1 //===- HexagonBitTracker.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonBitTracker.h"
10 #include "Hexagon.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/CodeGen/MachineFrameInfo.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/IR/Argument.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstdlib>
33 #include <utility>
34 #include <vector>
35 
36 using namespace llvm;
37 
38 using BT = BitTracker;
39 
40 HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
41                                    MachineRegisterInfo &mri,
42                                    const HexagonInstrInfo &tii,
43                                    MachineFunction &mf)
44     : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
45   // Populate the VRX map (VR to extension-type).
46   // Go over all the formal parameters of the function. If a given parameter
47   // P is sign- or zero-extended, locate the virtual register holding that
48   // parameter and create an entry in the VRX map indicating the type of ex-
49   // tension (and the source type).
50   // This is a bit complicated to do accurately, since the memory layout in-
51   // formation is necessary to precisely determine whether an aggregate para-
52   // meter will be passed in a register or in memory. What is given in MRI
53   // is the association between the physical register that is live-in (i.e.
54   // holds an argument), and the virtual register that this value will be
55   // copied into. This, by itself, is not sufficient to map back the virtual
56   // register to a formal parameter from Function (since consecutive live-ins
57   // from MRI may not correspond to consecutive formal parameters from Func-
58   // tion). To avoid the complications with in-memory arguments, only consi-
59   // der the initial sequence of formal parameters that are known to be
60   // passed via registers.
61   unsigned InVirtReg, InPhysReg = 0;
62 
63   for (const Argument &Arg : MF.getFunction().args()) {
64     Type *ATy = Arg.getType();
65     unsigned Width = 0;
66     if (ATy->isIntegerTy())
67       Width = ATy->getIntegerBitWidth();
68     else if (ATy->isPointerTy())
69       Width = 32;
70     // If pointer size is not set through target data, it will default to
71     // Module::AnyPointerSize.
72     if (Width == 0 || Width > 64)
73       break;
74     if (Arg.hasAttribute(Attribute::ByVal))
75       continue;
76     InPhysReg = getNextPhysReg(InPhysReg, Width);
77     if (!InPhysReg)
78       break;
79     InVirtReg = getVirtRegFor(InPhysReg);
80     if (!InVirtReg)
81       continue;
82     if (Arg.hasAttribute(Attribute::SExt))
83       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
84     else if (Arg.hasAttribute(Attribute::ZExt))
85       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
86   }
87 }
88 
89 BT::BitMask HexagonEvaluator::mask(Register Reg, unsigned Sub) const {
90   if (Sub == 0)
91     return MachineEvaluator::mask(Reg, 0);
92   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
93   unsigned ID = RC.getID();
94   uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
95   const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
96   bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
97   switch (ID) {
98     case Hexagon::DoubleRegsRegClassID:
99     case Hexagon::HvxWRRegClassID:
100     case Hexagon::HvxVQRRegClassID:
101       return IsSubLo ? BT::BitMask(0, RW-1)
102                      : BT::BitMask(RW, 2*RW-1);
103     default:
104       break;
105   }
106 #ifndef NDEBUG
107   dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
108          << TRI.getRegClassName(&RC) << '\n';
109 #endif
110   llvm_unreachable("Unexpected register/subregister");
111 }
112 
113 uint16_t HexagonEvaluator::getPhysRegBitWidth(MCRegister Reg) const {
114   using namespace Hexagon;
115   const auto &HST = MF.getSubtarget<HexagonSubtarget>();
116   if (HST.useHVXOps()) {
117     for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
118                      HvxVQRRegClass})
119       if (RC.contains(Reg))
120         return TRI.getRegSizeInBits(RC);
121   }
122   // Default treatment for other physical registers.
