSpacedVectorList()) return false;
2061     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
2062               .contains(VectorList.RegNum));
2063   }
2064 
2065   bool isVecListThreeQ() const {
2066     if (!isDoubleSpacedVectorList()) return false;
2067     return VectorList.Count == 3;
2068   }
2069 
2070   bool isVecListFourQ() const {
2071     if (!isDoubleSpacedVectorList()) return false;
2072     return VectorList.Count == 4;
2073   }
2074 
2075   bool isVecListFourMQ() const {
2076     return isSingleSpacedVectorList() && VectorList.Count == 4 &&
2077            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2078                VectorList.RegNum);
2079   }
2080 
2081   bool isSingleSpacedVectorAllLanes() const {
2082     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
2083   }
2084 
2085   bool isDoubleSpacedVectorAllLanes() const {
2086     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
2087   }
2088 
2089   bool isVecListOneDAllLanes() const {
2090     if (!isSingleSpacedVectorAllLanes()) return false;
2091     return VectorList.Count == 1;
2092   }
2093 
2094   bool isVecListDPairAllLanes() const {
2095     if (!isSingleSpacedVectorAllLanes()) return false;
2096     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2097               .contains(VectorList.RegNum));
2098   }
2099 
2100   bool isVecListDPairSpacedAllLanes() const {
2101     if (!isDoubleSpacedVectorAllLanes()) return false;
2102     return VectorList.Count == 2;
2103   }
2104 
2105   bool isVecListThreeDAllLanes() const {
2106     if (!isSingleSpacedVectorAllLanes()) return false;
2107     return VectorList.Count == 3;
2108   }
2109 
2110   bool isVecListThreeQAllLanes() const {
2111     if (!isDoubleSpacedVectorAllLanes()) return false;
2112     return VectorList.Count == 3;
2113   }
2114 
2115   bool isVecListFourDAllLanes() const {
2116     if (!isSingleSpacedVectorAllLanes()) return false;
2117     return VectorList.Count == 4;
2118   }
2119 
2120   bool isVecListFourQAllLanes() const {
2121     if (!isDoubleSpacedVectorAllLanes()) return false;
2122     return VectorList.Count == 4;
2123   }
2124 
2125   bool isSingleSpacedVectorIndexed() const {
2126     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
2127   }
2128 
2129   bool isDoubleSpacedVectorIndexed() const {
2130     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
2131   }
2132 
2133   bool isVecListOneDByteIndexed() const {
2134     if (!isSingleSpacedVectorIndexed()) return false;
2135     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
2136   }
2137 
2138   bool isVecListOneDHWordIndexed() const {
2139     if (!isSingleSpacedVectorIndexed()) return false;
2140     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
2141   }
2142 
2143   bool isVecListOneDWordIndexed() const {
2144     if (!isSingleSpacedVectorIndexed()) return false;
2145     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
2146   }
2147 
2148   bool isVecListTwoDByteIndexed() const {
2149     if (!isSingleSpacedVectorIndexed()) return false;
2150     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
2151   }
2152 
2153   bool isVecListTwoDHWordIndexed() const {
2154     if (!isSingleSpacedVectorIndexed()) return false;
2155     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2156   }
2157 
2158   bool isVecListTwoQWordIndexed() const {
2159     if (!isDoubleSpacedVectorIndexed()) return false;
2160     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2161   }
2162 
2163   bool isVecListTwoQHWordIndexed() const {
2164     if (!isDoubleSpacedVectorIndexed()) return false;
2165     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2166   }
2167 
2168   bool isVecListTwoDWordIndexed() const {
2169     if (!isSingleSpacedVectorIndexed()) return false;
2170     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2171   }
2172 
2173   bool isVecListThreeDByteIndexed() const {
2174     if (!isSingleSpacedVectorIndexed()) return false;
2175     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
2176   }
2177 
2178   bool isVecListThreeDHWordIndexed() const {
2179     if (!isSingleSpacedVectorIndexed()) return false;
2180     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2181   }
2182 
2183   bool isVecListThreeQWordIndexed() const {
2184     if (!isDoubleSpacedVectorIndexed()) return false;
2185     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2186   }
2187 
2188   bool isVecListThreeQHWordIndexed() const {
2189     if (!isDoubleSpacedVectorIndexed()) return false;
2190     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2191   }
2192 
2193   bool isVecListThreeDWordIndexed() const {
2194     if (!isSingleSpacedVectorIndexed()) return false;
2195     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2196   }
2197 
2198   bool isVecListFourDByteIndexed() const {
2199     if (!isSingleSpacedVectorIndexed()) return false;
2200     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
2201   }
2202 
2203   bool isVecListFourDHWordIndexed() const {
2204     if (!isSingleSpacedVectorIndexed()) return false;
2205     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2206   }
2207 
2208   bool isVecListFourQWordIndexed() const {
2209     if (!isDoubleSpacedVectorIndexed()) return false;
2210     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2211   }
2212 
2213   bool isVecListFourQHWordIndexed() const {
2214     if (!isDoubleSpacedVectorIndexed()) return false;
2215     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2216   }
2217 
2218   bool isVecListFourDWordIndexed() const {
2219     if (!isSingleSpacedVectorIndexed()) return false;
2220     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2221   }
2222 
2223   bool isVectorIndex() const { return Kind == k_VectorIndex; }
2224 
2225   template <unsigned NumLanes>
2226   bool isVectorIndexInRange() const {
2227     if (Kind != k_VectorIndex) return false;
2228     return VectorIndex.Val < NumLanes;
2229   }
2230 
2231   bool isVectorIndex8()  const { return isVectorIndexInRange<8>(); }
2232   bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
2233   bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
2234   bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
2235 
2236   template<int PermittedValue, int OtherPermittedValue>
2237   bool isMVEPairVectorIndex() const {
2238     if (Kind != k_VectorIndex) return false;
2239     return VectorIndex.Val == PermittedValue ||
2240            VectorIndex.Val == OtherPermittedValue;
2241   }
2242 
2243   bool isNEONi8splat() const {
2244     if (!isImm()) return false;
2245     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2246     // Must be a constant.
2247     if (!CE) return false;
2248     int64_t Value = CE->getValue();
2249     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2250     // value.
2251     return Value >= 0 && Value < 256;
2252   }
2253 
2254   bool isNEONi16splat() const {
2255     if (isNEONByteReplicate(2))
2256       return false; // Leave that for bytes replication and forbid by default.
2257     if (!isImm())
2258       return false;
2259     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2260     // Must be a constant.
2261     if (!CE) return false;
2262     unsigned Value = CE->getValue();
2263     return ARM_AM::isNEONi16splat(Value);
2264   }
2265 
2266   bool isNEONi16splatNot() const {
2267     if (!isImm())
2268       return false;
2269     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2270     // Must be a constant.
2271     if (!CE) return false;
2272     unsigned Value = CE->getValue();
2273     return ARM_AM::isNEONi16splat(~Value & 0xffff);
2274   }
2275 
2276   bool isNEONi32splat() const {
2277     if (isNEONByteReplicate(4))
2278       return false; // Leave that for bytes replication and forbid by default.
2279     if (!isImm())
2280       return false;
2281     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2282     // Must be a constant.
2283     if (!CE) return false;
2284     unsigned Value = CE->getValue();
2285     return ARM_AM::isNEONi32splat(Value);
2286   }
2287 
2288   bool isNEONi32splatNot() const {
2289     if (!isImm())
2290       return false;
2291     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2292     // Must be a constant.
2293     if (!CE) return false;
2294     unsigned Value = CE->getValue();
2295     return ARM_AM::isNEONi32splat(~Value);
2296   }
2297 
2298   static bool isValidNEONi32vmovImm(int64_t Value) {
2299     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2300     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2301     return ((Value & 0xffffffffffffff00) == 0) ||
2302            ((Value & 0xffffffffffff00ff) == 0) ||
2303            ((Value & 0xffffffffff00ffff) == 0) ||
2304            ((Value & 0xffffffff00ffffff) == 0) ||
2305            ((Value & 0xffffffffffff00ff) == 0xff) ||
2306            ((Value & 0xffffffffff00ffff) == 0xffff);
2307   }
2308 
2309   bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
2310     assert((Width == 8 || Width == 16 || Width == 32) &&
2311            "Invalid element width");
2312     assert(NumElems * Width <= 64 && "Invalid result width");
2313 
2314     if (!isImm())
2315       return false;
2316     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2317     // Must be a constant.
2318     if (!CE)
2319       return false;
2320     int64_t Value = CE->getValue();
2321     if (!Value)
2322       return false; // Don't bother with zero.
2323     if (Inv)
2324       Value = ~Value;
2325 
2326     uint64_t Mask = (1ull << Width) - 1;
2327     uint64_t Elem = Value & Mask;
2328     if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
2329       return false;
2330     if (Width == 32 && !isValidNEONi32vmovImm(Elem))
2331       return false;
2332 
2333     for (unsigned i = 1; i < NumElems; ++i) {
2334       Value >>= Width;
2335       if ((Value & Mask) != Elem)
2336         return false;
2337     }
2338     return true;
2339   }
2340 
2341   bool isNEONByteReplicate(unsigned NumBytes) const {
2342     return isNEONReplicate(8, NumBytes, false);
2343   }
2344 
2345   static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
2346     assert((FromW == 8 || FromW == 16 || FromW == 32) &&
2347            "Invalid source width");
2348     assert((ToW == 16 || ToW == 32 || ToW == 64) &&
2349            "Invalid destination width");
2350     assert(FromW < ToW && "ToW is not less than FromW");
2351   }
2352 
2353   template<unsigned FromW, unsigned ToW>
2354   bool isNEONmovReplicate() const {
2355     checkNeonReplicateArgs(FromW, ToW);
2356     if (ToW == 64 && isNEONi64splat())
2357       return false;
2358     return isNEONReplicate(FromW, ToW / FromW, false);
2359   }
2360 
2361   template<unsigned FromW, unsigned ToW>
2362   bool isNEONinvReplicate() const {
2363     checkNeonReplicateArgs(FromW, ToW);
2364     return isNEONReplicate(FromW, ToW / FromW, true);
2365   }
2366 
2367   bool isNEONi32vmov() const {
2368     if (isNEONByteReplicate(4))
2369       return false; // Let it to be classified as byte-replicate case.
2370     if (!isImm())
2371       return false;
2372     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2373     // Must be a constant.
2374     if (!CE)
2375       return false;
2376     return isValidNEONi32vmovImm(CE->getValue());
2377   }
2378 
2379   bool isNEONi32vmovNeg() const {
2380     if (!isImm()) return false;
2381     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2382     // Must be a constant.
2383     if (!CE) return false;
2384     return isValidNEONi32vmovImm(~CE->getValue());
2385   }
2386 
2387   bool isNEONi64splat() const {
2388     if (!isImm()) return false;
2389     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2390     // Must be a constant.
2391     if (!CE) return false;
2392     uint64_t Value = CE->getValue();
2393     // i64 value with each byte being either 0 or 0xff.
2394     for (unsigned i = 0; i < 8; ++i, Value >>= 8)
2395       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
2396     return true;
2397   }
2398 
2399   template<int64_t Angle, int64_t Remainder>
2400   bool isComplexRotation() const {
2401     if (!isImm()) return false;
2402 
2403     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2404     if (!CE) return false;
2405     uint64_t Value = CE->getValue();
2406 
2407     return (Value % Angle == Remainder && Value <= 270);
2408   }
2409 
2410   bool isMVELongShift() const {
2411     if (!isImm()) return false;
2412     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2413     // Must be a constant.
2414     if (!CE) return false;
2415     uint64_t Value = CE->getValue();
2416     return Value >= 1 && Value <= 32;
2417   }
2418 
2419   bool isMveSaturateOp() const {
2420     if (!isImm()) return false;
2421     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2422     if (!CE) return false;
2423     uint64_t Value = CE->getValue();
2424     return Value == 48 || Value == 64;
2425   }
2426 
2427   bool isITCondCodeNoAL() const {
2428     if (!isITCondCode()) return false;
2429     ARMCC::CondCodes CC = getCondCode();
2430     return CC != ARMCC::AL;
2431   }
2432 
2433   bool isITCondCodeRestrictedI() const {
2434     if (!isITCondCode())
2435       return false;
2436     ARMCC::CondCodes CC = getCondCode();
2437     return CC == ARMCC::EQ || CC == ARMCC::NE;
2438   }
2439 
2440   bool isITCondCodeRestrictedS() const {
2441     if (!isITCondCode())
2442       return false;
2443     ARMCC::CondCodes CC = getCondCode();
2444     return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
2445            CC == ARMCC::GE;
2446   }
2447 
2448   bool isITCondCodeRestrictedU() const {
2449     if (!isITCondCode())
2450       return false;
2451     ARMCC::CondCodes CC = getCondCode();
2452     return CC == ARMCC::HS || CC == ARMCC::HI;
2453   }
2454 
2455   bool isITCondCodeRestrictedFP() const {
2456     if (!isITCondCode())
2457       return false;
2458     ARMCC::CondCodes CC = getCondCode();
2459     return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
2460            CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
2461   }
2462 
2463   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
2464     // Add as immediates when possible.  Null MCExpr = 0.
2465     if (!Expr)
2466       Inst.addOperand(MCOperand::createImm(0));
2467     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2468       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2469     else
2470       Inst.addOperand(MCOperand::createExpr(Expr));
2471   }
2472 
2473   void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2474     assert(N == 1 && "Invalid number of operands!");
2475     addExpr(Inst, getImm());
2476   }
2477 
2478   void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2479     assert(N == 1 && "Invalid number of operands!");
2480     addExpr(Inst, getImm());
2481   }
2482 
2483   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2484     assert(N == 2 && "Invalid number of operands!");
2485     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2486     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2487     Inst.addOperand(MCOperand::createReg(RegNum));
2488   }
2489 
2490   void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
2491     assert(N == 3 && "Invalid number of operands!");
2492     Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2493     unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
2494     Inst.addOperand(MCOperand::createReg(RegNum));
2495     Inst.addOperand(MCOperand::createReg(0));
2496   }
2497 
2498   void addVPTPredROperands(MCInst &Inst, unsigned N) const {
2499     assert(N == 4 && "Invalid number of operands!");
2500     addVPTPredNOperands(Inst, N-1);
2501     unsigned RegNum;
2502     if (getVPTPred() == ARMVCC::None) {
2503       RegNum = 0;
2504     } else {
2505       unsigned NextOpIndex = Inst.getNumOperands();
2506       const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
2507       int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
2508       assert(TiedOp >= 0 &&
2509              "Inactive register in vpred_r is not tied to an output!");
2510       RegNum = Inst.getOperand(TiedOp).getReg();
2511     }
2512     Inst.addOperand(MCOperand::createReg(RegNum));
2513   }
2514 
2515   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2516     assert(N == 1 && "Invalid number of operands!");
2517     Inst.addOperand(MCOperand::createImm(getCoproc()));
2518   }
2519 
2520   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2521     assert(N == 1 && "Invalid number of operands!");
2522     Inst.addOperand(MCOperand::createImm(getCoproc()));
2523   }
2524 
2525   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2526     assert(N == 1 && "Invalid number of operands!");
2527     Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2528   }
2529 
2530   void addITMaskOperands(MCInst &Inst, unsigned N) const {
2531     assert(N == 1 && "Invalid number of operands!");
2532     Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2533   }
2534 
2535   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2536     assert(N == 1 && "Invalid number of operands!");
2537     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2538   }
2539 
2540   void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
2541     assert(N == 1 && "Invalid number of operands!");
2542     Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2543   }
2544 
2545   void addCCOutOperands(MCInst &Inst, unsigned N) const {
2546     assert(N == 1 && "Invalid number of operands!");
2547     Inst.addOperand(MCOperand::createReg(getReg()));
2548   }
2549 
2550   void addRegOperands(MCInst &Inst, unsigned N) const {
2551     assert(N == 1 && "Invalid number of operands!");
2552     Inst.addOperand(MCOperand::createReg(getReg()));
2553   }
2554 
2555   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2556     assert(N == 3 && "Invalid number of operands!");
2557     assert(isRegShiftedReg() &&
2558            "addRegShiftedRegOperands() on non-RegShiftedReg!");
2559     Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2560     Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2561     Inst.addOperand(MCOperand::createImm(
2562       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2563   }
2564 
2565   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2566     assert(N == 2 && "Invalid number of operands!");
2567     assert(isRegShiftedImm() &&
2568            "addRegShiftedImmOperands() on non-RegShiftedImm!");
2569     Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2570     // Shift of #32 is encoded as 0 where permitted
2571     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2572     Inst.addOperand(MCOperand::createImm(
2573       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2574   }
2575 
2576   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2577     assert(N == 1 && "Invalid number of operands!");
2578     Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2579                                          ShifterImm.Imm));
2580   }
2581 
2582   void addRegListOperands(MCInst &Inst, unsigned N) const {
2583     assert(N == 1 && "Invalid number of operands!");
2584     const SmallVectorImpl<unsigned> &RegList = getRegList();
2585     for (unsigned Reg : RegList)
2586       Inst.addOperand(MCOperand::createReg(Reg));
2587   }
2588 
2589   void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
2590     assert(N == 1 && "Invalid number of operands!");
2591     const SmallVectorImpl<unsigned> &RegList = getRegList();
2592     for (unsigned Reg : RegList)
2593       Inst.addOperand(MCOperand::createReg(Reg));
2594   }
2595 
2596   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2597     addRegListOperands(Inst, N);
2598   }
2599 
2600   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2601     addRegListOperands(Inst, N);
2602   }
2603 
2604   void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2605     addRegListOperands(Inst, N);
2606   }
2607 
2608   void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2609     addRegListOperands(Inst, N);
2610   }
2611 
2612   void addRotImmOperands(MCInst &Inst, unsigned N) const {
2613     assert(N == 1 && "Invalid number of operands!");
2614     // Encoded as val>>3. The printer handles display as 8, 16, 24.
2615     Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2616   }
2617 
2618   void addModImmOperands(MCInst &Inst, unsigned N) const {
2619     assert(N == 1 && "Invalid number of operands!");
2620 
2621     // Support for fixups (MCFixup)
2622     if (isImm())
2623       return addImmOperands(Inst, N);
2624 
2625     Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2626   }
2627 
2628   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2629     assert(N == 1 && "Invalid number of operands!");
2630     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2631     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2632     Inst.addOperand(MCOperand::createImm(Enc));
2633   }
2634 
2635   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2636     assert(N == 1 && "Invalid number of operands!");
2637     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2638     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2639     Inst.addOperand(MCOperand::createImm(Enc));
2640   }
2641 
2642   void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2643     assert(N == 1 && "Invalid number of operands!");
2644     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2645     uint32_t Val = -CE->getValue();
2646     Inst.addOperand(MCOperand::createImm(Val));
2647   }
2648 
2649   void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2650     assert(N == 1 && "Invalid number of operands!");
2651     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2652     uint32_t Val = -CE->getValue();
2653     Inst.addOperand(MCOperand::createImm(Val));
2654   }
2655 
2656   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2657     assert(N == 1 && "Invalid number of operands!");
2658     // Munge the lsb/width into a bitfield mask.
2659     unsigned lsb = Bitfield.LSB;
2660     unsigned width = Bitfield.Width;
2661     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2662     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2663                       (32 - (lsb + width)));
2664     Inst.addOperand(MCOperand::createImm(Mask));
2665   }
2666 
2667   void addImmOperands(MCInst &Inst, unsigned N) const {
2668     assert(N == 1 && "Invalid number of operands!");
2669     addExpr(Inst, getImm());
2670   }
2671 
2672   void addFBits16Operands(MCInst &Inst, unsigned N) const {
2673     assert(N == 1 && "Invalid number of operands!");
2674     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2675     Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2676   }
2677 
2678   void addFBits32Operands(MCInst &Inst, unsigned N) const {
2679     assert(N == 1 && "Invalid number of operands!");
2680     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2681     Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2682   }
2683 
2684   void addFPImmOperands(MCInst &Inst, unsigned N) const {
2685     assert(N == 1 && "Invalid number of operands!");
2686     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2687     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2688     Inst.addOperand(MCOperand::createImm(Val));
2689   }
2690 
2691   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2692     assert(N == 1 && "Invalid number of operands!");
2693     // FIXME: We really want to scale the value here, but the LDRD/STRD
2694     // instruction don't encode operands that way yet.
2695     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2696     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2697   }
2698 
2699   void addImm7s4Operands(MCInst &Inst, unsigned N) const {
2700     assert(N == 1 && "Invalid number of operands!");
2701     // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2702     // instruction don't encode operands that way yet.
2703     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2704     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2705   }
2706 
2707   void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
2708     assert(N == 1 && "Invalid number of operands!");
2709     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2710     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2711   }
2712 
2713   void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
2714     assert(N == 1 && "Invalid number of operands!");
2715     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2716     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2717   }
2718 
2719   void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
2720     assert(N == 1 && "Invalid number of operands!");
2721     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2722     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2723   }
2724 
2725   void addImm7Operands(MCInst &Inst, unsigned N) const {
2726     assert(N == 1 && "Invalid number of operands!");
2727     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2728     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2729   }
2730 
2731   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2732     assert(N == 1 && "Invalid number of operands!");
2733     // The immediate is scaled by four in the encoding and is stored
2734     // in the MCInst as such. Lop off the low two bits here.
2735     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2736     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2737   }
2738 
2739   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2740     assert(N == 1 && "Invalid number of operands!");
2741     // The immediate is scaled by four in the encoding and is stored
2742     // in the MCInst as such. Lop off the low two bits here.
2743     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2744     Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2745   }
2746 
2747   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2748     assert(N == 1 && "Invalid number of operands!");
2749     // The immediate is scaled by four in the encoding and is stored
2750     // in the MCInst as such. Lop off the low two bits here.
2751     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2752     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2753   }
2754 
2755   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2756     assert(N == 1 && "Invalid number of operands!");
2757     // The constant encodes as the immediate-1, and we store in the instruction
2758     // the bits as encoded, so subtract off one here.
2759     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2760     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2761   }
2762 
2763   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2764     assert(N == 1 && "Invalid number of operands!");
2765     // The constant encodes as the immediate-1, and we store in the instruction
2766     // the bits as encoded, so subtract off one here.
2767     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2768     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2769   }
2770 
2771   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2772     assert(N == 1 && "Invalid number of operands!");
2773     // The constant encodes as the immediate, except for 32, which encodes as
2774     // zero.
2775     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2776     unsigned Imm = CE->getValue();
2777     Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2778   }
2779 
2780   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2781     assert(N == 1 && "Invalid number of operands!");
2782     // An ASR value of 32 encodes as 0, so that's how we want to add it to
2783     // the instruction as well.
2784     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2785     int Val = CE->getValue();
2786     Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2787   }
2788 
2789   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2790     assert(N == 1 && "Invalid number of operands!");
2791     // The operand is actually a t2_so_imm, but we have its bitwise
2792     // negation in the assembly source, so twiddle it here.
2793     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2794     Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2795   }
2796 
2797   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2798     assert(N == 1 && "Invalid number of operands!");
2799     // The operand is actually a t2_so_imm, but we have its
2800     // negation in the assembly source, so twiddle it here.
2801     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2802     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2803   }
2804 
2805   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2806     assert(N == 1 && "Invalid number of operands!");
2807     // The operand is actually an imm0_4095, but we have its
2808     // negation in the assembly source, so twiddle it here.
2809     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2810     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2811   }
2812 
2813   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2814     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2815       Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2816       return;
2817     }
2818     const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2819     Inst.addOperand(MCOperand::createExpr(SR));
2820   }
2821 
2822   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2823     assert(N == 1 && "Invalid number of operands!");
2824     if (isImm()) {
2825       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2826       if (CE) {
2827         Inst.addOperand(MCOperand::createImm(CE->getValue()));
2828         return;
2829       }
2830       const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2831       Inst.addOperand(MCOperand::createExpr(SR));
2832       return;
2833     }
2834 
2835     assert(isGPRMem()  && "Unknown value type!");
2836     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2837     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2838       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2839     else
2840       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2841   }
2842 
2843   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2844     assert(N == 1 && "Invalid number of operands!");
2845     Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2846   }
2847 
2848   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2849     assert(N == 1 && "Invalid number of operands!");
2850     Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2851   }
2852 
2853   void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2854     assert(N == 1 && "Invalid number of operands!");
2855     Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2856   }
2857 
2858   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2859     assert(N == 1 && "Invalid number of operands!");
2860     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2861   }
2862 
2863   void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
2864     assert(N == 1 && "Invalid number of operands!");
2865     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2866   }
2867 
2868   void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
2869     assert(N == 1 && "Invalid number of operands!");
2870     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2871   }
2872 
2873   void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
2874     assert(N == 1 && "Invalid number of operands!");
2875     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2876   }
2877 
2878   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2879     assert(N == 1 && "Invalid number of operands!");
2880     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2881       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2882     else
2883       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2884   }
2885 
2886   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2887     assert(N == 1 && "Invalid number of operands!");
2888     assert(isImm() && "Not an immediate!");
2889 
2890     // If we have an immediate that's not a constant, treat it as a label
2891     // reference needing a fixup.
2892     if (!isa<MCConstantExpr>(getImm())) {
2893       Inst.addOperand(MCOperand::createExpr(getImm()));
2894       return;
2895     }
2896 
2897     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2898     int Val = CE->getValue();
2899     Inst.addOperand(MCOperand::createImm(Val));
2900   }
2901 
2902   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2903     assert(N == 2 && "Invalid number of operands!");
2904     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2905     Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2906   }
2907 
2908   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2909     addAlignedMemoryOperands(Inst, N);
2910   }
2911 
2912   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2913     addAlignedMemoryOperands(Inst, N);
2914   }
2915 
2916   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2917     addAlignedMemoryOperands(Inst, N);
2918   }
2919 
2920   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2921     addAlignedMemoryOperands(Inst, N);
2922   }
2923 
2924   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2925     addAlignedMemoryOperands(Inst, N);
2926   }
2927 
2928   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2929     addAlignedMemoryOperands(Inst, N);
2930   }
2931 
2932   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2933     addAlignedMemoryOperands(Inst, N);
2934   }
2935 
2936   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2937     addAlignedMemoryOperands(Inst, N);
2938   }
2939 
2940   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2941     addAlignedMemoryOperands(Inst, N);
2942   }
2943 
2944   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2945     addAlignedMemoryOperands(Inst, N);
2946   }
2947 
2948   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2949     addAlignedMemoryOperands(Inst, N);
2950   }
2951 
2952   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2953     assert(N == 3 && "Invalid number of operands!");
2954     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2955     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2956     if (!Memory.OffsetRegNum) {
2957       if (!Memory.OffsetImm)
2958         Inst.addOperand(MCOperand::createImm(0));
2959       else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
2960         int32_t Val = CE->getValue();
2961         ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2962         // Special case for #-0
2963         if (Val == std::numeric_limits<int32_t>::min())
2964           Val = 0;
2965         if (Val < 0)
2966           Val = -Val;
2967         Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2968         Inst.addOperand(MCOperand::createImm(Val));
2969       } else
2970         Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2971     } else {
2972       // For register offset, we encode the shift type and negation flag
2973       // here.
2974       int32_t Val =
2975           ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2976                             Memory.ShiftImm, Memory.ShiftType);
2977       Inst.addOperand(MCOperand::createImm(Val));
2978     }
2979   }
2980 
2981   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2982     assert(N == 2 && "Invalid number of operands!");
2983     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2984     assert(CE && "non-constant AM2OffsetImm operand!");
2985     int32_t Val = CE->getValue();
2986     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2987     // Special case for #-0
2988     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2989     if (Val < 0) Val = -Val;
2990     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2991     Inst.addOperand(MCOperand::createReg(0));
2992     Inst.addOperand(MCOperand::createImm(Val));
2993   }
2994 
2995   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2996     assert(N == 3 && "Invalid number of operands!");
2997     // If we have an immediate that's not a constant, treat it as a label
2998     // reference needing a fixup. If it is a constant, it's something else
2999     // and we reject it.
3000     if (isImm()) {
3001       Inst.addOperand(MCOperand::createExpr(getImm()));
3002       Inst.addOperand(MCOperand::createReg(0));
3003       Inst.addOperand(MCOperand::createImm(0));
3004       return;
3005     }
3006 
3007     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3008     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3009     if (!Memory.OffsetRegNum) {
3010       if (!Memory.OffsetImm)
3011         Inst.addOperand(MCOperand::createImm(0));
3012       else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3013         int32_t Val = CE->getValue();
3014         ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3015         // Special case for #-0
3016         if (Val == std::numeric_limits<int32_t>::min())
3017           Val = 0;
3018         if (Val < 0)
3019           Val = -Val;
3020         Val = ARM_AM::getAM3Opc(AddSub, Val);
3021         Inst.addOperand(MCOperand::createImm(Val));
3022       } else
3023         Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3024     } else {
3025       // For register offset, we encode the shift type and negation flag
3026       // here.
3027       int32_t Val =
3028           ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
3029       Inst.addOperand(MCOperand::createImm(Val));
3030     }
3031   }
3032 
3033   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
3034     assert(N == 2 && "Invalid number of operands!");
3035     if (Kind == k_PostIndexRegister) {
3036       int32_t Val =
3037         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
3038       Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3039       Inst.addOperand(MCOperand::createImm(Val));
3040       return;
3041     }
3042 
3043     // Constant offset.
3044     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
3045     int32_t Val = CE->getValue();
3046     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3047     // Special case for #-0
3048     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
3049     if (Val < 0) Val = -Val;
3050     Val = ARM_AM::getAM3Opc(AddSub, Val);
3051     Inst.addOperand(MCOperand::createReg(0));
3052     Inst.addOperand(MCOperand::createImm(Val));
3053   }
3054 
3055   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
3056     assert(N == 2 && "Invalid number of operands!");
3057     // If we have an immediate that's not a constant, treat it as a label
3058     // reference needing a fixup. If it is a constant, it's something else
3059     // and we reject it.
3060     if (isImm()) {
3061       Inst.addOperand(MCOperand::createExpr(getImm()));
3062       Inst.addOperand(MCOperand::createImm(0));
3063       return;
3064     }
3065 
3066     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3067     if (!Memory.OffsetImm)
3068       Inst.addOperand(MCOperand::createImm(0));
3069     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3070       // The lower two bits are always zero and as such are not encoded.
3071       int32_t Val = CE->getValue() / 4;
3072       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3073       // Special case for #-0
3074       if (Val == std::numeric_limits<int32_t>::min())
3075         Val = 0;
3076       if (Val < 0)
3077         Val = -Val;
3078       Val = ARM_AM::getAM5Opc(AddSub, Val);
3079       Inst.addOperand(MCOperand::createImm(Val));
3080     } else
3081       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3082   }
3083 
3084   void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
3085     assert(N == 2 && "Invalid number of operands!");
3086     // If we have an immediate that's not a constant, treat it as a label
3087     // reference needing a fixup. If it is a constant, it's something else
3088     // and we reject it.
3089     if (isImm()) {
3090       Inst.addOperand(MCOperand::createExpr(getImm()));
3091       Inst.addOperand(MCOperand::createImm(0));
3092       return;
3093     }
3094 
3095     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3096     // The lower bit is always zero and as such is not encoded.
3097     if (!Memory.OffsetImm)
3098       Inst.addOperand(MCOperand::createImm(0));
3099     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3100       int32_t Val = CE->getValue() / 2;
3101       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3102       // Special case for #-0
3103       if (Val == std::numeric_limits<int32_t>::min())
3104         Val = 0;
3105       if (Val < 0)
3106         Val = -Val;
3107       Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
3108       Inst.addOperand(MCOperand::createImm(Val));
3109     } else
3110       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3111   }
3112 
3113   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
3114     assert(N == 2 && "Invalid number of operands!");
3115     // If we have an immediate that's not a constant, treat it as a label
3116     // reference needing a fixup. If it is a constant, it's something else
3117     // and we reject it.
3118     if (isImm()) {
3119       Inst.addOperand(MCOperand::createExpr(getImm()));
3120       Inst.addOperand(MCOperand::createImm(0));
3121       return;
3122     }
3123 
3124     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3125     addExpr(Inst, Memory.OffsetImm);
3126   }
3127 
3128   void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
3129     assert(N == 2 && "Invalid number of operands!");
3130     // If we have an immediate that's not a constant, treat it as a label
3131     // reference needing a fixup. If it is a constant, it's something else
3132     // and we reject it.
3133     if (isImm()) {
3134       Inst.addOperand(MCOperand::createExpr(getImm()));
3135       Inst.addOperand(MCOperand::createImm(0));
3136       return;
3137     }
3138 
3139     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3140     addExpr(Inst, Memory.OffsetImm);
3141   }
3142 
3143   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
3144     assert(N == 2 && "Invalid number of operands!");
3145     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3146     if (!Memory.OffsetImm)
3147       Inst.addOperand(MCOperand::createImm(0));
3148     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3149       // The lower two bits are always zero and as such are not encoded.
3150       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3151     else
3152       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3153   }
3154 
3155   void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
3156     assert(N == 2 && "Invalid number of operands!");
3157     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3158     addExpr(Inst, Memory.OffsetImm);
3159   }
3160 
3161   void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
3162     assert(N == 2 && "Invalid number of operands!");
3163     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3164     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3165   }
3166 
3167   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3168     assert(N == 2 && "Invalid number of operands!");
3169     // If this is an immediate, it's a label reference.
3170     if (isImm()) {
3171       addExpr(Inst, getImm());
3172       Inst.addOperand(MCOperand::createImm(0));
3173       return;
3174     }
3175 
3176     // Otherwise, it's a normal memory reg+offset.
3177     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3178     addExpr(Inst, Memory.OffsetImm);
3179   }
3180 
3181   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3182     assert(N == 2 && "Invalid number of operands!");
3183     // If this is an immediate, it's a label reference.
3184     if (isImm()) {
3185       addExpr(Inst, getImm());
3186       Inst.addOperand(MCOperand::createImm(0));
3187       return;
3188     }
3189 
3190     // Otherwise, it's a normal memory reg+offset.
3191     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3192     addExpr(Inst, Memory.OffsetImm);
3193   }
3194 
3195   void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
3196     assert(N == 1 && "Invalid number of operands!");
3197     // This is container for the immediate that we will create the constant
3198     // pool from
3199     addExpr(Inst, getConstantPoolImm());
3200   }
3201 
3202   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
3203     assert(N == 2 && "Invalid number of operands!");
3204     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3205     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3206   }
3207 
3208   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
3209     assert(N == 2 && "Invalid number of operands!");
3210     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3211     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3212   }
3213 
3214   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3215     assert(N == 3 && "Invalid number of operands!");
3216     unsigned Val =
3217       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
3218                         Memory.ShiftImm, Memory.ShiftType);
3219     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3220     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3221     Inst.addOperand(MCOperand::createImm(Val));
3222   }
3223 
3224   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3225     assert(N == 3 && "Invalid number of operands!");
3226     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3227     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3228     Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
3229   }
3230 
3231   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
3232     assert(N == 2 && "Invalid number of operands!");
3233     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3234     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3235   }
3236 
3237   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
3238     assert(N == 2 && "Invalid number of operands!");
3239     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3240     if (!Memory.OffsetImm)
3241       Inst.addOperand(MCOperand::createImm(0));
3242     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3243       // The lower two bits are always zero and as such are not encoded.
3244       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3245     else
3246       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3247   }
3248 
3249   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
3250     assert(N == 2 && "Invalid number of operands!");
3251     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3252     if (!Memory.OffsetImm)
3253       Inst.addOperand(MCOperand::createImm(0));
3254     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3255       Inst.addOperand(MCOperand::createImm(CE->getValue() / 2));
3256     else
3257       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3258   }
3259 
3260   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
3261     assert(N == 2 && "Invalid number of operands!");
3262     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3263     addExpr(Inst, Memory.OffsetImm);
3264   }
3265 
3266   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
3267     assert(N == 2 && "Invalid number of operands!");
3268     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3269     if (!Memory.OffsetImm)
3270       Inst.addOperand(MCOperand::createImm(0));
3271     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3272       // The lower two bits are always zero and as such are not encoded.
3273       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3274     else
3275       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3276   }
3277 
3278   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
3279     assert(N == 1 && "Invalid number of operands!");
3280     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3281     assert(CE && "non-constant post-idx-imm8 operand!");
3282     int Imm = CE->getValue();
3283     bool isAdd = Imm >= 0;
3284     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3285     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
3286     Inst.addOperand(MCOperand::createImm(Imm));
3287   }
3288 
3289   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
3290     assert(N == 1 && "Invalid number of operands!");
3291     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3292     assert(CE && "non-constant post-idx-imm8s4 operand!");
3293     int Imm = CE->getValue();
3294     bool isAdd = Imm >= 0;
3295     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3296     // Immediate is scaled by 4.
3297     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
3298     Inst.addOperand(MCOperand::createImm(Imm));
3299   }
3300 
3301   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
3302     assert(N == 2 && "Invalid number of operands!");
3303     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3304     Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
3305   }
3306 
3307   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
3308     assert(N == 2 && "Invalid number of operands!");
3309     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3310     // The sign, shift type, and shift amount are encoded in a single operand
3311     // using the AM2 encoding helpers.
3312     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
3313     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
3314                                      PostIdxReg.ShiftTy);
3315     Inst.addOperand(MCOperand::createImm(Imm));
3316   }
3317 
3318   void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
3319     assert(N == 1 && "Invalid number of operands!");
3320     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3321     Inst.addOperand(MCOperand::createImm(CE->getValue()));
3322   }
3323 
3324   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
3325     assert(N == 1 && "Invalid number of operands!");
3326     Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3327   }
3328 
3329   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
3330     assert(N == 1 && "Invalid number of operands!");
3331     Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3332   }
3333 
3334   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
3335     assert(N == 1 && "Invalid number of operands!");
3336     Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3337   }
3338 
3339   void addVecListOperands(MCInst &Inst, unsigned N) const {
3340     assert(N == 1 && "Invalid number of operands!");
3341     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3342   }
3343 
3344   void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
3345     assert(N == 1 && "Invalid number of operands!");
3346 
3347     // When we come here, the VectorList field will identify a range
3348     // of q-registers by its base register and length, and it will
3349     // have already been error-checked to be the expected length of
3350     // range and contain only q-regs in the range q0-q7. So we can
3351     // count on the base register being in the range q0-q6 (for 2
3352     // regs) or q0-q4 (for 4)
3353     //
3354     // The MVE instructions taking a register range of this kind will
3355     // need an operand in the MQQPR or MQQQQPR class, representing the
3356     // entire range as a unit. So we must translate into that class,
3357     // by finding the index of the base register in the MQPR reg
3358     // class, and returning the super-register at the corresponding
3359     // index in the target class.
3360 
3361     const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
3362     const MCRegisterClass *RC_out =
3363         (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID]
3364                                 : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID];
3365 
3366     unsigned I, E = RC_out->getNumRegs();
3367     for (I = 0; I < E; I++)
3368       if (RC_in->getRegister(I) == VectorList.RegNum)
3369         break;
3370     assert(I < E && "Invalid vector list start register!");
3371 
3372     Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
3373   }
3374 
3375   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
3376     assert(N == 2 && "Invalid number of operands!");
3377     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3378     Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
3379   }
3380 
3381   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
3382     assert(N == 1 && "Invalid number of operands!");
3383     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3384   }
3385 
3386   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
3387     assert(N == 1 && "Invalid number of operands!");
3388     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3389   }
3390 
3391   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
3392     assert(N == 1 && "Invalid number of operands!");
3393     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3394   }
3395 
3396   void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
3397     assert(N == 1 && "Invalid number of operands!");
3398     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3399   }
3400 
3401   void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
3402     assert(N == 1 && "Invalid number of operands!");
3403     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3404   }
3405 
3406   void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
3407     assert(N == 1 && "Invalid number of operands!");
3408     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3409   }
3410 
3411   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
3412     assert(N == 1 && "Invalid number of operands!");
3413     // The immediate encodes the type of constant as well as the value.
3414     // Mask in that this is an i8 splat.
3415     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3416     Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
3417   }
3418 
3419   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
3420     assert(N == 1 && "Invalid number of operands!");
3421     // The immediate encodes the type of constant as well as the value.
3422     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3423     unsigned Value = CE->getValue();
3424     Value = ARM_AM::encodeNEONi16splat(Value);
3425     Inst.addOperand(MCOperand::createImm(Value));
3426   }
3427 
3428   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
3429     assert(N == 1 && "Invalid number of operands!");
3430     // The immediate encodes the type of constant as well as the value.
3431     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3432     unsigned Value = CE->getValue();
3433     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
3434     Inst.addOperand(MCOperand::createImm(Value));
3435   }
3436 
3437   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
3438     assert(N == 1 && "Invalid number of operands!");
3439     // The immediate encodes the type of constant as well as the value.
3440     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3441     unsigned Value = CE->getValue();
3442     Value = ARM_AM::encodeNEONi32splat(Value);
3443     Inst.addOperand(MCOperand::createImm(Value));
3444   }
3445 
3446   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
3447     assert(N == 1 && "Invalid number of operands!");
3448     // The immediate encodes the type of constant as well as the value.
3449     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3450     unsigned Value = CE->getValue();
3451     Value = ARM_AM::encodeNEONi32splat(~Value);
3452     Inst.addOperand(MCOperand::createImm(Value));
3453   }
3454 
3455   void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
3456     // The immediate encodes the type of constant as well as the value.
3457     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3458     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
3459             Inst.getOpcode() == ARM::VMOVv16i8) &&
3460           "All instructions that wants to replicate non-zero byte "
3461           "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3462     unsigned Value = CE->getValue();
3463     if (Inv)
3464       Value = ~Value;
3465     unsigned B = Value & 0xff;
3466     B |= 0xe00; // cmode = 0b1110
3467     Inst.addOperand(MCOperand::createImm(B));
3468   }
3469 
3470   void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3471     assert(N == 1 && "Invalid number of operands!");
3472     addNEONi8ReplicateOperands(Inst, true);
3473   }
3474 
3475   static unsigned encodeNeonVMOVImmediate(unsigned Value) {
3476     if (Value >= 256 && Value <= 0xffff)
3477       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
3478     else if (Value > 0xffff && Value <= 0xffffff)
3479       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
3480     else if (Value > 0xffffff)
3481       Value = (Value >> 24) | 0x600;
3482     return Value;
3483   }
3484 
3485   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
3486     assert(N == 1 && "Invalid number of operands!");
3487     // The immediate encodes the type of constant as well as the value.
3488     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3489     unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
3490     Inst.addOperand(MCOperand::createImm(Value));
3491   }
3492 
3493   void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3494     assert(N == 1 && "Invalid number of operands!");
3495     addNEONi8ReplicateOperands(Inst, false);
3496   }
3497 
3498   void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
3499     assert(N == 1 && "Invalid number of operands!");
3500     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3501     assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
3502             Inst.getOpcode() == ARM::VMOVv8i16 ||
3503             Inst.getOpcode() == ARM::VMVNv4i16 ||
3504             Inst.getOpcode() == ARM::VMVNv8i16) &&
3505           "All instructions that want to replicate non-zero half-word "
3506           "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3507     uint64_t Value = CE->getValue();
3508     unsigned Elem = Value & 0xffff;
3509     if (Elem >= 256)
3510       Elem = (Elem >> 8) | 0x200;
3511     Inst.addOperand(MCOperand::createImm(Elem));
3512   }
3513 
3514   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
3515     assert(N == 1 && "Invalid number of operands!");
3516     // The immediate encodes the type of constant as well as the value.
3517     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3518     unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
3519     Inst.addOperand(MCOperand::createImm(Value));
3520   }
3521 
3522   void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
3523     assert(N == 1 && "Invalid number of operands!");
3524     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3525     assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
3526             Inst.getOpcode() == ARM::VMOVv4i32 ||
3527             Inst.getOpcode() == ARM::VMVNv2i32 ||
3528             Inst.getOpcode() == ARM::VMVNv4i32) &&
3529           "All instructions that want to replicate non-zero word "
3530           "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3531     uint64_t Value = CE->getValue();
3532     unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
3533     Inst.addOperand(MCOperand::createImm(Elem));
3534   }
3535 
3536   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
3537     assert(N == 1 && "Invalid number of operands!");
3538     // The immediate encodes the type of constant as well as the value.