123   if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
124     return TRI.getRegSizeInBits(*RC);
125 
126   llvm_unreachable(
127       (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
128 }
129 
130 const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
131       const TargetRegisterClass &RC, unsigned Idx) const {
132   if (Idx == 0)
133     return RC;
134 
135 #ifndef NDEBUG
136   const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
137   bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
138   bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
139   assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
140 #endif
141 
142   switch (RC.getID()) {
143     case Hexagon::DoubleRegsRegClassID:
144       return Hexagon::IntRegsRegClass;
145     case Hexagon::HvxWRRegClassID:
146       return Hexagon::HvxVRRegClass;
147     case Hexagon::HvxVQRRegClassID:
148       return Hexagon::HvxWRRegClass;
149     default:
150       break;
151   }
152 #ifndef NDEBUG
153   dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
154 #endif
155   llvm_unreachable("Unimplemented combination of reg class/subreg idx");
156 }
157 
158 namespace {
159 
160 class RegisterRefs {
161   std::vector<BT::RegisterRef> Vector;
162 
163 public:
164   RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
165     for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
166       const MachineOperand &MO = MI.getOperand(i);
167       if (MO.isReg())
168         Vector[i] = BT::RegisterRef(MO);
169       // For indices that don't correspond to registers, the entry will
170       // remain constructed via the default constructor.
171     }
172   }
173 
174   size_t size() const { return Vector.size(); }
175 
176   const BT::RegisterRef &operator[](unsigned n) const {
177     // The main purpose of this operator is to assert with bad argument.
178     assert(n < Vector.size());
179     return Vector[n];
180   }
181 };
182 
183 } // end anonymous namespace
184 
185 bool HexagonEvaluator::evaluate(const MachineInstr &MI,
186                                 const CellMapType &Inputs,
187                                 CellMapType &Outputs) const {
188   using namespace Hexagon;
189 
190   unsigned NumDefs = 0;
191 
192   // Basic correctness check: there should not be any defs with subregisters.
193   for (const MachineOperand &MO : MI.operands()) {
194     if (!MO.isReg() || !MO.isDef())
195       continue;
196     NumDefs++;
197     assert(MO.getSubReg() == 0);
198   }
199 
200   if (NumDefs == 0)
201     return false;
202 
203   unsigned Opc = MI.getOpcode();
204 
205   if (MI.mayLoad()) {
206     switch (Opc) {
207       // These instructions may be marked as mayLoad, but they are generating
208       // immediate values, so skip them.
209       case CONST32:
210       case CONST64:
211         break;
212       default:
213         return evaluateLoad(MI, Inputs, Outputs);
214     }
215   }
216 
217   // Check COPY instructions that copy formal parameters into virtual
218   // registers. Such parameters can be sign- or zero-extended at the
219   // call site, and we should take advantage of this knowledge. The MRI
220   // keeps a list of pairs of live-in physical and virtual registers,
221   // which provides information about which virtual registers will hold
222   // the argument values. The function will still contain instructions
223   // defining those virtual registers, and in practice those are COPY
224   // instructions from a physical to a virtual register. In such cases,
225   // applying the argument extension to the virtual register can be seen
226   // as simply mirroring the extension that had already been applied to
227   // the physical register at the call site. If the defining instruction
228   // was not a COPY, it would not be clear how to mirror that extension
229   // on the callee's side. For that reason, only check COPY instructions
230   // for potential extensions.
231   if (MI.isCopy()) {
232     if (evaluateFormalCopy(MI, Inputs, Outputs))
233       return true;
234   }
235 
236   // Beyond this point, if any operand is a global, skip that instruction.
237   // The reason is that certain instructions that can take an immediate
238   // operand can also have a global symbol in that operand. To avoid
239   // checking what kind of operand a given instruction has individually
240   // for each instruction, do it here. Global symbols as operands gene-
241   // rally do not provide any useful information.
242   for (const MachineOperand &MO : MI.operands()) {
243     if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
244         MO.isCPI())
245       return false;
246   }
247 
248   RegisterRefs Reg(MI);
249 #define op(i) MI.getOperand(i)
250 #define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
251 #define im(i) MI.getOperand(i).getImm()
252 
253   // If the instruction has no register operands, skip it.