3539     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3540     uint64_t Value = CE->getValue();
3541     unsigned Imm = 0;
3542     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
3543       Imm |= (Value & 1) << i;
3544     }
3545     Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
3546   }
3547 
3548   void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
3549     assert(N == 1 && "Invalid number of operands!");
3550     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3551     Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
3552   }
3553 
3554   void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
3555     assert(N == 1 && "Invalid number of operands!");
3556     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3557     Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
3558   }
3559 
3560   void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
3561     assert(N == 1 && "Invalid number of operands!");
3562     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3563     unsigned Imm = CE->getValue();
3564     assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
3565     Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
3566   }
3567 
3568   void print(raw_ostream &OS) const override;
3569 
3570   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
3571     auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
3572     Op->ITMask.Mask = Mask;
3573     Op->StartLoc = S;
3574     Op->EndLoc = S;
3575     return Op;
3576   }
3577 
3578   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
3579                                                     SMLoc S) {
3580     auto Op = std::make_unique<ARMOperand>(k_CondCode);
3581     Op->CC.Val = CC;
3582     Op->StartLoc = S;
3583     Op->EndLoc = S;
3584     return Op;
3585   }
3586 
3587   static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
3588                                                    SMLoc S) {
3589     auto Op = std::make_unique<ARMOperand>(k_VPTPred);
3590     Op->VCC.Val = CC;
3591     Op->StartLoc = S;
3592     Op->EndLoc = S;
3593     return Op;
3594   }
3595 
3596   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
3597     auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
3598     Op->Cop.Val = CopVal;
3599     Op->StartLoc = S;
3600     Op->EndLoc = S;
3601     return Op;
3602   }
3603 
3604   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
3605     auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
3606     Op->Cop.Val = CopVal;
3607     Op->StartLoc = S;
3608     Op->EndLoc = S;
3609     return Op;
3610   }
3611 
3612   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
3613                                                         SMLoc E) {
3614     auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
3615     Op->Cop.Val = Val;
3616     Op->StartLoc = S;
3617     Op->EndLoc = E;
3618     return Op;
3619   }
3620 
3621   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
3622     auto Op = std::make_unique<ARMOperand>(k_CCOut);
3623     Op->Reg.RegNum = RegNum;
3624     Op->StartLoc = S;
3625     Op->EndLoc = S;
3626     return Op;
3627   }
3628 
3629   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
3630     auto Op = std::make_unique<ARMOperand>(k_Token);
3631     Op->Tok.Data = Str.data();
3632     Op->Tok.Length = Str.size();
3633     Op->StartLoc = S;
3634     Op->EndLoc = S;
3635     return Op;
3636   }
3637 
3638   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
3639                                                SMLoc E) {
3640     auto Op = std::make_unique<ARMOperand>(k_Register);
3641     Op->Reg.RegNum = RegNum;
3642     Op->StartLoc = S;
3643     Op->EndLoc = E;
3644     return Op;
3645   }
3646 
3647   static std::unique_ptr<ARMOperand>
3648   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3649                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
3650                         SMLoc E) {
3651     auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
3652     Op->RegShiftedReg.ShiftTy = ShTy;
3653     Op->RegShiftedReg.SrcReg = SrcReg;
3654     Op->RegShiftedReg.ShiftReg = ShiftReg;
3655     Op->RegShiftedReg.ShiftImm = ShiftImm;
3656     Op->StartLoc = S;
3657     Op->EndLoc = E;
3658     return Op;
3659   }
3660 
3661   static std::unique_ptr<ARMOperand>
3662   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3663                          unsigned ShiftImm, SMLoc S, SMLoc E) {
3664     auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
3665     Op->RegShiftedImm.ShiftTy = ShTy;
3666     Op->RegShiftedImm.SrcReg = SrcReg;
3667     Op->RegShiftedImm.ShiftImm = ShiftImm;
3668     Op->StartLoc = S;
3669     Op->EndLoc = E;
3670     return Op;
3671   }
3672 
3673   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
3674                                                       SMLoc S, SMLoc E) {
3675     auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
3676     Op->ShifterImm.isASR = isASR;
3677     Op->ShifterImm.Imm = Imm;
3678     Op->StartLoc = S;
3679     Op->EndLoc = E;
3680     return Op;
3681   }
3682 
3683   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3684                                                   SMLoc E) {
3685     auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
3686     Op->RotImm.Imm = Imm;
3687     Op->StartLoc = S;
3688     Op->EndLoc = E;
3689     return Op;
3690   }
3691 
3692   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3693                                                   SMLoc S, SMLoc E) {
3694     auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
3695     Op->ModImm.Bits = Bits;
3696     Op->ModImm.Rot = Rot;
3697     Op->StartLoc = S;
3698     Op->EndLoc = E;
3699     return Op;
3700   }
3701 
3702   static std::unique_ptr<ARMOperand>
3703   CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3704     auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
3705     Op->Imm.Val = Val;
3706     Op->StartLoc = S;
3707     Op->EndLoc = E;
3708     return Op;
3709   }
3710 
3711   static std::unique_ptr<ARMOperand>
3712   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3713     auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
3714     Op->Bitfield.LSB = LSB;
3715     Op->Bitfield.Width = Width;
3716     Op->StartLoc = S;
3717     Op->EndLoc = E;
3718     return Op;
3719   }
3720 
3721   static std::unique_ptr<ARMOperand>
3722   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3723                 SMLoc StartLoc, SMLoc EndLoc) {
3724     assert(Regs.size() > 0 && "RegList contains no registers?");
3725     KindTy Kind = k_RegisterList;
3726 
3727     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
3728             Regs.front().second)) {
3729       if (Regs.back().second == ARM::VPR)
3730         Kind = k_FPDRegisterListWithVPR;
3731       else
3732         Kind = k_DPRRegisterList;
3733     } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
3734                    Regs.front().second)) {
3735       if (Regs.back().second == ARM::VPR)
3736         Kind = k_FPSRegisterListWithVPR;
3737       else
3738         Kind = k_SPRRegisterList;
3739     }
3740 
3741     if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
3742       Kind = k_RegisterListWithAPSR;
3743 
3744     assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding");
3745 
3746     auto Op = std::make_unique<ARMOperand>(Kind);
3747     for (const auto &P : Regs)
3748       Op->Registers.push_back(P.second);
3749 
3750     Op->StartLoc = StartLoc;
3751     Op->EndLoc = EndLoc;
3752     return Op;
3753   }
3754 
3755   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3756                                                       unsigned Count,
3757                                                       bool isDoubleSpaced,
3758                                                       SMLoc S, SMLoc E) {
3759     auto Op = std::make_unique<ARMOperand>(k_VectorList);
3760     Op->VectorList.RegNum = RegNum;
3761     Op->VectorList.Count = Count;
3762     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3763     Op->StartLoc = S;
3764     Op->EndLoc = E;
3765     return Op;
3766   }
3767 
3768   static std::unique_ptr<ARMOperand>
3769   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3770                            SMLoc S, SMLoc E) {
3771     auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
3772     Op->VectorList.RegNum = RegNum;
3773     Op->VectorList.Count = Count;
3774     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3775     Op->StartLoc = S;
3776     Op->EndLoc = E;
3777     return Op;
3778   }
3779 
3780   static std::unique_ptr<ARMOperand>
3781   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3782                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
3783     auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
3784     Op->VectorList.RegNum = RegNum;
3785     Op->VectorList.Count = Count;
3786     Op->VectorList.LaneIndex = Index;
3787     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3788     Op->StartLoc = S;
3789     Op->EndLoc = E;
3790     return Op;
3791   }
3792 
3793   static std::unique_ptr<ARMOperand>
3794   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3795     auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
3796     Op->VectorIndex.Val = Idx;
3797     Op->StartLoc = S;
3798     Op->EndLoc = E;
3799     return Op;
3800   }
3801 
3802   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3803                                                SMLoc E) {
3804     auto Op = std::make_unique<ARMOperand>(k_Immediate);
3805     Op->Imm.Val = Val;
3806     Op->StartLoc = S;
3807     Op->EndLoc = E;
3808     return Op;
3809   }
3810 
3811   static std::unique_ptr<ARMOperand>
3812   CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum,
3813             ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment,
3814             bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3815     auto Op = std::make_unique<ARMOperand>(k_Memory);
3816     Op->Memory.BaseRegNum = BaseRegNum;
3817     Op->Memory.OffsetImm = OffsetImm;
3818     Op->Memory.OffsetRegNum = OffsetRegNum;
3819     Op->Memory.ShiftType = ShiftType;
3820     Op->Memory.ShiftImm = ShiftImm;
3821     Op->Memory.Alignment = Alignment;
3822     Op->Memory.isNegative = isNegative;
3823     Op->StartLoc = S;
3824     Op->EndLoc = E;
3825     Op->AlignmentLoc = AlignmentLoc;
3826     return Op;
3827   }
3828 
3829   static std::unique_ptr<ARMOperand>
3830   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3831                    unsigned ShiftImm, SMLoc S, SMLoc E) {
3832     auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
3833     Op->PostIdxReg.RegNum = RegNum;
3834     Op->PostIdxReg.isAdd = isAdd;
3835     Op->PostIdxReg.ShiftTy = ShiftTy;
3836     Op->PostIdxReg.ShiftImm = ShiftImm;
3837     Op->StartLoc = S;
3838     Op->EndLoc = E;
3839     return Op;
3840   }
3841 
3842   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3843                                                          SMLoc S) {
3844     auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
3845     Op->MBOpt.Val = Opt;
3846     Op->StartLoc = S;
3847     Op->EndLoc = S;
3848     return Op;
3849   }
3850 
3851   static std::unique_ptr<ARMOperand>
3852   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3853     auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3854     Op->ISBOpt.Val = Opt;
3855     Op->StartLoc = S;
3856     Op->EndLoc = S;
3857     return Op;
3858   }
3859 
3860   static std::unique_ptr<ARMOperand>
3861   CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3862     auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3863     Op->TSBOpt.Val = Opt;
3864     Op->StartLoc = S;
3865     Op->EndLoc = S;
3866     return Op;
3867   }
3868 
3869   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3870                                                       SMLoc S) {
3871     auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
3872     Op->IFlags.Val = IFlags;
3873     Op->StartLoc = S;
3874     Op->EndLoc = S;
3875     return Op;
3876   }
3877 
3878   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3879     auto Op = std::make_unique<ARMOperand>(k_MSRMask);
3880     Op->MMask.Val = MMask;
3881     Op->StartLoc = S;
3882     Op->EndLoc = S;
3883     return Op;
3884   }
3885 
3886   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3887     auto Op = std::make_unique<ARMOperand>(k_BankedReg);
3888     Op->BankedReg.Val = Reg;
3889     Op->StartLoc = S;
3890     Op->EndLoc = S;
3891     return Op;
3892   }
3893 };
3894 
3895 } // end anonymous namespace.
3896 
3897 void ARMOperand::print(raw_ostream &OS) const {
3898   auto RegName = [](unsigned Reg) {
3899     if (Reg)
3900       return ARMInstPrinter::getRegisterName(Reg);
3901     else
3902       return "noreg";
3903   };
3904 
3905   switch (Kind) {
3906   case k_CondCode:
3907     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3908     break;
3909   case k_VPTPred:
3910     OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3911     break;
3912   case k_CCOut:
3913     OS << "<ccout " << RegName(getReg()) << ">";
3914     break;
3915   case k_ITCondMask: {
3916     static const char *const MaskStr[] = {
3917       "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3918       "(tt)",      "(ttet)", "(tte)", "(ttee)",
3919       "(t)",       "(tett)", "(tet)", "(tete)",
3920       "(te)",      "(teet)", "(tee)", "(teee)",
3921     };
3922     assert((ITMask.Mask & 0xf) == ITMask.Mask);
3923     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3924     break;
3925   }
3926   case k_CoprocNum:
3927     OS << "<coprocessor number: " << getCoproc() << ">";
3928     break;
3929   case k_CoprocReg:
3930     OS << "<coprocessor register: " << getCoproc() << ">";
3931     break;
3932   case k_CoprocOption:
3933     OS << "<coprocessor option: " << CoprocOption.Val << ">";
3934     break;
3935   case k_MSRMask:
3936     OS << "<mask: " << getMSRMask() << ">";
3937     break;
3938   case k_BankedReg:
3939     OS << "<banked reg: " << getBankedReg() << ">";
3940     break;
3941   case k_Immediate:
3942     OS << *getImm();
3943     break;
3944   case k_MemBarrierOpt:
3945     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3946     break;
3947   case k_InstSyncBarrierOpt:
3948     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3949     break;
3950   case k_TraceSyncBarrierOpt:
3951     OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3952     break;
3953   case k_Memory:
3954     OS << "<memory";
3955     if (Memory.BaseRegNum)
3956       OS << " base:" << RegName(Memory.BaseRegNum);
3957     if (Memory.OffsetImm)
3958       OS << " offset-imm:" << *Memory.OffsetImm;
3959     if (Memory.OffsetRegNum)
3960       OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3961          << RegName(Memory.OffsetRegNum);
3962     if (Memory.ShiftType != ARM_AM::no_shift) {
3963       OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3964       OS << " shift-imm:" << Memory.ShiftImm;
3965     }
3966     if (Memory.Alignment)
3967       OS << " alignment:" << Memory.Alignment;
3968     OS << ">";
3969     break;
3970   case k_PostIndexRegister:
3971     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3972        << RegName(PostIdxReg.RegNum);
3973     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3974       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3975          << PostIdxReg.ShiftImm;
3976     OS << ">";
3977     break;
3978   case k_ProcIFlags: {
3979     OS << "<ARM_PROC::";
3980     unsigned IFlags = getProcIFlags();
3981     for (int i=2; i >= 0; --i)
3982       if (IFlags & (1 << i))
3983         OS << ARM_PROC::IFlagsToString(1 << i);
3984     OS << ">";
3985     break;
3986   }
3987   case k_Register:
3988     OS << "<register " << RegName(getReg()) << ">";
3989     break;
3990   case k_ShifterImmediate:
3991     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3992        << " #" << ShifterImm.Imm << ">";
3993     break;
3994   case k_ShiftedRegister:
3995     OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3996        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3997        << RegName(RegShiftedReg.ShiftReg) << ">";
3998     break;
3999   case k_ShiftedImmediate:
4000     OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
4001        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
4002        << RegShiftedImm.ShiftImm << ">";
4003     break;
4004   case k_RotateImmediate:
4005     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
4006     break;
4007   case k_ModifiedImmediate:
4008     OS << "<mod_imm #" << ModImm.Bits << ", #"
4009        <<  ModImm.Rot << ")>";
4010     break;
4011   case k_ConstantPoolImmediate:
4012     OS << "<constant_pool_imm #" << *getConstantPoolImm();
4013     break;
4014   case k_BitfieldDescriptor:
4015     OS << "<bitfield " << "lsb: " << Bitfield.LSB
4016        << ", width: " << Bitfield.Width << ">";
4017     break;
4018   case k_RegisterList:
4019   case k_RegisterListWithAPSR:
4020   case k_DPRRegisterList:
4021   case k_SPRRegisterList:
4022   case k_FPSRegisterListWithVPR:
4023   case k_FPDRegisterListWithVPR: {
4024     OS << "<register_list ";
4025 
4026     const SmallVectorImpl<unsigned> &RegList = getRegList();
4027     for (SmallVectorImpl<unsigned>::const_iterator
4028            I = RegList.begin(), E = RegList.end(); I != E; ) {
4029       OS << RegName(*I);
4030       if (++I < E) OS << ", ";
4031     }
4032 
4033     OS << ">";
4034     break;
4035   }
4036   case k_VectorList:
4037     OS << "<vector_list " << VectorList.Count << " * "
4038        << RegName(VectorList.RegNum) << ">";
4039     break;
4040   case k_VectorListAllLanes:
4041     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
4042        << RegName(VectorList.RegNum) << ">";
4043     break;
4044   case k_VectorListIndexed:
4045     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
4046        << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
4047     break;
4048   case k_Token:
4049     OS << "'" << getToken() << "'";
4050     break;
4051   case k_VectorIndex:
4052     OS << "<vectorindex " << getVectorIndex() << ">";
4053     break;
4054   }
4055 }
4056 
4057 /// @name Auto-generated Match Functions
4058 /// {
4059 
4060 static unsigned MatchRegisterName(StringRef Name);
4061 
4062 /// }
4063 
4064 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
4065                                  SMLoc &StartLoc, SMLoc &EndLoc) {
4066   const AsmToken &Tok = getParser().getTok();
4067   StartLoc = Tok.getLoc();
4068   EndLoc = Tok.getEndLoc();
4069   RegNo = tryParseRegister();
4070 
4071   return (RegNo == (unsigned)-1);
4072 }
4073 
4074 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo,
4075                                                     SMLoc &StartLoc,
4076                                                     SMLoc &EndLoc) {
4077   if (ParseRegister(RegNo, StartLoc, EndLoc))
4078     return MatchOperand_NoMatch;
4079   return MatchOperand_Success;
4080 }
4081 
4082 /// Try to parse a register name.  The token must be an Identifier when called,
4083 /// and if it is a register name the token is eaten and the register number is
4084 /// returned.  Otherwise return -1.
4085 int ARMAsmParser::tryParseRegister() {
4086   MCAsmParser &Parser = getParser();
4087   const AsmToken &Tok = Parser.getTok();
4088   if (Tok.isNot(AsmToken::Identifier)) return -1;
4089 
4090   std::string lowerCase = Tok.getString().lower();
4091   unsigned RegNum = MatchRegisterName(lowerCase);
4092   if (!RegNum) {
4093     RegNum = StringSwitch<unsigned>(lowerCase)
4094       .Case("r13", ARM::SP)
4095       .Case("r14", ARM::LR)
4096       .Case("r15", ARM::PC)
4097       .Case("ip", ARM::R12)
4098       // Additional register name aliases for 'gas' compatibility.
4099       .Case("a1", ARM::R0)
4100       .Case("a2", ARM::R1)
4101       .Case("a3", ARM::R2)
4102       .Case("a4", ARM::R3)
4103       .Case("v1", ARM::R4)
4104       .Case("v2", ARM::R5)
4105       .Case("v3", ARM::R6)
4106       .Case("v4", ARM::R7)
4107       .Case("v5", ARM::R8)
4108       .Case("v6", ARM::R9)
4109       .Case("v7", ARM::R10)
4110       .Case("v8", ARM::R11)
4111       .Case("sb", ARM::R9)
4112       .Case("sl", ARM::R10)
4113       .Case("fp", ARM::R11)
4114       .Default(0);
4115   }
4116   if (!RegNum) {
4117     // Check for aliases registered via .req. Canonicalize to lower case.
4118     // That's more consistent since register names are case insensitive, and
4119     // it's how the original entry was passed in from MC/MCParser/AsmParser.
4120     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
4121     // If no match, return failure.
4122     if (Entry == RegisterReqs.end())
4123       return -1;
4124     Parser.Lex(); // Eat identifier token.
4125     return Entry->getValue();
4126   }
4127 
4128   // Some FPUs only have 16 D registers, so D16-D31 are invalid
4129   if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
4130     return -1;
4131 
4132   Parser.Lex(); // Eat identifier token.
4133 
4134   return RegNum;
4135 }
4136 
4137 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
4138 // If a recoverable error occurs, return 1. If an irrecoverable error
4139 // occurs, return -1. An irrecoverable error is one where tokens have been
4140 // consumed in the process of trying to parse the shifter (i.e., when it is
4141 // indeed a shifter operand, but malformed).
4142 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
4143   MCAsmParser &Parser = getParser();
4144   SMLoc S = Parser.getTok().getLoc();
4145   const AsmToken &Tok = Parser.getTok();
4146   if (Tok.isNot(AsmToken::Identifier))
4147     return -1;
4148 
4149   std::string lowerCase = Tok.getString().lower();
4150   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
4151       .Case("asl", ARM_AM::lsl)
4152       .Case("lsl", ARM_AM::lsl)
4153       .Case("lsr", ARM_AM::lsr)
4154       .Case("asr", ARM_AM::asr)
4155       .Case("ror", ARM_AM::ror)
4156       .Case("rrx", ARM_AM::rrx)
4157       .Default(ARM_AM::no_shift);
4158 
4159   if (ShiftTy == ARM_AM::no_shift)
4160     return 1;
4161 
4162   Parser.Lex(); // Eat the operator.
4163 
4164   // The source register for the shift has already been added to the
4165   // operand list, so we need to pop it off and combine it into the shifted
4166   // register operand instead.
4167   std::unique_ptr<ARMOperand> PrevOp(
4168       (ARMOperand *)Operands.pop_back_val().release());
4169   if (!PrevOp->isReg())
4170     return Error(PrevOp->getStartLoc(), "shift must be of a register");
4171   int SrcReg = PrevOp->getReg();
4172 
4173   SMLoc EndLoc;
4174   int64_t Imm = 0;
4175   int ShiftReg = 0;
4176   if (ShiftTy == ARM_AM::rrx) {
4177     // RRX Doesn't have an explicit shift amount. The encoder expects
4178     // the shift register to be the same as the source register. Seems odd,
4179     // but OK.
4180     ShiftReg = SrcReg;
4181   } else {
4182     // Figure out if this is shifted by a constant or a register (for non-RRX).
4183     if (Parser.getTok().is(AsmToken::Hash) ||
4184         Parser.getTok().is(AsmToken::Dollar)) {
4185       Parser.Lex(); // Eat hash.
4186       SMLoc ImmLoc = Parser.getTok().getLoc();
4187       const MCExpr *ShiftExpr = nullptr;
4188       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
4189         Error(ImmLoc, "invalid immediate shift value");
4190         return -1;
4191       }
4192       // The expression must be evaluatable as an immediate.
4193       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
4194       if (!CE) {
4195         Error(ImmLoc, "invalid immediate shift value");
4196         return -1;
4197       }
4198       // Range check the immediate.
4199       // lsl, ror: 0 <= imm <= 31
4200       // lsr, asr: 0 <= imm <= 32
4201       Imm = CE->getValue();
4202       if (Imm < 0 ||
4203           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
4204           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
4205         Error(ImmLoc, "immediate shift value out of range");
4206         return -1;
4207       }
4208       // shift by zero is a nop. Always send it through as lsl.
4209       // ('as' compatibility)
4210       if (Imm == 0)
4211         ShiftTy = ARM_AM::lsl;
4212     } else if (Parser.getTok().is(AsmToken::Identifier)) {
4213       SMLoc L = Parser.getTok().getLoc();
4214       EndLoc = Parser.getTok().getEndLoc();
4215       ShiftReg = tryParseRegister();
4216       if (ShiftReg == -1) {
4217         Error(L, "expected immediate or register in shift operand");
4218         return -1;
4219       }
4220     } else {
4221       Error(Parser.getTok().getLoc(),
4222             "expected immediate or register in shift operand");
4223       return -1;
4224     }
4225   }
4226 
4227   if (ShiftReg && ShiftTy != ARM_AM::rrx)
4228     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
4229                                                          ShiftReg, Imm,
4230                                                          S, EndLoc));
4231   else
4232     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
4233                                                           S, EndLoc));
4234 
4235   return 0;
4236 }
4237 
4238 /// Try to parse a register name.  The token must be an Identifier when called.
4239 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4240 /// if there is a "writeback". 'true' if it's not a register.
4241 ///
4242 /// TODO this is likely to change to allow different register types and or to
4243 /// parse for a specific register type.
4244 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
4245   MCAsmParser &Parser = getParser();
4246   SMLoc RegStartLoc = Parser.getTok().getLoc();
4247   SMLoc RegEndLoc = Parser.getTok().getEndLoc();
4248   int RegNo = tryParseRegister();
4249   if (RegNo == -1)
4250     return true;
4251 
4252   Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
4253 
4254   const AsmToken &ExclaimTok = Parser.getTok();
4255   if (ExclaimTok.is(AsmToken::Exclaim)) {
4256     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
4257                                                ExclaimTok.getLoc()));
4258     Parser.Lex(); // Eat exclaim token
4259     return false;
4260   }
4261 
4262   // Also check for an index operand. This is only legal for vector registers,
4263   // but that'll get caught OK in operand matching, so we don't need to
4264   // explicitly filter everything else out here.
4265   if (Parser.getTok().is(AsmToken::LBrac)) {
4266     SMLoc SIdx = Parser.getTok().getLoc();
4267     Parser.Lex(); // Eat left bracket token.
4268 
4269     const MCExpr *ImmVal;
4270     if (getParser().parseExpression(ImmVal))
4271       return true;
4272     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
4273     if (!MCE)
4274       return TokError("immediate value expected for vector index");
4275 
4276     if (Parser.getTok().isNot(AsmToken::RBrac))
4277       return Error(Parser.getTok().getLoc(), "']' expected");
4278 
4279     SMLoc E = Parser.getTok().getEndLoc();
4280     Parser.Lex(); // Eat right bracket token.
4281 
4282     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
4283                                                      SIdx, E,
4284                                                      getContext()));
4285   }
4286 
4287   return false;
4288 }
4289 
4290 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4291 /// instruction with a symbolic operand name.
4292 /// We accept "crN" syntax for GAS compatibility.
4293 /// <operand-name> ::= <prefix><number>
4294 /// If CoprocOp is 'c', then:
4295 ///   <prefix> ::= c | cr
4296 /// If CoprocOp is 'p', then :
4297 ///   <prefix> ::= p
4298 /// <number> ::= integer in range [0, 15]
4299 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
4300   // Use the same layout as the tablegen'erated register name matcher. Ugly,
4301   // but efficient.
4302   if (Name.size() < 2 || Name[0] != CoprocOp)
4303     return -1;
4304   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
4305 
4306   switch (Name.size()) {
4307   default: return -1;
4308   case 1:
4309     switch (Name[0]) {
4310     default:  return -1;
4311     case '0': return 0;
4312     case '1': return 1;
4313     case '2': return 2;
4314     case '3': return 3;
4315     case '4': return 4;
4316     case '5': return 5;
4317     case '6': return 6;
4318     case '7': return 7;
4319     case '8': return 8;
4320     case '9': return 9;
4321     }
4322   case 2:
4323     if (Name[0] != '1')
4324       return -1;
4325     switch (Name[1]) {
4326     default:  return -1;
4327     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4328     // However, old cores (v5/v6) did use them in that way.
4329     case '0': return 10;
4330     case '1': return 11;
4331     case '2': return 12;
4332     case '3': return 13;
4333     case '4': return 14;
4334     case '5': return 15;
4335     }
4336   }
4337 }
4338 
4339 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4340 OperandMatchResultTy
4341 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
4342   MCAsmParser &Parser = getParser();
4343   SMLoc S = Parser.getTok().getLoc();
4344   const AsmToken &Tok = Parser.getTok();
4345   if (!Tok.is(AsmToken::Identifier))
4346     return MatchOperand_NoMatch;
4347   unsigned CC = ARMCondCodeFromString(Tok.getString());
4348   if (CC == ~0U)
4349     return MatchOperand_NoMatch;
4350   Parser.Lex(); // Eat the token.
4351 
4352   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
4353 
4354   return MatchOperand_Success;
4355 }
4356 
4357 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4358 /// token must be an Identifier when called, and if it is a coprocessor
4359 /// number, the token is eaten and the operand is added to the operand list.
4360 OperandMatchResultTy
4361 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
4362   MCAsmParser &Parser = getParser();
4363   SMLoc S = Parser.getTok().getLoc();
4364   const AsmToken &Tok = Parser.getTok();
4365   if (Tok.isNot(AsmToken::Identifier))
4366     return MatchOperand_NoMatch;
4367 
4368   int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
4369   if (Num == -1)
4370     return MatchOperand_NoMatch;
4371   if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
4372     return MatchOperand_NoMatch;
4373 
4374   Parser.Lex(); // Eat identifier token.
4375   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
4376   return MatchOperand_Success;
4377 }
4378 
4379 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4380 /// token must be an Identifier when called, and if it is a coprocessor
4381 /// number, the token is eaten and the operand is added to the operand list.
4382 OperandMatchResultTy
4383 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
4384   MCAsmParser &Parser = getParser();
4385   SMLoc S = Parser.getTok().getLoc();
4386   const AsmToken &Tok = Parser.getTok();
4387   if (Tok.isNot(AsmToken::Identifier))
4388     return MatchOperand_NoMatch;
4389 
4390   int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
4391   if (Reg == -1)
4392     return MatchOperand_NoMatch;
4393 
4394   Parser.Lex(); // Eat identifier token.
4395   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
4396   return MatchOperand_Success;
4397 }
4398 
4399 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4400 /// coproc_option : '{' imm0_255 '}'
4401 OperandMatchResultTy
4402 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
4403   MCAsmParser &Parser = getParser();
4404   SMLoc S = Parser.getTok().getLoc();
4405 
4406   // If this isn't a '{', this isn't a coprocessor immediate operand.
4407   if (Parser.getTok().isNot(AsmToken::LCurly))
4408     return MatchOperand_NoMatch;
4409   Parser.Lex(); // Eat the '{'
4410 
4411   const MCExpr *Expr;
4412   SMLoc Loc = Parser.getTok().getLoc();
4413   if (getParser().parseExpression(Expr)) {
4414     Error(Loc, "illegal expression");
4415     return MatchOperand_ParseFail;
4416   }
4417   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4418   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
4419     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
4420     return MatchOperand_ParseFail;
4421   }
4422   int Val = CE->getValue();
4423 
4424   // Check for and consume the closing '}'
4425   if (Parser.getTok().isNot(AsmToken::RCurly))
4426     return MatchOperand_ParseFail;
4427   SMLoc E = Parser.getTok().getEndLoc();
4428   Parser.Lex(); // Eat the '}'
4429 
4430   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
4431   return MatchOperand_Success;
4432 }
4433 
4434 // For register list parsing, we need to map from raw GPR register numbering
4435 // to the enumeration values. The enumeration values aren't sorted by
4436 // register number due to our using "sp", "lr" and "pc" as canonical names.
4437 static unsigned getNextRegister(unsigned Reg) {
4438   // If this is a GPR, we need to do it manually, otherwise we can rely
4439   // on the sort ordering of the enumeration since the other reg-classes
4440   // are sane.
4441   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4442     return Reg + 1;
4443   switch(Reg) {
4444   default: llvm_unreachable("Invalid GPR number!");
4445   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
4446   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
4447   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
4448   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
4449   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
4450   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
4451   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
4452   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
4453   }
4454 }
4455 
4456 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4457 // success, or false, if duplicate encoding found.
4458 static bool
4459 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
4460                    unsigned Enc, unsigned Reg) {
4461   Regs.emplace_back(Enc, Reg);
4462   for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
4463     if (J->first == Enc) {
4464       Regs.erase(J.base());
4465       return false;
4466     }
4467     if (J->first < Enc)
4468       break;
4469     std::swap(*I, *J);
4470   }
4471   return true;
4472 }
4473 
4474 /// Parse a register list.
4475 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, bool EnforceOrder,
4476                                      bool AllowRAAC) {
4477   MCAsmParser &Parser = getParser();
4478   if (Parser.getTok().isNot(AsmToken::LCurly))
4479     return TokError("Token is not a Left Curly Brace");
4480   SMLoc S = Parser.getTok().getLoc();
4481   Parser.Lex(); // Eat '{' token.
4482   SMLoc RegLoc = Parser.getTok().getLoc();
4483 
4484   // Check the first register in the list to see what register class
4485   // this is a list of.
4486   int Reg = tryParseRegister();
4487   if (Reg == -1)
4488     return Error(RegLoc, "register expected");
4489   if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE)
4490     return Error(RegLoc, "pseudo-register not allowed");
4491   // The reglist instructions have at most 16 registers, so reserve
4492   // space for that many.
4493   int EReg = 0;
4494   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
4495 
4496   // Allow Q regs and just interpret them as the two D sub-registers.
4497   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4498     Reg = getDRegFromQReg(Reg);
4499     EReg = MRI->getEncodingValue(Reg);
4500     Registers.emplace_back(EReg, Reg);
4501     ++Reg;
4502   }
4503   const MCRegisterClass *RC;
4504   if (Reg == ARM::RA_AUTH_CODE ||
4505       ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4506     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
4507   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
4508     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
4509   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
4510     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
4511   else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4512     RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4513   else
4514     return Error(RegLoc, "invalid register in register list");
4515 
4516   // Store the register.
4517   EReg = MRI->getEncodingValue(Reg);
4518   Registers.emplace_back(EReg, Reg);
4519 
4520   // This starts immediately after the first register token in the list,
4521   // so we can see either a comma or a minus (range separator) as a legal
4522   // next token.
4523   while (Parser.getTok().is(AsmToken::Comma) ||
4524          Parser.getTok().is(AsmToken::Minus)) {
4525     if (Parser.getTok().is(AsmToken::Minus)) {
4526       if (Reg == ARM::RA_AUTH_CODE)
4527         return Error(RegLoc, "pseudo-register not allowed");
4528       Parser.Lex(); // Eat the minus.
4529       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4530       int EndReg = tryParseRegister();
4531       if (EndReg == -1)
4532         return Error(AfterMinusLoc, "register expected");
4533       if (EndReg == ARM::RA_AUTH_CODE)
4534         return Error(AfterMinusLoc, "pseudo-register not allowed");
4535       // Allow Q regs and just interpret them as the two D sub-registers.
4536       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4537         EndReg = getDRegFromQReg(EndReg) + 1;
4538       // If the register is the same as the start reg, there's nothing
4539       // more to do.
4540       if (Reg == EndReg)
4541         continue;
4542       // The register must be in the same register class as the first.
4543       if (!RC->contains(Reg))
4544         return Error(AfterMinusLoc, "invalid register in register list");
4545       // Ranges must go from low to high.
4546       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
4547         return Error(AfterMinusLoc, "bad range in register list");
4548 
4549       // Add all the registers in the range to the register list.
4550       while (Reg != EndReg) {
4551         Reg = getNextRegister(Reg);
4552         EReg = MRI->getEncodingValue(Reg);
4553         if (!insertNoDuplicates(Registers, EReg, Reg)) {
4554           Warning(AfterMinusLoc, StringRef("duplicated register (") +
4555                                      ARMInstPrinter::getRegisterName(Reg) +
4556                                      ") in register list");
4557         }
4558       }
4559       continue;
4560     }
4561     Parser.Lex(); // Eat the comma.
4562     RegLoc = Parser.getTok().getLoc();
4563     int OldReg = Reg;
4564     const AsmToken RegTok = Parser.getTok();
4565     Reg = tryParseRegister();
4566     if (Reg == -1)
4567       return Error(RegLoc, "register expected");
4568     if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE)
4569       return Error(RegLoc, "pseudo-register not allowed");
4570     // Allow Q regs and just interpret them as the two D sub-registers.
4571     bool isQReg = false;
4572     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4573       Reg = getDRegFromQReg(Reg);
4574       isQReg = true;
4575     }
4576     if (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg) &&
4577         RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
4578         ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
4579       // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4580       // subset of GPRRegClassId except it contains APSR as well.
4581       RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4582     }
4583     if (Reg == ARM::VPR &&
4584         (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
4585          RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
4586          RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
4587       RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
4588       EReg = MRI->getEncodingValue(Reg);
4589       if (!insertNoDuplicates(Registers, EReg, Reg)) {
4590         Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4591                             ") in register list");
4592       }
4593       continue;
4594     }
4595     // The register must be in the same register class as the first.
4596     if ((Reg == ARM::RA_AUTH_CODE &&
4597          RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) ||
4598         (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg)))
4599       return Error(RegLoc, "invalid register in register list");
4600     // In most cases, the list must be monotonically increasing. An
4601     // exception is CLRM, which is order-independent anyway, so
4602     // there's no potential for confusion if you write clrm {r2,r1}
4603     // instead of clrm {r1,r2}.
4604     if (EnforceOrder &&
4605         MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
4606       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4607         Warning(RegLoc, "register list not in ascending order");
4608       else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4609         return Error(RegLoc, "register list not in ascending order");
4610     }
4611     // VFP register lists must also be contiguous.
4612     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
4613         RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
4614         Reg != OldReg + 1)
4615       return Error(RegLoc, "non-contiguous register range");
4616     EReg = MRI->getEncodingValue(Reg);
4617     if (!insertNoDuplicates(Registers, EReg, Reg)) {
4618       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4619                           ") in register list");
4620     }
4621     if (isQReg) {
4622       EReg = MRI->getEncodingValue(++Reg);
4623       Registers.emplace_back(EReg, Reg);
4624     }
4625   }
4626 
4627   if (Parser.getTok().isNot(AsmToken::RCurly))
4628     return Error(Parser.getTok().getLoc(), "'}' expected");
4629   SMLoc E = Parser.getTok().getEndLoc();
4630   Parser.Lex(); // Eat '}' token.
4631 
4632   // Push the register list operand.
4633   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
4634 
4635   // The ARM system instruction variants for LDM/STM have a '^' token here.
4636   if (Parser.getTok().is(AsmToken::Caret)) {
4637     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
4638     Parser.Lex(); // Eat '^' token.
4639   }
4640 
4641   return false;
4642 }
4643 
4644 // Helper function to parse the lane index for vector lists.
4645 OperandMatchResultTy ARMAsmParser::
4646 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
4647   MCAsmParser &Parser = getParser();
4648   Index = 0; // Always return a defined index value.
4649   if (Parser.getTok().is(AsmToken::LBrac)) {
4650     Parser.Lex(); // Eat the '['.
4651     if (Parser.getTok().is(AsmToken::RBrac)) {
4652       // "Dn[]" is the 'all lanes' syntax.
4653       LaneKind = AllLanes;
4654       EndLoc = Parser.getTok().getEndLoc();
4655       Parser.Lex(); // Eat the ']'.
4656       return MatchOperand_Success;
4657     }
4658 
4659     // There's an optional '#' token here. Normally there wouldn't be, but
4660     // inline assemble puts one in, and it's friendly to accept that.
4661     if (Parser.getTok().is(AsmToken::Hash))
4662       Parser.Lex(); // Eat '#' or '$'.
4663 
4664     const MCExpr *LaneIndex;
4665     SMLoc Loc = Parser.getTok().getLoc();
4666     if (getParser().parseExpression(LaneIndex)) {
4667       Error(Loc, "illegal expression");
4668       return MatchOperand_ParseFail;
4669     }
4670     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
4671     if (!CE) {
4672       Error(Loc, "lane index must be empty or an integer");
4673       return MatchOperand_ParseFail;
4674     }
4675     if (Parser.getTok().isNot(AsmToken::RBrac)) {
4676       Error(Parser.getTok().getLoc(), "']' expected");
4677       return MatchOperand_ParseFail;
4678     }
4679     EndLoc = Parser.getTok().getEndLoc();
4680     Parser.Lex(); // Eat the ']'.
4681     int64_t Val = CE->getValue();
4682 
4683     // FIXME: Make this range check context sensitive for .8, .16, .32.
4684     if (Val < 0 || Val > 7) {
4685       Error(Parser.getTok().getLoc(), "lane index out of range");
4686       return MatchOperand_ParseFail;
4687     }
4688     Index = Val;
4689     LaneKind = IndexedLane;
4690     return MatchOperand_Success;
4691   }
4692   LaneKind = NoLanes;
4693   return MatchOperand_Success;
4694 }
4695 
4696 // parse a vector register list
4697 OperandMatchResultTy
4698 ARMAsmParser::parseVectorList(OperandVector &Operands) {
4699   MCAsmParser &Parser = getParser();
4700   VectorLaneTy LaneKind;
4701   unsigned LaneIndex;
4702   SMLoc S = Parser.getTok().getLoc();
4703   // As an extension (to match gas), support a plain D register or Q register
4704   // (without encosing curly braces) as a single or double entry list,
4705   // respectively.
4706   if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
4707     SMLoc E = Parser.getTok().getEndLoc();
4708     int Reg = tryParseRegister();
4709     if (Reg == -1)
4710       return MatchOperand_NoMatch;
4711     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
4712       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4713       if (Res != MatchOperand_Success)
4714         return Res;
4715       switch (LaneKind) {
4716       case NoLanes:
4717         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
4718         break;
4719       case AllLanes:
4720         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
4721                                                                 S, E));
4722         break;
4723       case IndexedLane:
4724         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
4725                                                                LaneIndex,
4726                                                                false, S, E));
4727         break;
4728       }
4729       return MatchOperand_Success;
4730     }
4731     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4732       Reg = getDRegFromQReg(Reg);
4733       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4734       if (Res != MatchOperand_Success)
4735         return Res;
4736       switch (LaneKind) {
4737       case NoLanes:
4738         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4739                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4740         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
4741         break;
4742       case AllLanes:
4743         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4744                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4745         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
4746                                                                 S, E));
4747         break;
4748       case IndexedLane:
4749         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
4750                                                                LaneIndex,
4751                                                                false, S, E));
4752         break;
4753       }
4754       return MatchOperand_Success;
4755     }
4756     Error(S, "vector register expected");
4757     return MatchOperand_ParseFail;
4758   }
4759 
4760   if (Parser.getTok().isNot(AsmToken::LCurly))
4761     return MatchOperand_NoMatch;
4762 
4763   Parser.Lex(); // Eat '{' token.
4764   SMLoc RegLoc = Parser.getTok().getLoc();
4765 
4766   int Reg = tryParseRegister();
4767   if (Reg == -1) {
4768     Error(RegLoc, "register expected");
4769     return MatchOperand_ParseFail;
4770   }
4771   unsigned Count = 1;
4772   int Spacing = 0;
4773   unsigned FirstReg = Reg;
4774 
4775   if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4776       Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4777       return MatchOperand_ParseFail;
4778   }
4779   // The list is of D registers, but we also allow Q regs and just interpret
4780   // them as the two D sub-registers.
4781   else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4782     FirstReg = Reg = getDRegFromQReg(Reg);
4783     Spacing = 1; // double-spacing requires explicit D registers, otherwise
4784                  // it's ambiguous with four-register single spaced.
4785     ++Reg;
4786     ++Count;
4787   }
4788 
4789   SMLoc E;
4790   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4791     return MatchOperand_ParseFail;
4792 
4793   while (Parser.getTok().is(AsmToken::Comma) ||
4794          Parser.getTok().is(AsmToken::Minus)) {
4795     if (Parser.getTok().is(AsmToken::Minus)) {
4796       if (!Spacing)
4797         Spacing = 1; // Register range implies a single spaced list.
4798       else if (Spacing == 2) {
4799         Error(Parser.getTok().getLoc(),
4800               "sequential registers in double spaced list");
4801         return MatchOperand_ParseFail;
4802       }
4803       Parser.Lex(); // Eat the minus.
4804       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4805       int EndReg = tryParseRegister();
4806       if (EndReg == -1) {
4807         Error(AfterMinusLoc, "register expected");
4808         return MatchOperand_ParseFail;
4809       }
4810       // Allow Q regs and just interpret them as the two D sub-registers.
4811       if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4812         EndReg = getDRegFromQReg(EndReg) + 1;
4813       // If the register is the same as the start reg, there's nothing
4814       // more to do.
4815       if (Reg == EndReg)
4816         continue;
4817       // The register must be in the same register class as the first.
4818       if ((hasMVE() &&
4819            !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
4820           (!hasMVE() &&
4821            !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
4822         Error(AfterMinusLoc, "invalid register in register list");
4823         return MatchOperand_ParseFail;
4824       }
4825       // Ranges must go from low to high.
4826       if (Reg > EndReg) {
4827         Error(AfterMinusLoc, "bad range in register list");
4828         return MatchOperand_ParseFail;
4829       }
4830       // Parse the lane specifier if present.
4831       VectorLaneTy NextLaneKind;
4832       unsigned NextLaneIndex;
4833       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4834           MatchOperand_Success)
4835         return MatchOperand_ParseFail;
4836       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4837         Error(AfterMinusLoc, "mismatched lane index in register list");
4838         return MatchOperand_ParseFail;
4839       }
4840 
4841       // Add all the registers in the range to the register list.
4842       Count += EndReg - Reg;
4843       Reg = EndReg;
4844       continue;
4845     }
4846     Parser.Lex(); // Eat the comma.
4847     RegLoc = Parser.getTok().getLoc();
4848     int OldReg = Reg;
4849     Reg = tryParseRegister();
4850     if (Reg == -1) {
4851       Error(RegLoc, "register expected");
4852       return MatchOperand_ParseFail;
4853     }
4854 
4855     if (hasMVE()) {
4856       if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4857         Error(RegLoc, "vector register in range Q0-Q7 expected");
4858         return MatchOperand_ParseFail;
4859       }
4860       Spacing = 1;
4861     }
4862     // vector register lists must be contiguous.
4863     // It's OK to use the enumeration values directly here rather, as the
4864     // VFP register classes have the enum sorted properly.
4865     //
4866     // The list is of D registers, but we also allow Q regs and just interpret
4867     // them as the two D sub-registers.
4868     else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4869       if (!Spacing)
4870         Spacing = 1; // Register range implies a single spaced list.
4871       else if (Spacing == 2) {
4872         Error(RegLoc,
4873               "invalid register in double-spaced list (must be 'D' register')");
4874         return MatchOperand_ParseFail;
4875       }
4876       Reg = getDRegFromQReg(Reg);
4877       if (Reg != OldReg + 1) {
4878         Error(RegLoc, "non-contiguous register range");
4879         return MatchOperand_ParseFail;
4880       }
4881       ++Reg;
4882       Count += 2;
4883       // Parse the lane specifier if present.
4884       VectorLaneTy NextLaneKind;
4885       unsigned NextLaneIndex;
4886       SMLoc LaneLoc = Parser.getTok().getLoc();
4887       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4888           MatchOperand_Success)
4889         return MatchOperand_ParseFail;
4890       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4891         Error(LaneLoc, "mismatched lane index in register list");
4892         return MatchOperand_ParseFail;
4893       }
4894       continue;
4895     }
4896     // Normal D register.
4897     // Figure out the register spacing (single or double) of the list if
4898     // we don't know it already.
4899     if (!Spacing)
4900       Spacing = 1 + (Reg == OldReg + 2);
4901 
4902     // Just check that it's contiguous and keep going.
4903     if (Reg != OldReg + Spacing) {
4904       Error(RegLoc, "non-contiguous register range");
4905       return MatchOperand_ParseFail;
4906     }
4907     ++Count;
4908     // Parse the lane specifier if present.
4909     VectorLaneTy NextLaneKind;
4910     unsigned NextLaneIndex;
4911     SMLoc EndLoc = Parser.getTok().getLoc();
4912     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4913       return MatchOperand_ParseFail;
4914     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4915       Error(EndLoc, "mismatched lane index in register list");
4916       return MatchOperand_ParseFail;
4917     }
4918   }
4919 
4920   if (Parser.getTok().isNot(AsmToken::RCurly)) {
4921     Error(Parser.getTok().getLoc(), "'}' expected");
4922     return MatchOperand_ParseFail;
4923   }
4924   E = Parser.getTok().getEndLoc();
4925   Parser.Lex(); // Eat '}' token.
4926 
4927   switch (LaneKind) {
4928   case NoLanes:
4929   case AllLanes: {
4930     // Two-register operands have been converted to the
4931     // composite register classes.
4932     if (Count == 2 && !hasMVE()) {
4933       const MCRegisterClass *RC = (Spacing == 1) ?
4934         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4935         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4936       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4937     }
4938     auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
4939                    ARMOperand::CreateVectorListAllLanes);
4940     Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
4941     break;
4942   }
4943   case IndexedLane:
4944     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4945                                                            LaneIndex,
4946                                                            (Spacing == 2),
4947                                                            S, E));
4948     break;
4949   }
4950   return MatchOperand_Success;
4951 }
4952 
4953 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4954 OperandMatchResultTy
4955 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4956   MCAsmParser &Parser = getParser();
4957   SMLoc S = Parser.getTok().getLoc();
4958   const AsmToken &Tok = Parser.getTok();
4959   unsigned Opt;
4960 
4961   if (Tok.is(AsmToken::Identifier)) {
4962     StringRef OptStr = Tok.getString();
4963 
4964     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4965       .Case("sy",    ARM_MB::SY)
4966       .Case("st",    ARM_MB::ST)
4967       .Case("ld",    ARM_MB::LD)
4968       .Case("sh",    ARM_MB::ISH)
4969       .Case("ish",   ARM_MB::ISH)
4970       .Case("shst",  ARM_MB::ISHST)
4971       .Case("ishst", ARM_MB::ISHST)
4972       .Case("ishld", ARM_MB::ISHLD)
4973       .Case("nsh",   ARM_MB::NSH)
4974       .Case("un",    ARM_MB::NSH)
4975       .Case("nshst", ARM_MB::NSHST)
4976       .Case("nshld", ARM_MB::NSHLD)
4977       .Case("unst",  ARM_MB::NSHST)
4978       .Case("osh",   ARM_MB::OSH)
4979       .Case("oshst", ARM_MB::OSHST)
4980       .Case("oshld", ARM_MB::OSHLD)
4981       .Default(~0U);
4982 
4983     // ishld, oshld, nshld and ld are only available from ARMv8.
4984     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4985                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4986       Opt = ~0U;
4987 
4988     if (Opt == ~0U)
4989       return MatchOperand_NoMatch;
4990 
4991     Parser.Lex(); // Eat identifier token.
4992   } else if (Tok.is(AsmToken::Hash) ||
4993              Tok.is(AsmToken::Dollar) ||
4994              Tok.is(AsmToken::Integer)) {
4995     if (Parser.getTok().isNot(AsmToken::Integer))
4996       Parser.Lex(); // Eat '#' or '$'.
4997     SMLoc Loc = Parser.getTok().getLoc();
4998 
4999     const MCExpr *MemBarrierID;
5000     if (getParser().parseExpression(MemBarrierID)) {
5001       Error(Loc, "illegal expression");
5002       return MatchOperand_ParseFail;
5003     }
5004 
5005     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
5006     if (!CE) {
5007       Error(Loc, "constant expression expected");
5008       return MatchOperand_ParseFail;
5009     }
5010 
5011     int Val = CE->getValue();
5012     if (Val & ~0xf) {
5013       Error(Loc, "immediate value out of range");
5014       return MatchOperand_ParseFail;
5015     }
5016 
5017     Opt = ARM_MB::RESERVED_0 + Val;
5018   } else
5019     return MatchOperand_ParseFail;
5020 
5021   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
5022   return MatchOperand_Success;
5023 }
5024 
5025 OperandMatchResultTy
5026 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
5027   MCAsmParser &Parser = getParser();
5028   SMLoc S = Parser.getTok().getLoc();
5029   const AsmToken &Tok = Parser.getTok();
5030 
5031   if (Tok.isNot(AsmToken::Identifier))
5032      return MatchOperand_NoMatch;
5033 
5034   if (!Tok.getString().equals_insensitive("csync"))
5035     return MatchOperand_NoMatch;
5036 
5037   Parser.Lex(); // Eat identifier token.
5038 
5039   Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
5040   return MatchOperand_Success;
5041 }
5042 
5043 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
5044 OperandMatchResultTy
5045 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
5046   MCAsmParser &Parser = getParser();
5047   SMLoc S = Parser.getTok().getLoc();
5048   const AsmToken &Tok = Parser.getTok();
5049   unsigned Opt;
5050 
5051   if (Tok.is(AsmToken::Identifier)) {
5052     StringRef OptStr = Tok.getString();
5053 
5054     if (OptStr.equals_insensitive("sy"))
5055       Opt = ARM_ISB::SY;
5056     else
5057       return MatchOperand_NoMatch;
5058 
5059     Parser.Lex(); // Eat identifier token.
5060   } else if (Tok.is(AsmToken::Hash) ||
5061              Tok.is(AsmToken::Dollar) ||
5062              Tok.is(AsmToken::Integer)) {
5063     if (Parser.getTok().isNot(AsmToken::Integer))
5064       Parser.Lex(); // Eat '#' or '$'.
5065     SMLoc Loc = Parser.getTok().getLoc();
5066 
5067     const MCExpr *ISBarrierID;
5068     if (getParser().parseExpression(ISBarrierID)) {
5069       Error(Loc, "illegal expression");
5070       return MatchOperand_ParseFail;
5071     }
5072 
5073     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
5074     if (!CE) {
5075       Error(Loc, "constant expression expected");
5076       return MatchOperand_ParseFail;
5077     }
5078 
5079     int Val = CE->getValue();
5080     if (Val & ~0xf) {
5081       Error(Loc, "immediate value out of range");
5082       return MatchOperand_ParseFail;
5083     }
5084 
5085     Opt = ARM_ISB::RESERVED_0 + Val;
5086   } else
5087     return MatchOperand_ParseFail;
5088 
5089   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
5090           (ARM_ISB::InstSyncBOpt)Opt, S));
5091   return MatchOperand_Success;
5092 }
5093 
5094 
5095 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
5096 OperandMatchResultTy
5097 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
5098   MCAsmParser &Parser = getParser();
5099   SMLoc S = Parser.getTok().getLoc();
5100   const AsmToken &Tok = Parser.getTok();
5101   if (!Tok.is(AsmToken::Identifier))
5102     return MatchOperand_NoMatch;
5103   StringRef IFlagsStr = Tok.getString();
5104 
5105   // An iflags string of "none" is interpreted to mean that none of the AIF
5106   // bits are set.  Not a terribly useful instruction, but a valid encoding.
5107   unsigned IFlags = 0;
5108   if (IFlagsStr != "none") {
5109         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
5110       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
5111         .Case("a", ARM_PROC::A)
5112         .Case("i", ARM_PROC::I)
5113         .Case("f", ARM_PROC::F)
5114         .Default(~0U);
5115 
5116       // If some specific iflag is already set, it means that some letter is
5117       // present more than once, this is not acceptable.
5118       if (Flag == ~0U || (IFlags & Flag))
5119         return MatchOperand_NoMatch;
5120 
5121       IFlags |= Flag;
5122     }
5123   }
5124 
5125   Parser.Lex(); // Eat identifier token.
5126   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
5127   return MatchOperand_Success;
5128 }
5129 
5130 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
5131 OperandMatchResultTy
5132 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
5133   MCAsmParser &Parser = getParser();
5134   SMLoc S = Parser.getTok().getLoc();
5135   const AsmToken &Tok = Parser.getTok();
5136 
5137   if (Tok.is(AsmToken::Integer)) {
5138     int64_t Val = Tok.getIntVal();
5139     if (Val > 255 || Val < 0) {
5140       return MatchOperand_NoMatch;
5141     }
5142     unsigned SYSmvalue = Val & 0xFF;
5143     Parser.Lex();
5144     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5145     return MatchOperand_Success;
5146   }
5147 
5148   if (!Tok.is(AsmToken::Identifier))
5149     return MatchOperand_NoMatch;
5150   StringRef Mask = Tok.getString();
5151 
5152   if (isMClass()) {
5153     auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
5154     if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
5155       return MatchOperand_NoMatch;
5156 
5157     unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
5158 
5159     Parser.Lex(); // Eat identifier token.
5160     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5161     return MatchOperand_Success;
5162   }
5163 
5164   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
5165   size_t Start = 0, Next = Mask.find('_');
5166   StringRef Flags = "";
5167   std::string SpecReg = Mask.slice(Start, Next).lower();
5168   if (Next != StringRef::npos)
5169     Flags = Mask.slice(Next+1, Mask.size());
5170 
5171   // FlagsVal contains the complete mask:
5172   // 3-0: Mask
5173   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5174   unsigned FlagsVal = 0;
5175 
5176   if (SpecReg == "apsr") {
5177     FlagsVal = StringSwitch<unsigned>(Flags)
5178     .Case("nzcvq",  0x8) // same as CPSR_f
5179     .Case("g",      0x4) // same as CPSR_s
5180     .Case("nzcvqg", 0xc) // same as CPSR_fs
5181     .Default(~0U);
5182 
5183     if (FlagsVal == ~0U) {
5184       if (!Flags.empty())
5185         return MatchOperand_NoMatch;
5186       else
5187         FlagsVal = 8; // No flag
5188     }
5189   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
5190     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
5191     if (Flags == "all" || Flags == "")
5192       Flags = "fc";
5193     for (int i = 0, e = Flags.size(); i != e; ++i) {
5194       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
5195       .Case("c", 1)
5196       .Case("x", 2)
5197       .Case("s", 4)
5198       .Case("f", 8)
5199       .Default(~0U);
5200 
5201       // If some specific flag is already set, it means that some letter is
5202       // present more than once, this is not acceptable.
5203       if (Flag == ~0U || (FlagsVal & Flag))
5204         return MatchOperand_NoMatch;
5205       FlagsVal |= Flag;
5206     }
5207   } else // No match for special register.
5208     return MatchOperand_NoMatch;
5209 
5210   // Special register without flags is NOT equivalent to "fc" flags.
5211   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
5212   // two lines would enable gas compatibility at the expense of breaking
5213   // round-tripping.
5214   //
5215   // if (!FlagsVal)
5216   //  FlagsVal = 0x9;
5217 
5218   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5219   if (SpecReg == "spsr")
5220     FlagsVal |= 16;
5221 
5222   Parser.Lex(); // Eat identifier token.
5223   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
5224   return MatchOperand_Success;
5225 }
5226 
5227 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5228 /// use in the MRS/MSR instructions added to support virtualization.
5229 OperandMatchResultTy
5230 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
5231   MCAsmParser &Parser = getParser();
5232   SMLoc S = Parser.getTok().getLoc();
5233   const AsmToken &Tok = Parser.getTok();
5234   if (!Tok.is(AsmToken::Identifier))
5235     return MatchOperand_NoMatch;
5236   StringRef RegName = Tok.getString();
5237 
5238   auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
5239   if (!TheReg)
5240     return MatchOperand_NoMatch;
5241   unsigned Encoding = TheReg->Encoding;
5242 
5243   Parser.Lex(); // Eat identifier token.
5244   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
5245   return MatchOperand_Success;
5246 }
5247 
5248 OperandMatchResultTy
5249 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
5250                           int High) {
5251   MCAsmParser &Parser = getParser();
5252   const AsmToken &Tok = Parser.getTok();
5253   if (Tok.isNot(AsmToken::Identifier)) {
5254     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5255     return MatchOperand_ParseFail;
5256   }
5257   StringRef ShiftName = Tok.getString();
5258   std::string LowerOp = Op.lower();
5259   std::string UpperOp = Op.upper();
5260   if (ShiftName != LowerOp && ShiftName != UpperOp) {
5261     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5262     return MatchOperand_ParseFail;
5263   }
5264   Parser.Lex(); // Eat shift type token.
5265 
5266   // There must be a '#' and a shift amount.
5267   if (Parser.getTok().isNot(AsmToken::Hash) &&
5268       Parser.getTok().isNot(AsmToken::Dollar)) {
5269     Error(Parser.getTok().getLoc(), "'#' expected");
5270     return MatchOperand_ParseFail;
5271   }
5272   Parser.Lex(); // Eat hash token.
5273 
5274   const MCExpr *ShiftAmount;
5275   SMLoc Loc = Parser.getTok().getLoc();
5276   SMLoc EndLoc;
5277   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5278     Error(Loc, "illegal expression");
5279     return MatchOperand_ParseFail;
5280   }
5281   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5282   if (!CE) {
5283     Error(Loc, "constant expression expected");
5284     return MatchOperand_ParseFail;
5285   }
5286   int Val = CE->getValue();
5287   if (Val < Low || Val > High) {
5288     Error(Loc, "immediate value out of range");
5289     return MatchOperand_ParseFail;
5290   }
5291 
5292   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
5293 
5294   return MatchOperand_Success;
5295 }
5296 
5297 OperandMatchResultTy
5298 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
5299   MCAsmParser &Parser = getParser();
5300   const AsmToken &Tok = Parser.getTok();
5301   SMLoc S = Tok.getLoc();
5302   if (Tok.isNot(AsmToken::Identifier)) {
5303     Error(S, "'be' or 'le' operand expected");
5304     return MatchOperand_ParseFail;
5305   }
5306   int Val = StringSwitch<int>(Tok.getString().lower())
5307     .Case("be", 1)
5308     .Case("le", 0)
5309     .Default(-1);
5310   Parser.Lex(); // Eat the token.
5311 
5312   if (Val == -1) {
5313     Error(S, "'be' or 'le' operand expected");
5314     return MatchOperand_ParseFail;
5315   }
5316   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
5317                                                                   getContext()),
5318                                            S, Tok.getEndLoc()));
5319   return MatchOperand_Success;
5320 }
5321 
5322 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5323 /// instructions. Legal values are:
5324 ///     lsl #n  'n' in [0,31]
5325 ///     asr #n  'n' in [1,32]
5326 ///             n == 32 encoded as n == 0.
5327 OperandMatchResultTy
5328 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
5329   MCAsmParser &Parser = getParser();
5330   const AsmToken &Tok = Parser.getTok();
5331   SMLoc S = Tok.getLoc();
5332   if (Tok.isNot(AsmToken::Identifier)) {
5333     Error(S, "shift operator 'asr' or 'lsl' expected");
5334     return MatchOperand_ParseFail;
5335   }
5336   StringRef ShiftName = Tok.getString();
5337   bool isASR;
5338   if (ShiftName == "lsl" || ShiftName == "LSL")
5339     isASR = false;
5340   else if (ShiftName == "asr" || ShiftName == "ASR")
5341     isASR = true;
5342   else {
5343     Error(S, "shift operator 'asr' or 'lsl' expected");
5344     return MatchOperand_ParseFail;
5345   }
5346   Parser.Lex(); // Eat the operator.
5347 
5348   // A '#' and a shift amount.
5349   if (Parser.getTok().isNot(AsmToken::Hash) &&
5350       Parser.getTok().isNot(AsmToken::Dollar)) {
5351     Error(Parser.getTok().getLoc(), "'#' expected");
5352     return MatchOperand_ParseFail;
5353   }
5354   Parser.Lex(); // Eat hash token.
5355   SMLoc ExLoc = Parser.getTok().getLoc();
5356 
5357   const MCExpr *ShiftAmount;
5358   SMLoc EndLoc;
5359   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5360     Error(ExLoc, "malformed shift expression");
5361     return MatchOperand_ParseFail;
5362   }
5363   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5364   if (!CE) {
5365     Error(ExLoc, "shift amount must be an immediate");
5366     return MatchOperand_ParseFail;
5367   }
5368 
5369   int64_t Val = CE->getValue();
5370   if (isASR) {
5371     // Shift amount must be in [1,32]
5372     if (Val < 1 || Val > 32) {
5373       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
5374       return MatchOperand_ParseFail;
5375     }
5376     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5377     if (isThumb() && Val == 32) {
5378       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
5379       return MatchOperand_ParseFail;
5380     }
5381     if (Val == 32) Val = 0;
5382   } else {
5383     // Shift amount must be in [1,32]
5384     if (Val < 0 || Val > 31) {
5385       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
5386       return MatchOperand_ParseFail;
5387     }
5388   }
5389 
5390   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
5391 
5392   return MatchOperand_Success;
5393 }
5394 
5395 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5396 /// of instructions. Legal values are:
5397 ///     ror #n  'n' in {0, 8, 16, 24}
5398 OperandMatchResultTy
5399 ARMAsmParser::parseRotImm(OperandVector &Operands) {
5400   MCAsmParser &Parser = getParser();
5401   const AsmToken &Tok = Parser.getTok();
5402   SMLoc S = Tok.getLoc();
5403   if (Tok.isNot(AsmToken::Identifier))
5404     return MatchOperand_NoMatch;
5405   StringRef ShiftName = Tok.getString();
5406   if (ShiftName != "ror" && ShiftName != "ROR")
5407     return MatchOperand_NoMatch;
5408   Parser.Lex(); // Eat the operator.
5409 
5410   // A '#' and a rotate amount.
5411   if (Parser.getTok().isNot(AsmToken::Hash) &&
5412       Parser.getTok().isNot(AsmToken::Dollar)) {
5413     Error(Parser.getTok().getLoc(), "'#' expected");
5414     return MatchOperand_ParseFail;
5415   }
5416   Parser.Lex(); // Eat hash token.
5417   SMLoc ExLoc = Parser.getTok().getLoc();
5418 
5419   const MCExpr *ShiftAmount;
5420   SMLoc EndLoc;
5421   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5422     Error(ExLoc, "malformed rotate expression");
5423     return MatchOperand_ParseFail;
5424   }
5425   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5426   if (!CE) {
5427     Error(ExLoc, "rotate amount must be an immediate");
5428     return MatchOperand_ParseFail;
5429   }
5430 
5431   int64_t Val = CE->getValue();
5432   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5433   // normally, zero is represented in asm by omitting the rotate operand
5434   // entirely.
5435   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
5436     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
5437     return MatchOperand_ParseFail;
5438   }
5439 
5440   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
5441 
5442   return MatchOperand_Success;
5443 }
5444 
5445 OperandMatchResultTy
5446 ARMAsmParser::parseModImm(OperandVector &Operands) {
5447   MCAsmParser &Parser = getParser();
5448   MCAsmLexer &Lexer = getLexer();
5449   int64_t Imm1, Imm2;
5450 
5451   SMLoc S = Parser.getTok().getLoc();
5452 
5453   // 1) A mod_imm operand can appear in the place of a register name:
5454   //   add r0, #mod_imm
5455   //   add r0, r0, #mod_imm
5456   // to correctly handle the latter, we bail out as soon as we see an
5457   // identifier.
5458   //
5459   // 2) Similarly, we do not want to parse into complex operands:
5460   //   mov r0, #mod_imm
5461   //   mov r0, :lower16:(_foo)
5462   if (Parser.getTok().is(AsmToken::Identifier) ||
5463       Parser.getTok().is(AsmToken::Colon))
5464     return MatchOperand_NoMatch;
5465 
5466   // Hash (dollar) is optional as per the ARMARM
5467   if (Parser.getTok().is(AsmToken::Hash) ||
5468       Parser.getTok().is(AsmToken::Dollar)) {
5469     // Avoid parsing into complex operands (#:)
5470     if (Lexer.peekTok().is(AsmToken::Colon))
5471       return MatchOperand_NoMatch;
5472 
5473     // Eat the hash (dollar)
5474     Parser.Lex();
5475   }
5476 
5477   SMLoc Sx1, Ex1;
5478   Sx1 = Parser.getTok().getLoc();
5479   const MCExpr *Imm1Exp;
5480   if (getParser().parseExpression(Imm1Exp, Ex1)) {
5481     Error(Sx1, "malformed expression");
5482     return MatchOperand_ParseFail;
5483   }
5484 
5485   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
5486 
5487   if (CE) {
5488     // Immediate must fit within 32-bits
5489     Imm1 = CE->getValue();
5490     int Enc = ARM_AM::getSOImmVal(Imm1);
5491     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
5492       // We have a match!
5493       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
5494                                                   (Enc & 0xF00) >> 7,
5495                                                   Sx1, Ex1));
5496       return MatchOperand_Success;
5497     }
5498 
5499     // We have parsed an immediate which is not for us, fallback to a plain
5500     // immediate. This can happen for instruction aliases. For an example,
5501     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5502     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5503     // instruction with a mod_imm operand. The alias is defined such that the
5504     // parser method is shared, that's why we have to do this here.
5505     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
5506       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5507       return MatchOperand_Success;
5508     }
5509   } else {
5510     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5511     // MCFixup). Fallback to a plain immediate.
5512     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5513     return MatchOperand_Success;
5514   }
5515 
5516   // From this point onward, we expect the input to be a (#bits, #rot) pair
5517   if (Parser.getTok().isNot(AsmToken::Comma)) {
5518     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
5519     return MatchOperand_ParseFail;
5520   }
5521 
5522   if (Imm1 & ~0xFF) {
5523     Error(Sx1, "immediate operand must a number in the range [0, 255]");
5524     return MatchOperand_ParseFail;
5525   }
5526 
5527   // Eat the comma
5528   Parser.Lex();
5529 
5530   // Repeat for #rot
5531   SMLoc Sx2, Ex2;
5532   Sx2 = Parser.getTok().getLoc();
5533 
5534   // Eat the optional hash (dollar)
5535   if (Parser.getTok().is(AsmToken::Hash) ||
5536       Parser.getTok().is(AsmToken::Dollar))
5537     Parser.Lex();
5538 
5539   const MCExpr *Imm2Exp;
5540   if (getParser().parseExpression(Imm2Exp, Ex2)) {
5541     Error(Sx2, "malformed expression");
5542     return MatchOperand_ParseFail;
5543   }
5544 
5545   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
5546 
5547   if (CE) {
5548     Imm2 = CE->getValue();
5549     if (!(Imm2 & ~0x1E)) {
5550       // We have a match!
5551       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
5552       return MatchOperand_Success;
5553     }
5554     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
5555     return MatchOperand_ParseFail;
5556   } else {
5557     Error(Sx2, "constant expression expected");
5558     return MatchOperand_ParseFail;
5559   }
5560 }
5561 
5562 OperandMatchResultTy
5563 ARMAsmParser::parseBitfield(OperandVector &Operands) {
5564   MCAsmParser &Parser = getParser();
5565   SMLoc S = Parser.getTok().getLoc();
5566   // The bitfield descriptor is really two operands, the LSB and the width.
5567   if (Parser.getTok().isNot(AsmToken::Hash) &&
5568       Parser.getTok().isNot(AsmToken::Dollar)) {
5569     Error(Parser.getTok().getLoc(), "'#' expected");
5570     return MatchOperand_ParseFail;
5571   }
5572   Parser.Lex(); // Eat hash token.
5573 
5574   const MCExpr *LSBExpr;
5575   SMLoc E = Parser.getTok().getLoc();
5576   if (getParser().parseExpression(LSBExpr)) {
5577     Error(E, "malformed immediate expression");
5578     return MatchOperand_ParseFail;
5579   }
5580   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
5581   if (!CE) {
5582     Error(E, "'lsb' operand must be an immediate");
5583     return MatchOperand_ParseFail;
5584   }
5585 
5586   int64_t LSB = CE->getValue();
5587   // The LSB must be in the range [0,31]
5588   if (LSB < 0 || LSB > 31) {
5589     Error(E, "'lsb' operand must be in the range [0,31]");
5590     return MatchOperand_ParseFail;
5591   }
5592   E = Parser.getTok().getLoc();
5593 
5594   // Expect another immediate operand.
5595   if (Parser.getTok().isNot(AsmToken::Comma)) {
5596     Error(Parser.getTok().getLoc(), "too few operands");
5597     return MatchOperand_ParseFail;
5598   }
5599   Parser.Lex(); // Eat hash token.
5600   if (Parser.getTok().isNot(AsmToken::Hash) &&
5601       Parser.getTok().isNot(AsmToken::Dollar)) {
5602     Error(Parser.getTok().getLoc(), "'#' expected");
5603     return MatchOperand_ParseFail;
5604   }
5605   Parser.Lex(); // Eat hash token.
5606 
5607   const MCExpr *WidthExpr;
5608   SMLoc EndLoc;
5609   if (getParser().parseExpression(WidthExpr, EndLoc)) {
5610     Error(E, "malformed immediate expression");
5611     return MatchOperand_ParseFail;
5612   }
5613   CE = dyn_cast<MCConstantExpr>(WidthExpr);
5614   if (!CE) {
5615     Error(E, "'width' operand must be an immediate");
5616     return MatchOperand_ParseFail;
5617   }
5618 
5619   int64_t Width = CE->getValue();
5620   // The LSB must be in the range [1,32-lsb]
5621   if (Width < 1 || Width > 32 - LSB) {
5622     Error(E, "'width' operand must be in the range [1,32-lsb]");
5623     return MatchOperand_ParseFail;
5624   }
5625 
5626   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
5627 
5628   return MatchOperand_Success;
5629 }
5630 
5631 OperandMatchResultTy
5632 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
5633   // Check for a post-index addressing register operand. Specifically:
5634   // postidx_reg := '+' register {, shift}
5635   //              | '-' register {, shift}
5636   //              | register {, shift}
5637 
5638   // This method must return MatchOperand_NoMatch without consuming any tokens
5639   // in the case where there is no match, as other alternatives take other
5640   // parse methods.
5641   MCAsmParser &Parser = getParser();
5642   AsmToken Tok = Parser.getTok();
5643   SMLoc S = Tok.getLoc();
5644   bool haveEaten = false;
5645   bool isAdd = true;
5646   if (Tok.is(AsmToken::Plus)) {
5647     Parser.Lex(); // Eat the '+' token.
5648     haveEaten = true;
5649   } else if (Tok.is(AsmToken::Minus)) {
5650     Parser.Lex(); // Eat the '-' token.
5651     isAdd = false;
5652     haveEaten = true;
5653   }
5654 
5655   SMLoc E = Parser.getTok().getEndLoc();
5656   int Reg = tryParseRegister();
5657   if (Reg == -1) {
5658     if (!haveEaten)
5659       return MatchOperand_NoMatch;
5660     Error(Parser.getTok().getLoc(), "register expected");
5661     return MatchOperand_ParseFail;
5662   }
5663 
5664   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
5665   unsigned ShiftImm = 0;
5666   if (Parser.getTok().is(AsmToken::Comma)) {
5667     Parser.Lex(); // Eat the ','.
5668     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
5669       return MatchOperand_ParseFail;
5670 
5671     // FIXME: Only approximates end...may include intervening whitespace.
5672     E = Parser.getTok().getLoc();
5673   }
5674 
5675   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
5676                                                   ShiftImm, S, E));
5677 
5678   return MatchOperand_Success;
5679 }
5680 
5681 OperandMatchResultTy
5682 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
5683   // Check for a post-index addressing register operand. Specifically:
5684   // am3offset := '+' register
5685   //              | '-' register
5686   //              | register
5687   //              | # imm
5688   //              | # + imm
5689   //              | # - imm
5690 
5691   // This method must return MatchOperand_NoMatch without consuming any tokens
5692   // in the case where there is no match, as other alternatives take other
5693   // parse methods.
5694   MCAsmParser &Parser = getParser();
5695   AsmToken Tok = Parser.getTok();
5696   SMLoc S = Tok.getLoc();
5697 
5698   // Do immediates first, as we always parse those if we have a '#'.
5699   if (Parser.getTok().is(AsmToken::Hash) ||
5700       Parser.getTok().is(AsmToken::Dollar)) {
5701     Parser.Lex(); // Eat '#' or '$'.
5702     // Explicitly look for a '-', as we need to encode negative zero
5703     // differently.
5704     bool isNegative = Parser.getTok().is(AsmToken::Minus);
5705     const MCExpr *Offset;
5706     SMLoc E;
5707     if (getParser().parseExpression(Offset, E))
5708       return MatchOperand_ParseFail;
5709     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5710     if (!CE) {
5711       Error(S, "constant expression expected");
5712       return MatchOperand_ParseFail;
5713     }
5714     // Negative zero is encoded as the flag value
5715     // std::numeric_limits<int32_t>::min().
5716     int32_t Val = CE->getValue();
5717     if (isNegative && Val == 0)
5718       Val = std::numeric_limits<int32_t>::min();
5719 
5720     Operands.push_back(
5721       ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
5722 
5723     return MatchOperand_Success;
5724   }
5725 
5726   bool haveEaten = false;
5727   bool isAdd = true;
5728   if (Tok.is(AsmToken::Plus)) {
5729     Parser.Lex(); // Eat the '+' token.
5730     haveEaten = true;
5731   } else if (Tok.is(AsmToken::Minus)) {
5732     Parser.Lex(); // Eat the '-' token.
5733     isAdd = false;
5734     haveEaten = true;
5735   }
5736 
5737   Tok = Parser.getTok();
5738   int Reg = tryParseRegister();
5739   if (Reg == -1) {
5740     if (!haveEaten)
5741       return MatchOperand_NoMatch;
5742     Error(Tok.getLoc(), "register expected");
5743     return MatchOperand_ParseFail;
5744   }
5745 
5746   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
5747                                                   0, S, Tok.getEndLoc()));
5748 
5749   return MatchOperand_Success;
5750 }
5751 
5752 /// Convert parsed operands to MCInst.  Needed here because this instruction
5753 /// only has two register operands, but multiplication is commutative so
5754 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5755 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
5756                                     const OperandVector &Operands) {
5757   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
5758   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
5759   // If we have a three-operand form, make sure to set Rn to be the operand
5760   // that isn't the same as Rd.
5761   unsigned RegOp = 4;
5762   if (Operands.size() == 6 &&
5763       ((ARMOperand &)*Operands[4]).getReg() ==
5764           ((ARMOperand &)*Operands[3]).getReg())
5765     RegOp = 5;
5766   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5767   Inst.addOperand(Inst.getOperand(0));
5768   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5769 }
5770 
5771 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5772                                     const OperandVector &Operands) {
5773   int CondOp = -1, ImmOp = -1;
5774   switch(Inst.getOpcode()) {
5775     case ARM::tB:
5776     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
5777 
5778     case ARM::t2B:
5779     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5780 
5781     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5782   }
5783   // first decide whether or not the branch should be conditional
5784   // by looking at it's location relative to an IT block
5785   if(inITBlock()) {
5786     // inside an IT block we cannot have any conditional branches. any
5787     // such instructions needs to be converted to unconditional form
5788     switch(Inst.getOpcode()) {
5789       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5790       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5791     }
5792   } else {
5793     // outside IT blocks we can only have unconditional branches with AL
5794     // condition code or conditional branches with non-AL condition code
5795     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5796     switch(Inst.getOpcode()) {
5797       case ARM::tB:
5798       case ARM::tBcc:
5799         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5800         break;
5801       case ARM::t2B:
5802       case ARM::t2Bcc:
5803         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5804         break;
5805     }
5806   }
5807 
5808   // now decide on encoding size based on branch target range
5809   switch(Inst.getOpcode()) {
5810     // classify tB as either t2B or t1B based on range of immediate operand
5811     case ARM::tB: {
5812       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5813       if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5814         Inst.setOpcode(ARM::t2B);
5815       break;
5816     }
5817     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5818     case ARM::tBcc: {
5819       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5820       if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5821         Inst.setOpcode(ARM::t2Bcc);
5822       break;
5823     }
5824   }
5825   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5826   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5827 }
5828 
5829 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5830   MCInst &Inst, const OperandVector &Operands) {
5831 
5832   // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5833   assert(Operands.size() == 8);
5834 
5835   ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
5836   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
5837   ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
5838   ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
5839   // skip second copy of Qd in Operands[6]
5840   ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
5841   ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
5842 }
5843 
5844 /// Parse an ARM memory expression, return false if successful else return true
5845 /// or an error.  The first token must be a '[' when called.
5846 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5847   MCAsmParser &Parser = getParser();
5848   SMLoc S, E;
5849   if (Parser.getTok().isNot(AsmToken::LBrac))
5850     return TokError("Token is not a Left Bracket");
5851   S = Parser.getTok().getLoc();
5852   Parser.Lex(); // Eat left bracket token.
5853 
5854   const AsmToken &BaseRegTok = Parser.getTok();
5855   int BaseRegNum = tryParseRegister();
5856   if (BaseRegNum == -1)
5857     return Error(BaseRegTok.getLoc(), "register expected");
5858 
5859   // The next token must either be a comma, a colon or a closing bracket.
5860   const AsmToken &Tok = Parser.getTok();
5861   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5862       !Tok.is(AsmToken::RBrac))
5863     return Error(Tok.getLoc(), "malformed memory operand");
5864 
5865   if (Tok.is(AsmToken::RBrac)) {
5866     E = Tok.getEndLoc();
5867     Parser.Lex(); // Eat right bracket token.
5868 
5869     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5870                                              ARM_AM::no_shift, 0, 0, false,
5871                                              S, E));
5872 
5873     // If there's a pre-indexing writeback marker, '!', just add it as a token
5874     // operand. It's rather odd, but syntactically valid.
5875     if (Parser.getTok().is(AsmToken::Exclaim)) {
5876       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5877       Parser.Lex(); // Eat the '!'.
5878     }
5879 
5880     return false;
5881   }
5882 
5883   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5884          "Lost colon or comma in memory operand?!");
5885   if (Tok.is(AsmToken::Comma)) {
5886     Parser.Lex(); // Eat the comma.
5887   }
5888 
5889   // If we have a ':', it's an alignment specifier.
5890   if (Parser.getTok().is(AsmToken::Colon)) {
5891     Parser.Lex(); // Eat the ':'.
5892     E = Parser.getTok().getLoc();
5893     SMLoc AlignmentLoc = Tok.getLoc();
5894 
5895     const MCExpr *Expr;
5896     if (getParser().parseExpression(Expr))
5897      return true;
5898 
5899     // The expression has to be a constant. Memory references with relocations
5900     // don't come through here, as they use the <label> forms of the relevant
5901     // instructions.
5902     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5903     if (!CE)
5904       return Error (E, "constant expression expected");
5905 
5906     unsigned Align = 0;
5907     switch (CE->getValue()) {
5908     default:
5909       return Error(E,
5910                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5911     case 16:  Align = 2; break;
5912     case 32:  Align = 4; break;
5913     case 64:  Align = 8; break;
5914     case 128: Align = 16; break;
5915     case 256: Align = 32; break;
5916     }
5917 
5918     // Now we should have the closing ']'
5919     if (Parser.getTok().isNot(AsmToken::RBrac))
5920       return Error(Parser.getTok().getLoc(), "']' expected");
5921     E = Parser.getTok().getEndLoc();
5922     Parser.Lex(); // Eat right bracket token.
5923 
5924     // Don't worry about range checking the value here. That's handled by
5925     // the is*() predicates.
5926     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5927                                              ARM_AM::no_shift, 0, Align,
5928                                              false, S, E, AlignmentLoc));
5929 
5930     // If there's a pre-indexing writeback marker, '!', just add it as a token
5931     // operand.
5932     if (Parser.getTok().is(AsmToken::Exclaim)) {
5933       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5934       Parser.Lex(); // Eat the '!'.
5935     }
5936 
5937     return false;
5938   }
5939 
5940   // If we have a '#' or '$', it's an immediate offset, else assume it's a
5941   // register offset. Be friendly and also accept a plain integer or expression
5942   // (without a leading hash) for gas compatibility.
5943   if (Parser.getTok().is(AsmToken::Hash) ||
5944       Parser.getTok().is(AsmToken::Dollar) ||
5945       Parser.getTok().is(AsmToken::LParen) ||
5946       Parser.getTok().is(AsmToken::Integer)) {
5947     if (Parser.getTok().is(AsmToken::Hash) ||
5948         Parser.getTok().is(AsmToken::Dollar))
5949       Parser.Lex(); // Eat '#' or '$'
5950     E = Parser.getTok().getLoc();
5951 
5952     bool isNegative = getParser().getTok().is(AsmToken::Minus);
5953     const MCExpr *Offset, *AdjustedOffset;
5954     if (getParser().parseExpression(Offset))
5955      return true;
5956 
5957     if (const auto *CE = dyn_cast<MCConstantExpr>(Offset)) {
5958       // If the constant was #-0, represent it as
5959       // std::numeric_limits<int32_t>::min().
5960       int32_t Val = CE->getValue();
5961       if (isNegative && Val == 0)
5962         CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5963                                     getContext());
5964       // Don't worry about range checking the value here. That's handled by
5965       // the is*() predicates.
5966       AdjustedOffset = CE;
5967     } else
5968       AdjustedOffset = Offset;
5969     Operands.push_back(ARMOperand::CreateMem(
5970         BaseRegNum, AdjustedOffset, 0, ARM_AM::no_shift, 0, 0, false, S, E));
5971 
5972     // Now we should have the closing ']'
5973     if (Parser.getTok().isNot(AsmToken::RBrac))
5974       return Error(Parser.getTok().getLoc(), "']' expected");
5975     E = Parser.getTok().getEndLoc();
5976     Parser.Lex(); // Eat right bracket token.
5977 
5978     // If there's a pre-indexing writeback marker, '!', just add it as a token
5979     // operand.
5980     if (Parser.getTok().is(AsmToken::Exclaim)) {
5981       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5982       Parser.Lex(); // Eat the '!'.
5983     }
5984 
5985     return false;
5986   }
5987 
5988   // The register offset is optionally preceded by a '+' or '-'
5989   bool isNegative = false;
5990   if (Parser.getTok().is(AsmToken::Minus)) {
5991     isNegative = true;
5992     Parser.Lex(); // Eat the '-'.
5993   } else if (Parser.getTok().is(AsmToken::Plus)) {
5994     // Nothing to do.
5995     Parser.Lex(); // Eat the '+'.
5996   }
5997 
5998   E = Parser.getTok().getLoc();
5999   int OffsetRegNum = tryParseRegister();
6000   if (OffsetRegNum == -1)
6001     return Error(E, "register expected");
6002 
6003   // If there's a shift operator, handle it.
6004   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
6005   unsigned ShiftImm = 0;
6006   if (Parser.getTok().is(AsmToken::Comma)) {
6007     Parser.Lex(); // Eat the ','.
6008     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
6009       return true;
6010   }
6011 
6012   // Now we should have the closing ']'
6013   if (Parser.getTok().isNot(AsmToken::RBrac))
6014     return Error(Parser.getTok().getLoc(), "']' expected");
6015   E = Parser.getTok().getEndLoc();
6016   Parser.Lex(); // Eat right bracket token.
6017 
6018   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
6019                                            ShiftType, ShiftImm, 0, isNegative,
6020                                            S, E));
6021 
6022   // If there's a pre-indexing writeback marker, '!', just add it as a token
6023   // operand.
6024   if (Parser.getTok().is(AsmToken::Exclaim)) {
6025     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
6026     Parser.Lex(); // Eat the '!'.
6027   }
6028 
6029   return false;
6030 }
6031 
6032 /// parseMemRegOffsetShift - one of these two:
6033 ///   ( lsl | lsr | asr | ror ) , # shift_amount
6034 ///   rrx
6035 /// return true if it parses a shift otherwise it returns false.
6036 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
6037                                           unsigned &Amount) {
6038   MCAsmParser &Parser = getParser();
6039   SMLoc Loc = Parser.getTok().getLoc();
6040   const AsmToken &Tok = Parser.getTok();
6041   if (Tok.isNot(AsmToken::Identifier))
6042     return Error(Loc, "illegal shift operator");
6043   StringRef ShiftName = Tok.getString();
6044   if (ShiftName == "lsl" || ShiftName == "LSL" ||
6045       ShiftName == "asl" || ShiftName == "ASL")
6046     St = ARM_AM::lsl;
6047   else if (ShiftName == "lsr" || ShiftName == "LSR")
6048     St = ARM_AM::lsr;
6049   else if (ShiftName == "asr" || ShiftName == "ASR")
6050     St = ARM_AM::asr;
6051   else if (ShiftName == "ror" || ShiftName == "ROR")
6052     St = ARM_AM::ror;
6053   else if (ShiftName == "rrx" || ShiftName == "RRX")
6054     St = ARM_AM::rrx;
6055   else if (ShiftName == "uxtw" || ShiftName == "UXTW")
6056     St = ARM_AM::uxtw;
6057   else
6058     return Error(Loc, "illegal shift operator");
6059   Parser.Lex(); // Eat shift type token.
6060 
6061   // rrx stands alone.
6062   Amount = 0;
6063   if (St != ARM_AM::rrx) {
6064     Loc = Parser.getTok().getLoc();
6065     // A '#' and a shift amount.
6066     const AsmToken &HashTok = Parser.getTok();
6067     if (HashTok.isNot(AsmToken::Hash) &&
6068         HashTok.isNot(AsmToken::Dollar))
6069       return Error(HashTok.getLoc(), "'#' expected");
6070     Parser.Lex(); // Eat hash token.
6071 
6072     const MCExpr *Expr;
6073     if (getParser().parseExpression(Expr))
6074       return true;
6075     // Range check the immediate.
6076     // lsl, ror: 0 <= imm <= 31
6077     // lsr, asr: 0 <= imm <= 32
6078     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
6079     if (!CE)
6080       return Error(Loc, "shift amount must be an immediate");
6081     int64_t Imm = CE->getValue();
6082     if (Imm < 0 ||
6083         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
6084         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
6085       return Error(Loc, "immediate shift value out of range");
6086     // If <ShiftTy> #0, turn it into a no_shift.
6087     if (Imm == 0)
6088       St = ARM_AM::lsl;
6089     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
6090     if (Imm == 32)
6091       Imm = 0;
6092     Amount = Imm;
6093   }
6094 
6095   return false;
6096 }
6097 
6098 /// parseFPImm - A floating point immediate expression operand.
6099 OperandMatchResultTy
6100 ARMAsmParser::parseFPImm(OperandVector &Operands) {
6101   MCAsmParser &Parser = getParser();
6102   // Anything that can accept a floating point constant as an operand
6103   // needs to go through here, as the regular parseExpression is
6104   // integer only.
6105   //
6106   // This routine still creates a generic Immediate operand, containing
6107   // a bitcast of the 64-bit floating point value. The various operands
6108   // that accept floats can check whether the value is valid for them
6109   // via the standard is*() predicates.