254   if (Reg.size() == 0)
255     return false;
256 
257   // Record result for register in operand 0.
258   auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
259         -> bool {
260     putCell(Reg[0], Val, Outputs);
261     return true;
262   };
263   // Get the cell corresponding to the N-th operand.
264   auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
265                                         uint16_t W) -> BT::RegisterCell {
266     const MachineOperand &Op = MI.getOperand(N);
267     if (Op.isImm())
268       return eIMM(Op.getImm(), W);
269     if (!Op.isReg())
270       return RegisterCell::self(0, W);
271     assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
272     return rc(N);
273   };
274   // Extract RW low bits of the cell.
275   auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
276         -> BT::RegisterCell {
277     assert(RW <= RC.width());
278     return eXTR(RC, 0, RW);
279   };
280   // Extract RW high bits of the cell.
281   auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
282         -> BT::RegisterCell {
283     uint16_t W = RC.width();
284     assert(RW <= W);
285     return eXTR(RC, W-RW, W);
286   };
287   // Extract N-th halfword (counting from the least significant position).
288   auto half = [this] (const BT::RegisterCell &RC, unsigned N)
289         -> BT::RegisterCell {
290     assert(N*16+16 <= RC.width());
291     return eXTR(RC, N*16, N*16+16);
292   };
293   // Shuffle bits (pick even/odd from cells and merge into result).
294   auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
295                          uint16_t BW, bool Odd) -> BT::RegisterCell {
296     uint16_t I = Odd, Ws = Rs.width();
297     assert(Ws == Rt.width());
298     RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
299     I += 2;
300     while (I*BW < Ws) {
301       RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
302       I += 2;
303     }
304     return RC;
305   };
306 
307   // The bitwidth of the 0th operand. In most (if not all) of the
308   // instructions below, the 0th operand is the defined register.
309   // Pre-compute the bitwidth here, because it is needed in many cases
310   // cases below.
311   uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
312 
313   // Register id of the 0th operand. It can be 0.
314   unsigned Reg0 = Reg[0].Reg;
315 
316   switch (Opc) {
317     // Transfer immediate:
318 
319     case A2_tfrsi:
320     case A2_tfrpi:
321     case CONST32:
322     case CONST64:
323       return rr0(eIMM(im(1), W0), Outputs);
324     case PS_false:
325       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
326     case PS_true:
327       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
328     case PS_fi: {
329       int FI = op(1).getIndex();
330       int Off = op(2).getImm();
331       unsigned A = MFI.getObjectAlign(FI).value() + std::abs(Off);
332       unsigned L = countTrailingZeros(A);
333       RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
334       RC.fill(0, L, BT::BitValue::Zero);
335       return rr0(RC, Outputs);
336     }
337 
338     // Transfer register:
339 
340     case A2_tfr:
341     case A2_tfrp:
342     case C2_pxfer_map:
343       return rr0(rc(1), Outputs);
344     case C2_tfrpr: {
345       uint16_t RW = W0;
346       uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
347       assert(PW <= RW);
348       RegisterCell PC = eXTR(rc(1), 0, PW);
349       RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
350       RC.fill(PW, RW, BT::BitValue::Zero);
351       return rr0(RC, Outputs);
352     }
353     case C2_tfrrp: {
354       uint16_t RW = W0;
355       uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
356       RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
357       RC.fill(PW, RW, BT::BitValue::Zero);
358       return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
359     }
360 
361     // Arithmetic:
362 
363     case A2_abs:
364     case A2_absp:
365       // TODO
366       break;
367 
368     case A2_addsp: {
369       uint16_t W1 = getRegBitWidth(Reg[1]);
370       assert(W0 == 64 && W1 == 32);
371       RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
372       RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
373       return rr0(RC, Outputs);
374     }
375     case A2_add:
376     case A2_addp:
377       return rr0(eADD(rc(1), rc(2)), Outputs);
378     case A2_addi:
379       return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
380     case S4_addi_asl_ri: {
381       RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
382       return rr0(RC, Outputs);
383     }
384     case S4_addi_lsr_ri: {
385       RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
386       return rr0(RC, Outputs);
387     }
388     case S4_addaddi: {
389       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
390       return rr0(RC, Outputs);
391     }
392     case M4_mpyri_addi: {
393       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
394       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
395       return rr0(RC, Outputs);
396     }
397     case M4_mpyrr_addi: {
398       RegisterCell M = eMLS(rc(2), rc(3));
399       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
400       return rr0(RC, Outputs);
401     }
402     case M4_mpyri_addr_u2: {
403       RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
404       RegisterCell RC = eADD(rc(1), lo(M, W0));
405       return rr0(RC, Outputs);
406     }
407     case M4_mpyri_addr: {
408       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
409       RegisterCell RC = eADD(rc(1), lo(M, W0));
410       return rr0(RC, Outputs);
411     }
412     case M4_mpyrr_addr: {
413       RegisterCell M = eMLS(rc(2), rc(3));
414       RegisterCell RC = eADD(rc(1), lo(M, W0));
415       return rr0(RC, Outputs);
416     }
417     case S4_subaddi: {
418       RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
419       return rr0(RC, Outputs);
420     }
421     case M2_accii: {
422       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
423       return rr0(RC, Outputs);
424     }
425     case M2_acci: {
426       RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
427       return rr0(RC, Outputs);
428     }
429     case M2_subacc: {
430       RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
431       return rr0(RC, Outputs);
432     }
433     case S2_addasl_rrri: {
434       RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
435       return rr0(RC, Outputs);
436     }
437     case C4_addipc: {
438       RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
439       RPC.fill(0, 2, BT::BitValue::Zero);
440       return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
441     }
442     case A2_sub:
443     case A2_subp:
444       return rr0(eSUB(rc(1), rc(2)), Outputs);
445     case A2_subri:
446       return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
447     case S4_subi_asl_ri: {
448       RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
449       return rr0(RC, Outputs);
450     }
451     case S4_subi_lsr_ri: {
452       RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
453       return rr0(RC, Outputs);
454     }
455     case M2_naccii: {
456       RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
457       return rr0(RC, Outputs);
458     }
459     case M2_nacci: {
460       RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
461       return rr0(RC, Outputs);
462     }
463     // 32-bit negation is done by "Rd = A2_subri 0, Rs"
464     case A2_negp:
465       return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
466 
467     case M2_mpy_up: {
468       RegisterCell M = eMLS(rc(1), rc(2));
469       return rr0(hi(M, W0), Outputs);
470     }
471     case M2_dpmpyss_s0:
472       return rr0(eMLS(rc(1), rc(2)), Outputs);
473     case M2_dpmpyss_acc_s0:
474       return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
475     case M2_dpmpyss_nac_s0:
476       return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
477     case M2_mpyi: {
478       RegisterCell M = eMLS(rc(1), rc(2));
479       return rr0(lo(M, W0), Outputs);
480     }
481     case M2_macsip: {
482       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
483       RegisterCell RC = eADD(rc(1), lo(M, W0));
484       return rr0(RC, Outputs);
485     }
486     case M2_macsin: {
487       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
488       RegisterCell RC = eSUB(rc(1), lo(M, W0));
489       return rr0(RC, Outputs);
490     }
491     case M2_maci: {
492       RegisterCell M = eMLS(rc(2), rc(3));
493       RegisterCell RC = eADD(rc(1), lo(M, W0));
494       return rr0(RC, Outputs);
495     }
496     case M2_mnaci: {
497       RegisterCell M = eMLS(rc(2), rc(3));
498       RegisterCell RC = eSUB(rc(1), lo(M, W0));
499       return rr0(RC, Outputs);
500     }
501     case M2_mpysmi: {
502       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
503       return rr0(lo(M, 32), Outputs);
504     }
505     case M2_mpysin: {
506       RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
507       return rr0(lo(M, 32), Outputs);
508     }
509     case M2_mpysip: {
510       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
511       return rr0(lo(M, 32), Outputs);
512     }
513     case M2_mpyu_up: {
514       RegisterCell M = eMLU(rc(1), rc(2));
515       return rr0(hi(M, W0), Outputs);
516     }
517     case M2_dpmpyuu_s0:
518       return rr0(eMLU(rc(1), rc(2)), Outputs);