6110 
6111   SMLoc S = Parser.getTok().getLoc();
6112 
6113   if (Parser.getTok().isNot(AsmToken::Hash) &&
6114       Parser.getTok().isNot(AsmToken::Dollar))
6115     return MatchOperand_NoMatch;
6116 
6117   // Disambiguate the VMOV forms that can accept an FP immediate.
6118   // vmov.f32 <sreg>, #imm
6119   // vmov.f64 <dreg>, #imm
6120   // vmov.f32 <dreg>, #imm  @ vector f32x2
6121   // vmov.f32 <qreg>, #imm  @ vector f32x4
6122   //
6123   // There are also the NEON VMOV instructions which expect an
6124   // integer constant. Make sure we don't try to parse an FPImm
6125   // for these:
6126   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
6127   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
6128   bool isVmovf = TyOp.isToken() &&
6129                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
6130                   TyOp.getToken() == ".f16");
6131   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
6132   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
6133                                          Mnemonic.getToken() == "fconsts");
6134   if (!(isVmovf || isFconst))
6135     return MatchOperand_NoMatch;
6136 
6137   Parser.Lex(); // Eat '#' or '$'.
6138 
6139   // Handle negation, as that still comes through as a separate token.
6140   bool isNegative = false;
6141   if (Parser.getTok().is(AsmToken::Minus)) {
6142     isNegative = true;
6143     Parser.Lex();
6144   }
6145   const AsmToken &Tok = Parser.getTok();
6146   SMLoc Loc = Tok.getLoc();
6147   if (Tok.is(AsmToken::Real) && isVmovf) {
6148     APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
6149     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
6150     // If we had a '-' in front, toggle the sign bit.
6151     IntVal ^= (uint64_t)isNegative << 31;
6152     Parser.Lex(); // Eat the token.
6153     Operands.push_back(ARMOperand::CreateImm(
6154           MCConstantExpr::create(IntVal, getContext()),
6155           S, Parser.getTok().getLoc()));
6156     return MatchOperand_Success;
6157   }
6158   // Also handle plain integers. Instructions which allow floating point
6159   // immediates also allow a raw encoded 8-bit value.
6160   if (Tok.is(AsmToken::Integer) && isFconst) {
6161     int64_t Val = Tok.getIntVal();
6162     Parser.Lex(); // Eat the token.
6163     if (Val > 255 || Val < 0) {
6164       Error(Loc, "encoded floating point value out of range");
6165       return MatchOperand_ParseFail;
6166     }
6167     float RealVal = ARM_AM::getFPImmFloat(Val);
6168     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
6169 
6170     Operands.push_back(ARMOperand::CreateImm(
6171         MCConstantExpr::create(Val, getContext()), S,
6172         Parser.getTok().getLoc()));
6173     return MatchOperand_Success;
6174   }
6175 
6176   Error(Loc, "invalid floating point immediate");
6177   return MatchOperand_ParseFail;
6178 }
6179 
6180 /// Parse a arm instruction operand.  For now this parses the operand regardless
6181 /// of the mnemonic.
6182 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
6183   MCAsmParser &Parser = getParser();
6184   SMLoc S, E;
6185 
6186   // Check if the current operand has a custom associated parser, if so, try to
6187   // custom parse the operand, or fallback to the general approach.
6188   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
6189   if (ResTy == MatchOperand_Success)
6190     return false;
6191   // If there wasn't a custom match, try the generic matcher below. Otherwise,
6192   // there was a match, but an error occurred, in which case, just return that
6193   // the operand parsing failed.
6194   if (ResTy == MatchOperand_ParseFail)
6195     return true;
6196 
6197   switch (getLexer().getKind()) {
6198   default:
6199     Error(Parser.getTok().getLoc(), "unexpected token in operand");
6200     return true;
6201   case AsmToken::Identifier: {
6202     // If we've seen a branch mnemonic, the next operand must be a label.  This
6203     // is true even if the label is a register name.  So "br r1" means branch to
6204     // label "r1".
6205     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
6206     if (!ExpectLabel) {
6207       if (!tryParseRegisterWithWriteBack(Operands))
6208         return false;
6209       int Res = tryParseShiftRegister(Operands);
6210       if (Res == 0) // success
6211         return false;
6212       else if (Res == -1) // irrecoverable error
6213         return true;
6214       // If this is VMRS, check for the apsr_nzcv operand.
6215       if (Mnemonic == "vmrs" &&
6216           Parser.getTok().getString().equals_insensitive("apsr_nzcv")) {
6217         S = Parser.getTok().getLoc();
6218         Parser.Lex();
6219         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
6220         return false;
6221       }
6222     }
6223 
6224     // Fall though for the Identifier case that is not a register or a
6225     // special name.
6226     LLVM_FALLTHROUGH;
6227   }
6228   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
6229   case AsmToken::Integer: // things like 1f and 2b as a branch targets
6230   case AsmToken::String:  // quoted label names.
6231   case AsmToken::Dot: {   // . as a branch target
6232     // This was not a register so parse other operands that start with an
6233     // identifier (like labels) as expressions and create them as immediates.
6234     const MCExpr *IdVal;
6235     S = Parser.getTok().getLoc();
6236     if (getParser().parseExpression(IdVal))
6237       return true;
6238     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6239     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
6240     return false;
6241   }
6242   case AsmToken::LBrac:
6243     return parseMemory(Operands);
6244   case AsmToken::LCurly:
6245     return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
6246   case AsmToken::Dollar:
6247   case AsmToken::Hash: {
6248     // #42 -> immediate
6249     // $ 42 -> immediate
6250     // $foo -> symbol name
6251     // $42 -> symbol name
6252     S = Parser.getTok().getLoc();
6253 
6254     // Favor the interpretation of $-prefixed operands as symbol names.
6255     // Cases where immediates are explicitly expected are handled by their
6256     // specific ParseMethod implementations.
6257     auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false);
6258     bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) &&
6259                             (AdjacentToken.is(AsmToken::Identifier) ||
6260                              AdjacentToken.is(AsmToken::Integer));
6261     if (!ExpectIdentifier) {
6262       // Token is not part of identifier. Drop leading $ or # before parsing
6263       // expression.
6264       Parser.Lex();
6265     }
6266 
6267     if (Parser.getTok().isNot(AsmToken::Colon)) {
6268       bool IsNegative = Parser.getTok().is(AsmToken::Minus);
6269       const MCExpr *ImmVal;
6270       if (getParser().parseExpression(ImmVal))
6271         return true;
6272       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
6273       if (CE) {
6274         int32_t Val = CE->getValue();
6275         if (IsNegative && Val == 0)
6276           ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
6277                                           getContext());
6278       }
6279       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6280       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
6281 
6282       // There can be a trailing '!' on operands that we want as a separate
6283       // '!' Token operand. Handle that here. For example, the compatibility
6284       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6285       if (Parser.getTok().is(AsmToken::Exclaim)) {
6286         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
6287                                                    Parser.getTok().getLoc()));
6288         Parser.Lex(); // Eat exclaim token
6289       }
6290       return false;
6291     }
6292     // w/ a ':' after the '#', it's just like a plain ':'.
6293     LLVM_FALLTHROUGH;
6294   }
6295   case AsmToken::Colon: {
6296     S = Parser.getTok().getLoc();
6297     // ":lower16:" and ":upper16:" expression prefixes
6298     // FIXME: Check it's an expression prefix,
6299     // e.g. (FOO - :lower16:BAR) isn't legal.
6300     ARMMCExpr::VariantKind RefKind;
6301     if (parsePrefix(RefKind))
6302       return true;
6303 
6304     const MCExpr *SubExprVal;
6305     if (getParser().parseExpression(SubExprVal))
6306       return true;
6307 
6308     const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
6309                                               getContext());
6310     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6311     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
6312     return false;
6313   }
6314   case AsmToken::Equal: {
6315     S = Parser.getTok().getLoc();
6316     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6317       return Error(S, "unexpected token in operand");
6318     Parser.Lex(); // Eat '='
6319     const MCExpr *SubExprVal;
6320     if (getParser().parseExpression(SubExprVal))
6321       return true;
6322     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6323 
6324     // execute-only: we assume that assembly programmers know what they are
6325     // doing and allow literal pool creation here
6326     Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
6327     return false;
6328   }
6329   }
6330 }
6331 
6332 bool ARMAsmParser::parseImmExpr(int64_t &Out) {
6333   const MCExpr *Expr = nullptr;
6334   SMLoc L = getParser().getTok().getLoc();
6335   if (check(getParser().parseExpression(Expr), L, "expected expression"))
6336     return true;
6337   const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
6338   if (check(!Value, L, "expected constant expression"))
6339     return true;
6340   Out = Value->getValue();
6341   return false;
6342 }
6343 
6344 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6345 //  :lower16: and :upper16:.
6346 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
6347   MCAsmParser &Parser = getParser();
6348   RefKind = ARMMCExpr::VK_ARM_None;
6349 
6350   // consume an optional '#' (GNU compatibility)
6351   if (getLexer().is(AsmToken::Hash))
6352     Parser.Lex();
6353 
6354   // :lower16: and :upper16: modifiers
6355   assert(getLexer().is(AsmToken::Colon) && "expected a :");
6356   Parser.Lex(); // Eat ':'
6357 
6358   if (getLexer().isNot(AsmToken::Identifier)) {
6359     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
6360     return true;
6361   }
6362 
6363   enum {
6364     COFF = (1 << MCContext::IsCOFF),
6365     ELF = (1 << MCContext::IsELF),
6366     MACHO = (1 << MCContext::IsMachO),
6367     WASM = (1 << MCContext::IsWasm),
6368   };
6369   static const struct PrefixEntry {
6370     const char *Spelling;
6371     ARMMCExpr::VariantKind VariantKind;
6372     uint8_t SupportedFormats;
6373   } PrefixEntries[] = {
6374     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
6375     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
6376   };
6377 
6378   StringRef IDVal = Parser.getTok().getIdentifier();
6379 
6380   const auto &Prefix =
6381       llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) {
6382         return PE.Spelling == IDVal;
6383       });
6384   if (Prefix == std::end(PrefixEntries)) {
6385     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
6386     return true;
6387   }
6388 
6389   uint8_t CurrentFormat;
6390   switch (getContext().getObjectFileType()) {
6391   case MCContext::IsMachO:
6392     CurrentFormat = MACHO;
6393     break;
6394   case MCContext::IsELF:
6395     CurrentFormat = ELF;
6396     break;
6397   case MCContext::IsCOFF:
6398     CurrentFormat = COFF;
6399     break;
6400   case MCContext::IsWasm:
6401     CurrentFormat = WASM;
6402     break;
6403   case MCContext::IsGOFF:
6404   case MCContext::IsSPIRV:
6405   case MCContext::IsXCOFF:
6406   case MCContext::IsDXContainer:
6407     llvm_unreachable("unexpected object format");
6408     break;
6409   }
6410 
6411   if (~Prefix->SupportedFormats & CurrentFormat) {
6412     Error(Parser.getTok().getLoc(),
6413           "cannot represent relocation in the current file format");
6414     return true;
6415   }
6416 
6417   RefKind = Prefix->VariantKind;
6418   Parser.Lex();
6419 
6420   if (getLexer().isNot(AsmToken::Colon)) {
6421     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
6422     return true;
6423   }
6424   Parser.Lex(); // Eat the last ':'
6425 
6426   return false;
6427 }
6428 
6429 /// Given a mnemonic, split out possible predication code and carry
6430 /// setting letters to form a canonical mnemonic and flags.
6431 //
6432 // FIXME: Would be nice to autogen this.
6433 // FIXME: This is a bit of a maze of special cases.
6434 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
6435                                       StringRef ExtraToken,
6436                                       unsigned &PredicationCode,
6437                                       unsigned &VPTPredicationCode,
6438                                       bool &CarrySetting,
6439                                       unsigned &ProcessorIMod,
6440                                       StringRef &ITMask) {
6441   PredicationCode = ARMCC::AL;
6442   VPTPredicationCode = ARMVCC::None;
6443   CarrySetting = false;
6444   ProcessorIMod = 0;
6445 
6446   // Ignore some mnemonics we know aren't predicated forms.
6447   //
6448   // FIXME: Would be nice to autogen this.
6449   if ((Mnemonic == "movs" && isThumb()) ||
6450       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
6451       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
6452       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
6453       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
6454       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
6455       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
6456       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
6457       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
6458       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
6459       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
6460       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
6461       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
6462       Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
6463       Mnemonic == "bxns"  || Mnemonic == "blxns" ||
6464       Mnemonic == "vdot"  || Mnemonic == "vmmla" ||
6465       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6466       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6467       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6468       Mnemonic == "wls"   || Mnemonic == "le"    || Mnemonic == "dls" ||
6469       Mnemonic == "csel"  || Mnemonic == "csinc" ||
6470       Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
6471       Mnemonic == "cinv"  || Mnemonic == "cneg"  || Mnemonic == "cset" ||
6472       Mnemonic == "csetm" ||
6473       Mnemonic == "aut"   || Mnemonic == "pac" || Mnemonic == "pacbti" ||
6474       Mnemonic == "bti")
6475     return Mnemonic;
6476 
6477   // First, split out any predication code. Ignore mnemonics we know aren't
6478   // predicated but do have a carry-set and so weren't caught above.
6479   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
6480       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
6481       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
6482       Mnemonic != "sbcs" && Mnemonic != "rscs" &&
6483       !(hasMVE() &&
6484         (Mnemonic == "vmine" ||
6485          Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
6486          Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
6487          Mnemonic == "vmvne" || Mnemonic == "vorne" ||
6488          Mnemonic == "vnege" || Mnemonic == "vnegt" ||
6489          Mnemonic == "vmule" || Mnemonic == "vmult" ||
6490          Mnemonic == "vrintne" ||
6491          Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
6492          Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
6493          Mnemonic.startswith("vq")))) {
6494     unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
6495     if (CC != ~0U) {
6496       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
6497       PredicationCode = CC;
6498     }
6499   }
6500 
6501   // Next, determine if we have a carry setting bit. We explicitly ignore all
6502   // the instructions we know end in 's'.
6503   if (Mnemonic.endswith("s") &&
6504       !(Mnemonic == "cps" || Mnemonic == "mls" ||
6505         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
6506         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
6507         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
6508         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
6509         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
6510         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
6511         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
6512         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
6513         Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
6514         Mnemonic == "vmlas" ||
6515         (Mnemonic == "movs" && isThumb()))) {
6516     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
6517     CarrySetting = true;
6518   }
6519 
6520   // The "cps" instruction can have a interrupt mode operand which is glued into
6521   // the mnemonic. Check if this is the case, split it and parse the imod op
6522   if (Mnemonic.startswith("cps")) {
6523     // Split out any imod code.
6524     unsigned IMod =
6525       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
6526       .Case("ie", ARM_PROC::IE)
6527       .Case("id", ARM_PROC::ID)
6528       .Default(~0U);
6529     if (IMod != ~0U) {
6530       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
6531       ProcessorIMod = IMod;
6532     }
6533   }
6534 
6535   if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
6536       Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
6537       Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
6538       Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
6539       Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
6540       Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
6541       Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
6542     unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
6543     if (CC != ~0U) {
6544       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
6545       VPTPredicationCode = CC;
6546     }
6547     return Mnemonic;
6548   }
6549 
6550   // The "it" instruction has the condition mask on the end of the mnemonic.
6551   if (Mnemonic.startswith("it")) {
6552     ITMask = Mnemonic.slice(2, Mnemonic.size());
6553     Mnemonic = Mnemonic.slice(0, 2);
6554   }
6555 
6556   if (Mnemonic.startswith("vpst")) {
6557     ITMask = Mnemonic.slice(4, Mnemonic.size());
6558     Mnemonic = Mnemonic.slice(0, 4);
6559   }
6560   else if (Mnemonic.startswith("vpt")) {
6561     ITMask = Mnemonic.slice(3, Mnemonic.size());
6562     Mnemonic = Mnemonic.slice(0, 3);
6563   }
6564 
6565   return Mnemonic;
6566 }
6567 
6568 /// Given a canonical mnemonic, determine if the instruction ever allows
6569 /// inclusion of carry set or predication code operands.
6570 //
6571 // FIXME: It would be nice to autogen this.
6572 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
6573                                          StringRef ExtraToken,
6574                                          StringRef FullInst,
6575                                          bool &CanAcceptCarrySet,
6576                                          bool &CanAcceptPredicationCode,
6577                                          bool &CanAcceptVPTPredicationCode) {
6578   CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
6579 
6580   CanAcceptCarrySet =
6581       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6582       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
6583       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
6584       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
6585       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
6586       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
6587       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
6588       (!isThumb() &&
6589        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
6590         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
6591 
6592   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
6593       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
6594       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
6595       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
6596       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
6597       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
6598       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
6599       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
6600       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
6601       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
6602       (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
6603       Mnemonic == "vmovx" || Mnemonic == "vins" ||
6604       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6605       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6606       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6607       Mnemonic == "vfmat" || Mnemonic == "vfmab" ||
6608       Mnemonic == "vdot"  || Mnemonic == "vmmla" ||
6609       Mnemonic == "sb"    || Mnemonic == "ssbb"  ||
6610       Mnemonic == "pssbb" || Mnemonic == "vsmmla" ||
6611       Mnemonic == "vummla" || Mnemonic == "vusmmla" ||
6612       Mnemonic == "vusdot" || Mnemonic == "vsudot" ||
6613       Mnemonic == "bfcsel" || Mnemonic == "wls" ||
6614       Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
6615       Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
6616       Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
6617       Mnemonic == "cset" || Mnemonic == "csetm" ||
6618       (hasCDE() && MS.isCDEInstr(Mnemonic) &&
6619        !MS.isITPredicableCDEInstr(Mnemonic)) ||
6620       Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
6621       Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "aut" ||
6622       Mnemonic == "bti" ||
6623       (hasMVE() &&
6624        (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
6625         Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
6626         Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
6627         Mnemonic.startswith("letp")))) {
6628     // These mnemonics are never predicable
6629     CanAcceptPredicationCode = false;
6630   } else if (!isThumb()) {
6631     // Some instructions are only predicable in Thumb mode
6632     CanAcceptPredicationCode =
6633         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
6634         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
6635         Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
6636         Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
6637         Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
6638         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
6639         Mnemonic != "tsb" &&
6640         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
6641   } else if (isThumbOne()) {
6642     if (hasV6MOps())
6643       CanAcceptPredicationCode = Mnemonic != "movs";
6644     else
6645       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
6646   } else
6647     CanAcceptPredicationCode = true;
6648 }
6649 
6650 // Some Thumb instructions have two operand forms that are not
6651 // available as three operand, convert to two operand form if possible.
6652 //
6653 // FIXME: We would really like to be able to tablegen'erate this.
6654 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
6655                                                  bool CarrySetting,
6656                                                  OperandVector &Operands) {
6657   if (Operands.size() != 6)
6658     return;
6659 
6660   const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6661         auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
6662   if (!Op3.isReg() || !Op4.isReg())
6663     return;
6664 
6665   auto Op3Reg = Op3.getReg();
6666   auto Op4Reg = Op4.getReg();
6667 
6668   // For most Thumb2 cases we just generate the 3 operand form and reduce
6669   // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6670   // won't accept SP or PC so we do the transformation here taking care
6671   // with immediate range in the 'add sp, sp #imm' case.
6672   auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
6673   if (isThumbTwo()) {
6674     if (Mnemonic != "add")
6675       return;
6676     bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
6677                         (Op5.isReg() && Op5.getReg() == ARM::PC);
6678     if (!TryTransform) {
6679       TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
6680                       (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
6681                      !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
6682                        Op5.isImm() && !Op5.isImm0_508s4());
6683     }
6684     if (!TryTransform)
6685       return;
6686   } else if (!isThumbOne())
6687     return;
6688 
6689   if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
6690         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6691         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
6692         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
6693     return;
6694 
6695   // If first 2 operands of a 3 operand instruction are the same
6696   // then transform to 2 operand version of the same instruction
6697   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6698   bool Transform = Op3Reg == Op4Reg;
6699 
6700   // For communtative operations, we might be able to transform if we swap
6701   // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
6702   // as tADDrsp.
6703   const ARMOperand *LastOp = &Op5;
6704   bool Swap = false;
6705   if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
6706       ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
6707        Mnemonic == "and" || Mnemonic == "eor" ||
6708        Mnemonic == "adc" || Mnemonic == "orr")) {
6709     Swap = true;
6710     LastOp = &Op4;
6711     Transform = true;
6712   }
6713 
6714   // If both registers are the same then remove one of them from
6715   // the operand list, with certain exceptions.
6716   if (Transform) {
6717     // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6718     // 2 operand forms don't exist.
6719     if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
6720         LastOp->isReg())
6721       Transform = false;
6722 
6723     // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6724     // 3-bits because the ARMARM says not to.
6725     if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
6726       Transform = false;
6727   }
6728 
6729   if (Transform) {
6730     if (Swap)
6731       std::swap(Op4, Op5);
6732     Operands.erase(Operands.begin() + 3);
6733   }
6734 }
6735 
6736 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
6737                                           OperandVector &Operands) {
6738   // FIXME: This is all horribly hacky. We really need a better way to deal
6739   // with optional operands like this in the matcher table.
6740 
6741   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6742   // another does not. Specifically, the MOVW instruction does not. So we
6743   // special case it here and remove the defaulted (non-setting) cc_out
6744   // operand if that's the instruction we're trying to match.
6745   //
6746   // We do this as post-processing of the explicit operands rather than just
6747   // conditionally adding the cc_out in the first place because we need
6748   // to check the type of the parsed immediate operand.
6749   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
6750       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
6751       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
6752       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6753     return true;
6754 
6755   // Register-register 'add' for thumb does not have a cc_out operand
6756   // when there are only two register operands.
6757   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
6758       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6759       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6760       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6761     return true;
6762   // Register-register 'add' for thumb does not have a cc_out operand
6763   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6764   // have to check the immediate range here since Thumb2 has a variant
6765   // that can handle a different range and has a cc_out operand.
6766   if (((isThumb() && Mnemonic == "add") ||
6767        (isThumbTwo() && Mnemonic == "sub")) &&
6768       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6769       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6770       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
6771       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6772       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
6773        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
6774     return true;
6775   // For Thumb2, add/sub immediate does not have a cc_out operand for the
6776   // imm0_4095 variant. That's the least-preferred variant when
6777   // selecting via the generic "add" mnemonic, so to know that we
6778   // should remove the cc_out operand, we have to explicitly check that
6779   // it's not one of the other variants. Ugh.
6780   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6781       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6782       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6783       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6784     // Nest conditions rather than one big 'if' statement for readability.
6785     //
6786     // If both registers are low, we're in an IT block, and the immediate is
6787     // in range, we should use encoding T1 instead, which has a cc_out.
6788     if (inITBlock() &&
6789         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
6790         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
6791         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
6792       return false;
6793     // Check against T3. If the second register is the PC, this is an
6794     // alternate form of ADR, which uses encoding T4, so check for that too.
6795     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
6796         (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() ||
6797          static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg()))
6798       return false;
6799 
6800     // Otherwise, we use encoding T4, which does not have a cc_out
6801     // operand.
6802     return true;
6803   }
6804 
6805   // The thumb2 multiply instruction doesn't have a CCOut register, so
6806   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6807   // use the 16-bit encoding or not.
6808   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
6809       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6810       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6811       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6812       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
6813       // If the registers aren't low regs, the destination reg isn't the
6814       // same as one of the source regs, or the cc_out operand is zero
6815       // outside of an IT block, we have to use the 32-bit encoding, so
6816       // remove the cc_out operand.
6817       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6818        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6819        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
6820        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6821                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
6822                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6823                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
6824     return true;
6825 
6826   // Also check the 'mul' syntax variant that doesn't specify an explicit
6827   // destination register.
6828   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
6829       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6830       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6831       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6832       // If the registers aren't low regs  or the cc_out operand is zero
6833       // outside of an IT block, we have to use the 32-bit encoding, so
6834       // remove the cc_out operand.
6835       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6836        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6837        !inITBlock()))
6838     return true;
6839 
6840   // Register-register 'add/sub' for thumb does not have a cc_out operand
6841   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6842   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6843   // right, this will result in better diagnostics (which operand is off)
6844   // anyway.
6845   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
6846       (Operands.size() == 5 || Operands.size() == 6) &&
6847       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6848       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
6849       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6850       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
6851        (Operands.size() == 6 &&
6852         static_cast<ARMOperand &>(*Operands[5]).isImm()))) {
6853     // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out
6854     return (!(isThumbTwo() &&
6855               (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() ||
6856                static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg())));
6857   }
6858   // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case
6859   // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4)
6860   // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095
6861   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6862       (Operands.size() == 5) &&
6863       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6864       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP &&
6865       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC &&
6866       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6867       static_cast<ARMOperand &>(*Operands[4]).isImm()) {
6868     const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]);
6869     if (IMM.isT2SOImm() || IMM.isT2SOImmNeg())
6870       return false; // add.w / sub.w
6871     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) {
6872       const int64_t Value = CE->getValue();
6873       // Thumb1 imm8 sub / add
6874       if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) &&
6875           isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()))
6876         return false;
6877       return true; // Thumb2 T4 addw / subw
6878     }
6879   }
6880   return false;
6881 }
6882 
6883 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
6884                                               OperandVector &Operands) {
6885   // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6886   unsigned RegIdx = 3;
6887   if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
6888       Mnemonic == "vrintr") &&
6889       (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
6890        static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
6891     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6892         (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
6893          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
6894       RegIdx = 4;
6895 
6896     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
6897         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6898              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
6899          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6900              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
6901       return true;
6902   }
6903   return false;
6904 }
6905 
6906 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
6907                                                     OperandVector &Operands) {
6908   if (!hasMVE() || Operands.size() < 3)
6909     return true;
6910 
6911   if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
6912       Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
6913     return true;
6914 
6915   if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
6916     return false;
6917 
6918   if (Mnemonic.startswith("vmov") &&
6919       !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
6920         Mnemonic.startswith("vmovx"))) {
6921     for (auto &Operand : Operands) {
6922       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6923           ((*Operand).isReg() &&
6924            (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
6925              (*Operand).getReg()) ||
6926             ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6927               (*Operand).getReg())))) {
6928         return true;
6929       }
6930     }
6931     return false;
6932   } else {
6933     for (auto &Operand : Operands) {
6934       // We check the larger class QPR instead of just the legal class
6935       // MQPR, to more accurately report errors when using Q registers
6936       // outside of the allowed range.
6937       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6938           (Operand->isReg() &&
6939            (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6940              Operand->getReg()))))
6941         return false;
6942     }
6943     return true;
6944   }
6945 }
6946 
6947 static bool isDataTypeToken(StringRef Tok) {
6948   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
6949     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6950     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6951     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6952     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6953     Tok == ".f" || Tok == ".d";
6954 }
6955 
6956 // FIXME: This bit should probably be handled via an explicit match class
6957 // in the .td files that matches the suffix instead of having it be
6958 // a literal string token the way it is now.
6959 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6960   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6961 }
6962 
6963 static void applyMnemonicAliases(StringRef &Mnemonic,
6964                                  const FeatureBitset &Features,
6965                                  unsigned VariantID);
6966 
6967 // The GNU assembler has aliases of ldrd and strd with the second register
6968 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6969 //
6970 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6971 // the assembly parser could then generate confusing diagnostics refering to
6972 // it. If we do find anything that prevents us from doing the transformation we
6973 // bail out, and let the assembly parser report an error on the instruction as
6974 // it is written.
6975 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6976                                      OperandVector &Operands) {
6977   if (Mnemonic != "ldrd" && Mnemonic != "strd")
6978     return;
6979   if (Operands.size() < 4)
6980     return;
6981 
6982   ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6983   ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6984 
6985   if (!Op2.isReg())
6986     return;
6987   if (!Op3.isGPRMem())
6988     return;
6989 
6990   const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6991   if (!GPR.contains(Op2.getReg()))
6992     return;
6993 
6994   unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6995   if (!isThumb() && (RtEncoding & 1)) {
6996     // In ARM mode, the registers must be from an aligned pair, this
6997     // restriction does not apply in Thumb mode.
6998     return;
6999   }
7000   if (Op2.getReg() == ARM::PC)
7001     return;
7002   unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
7003   if (!PairedReg || PairedReg == ARM::PC ||
7004       (PairedReg == ARM::SP && !hasV8Ops()))
7005     return;
7006 
7007   Operands.insert(
7008       Operands.begin() + 3,
7009       ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
7010 }
7011 
7012 // Dual-register instruction have the following syntax:
7013 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm
7014 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair
7015 // operand. If the conversion fails an error is diagnosed, and the function
7016 // returns true.
7017 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic,
7018                                             OperandVector &Operands) {
7019   assert(MS.isCDEDualRegInstr(Mnemonic));
7020   bool isPredicable =
7021       Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da";
7022   size_t NumPredOps = isPredicable ? 1 : 0;
7023 
7024   if (Operands.size() <= 3 + NumPredOps)
7025     return false;
7026 
7027   StringRef Op2Diag(
7028       "operand must be an even-numbered register in the range [r0, r10]");
7029 
7030   const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps];
7031   if (!Op2.isReg())
7032     return Error(Op2.getStartLoc(), Op2Diag);
7033 
7034   unsigned RNext;
7035   unsigned RPair;
7036   switch (Op2.getReg()) {
7037   default:
7038     return Error(Op2.getStartLoc(), Op2Diag);
7039   case ARM::R0:
7040     RNext = ARM::R1;
7041     RPair = ARM::R0_R1;
7042     break;
7043   case ARM::R2:
7044     RNext = ARM::R3;
7045     RPair = ARM::R2_R3;
7046     break;
7047   case ARM::R4:
7048     RNext = ARM::R5;
7049     RPair = ARM::R4_R5;
7050     break;
7051   case ARM::R6:
7052     RNext = ARM::R7;
7053     RPair = ARM::R6_R7;
7054     break;
7055   case ARM::R8:
7056     RNext = ARM::R9;
7057     RPair = ARM::R8_R9;
7058     break;
7059   case ARM::R10:
7060     RNext = ARM::R11;
7061     RPair = ARM::R10_R11;
7062     break;
7063   }
7064 
7065   const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps];
7066   if (!Op3.isReg() || Op3.getReg() != RNext)
7067     return Error(Op3.getStartLoc(), "operand must be a consecutive register");
7068 
7069   Operands.erase(Operands.begin() + 3 + NumPredOps);
7070   Operands[2 + NumPredOps] =
7071       ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc());
7072   return false;
7073 }
7074 
7075 /// Parse an arm instruction mnemonic followed by its operands.
7076 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
7077                                     SMLoc NameLoc, OperandVector &Operands) {
7078   MCAsmParser &Parser = getParser();
7079 
7080   // Apply mnemonic aliases before doing anything else, as the destination
7081   // mnemonic may include suffices and we want to handle them normally.
7082   // The generic tblgen'erated code does this later, at the start of
7083   // MatchInstructionImpl(), but that's too late for aliases that include
7084   // any sort of suffix.
7085   const FeatureBitset &AvailableFeatures = getAvailableFeatures();
7086   unsigned AssemblerDialect = getParser().getAssemblerDialect();
7087   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
7088 
7089   // First check for the ARM-specific .req directive.
7090   if (Parser.getTok().is(AsmToken::Identifier) &&
7091       Parser.getTok().getIdentifier().lower() == ".req") {
7092     parseDirectiveReq(Name, NameLoc);
7093     // We always return 'error' for this, as we're done with this
7094     // statement and don't need to match the 'instruction."
7095     return true;
7096   }
7097 
7098   // Create the leading tokens for the mnemonic, split by '.' characters.
7099   size_t Start = 0, Next = Name.find('.');
7100   StringRef Mnemonic = Name.slice(Start, Next);
7101   StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
7102 
7103   // Split out the predication code and carry setting flag from the mnemonic.
7104   unsigned PredicationCode;
7105   unsigned VPTPredicationCode;
7106   unsigned ProcessorIMod;
7107   bool CarrySetting;
7108   StringRef ITMask;
7109   Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
7110                            CarrySetting, ProcessorIMod, ITMask);
7111 
7112   // In Thumb1, only the branch (B) instruction can be predicated.
7113   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
7114     return Error(NameLoc, "conditional execution not supported in Thumb1");
7115   }
7116 
7117   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
7118 
7119   // Handle the mask for IT and VPT instructions. In ARMOperand and
7120   // MCOperand, this is stored in a format independent of the
7121   // condition code: the lowest set bit indicates the end of the
7122   // encoding, and above that, a 1 bit indicates 'else', and an 0
7123   // indicates 'then'. E.g.
7124   //    IT    -> 1000
7125   //    ITx   -> x100    (ITT -> 0100, ITE -> 1100)
7126   //    ITxy  -> xy10    (e.g. ITET -> 1010)
7127   //    ITxyz -> xyz1    (e.g. ITEET -> 1101)
7128   // Note: See the ARM::PredBlockMask enum in
7129   //   /lib/Target/ARM/Utils/ARMBaseInfo.h
7130   if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
7131       Mnemonic.startswith("vpst")) {
7132     SMLoc Loc = Mnemonic == "it"  ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
7133                 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
7134                                     SMLoc::getFromPointer(NameLoc.getPointer() + 4);
7135     if (ITMask.size() > 3) {
7136       if (Mnemonic == "it")
7137         return Error(Loc, "too many conditions on IT instruction");
7138       return Error(Loc, "too many conditions on VPT instruction");
7139     }
7140     unsigned Mask = 8;
7141     for (char Pos : llvm::reverse(ITMask)) {
7142       if (Pos != 't' && Pos != 'e') {
7143         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
7144       }
7145       Mask >>= 1;
7146       if (Pos == 'e')
7147         Mask |= 8;
7148     }
7149     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
7150   }
7151 
7152   // FIXME: This is all a pretty gross hack. We should automatically handle
7153   // optional operands like this via tblgen.
7154 
7155   // Next, add the CCOut and ConditionCode operands, if needed.
7156   //
7157   // For mnemonics which can ever incorporate a carry setting bit or predication
7158   // code, our matching model involves us always generating CCOut and
7159   // ConditionCode operands to match the mnemonic "as written" and then we let
7160   // the matcher deal with finding the right instruction or generating an
7161   // appropriate error.
7162   bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
7163   getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
7164                         CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
7165 
7166   // If we had a carry-set on an instruction that can't do that, issue an
7167   // error.
7168   if (!CanAcceptCarrySet && CarrySetting) {
7169     return Error(NameLoc, "instruction '" + Mnemonic +
7170                  "' can not set flags, but 's' suffix specified");
7171   }
7172   // If we had a predication code on an instruction that can't do that, issue an
7173   // error.
7174   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
7175     return Error(NameLoc, "instruction '" + Mnemonic +
7176                  "' is not predicable, but condition code specified");
7177   }
7178 
7179   // If we had a VPT predication code on an instruction that can't do that, issue an
7180   // error.
7181   if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
7182     return Error(NameLoc, "instruction '" + Mnemonic +
7183                  "' is not VPT predicable, but VPT code T/E is specified");
7184   }
7185 
7186   // Add the carry setting operand, if necessary.
7187   if (CanAcceptCarrySet) {
7188     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
7189     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
7190                                                Loc));
7191   }
7192 
7193   // Add the predication code operand, if necessary.
7194   if (CanAcceptPredicationCode) {
7195     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7196                                       CarrySetting);
7197     Operands.push_back(ARMOperand::CreateCondCode(
7198                        ARMCC::CondCodes(PredicationCode), Loc));
7199   }
7200 
7201   // Add the VPT predication code operand, if necessary.
7202   // FIXME: We don't add them for the instructions filtered below as these can
7203   // have custom operands which need special parsing.  This parsing requires
7204   // the operand to be in the same place in the OperandVector as their
7205   // definition in tblgen.  Since these instructions may also have the
7206   // scalar predication operand we do not add the vector one and leave until
7207   // now to fix it up.
7208   if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
7209       !Mnemonic.startswith("vcmp") &&
7210       !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
7211         Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
7212     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7213                                       CarrySetting);
7214     Operands.push_back(ARMOperand::CreateVPTPred(
7215                          ARMVCC::VPTCodes(VPTPredicationCode), Loc));
7216   }
7217 
7218   // Add the processor imod operand, if necessary.
7219   if (ProcessorIMod) {
7220     Operands.push_back(ARMOperand::CreateImm(
7221           MCConstantExpr::create(ProcessorIMod, getContext()),
7222                                  NameLoc, NameLoc));
7223   } else if (Mnemonic == "cps" && isMClass()) {
7224     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
7225   }
7226 
7227   // Add the remaining tokens in the mnemonic.
7228   while (Next != StringRef::npos) {
7229     Start = Next;
7230     Next = Name.find('.', Start + 1);
7231     ExtraToken = Name.slice(Start, Next);
7232 
7233     // Some NEON instructions have an optional datatype suffix that is
7234     // completely ignored. Check for that.
7235     if (isDataTypeToken(ExtraToken) &&
7236         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
7237       continue;
7238 
7239     // For for ARM mode generate an error if the .n qualifier is used.
7240     if (ExtraToken == ".n" && !isThumb()) {
7241       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7242       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
7243                    "arm mode");
7244     }
7245 
7246     // The .n qualifier is always discarded as that is what the tables
7247     // and matcher expect.  In ARM mode the .w qualifier has no effect,
7248     // so discard it to avoid errors that can be caused by the matcher.
7249     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
7250       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7251       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
7252     }
7253   }
7254 
7255   // Read the remaining operands.
7256   if (getLexer().isNot(AsmToken::EndOfStatement)) {
7257     // Read the first operand.
7258     if (parseOperand(Operands, Mnemonic)) {
7259       return true;
7260     }
7261 
7262     while (parseOptionalToken(AsmToken::Comma)) {
7263       // Parse and remember the operand.
7264       if (parseOperand(Operands, Mnemonic)) {
7265         return true;
7266       }
7267     }
7268   }
7269 
7270   if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
7271     return true;
7272 
7273   tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
7274 
7275   if (hasCDE() && MS.isCDEInstr(Mnemonic)) {
7276     // Dual-register instructions use even-odd register pairs as their
7277     // destination operand, in assembly such pair is spelled as two
7278     // consecutive registers, without any special syntax. ConvertDualRegOperand
7279     // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3.
7280     // It returns true, if an error message has been emitted. If the function
7281     // returns false, the function either succeeded or an error (e.g. missing
7282     // operand) will be diagnosed elsewhere.
7283     if (MS.isCDEDualRegInstr(Mnemonic)) {
7284       bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands);
7285       if (GotError)
7286         return GotError;
7287     }
7288   }
7289 
7290   // Some instructions, mostly Thumb, have forms for the same mnemonic that
7291   // do and don't have a cc_out optional-def operand. With some spot-checks
7292   // of the operand list, we can figure out which variant we're trying to
7293   // parse and adjust accordingly before actually matching. We shouldn't ever
7294   // try to remove a cc_out operand that was explicitly set on the
7295   // mnemonic, of course (CarrySetting == true). Reason number #317 the
7296   // table driven matcher doesn't fit well with the ARM instruction set.
7297   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
7298     Operands.erase(Operands.begin() + 1);
7299 
7300   // Some instructions have the same mnemonic, but don't always
7301   // have a predicate. Distinguish them here and delete the
7302   // appropriate predicate if needed.  This could be either the scalar
7303   // predication code or the vector predication code.
7304   if (PredicationCode == ARMCC::AL &&
7305       shouldOmitPredicateOperand(Mnemonic, Operands))
7306     Operands.erase(Operands.begin() + 1);
7307 
7308 
7309   if (hasMVE()) {
7310     if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
7311         Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
7312       // Very nasty hack to deal with the vector predicated variant of vmovlt
7313       // the scalar predicated vmov with condition 'lt'.  We can not tell them
7314       // apart until we have parsed their operands.
7315       Operands.erase(Operands.begin() + 1);
7316       Operands.erase(Operands.begin());
7317       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7318       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7319                                          Mnemonic.size() - 1 + CarrySetting);
7320       Operands.insert(Operands.begin(),
7321                       ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
7322       Operands.insert(Operands.begin(),
7323                       ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
7324     } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
7325                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7326       // Another nasty hack to deal with the ambiguity between vcvt with scalar
7327       // predication 'ne' and vcvtn with vector predication 'e'.  As above we
7328       // can only distinguish between the two after we have parsed their
7329       // operands.
7330       Operands.erase(Operands.begin() + 1);
7331       Operands.erase(Operands.begin());
7332       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7333       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7334                                          Mnemonic.size() - 1 + CarrySetting);
7335       Operands.insert(Operands.begin(),
7336                       ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
7337       Operands.insert(Operands.begin(),
7338                       ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
7339     } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
7340                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7341       // Another hack, this time to distinguish between scalar predicated vmul
7342       // with 'lt' predication code and the vector instruction vmullt with
7343       // vector predication code "none"
7344       Operands.erase(Operands.begin() + 1);
7345       Operands.erase(Operands.begin());
7346       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7347       Operands.insert(Operands.begin(),
7348                       ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
7349     }
7350     // For vmov and vcmp, as mentioned earlier, we did not add the vector
7351     // predication code, since these may contain operands that require
7352     // special parsing.  So now we have to see if they require vector
7353     // predication and replace the scalar one with the vector predication
7354     // operand if that is the case.
7355     else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
7356              (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
7357               !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
7358               !Mnemonic.startswith("vcvtm"))) {
7359       if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7360         // We could not split the vector predicate off vcvt because it might
7361         // have been the scalar vcvtt instruction.  Now we know its a vector
7362         // instruction, we still need to check whether its the vector
7363         // predicated vcvt with 'Then' predication or the vector vcvtt.  We can
7364         // distinguish the two based on the suffixes, if it is any of
7365         // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7366         if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
7367           auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
7368           auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
7369           if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
7370               Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
7371             Operands.erase(Operands.begin());
7372             SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7373             VPTPredicationCode = ARMVCC::Then;
7374 
7375             Mnemonic = Mnemonic.substr(0, 4);
7376             Operands.insert(Operands.begin(),
7377                             ARMOperand::CreateToken(Mnemonic, MLoc));
7378           }
7379         }
7380         Operands.erase(Operands.begin() + 1);
7381         SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7382                                           Mnemonic.size() + CarrySetting);
7383         Operands.insert(Operands.begin() + 1,
7384                         ARMOperand::CreateVPTPred(
7385                             ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
7386       }
7387     } else if (CanAcceptVPTPredicationCode) {
7388       // For all other instructions, make sure only one of the two
7389       // predication operands is left behind, depending on whether we should
7390       // use the vector predication.
7391       if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7392         if (CanAcceptPredicationCode)
7393           Operands.erase(Operands.begin() + 2);
7394         else
7395           Operands.erase(Operands.begin() + 1);
7396       } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
7397         Operands.erase(Operands.begin() + 1);
7398       }
7399     }
7400   }
7401 
7402   if (VPTPredicationCode != ARMVCC::None) {
7403     bool usedVPTPredicationCode = false;
7404     for (unsigned I = 1; I < Operands.size(); ++I)
7405       if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7406         usedVPTPredicationCode = true;
7407     if (!usedVPTPredicationCode) {
7408       // If we have a VPT predication code and we haven't just turned it
7409       // into an operand, then it was a mistake for splitMnemonic to
7410       // separate it from the rest of the mnemonic in the first place,
7411       // and this may lead to wrong disassembly (e.g. scalar floating
7412       // point VCMPE is actually a different instruction from VCMP, so
7413       // we mustn't treat them the same). In that situation, glue it
7414       // back on.
7415       Mnemonic = Name.slice(0, Mnemonic.size() + 1);
7416       Operands.erase(Operands.begin());
7417       Operands.insert(Operands.begin(),
7418                       ARMOperand::CreateToken(Mnemonic, NameLoc));
7419     }
7420   }
7421 
7422     // ARM mode 'blx' need special handling, as the register operand version
7423     // is predicable, but the label operand version is not. So, we can't rely
7424     // on the Mnemonic based checking to correctly figure out when to put
7425     // a k_CondCode operand in the list. If we're trying to match the label
7426     // version, remove the k_CondCode operand here.
7427     if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
7428         static_cast<ARMOperand &>(*Operands[2]).isImm())
7429       Operands.erase(Operands.begin() + 1);
7430 
7431     // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7432     // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7433     // a single GPRPair reg operand is used in the .td file to replace the two
7434     // GPRs. However, when parsing from asm, the two GRPs cannot be
7435     // automatically
7436     // expressed as a GPRPair, so we have to manually merge them.