519     case M2_dpmpyuu_acc_s0:
520       return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
521     case M2_dpmpyuu_nac_s0:
522       return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
523     //case M2_mpysu_up:
524 
525     // Logical/bitwise:
526 
527     case A2_andir:
528       return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
529     case A2_and:
530     case A2_andp:
531       return rr0(eAND(rc(1), rc(2)), Outputs);
532     case A4_andn:
533     case A4_andnp:
534       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
535     case S4_andi_asl_ri: {
536       RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
537       return rr0(RC, Outputs);
538     }
539     case S4_andi_lsr_ri: {
540       RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
541       return rr0(RC, Outputs);
542     }
543     case M4_and_and:
544       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
545     case M4_and_andn:
546       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
547     case M4_and_or:
548       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
549     case M4_and_xor:
550       return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
551     case A2_orir:
552       return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
553     case A2_or:
554     case A2_orp:
555       return rr0(eORL(rc(1), rc(2)), Outputs);
556     case A4_orn:
557     case A4_ornp:
558       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
559     case S4_ori_asl_ri: {
560       RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
561       return rr0(RC, Outputs);
562     }
563     case S4_ori_lsr_ri: {
564       RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
565       return rr0(RC, Outputs);
566     }
567     case M4_or_and:
568       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
569     case M4_or_andn:
570       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
571     case S4_or_andi:
572     case S4_or_andix: {
573       RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
574       return rr0(RC, Outputs);
575     }
576     case S4_or_ori: {
577       RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
578       return rr0(RC, Outputs);
579     }
580     case M4_or_or:
581       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
582     case M4_or_xor:
583       return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
584     case A2_xor:
585     case A2_xorp:
586       return rr0(eXOR(rc(1), rc(2)), Outputs);
587     case M4_xor_and:
588       return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
589     case M4_xor_andn:
590       return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
591     case M4_xor_or:
592       return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
593     case M4_xor_xacc:
594       return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
595     case A2_not:
596     case A2_notp:
597       return rr0(eNOT(rc(1)), Outputs);
598 
599     case S2_asl_i_r:
600     case S2_asl_i_p:
601       return rr0(eASL(rc(1), im(2)), Outputs);
602     case A2_aslh:
603       return rr0(eASL(rc(1), 16), Outputs);
604     case S2_asl_i_r_acc:
605     case S2_asl_i_p_acc:
606       return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
607     case S2_asl_i_r_nac:
608     case S2_asl_i_p_nac:
609       return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
610     case S2_asl_i_r_and:
611     case S2_asl_i_p_and:
612       return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
613     case S2_asl_i_r_or:
614     case S2_asl_i_p_or:
615       return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
616     case S2_asl_i_r_xacc:
617     case S2_asl_i_p_xacc:
618       return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
619     case S2_asl_i_vh:
620     case S2_asl_i_vw:
621       // TODO
622       break;
623 
624     case S2_asr_i_r:
625     case S2_asr_i_p:
626       return rr0(eASR(rc(1), im(2)), Outputs);
627     case A2_asrh:
628       return rr0(eASR(rc(1), 16), Outputs);
629     case S2_asr_i_r_acc:
630     case S2_asr_i_p_acc:
631       return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
632     case S2_asr_i_r_nac:
633     case S2_asr_i_p_nac:
634       return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
635     case S2_asr_i_r_and:
636     case S2_asr_i_p_and:
637       return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
638     case S2_asr_i_r_or:
639     case S2_asr_i_p_or:
640       return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
641     case S2_asr_i_r_rnd: {
642       // The input is first sign-extended to 64 bits, then the output
643       // is truncated back to 32 bits.
644       assert(W0 == 32);
645       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
646       RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
647       return rr0(eXTR(RC, 0, W0), Outputs);
648     }
649     case S2_asr_i_r_rnd_goodsyntax: {
650       int64_t S = im(2);
651       if (S == 0)
652         return rr0(rc(1), Outputs);
653       // Result: S2_asr_i_r_rnd Rs, u5-1
654       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
655       RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
656       return rr0(eXTR(RC, 0, W0), Outputs);
657     }
658     case S2_asr_r_vh:
659     case S2_asr_i_vw:
660     case S2_asr_i_svw_trun:
661       // TODO
662       break;
663 
664     case S2_lsr_i_r:
665     case S2_lsr_i_p:
666       return rr0(eLSR(rc(1), im(2)), Outputs);
667     case S2_lsr_i_r_acc:
668     case S2_lsr_i_p_acc:
669       return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
670     case S2_lsr_i_r_nac:
671     case S2_lsr_i_p_nac:
672       return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
673     case S2_lsr_i_r_and:
674     case S2_lsr_i_p_and:
675       return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
676     case S2_lsr_i_r_or:
677     case S2_lsr_i_p_or:
678       return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
679     case S2_lsr_i_r_xacc:
680     case S2_lsr_i_p_xacc:
681       return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
682 
683     case S2_clrbit_i: {
684       RegisterCell RC = rc(1);
685       RC[im(2)] = BT::BitValue::Zero;
686       return rr0(RC, Outputs);
687     }
688     case S2_setbit_i: {
689       RegisterCell RC = rc(1);
690       RC[im(2)] = BT::BitValue::One;
691       return rr0(RC, Outputs);
692     }
693     case S2_togglebit_i: {
694       RegisterCell RC = rc(1);
695       uint16_t BX = im(2);
696       RC[BX] = RC[BX].is(0) ? BT::BitValue::One
697                             : RC[BX].is(1) ? BT::BitValue::Zero
698                                            : BT::BitValue::self();
699       return rr0(RC, Outputs);
700     }
701 
702     case A4_bitspliti: {
703       uint16_t W1 = getRegBitWidth(Reg[1]);
704       uint16_t BX = im(2);
705       // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
706       const BT::BitValue Zero = BT::BitValue::Zero;
707       RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
708                                         .fill(W1+(W1-BX), W0, Zero);
709       RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
710       RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
711       return rr0(RC, Outputs);
712     }
713     case S4_extract:
714     case S4_extractp:
715     case S2_extractu:
716     case S2_extractup: {
717       uint16_t Wd = im(2), Of = im(3);
718       assert(Wd <= W0);
719       if (Wd == 0)
720         return rr0(eIMM(0, W0), Outputs);
721       // If the width extends beyond the register size, pad the register
722       // with 0 bits.
723       RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
724       RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
725       // Ext is short, need to extend it with 0s or sign bit.
726       RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
727       if (Opc == S2_extractu || Opc == S2_extractup)
728         return rr0(eZXT(RC, Wd), Outputs);
729       return rr0(eSXT(RC, Wd), Outputs);
730     }
731     case S2_insert:
732     case S2_insertp: {
733       uint16_t Wd = im(3), Of = im(4);
734       assert(Wd < W0 && Of < W0);
735       // If Wd+Of exceeds W0, the inserted bits are truncated.