7437     // FIXME: We would really like to be able to tablegen'erate this.
7438     if (!isThumb() && Operands.size() > 4 &&
7439         (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
7440          Mnemonic == "stlexd")) {
7441       bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
7442       unsigned Idx = isLoad ? 2 : 3;
7443       ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
7444       ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
7445 
7446       const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
7447       // Adjust only if Op1 and Op2 are GPRs.
7448       if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
7449           MRC.contains(Op2.getReg())) {
7450         unsigned Reg1 = Op1.getReg();
7451         unsigned Reg2 = Op2.getReg();
7452         unsigned Rt = MRI->getEncodingValue(Reg1);
7453         unsigned Rt2 = MRI->getEncodingValue(Reg2);
7454 
7455         // Rt2 must be Rt + 1 and Rt must be even.
7456         if (Rt + 1 != Rt2 || (Rt & 1)) {
7457           return Error(Op2.getStartLoc(),
7458                        isLoad ? "destination operands must be sequential"
7459                               : "source operands must be sequential");
7460         }
7461         unsigned NewReg = MRI->getMatchingSuperReg(
7462             Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
7463         Operands[Idx] =
7464             ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
7465         Operands.erase(Operands.begin() + Idx + 1);
7466       }
7467   }
7468 
7469   // GNU Assembler extension (compatibility).
7470   fixupGNULDRDAlias(Mnemonic, Operands);
7471 
7472   // FIXME: As said above, this is all a pretty gross hack.  This instruction
7473   // does not fit with other "subs" and tblgen.
7474   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7475   // so the Mnemonic is the original name "subs" and delete the predicate
7476   // operand so it will match the table entry.
7477   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
7478       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
7479       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
7480       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
7481       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
7482       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
7483     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
7484     Operands.erase(Operands.begin() + 1);
7485   }
7486   return false;
7487 }
7488 
7489 // Validate context-sensitive operand constraints.
7490 
7491 // return 'true' if register list contains non-low GPR registers,
7492 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7493 // 'containsReg' to true.
7494 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
7495                                  unsigned Reg, unsigned HiReg,
7496                                  bool &containsReg) {
7497   containsReg = false;
7498   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
7499     unsigned OpReg = Inst.getOperand(i).getReg();
7500     if (OpReg == Reg)
7501       containsReg = true;
7502     // Anything other than a low register isn't legal here.
7503     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
7504       return true;
7505   }
7506   return false;
7507 }
7508 
7509 // Check if the specified regisgter is in the register list of the inst,
7510 // starting at the indicated operand number.
7511 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
7512   for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
7513     unsigned OpReg = Inst.getOperand(i).getReg();
7514     if (OpReg == Reg)
7515       return true;
7516   }
7517   return false;
7518 }
7519 
7520 // Return true if instruction has the interesting property of being
7521 // allowed in IT blocks, but not being predicable.
7522 static bool instIsBreakpoint(const MCInst &Inst) {
7523     return Inst.getOpcode() == ARM::tBKPT ||
7524            Inst.getOpcode() == ARM::BKPT ||
7525            Inst.getOpcode() == ARM::tHLT ||
7526            Inst.getOpcode() == ARM::HLT;
7527 }
7528 
7529 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
7530                                        const OperandVector &Operands,
7531                                        unsigned ListNo, bool IsARPop) {
7532   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7533   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7534 
7535   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7536   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
7537   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7538 
7539   if (!IsARPop && ListContainsSP)
7540     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7541                  "SP may not be in the register list");
7542   else if (ListContainsPC && ListContainsLR)
7543     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7544                  "PC and LR may not be in the register list simultaneously");
7545   return false;
7546 }
7547 
7548 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
7549                                        const OperandVector &Operands,
7550                                        unsigned ListNo) {
7551   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7552   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7553 
7554   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7555   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7556 
7557   if (ListContainsSP && ListContainsPC)
7558     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7559                  "SP and PC may not be in the register list");
7560   else if (ListContainsSP)
7561     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7562                  "SP may not be in the register list");
7563   else if (ListContainsPC)
7564     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7565                  "PC may not be in the register list");
7566   return false;
7567 }
7568 
7569 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
7570                                     const OperandVector &Operands,
7571                                     bool Load, bool ARMMode, bool Writeback) {
7572   unsigned RtIndex = Load || !Writeback ? 0 : 1;
7573   unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
7574   unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
7575 
7576   if (ARMMode) {
7577     // Rt can't be R14.
7578     if (Rt == 14)
7579       return Error(Operands[3]->getStartLoc(),
7580                   "Rt can't be R14");
7581 
7582     // Rt must be even-numbered.
7583     if ((Rt & 1) == 1)
7584       return Error(Operands[3]->getStartLoc(),
7585                    "Rt must be even-numbered");
7586 
7587     // Rt2 must be Rt + 1.
7588     if (Rt2 != Rt + 1) {
7589       if (Load)
7590         return Error(Operands[3]->getStartLoc(),
7591                      "destination operands must be sequential");
7592       else
7593         return Error(Operands[3]->getStartLoc(),
7594                      "source operands must be sequential");
7595     }
7596 
7597     // FIXME: Diagnose m == 15
7598     // FIXME: Diagnose ldrd with m == t || m == t2.
7599   }
7600 
7601   if (!ARMMode && Load) {
7602     if (Rt2 == Rt)
7603       return Error(Operands[3]->getStartLoc(),
7604                    "destination operands can't be identical");
7605   }
7606 
7607   if (Writeback) {
7608     unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7609 
7610     if (Rn == Rt || Rn == Rt2) {
7611       if (Load)
7612         return Error(Operands[3]->getStartLoc(),
7613                      "base register needs to be different from destination "
7614                      "registers");
7615       else
7616         return Error(Operands[3]->getStartLoc(),
7617                      "source register and base register can't be identical");
7618     }
7619 
7620     // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7621     // (Except the immediate form of ldrd?)
7622   }
7623 
7624   return false;
7625 }
7626 
7627 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
7628   for (unsigned i = 0; i < MCID.NumOperands; ++i) {
7629     if (ARM::isVpred(MCID.OpInfo[i].OperandType))
7630       return i;
7631   }
7632   return -1;
7633 }
7634 
7635 static bool isVectorPredicable(const MCInstrDesc &MCID) {
7636   return findFirstVectorPredOperandIdx(MCID) != -1;
7637 }
7638 
7639 // FIXME: We would really like to be able to tablegen'erate this.
7640 bool ARMAsmParser::validateInstruction(MCInst &Inst,
7641                                        const OperandVector &Operands) {
7642   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
7643   SMLoc Loc = Operands[0]->getStartLoc();
7644 
7645   // Check the IT block state first.
7646   // NOTE: BKPT and HLT instructions have the interesting property of being
7647   // allowed in IT blocks, but not being predicable. They just always execute.
7648   if (inITBlock() && !instIsBreakpoint(Inst)) {
7649     // The instruction must be predicable.
7650     if (!MCID.isPredicable())
7651       return Error(Loc, "instructions in IT block must be predicable");
7652     ARMCC::CondCodes Cond = ARMCC::CondCodes(
7653         Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
7654     if (Cond != currentITCond()) {
7655       // Find the condition code Operand to get its SMLoc information.
7656       SMLoc CondLoc;
7657       for (unsigned I = 1; I < Operands.size(); ++I)
7658         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
7659           CondLoc = Operands[I]->getStartLoc();
7660       return Error(CondLoc, "incorrect condition in IT block; got '" +
7661                                 StringRef(ARMCondCodeToString(Cond)) +
7662                                 "', but expected '" +
7663                                 ARMCondCodeToString(currentITCond()) + "'");
7664     }
7665   // Check for non-'al' condition codes outside of the IT block.
7666   } else if (isThumbTwo() && MCID.isPredicable() &&
7667              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7668              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
7669              Inst.getOpcode() != ARM::t2Bcc &&
7670              Inst.getOpcode() != ARM::t2BFic) {
7671     return Error(Loc, "predicated instructions must be in IT block");
7672   } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
7673              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7674                  ARMCC::AL) {
7675     return Warning(Loc, "predicated instructions should be in IT block");
7676   } else if (!MCID.isPredicable()) {
7677     // Check the instruction doesn't have a predicate operand anyway
7678     // that it's not allowed to use. Sometimes this happens in order
7679     // to keep instructions the same shape even though one cannot
7680     // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7681     for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
7682       if (MCID.OpInfo[i].isPredicate()) {
7683         if (Inst.getOperand(i).getImm() != ARMCC::AL)
7684           return Error(Loc, "instruction is not predicable");
7685         break;
7686       }
7687     }
7688   }
7689 
7690   // PC-setting instructions in an IT block, but not the last instruction of
7691   // the block, are UNPREDICTABLE.
7692   if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
7693     return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
7694   }
7695 
7696   if (inVPTBlock() && !instIsBreakpoint(Inst)) {
7697     unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
7698     if (!isVectorPredicable(MCID))
7699       return Error(Loc, "instruction in VPT block must be predicable");
7700     unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
7701     unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
7702     if (Pred != VPTPred) {
7703       SMLoc PredLoc;
7704       for (unsigned I = 1; I < Operands.size(); ++I)
7705         if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7706           PredLoc = Operands[I]->getStartLoc();
7707       return Error(PredLoc, "incorrect predication in VPT block; got '" +
7708                    StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
7709                    "', but expected '" +
7710                    ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
7711     }
7712   }
7713   else if (isVectorPredicable(MCID) &&
7714            Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
7715            ARMVCC::None)
7716     return Error(Loc, "VPT predicated instructions must be in VPT block");
7717 
7718   const unsigned Opcode = Inst.getOpcode();
7719   switch (Opcode) {
7720   case ARM::t2IT: {
7721     // Encoding is unpredictable if it ever results in a notional 'NV'
7722     // predicate. Since we don't parse 'NV' directly this means an 'AL'
7723     // predicate with an "else" mask bit.
7724     unsigned Cond = Inst.getOperand(0).getImm();
7725     unsigned Mask = Inst.getOperand(1).getImm();
7726 
7727     // Conditions only allowing a 't' are those with no set bit except
7728     // the lowest-order one that indicates the end of the sequence. In
7729     // other words, powers of 2.
7730     if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
7731       return Error(Loc, "unpredictable IT predicate sequence");
7732     break;
7733   }
7734   case ARM::LDRD:
7735     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7736                          /*Writeback*/false))
7737       return true;
7738     break;
7739   case ARM::LDRD_PRE:
7740   case ARM::LDRD_POST:
7741     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7742                          /*Writeback*/true))
7743       return true;
7744     break;
7745   case ARM::t2LDRDi8:
7746     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7747                          /*Writeback*/false))
7748       return true;
7749     break;
7750   case ARM::t2LDRD_PRE:
7751   case ARM::t2LDRD_POST:
7752     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7753                          /*Writeback*/true))
7754       return true;
7755     break;
7756   case ARM::t2BXJ: {
7757     const unsigned RmReg = Inst.getOperand(0).getReg();
7758     // Rm = SP is no longer unpredictable in v8-A
7759     if (RmReg == ARM::SP && !hasV8Ops())
7760       return Error(Operands[2]->getStartLoc(),
7761                    "r13 (SP) is an unpredictable operand to BXJ");
7762     return false;
7763   }
7764   case ARM::STRD:
7765     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7766                          /*Writeback*/false))
7767       return true;
7768     break;
7769   case ARM::STRD_PRE:
7770   case ARM::STRD_POST:
7771     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7772                          /*Writeback*/true))
7773       return true;
7774     break;
7775   case ARM::t2STRD_PRE:
7776   case ARM::t2STRD_POST:
7777     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
7778                          /*Writeback*/true))
7779       return true;
7780     break;
7781   case ARM::STR_PRE_IMM:
7782   case ARM::STR_PRE_REG:
7783   case ARM::t2STR_PRE:
7784   case ARM::STR_POST_IMM:
7785   case ARM::STR_POST_REG:
7786   case ARM::t2STR_POST:
7787   case ARM::STRH_PRE:
7788   case ARM::t2STRH_PRE:
7789   case ARM::STRH_POST:
7790   case ARM::t2STRH_POST:
7791   case ARM::STRB_PRE_IMM:
7792   case ARM::STRB_PRE_REG:
7793   case ARM::t2STRB_PRE:
7794   case ARM::STRB_POST_IMM:
7795   case ARM::STRB_POST_REG:
7796   case ARM::t2STRB_POST: {
7797     // Rt must be different from Rn.
7798     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7799     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7800 
7801     if (Rt == Rn)
7802       return Error(Operands[3]->getStartLoc(),
7803                    "source register and base register can't be identical");
7804     return false;
7805   }
7806   case ARM::t2LDR_PRE_imm:
7807   case ARM::t2LDR_POST_imm:
7808   case ARM::t2STR_PRE_imm:
7809   case ARM::t2STR_POST_imm: {
7810     // Rt must be different from Rn.
7811     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7812     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7813 
7814     if (Rt == Rn)
7815       return Error(Operands[3]->getStartLoc(),
7816                    "destination register and base register can't be identical");
7817     if (Inst.getOpcode() == ARM::t2LDR_POST_imm ||
7818         Inst.getOpcode() == ARM::t2STR_POST_imm) {
7819       int Imm = Inst.getOperand(2).getImm();
7820       if (Imm > 255 || Imm < -255)
7821         return Error(Operands[5]->getStartLoc(),
7822                      "operand must be in range [-255, 255]");
7823     }
7824     if (Inst.getOpcode() == ARM::t2STR_PRE_imm ||
7825         Inst.getOpcode() == ARM::t2STR_POST_imm) {
7826       if (Inst.getOperand(0).getReg() == ARM::PC) {
7827         return Error(Operands[3]->getStartLoc(),
7828                      "operand must be a register in range [r0, r14]");
7829       }
7830     }
7831     return false;
7832   }
7833   case ARM::LDR_PRE_IMM:
7834   case ARM::LDR_PRE_REG:
7835   case ARM::t2LDR_PRE:
7836   case ARM::LDR_POST_IMM:
7837   case ARM::LDR_POST_REG:
7838   case ARM::t2LDR_POST:
7839   case ARM::LDRH_PRE:
7840   case ARM::t2LDRH_PRE:
7841   case ARM::LDRH_POST:
7842   case ARM::t2LDRH_POST:
7843   case ARM::LDRSH_PRE:
7844   case ARM::t2LDRSH_PRE:
7845   case ARM::LDRSH_POST:
7846   case ARM::t2LDRSH_POST:
7847   case ARM::LDRB_PRE_IMM:
7848   case ARM::LDRB_PRE_REG:
7849   case ARM::t2LDRB_PRE:
7850   case ARM::LDRB_POST_IMM:
7851   case ARM::LDRB_POST_REG:
7852   case ARM::t2LDRB_POST:
7853   case ARM::LDRSB_PRE:
7854   case ARM::t2LDRSB_PRE:
7855   case ARM::LDRSB_POST:
7856   case ARM::t2LDRSB_POST: {
7857     // Rt must be different from Rn.
7858     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7859     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7860 
7861     if (Rt == Rn)
7862       return Error(Operands[3]->getStartLoc(),
7863                    "destination register and base register can't be identical");
7864     return false;
7865   }
7866 
7867   case ARM::MVE_VLDRBU8_rq:
7868   case ARM::MVE_VLDRBU16_rq:
7869   case ARM::MVE_VLDRBS16_rq:
7870   case ARM::MVE_VLDRBU32_rq:
7871   case ARM::MVE_VLDRBS32_rq:
7872   case ARM::MVE_VLDRHU16_rq:
7873   case ARM::MVE_VLDRHU16_rq_u:
7874   case ARM::MVE_VLDRHU32_rq:
7875   case ARM::MVE_VLDRHU32_rq_u:
7876   case ARM::MVE_VLDRHS32_rq:
7877   case ARM::MVE_VLDRHS32_rq_u:
7878   case ARM::MVE_VLDRWU32_rq:
7879   case ARM::MVE_VLDRWU32_rq_u:
7880   case ARM::MVE_VLDRDU64_rq:
7881   case ARM::MVE_VLDRDU64_rq_u:
7882   case ARM::MVE_VLDRWU32_qi:
7883   case ARM::MVE_VLDRWU32_qi_pre:
7884   case ARM::MVE_VLDRDU64_qi:
7885   case ARM::MVE_VLDRDU64_qi_pre: {
7886     // Qd must be different from Qm.
7887     unsigned QdIdx = 0, QmIdx = 2;
7888     bool QmIsPointer = false;
7889     switch (Opcode) {
7890     case ARM::MVE_VLDRWU32_qi:
7891     case ARM::MVE_VLDRDU64_qi:
7892       QmIdx = 1;
7893       QmIsPointer = true;
7894       break;
7895     case ARM::MVE_VLDRWU32_qi_pre:
7896     case ARM::MVE_VLDRDU64_qi_pre:
7897       QdIdx = 1;
7898       QmIsPointer = true;
7899       break;
7900     }
7901 
7902     const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
7903     const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
7904 
7905     if (Qd == Qm) {
7906       return Error(Operands[3]->getStartLoc(),
7907                    Twine("destination vector register and vector ") +
7908                    (QmIsPointer ? "pointer" : "offset") +
7909                    " register can't be identical");
7910     }
7911     return false;
7912   }
7913 
7914   case ARM::SBFX:
7915   case ARM::t2SBFX:
7916   case ARM::UBFX:
7917   case ARM::t2UBFX: {
7918     // Width must be in range [1, 32-lsb].
7919     unsigned LSB = Inst.getOperand(2).getImm();
7920     unsigned Widthm1 = Inst.getOperand(3).getImm();
7921     if (Widthm1 >= 32 - LSB)
7922       return Error(Operands[5]->getStartLoc(),
7923                    "bitfield width must be in range [1,32-lsb]");
7924     return false;
7925   }
7926   // Notionally handles ARM::tLDMIA_UPD too.
7927   case ARM::tLDMIA: {
7928     // If we're parsing Thumb2, the .w variant is available and handles
7929     // most cases that are normally illegal for a Thumb1 LDM instruction.
7930     // We'll make the transformation in processInstruction() if necessary.
7931     //
7932     // Thumb LDM instructions are writeback iff the base register is not
7933     // in the register list.
7934     unsigned Rn = Inst.getOperand(0).getReg();
7935     bool HasWritebackToken =
7936         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7937          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
7938     bool ListContainsBase;
7939     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
7940       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
7941                    "registers must be in range r0-r7");
7942     // If we should have writeback, then there should be a '!' token.
7943     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
7944       return Error(Operands[2]->getStartLoc(),
7945                    "writeback operator '!' expected");
7946     // If we should not have writeback, there must not be a '!'. This is
7947     // true even for the 32-bit wide encodings.
7948     if (ListContainsBase && HasWritebackToken)
7949       return Error(Operands[3]->getStartLoc(),
7950                    "writeback operator '!' not allowed when base register "
7951                    "in register list");
7952 
7953     if (validatetLDMRegList(Inst, Operands, 3))
7954       return true;
7955     break;
7956   }
7957   case ARM::LDMIA_UPD:
7958   case ARM::LDMDB_UPD:
7959   case ARM::LDMIB_UPD:
7960   case ARM::LDMDA_UPD:
7961     // ARM variants loading and updating the same register are only officially
7962     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7963     if (!hasV7Ops())
7964       break;
7965     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7966       return Error(Operands.back()->getStartLoc(),
7967                    "writeback register not allowed in register list");
7968     break;
7969   case ARM::t2LDMIA:
7970   case ARM::t2LDMDB:
7971     if (validatetLDMRegList(Inst, Operands, 3))
7972       return true;
7973     break;
7974   case ARM::t2STMIA:
7975   case ARM::t2STMDB:
7976     if (validatetSTMRegList(Inst, Operands, 3))
7977       return true;
7978     break;
7979   case ARM::t2LDMIA_UPD:
7980   case ARM::t2LDMDB_UPD:
7981   case ARM::t2STMIA_UPD:
7982   case ARM::t2STMDB_UPD:
7983     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7984       return Error(Operands.back()->getStartLoc(),
7985                    "writeback register not allowed in register list");
7986 
7987     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
7988       if (validatetLDMRegList(Inst, Operands, 3))
7989         return true;
7990     } else {
7991       if (validatetSTMRegList(Inst, Operands, 3))
7992         return true;
7993     }
7994     break;
7995 
7996   case ARM::sysLDMIA_UPD:
7997   case ARM::sysLDMDA_UPD:
7998   case ARM::sysLDMDB_UPD:
7999   case ARM::sysLDMIB_UPD:
8000     if (!listContainsReg(Inst, 3, ARM::PC))
8001       return Error(Operands[4]->getStartLoc(),
8002                    "writeback register only allowed on system LDM "
8003                    "if PC in register-list");
8004     break;
8005   case ARM::sysSTMIA_UPD:
8006   case ARM::sysSTMDA_UPD:
8007   case ARM::sysSTMDB_UPD:
8008   case ARM::sysSTMIB_UPD:
8009     return Error(Operands[2]->getStartLoc(),
8010                  "system STM cannot have writeback register");
8011   case ARM::tMUL:
8012     // The second source operand must be the same register as the destination
8013     // operand.
8014     //
8015     // In this case, we must directly check the parsed operands because the
8016     // cvtThumbMultiply() function is written in such a way that it guarantees
8017     // this first statement is always true for the new Inst.  Essentially, the
8018     // destination is unconditionally copied into the second source operand
8019     // without checking to see if it matches what we actually parsed.
8020     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
8021                                  ((ARMOperand &)*Operands[5]).getReg()) &&
8022         (((ARMOperand &)*Operands[3]).getReg() !=
8023          ((ARMOperand &)*Operands[4]).getReg())) {
8024       return Error(Operands[3]->getStartLoc(),
8025                    "destination register must match source register");
8026     }
8027     break;
8028 
8029   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
8030   // so only issue a diagnostic for thumb1. The instructions will be
8031   // switched to the t2 encodings in processInstruction() if necessary.
8032   case ARM::tPOP: {
8033     bool ListContainsBase;
8034     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
8035         !isThumbTwo())
8036       return Error(Operands[2]->getStartLoc(),
8037                    "registers must be in range r0-r7 or pc");
8038     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
8039       return true;
8040     break;
8041   }
8042   case ARM::tPUSH: {
8043     bool ListContainsBase;
8044     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
8045         !isThumbTwo())
8046       return Error(Operands[2]->getStartLoc(),
8047                    "registers must be in range r0-r7 or lr");
8048     if (validatetSTMRegList(Inst, Operands, 2))
8049       return true;
8050     break;
8051   }
8052   case ARM::tSTMIA_UPD: {
8053     bool ListContainsBase, InvalidLowList;
8054     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
8055                                           0, ListContainsBase);
8056     if (InvalidLowList && !isThumbTwo())
8057       return Error(Operands[4]->getStartLoc(),
8058                    "registers must be in range r0-r7");
8059 
8060     // This would be converted to a 32-bit stm, but that's not valid if the
8061     // writeback register is in the list.
8062     if (InvalidLowList && ListContainsBase)
8063       return Error(Operands[4]->getStartLoc(),
8064                    "writeback operator '!' not allowed when base register "
8065                    "in register list");
8066 
8067     if (validatetSTMRegList(Inst, Operands, 4))
8068       return true;
8069     break;
8070   }
8071   case ARM::tADDrSP:
8072     // If the non-SP source operand and the destination operand are not the
8073     // same, we need thumb2 (for the wide encoding), or we have an error.
8074     if (!isThumbTwo() &&
8075         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8076       return Error(Operands[4]->getStartLoc(),
8077                    "source register must be the same as destination");
8078     }
8079     break;
8080 
8081   case ARM::t2ADDrr:
8082   case ARM::t2ADDrs:
8083   case ARM::t2SUBrr:
8084   case ARM::t2SUBrs:
8085     if (Inst.getOperand(0).getReg() == ARM::SP &&
8086         Inst.getOperand(1).getReg() != ARM::SP)
8087       return Error(Operands[4]->getStartLoc(),
8088                    "source register must be sp if destination is sp");
8089     break;
8090 
8091   // Final range checking for Thumb unconditional branch instructions.
8092   case ARM::tB:
8093     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
8094       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8095     break;
8096   case ARM::t2B: {
8097     int op = (Operands[2]->isImm()) ? 2 : 3;
8098     ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]);
8099     // Delay the checks of symbolic expressions until they are resolved.
8100     if (!isa<MCBinaryExpr>(Operand.getImm()) &&
8101         !Operand.isSignedOffset<24, 1>())
8102       return Error(Operands[op]->getStartLoc(), "branch target out of range");
8103     break;
8104   }
8105   // Final range checking for Thumb conditional branch instructions.
8106   case ARM::tBcc:
8107     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
8108       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8109     break;
8110   case ARM::t2Bcc: {
8111     int Op = (Operands[2]->isImm()) ? 2 : 3;
8112     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
8113       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
8114     break;
8115   }
8116   case ARM::tCBZ:
8117   case ARM::tCBNZ: {
8118     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
8119       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8120     break;
8121   }
8122   case ARM::MOVi16:
8123   case ARM::MOVTi16:
8124   case ARM::t2MOVi16:
8125   case ARM::t2MOVTi16:
8126     {
8127     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
8128     // especially when we turn it into a movw and the expression <symbol> does
8129     // not have a :lower16: or :upper16 as part of the expression.  We don't
8130     // want the behavior of silently truncating, which can be unexpected and
8131     // lead to bugs that are difficult to find since this is an easy mistake
8132     // to make.
8133     int i = (Operands[3]->isImm()) ? 3 : 4;
8134     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
8135     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
8136     if (CE) break;
8137     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
8138     if (!E) break;
8139     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
8140     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
8141                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
8142       return Error(
8143           Op.getStartLoc(),
8144           "immediate expression for mov requires :lower16: or :upper16");
8145     break;
8146   }
8147   case ARM::HINT:
8148   case ARM::t2HINT: {
8149     unsigned Imm8 = Inst.getOperand(0).getImm();
8150     unsigned Pred = Inst.getOperand(1).getImm();
8151     // ESB is not predicable (pred must be AL). Without the RAS extension, this
8152     // behaves as any other unallocated hint.
8153     if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
8154       return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
8155                                                "predicable, but condition "
8156                                                "code specified");
8157     if (Imm8 == 0x14 && Pred != ARMCC::AL)
8158       return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
8159                                                "predicable, but condition "
8160                                                "code specified");
8161     break;
8162   }
8163   case ARM::t2BFi:
8164   case ARM::t2BFr:
8165   case ARM::t2BFLi:
8166   case ARM::t2BFLr: {
8167     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
8168         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8169       return Error(Operands[2]->getStartLoc(),
8170                    "branch location out of range or not a multiple of 2");
8171 
8172     if (Opcode == ARM::t2BFi) {
8173       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
8174         return Error(Operands[3]->getStartLoc(),
8175                      "branch target out of range or not a multiple of 2");
8176     } else if (Opcode == ARM::t2BFLi) {
8177       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
8178         return Error(Operands[3]->getStartLoc(),
8179                      "branch target out of range or not a multiple of 2");
8180     }
8181     break;
8182   }
8183   case ARM::t2BFic: {
8184     if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
8185         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8186       return Error(Operands[1]->getStartLoc(),
8187                    "branch location out of range or not a multiple of 2");
8188 
8189     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
8190       return Error(Operands[2]->getStartLoc(),
8191                    "branch target out of range or not a multiple of 2");
8192 
8193     assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
8194            "branch location and else branch target should either both be "
8195            "immediates or both labels");
8196 
8197     if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
8198       int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
8199       if (Diff != 4 && Diff != 2)
8200         return Error(
8201             Operands[3]->getStartLoc(),
8202             "else branch target must be 2 or 4 greater than the branch location");
8203     }
8204     break;
8205   }
8206   case ARM::t2CLRM: {
8207     for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
8208       if (Inst.getOperand(i).isReg() &&
8209           !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
8210               Inst.getOperand(i).getReg())) {
8211         return Error(Operands[2]->getStartLoc(),
8212                      "invalid register in register list. Valid registers are "
8213                      "r0-r12, lr/r14 and APSR.");
8214       }
8215     }
8216     break;
8217   }
8218   case ARM::DSB:
8219   case ARM::t2DSB: {
8220 
8221     if (Inst.getNumOperands() < 2)
8222       break;
8223 
8224     unsigned Option = Inst.getOperand(0).getImm();
8225     unsigned Pred = Inst.getOperand(1).getImm();
8226 
8227     // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
8228     if (Option == 0 && Pred != ARMCC::AL)
8229       return Error(Operands[1]->getStartLoc(),
8230                    "instruction 'ssbb' is not predicable, but condition code "
8231                    "specified");
8232     if (Option == 4 && Pred != ARMCC::AL)
8233       return Error(Operands[1]->getStartLoc(),
8234                    "instruction 'pssbb' is not predicable, but condition code "
8235                    "specified");
8236     break;
8237   }
8238   case ARM::VMOVRRS: {
8239     // Source registers must be sequential.
8240     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
8241     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
8242     if (Sm1 != Sm + 1)
8243       return Error(Operands[5]->getStartLoc(),
8244                    "source operands must be sequential");
8245     break;
8246   }
8247   case ARM::VMOVSRR: {
8248     // Destination registers must be sequential.
8249     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
8250     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
8251     if (Sm1 != Sm + 1)
8252       return Error(Operands[3]->getStartLoc(),
8253                    "destination operands must be sequential");
8254     break;
8255   }
8256   case ARM::VLDMDIA:
8257   case ARM::VSTMDIA: {
8258     ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
8259     auto &RegList = Op.getRegList();
8260     if (RegList.size() < 1 || RegList.size() > 16)
8261       return Error(Operands[3]->getStartLoc(),
8262                    "list of registers must be at least 1 and at most 16");
8263     break;
8264   }
8265   case ARM::MVE_VQDMULLs32bh:
8266   case ARM::MVE_VQDMULLs32th:
8267   case ARM::MVE_VCMULf32:
8268   case ARM::MVE_VMULLBs32:
8269   case ARM::MVE_VMULLTs32:
8270   case ARM::MVE_VMULLBu32:
8271   case ARM::MVE_VMULLTu32: {
8272     if (Operands[3]->getReg() == Operands[4]->getReg()) {
8273       return Error (Operands[3]->getStartLoc(),
8274                     "Qd register and Qn register can't be identical");
8275     }
8276     if (Operands[3]->getReg() == Operands[5]->getReg()) {
8277       return Error (Operands[3]->getStartLoc(),
8278                     "Qd register and Qm register can't be identical");
8279     }
8280     break;
8281   }
8282   case ARM::MVE_VMOV_rr_q: {
8283     if (Operands[4]->getReg() != Operands[6]->getReg())
8284       return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
8285     if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
8286         static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
8287       return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8288     break;
8289   }
8290   case ARM::MVE_VMOV_q_rr: {
8291     if (Operands[2]->getReg() != Operands[4]->getReg())
8292       return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
8293     if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
8294         static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
8295       return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8296     break;
8297   }
8298   case ARM::UMAAL:
8299   case ARM::UMLAL:
8300   case ARM::UMULL:
8301   case ARM::t2UMAAL:
8302   case ARM::t2UMLAL:
8303   case ARM::t2UMULL:
8304   case ARM::SMLAL:
8305   case ARM::SMLALBB:
8306   case ARM::SMLALBT:
8307   case ARM::SMLALD:
8308   case ARM::SMLALDX:
8309   case ARM::SMLALTB:
8310   case ARM::SMLALTT:
8311   case ARM::SMLSLD:
8312   case ARM::SMLSLDX:
8313   case ARM::SMULL:
8314   case ARM::t2SMLAL:
8315   case ARM::t2SMLALBB:
8316   case ARM::t2SMLALBT:
8317   case ARM::t2SMLALD:
8318   case ARM::t2SMLALDX:
8319   case ARM::t2SMLALTB:
8320   case ARM::t2SMLALTT:
8321   case ARM::t2SMLSLD:
8322   case ARM::t2SMLSLDX:
8323   case ARM::t2SMULL: {
8324     unsigned RdHi = Inst.getOperand(0).getReg();
8325     unsigned RdLo = Inst.getOperand(1).getReg();
8326     if(RdHi == RdLo) {
8327       return Error(Loc,
8328                    "unpredictable instruction, RdHi and RdLo must be different");
8329     }
8330     break;
8331   }
8332 
8333   case ARM::CDE_CX1:
8334   case ARM::CDE_CX1A:
8335   case ARM::CDE_CX1D:
8336   case ARM::CDE_CX1DA:
8337   case ARM::CDE_CX2:
8338   case ARM::CDE_CX2A:
8339   case ARM::CDE_CX2D:
8340   case ARM::CDE_CX2DA:
8341   case ARM::CDE_CX3:
8342   case ARM::CDE_CX3A:
8343   case ARM::CDE_CX3D:
8344   case ARM::CDE_CX3DA:
8345   case ARM::CDE_VCX1_vec:
8346   case ARM::CDE_VCX1_fpsp:
8347   case ARM::CDE_VCX1_fpdp:
8348   case ARM::CDE_VCX1A_vec:
8349   case ARM::CDE_VCX1A_fpsp:
8350   case ARM::CDE_VCX1A_fpdp:
8351   case ARM::CDE_VCX2_vec:
8352   case ARM::CDE_VCX2_fpsp:
8353   case ARM::CDE_VCX2_fpdp:
8354   case ARM::CDE_VCX2A_vec:
8355   case ARM::CDE_VCX2A_fpsp:
8356   case ARM::CDE_VCX2A_fpdp:
8357   case ARM::CDE_VCX3_vec:
8358   case ARM::CDE_VCX3_fpsp:
8359   case ARM::CDE_VCX3_fpdp:
8360   case ARM::CDE_VCX3A_vec:
8361   case ARM::CDE_VCX3A_fpsp:
8362   case ARM::CDE_VCX3A_fpdp: {
8363     assert(Inst.getOperand(1).isImm() &&
8364            "CDE operand 1 must be a coprocessor ID");
8365     int64_t Coproc = Inst.getOperand(1).getImm();
8366     if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI))
8367       return Error(Operands[1]->getStartLoc(),
8368                    "coprocessor must be configured as CDE");
8369     else if (Coproc >= 8)
8370       return Error(Operands[1]->getStartLoc(),
8371                    "coprocessor must be in the range [p0, p7]");
8372     break;
8373   }
8374 
8375   case ARM::t2CDP:
8376   case ARM::t2CDP2:
8377   case ARM::t2LDC2L_OFFSET:
8378   case ARM::t2LDC2L_OPTION:
8379   case ARM::t2LDC2L_POST:
8380   case ARM::t2LDC2L_PRE:
8381   case ARM::t2LDC2_OFFSET:
8382   case ARM::t2LDC2_OPTION:
8383   case ARM::t2LDC2_POST:
8384   case ARM::t2LDC2_PRE:
8385   case ARM::t2LDCL_OFFSET:
8386   case ARM::t2LDCL_OPTION:
8387   case ARM::t2LDCL_POST:
8388   case ARM::t2LDCL_PRE:
8389   case ARM::t2LDC_OFFSET:
8390   case ARM::t2LDC_OPTION:
8391   case ARM::t2LDC_POST:
8392   case ARM::t2LDC_PRE:
8393   case ARM::t2MCR:
8394   case ARM::t2MCR2:
8395   case ARM::t2MCRR:
8396   case ARM::t2MCRR2:
8397   case ARM::t2MRC:
8398   case ARM::t2MRC2:
8399   case ARM::t2MRRC:
8400   case ARM::t2MRRC2:
8401   case ARM::t2STC2L_OFFSET:
8402   case ARM::t2STC2L_OPTION:
8403   case ARM::t2STC2L_POST:
8404   case ARM::t2STC2L_PRE:
8405   case ARM::t2STC2_OFFSET:
8406   case ARM::t2STC2_OPTION:
8407   case ARM::t2STC2_POST:
8408   case ARM::t2STC2_PRE:
8409   case ARM::t2STCL_OFFSET:
8410   case ARM::t2STCL_OPTION:
8411   case ARM::t2STCL_POST:
8412   case ARM::t2STCL_PRE:
8413   case ARM::t2STC_OFFSET:
8414   case ARM::t2STC_OPTION:
8415   case ARM::t2STC_POST:
8416   case ARM::t2STC_PRE: {
8417     unsigned Opcode = Inst.getOpcode();
8418     // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags,
8419     // CopInd is the index of the coprocessor operand.
8420     size_t CopInd = 0;
8421     if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2)
8422       CopInd = 2;
8423     else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2)
8424       CopInd = 1;
8425     assert(Inst.getOperand(CopInd).isImm() &&
8426            "Operand must be a coprocessor ID");
8427     int64_t Coproc = Inst.getOperand(CopInd).getImm();
8428     // Operands[2] is the coprocessor operand at syntactic level
8429     if (ARM::isCDECoproc(Coproc, *STI))
8430       return Error(Operands[2]->getStartLoc(),
8431                    "coprocessor must be configured as GCP");
8432     break;
8433   }
8434   }
8435 
8436   return false;
8437 }
8438 
8439 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
8440   switch(Opc) {
8441   default: llvm_unreachable("unexpected opcode!");
8442   // VST1LN
8443   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8444   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8445   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8446   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8447   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8448   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8449   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
8450   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
8451   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
8452 
8453   // VST2LN
8454   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8455   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8456   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8457   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8458   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8459 
8460   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8461   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8462   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8463   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8464   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8465 
8466   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
8467   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
8468   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
8469   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
8470   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
8471 
8472   // VST3LN
8473   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8474   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8475   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8476   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
8477   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8478   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8479   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8480   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8481   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
8482   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8483   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
8484   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
8485   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
8486   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
8487   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
8488 
8489   // VST3
8490   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8491   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8492   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8493   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8494   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8495   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8496   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8497   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8498   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8499   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8500   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8501   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8502   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
8503   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
8504   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
8505   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
8506   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
8507   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
8508 
8509   // VST4LN
8510   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8511   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8512   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8513   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
8514   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8515   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8516   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8517   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8518   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
8519   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8520   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
8521   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
8522   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
8523   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
8524   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
8525 
8526   // VST4
8527   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8528   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8529   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8530   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8531   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8532   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8533   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8534   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8535   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8536   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8537   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8538   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8539   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
8540   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
8541   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
8542   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
8543   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
8544   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
8545   }
8546 }
8547 
8548 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
8549   switch(Opc) {
8550   default: llvm_unreachable("unexpected opcode!");
8551   // VLD1LN
8552   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8553   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8554   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8555   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8556   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8557   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8558   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
8559   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
8560   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
8561 
8562   // VLD2LN
8563   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8564   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8565   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8566   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
8567   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8568   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8569   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8570   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8571   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
8572   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8573   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
8574   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
8575   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
8576   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
8577   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
8578 
8579   // VLD3DUP
8580   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8581   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8582   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8583   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
8584   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8585   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8586   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8587   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8588   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8589   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
8590   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8591   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8592   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
8593   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
8594   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
8595   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
8596   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
8597   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
8598 
8599   // VLD3LN
8600   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8601   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8602   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8603   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
8604   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8605   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8606   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8607   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8608   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
8609   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8610   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
8611   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
8612   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
8613   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
8614   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
8615 
8616   // VLD3
8617   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8618   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8619   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8620   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8621   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8622   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8623   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8624   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8625   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8626   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8627   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8628   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8629   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
8630   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
8631   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
8632   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
8633   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
8634   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
8635 
8636   // VLD4LN
8637   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8638   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8639   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8640   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8641   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8642   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8643   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8644   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8645   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8646   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8647   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
8648   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
8649   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
8650   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
8651   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
8652 
8653   // VLD4DUP
8654   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8655   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8656   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8657   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
8658   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
8659   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8660   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8661   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8662   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8663   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
8664   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
8665   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8666   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
8667   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
8668   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
8669   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
8670   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
8671   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
8672 
8673   // VLD4
8674   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8675   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8676   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8677   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8678   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8679   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8680   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8681   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8682   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8683   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8684   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8685   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8686   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
8687   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
8688   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
8689   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
8690   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
8691   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
8692   }
8693 }
8694 
8695 bool ARMAsmParser::processInstruction(MCInst &Inst,
8696                                       const OperandVector &Operands,
8697                                       MCStreamer &Out) {
8698   // Check if we have the wide qualifier, because if it's present we
8699   // must avoid selecting a 16-bit thumb instruction.
8700   bool HasWideQualifier = false;
8701   for (auto &Op : Operands) {
8702     ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
8703     if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
8704       HasWideQualifier = true;
8705       break;
8706     }
8707   }
8708 
8709   switch (Inst.getOpcode()) {
8710   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8711   case ARM::LDRT_POST:
8712   case ARM::LDRBT_POST: {
8713     const unsigned Opcode =
8714       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
8715                                            : ARM::LDRBT_POST_IMM;
8716     MCInst TmpInst;
8717     TmpInst.setOpcode(Opcode);
8718     TmpInst.addOperand(Inst.getOperand(0));
8719     TmpInst.addOperand(Inst.getOperand(1));
8720     TmpInst.addOperand(Inst.getOperand(1));
8721     TmpInst.addOperand(MCOperand::createReg(0));
8722     TmpInst.addOperand(MCOperand::createImm(0));
8723     TmpInst.addOperand(Inst.getOperand(2));
8724     TmpInst.addOperand(Inst.getOperand(3));
8725     Inst = TmpInst;
8726     return true;
8727   }
8728   // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate.
8729   case ARM::LDRSBTii:
8730   case ARM::LDRHTii:
8731   case ARM::LDRSHTii: {
8732     MCInst TmpInst;
8733 
8734     if (Inst.getOpcode() == ARM::LDRSBTii)
8735       TmpInst.setOpcode(ARM::LDRSBTi);
8736     else if (Inst.getOpcode() == ARM::LDRHTii)
8737       TmpInst.setOpcode(ARM::LDRHTi);
8738     else if (Inst.getOpcode() == ARM::LDRSHTii)
8739       TmpInst.setOpcode(ARM::LDRSHTi);
8740     TmpInst.addOperand(Inst.getOperand(0));
8741     TmpInst.addOperand(Inst.getOperand(1));
8742     TmpInst.addOperand(Inst.getOperand(1));
8743     TmpInst.addOperand(MCOperand::createImm(256));
8744     TmpInst.addOperand(Inst.getOperand(2));
8745     Inst = TmpInst;
8746     return true;
8747   }
8748   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8749   case ARM::STRT_POST:
8750   case ARM::STRBT_POST: {
8751     const unsigned Opcode =
8752       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
8753                                            : ARM::STRBT_POST_IMM;
8754     MCInst TmpInst;
8755     TmpInst.setOpcode(Opcode);
8756     TmpInst.addOperand(Inst.getOperand(1));
8757     TmpInst.addOperand(Inst.getOperand(0));
8758     TmpInst.addOperand(Inst.getOperand(1));
8759     TmpInst.addOperand(MCOperand::createReg(0));
8760     TmpInst.addOperand(MCOperand::createImm(0));
8761     TmpInst.addOperand(Inst.getOperand(2));
8762     TmpInst.addOperand(Inst.getOperand(3));
8763     Inst = TmpInst;
8764     return true;
8765   }
8766   // Alias for alternate form of 'ADR Rd, #imm' instruction.
8767   case ARM::ADDri: {
8768     if (Inst.getOperand(1).getReg() != ARM::PC ||
8769         Inst.getOperand(5).getReg() != 0 ||
8770         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
8771       return false;
8772     MCInst TmpInst;
8773     TmpInst.setOpcode(ARM::ADR);
8774     TmpInst.addOperand(Inst.getOperand(0));
8775     if (Inst.getOperand(2).isImm()) {
8776       // Immediate (mod_imm) will be in its encoded form, we must unencode it
8777       // before passing it to the ADR instruction.
8778       unsigned Enc = Inst.getOperand(2).getImm();
8779       TmpInst.addOperand(MCOperand::createImm(
8780         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
8781     } else {
8782       // Turn PC-relative expression into absolute expression.
8783       // Reading PC provides the start of the current instruction + 8 and
8784       // the transform to adr is biased by that.
8785       MCSymbol *Dot = getContext().createTempSymbol();
8786       Out.emitLabel(Dot);
8787       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
8788       const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
8789                                                      MCSymbolRefExpr::VK_None,
8790                                                      getContext());
8791       const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
8792       const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
8793                                                      getContext());
8794       const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
8795                                                         getContext());
8796       TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
8797     }
8798     TmpInst.addOperand(Inst.getOperand(3));
8799     TmpInst.addOperand(Inst.getOperand(4));
8800     Inst = TmpInst;
8801     return true;
8802   }
8803   // Aliases for imm syntax of LDR instructions.
8804   case ARM::t2LDR_PRE_imm:
8805   case ARM::t2LDR_POST_imm: {
8806     MCInst TmpInst;
8807     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE
8808                                                              : ARM::t2LDR_POST);
8809     TmpInst.addOperand(Inst.getOperand(0)); // Rt
8810     TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8811     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8812     TmpInst.addOperand(Inst.getOperand(2)); // imm
8813     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8814     Inst = TmpInst;
8815     return true;
8816   }
8817   // Aliases for imm syntax of STR instructions.
8818   case ARM::t2STR_PRE_imm:
8819   case ARM::t2STR_POST_imm: {
8820     MCInst TmpInst;
8821     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE
8822                                                              : ARM::t2STR_POST);
8823     TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8824     TmpInst.addOperand(Inst.getOperand(0)); // Rt
8825     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8826     TmpInst.addOperand(Inst.getOperand(2)); // imm
8827     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8828     Inst = TmpInst;
8829     return true;
8830   }
8831   // Aliases for alternate PC+imm syntax of LDR instructions.
8832   case ARM::t2LDRpcrel:
8833     // Select the narrow version if the immediate will fit.
8834     if (Inst.getOperand(1).getImm() > 0 &&
8835         Inst.getOperand(1).getImm() <= 0xff &&
8836         !HasWideQualifier)
8837       Inst.setOpcode(ARM::tLDRpci);
8838     else
8839       Inst.setOpcode(ARM::t2LDRpci);
8840     return true;
8841   case ARM::t2LDRBpcrel:
8842     Inst.setOpcode(ARM::t2LDRBpci);
8843     return true;
8844   case ARM::t2LDRHpcrel:
8845     Inst.setOpcode(ARM::t2LDRHpci);
8846     return true;
8847   case ARM::t2LDRSBpcrel:
8848     Inst.setOpcode(ARM::t2LDRSBpci);
8849     return true;
8850   case ARM::t2LDRSHpcrel:
8851     Inst.setOpcode(ARM::t2LDRSHpci);
8852     return true;
8853   case ARM::LDRConstPool:
8854   case ARM::tLDRConstPool:
8855   case ARM::t2LDRConstPool: {
8856     // Pseudo instruction ldr rt, =immediate is converted to a
8857     // MOV rt, immediate if immediate is known and representable
8858     // otherwise we create a constant pool entry that we load from.
8859     MCInst TmpInst;
8860     if (Inst.getOpcode() == ARM::LDRConstPool)
8861       TmpInst.setOpcode(ARM::LDRi12);
8862     else if (Inst.getOpcode() == ARM::tLDRConstPool)
8863       TmpInst.setOpcode(ARM::tLDRpci);
8864     else if (Inst.getOpcode() == ARM::t2LDRConstPool)
8865       TmpInst.setOpcode(ARM::t2LDRpci);
8866     const ARMOperand &PoolOperand =
8867       (HasWideQualifier ?
8868        static_cast<ARMOperand &>(*Operands[4]) :
8869        static_cast<ARMOperand &>(*Operands[3]));
8870     const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
8871     // If SubExprVal is a constant we may be able to use a MOV
8872     if (isa<MCConstantExpr>(SubExprVal) &&
8873         Inst.getOperand(0).getReg() != ARM::PC &&
8874         Inst.getOperand(0).getReg() != ARM::SP) {
8875       int64_t Value =
8876         (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
8877       bool UseMov  = true;
8878       bool MovHasS = true;
8879       if (Inst.getOpcode() == ARM::LDRConstPool) {
8880         // ARM Constant
8881         if (ARM_AM::getSOImmVal(Value) != -1) {
8882           Value = ARM_AM::getSOImmVal(Value);
8883           TmpInst.setOpcode(ARM::MOVi);
8884         }
8885         else if (ARM_AM::getSOImmVal(~Value) != -1) {
8886           Value = ARM_AM::getSOImmVal(~Value);
8887           TmpInst.setOpcode(ARM::MVNi);
8888         }
8889         else if (hasV6T2Ops() &&
8890                  Value >=0 && Value < 65536) {
8891           TmpInst.setOpcode(ARM::MOVi16);
8892           MovHasS = false;
8893         }
8894         else
8895           UseMov = false;
8896       }
8897       else {
8898         // Thumb/Thumb2 Constant
8899         if (hasThumb2() &&
8900             ARM_AM::getT2SOImmVal(Value) != -1)
8901           TmpInst.setOpcode(ARM::t2MOVi);
8902         else if (hasThumb2() &&
8903                  ARM_AM::getT2SOImmVal(~Value) != -1) {
8904           TmpInst.setOpcode(ARM::t2MVNi);
8905           Value = ~Value;
8906         }
8907         else if (hasV8MBaseline() &&
8908                  Value >=0 && Value < 65536) {
8909           TmpInst.setOpcode(ARM::t2MOVi16);
8910           MovHasS = false;
8911         }
8912         else
8913           UseMov = false;
8914       }
8915       if (UseMov) {
8916         TmpInst.addOperand(Inst.getOperand(0));           // Rt
8917         TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate
8918         TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8919         TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8920         if (MovHasS)
8921           TmpInst.addOperand(MCOperand::createReg(0));    // S
8922         Inst = TmpInst;
8923         return true;
8924       }
8925     }
8926     // No opportunity to use MOV/MVN create constant pool
8927     const MCExpr *CPLoc =
8928       getTargetStreamer().addConstantPoolEntry(SubExprVal,
8929                                                PoolOperand.getStartLoc());
8930     TmpInst.addOperand(Inst.getOperand(0));           // Rt
8931     TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
8932     if (TmpInst.getOpcode() == ARM::LDRi12)
8933       TmpInst.addOperand(MCOperand::createImm(0));    // unused offset
8934     TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8935     TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8936     Inst = TmpInst;
8937     return true;
8938   }
8939   // Handle NEON VST complex aliases.
8940   case ARM::VST1LNdWB_register_Asm_8:
8941   case ARM::VST1LNdWB_register_Asm_16:
8942   case ARM::VST1LNdWB_register_Asm_32: {
8943     MCInst TmpInst;
8944     // Shuffle the operands around so the lane index operand is in the
8945     // right place.
8946     unsigned Spacing;
8947     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8948     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8949     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8950     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8951     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8952     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8953     TmpInst.addOperand(Inst.getOperand(1)); // lane
8954     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8955     TmpInst.addOperand(Inst.getOperand(6));
8956     Inst = TmpInst;
8957     return true;
8958   }
8959 
8960   case ARM::VST2LNdWB_register_Asm_8:
8961   case ARM::VST2LNdWB_register_Asm_16:
8962   case ARM::VST2LNdWB_register_Asm_32:
8963   case ARM::VST2LNqWB_register_Asm_16:
8964   case ARM::VST2LNqWB_register_Asm_32: {
8965     MCInst TmpInst;
8966     // Shuffle the operands around so the lane index operand is in the
8967     // right place.
8968     unsigned Spacing;
8969     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8970     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8971     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8972     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8973     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8974     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8975     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8976                                             Spacing));
8977     TmpInst.addOperand(Inst.getOperand(1)); // lane
8978     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8979     TmpInst.addOperand(Inst.getOperand(6));
8980     Inst = TmpInst;
8981     return true;
8982   }
8983 
8984   case ARM::VST3LNdWB_register_Asm_8:
8985   case ARM::VST3LNdWB_register_Asm_16:
8986   case ARM::VST3LNdWB_register_Asm_32:
8987   case ARM::VST3LNqWB_register_Asm_16:
8988   case ARM::VST3LNqWB_register_Asm_32: {
8989     MCInst TmpInst;
8990     // Shuffle the operands around so the lane index operand is in the
8991     // right place.
8992     unsigned Spacing;
8993     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8994     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8995     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8996     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8997     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8998     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8999     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9000                                             Spacing));
9001     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9002                                             Spacing * 2));
9003     TmpInst.addOperand(Inst.getOperand(1)); // lane
9004     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9005     TmpInst.addOperand(Inst.getOperand(6));
9006     Inst = TmpInst;
9007     return true;
9008   }
9009 
9010   case ARM::VST4LNdWB_register_Asm_8:
9011   case ARM::VST4LNdWB_register_Asm_16:
9012   case ARM::VST4LNdWB_register_Asm_32:
9013   case ARM::VST4LNqWB_register_Asm_16:
9014   case ARM::VST4LNqWB_register_Asm_32: {
9015     MCInst TmpInst;
9016     // Shuffle the operands around so the lane index operand is in the
9017     // right place.
9018     unsigned Spacing;
9019     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9020     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9021     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9022     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9023     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9024     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9025     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9026                                             Spacing));
9027     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9028                                             Spacing * 2));
9029     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9030                                             Spacing * 3));
9031     TmpInst.addOperand(Inst.getOperand(1)); // lane
9032     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9033     TmpInst.addOperand(Inst.getOperand(6));
9034     Inst = TmpInst;
9035     return true;
9036   }
9037 
9038   case ARM::VST1LNdWB_fixed_Asm_8:
9039   case ARM::VST1LNdWB_fixed_Asm_16:
9040   case ARM::VST1LNdWB_fixed_Asm_32: {
9041     MCInst TmpInst;
9042     // Shuffle the operands around so the lane index operand is in the
9043     // right place.
9044     unsigned Spacing;
9045     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9046     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9047     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9048     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9049     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9050     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9051     TmpInst.addOperand(Inst.getOperand(1)); // lane
9052     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9053     TmpInst.addOperand(Inst.getOperand(5));
9054     Inst = TmpInst;
9055     return true;
9056   }
9057 
9058   case ARM::VST2LNdWB_fixed_Asm_8:
9059   case ARM::VST2LNdWB_fixed_Asm_16:
9060   case ARM::VST2LNdWB_fixed_Asm_32:
9061   case ARM::VST2LNqWB_fixed_Asm_16:
9062   case ARM::VST2LNqWB_fixed_Asm_32: {
9063     MCInst TmpInst;
9064     // Shuffle the operands around so the lane index operand is in the
9065     // right place.
9066     unsigned Spacing;
9067     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9068     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9069     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9070     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9071     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9072     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9073     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9074                                             Spacing));
9075     TmpInst.addOperand(Inst.getOperand(1)); // lane
9076     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9077     TmpInst.addOperand(Inst.getOperand(5));
9078     Inst = TmpInst;
9079     return true;
9080   }
9081 
9082   case ARM::VST3LNdWB_fixed_Asm_8:
9083   case ARM::VST3LNdWB_fixed_Asm_16:
9084   case ARM::VST3LNdWB_fixed_Asm_32:
9085   case ARM::VST3LNqWB_fixed_Asm_16:
9086   case ARM::VST3LNqWB_fixed_Asm_32: {
9087     MCInst TmpInst;
9088     // Shuffle the operands around so the lane index operand is in the
9089     // right place.
9090     unsigned Spacing;
9091     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9092     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9093     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9094     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9095     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9096     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9097     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9098                                             Spacing));
9099     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9100                                             Spacing * 2));
9101     TmpInst.addOperand(Inst.getOperand(1)); // lane
9102     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9103     TmpInst.addOperand(Inst.getOperand(5));
9104     Inst = TmpInst;
9105     return true;
9106   }
9107 
9108   case ARM::VST4LNdWB_fixed_Asm_8:
9109   case ARM::VST4LNdWB_fixed_Asm_16:
9110   case ARM::VST4LNdWB_fixed_Asm_32:
9111   case ARM::VST4LNqWB_fixed_Asm_16:
9112   case ARM::VST4LNqWB_fixed_Asm_32: {
9113     MCInst TmpInst;
9114     // Shuffle the operands around so the lane index operand is in the
9115     // right place.
9116     unsigned Spacing;
9117     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9118     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9119     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9120     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9121     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9122     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9123     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9124                                             Spacing));
9125     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9126                                             Spacing * 2));
9127     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9128                                             Spacing * 3));
9129     TmpInst.addOperand(Inst.getOperand(1)); // lane
9130     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9131     TmpInst.addOperand(Inst.getOperand(5));
9132     Inst = TmpInst;
9133     return true;
9134   }
9135 
9136   case ARM::VST1LNdAsm_8:
9137   case ARM::VST1LNdAsm_16:
9138   case ARM::VST1LNdAsm_32: {
9139     MCInst TmpInst;
9140     // Shuffle the operands around so the lane index operand is in the
9141     // right place.
9142     unsigned Spacing;
9143     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9144     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9145     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9146     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9147     TmpInst.addOperand(Inst.getOperand(1)); // lane
9148     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9149     TmpInst.addOperand(Inst.getOperand(5));
9150     Inst = TmpInst;
9151     return true;
9152   }
9153 
9154   case ARM::VST2LNdAsm_8:
9155   case ARM::VST2LNdAsm_16:
9156   case ARM::VST2LNdAsm_32:
9157   case ARM::VST2LNqAsm_16:
9158   case ARM::VST2LNqAsm_32: {
9159     MCInst TmpInst;
9160     // Shuffle the operands around so the lane index operand is in the
9161     // right place.
9162     unsigned Spacing;
9163     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9164     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9165     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9166     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9167     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9168                                             Spacing));
9169     TmpInst.addOperand(Inst.getOperand(1)); // lane
9170     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9171     TmpInst.addOperand(Inst.getOperand(5));
9172     Inst = TmpInst;
9173     return true;
9174   }
9175 
9176   case ARM::VST3LNdAsm_8:
9177   case ARM::VST3LNdAsm_16:
9178   case ARM::VST3LNdAsm_32:
9179   case ARM::VST3LNqAsm_16:
9180   case ARM::VST3LNqAsm_32: {
9181     MCInst TmpInst;
9182     // Shuffle the operands around so the lane index operand is in the
9183     // right place.
9184     unsigned Spacing;
9185     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9186     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9187     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9188     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9189     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9190                                             Spacing));
9191     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9192                                             Spacing * 2));
9193     TmpInst.addOperand(Inst.getOperand(1)); // lane
9194     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9195     TmpInst.addOperand(Inst.getOperand(5));
9196     Inst = TmpInst;
9197     return true;
9198   }
9199 
9200   case ARM::VST4LNdAsm_8:
9201   case ARM::VST4LNdAsm_16:
9202   case ARM::VST4LNdAsm_32:
9203   case ARM::VST4LNqAsm_16:
9204   case ARM::VST4LNqAsm_32: {
9205     MCInst TmpInst;
9206     // Shuffle the operands around so the lane index operand is in the
9207     // right place.
9208     unsigned Spacing;
9209     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9210     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9211     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9212     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9213     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9214                                             Spacing));
9215     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9216                                             Spacing * 2));
9217     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9218                                             Spacing * 3));
9219     TmpInst.addOperand(Inst.getOperand(1)); // lane
9220     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9221     TmpInst.addOperand(Inst.getOperand(5));
9222     Inst = TmpInst;
9223     return true;
9224   }
9225 
9226   // Handle NEON VLD complex aliases.
9227   case ARM::VLD1LNdWB_register_Asm_8:
9228   case ARM::VLD1LNdWB_register_Asm_16:
9229   case ARM::VLD1LNdWB_register_Asm_32: {
9230     MCInst TmpInst;
9231     // Shuffle the operands around so the lane index operand is in the
9232     // right place.
9233     unsigned Spacing;
9234     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9235     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9236     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9237     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9238     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9239     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9240     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9241     TmpInst.addOperand(Inst.getOperand(1)); // lane
9242     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9243     TmpInst.addOperand(Inst.getOperand(6));
9244     Inst = TmpInst;
9245     return true;
9246   }
9247 
9248   case ARM::VLD2LNdWB_register_Asm_8:
9249   case ARM::VLD2LNdWB_register_Asm_16:
9250   case ARM::VLD2LNdWB_register_Asm_32:
9251   case ARM::VLD2LNqWB_register_Asm_16:
9252   case ARM::VLD2LNqWB_register_Asm_32: {
9253     MCInst TmpInst;
9254     // Shuffle the operands around so the lane index operand is in the
9255     // right place.
9256     unsigned Spacing;
9257     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9258     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9259     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9260                                             Spacing));
9261     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9262     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9263     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9264     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9265     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9266     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9267                                             Spacing));
9268     TmpInst.addOperand(Inst.getOperand(1)); // lane
9269     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9270     TmpInst.addOperand(Inst.getOperand(6));
9271     Inst = TmpInst;
9272     return true;
9273   }
9274 
9275   case ARM::VLD3LNdWB_register_Asm_8:
9276   case ARM::VLD3LNdWB_register_Asm_16:
9277   case ARM::VLD3LNdWB_register_Asm_32:
9278   case ARM::VLD3LNqWB_register_Asm_16:
9279   case ARM::VLD3LNqWB_register_Asm_32: {
9280     MCInst TmpInst;
9281     // Shuffle the operands around so the lane index operand is in the
9282     // right place.
9283     unsigned Spacing;
9284     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9285     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9286     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9287                                             Spacing));
9288     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9289                                             Spacing * 2));
9290     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9291     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9292     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9293     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9294     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9295     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9296                                             Spacing));
9297     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9298                                             Spacing * 2));
9299     TmpInst.addOperand(Inst.getOperand(1)); // lane
9300     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9301     TmpInst.addOperand(Inst.getOperand(6));
9302     Inst = TmpInst;
9303     return true;
9304   }
9305 
9306   case ARM::VLD4LNdWB_register_Asm_8:
9307   case ARM::VLD4LNdWB_register_Asm_16:
9308   case ARM::VLD4LNdWB_register_Asm_32:
9309   case ARM::VLD4LNqWB_register_Asm_16:
9310   case ARM::VLD4LNqWB_register_Asm_32: {
9311     MCInst TmpInst;
9312     // Shuffle the operands around so the lane index operand is in the
9313     // right place.
9314     unsigned Spacing;
9315     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9316     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9317     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9318                                             Spacing));
9319     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9320                                             Spacing * 2));
9321     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9322                                             Spacing * 3));
9323     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9324     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9325     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9326     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9327     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9328     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9329                                             Spacing));
9330     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9331                                             Spacing * 2));
9332     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9333                                             Spacing * 3));
9334     TmpInst.addOperand(Inst.getOperand(1)); // lane
9335     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9336     TmpInst.addOperand(Inst.getOperand(6));
9337     Inst = TmpInst;
9338     return true;
9339   }
9340 
9341   case ARM::VLD1LNdWB_fixed_Asm_8:
9342   case ARM::VLD1LNdWB_fixed_Asm_16:
9343   case ARM::VLD1LNdWB_fixed_Asm_32: {
9344     MCInst TmpInst;
9345     // Shuffle the operands around so the lane index operand is in the
9346     // right place.
9347     unsigned Spacing;
9348     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9349     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9350     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9351     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9352     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9353     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9354     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9355     TmpInst.addOperand(Inst.getOperand(1)); // lane
9356     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9357     TmpInst.addOperand(Inst.getOperand(5));
9358     Inst = TmpInst;
9359     return true;
9360   }
9361 
9362   case ARM::VLD2LNdWB_fixed_Asm_8:
9363   case ARM::VLD2LNdWB_fixed_Asm_16:
9364   case ARM::VLD2LNdWB_fixed_Asm_32:
9365   case ARM::VLD2LNqWB_fixed_Asm_16:
9366   case ARM::VLD2LNqWB_fixed_Asm_32: {
9367     MCInst TmpInst;
9368     // Shuffle the operands around so the lane index operand is in the
9369     // right place.
9370     unsigned Spacing;
9371     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9372     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9373     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9374                                             Spacing));
9375     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9376     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9377     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9378     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9379     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9380     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9381                                             Spacing));
9382     TmpInst.addOperand(Inst.getOperand(1)); // lane
9383     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9384     TmpInst.addOperand(Inst.getOperand(5));
9385     Inst = TmpInst;
9386     return true;
9387   }
9388 
9389   case ARM::VLD3LNdWB_fixed_Asm_8:
9390   case ARM::VLD3LNdWB_fixed_Asm_16:
9391   case ARM::VLD3LNdWB_fixed_Asm_32:
9392   case ARM::VLD3LNqWB_fixed_Asm_16:
9393   case ARM::VLD3LNqWB_fixed_Asm_32: {
9394     MCInst TmpInst;
9395     // Shuffle the operands around so the lane index operand is in the
9396     // right place.
9397     unsigned Spacing;
9398     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9399     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9400     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9401                                             Spacing));
9402     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9403                                             Spacing * 2));
9404     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9405     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9406     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9407     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9408     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9409     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9410                                             Spacing));
9411     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9412                                             Spacing * 2));
9413     TmpInst.addOperand(Inst.getOperand(1)); // lane
9414     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9415     TmpInst.addOperand(Inst.getOperand(5));
9416     Inst = TmpInst;
9417     return true;
9418   }
9419 
9420   case ARM::VLD4LNdWB_fixed_Asm_8:
9421   case ARM::VLD4LNdWB_fixed_Asm_16:
9422   case ARM::VLD4LNdWB_fixed_Asm_32:
9423   case ARM::VLD4LNqWB_fixed_Asm_16:
9424   case ARM::VLD4LNqWB_fixed_Asm_32: {
9425     MCInst TmpInst;
9426     // Shuffle the operands around so the lane index operand is in the
9427     // right place.
9428     unsigned Spacing;
9429     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9430     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9431     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9432                                             Spacing));
9433     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9434                                             Spacing * 2));
9435     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9436                                             Spacing * 3));
9437     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9438     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9439     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9440     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9441     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9442     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9443                                             Spacing));
9444     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9445                                             Spacing * 2));
9446     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9447                                             Spacing * 3));
9448     TmpInst.addOperand(Inst.getOperand(1)); // lane
9449     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9450     TmpInst.addOperand(Inst.getOperand(5));
9451     Inst = TmpInst;
9452     return true;
9453   }
9454 
9455   case ARM::VLD1LNdAsm_8:
9456   case ARM::VLD1LNdAsm_16:
9457   case ARM::VLD1LNdAsm_32: {
9458     MCInst TmpInst;
9459     // Shuffle the operands around so the lane index operand is in the
9460     // right place.
9461     unsigned Spacing;
9462     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9463     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9464     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9465     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9466     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9467     TmpInst.addOperand(Inst.getOperand(1)); // lane
9468     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9469     TmpInst.addOperand(Inst.getOperand(5));
9470     Inst = TmpInst;
9471     return true;
9472   }
9473 
9474   case ARM::VLD2LNdAsm_8:
9475   case ARM::VLD2LNdAsm_16:
9476   case ARM::VLD2LNdAsm_32:
9477   case ARM::VLD2LNqAsm_16:
9478   case ARM::VLD2LNqAsm_32: {
9479     MCInst TmpInst;
9480     // Shuffle the operands around so the lane index operand is in the
9481     // right place.
9482     unsigned Spacing;
9483     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9484     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9485     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9486                                             Spacing));
9487     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9488     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9489     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9490     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9491                                             Spacing));
9492     TmpInst.addOperand(Inst.getOperand(1)); // lane
9493     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9494     TmpInst.addOperand(Inst.getOperand(5));
9495     Inst = TmpInst;
9496     return true;
9497   }
9498 
9499   case ARM::VLD3LNdAsm_8:
9500   case ARM::VLD3LNdAsm_16:
9501   case ARM::VLD3LNdAsm_32:
9502   case ARM::VLD3LNqAsm_16:
9503   case ARM::VLD3LNqAsm_32: {
9504     MCInst TmpInst;
9505     // Shuffle the operands around so the lane index operand is in the
9506     // right place.
9507     unsigned Spacing;
9508     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9509     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9510     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9511                                             Spacing));
9512     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9513                                             Spacing * 2));
9514     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9515     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9516     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9517     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9518                                             Spacing));
9519     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9520                                             Spacing * 2));
9521     TmpInst.addOperand(Inst.getOperand(1)); // lane
9522     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9523     TmpInst.addOperand(Inst.getOperand(5));
9524     Inst = TmpInst;
9525     return true;
9526   }
9527 
9528   case ARM::VLD4LNdAsm_8:
9529   case ARM::VLD4LNdAsm_16:
9530   case ARM::VLD4LNdAsm_32:
9531   case ARM::VLD4LNqAsm_16:
9532   case ARM::VLD4LNqAsm_32: {
9533     MCInst TmpInst;
9534     // Shuffle the operands around so the lane index operand is in the
9535     // right place.
9536     unsigned Spacing;
9537     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9538     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9539     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9540                                             Spacing));
9541     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9542                                             Spacing * 2));
9543     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9544                                             Spacing * 3));
9545     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9546     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9547     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9548     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9549                                             Spacing));
9550     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9551                                             Spacing * 2));
9552     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9553                                             Spacing * 3));
9554     TmpInst.addOperand(Inst.getOperand(1)); // lane
9555     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9556     TmpInst.addOperand(Inst.getOperand(5));
9557     Inst = TmpInst;
9558     return true;
9559   }
9560 
9561   // VLD3DUP single 3-element structure to all lanes instructions.
9562   case ARM::VLD3DUPdAsm_8:
9563   case ARM::VLD3DUPdAsm_16:
9564   case ARM::VLD3DUPdAsm_32:
9565   case ARM::VLD3DUPqAsm_8:
9566   case ARM::VLD3DUPqAsm_16:
9567   case ARM::VLD3DUPqAsm_32: {
9568     MCInst TmpInst;
9569     unsigned Spacing;
9570     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9571     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9572     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9573                                             Spacing));
9574     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9575                                             Spacing * 2));
9576     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9577     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9578     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9579     TmpInst.addOperand(Inst.getOperand(4));
9580     Inst = TmpInst;
9581     return true;
9582   }
9583 
9584   case ARM::VLD3DUPdWB_fixed_Asm_8:
9585   case ARM::VLD3DUPdWB_fixed_Asm_16:
9586   case ARM::VLD3DUPdWB_fixed_Asm_32:
9587   case ARM::VLD3DUPqWB_fixed_Asm_8:
9588   case ARM::VLD3DUPqWB_fixed_Asm_16:
9589   case ARM::VLD3DUPqWB_fixed_Asm_32: {
9590     MCInst TmpInst;
9591     unsigned Spacing;
9592     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9593     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9594     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9595                                             Spacing));
9596     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9597                                             Spacing * 2));
9598     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9599     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9600     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9601     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9602     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9603     TmpInst.addOperand(Inst.getOperand(4));
9604     Inst = TmpInst;
9605     return true;
9606   }
9607 
9608   case ARM::VLD3DUPdWB_register_Asm_8:
9609   case ARM::VLD3DUPdWB_register_Asm_16:
9610   case ARM::VLD3DUPdWB_register_Asm_32:
9611   case ARM::VLD3DUPqWB_register_Asm_8:
9612   case ARM::VLD3DUPqWB_register_Asm_16:
9613   case ARM::VLD3DUPqWB_register_Asm_32: {
9614     MCInst TmpInst;
9615     unsigned Spacing;
9616     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9617     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9618     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9619                                             Spacing));
9620     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9621                                             Spacing * 2));
9622     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9623     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9624     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9625     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9626     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9627     TmpInst.addOperand(Inst.getOperand(5));
9628     Inst = TmpInst;
9629     return true;
9630   }
9631 
9632   // VLD3 multiple 3-element structure instructions.
9633   case ARM::VLD3dAsm_8:
9634   case ARM::VLD3dAsm_16:
9635   case ARM::VLD3dAsm_32:
9636   case ARM::VLD3qAsm_8:
9637   case ARM::VLD3qAsm_16:
9638   case ARM::VLD3qAsm_32: {
9639     MCInst TmpInst;
9640     unsigned Spacing;
9641     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9642     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9643     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9644                                             Spacing));
9645     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9646                                             Spacing * 2));
9647     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9648     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9649     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9650     TmpInst.addOperand(Inst.getOperand(4));
9651     Inst = TmpInst;
9652     return true;
9653   }
9654 
9655   case ARM::VLD3dWB_fixed_Asm_8:
9656   case ARM::VLD3dWB_fixed_Asm_16:
9657   case ARM::VLD3dWB_fixed_Asm_32:
9658   case ARM::VLD3qWB_fixed_Asm_8:
9659   case ARM::VLD3qWB_fixed_Asm_16:
9660   case ARM::VLD3qWB_fixed_Asm_32: {
9661     MCInst TmpInst;
9662     unsigned Spacing;
9663     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9664     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9665     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9666                                             Spacing));
9667     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9668                                             Spacing * 2));
9669     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9670     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9671     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9672     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9673     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9674     TmpInst.addOperand(Inst.getOperand(4));
9675     Inst = TmpInst;
9676     return true;
9677   }
9678 
9679   case ARM::VLD3dWB_register_Asm_8:
9680   case ARM::VLD3dWB_register_Asm_16:
9681   case ARM::VLD3dWB_register_Asm_32:
9682   case ARM::VLD3qWB_register_Asm_8:
9683   case ARM::VLD3qWB_register_Asm_16:
9684   case ARM::VLD3qWB_register_Asm_32: {
9685     MCInst TmpInst;
9686     unsigned Spacing;
9687     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9688     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9689     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9690                                             Spacing));
9691     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9692                                             Spacing * 2));
9693     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9694     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9695     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9696     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9697     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9698     TmpInst.addOperand(Inst.getOperand(5));
9699     Inst = TmpInst;
9700     return true;
9701   }
9702 
9703   // VLD4DUP single 3-element structure to all lanes instructions.
9704   case ARM::VLD4DUPdAsm_8:
9705   case ARM::VLD4DUPdAsm_16:
9706   case ARM::VLD4DUPdAsm_32:
9707   case ARM::VLD4DUPqAsm_8:
9708   case ARM::VLD4DUPqAsm_16:
9709   case ARM::VLD4DUPqAsm_32: {
9710     MCInst TmpInst;
9711     unsigned Spacing;
9712     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9713     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9714     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9715                                             Spacing));
9716     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9717                                             Spacing * 2));
9718     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9719                                             Spacing * 3));
9720     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9721     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9722     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9723     TmpInst.addOperand(Inst.getOperand(4));
9724     Inst = TmpInst;
9725     return true;
9726   }
9727 
9728   case ARM::VLD4DUPdWB_fixed_Asm_8:
9729   case ARM::VLD4DUPdWB_fixed_Asm_16:
9730   case ARM::VLD4DUPdWB_fixed_Asm_32:
9731   case ARM::VLD4DUPqWB_fixed_Asm_8:
9732   case ARM::VLD4DUPqWB_fixed_Asm_16:
9733   case ARM::VLD4DUPqWB_fixed_Asm_32: {
9734     MCInst TmpInst;
9735     unsigned Spacing;
9736     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9737     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9738     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9739                                             Spacing));
9740     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9741                                             Spacing * 2));
9742     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9743                                             Spacing * 3));
9744     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9745     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9746     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9747     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9748     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9749     TmpInst.addOperand(Inst.getOperand(4));
9750     Inst = TmpInst;
9751     return true;
9752   }
9753 
9754   case ARM::VLD4DUPdWB_register_Asm_8:
9755   case ARM::VLD4DUPdWB_register_Asm_16:
9756   case ARM::VLD4DUPdWB_register_Asm_32:
9757   case ARM::VLD4DUPqWB_register_Asm_8:
9758   case ARM::VLD4DUPqWB_register_Asm_16:
9759   case ARM::VLD4DUPqWB_register_Asm_32: {
9760     MCInst TmpInst;
9761     unsigned Spacing;
9762     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9763     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9764     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9765                                             Spacing));
9766     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9767                                             Spacing * 2));
9768     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9769                                             Spacing * 3));
9770     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9771     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9772     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9773     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9774     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9775     TmpInst.addOperand(Inst.getOperand(5));
9776     Inst = TmpInst;
9777     return true;
9778   }
9779 
9780   // VLD4 multiple 4-element structure instructions.
9781   case ARM::VLD4dAsm_8:
9782   case ARM::VLD4dAsm_16:
9783   case ARM::VLD4dAsm_32:
9784   case ARM::VLD4qAsm_8:
9785   case ARM::VLD4qAsm_16:
9786   case ARM::VLD4qAsm_32: {
9787     MCInst TmpInst;
9788     unsigned Spacing;
9789     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9790     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9791     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9792                                             Spacing));
9793     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9794                                             Spacing * 2));
9795     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9796                                             Spacing * 3));
9797     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9798     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9799     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9800     TmpInst.addOperand(Inst.getOperand(4));
9801     Inst = TmpInst;
9802     return true;
9803   }
9804 
9805   case ARM::VLD4dWB_fixed_Asm_8:
9806   case ARM::VLD4dWB_fixed_Asm_16:
9807   case ARM::VLD4dWB_fixed_Asm_32:
9808   case ARM::VLD4qWB_fixed_Asm_8:
9809   case ARM::VLD4qWB_fixed_Asm_16:
9810   case ARM::VLD4qWB_fixed_Asm_32: {
9811     MCInst TmpInst;
9812     unsigned Spacing;
9813     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9814     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9815     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9816                                             Spacing));
9817     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9818                                             Spacing * 2));
9819     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9820                                             Spacing * 3));
9821     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9822     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9823     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9824     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9825     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9826     TmpInst.addOperand(Inst.getOperand(4));
9827     Inst = TmpInst;
9828     return true;
9829   }
9830 
9831   case ARM::VLD4dWB_register_Asm_8:
9832   case ARM::VLD4dWB_register_Asm_16:
9833   case ARM::VLD4dWB_register_Asm_32:
9834   case ARM::VLD4qWB_register_Asm_8:
9835   case ARM::VLD4qWB_register_Asm_16:
9836   case ARM::VLD4qWB_register_Asm_32: {
9837     MCInst TmpInst;
9838     unsigned Spacing;
9839     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9840     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9841     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9842                                             Spacing));
9843     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9844                                             Spacing * 2));
9845     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9846                                             Spacing * 3));
9847     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9848     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9849     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9850     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9851     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9852     TmpInst.addOperand(Inst.getOperand(5));
9853     Inst = TmpInst;
9854     return true;
9855   }
9856 
9857   // VST3 multiple 3-element structure instructions.
9858   case ARM::VST3dAsm_8:
9859   case ARM::VST3dAsm_16:
9860   case ARM::VST3dAsm_32:
9861   case ARM::VST3qAsm_8:
9862   case ARM::VST3qAsm_16:
9863   case ARM::VST3qAsm_32: {
9864     MCInst TmpInst;
9865     unsigned Spacing;
9866     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9867     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9868     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9869     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9870     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9871                                             Spacing));
9872     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9873                                             Spacing * 2));
9874     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9875     TmpInst.addOperand(Inst.getOperand(4));
9876     Inst = TmpInst;
9877     return true;
9878   }
9879 
9880   case ARM::VST3dWB_fixed_Asm_8:
9881   case ARM::VST3dWB_fixed_Asm_16:
9882   case ARM::VST3dWB_fixed_Asm_32:
9883   case ARM::VST3qWB_fixed_Asm_8:
9884   case ARM::VST3qWB_fixed_Asm_16:
9885   case ARM::VST3qWB_fixed_Asm_32: {
9886     MCInst TmpInst;
9887     unsigned Spacing;
9888     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9889     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9890     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9891     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9892     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9893     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9894     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9895                                             Spacing));
9896     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9897                                             Spacing * 2));
9898     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9899     TmpInst.addOperand(Inst.getOperand(4));
9900     Inst = TmpInst;
9901     return true;
9902   }
9903 
9904   case ARM::VST3dWB_register_Asm_8:
9905   case ARM::VST3dWB_register_Asm_16:
9906   case ARM::VST3dWB_register_Asm_32:
9907   case ARM::VST3qWB_register_Asm_8:
9908   case ARM::VST3qWB_register_Asm_16:
9909   case ARM::VST3qWB_register_Asm_32: {
9910     MCInst TmpInst;
9911     unsigned Spacing;
9912     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9913     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9914     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9915     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9916     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9917     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9918     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9919                                             Spacing));
9920     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9921                                             Spacing * 2));
9922     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9923     TmpInst.addOperand(Inst.getOperand(5));
9924     Inst = TmpInst;
9925     return true;
9926   }
9927 
9928   // VST4 multiple 3-element structure instructions.
9929   case ARM::VST4dAsm_8:
9930   case ARM::VST4dAsm_16:
9931   case ARM::VST4dAsm_32:
9932   case ARM::VST4qAsm_8:
9933   case ARM::VST4qAsm_16:
9934   case ARM::VST4qAsm_32: {
9935     MCInst TmpInst;
9936     unsigned Spacing;
9937     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9938     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9939     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9940     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9941     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9942                                             Spacing));
9943     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9944                                             Spacing * 2));
9945     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9946                                             Spacing * 3));
9947     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9948     TmpInst.addOperand(Inst.getOperand(4));
9949     Inst = TmpInst;
9950     return true;
9951   }
9952 
9953   case ARM::VST4dWB_fixed_Asm_8:
9954   case ARM::VST4dWB_fixed_Asm_16:
9955   case ARM::VST4dWB_fixed_Asm_32:
9956   case ARM::VST4qWB_fixed_Asm_8:
9957   case ARM::VST4qWB_fixed_Asm_16:
9958   case ARM::VST4qWB_fixed_Asm_32: {
9959     MCInst TmpInst;
9960     unsigned Spacing;
9961     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9962     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9963     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9964     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9965     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9966     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9967     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9968                                             Spacing));
9969     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9970                                             Spacing * 2));
9971     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9972                                             Spacing * 3));
9973     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9974     TmpInst.addOperand(Inst.getOperand(4));
9975     Inst = TmpInst;
9976     return true;
9977   }
9978 
9979   case ARM::VST4dWB_register_Asm_8:
9980   case ARM::VST4dWB_register_Asm_16:
9981   case ARM::VST4dWB_register_Asm_32:
9982   case ARM::VST4qWB_register_Asm_8:
9983   case ARM::VST4qWB_register_Asm_16:
9984   case ARM::VST4qWB_register_Asm_32: {
9985     MCInst TmpInst;
9986     unsigned Spacing;
9987     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9988     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9989     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9990     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9991     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9992     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9993     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9994                                             Spacing));
9995     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9996                                             Spacing * 2));
9997     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9998                                             Spacing * 3));
9999     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
10000     TmpInst.addOperand(Inst.getOperand(5));
10001     Inst = TmpInst;
10002     return true;
10003   }
10004 
10005   // Handle encoding choice for the shift-immediate instructions.
10006   case ARM::t2LSLri:
10007   case ARM::t2LSRri:
10008   case ARM::t2ASRri:
10009     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10010         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10011         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10012         !HasWideQualifier) {
10013       unsigned NewOpc;
10014       switch (Inst.getOpcode()) {
10015       default: llvm_unreachable("unexpected opcode");
10016       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
10017       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
10018       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
10019       }
10020       // The Thumb1 operands aren't in the same order. Awesome, eh?
10021       MCInst TmpInst;
10022       TmpInst.setOpcode(NewOpc);
10023       TmpInst.addOperand(Inst.getOperand(0));
10024       TmpInst.addOperand(Inst.getOperand(5));
10025       TmpInst.addOperand(Inst.getOperand(1));
10026       TmpInst.addOperand(Inst.getOperand(2));
10027       TmpInst.addOperand(Inst.getOperand(3));
10028       TmpInst.addOperand(Inst.getOperand(4));
10029       Inst = TmpInst;
10030       return true;
10031     }
10032     return false;
10033 
10034   // Handle the Thumb2 mode MOV complex aliases.
10035   case ARM::t2MOVsr:
10036   case ARM::t2MOVSsr: {
10037     // Which instruction to expand to depends on the CCOut operand and
10038     // whether we're in an IT block if the register operands are low
10039     // registers.
10040     bool isNarrow = false;
10041     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10042         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10043         isARMLowRegister(Inst.getOperand(2).getReg()) &&
10044         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10045         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
10046         !HasWideQualifier)
10047       isNarrow = true;
10048     MCInst TmpInst;
10049     unsigned newOpc;
10050     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
10051     default: llvm_unreachable("unexpected opcode!");
10052     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
10053     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
10054     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
10055     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
10056     }
10057     TmpInst.setOpcode(newOpc);
10058     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10059     if (isNarrow)
10060       TmpInst.addOperand(MCOperand::createReg(
10061           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10062     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10063     TmpInst.addOperand(Inst.getOperand(2)); // Rm
10064     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
10065     TmpInst.addOperand(Inst.getOperand(5));
10066     if (!isNarrow)
10067       TmpInst.addOperand(MCOperand::createReg(
10068           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10069     Inst = TmpInst;
10070     return true;
10071   }
10072   case ARM::t2MOVsi:
10073   case ARM::t2MOVSsi: {
10074     // Which instruction to expand to depends on the CCOut operand and
10075     // whether we're in an IT block if the register operands are low
10076     // registers.
10077     bool isNarrow = false;
10078     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10079         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10080         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
10081         !HasWideQualifier)
10082       isNarrow = true;
10083     MCInst TmpInst;
10084     unsigned newOpc;
10085     unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10086     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
10087     bool isMov = false;
10088     // MOV rd, rm, LSL #0 is actually a MOV instruction
10089     if (Shift == ARM_AM::lsl && Amount == 0) {
10090       isMov = true;
10091       // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
10092       // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
10093       // unpredictable in an IT block so the 32-bit encoding T3 has to be used
10094       // instead.
10095       if (inITBlock()) {
10096         isNarrow = false;
10097       }
10098       newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
10099     } else {
10100       switch(Shift) {
10101       default: llvm_unreachable("unexpected opcode!");
10102       case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
10103       case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
10104       case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
10105       case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
10106       case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
10107       }
10108     }
10109     if (Amount == 32) Amount = 0;
10110     TmpInst.setOpcode(newOpc);
10111     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10112     if (isNarrow && !isMov)
10113       TmpInst.addOperand(MCOperand::createReg(
10114           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10115     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10116     if (newOpc != ARM::t2RRX && !isMov)
10117       TmpInst.addOperand(MCOperand::createImm(Amount));
10118     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10119     TmpInst.addOperand(Inst.getOperand(4));
10120     if (!isNarrow)
10121       TmpInst.addOperand(MCOperand::createReg(
10122           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10123     Inst = TmpInst;
10124     return true;
10125   }
10126   // Handle the ARM mode MOV complex aliases.
10127   case ARM::ASRr:
10128   case ARM::LSRr:
10129   case ARM::LSLr:
10130   case ARM::RORr: {
10131     ARM_AM::ShiftOpc ShiftTy;
10132     switch(Inst.getOpcode()) {
10133     default: llvm_unreachable("unexpected opcode!");
10134     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
10135     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
10136     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
10137     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
10138     }
10139     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
10140     MCInst TmpInst;
10141     TmpInst.setOpcode(ARM::MOVsr);
10142     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10143     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10144     TmpInst.addOperand(Inst.getOperand(2)); // Rm
10145     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10146     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10147     TmpInst.addOperand(Inst.getOperand(4));
10148     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10149     Inst = TmpInst;
10150     return true;
10151   }
10152   case ARM::ASRi:
10153   case ARM::LSRi:
10154   case ARM::LSLi:
10155   case ARM::RORi: {
10156     ARM_AM::ShiftOpc ShiftTy;
10157     switch(Inst.getOpcode()) {
10158     default: llvm_unreachable("unexpected opcode!");
10159     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
10160     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
10161     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
10162     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
10163     }
10164     // A shift by zero is a plain MOVr, not a MOVsi.
10165     unsigned Amt = Inst.getOperand(2).getImm();
10166     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
10167     // A shift by 32 should be encoded as 0 when permitted
10168     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
10169       Amt = 0;
10170     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
10171     MCInst TmpInst;
10172     TmpInst.setOpcode(Opc);
10173     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10174     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10175     if (Opc == ARM::MOVsi)
10176       TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10177     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10178     TmpInst.addOperand(Inst.getOperand(4));
10179     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10180     Inst = TmpInst;
10181     return true;
10182   }
10183   case ARM::RRXi: {
10184     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
10185     MCInst TmpInst;
10186     TmpInst.setOpcode(ARM::MOVsi);
10187     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10188     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10189     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10190     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10191     TmpInst.addOperand(Inst.getOperand(3));
10192     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
10193     Inst = TmpInst;
10194     return true;
10195   }
10196   case ARM::t2LDMIA_UPD: {
10197     // If this is a load of a single register, then we should use
10198     // a post-indexed LDR instruction instead, per the ARM ARM.
10199     if (Inst.getNumOperands() != 5)
10200       return false;
10201     MCInst TmpInst;
10202     TmpInst.setOpcode(ARM::t2LDR_POST);
10203     TmpInst.addOperand(Inst.getOperand(4)); // Rt
10204     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10205     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10206     TmpInst.addOperand(MCOperand::createImm(4));
10207     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10208     TmpInst.addOperand(Inst.getOperand(3));
10209     Inst = TmpInst;
10210     return true;
10211   }
10212   case ARM::t2STMDB_UPD: {
10213     // If this is a store of a single register, then we should use
10214     // a pre-indexed STR instruction instead, per the ARM ARM.
10215     if (Inst.getNumOperands() != 5)
10216       return false;
10217     MCInst TmpInst;
10218     TmpInst.setOpcode(ARM::t2STR_PRE);
10219     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10220     TmpInst.addOperand(Inst.getOperand(4)); // Rt
10221     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10222     TmpInst.addOperand(MCOperand::createImm(-4));
10223     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10224     TmpInst.addOperand(Inst.getOperand(3));
10225     Inst = TmpInst;
10226     return true;
10227   }
10228   case ARM::LDMIA_UPD:
10229     // If this is a load of a single register via a 'pop', then we should use
10230     // a post-indexed LDR instruction instead, per the ARM ARM.
10231     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
10232         Inst.getNumOperands() == 5) {
10233       MCInst TmpInst;
10234       TmpInst.setOpcode(ARM::LDR_POST_IMM);
10235       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10236       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10237       TmpInst.addOperand(Inst.getOperand(1)); // Rn
10238       TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
10239       TmpInst.addOperand(MCOperand::createImm(4));
10240       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10241       TmpInst.addOperand(Inst.getOperand(3));
10242       Inst = TmpInst;
10243       return true;
10244     }
10245     break;
10246   case ARM::STMDB_UPD:
10247     // If this is a store of a single register via a 'push', then we should use
10248     // a pre-indexed STR instruction instead, per the ARM ARM.
10249     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
10250         Inst.getNumOperands() == 5) {
10251       MCInst TmpInst;
10252       TmpInst.setOpcode(ARM::STR_PRE_IMM);
10253       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10254       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10255       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
10256       TmpInst.addOperand(MCOperand::createImm(-4));
10257       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10258       TmpInst.addOperand(Inst.getOperand(3));
10259       Inst = TmpInst;
10260     }
10261     break;
10262   case ARM::t2ADDri12:
10263   case ARM::t2SUBri12:
10264   case ARM::t2ADDspImm12:
10265   case ARM::t2SUBspImm12: {
10266     // If the immediate fits for encoding T3 and the generic
10267     // mnemonic was used, encoding T3 is preferred.
10268     const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken();
10269     if ((Token != "add" && Token != "sub") ||
10270         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
10271       break;
10272     switch (Inst.getOpcode()) {
10273     case ARM::t2ADDri12:
10274       Inst.setOpcode(ARM::t2ADDri);
10275       break;
10276     case ARM::t2SUBri12:
10277       Inst.setOpcode(ARM::t2SUBri);
10278       break;
10279     case ARM::t2ADDspImm12:
10280       Inst.setOpcode(ARM::t2ADDspImm);
10281       break;
10282     case ARM::t2SUBspImm12:
10283       Inst.setOpcode(ARM::t2SUBspImm);
10284       break;
10285     }
10286 
10287     Inst.addOperand(MCOperand::createReg(0)); // cc_out
10288     return true;
10289   }
10290   case ARM::tADDi8:
10291     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10292     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10293     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10294     // to encoding T1 if <Rd> is omitted."
10295     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10296       Inst.setOpcode(ARM::tADDi3);
10297       return true;
10298     }
10299     break;
10300   case ARM::tSUBi8:
10301     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10302     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10303     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10304     // to encoding T1 if <Rd> is omitted."
10305     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10306       Inst.setOpcode(ARM::tSUBi3);
10307       return true;
10308     }
10309     break;
10310   case ARM::t2ADDri:
10311   case ARM::t2SUBri: {
10312     // If the destination and first source operand are the same, and
10313     // the flags are compatible with the current IT status, use encoding T2
10314     // instead of T3. For compatibility with the system 'as'. Make sure the
10315     // wide encoding wasn't explicit.
10316     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
10317         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
10318         (Inst.getOperand(2).isImm() &&
10319          (unsigned)Inst.getOperand(2).getImm() > 255) ||
10320         Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
10321         HasWideQualifier)
10322       break;
10323     MCInst TmpInst;
10324     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
10325                       ARM::tADDi8 : ARM::tSUBi8);
10326     TmpInst.addOperand(Inst.getOperand(0));
10327     TmpInst.addOperand(Inst.getOperand(5));
10328     TmpInst.addOperand(Inst.getOperand(0));
10329     TmpInst.addOperand(Inst.getOperand(2));
10330     TmpInst.addOperand(Inst.getOperand(3));
10331     TmpInst.addOperand(Inst.getOperand(4));
10332     Inst = TmpInst;
10333     return true;
10334   }
10335   case ARM::t2ADDspImm:
10336   case ARM::t2SUBspImm: {
10337     // Prefer T1 encoding if possible
10338     if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier)
10339       break;
10340     unsigned V = Inst.getOperand(2).getImm();
10341     if (V & 3 || V > ((1 << 7) - 1) << 2)
10342       break;
10343     MCInst TmpInst;
10344     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi
10345                                                           : ARM::tSUBspi);
10346     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg
10347     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg
10348     TmpInst.addOperand(MCOperand::createImm(V / 4));   // immediate
10349     TmpInst.addOperand(Inst.getOperand(3));            // pred
10350     TmpInst.addOperand(Inst.getOperand(4));
10351     Inst = TmpInst;
10352     return true;
10353   }
10354   case ARM::t2ADDrr: {
10355     // If the destination and first source operand are the same, and
10356     // there's no setting of the flags, use encoding T2 instead of T3.
10357     // Note that this is only for ADD, not SUB. This mirrors the system
10358     // 'as' behaviour.  Also take advantage of ADD being commutative.
10359     // Make sure the wide encoding wasn't explicit.
10360     bool Swap = false;
10361     auto DestReg = Inst.getOperand(0).getReg();
10362     bool Transform = DestReg == Inst.getOperand(1).getReg();
10363     if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
10364       Transform = true;
10365       Swap = true;
10366     }
10367     if (!Transform ||
10368         Inst.getOperand(5).getReg() != 0 ||
10369         HasWideQualifier)
10370       break;
10371     MCInst TmpInst;
10372     TmpInst.setOpcode(ARM::tADDhirr);
10373     TmpInst.addOperand(Inst.getOperand(0));
10374     TmpInst.addOperand(Inst.getOperand(0));
10375     TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
10376     TmpInst.addOperand(Inst.getOperand(3));
10377     TmpInst.addOperand(Inst.getOperand(4));
10378     Inst = TmpInst;
10379     return true;
10380   }
10381   case ARM::tADDrSP:
10382     // If the non-SP source operand and the destination operand are not the
10383     // same, we need to use the 32-bit encoding if it's available.
10384     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
10385       Inst.setOpcode(ARM::t2ADDrr);
10386       Inst.addOperand(MCOperand::createReg(0)); // cc_out
10387       return true;
10388     }
10389     break;
10390   case ARM::tB:
10391     // A Thumb conditional branch outside of an IT block is a tBcc.
10392     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
10393       Inst.setOpcode(ARM::tBcc);
10394       return true;
10395     }
10396     break;
10397   case ARM::t2B:
10398     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
10399     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
10400       Inst.setOpcode(ARM::t2Bcc);
10401       return true;
10402     }
10403     break;
10404   case ARM::t2Bcc:
10405     // If the conditional is AL or we're in an IT block, we really want t2B.
10406     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
10407       Inst.setOpcode(ARM::t2B);
10408       return true;
10409     }
10410     break;
10411   case ARM::tBcc:
10412     // If the conditional is AL, we really want tB.
10413     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
10414       Inst.setOpcode(ARM::tB);
10415       return true;
10416     }
10417     break;
10418   case ARM::tLDMIA: {
10419     // If the register list contains any high registers, or if the writeback
10420     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
10421     // instead if we're in Thumb2. Otherwise, this should have generated
10422     // an error in validateInstruction().
10423     unsigned Rn = Inst.getOperand(0).getReg();
10424     bool hasWritebackToken =
10425         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
10426          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
10427     bool listContainsBase;
10428     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
10429         (!listContainsBase && !hasWritebackToken) ||
10430         (listContainsBase && hasWritebackToken)) {
10431       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10432       assert(isThumbTwo());
10433       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
10434       // If we're switching to the updating version, we need to insert
10435       // the writeback tied operand.
10436       if (hasWritebackToken)
10437         Inst.insert(Inst.begin(),
10438                     MCOperand::createReg(Inst.getOperand(0).getReg()));
10439       return true;
10440     }
10441     break;
10442   }
10443   case ARM::tSTMIA_UPD: {
10444     // If the register list contains any high registers, we need to use
10445     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10446     // should have generated an error in validateInstruction().
10447     unsigned Rn = Inst.getOperand(0).getReg();
10448     bool listContainsBase;
10449     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
10450       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10451       assert(isThumbTwo());
10452       Inst.setOpcode(ARM::t2STMIA_UPD);
10453       return true;
10454     }
10455     break;
10456   }
10457   case ARM::tPOP: {
10458     bool listContainsBase;
10459     // If the register list contains any high registers, we need to use
10460     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10461     // should have generated an error in validateInstruction().
10462     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
10463       return false;
10464     assert(isThumbTwo());
10465     Inst.setOpcode(ARM::t2LDMIA_UPD);
10466     // Add the base register and writeback operands.
10467     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10468     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10469     return true;
10470   }
10471   case ARM::tPUSH: {
10472     bool listContainsBase;
10473     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
10474       return false;
10475     assert(isThumbTwo());
10476     Inst.setOpcode(ARM::t2STMDB_UPD);
10477     // Add the base register and writeback operands.
10478     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10479     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10480     return true;
10481   }
10482   case ARM::t2MOVi:
10483     // If we can use the 16-bit encoding and the user didn't explicitly
10484     // request the 32-bit variant, transform it here.
10485     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10486         (Inst.getOperand(1).isImm() &&
10487          (unsigned)Inst.getOperand(1).getImm() <= 255) &&
10488         Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10489         !HasWideQualifier) {
10490       // The operands aren't in the same order for tMOVi8...
10491       MCInst TmpInst;
10492       TmpInst.setOpcode(ARM::tMOVi8);
10493       TmpInst.addOperand(Inst.getOperand(0));
10494       TmpInst.addOperand(Inst.getOperand(4));
10495       TmpInst.addOperand(Inst.getOperand(1));
10496       TmpInst.addOperand(Inst.getOperand(2));
10497       TmpInst.addOperand(Inst.getOperand(3));
10498       Inst = TmpInst;
10499       return true;
10500     }
10501     break;
10502 
10503   case ARM::t2MOVr:
10504     // If we can use the 16-bit encoding and the user didn't explicitly
10505     // request the 32-bit variant, transform it here.
10506     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10507         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10508         Inst.getOperand(2).getImm() == ARMCC::AL &&
10509         Inst.getOperand(4).getReg() == ARM::CPSR &&
10510         !HasWideQualifier) {
10511       // The operands aren't the same for tMOV[S]r... (no cc_out)
10512       MCInst TmpInst;
10513       unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr;
10514       TmpInst.setOpcode(Op);
10515       TmpInst.addOperand(Inst.getOperand(0));
10516       TmpInst.addOperand(Inst.getOperand(1));
10517       if (Op == ARM::tMOVr) {
10518         TmpInst.addOperand(Inst.getOperand(2));
10519         TmpInst.addOperand(Inst.getOperand(3));
10520       }
10521       Inst = TmpInst;
10522       return true;
10523     }
10524     break;
10525 
10526   case ARM::t2SXTH:
10527   case ARM::t2SXTB:
10528   case ARM::t2UXTH:
10529   case ARM::t2UXTB:
10530     // If we can use the 16-bit encoding and the user didn't explicitly
10531     // request the 32-bit variant, transform it here.
10532     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10533         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10534         Inst.getOperand(2).getImm() == 0 &&
10535         !HasWideQualifier) {
10536       unsigned NewOpc;
10537       switch (Inst.getOpcode()) {
10538       default: llvm_unreachable("Illegal opcode!");
10539       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
10540       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
10541       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
10542       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
10543       }
10544       // The operands aren't the same for thumb1 (no rotate operand).
10545       MCInst TmpInst;
10546       TmpInst.setOpcode(NewOpc);
10547       TmpInst.addOperand(Inst.getOperand(0));
10548       TmpInst.addOperand(Inst.getOperand(1));
10549       TmpInst.addOperand(Inst.getOperand(3));
10550       TmpInst.addOperand(Inst.getOperand(4));
10551       Inst = TmpInst;
10552       return true;
10553     }
10554     break;
10555 
10556   case ARM::MOVsi: {
10557     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10558     // rrx shifts and asr/lsr of #32 is encoded as 0
10559     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
10560       return false;
10561     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
10562       // Shifting by zero is accepted as a vanilla 'MOVr'
10563       MCInst TmpInst;
10564       TmpInst.setOpcode(ARM::MOVr);
10565       TmpInst.addOperand(Inst.getOperand(0));
10566       TmpInst.addOperand(Inst.getOperand(1));
10567       TmpInst.addOperand(Inst.getOperand(3));
10568       TmpInst.addOperand(Inst.getOperand(4));
10569       TmpInst.addOperand(Inst.getOperand(5));
10570       Inst = TmpInst;
10571       return true;
10572     }
10573     return false;
10574   }
10575   case ARM::ANDrsi:
10576   case ARM::ORRrsi:
10577   case ARM::EORrsi:
10578   case ARM::BICrsi:
10579   case ARM::SUBrsi:
10580   case ARM::ADDrsi: {
10581     unsigned newOpc;
10582     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
10583     if (SOpc == ARM_AM::rrx) return false;
10584     switch (Inst.getOpcode()) {
10585     default: llvm_unreachable("unexpected opcode!");
10586     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
10587     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
10588     case ARM::EORrsi: newOpc = ARM::EORrr; break;
10589     case ARM::BICrsi: newOpc = ARM::BICrr; break;
10590     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
10591     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
10592     }
10593     // If the shift is by zero, use the non-shifted instruction definition.
10594     // The exception is for right shifts, where 0 == 32
10595     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
10596         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
10597       MCInst TmpInst;
10598       TmpInst.setOpcode(newOpc);
10599       TmpInst.addOperand(Inst.getOperand(0));
10600       TmpInst.addOperand(Inst.getOperand(1));
10601       TmpInst.addOperand(Inst.getOperand(2));
10602       TmpInst.addOperand(Inst.getOperand(4));
10603       TmpInst.addOperand(Inst.getOperand(5));
10604       TmpInst.addOperand(Inst.getOperand(6));
10605       Inst = TmpInst;
10606       return true;
10607     }
10608     return false;
10609   }
10610   case ARM::ITasm:
10611   case ARM::t2IT: {
10612     // Set up the IT block state according to the IT instruction we just
10613     // matched.
10614     assert(!inITBlock() && "nested IT blocks?!");
10615     startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
10616                          Inst.getOperand(1).getImm());
10617     break;
10618   }
10619   case ARM::t2LSLrr:
10620   case ARM::t2LSRrr:
10621   case ARM::t2ASRrr:
10622   case ARM::t2SBCrr:
10623   case ARM::t2RORrr:
10624   case ARM::t2BICrr:
10625     // Assemblers should use the narrow encodings of these instructions when permissible.
10626     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10627          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10628         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10629         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10630         !HasWideQualifier) {
10631       unsigned NewOpc;
10632       switch (Inst.getOpcode()) {
10633         default: llvm_unreachable("unexpected opcode");
10634         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
10635         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
10636         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
10637         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
10638         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
10639         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
10640       }
10641       MCInst TmpInst;
10642       TmpInst.setOpcode(NewOpc);
10643       TmpInst.addOperand(Inst.getOperand(0));
10644       TmpInst.addOperand(Inst.getOperand(5));
10645       TmpInst.addOperand(Inst.getOperand(1));
10646       TmpInst.addOperand(Inst.getOperand(2));
10647       TmpInst.addOperand(Inst.getOperand(3));
10648       TmpInst.addOperand(Inst.getOperand(4));
10649       Inst = TmpInst;
10650       return true;
10651     }
10652     return false;
10653 
10654   case ARM::t2ANDrr:
10655   case ARM::t2EORrr:
10656   case ARM::t2ADCrr:
10657   case ARM::t2ORRrr:
10658     // Assemblers should use the narrow encodings of these instructions when permissible.
10659     // These instructions are special in that they are commutable, so shorter encodings
10660     // are available more often.
10661     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10662          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10663         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
10664          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
10665         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10666         !HasWideQualifier) {
10667       unsigned NewOpc;
10668       switch (Inst.getOpcode()) {
10669         default: llvm_unreachable("unexpected opcode");
10670         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
10671         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
10672         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
10673         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
10674       }
10675       MCInst TmpInst;
10676       TmpInst.setOpcode(NewOpc);
10677       TmpInst.addOperand(Inst.getOperand(0));
10678       TmpInst.addOperand(Inst.getOperand(5));
10679       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
10680         TmpInst.addOperand(Inst.getOperand(1));
10681         TmpInst.addOperand(Inst.getOperand(2));
10682       } else {
10683         TmpInst.addOperand(Inst.getOperand(2));
10684         TmpInst.addOperand(Inst.getOperand(1));
10685       }
10686       TmpInst.addOperand(Inst.getOperand(3));
10687       TmpInst.addOperand(Inst.getOperand(4));
10688       Inst = TmpInst;
10689       return true;
10690     }
10691     return false;
10692   case ARM::MVE_VPST:
10693   case ARM::MVE_VPTv16i8:
10694   case ARM::MVE_VPTv8i16:
10695   case ARM::MVE_VPTv4i32:
10696   case ARM::MVE_VPTv16u8:
10697   case ARM::MVE_VPTv8u16:
10698   case ARM::MVE_VPTv4u32:
10699   case ARM::MVE_VPTv16s8:
10700   case ARM::MVE_VPTv8s16:
10701   case ARM::MVE_VPTv4s32:
10702   case ARM::MVE_VPTv4f32:
10703   case ARM::MVE_VPTv8f16:
10704   case ARM::MVE_VPTv16i8r:
10705   case ARM::MVE_VPTv8i16r:
10706   case ARM::MVE_VPTv4i32r:
10707   case ARM::MVE_VPTv16u8r:
10708   case ARM::MVE_VPTv8u16r:
10709   case ARM::MVE_VPTv4u32r:
10710   case ARM::MVE_VPTv16s8r:
10711   case ARM::MVE_VPTv8s16r:
10712   case ARM::MVE_VPTv4s32r:
10713   case ARM::MVE_VPTv4f32r:
10714   case ARM::MVE_VPTv8f16r: {
10715     assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10716     MCOperand &MO = Inst.getOperand(0);
10717     VPTState.Mask = MO.getImm();
10718     VPTState.CurPosition = 0;
10719     break;
10720   }
10721   }
10722   return false;
10723 }
10724 
10725 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
10726   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10727   // suffix depending on whether they're in an IT block or not.
10728   unsigned Opc = Inst.getOpcode();
10729   const MCInstrDesc &MCID = MII.get(Opc);
10730   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
10731     assert(MCID.hasOptionalDef() &&
10732            "optionally flag setting instruction missing optional def operand");
10733     assert(MCID.NumOperands == Inst.getNumOperands() &&
10734            "operand count mismatch!");
10735     // Find the optional-def operand (cc_out).
10736     unsigned OpNo;
10737     for (OpNo = 0;
10738          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
10739          ++OpNo)
10740       ;
10741     // If we're parsing Thumb1, reject it completely.
10742     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
10743       return Match_RequiresFlagSetting;
10744     // If we're parsing Thumb2, which form is legal depends on whether we're
10745     // in an IT block.
10746     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
10747         !inITBlock())
10748       return Match_RequiresITBlock;
10749     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
10750         inITBlock())
10751       return Match_RequiresNotITBlock;
10752     // LSL with zero immediate is not allowed in an IT block
10753     if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
10754       return Match_RequiresNotITBlock;
10755   } else if (isThumbOne()) {
10756     // Some high-register supporting Thumb1 encodings only allow both registers
10757     // to be from r0-r7 when in Thumb2.
10758     if (Opc == ARM::tADDhirr && !hasV6MOps() &&
10759         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10760         isARMLowRegister(Inst.getOperand(2).getReg()))
10761       return Match_RequiresThumb2;
10762     // Others only require ARMv6 or later.
10763     else if (Opc == ARM::tMOVr && !hasV6Ops() &&
10764              isARMLowRegister(Inst.getOperand(0).getReg()) &&
10765              isARMLowRegister(Inst.getOperand(1).getReg()))
10766       return Match_RequiresV6;
10767   }
10768 
10769   // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10770   // than the loop below can handle, so it uses the GPRnopc register class and
10771   // we do SP handling here.
10772   if (Opc == ARM::t2MOVr && !hasV8Ops())
10773   {
10774     // SP as both source and destination is not allowed
10775     if (Inst.getOperand(0).getReg() == ARM::SP &&
10776         Inst.getOperand(1).getReg() == ARM::SP)
10777       return Match_RequiresV8;
10778     // When flags-setting SP as either source or destination is not allowed
10779     if (Inst.getOperand(4).getReg() == ARM::CPSR &&
10780         (Inst.getOperand(0).getReg() == ARM::SP ||
10781          Inst.getOperand(1).getReg() == ARM::SP))
10782       return Match_RequiresV8;
10783   }
10784 
10785   switch (Inst.getOpcode()) {
10786   case ARM::VMRS:
10787   case ARM::VMSR:
10788   case ARM::VMRS_FPCXTS:
10789   case ARM::VMRS_FPCXTNS:
10790   case ARM::VMSR_FPCXTS:
10791   case ARM::VMSR_FPCXTNS:
10792   case ARM::VMRS_FPSCR_NZCVQC:
10793   case ARM::VMSR_FPSCR_NZCVQC:
10794   case ARM::FMSTAT:
10795   case ARM::VMRS_VPR:
10796   case ARM::VMRS_P0:
10797   case ARM::VMSR_VPR:
10798   case ARM::VMSR_P0:
10799     // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10800     // ARMv8-A.
10801     if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
10802         (isThumb() && !hasV8Ops()))
10803       return Match_InvalidOperand;
10804     break;
10805   case ARM::t2TBB:
10806   case ARM::t2TBH:
10807     // Rn = sp is only allowed with ARMv8-A
10808     if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP))
10809       return Match_RequiresV8;
10810     break;
10811   default:
10812     break;
10813   }
10814 
10815   for (unsigned I = 0; I < MCID.NumOperands; ++I)
10816     if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
10817       // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10818       const auto &Op = Inst.getOperand(I);
10819       if (!Op.isReg()) {
10820         // This can happen in awkward cases with tied operands, e.g. a
10821         // writeback load/store with a complex addressing mode in
10822         // which there's an output operand corresponding to the
10823         // updated written-back base register: the Tablegen-generated
10824         // AsmMatcher will have written a placeholder operand to that
10825         // slot in the form of an immediate 0, because it can't
10826         // generate the register part of the complex addressing-mode
10827         // operand ahead of time.
10828         continue;
10829       }
10830 
10831       unsigned Reg = Op.getReg();
10832       if ((Reg == ARM::SP) && !hasV8Ops())
10833         return Match_RequiresV8;
10834       else if (Reg == ARM::PC)
10835         return Match_InvalidOperand;
10836     }
10837 
10838   return Match_Success;
10839 }
10840 
10841 namespace llvm {
10842 
10843 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
10844   return true; // In an assembly source, no need to second-guess
10845 }
10846 
10847 } // end namespace llvm
10848 
10849 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10850 // the last instruction in the block.
10851 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
10852   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10853 
10854   // All branch & call instructions terminate IT blocks with the exception of
10855   // SVC.
10856   if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
10857       MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
10858     return true;
10859 
10860   // Any arithmetic instruction which writes to the PC also terminates the IT
10861   // block.
10862   if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
10863     return true;
10864 
10865   return false;
10866 }
10867 
10868 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
10869                                           SmallVectorImpl<NearMissInfo> &NearMisses,
10870                                           bool MatchingInlineAsm,
10871                                           bool &EmitInITBlock,
10872                                           MCStreamer &Out) {
10873   // If we can't use an implicit IT block here, just match as normal.
10874   if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10875     return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10876 
10877   // Try to match the instruction in an extension of the current IT block (if
10878   // there is one).
10879   if (inImplicitITBlock()) {
10880     extendImplicitITBlock(ITState.Cond);
10881     if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10882             Match_Success) {
10883       // The match succeded, but we still have to check that the instruction is
10884       // valid in this implicit IT block.
10885       const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10886       if (MCID.isPredicable()) {
10887         ARMCC::CondCodes InstCond =
10888             (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10889                 .getImm();
10890         ARMCC::CondCodes ITCond = currentITCond();
10891         if (InstCond == ITCond) {
10892           EmitInITBlock = true;
10893           return Match_Success;
10894         } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
10895           invertCurrentITCondition();
10896           EmitInITBlock = true;
10897           return Match_Success;
10898         }
10899       }
10900     }
10901     rewindImplicitITPosition();
10902   }
10903 
10904   // Finish the current IT block, and try to match outside any IT block.
10905   flushPendingInstructions(Out);
10906   unsigned PlainMatchResult =
10907       MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10908   if (PlainMatchResult == Match_Success) {
10909     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10910     if (MCID.isPredicable()) {
10911       ARMCC::CondCodes InstCond =
10912           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10913               .getImm();
10914       // Some forms of the branch instruction have their own condition code
10915       // fields, so can be conditionally executed without an IT block.
10916       if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
10917         EmitInITBlock = false;
10918         return Match_Success;
10919       }
10920       if (InstCond == ARMCC::AL) {
10921         EmitInITBlock = false;
10922         return Match_Success;
10923       }
10924     } else {
10925       EmitInITBlock = false;
10926       return Match_Success;
10927     }
10928   }
10929 
10930   // Try to match in a new IT block. The matcher doesn't check the actual
10931   // condition, so we create an IT block with a dummy condition, and fix it up
10932   // once we know the actual condition.
10933   startImplicitITBlock();
10934   if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10935       Match_Success) {
10936     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10937     if (MCID.isPredicable()) {
10938       ITState.Cond =
10939           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10940               .getImm();
10941       EmitInITBlock = true;
10942       return Match_Success;
10943     }
10944   }
10945   discardImplicitITBlock();
10946 
10947   // If none of these succeed, return the error we got when trying to match
10948   // outside any IT blocks.
10949   EmitInITBlock = false;
10950   return PlainMatchResult;
10951 }
10952 
10953 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
10954                                          unsigned VariantID = 0);
10955 
10956 static const char *getSubtargetFeatureName(uint64_t Val);
10957 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
10958                                            OperandVector &Operands,
10959                                            MCStreamer &Out, uint64_t &ErrorInfo,
10960                                            bool MatchingInlineAsm) {
10961   MCInst Inst;
10962   unsigned MatchResult;
10963   bool PendConditionalInstruction = false;
10964 
10965   SmallVector<NearMissInfo, 4> NearMisses;
10966   MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
10967                                  PendConditionalInstruction, Out);
10968 
10969   switch (MatchResult) {
10970   case Match_Success:
10971     LLVM_DEBUG(dbgs() << "Parsed as: ";
10972                Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10973                dbgs() << "\n");
10974 
10975     // Context sensitive operand constraints aren't handled by the matcher,
10976     // so check them here.
10977     if (validateInstruction(Inst, Operands)) {
10978       // Still progress the IT block, otherwise one wrong condition causes
10979       // nasty cascading errors.
10980       forwardITPosition();
10981       forwardVPTPosition();
10982       return true;
10983     }
10984 
10985     {
10986       // Some instructions need post-processing to, for example, tweak which
10987       // encoding is selected. Loop on it while changes happen so the
10988       // individual transformations can chain off each other. E.g.,
10989       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10990       while (processInstruction(Inst, Operands, Out))
10991         LLVM_DEBUG(dbgs() << "Changed to: ";
10992                    Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10993                    dbgs() << "\n");
10994     }
10995 
10996     // Only move forward at the very end so that everything in validate
10997     // and process gets a consistent answer about whether we're in an IT
10998     // block.
10999     forwardITPosition();
11000     forwardVPTPosition();
11001 
11002     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
11003     // doesn't actually encode.
11004     if (Inst.getOpcode() == ARM::ITasm)
11005       return false;
11006 
11007     Inst.setLoc(IDLoc);
11008     if (PendConditionalInstruction) {
11009       PendingConditionalInsts.push_back(Inst);
11010       if (isITBlockFull() || isITBlockTerminator(Inst))
11011         flushPendingInstructions(Out);
11012     } else {
11013       Out.emitInstruction(Inst, getSTI());
11014     }
11015     return false;
11016   case Match_NearMisses:
11017     ReportNearMisses(NearMisses, IDLoc, Operands);
11018     return true;
11019   case Match_MnemonicFail: {
11020     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
11021     std::string Suggestion = ARMMnemonicSpellCheck(
11022       ((ARMOperand &)*Operands[0]).getToken(), FBS);
11023     return Error(IDLoc, "invalid instruction" + Suggestion,
11024                  ((ARMOperand &)*Operands[0]).getLocRange());
11025   }
11026   }
11027 
11028   llvm_unreachable("Implement any new match types added!");
11029 }
11030 
11031 /// parseDirective parses the arm specific directives
11032 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
11033   const MCContext::Environment Format = getContext().getObjectFileType();
11034   bool IsMachO = Format == MCContext::IsMachO;
11035   bool IsCOFF = Format == MCContext::IsCOFF;
11036 
11037   std::string IDVal = DirectiveID.getIdentifier().lower();
11038   if (IDVal == ".word")
11039     parseLiteralValues(4, DirectiveID.getLoc());
11040   else if (IDVal == ".short" || IDVal == ".hword")
11041     parseLiteralValues(2, DirectiveID.getLoc());
11042   else if (IDVal == ".thumb")
11043     parseDirectiveThumb(DirectiveID.getLoc());
11044   else if (IDVal == ".arm")
11045     parseDirectiveARM(DirectiveID.getLoc());
11046   else if (IDVal == ".thumb_func")
11047     parseDirectiveThumbFunc(DirectiveID.getLoc());
11048   else if (IDVal == ".code")
11049     parseDirectiveCode(DirectiveID.getLoc());
11050   else if (IDVal == ".syntax")
11051     parseDirectiveSyntax(DirectiveID.getLoc());
11052   else if (IDVal == ".unreq")
11053     parseDirectiveUnreq(DirectiveID.getLoc());
11054   else if (IDVal == ".fnend")
11055     parseDirectiveFnEnd(DirectiveID.getLoc());
11056   else if (IDVal == ".cantunwind")
11057     parseDirectiveCantUnwind(DirectiveID.getLoc());
11058   else if (IDVal == ".personality")
11059     parseDirectivePersonality(DirectiveID.getLoc());
11060   else if (IDVal == ".handlerdata")
11061     parseDirectiveHandlerData(DirectiveID.getLoc());
11062   else if (IDVal == ".setfp")
11063     parseDirectiveSetFP(DirectiveID.getLoc());
11064   else if (IDVal == ".pad")
11065     parseDirectivePad(DirectiveID.getLoc());
11066   else if (IDVal == ".save")
11067     parseDirectiveRegSave(DirectiveID.getLoc(), false);
11068   else if (IDVal == ".vsave")
11069     parseDirectiveRegSave(DirectiveID.getLoc(), true);
11070   else if (IDVal == ".ltorg" || IDVal == ".pool")
11071     parseDirectiveLtorg(DirectiveID.getLoc());
11072   else if (IDVal == ".even")
11073     parseDirectiveEven(DirectiveID.getLoc());
11074   else if (IDVal == ".personalityindex")
11075     parseDirectivePersonalityIndex(DirectiveID.getLoc());
11076   else if (IDVal == ".unwind_raw")
11077     parseDirectiveUnwindRaw(DirectiveID.getLoc());
11078   else if (IDVal == ".movsp")
11079     parseDirectiveMovSP(DirectiveID.getLoc());
11080   else if (IDVal == ".arch_extension")
11081     parseDirectiveArchExtension(DirectiveID.getLoc());
11082   else if (IDVal == ".align")
11083     return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
11084   else if (IDVal == ".thumb_set")
11085     parseDirectiveThumbSet(DirectiveID.getLoc());
11086   else if (IDVal == ".inst")
11087     parseDirectiveInst(DirectiveID.getLoc());
11088   else if (IDVal == ".inst.n")
11089     parseDirectiveInst(DirectiveID.getLoc(), 'n');
11090   else if (IDVal == ".inst.w")
11091     parseDirectiveInst(DirectiveID.getLoc(), 'w');
11092   else if (!IsMachO && !IsCOFF) {
11093     if (IDVal == ".arch")
11094       parseDirectiveArch(DirectiveID.getLoc());
11095     else if (IDVal == ".cpu")
11096       parseDirectiveCPU(DirectiveID.getLoc());
11097     else if (IDVal == ".eabi_attribute")
11098       parseDirectiveEabiAttr(DirectiveID.getLoc());
11099     else if (IDVal == ".fpu")
11100       parseDirectiveFPU(DirectiveID.getLoc());
11101     else if (IDVal == ".fnstart")
11102       parseDirectiveFnStart(DirectiveID.getLoc());
11103     else if (IDVal == ".object_arch")
11104       parseDirectiveObjectArch(DirectiveID.getLoc());
11105     else if (IDVal == ".tlsdescseq")
11106       parseDirectiveTLSDescSeq(DirectiveID.getLoc());
11107     else
11108       return true;
11109   } else if (IsCOFF) {
11110     if (IDVal == ".seh_stackalloc")
11111       parseDirectiveSEHAllocStack(DirectiveID.getLoc(), /*Wide=*/false);
11112     else if (IDVal == ".seh_stackalloc_w")
11113       parseDirectiveSEHAllocStack(DirectiveID.getLoc(), /*Wide=*/true);
11114     else if (IDVal == ".seh_save_regs")
11115       parseDirectiveSEHSaveRegs(DirectiveID.getLoc(), /*Wide=*/false);
11116     else if (IDVal == ".seh_save_regs_w")
11117       parseDirectiveSEHSaveRegs(DirectiveID.getLoc(), /*Wide=*/true);
11118     else if (IDVal == ".seh_save_sp")
11119       parseDirectiveSEHSaveSP(DirectiveID.getLoc());
11120     else if (IDVal == ".seh_save_fregs")
11121       parseDirectiveSEHSaveFRegs(DirectiveID.getLoc());
11122     else if (IDVal == ".seh_save_lr")
11123       parseDirectiveSEHSaveLR(DirectiveID.getLoc());
11124     else if (IDVal == ".seh_endprologue")
11125       parseDirectiveSEHPrologEnd(DirectiveID.getLoc(), /*Fragment=*/false);
11126     else if (IDVal == ".seh_endprologue_fragment")
11127       parseDirectiveSEHPrologEnd(DirectiveID.getLoc(), /*Fragment=*/true);
11128     else if (IDVal == ".seh_nop")
11129       parseDirectiveSEHNop(DirectiveID.getLoc(), /*Wide=*/false);
11130     else if (IDVal == ".seh_nop_w")
11131       parseDirectiveSEHNop(DirectiveID.getLoc(), /*Wide=*/true);
11132     else if (IDVal == ".seh_startepilogue")
11133       parseDirectiveSEHEpilogStart(DirectiveID.getLoc(), /*Condition=*/false);
11134     else if (IDVal == ".seh_startepilogue_cond")
11135       parseDirectiveSEHEpilogStart(DirectiveID.getLoc(), /*Condition=*/true);
11136     else if (IDVal == ".seh_endepilogue")
11137       parseDirectiveSEHEpilogEnd(DirectiveID.getLoc());
11138     else if (IDVal == ".seh_custom")
11139       parseDirectiveSEHCustom(DirectiveID.getLoc());
11140     else
11141       return true;
11142   } else
11143     return true;
11144   return false;
11145 }
11146 
11147 /// parseLiteralValues
11148 ///  ::= .hword expression [, expression]*
11149 ///  ::= .short expression [, expression]*
11150 ///  ::= .word expression [, expression]*
11151 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
11152   auto parseOne = [&]() -> bool {
11153     const MCExpr *Value;
11154     if (getParser().parseExpression(Value))
11155       return true;
11156     getParser().getStreamer().emitValue(Value, Size, L);
11157     return false;
11158   };
11159   return (parseMany(parseOne));
11160 }
11161 
11162 /// parseDirectiveThumb
11163 ///  ::= .thumb
11164 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
11165   if (parseEOL() || check(!hasThumb(), L, "target does not support Thumb mode"))
11166     return true;
11167 
11168   if (!isThumb())
11169     SwitchMode();
11170 
11171   getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11172   return false;
11173 }
11174 
11175 /// parseDirectiveARM
11176 ///  ::= .arm
11177 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
11178   if (parseEOL() || check(!hasARM(), L, "target does not support ARM mode"))
11179     return true;
11180 
11181   if (isThumb())
11182     SwitchMode();
11183   getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11184   return false;
11185 }
11186 
11187 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
11188   // We need to flush the current implicit IT block on a label, because it is
11189   // not legal to branch into an IT block.
11190   flushPendingInstructions(getStreamer());
11191 }
11192 
11193 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
11194   if (NextSymbolIsThumb) {
11195     getParser().getStreamer().emitThumbFunc(Symbol);
11196     NextSymbolIsThumb = false;
11197   }
11198 }
11199 
11200 /// parseDirectiveThumbFunc
11201 ///  ::= .thumbfunc symbol_name
11202 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
11203   MCAsmParser &Parser = getParser();
11204   const auto Format = getContext().getObjectFileType();
11205   bool IsMachO = Format == MCContext::IsMachO;
11206 
11207   // Darwin asm has (optionally) function name after .thumb_func direction
11208   // ELF doesn't
11209 
11210   if (IsMachO) {
11211     if (Parser.getTok().is(AsmToken::Identifier) ||
11212         Parser.getTok().is(AsmToken::String)) {
11213       MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
11214           Parser.getTok().getIdentifier());
11215       getParser().getStreamer().emitThumbFunc(Func);
11216       Parser.Lex();
11217       if (parseEOL())
11218         return true;
11219       return false;
11220     }
11221   }
11222 
11223   if (parseEOL())
11224     return true;
11225 
11226   // .thumb_func implies .thumb
11227   if (!isThumb())
11228     SwitchMode();
11229 
11230   getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11231 
11232   NextSymbolIsThumb = true;
11233   return false;
11234 }
11235 
11236 /// parseDirectiveSyntax
11237 ///  ::= .syntax unified | divided
11238 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
11239   MCAsmParser &Parser = getParser();
11240   const AsmToken &Tok = Parser.getTok();
11241   if (Tok.isNot(AsmToken::Identifier)) {
11242     Error(L, "unexpected token in .syntax directive");
11243     return false;
11244   }
11245 
11246   StringRef Mode = Tok.getString();
11247   Parser.Lex();
11248   if (check(Mode == "divided" || Mode == "DIVIDED", L,
11249             "'.syntax divided' arm assembly not supported") ||
11250       check(Mode != "unified" && Mode != "UNIFIED", L,
11251             "unrecognized syntax mode in .syntax directive") ||
11252       parseEOL())
11253     return true;
11254 
11255   // TODO tell the MC streamer the mode
11256   // getParser().getStreamer().Emit???();
11257   return false;
11258 }
11259 
11260 /// parseDirectiveCode
11261 ///  ::= .code 16 | 32
11262 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
11263   MCAsmParser &Parser = getParser();
11264   const AsmToken &Tok = Parser.getTok();
11265   if (Tok.isNot(AsmToken::Integer))
11266     return Error(L, "unexpected token in .code directive");
11267   int64_t Val = Parser.getTok().getIntVal();
11268   if (Val != 16 && Val != 32) {
11269     Error(L, "invalid operand to .code directive");
11270     return false;
11271   }
11272   Parser.Lex();
11273 
11274   if (parseEOL())
11275     return true;
11276 
11277   if (Val == 16) {
11278     if (!hasThumb())
11279       return Error(L, "target does not support Thumb mode");
11280 
11281     if (!isThumb())
11282       SwitchMode();
11283     getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11284   } else {
11285     if (!hasARM())
11286       return Error(L, "target does not support ARM mode");
11287 
11288     if (isThumb())
11289       SwitchMode();
11290     getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11291   }
11292 
11293   return false;
11294 }
11295 
11296 /// parseDirectiveReq
11297 ///  ::= name .req registername
11298 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
11299   MCAsmParser &Parser = getParser();
11300   Parser.Lex(); // Eat the '.req' token.
11301   unsigned Reg;
11302   SMLoc SRegLoc, ERegLoc;
11303   if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
11304             "register name expected") ||
11305       parseEOL())
11306     return true;
11307 
11308   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
11309     return Error(SRegLoc,
11310                  "redefinition of '" + Name + "' does not match original.");
11311 
11312   return false;
11313 }
11314 
11315 /// parseDirectiveUneq
11316 ///  ::= .unreq registername
11317 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
11318   MCAsmParser &Parser = getParser();
11319   if (Parser.getTok().isNot(AsmToken::Identifier))
11320     return Error(L, "unexpected input in .unreq directive.");
11321   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
11322   Parser.Lex(); // Eat the identifier.
11323   return parseEOL();
11324 }
11325 
11326 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
11327 // before, if supported by the new target, or emit mapping symbols for the mode
11328 // switch.
11329 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
11330   if (WasThumb != isThumb()) {
11331     if (WasThumb && hasThumb()) {
11332       // Stay in Thumb mode
11333       SwitchMode();
11334     } else if (!WasThumb && hasARM()) {
11335       // Stay in ARM mode
11336       SwitchMode();
11337     } else {
11338       // Mode switch forced, because the new arch doesn't support the old mode.
11339       getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16
11340                                                             : MCAF_Code32);
11341       // Warn about the implcit mode switch. GAS does not switch modes here,
11342       // but instead stays in the old mode, reporting an error on any following
11343       // instructions as the mode does not exist on the target.
11344       Warning(Loc, Twine("new target does not support ") +
11345                        (WasThumb ? "thumb" : "arm") + " mode, switching to " +
11346                        (!WasThumb ? "thumb" : "arm") + " mode");
11347     }
11348   }
11349 }
11350 
11351 /// parseDirectiveArch
11352 ///  ::= .arch token
11353 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
11354   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
11355   ARM::ArchKind ID = ARM::parseArch(Arch);
11356 
11357   if (ID == ARM::ArchKind::INVALID)
11358     return Error(L, "Unknown arch name");
11359 
11360   bool WasThumb = isThumb();
11361   Triple T;
11362   MCSubtargetInfo &STI = copySTI();
11363   STI.setDefaultFeatures("", /*TuneCPU*/ "",
11364                          ("+" + ARM::getArchName(ID)).str());
11365   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11366   FixModeAfterArchChange(WasThumb, L);
11367 
11368   getTargetStreamer().emitArch(ID);
11369   return false;
11370 }
11371 
11372 /// parseDirectiveEabiAttr
11373 ///  ::= .eabi_attribute int, int [, "str"]
11374 ///  ::= .eabi_attribute Tag_name, int [, "str"]
11375 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
11376   MCAsmParser &Parser = getParser();
11377   int64_t Tag;
11378   SMLoc TagLoc;
11379   TagLoc = Parser.getTok().getLoc();
11380   if (Parser.getTok().is(AsmToken::Identifier)) {
11381     StringRef Name = Parser.getTok().getIdentifier();
11382     Optional<unsigned> Ret = ELFAttrs::attrTypeFromString(
11383         Name, ARMBuildAttrs::getARMAttributeTags());
11384     if (!Ret) {
11385       Error(TagLoc, "attribute name not recognised: " + Name);
11386       return false;
11387     }
11388     Tag = *Ret;
11389     Parser.Lex();
11390   } else {
11391     const MCExpr *AttrExpr;
11392 
11393     TagLoc = Parser.getTok().getLoc();
11394     if (Parser.parseExpression(AttrExpr))
11395       return true;
11396 
11397     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
11398     if (check(!CE, TagLoc, "expected numeric constant"))
11399       return true;
11400 
11401     Tag = CE->getValue();
11402   }
11403 
11404   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11405     return true;
11406 
11407   StringRef StringValue = "";
11408   bool IsStringValue = false;
11409 
11410   int64_t IntegerValue = 0;
11411   bool IsIntegerValue = false;
11412 
11413   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
11414     IsStringValue = true;
11415   else if (Tag == ARMBuildAttrs::compatibility) {
11416     IsStringValue = true;
11417     IsIntegerValue = true;
11418   } else if (Tag < 32 || Tag % 2 == 0)
11419     IsIntegerValue = true;
11420   else if (Tag % 2 == 1)
11421     IsStringValue = true;
11422   else
11423     llvm_unreachable("invalid tag type");
11424 
11425   if (IsIntegerValue) {
11426     const MCExpr *ValueExpr;
11427     SMLoc ValueExprLoc = Parser.getTok().getLoc();
11428     if (Parser.parseExpression(ValueExpr))
11429       return true;
11430 
11431     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
11432     if (!CE)
11433       return Error(ValueExprLoc, "expected numeric constant");
11434     IntegerValue = CE->getValue();
11435   }
11436 
11437   if (Tag == ARMBuildAttrs::compatibility) {
11438     if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11439       return true;
11440   }
11441 
11442   if (IsStringValue) {
11443     if (Parser.getTok().isNot(AsmToken::String))
11444       return Error(Parser.getTok().getLoc(), "bad string constant");
11445 
11446     StringValue = Parser.getTok().getStringContents();
11447     Parser.Lex();
11448   }
11449 
11450   if (Parser.parseEOL())
11451     return true;
11452 
11453   if (IsIntegerValue && IsStringValue) {
11454     assert(Tag == ARMBuildAttrs::compatibility);
11455     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
11456   } else if (IsIntegerValue)
11457     getTargetStreamer().emitAttribute(Tag, IntegerValue);
11458   else if (IsStringValue)
11459     getTargetStreamer().emitTextAttribute(Tag, StringValue);
11460   return false;
11461 }
11462 
11463 /// parseDirectiveCPU
11464 ///  ::= .cpu str
11465 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
11466   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
11467   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
11468 
11469   // FIXME: This is using table-gen data, but should be moved to
11470   // ARMTargetParser once that is table-gen'd.
11471   if (!getSTI().isCPUStringValid(CPU))
11472     return Error(L, "Unknown CPU name");
11473 
11474   bool WasThumb = isThumb();
11475   MCSubtargetInfo &STI = copySTI();
11476   STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
11477   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11478   FixModeAfterArchChange(WasThumb, L);
11479 
11480   return false;
11481 }
11482 
11483 /// parseDirectiveFPU
11484 ///  ::= .fpu str
11485 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
11486   SMLoc FPUNameLoc = getTok().getLoc();
11487   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
11488 
11489   unsigned ID = ARM::parseFPU(FPU);
11490   std::vector<StringRef> Features;
11491   if (!ARM::getFPUFeatures(ID, Features))
11492     return Error(FPUNameLoc, "Unknown FPU name");
11493 
11494   MCSubtargetInfo &STI = copySTI();
11495   for (auto Feature : Features)
11496     STI.ApplyFeatureFlag(Feature);
11497   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11498 
11499   getTargetStreamer().emitFPU(ID);
11500   return false;
11501 }
11502 
11503 /// parseDirectiveFnStart
11504 ///  ::= .fnstart
11505 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
11506   if (parseEOL())
11507     return true;
11508 
11509   if (UC.hasFnStart()) {
11510     Error(L, ".fnstart starts before the end of previous one");
11511     UC.emitFnStartLocNotes();
11512     return true;
11513   }
11514 
11515   // Reset the unwind directives parser state
11516   UC.reset();
11517 
11518   getTargetStreamer().emitFnStart();
11519 
11520   UC.recordFnStart(L);
11521   return false;
11522 }
11523 
11524 /// parseDirectiveFnEnd
11525 ///  ::= .fnend
11526 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
11527   if (parseEOL())
11528     return true;
11529   // Check the ordering of unwind directives
11530   if (!UC.hasFnStart())
11531     return Error(L, ".fnstart must precede .fnend directive");
11532 
11533   // Reset the unwind directives parser state
11534   getTargetStreamer().emitFnEnd();
11535 
11536   UC.reset();
11537   return false;
11538 }
11539 
11540 /// parseDirectiveCantUnwind
11541 ///  ::= .cantunwind
11542 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
11543   if (parseEOL())
11544     return true;
11545 
11546   UC.recordCantUnwind(L);
11547   // Check the ordering of unwind directives
11548   if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
11549     return true;
11550 
11551   if (UC.hasHandlerData()) {
11552     Error(L, ".cantunwind can't be used with .handlerdata directive");
11553     UC.emitHandlerDataLocNotes();
11554     return true;
11555   }
11556   if (UC.hasPersonality()) {
11557     Error(L, ".cantunwind can't be used with .personality directive");
11558     UC.emitPersonalityLocNotes();
11559     return true;
11560   }
11561 
11562   getTargetStreamer().emitCantUnwind();
11563   return false;
11564 }
11565 
11566 /// parseDirectivePersonality
11567 ///  ::= .personality name
11568 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
11569   MCAsmParser &Parser = getParser();
11570   bool HasExistingPersonality = UC.hasPersonality();
11571 
11572   // Parse the name of the personality routine
11573   if (Parser.getTok().isNot(AsmToken::Identifier))
11574     return Error(L, "unexpected input in .personality directive.");
11575   StringRef Name(Parser.getTok().getIdentifier());
11576   Parser.Lex();
11577 
11578   if (parseEOL())
11579     return true;
11580 
11581   UC.recordPersonality(L);
11582 
11583   // Check the ordering of unwind directives
11584   if (!UC.hasFnStart())
11585     return Error(L, ".fnstart must precede .personality directive");
11586   if (UC.cantUnwind()) {
11587     Error(L, ".personality can't be used with .cantunwind directive");
11588     UC.emitCantUnwindLocNotes();
11589     return true;
11590   }
11591   if (UC.hasHandlerData()) {
11592     Error(L, ".personality must precede .handlerdata directive");
11593     UC.emitHandlerDataLocNotes();
11594     return true;
11595   }
11596   if (HasExistingPersonality) {
11597     Error(L, "multiple personality directives");
11598     UC.emitPersonalityLocNotes();
11599     return true;
11600   }
11601 
11602   MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
11603   getTargetStreamer().emitPersonality(PR);
11604   return false;
11605 }
11606 
11607 /// parseDirectiveHandlerData
11608 ///  ::= .handlerdata
11609 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
11610   if (parseEOL())
11611     return true;
11612 
11613   UC.recordHandlerData(L);
11614   // Check the ordering of unwind directives
11615   if (!UC.hasFnStart())
11616     return Error(L, ".fnstart must precede .personality directive");
11617   if (UC.cantUnwind()) {
11618     Error(L, ".handlerdata can't be used with .cantunwind directive");
11619     UC.emitCantUnwindLocNotes();
11620     return true;
11621   }
11622 
11623   getTargetStreamer().emitHandlerData();
11624   return false;
11625 }
11626 
11627 /// parseDirectiveSetFP
11628 ///  ::= .setfp fpreg, spreg [, offset]
11629 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
11630   MCAsmParser &Parser = getParser();
11631   // Check the ordering of unwind directives
11632   if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
11633       check(UC.hasHandlerData(), L,
11634             ".setfp must precede .handlerdata directive"))
11635     return true;
11636 
11637   // Parse fpreg
11638   SMLoc FPRegLoc = Parser.getTok().getLoc();
11639   int FPReg = tryParseRegister();
11640 
11641   if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
11642       Parser.parseToken(AsmToken::Comma, "comma expected"))
11643     return true;
11644 
11645   // Parse spreg
11646   SMLoc SPRegLoc = Parser.getTok().getLoc();
11647   int SPReg = tryParseRegister();
11648   if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
11649       check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
11650             "register should be either $sp or the latest fp register"))
11651     return true;
11652 
11653   // Update the frame pointer register
11654   UC.saveFPReg(FPReg);
11655 
11656   // Parse offset
11657   int64_t Offset = 0;
11658   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11659     if (Parser.getTok().isNot(AsmToken::Hash) &&
11660         Parser.getTok().isNot(AsmToken::Dollar))
11661       return Error(Parser.getTok().getLoc(), "'#' expected");
11662     Parser.Lex(); // skip hash token.
11663 
11664     const MCExpr *OffsetExpr;
11665     SMLoc ExLoc = Parser.getTok().getLoc();
11666     SMLoc EndLoc;
11667     if (getParser().parseExpression(OffsetExpr, EndLoc))
11668       return Error(ExLoc, "malformed setfp offset");
11669     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11670     if (check(!CE, ExLoc, "setfp offset must be an immediate"))
11671       return true;
11672     Offset = CE->getValue();
11673   }
11674 
11675   if (Parser.parseToken(AsmToken::EndOfStatement))
11676     return true;
11677 
11678   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
11679                                 static_cast<unsigned>(SPReg), Offset);
11680   return false;
11681 }
11682 
11683 /// parseDirective
11684 ///  ::= .pad offset
11685 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
11686   MCAsmParser &Parser = getParser();
11687   // Check the ordering of unwind directives
11688   if (!UC.hasFnStart())
11689     return Error(L, ".fnstart must precede .pad directive");
11690   if (UC.hasHandlerData())
11691     return Error(L, ".pad must precede .handlerdata directive");
11692 
11693   // Parse the offset
11694   if (Parser.getTok().isNot(AsmToken::Hash) &&
11695       Parser.getTok().isNot(AsmToken::Dollar))
11696     return Error(Parser.getTok().getLoc(), "'#' expected");
11697   Parser.Lex(); // skip hash token.
11698 
11699   const MCExpr *OffsetExpr;
11700   SMLoc ExLoc = Parser.getTok().getLoc();
11701   SMLoc EndLoc;
11702   if (getParser().parseExpression(OffsetExpr, EndLoc))
11703     return Error(ExLoc, "malformed pad offset");
11704   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11705   if (!CE)
11706     return Error(ExLoc, "pad offset must be an immediate");
11707 
11708   if (parseEOL())
11709     return true;
11710 
11711   getTargetStreamer().emitPad(CE->getValue());
11712   return false;
11713 }
11714 
11715 /// parseDirectiveRegSave
11716 ///  ::= .save  { registers }
11717 ///  ::= .vsave { registers }
11718 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
11719   // Check the ordering of unwind directives
11720   if (!UC.hasFnStart())
11721     return Error(L, ".fnstart must precede .save or .vsave directives");
11722   if (UC.hasHandlerData())
11723     return Error(L, ".save or .vsave must precede .handlerdata directive");
11724 
11725   // RAII object to make sure parsed operands are deleted.
11726   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
11727 
11728   // Parse the register list
11729   if (parseRegisterList(Operands, true, true) || parseEOL())
11730     return true;
11731   ARMOperand &Op = (ARMOperand &)*Operands[0];
11732   if (!IsVector && !Op.isRegList())
11733     return Error(L, ".save expects GPR registers");
11734   if (IsVector && !Op.isDPRRegList())
11735     return Error(L, ".vsave expects DPR registers");
11736 
11737   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
11738   return false;
11739 }
11740 
11741 /// parseDirectiveInst
11742 ///  ::= .inst opcode [, ...]
11743 ///  ::= .inst.n opcode [, ...]
11744 ///  ::= .inst.w opcode [, ...]
11745 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
11746   int Width = 4;
11747 
11748   if (isThumb()) {
11749     switch (Suffix) {
11750     case 'n':
11751       Width = 2;
11752       break;
11753     case 'w':
11754       break;
11755     default:
11756       Width = 0;
11757       break;
11758     }
11759   } else {
11760     if (Suffix)
11761       return Error(Loc, "width suffixes are invalid in ARM mode");
11762   }
11763 
11764   auto parseOne = [&]() -> bool {
11765     const MCExpr *Expr;
11766     if (getParser().parseExpression(Expr))
11767       return true;
11768     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
11769     if (!Value) {
11770       return Error(Loc, "expected constant expression");
11771     }
11772 
11773     char CurSuffix = Suffix;
11774     switch (Width) {
11775     case 2:
11776       if (Value->getValue() > 0xffff)
11777         return Error(Loc, "inst.n operand is too big, use inst.w instead");
11778       break;
11779     case 4:
11780       if (Value->getValue() > 0xffffffff)
11781         return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
11782                               " operand is too big");
11783       break;
11784     case 0:
11785       // Thumb mode, no width indicated. Guess from the opcode, if possible.
11786       if (Value->getValue() < 0xe800)
11787         CurSuffix = 'n';
11788       else if (Value->getValue() >= 0xe8000000)
11789         CurSuffix = 'w';
11790       else
11791         return Error(Loc, "cannot determine Thumb instruction size, "
11792                           "use inst.n/inst.w instead");
11793       break;
11794     default:
11795       llvm_unreachable("only supported widths are 2 and 4");
11796     }
11797 
11798     getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
11799     return false;
11800   };
11801 
11802   if (parseOptionalToken(AsmToken::EndOfStatement))
11803     return Error(Loc, "expected expression following directive");
11804   if (parseMany(parseOne))
11805     return true;
11806   return false;
11807 }
11808 
11809 /// parseDirectiveLtorg
11810 ///  ::= .ltorg | .pool
11811 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
11812   if (parseEOL())
11813     return true;
11814   getTargetStreamer().emitCurrentConstantPool();
11815   return false;
11816 }
11817 
11818 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
11819   const MCSection *Section = getStreamer().getCurrentSectionOnly();
11820 
11821   if (parseEOL())
11822     return true;
11823 
11824   if (!Section) {
11825     getStreamer().initSections(false, getSTI());
11826     Section = getStreamer().getCurrentSectionOnly();
11827   }
11828 
11829   assert(Section && "must have section to emit alignment");
11830   if (Section->useCodeAlign())
11831     getStreamer().emitCodeAlignment(2, &getSTI());
11832   else
11833     getStreamer().emitValueToAlignment(2);
11834 
11835   return false;
11836 }
11837 
11838 /// parseDirectivePersonalityIndex
11839 ///   ::= .personalityindex index
11840 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
11841   MCAsmParser &Parser = getParser();
11842   bool HasExistingPersonality = UC.hasPersonality();
11843 
11844   const MCExpr *IndexExpression;
11845   SMLoc IndexLoc = Parser.getTok().getLoc();
11846   if (Parser.parseExpression(IndexExpression) || parseEOL()) {
11847     return true;
11848   }
11849 
11850   UC.recordPersonalityIndex(L);
11851 
11852   if (!UC.hasFnStart()) {
11853     return Error(L, ".fnstart must precede .personalityindex directive");
11854   }
11855   if (UC.cantUnwind()) {
11856     Error(L, ".personalityindex cannot be used with .cantunwind");
11857     UC.emitCantUnwindLocNotes();
11858     return true;
11859   }
11860   if (UC.hasHandlerData()) {
11861     Error(L, ".personalityindex must precede .handlerdata directive");
11862     UC.emitHandlerDataLocNotes();
11863     return true;
11864   }
11865   if (HasExistingPersonality) {
11866     Error(L, "multiple personality directives");
11867     UC.emitPersonalityLocNotes();
11868     return true;
11869   }
11870 
11871   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
11872   if (!CE)
11873     return Error(IndexLoc, "index must be a constant number");
11874   if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
11875     return Error(IndexLoc,
11876                  "personality routine index should be in range [0-3]");
11877 
11878   getTargetStreamer().emitPersonalityIndex(CE->getValue());
11879   return false;
11880 }
11881 
11882 /// parseDirectiveUnwindRaw
11883 ///   ::= .unwind_raw offset, opcode [, opcode...]
11884 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
11885   MCAsmParser &Parser = getParser();
11886   int64_t StackOffset;
11887   const MCExpr *OffsetExpr;
11888   SMLoc OffsetLoc = getLexer().getLoc();
11889 
11890   if (!UC.hasFnStart())
11891     return Error(L, ".fnstart must precede .unwind_raw directives");
11892   if (getParser().parseExpression(OffsetExpr))
11893     return Error(OffsetLoc, "expected expression");
11894 
11895   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11896   if (!CE)
11897     return Error(OffsetLoc, "offset must be a constant");
11898 
11899   StackOffset = CE->getValue();
11900 
11901   if (Parser.parseToken(AsmToken::Comma, "expected comma"))
11902     return true;
11903 
11904   SmallVector<uint8_t, 16> Opcodes;
11905 
11906   auto parseOne = [&]() -> bool {
11907     const MCExpr *OE = nullptr;
11908     SMLoc OpcodeLoc = getLexer().getLoc();
11909     if (check(getLexer().is(AsmToken::EndOfStatement) ||
11910                   Parser.parseExpression(OE),
11911               OpcodeLoc, "expected opcode expression"))
11912       return true;
11913     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
11914     if (!OC)
11915       return Error(OpcodeLoc, "opcode value must be a constant");
11916     const int64_t Opcode = OC->getValue();
11917     if (Opcode & ~0xff)
11918       return Error(OpcodeLoc, "invalid opcode");
11919     Opcodes.push_back(uint8_t(Opcode));
11920     return false;
11921   };
11922 
11923   // Must have at least 1 element
11924   SMLoc OpcodeLoc = getLexer().getLoc();
11925   if (parseOptionalToken(AsmToken::EndOfStatement))
11926     return Error(OpcodeLoc, "expected opcode expression");
11927   if (parseMany(parseOne))
11928     return true;
11929 
11930   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
11931   return false;
11932 }
11933 
11934 /// parseDirectiveTLSDescSeq
11935 ///   ::= .tlsdescseq tls-variable
11936 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
11937   MCAsmParser &Parser = getParser();
11938 
11939   if (getLexer().isNot(AsmToken::Identifier))
11940     return TokError("expected variable after '.tlsdescseq' directive");
11941 
11942   const MCSymbolRefExpr *SRE =
11943     MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
11944                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
11945   Lex();
11946 
11947   if (parseEOL())
11948     return true;
11949 
11950   getTargetStreamer().annotateTLSDescriptorSequence(SRE);
11951   return false;
11952 }
11953 
11954 /// parseDirectiveMovSP
11955 ///  ::= .movsp reg [, #offset]
11956 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
11957   MCAsmParser &Parser = getParser();
11958   if (!UC.hasFnStart())
11959     return Error(L, ".fnstart must precede .movsp directives");
11960   if (UC.getFPReg() != ARM::SP)
11961     return Error(L, "unexpected .movsp directive");
11962 
11963   SMLoc SPRegLoc = Parser.getTok().getLoc();
11964   int SPReg = tryParseRegister();
11965   if (SPReg == -1)
11966     return Error(SPRegLoc, "register expected");
11967   if (SPReg == ARM::SP || SPReg == ARM::PC)
11968     return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
11969 
11970   int64_t Offset = 0;
11971   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11972     if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
11973       return true;
11974 
11975     const MCExpr *OffsetExpr;
11976     SMLoc OffsetLoc = Parser.getTok().getLoc();
11977 
11978     if (Parser.parseExpression(OffsetExpr))
11979       return Error(OffsetLoc, "malformed offset expression");
11980 
11981     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11982     if (!CE)
11983       return Error(OffsetLoc, "offset must be an immediate constant");
11984 
11985     Offset = CE->getValue();
11986   }
11987 
11988   if (parseEOL())
11989     return true;
11990 
11991   getTargetStreamer().emitMovSP(SPReg, Offset);
11992   UC.saveFPReg(SPReg);
11993 
11994   return false;
11995 }
11996 
11997 /// parseDirectiveObjectArch
11998 ///   ::= .object_arch name
11999 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
12000   MCAsmParser &Parser = getParser();
12001   if (getLexer().isNot(AsmToken::Identifier))
12002     return Error(getLexer().getLoc(), "unexpected token");
12003 
12004   StringRef Arch = Parser.getTok().getString();
12005   SMLoc ArchLoc = Parser.getTok().getLoc();
12006   Lex();
12007 
12008   ARM::ArchKind ID = ARM::parseArch(Arch);
12009 
12010   if (ID == ARM::ArchKind::INVALID)
12011     return Error(ArchLoc, "unknown architecture '" + Arch + "'");
12012   if (parseToken(AsmToken::EndOfStatement))
12013     return true;
12014 
12015   getTargetStreamer().emitObjectArch(ID);
12016   return false;
12017 }
12018 
12019 /// parseDirectiveAlign
12020 ///   ::= .align
12021 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
12022   // NOTE: if this is not the end of the statement, fall back to the target
12023   // agnostic handling for this directive which will correctly handle this.
12024   if (parseOptionalToken(AsmToken::EndOfStatement)) {
12025     // '.align' is target specifically handled to mean 2**2 byte alignment.
12026     const MCSection *Section = getStreamer().getCurrentSectionOnly();
12027     assert(Section && "must have section to emit alignment");
12028     if (Section->useCodeAlign())
12029       getStreamer().emitCodeAlignment(4, &getSTI(), 0);
12030     else
12031       getStreamer().emitValueToAlignment(4, 0, 1, 0);
12032     return false;
12033   }
12034   return true;
12035 }
12036 
12037 /// parseDirectiveThumbSet
12038 ///  ::= .thumb_set name, value
12039 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
12040   MCAsmParser &Parser = getParser();
12041 
12042   StringRef Name;
12043   if (check(Parser.parseIdentifier(Name),
12044             "expected identifier after '.thumb_set'") ||
12045       parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
12046     return true;
12047 
12048   MCSymbol *Sym;
12049   const MCExpr *Value;
12050   if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
12051                                                Parser, Sym, Value))
12052     return true;
12053 
12054   getTargetStreamer().emitThumbSet(Sym, Value);
12055   return false;
12056 }
12057 
12058 /// parseDirectiveSEHAllocStack
12059 /// ::= .seh_stackalloc
12060 /// ::= .seh_stackalloc_w
12061 bool ARMAsmParser::parseDirectiveSEHAllocStack(SMLoc L, bool Wide) {
12062   int64_t Size;
12063   if (parseImmExpr(Size))
12064     return true;
12065   getTargetStreamer().emitARMWinCFIAllocStack(Size, Wide);
12066   return false;
12067 }
12068 
12069 /// parseDirectiveSEHSaveRegs
12070 /// ::= .seh_save_regs
12071 /// ::= .seh_save_regs_w
12072 bool ARMAsmParser::parseDirectiveSEHSaveRegs(SMLoc L, bool Wide) {
12073   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
12074 
12075   if (parseRegisterList(Operands) || parseEOL())
12076     return true;
12077   ARMOperand &Op = (ARMOperand &)*Operands[0];
12078   if (!Op.isRegList())
12079     return Error(L, ".seh_save_regs{_w} expects GPR registers");
12080   const SmallVectorImpl<unsigned> &RegList = Op.getRegList();
12081   uint32_t Mask = 0;
12082   for (size_t i = 0; i < RegList.size(); ++i) {
12083     unsigned Reg = MRI->getEncodingValue(RegList[i]);
12084     if (Reg == 15) // pc -> lr
12085       Reg = 14;
12086     if (Reg == 13)
12087       return Error(L, ".seh_save_regs{_w} can't include SP");
12088     assert(Reg < 16U && "Register out of range");
12089     unsigned Bit = (1u << Reg);
12090     Mask |= Bit;
12091   }
12092   if (!Wide && (Mask & 0x1f00) != 0)
12093     return Error(L,
12094                  ".seh_save_regs cannot save R8-R12, needs .seh_save_regs_w");
12095   getTargetStreamer().emitARMWinCFISaveRegMask(Mask, Wide);
12096   return false;
12097 }
12098 
12099 /// parseDirectiveSEHSaveSP
12100 /// ::= .seh_save_sp
12101 bool ARMAsmParser::parseDirectiveSEHSaveSP(SMLoc L) {
12102   int Reg = tryParseRegister();
12103   if (Reg == -1 || !MRI->getRegClass(ARM::GPRRegClassID).contains(Reg))
12104     return Error(L, "expected GPR");
12105   unsigned Index = MRI->getEncodingValue(Reg);
12106   if (Index > 14 || Index == 13)
12107     return Error(L, "invalid register for .seh_save_sp");
12108   getTargetStreamer().emitARMWinCFISaveSP(Index);
12109   return false;
12110 }
12111 
12112 /// parseDirectiveSEHSaveFRegs
12113 /// ::= .seh_save_fregs
12114 bool ARMAsmParser::parseDirectiveSEHSaveFRegs(SMLoc L) {
12115   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
12116 
12117   if (parseRegisterList(Operands) || parseEOL())
12118     return true;
12119   ARMOperand &Op = (ARMOperand &)*Operands[0];
12120   if (!Op.isDPRRegList())
12121     return Error(L, ".seh_save_fregs expects DPR registers");
12122   const SmallVectorImpl<unsigned> &RegList = Op.getRegList();
12123   uint32_t Mask = 0;
12124   for (size_t i = 0; i < RegList.size(); ++i) {
12125     unsigned Reg = MRI->getEncodingValue(RegList[i]);
12126     assert(Reg < 32U && "Register out of range");
12127     unsigned Bit = (1u << Reg);
12128     Mask |= Bit;
12129   }
12130 
12131   if (Mask == 0)
12132     return Error(L, ".seh_save_fregs missing registers");
12133 
12134   unsigned First = 0;
12135   while ((Mask & 1) == 0) {
12136     First++;
12137     Mask >>= 1;
12138   }
12139   if (((Mask + 1) & Mask) != 0)
12140     return Error(L,
12141                  ".seh_save_fregs must take a contiguous range of registers");
12142   unsigned Last = First;
12143   while ((Mask & 2) != 0) {
12144     Last++;
12145     Mask >>= 1;
12146   }
12147   if (First < 16 && Last >= 16)
12148     return Error(L, ".seh_save_fregs must be all d0-d15 or d16-d31");
12149   getTargetStreamer().emitARMWinCFISaveFRegs(First, Last);
12150   return false;
12151 }
12152 
12153 /// parseDirectiveSEHSaveLR
12154 /// ::= .seh_save_lr
12155 bool ARMAsmParser::parseDirectiveSEHSaveLR(SMLoc L) {
12156   int64_t Offset;
12157   if (parseImmExpr(Offset))
12158     return true;
12159   getTargetStreamer().emitARMWinCFISaveLR(Offset);
12160   return false;
12161 }
12162 
12163 /// parseDirectiveSEHPrologEnd
12164 /// ::= .seh_endprologue
12165 /// ::= .seh_endprologue_fragment
12166 bool ARMAsmParser::parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment) {
12167   getTargetStreamer().emitARMWinCFIPrologEnd(Fragment);
12168   return false;
12169 }
12170 
12171 /// parseDirectiveSEHNop
12172 /// ::= .seh_nop
12173 /// ::= .seh_nop_w
12174 bool ARMAsmParser::parseDirectiveSEHNop(SMLoc L, bool Wide) {
12175   getTargetStreamer().emitARMWinCFINop(Wide);
12176   return false;
12177 }
12178 
12179 /// parseDirectiveSEHEpilogStart
12180 /// ::= .seh_startepilogue
12181 /// ::= .seh_startepilogue_cond
12182 bool ARMAsmParser::parseDirectiveSEHEpilogStart(SMLoc L, bool Condition) {
12183   unsigned CC = ARMCC::AL;
12184   if (Condition) {
12185     MCAsmParser &Parser = getParser();
12186     SMLoc S = Parser.getTok().getLoc();
12187     const AsmToken &Tok = Parser.getTok();
12188     if (!Tok.is(AsmToken::Identifier))
12189       return Error(S, ".seh_startepilogue_cond missing condition");
12190     CC = ARMCondCodeFromString(Tok.getString());
12191     if (CC == ~0U)
12192       return Error(S, "invalid condition");
12193     Parser.Lex(); // Eat the token.
12194   }
12195 
12196   getTargetStreamer().emitARMWinCFIEpilogStart(CC);
12197   return false;
12198 }
12199 
12200 /// parseDirectiveSEHEpilogEnd
12201 /// ::= .seh_endepilogue
12202 bool ARMAsmParser::parseDirectiveSEHEpilogEnd(SMLoc L) {
12203   getTargetStreamer().emitARMWinCFIEpilogEnd();
12204   return false;
12205 }
12206 
12207 /// parseDirectiveSEHCustom
12208 /// ::= .seh_custom
12209 bool ARMAsmParser::parseDirectiveSEHCustom(SMLoc L) {
12210   unsigned Opcode = 0;
12211   do {
12212     int64_t Byte;
12213     if (parseImmExpr(Byte))
12214       return true;
12215     if (Byte > 0xff || Byte < 0)
12216       return Error(L, "Invalid byte value in .seh_custom");
12217     if (Opcode > 0x00ffffff)
12218       return Error(L, "Too many bytes in .seh_custom");
12219     // Store the bytes as one big endian number in Opcode. In a multi byte
12220     // opcode sequence, the first byte can't be zero.
12221     Opcode = (Opcode << 8) | Byte;
12222   } while (parseOptionalToken(AsmToken::Comma));
12223   getTargetStreamer().emitARMWinCFICustom(Opcode);
12224   return false;
12225 }
12226 
12227 /// Force static initialization.
12228 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() {
12229   RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
12230   RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
12231   RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
12232   RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
12233 }
12234 
12235 #define GET_REGISTER_MATCHER
12236 #define GET_SUBTARGET_FEATURE_NAME
12237 #define GET_MATCHER_IMPLEMENTATION
12238 #define GET_MNEMONIC_SPELL_CHECKER
12239 #include "ARMGenAsmMatcher.inc"
12240 
12241 // Some diagnostics need to vary with subtarget features, so they are handled
12242 // here. For example, the DPR class has either 16 or 32 registers, depending
12243 // on the FPU available.
12244 const char *
12245 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
12246   switch (MatchError) {
12247   // rGPR contains sp starting with ARMv8.
12248   case Match_rGPR:
12249     return hasV8Ops() ? "operand must be a register in range [r0, r14]"
12250                       : "operand must be a register in range [r0, r12] or r14";
12251   // DPR contains 16 registers for some FPUs, and 32 for others.
12252   case Match_DPR:
12253     return hasD32() ? "operand must be a register in range [d0, d31]"
12254                     : "operand must be a register in range [d0, d15]";
12255   case Match_DPR_RegList:
12256     return hasD32() ? "operand must be a list of registers in range [d0, d31]"
12257                     : "operand must be a list of registers in range [d0, d15]";
12258 
12259   // For all other diags, use the static string from tablegen.
12260   default:
12261     return getMatchKindDiag(MatchError);
12262   }
12263 }
12264 
12265 // Process the list of near-misses, throwing away ones we don't want to report
12266 // to the user, and converting the rest to a source location and string that
12267 // should be reported.
12268 void
12269 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
12270                                SmallVectorImpl<NearMissMessage> &NearMissesOut,
12271                                SMLoc IDLoc, OperandVector &Operands) {
12272   // TODO: If operand didn't match, sub in a dummy one and run target
12273   // predicate, so that we can avoid reporting near-misses that are invalid?
12274   // TODO: Many operand types dont have SuperClasses set, so we report
12275   // redundant ones.
12276   // TODO: Some operands are superclasses of registers (e.g.
12277   // MCK_RegShiftedImm), we don't have any way to represent that currently.
12278   // TODO: This is not all ARM-specific, can some of it be factored out?
12279 
12280   // Record some information about near-misses that we have already seen, so
12281   // that we can avoid reporting redundant ones. For example, if there are
12282   // variants of an instruction that take 8- and 16-bit immediates, we want
12283   // to only report the widest one.
12284   std::multimap<unsigned, unsigned> OperandMissesSeen;
12285   SmallSet<FeatureBitset, 4> FeatureMissesSeen;
12286   bool ReportedTooFewOperands = false;
12287 
12288   // Process the near-misses in reverse order, so that we see more general ones
12289   // first, and so can avoid emitting more specific ones.
12290   for (NearMissInfo &I : reverse(NearMissesIn)) {
12291     switch (I.getKind()) {
12292     case NearMissInfo::NearMissOperand: {
12293       SMLoc OperandLoc =
12294           ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
12295       const char *OperandDiag =
12296           getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
12297 
12298       // If we have already emitted a message for a superclass, don't also report
12299       // the sub-class. We consider all operand classes that we don't have a
12300       // specialised diagnostic for to be equal for the propose of this check,
12301       // so that we don't report the generic error multiple times on the same
12302       // operand.
12303       unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
12304       auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
12305       if (std::any_of(PrevReports.first, PrevReports.second,
12306                       [DupCheckMatchClass](
12307                           const std::pair<unsigned, unsigned> Pair) {
12308             if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
12309               return Pair.second == DupCheckMatchClass;
12310             else
12311               return isSubclass((MatchClassKind)DupCheckMatchClass,
12312                                 (MatchClassKind)Pair.second);
12313           }))
12314         break;
12315       OperandMissesSeen.insert(
12316           std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
12317 
12318       NearMissMessage Message;
12319       Message.Loc = OperandLoc;
12320       if (OperandDiag) {
12321         Message.Message = OperandDiag;
12322       } else if (I.getOperandClass() == InvalidMatchClass) {
12323         Message.Message = "too many operands for instruction";
12324       } else {
12325         Message.Message = "invalid operand for instruction";
12326         LLVM_DEBUG(
12327             dbgs() << "Missing diagnostic string for operand class "
12328                    << getMatchClassName((MatchClassKind)I.getOperandClass())
12329                    << I.getOperandClass() << ", error " << I.getOperandError()
12330                    << ", opcode " << MII.getName(I.getOpcode()) << "\n");
12331       }
12332       NearMissesOut.emplace_back(Message);
12333       break;
12334     }
12335     case NearMissInfo::NearMissFeature: {
12336       const FeatureBitset &MissingFeatures = I.getFeatures();
12337       // Don't report the same set of features twice.
12338       if (FeatureMissesSeen.count(MissingFeatures))
12339         break;
12340       FeatureMissesSeen.insert(MissingFeatures);
12341 
12342       // Special case: don't report a feature set which includes arm-mode for
12343       // targets that don't have ARM mode.
12344       if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
12345         break;
12346       // Don't report any near-misses that both require switching instruction
12347       // set, and adding other subtarget features.
12348       if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
12349           MissingFeatures.count() > 1)
12350         break;
12351       if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
12352           MissingFeatures.count() > 1)
12353         break;
12354       if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
12355           (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
12356                                              Feature_IsThumbBit})).any())
12357         break;
12358       if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
12359         break;
12360 
12361       NearMissMessage Message;
12362       Message.Loc = IDLoc;
12363       raw_svector_ostream OS(Message.Message);
12364 
12365       OS << "instruction requires:";
12366       for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
12367         if (MissingFeatures.test(i))
12368           OS << ' ' << getSubtargetFeatureName(i);
12369 
12370       NearMissesOut.emplace_back(Message);
12371 
12372       break;
12373     }
12374     case NearMissInfo::NearMissPredicate: {
12375       NearMissMessage Message;
12376       Message.Loc = IDLoc;
12377       switch (I.getPredicateError()) {
12378       case Match_RequiresNotITBlock:
12379         Message.Message = "flag setting instruction only valid outside IT block";
12380         break;
12381       case Match_RequiresITBlock:
12382         Message.Message = "instruction only valid inside IT block";
12383         break;
12384       case Match_RequiresV6:
12385         Message.Message = "instruction variant requires ARMv6 or later";
12386         break;
12387       case Match_RequiresThumb2:
12388         Message.Message = "instruction variant requires Thumb2";
12389         break;
12390       case Match_RequiresV8:
12391         Message.Message = "instruction variant requires ARMv8 or later";
12392         break;
12393       case Match_RequiresFlagSetting:
12394         Message.Message = "no flag-preserving variant of this instruction available";
12395         break;
12396       case Match_InvalidOperand:
12397         Message.Message = "invalid operand for instruction";
12398         break;
12399       default:
12400         llvm_unreachable("Unhandled target predicate error");
12401         break;
12402       }
12403       NearMissesOut.emplace_back(Message);
12404       break;
12405     }
12406     case NearMissInfo::NearMissTooFewOperands: {
12407       if (!ReportedTooFewOperands) {
12408         SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
12409         NearMissesOut.emplace_back(NearMissMessage{
12410             EndLoc, StringRef("too few operands for instruction")});
12411         ReportedTooFewOperands = true;
12412       }
12413       break;
12414     }
12415     case NearMissInfo::NoNearMiss:
12416       // This should never leave the matcher.
12417       llvm_unreachable("not a near-miss");
12418       break;
12419     }
12420   }
12421 }
12422 
12423 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
12424                                     SMLoc IDLoc, OperandVector &Operands) {
12425   SmallVector<NearMissMessage, 4> Messages;
12426   FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
12427 
12428   if (Messages.size() == 0) {
12429     // No near-misses were found, so the best we can do is "invalid
12430     // instruction".
12431     Error(IDLoc, "invalid instruction");
12432   } else if (Messages.size() == 1) {
12433     // One near miss was found, report it as the sole error.
12434     Error(Messages[0].Loc, Messages[0].Message);
12435   } else {
12436     // More than one near miss, so report a generic "invalid instruction"
12437     // error, followed by notes for each of the near-misses.
12438     Error(IDLoc, "invalid instruction, any one of the following would fix this:");
12439     for (auto &M : Messages) {
12440       Note(M.Loc, M.Message);
12441     }
12442   }
12443 }
12444 
12445 bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) {
12446   // FIXME: This structure should be moved inside ARMTargetParser
12447   // when we start to table-generate them, and we can use the ARM
12448   // flags below, that were generated by table-gen.
12449   static const struct {
12450     const uint64_t Kind;
12451     const FeatureBitset ArchCheck;
12452     const FeatureBitset Features;
12453   } Extensions[] = {
12454       {ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC}},
12455       {ARM::AEK_AES,
12456        {Feature_HasV8Bit},
12457        {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12458       {ARM::AEK_SHA2,
12459        {Feature_HasV8Bit},
12460        {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12461       {ARM::AEK_CRYPTO,
12462        {Feature_HasV8Bit},
12463        {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12464       {ARM::AEK_FP,
12465        {Feature_HasV8Bit},
12466        {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12467       {(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
12468        {Feature_HasV7Bit, Feature_IsNotMClassBit},
12469        {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}},
12470       {ARM::AEK_MP,
12471        {Feature_HasV7Bit, Feature_IsNotMClassBit},
12472        {ARM::FeatureMP}},
12473       {ARM::AEK_SIMD,
12474        {Feature_HasV8Bit},
12475        {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12476       {ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone}},
12477       // FIXME: Only available in A-class, isel not predicated
12478       {ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization}},
12479       {ARM::AEK_FP16,
12480        {Feature_HasV8_2aBit},
12481        {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}},
12482       {ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS}},
12483       {ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB}},
12484       {ARM::AEK_PACBTI, {Feature_HasV8_1MMainlineBit}, {ARM::FeaturePACBTI}},
12485       // FIXME: Unsupported extensions.
12486       {ARM::AEK_OS, {}, {}},
12487       {ARM::AEK_IWMMXT, {}, {}},
12488       {ARM::AEK_IWMMXT2, {}, {}},
12489       {ARM::AEK_MAVERICK, {}, {}},
12490       {ARM::AEK_XSCALE, {}, {}},
12491   };
12492   bool EnableFeature = true;
12493   if (Name.startswith_insensitive("no")) {
12494     EnableFeature = false;
12495     Name = Name.substr(2);
12496   }
12497   uint64_t FeatureKind = ARM::parseArchExt(Name);
12498   if (FeatureKind == ARM::AEK_INVALID)
12499     return Error(ExtLoc, "unknown architectural extension: " + Name);
12500 
12501   for (const auto &Extension : Extensions) {
12502     if (Extension.Kind != FeatureKind)
12503       continue;
12504 
12505     if (Extension.Features.none())
12506       return Error(ExtLoc, "unsupported architectural extension: " + Name);
12507 
12508     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
12509       return Error(ExtLoc, "architectural extension '" + Name +
12510                                "' is not "
12511                                "allowed for the current base architecture");
12512 
12513     MCSubtargetInfo &STI = copySTI();
12514     if (EnableFeature) {
12515       STI.SetFeatureBitsTransitively(Extension.Features);
12516     } else {
12517       STI.ClearFeatureBitsTransitively(Extension.Features);
12518     }
12519     FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
12520     setAvailableFeatures(Features);
12521     return true;
12522   }
12523   return false;
12524 }
12525 
12526 /// parseDirectiveArchExtension
12527 ///   ::= .arch_extension [no]feature
12528 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
12529 
12530   MCAsmParser &Parser = getParser();
12531 
12532   if (getLexer().isNot(AsmToken::Identifier))
12533     return Error(getLexer().getLoc(), "expected architecture extension name");
12534 
12535   StringRef Name = Parser.getTok().getString();
12536   SMLoc ExtLoc = Parser.getTok().getLoc();
12537   Lex();
12538 
12539   if (parseEOL())
12540     return true;
12541 
12542   if (Name == "nocrypto") {
12543     enableArchExtFeature("nosha2", ExtLoc);
12544     enableArchExtFeature("noaes", ExtLoc);
12545   }
12546 
12547   if (enableArchExtFeature(Name, ExtLoc))
12548     return false;
12549 
12550   return Error(ExtLoc, "unknown architectural extension: " + Name);
12551 }
12552 
12553 // Define this matcher function after the auto-generated include so we
12554 // have the match class enum definitions.
12555 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
12556                                                   unsigned Kind) {
12557   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
12558   // If the kind is a token for a literal immediate, check if our asm
12559   // operand matches. This is for InstAliases which have a fixed-value
12560   // immediate in the syntax.
12561   switch (Kind) {
12562   default: break;
12563   case MCK__HASH_0:
12564     if (Op.isImm())
12565       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12566         if (CE->getValue() == 0)
12567           return Match_Success;
12568     break;
12569   case MCK__HASH_8:
12570     if (Op.isImm())
12571       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12572         if (CE->getValue() == 8)
12573           return Match_Success;
12574     break;
12575   case MCK__HASH_16:
12576     if (Op.isImm())
12577       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12578         if (CE->getValue() == 16)
12579           return Match_Success;
12580     break;
12581   case MCK_ModImm:
12582     if (Op.isImm()) {
12583       const MCExpr *SOExpr = Op.getImm();
12584       int64_t Value;
12585       if (!SOExpr->evaluateAsAbsolute(Value))
12586         return Match_Success;
12587       assert((Value >= std::numeric_limits<int32_t>::min() &&
12588               Value <= std::numeric_limits<uint32_t>::max()) &&
12589              "expression value must be representable in 32 bits");
12590     }
12591     break;
12592   case MCK_rGPR:
12593     if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
12594       return Match_Success;
12595     return Match_rGPR;
12596   case MCK_GPRPair:
12597     if (Op.isReg() &&
12598         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
12599       return Match_Success;
12600     break;
12601   }
12602   return Match_InvalidOperand;
12603 }
12604 
12605 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
12606                                            StringRef ExtraToken) {
12607   if (!hasMVE())
12608     return false;
12609 
12610   return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
12611          Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
12612          Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
12613          Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
12614          Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
12615          Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
12616          Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
12617          Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
12618          Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
12619          Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
12620          Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
12621          Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
12622          Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
12623          Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
12624          Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
12625          Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
12626          Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
12627          Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
12628          Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
12629          Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
12630          Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
12631          Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
12632          Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
12633          Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
12634          Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
12635          Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
12636          Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
12637          Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
12638          Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
12639          Mnemonic.startswith("vqabs") ||
12640          (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
12641          Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
12642          Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
12643          Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
12644          Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
12645          Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
12646          Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
12647          Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
12648          Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
12649          Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
12650          Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
12651          Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
12652          Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
12653          Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
12654          Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
12655          Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
12656          Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
12657          Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
12658          Mnemonic.startswith("vldrb") ||
12659          (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
12660          (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
12661          Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
12662          Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
12663          Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
12664          Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
12665          Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
12666          Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
12667          Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
12668          Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
12669          Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
12670          Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
12671          Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
12672          Mnemonic.startswith("vcvt") ||
12673          MS.isVPTPredicableCDEInstr(Mnemonic) ||
12674          (Mnemonic.startswith("vmov") &&
12675           !(ExtraToken == ".f16" || ExtraToken == ".32" ||
12676             ExtraToken == ".16" || ExtraToken == ".8"));
12677 }
12678