736       if (Wd+Of > W0)
737         Wd = W0-Of;
738       if (Wd == 0)
739         return rr0(rc(1), Outputs);
740       return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
741     }
742 
743     // Bit permutations:
744 
745     case A2_combineii:
746     case A4_combineii:
747     case A4_combineir:
748     case A4_combineri:
749     case A2_combinew:
750     case V6_vcombine:
751       assert(W0 % 2 == 0);
752       return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
753     case A2_combine_ll:
754     case A2_combine_lh:
755     case A2_combine_hl:
756     case A2_combine_hh: {
757       assert(W0 == 32);
758       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
759       // Low half in the output is 0 for _ll and _hl, 1 otherwise:
760       unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
761       // High half in the output is 0 for _ll and _lh, 1 otherwise:
762       unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
763       RegisterCell R1 = rc(1);
764       RegisterCell R2 = rc(2);
765       RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
766       return rr0(RC, Outputs);
767     }
768     case S2_packhl: {
769       assert(W0 == 64);
770       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
771       RegisterCell R1 = rc(1);
772       RegisterCell R2 = rc(2);
773       RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
774                                    .cat(half(R1, 1));
775       return rr0(RC, Outputs);
776     }
777     case S2_shuffeb: {
778       RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
779       return rr0(RC, Outputs);
780     }
781     case S2_shuffeh: {
782       RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
783       return rr0(RC, Outputs);
784     }
785     case S2_shuffob: {
786       RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
787       return rr0(RC, Outputs);
788     }
789     case S2_shuffoh: {
790       RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
791       return rr0(RC, Outputs);
792     }
793     case C2_mask: {
794       uint16_t WR = W0;
795       uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
796       assert(WR == 64 && WP == 8);
797       RegisterCell R1 = rc(1);
798       RegisterCell RC(WR);
799       for (uint16_t i = 0; i < WP; ++i) {
800         const BT::BitValue &V = R1[i];
801         BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
802         RC.fill(i*8, i*8+8, F);
803       }
804       return rr0(RC, Outputs);
805     }
806 
807     // Mux:
808 
809     case C2_muxii:
810     case C2_muxir:
811     case C2_muxri:
812     case C2_mux: {
813       BT::BitValue PC0 = rc(1)[0];
814       RegisterCell R2 = cop(2, W0);
815       RegisterCell R3 = cop(3, W0);
816       if (PC0.is(0) || PC0.is(1))
817         return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
818       R2.meet(R3, Reg[0].Reg);
819       return rr0(R2, Outputs);
820     }
821     case C2_vmux:
822       // TODO
823       break;
824 
825     // Sign- and zero-extension:
826 
827     case A2_sxtb:
828       return rr0(eSXT(rc(1), 8), Outputs);
829     case A2_sxth:
830       return rr0(eSXT(rc(1), 16), Outputs);
831     case A2_sxtw: {
832       uint16_t W1 = getRegBitWidth(Reg[1]);
833       assert(W0 == 64 && W1 == 32);
834       RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
835       return rr0(RC, Outputs);
836     }
837     case A2_zxtb:
838       return rr0(eZXT(rc(1), 8), Outputs);
839     case A2_zxth:
840       return rr0(eZXT(rc(1), 16), Outputs);
841 
842     // Saturations
843 
844     case A2_satb:
845       return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
846     case A2_sath:
847       return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
848     case A2_satub:
849       return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
850     case A2_satuh:
851       return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
852 
853     // Bit count:
854 
855     case S2_cl0:
856     case S2_cl0p:
857       // Always produce a 32-bit result.
858       return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
859     case S2_cl1:
860     case S2_cl1p:
861       return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
862     case S2_clb:
863     case S2_clbp: {
864       uint16_t W1 = getRegBitWidth(Reg[1]);
865       RegisterCell R1 = rc(1);
866       BT::BitValue TV = R1[W1-1];
867       if (TV.is(0) || TV.is(1))
868         return rr0(eCLB(R1, TV, 32), Outputs);
869       break;
870     }
871     case S2_ct0:
872     case S2_ct0p:
873       return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
874     case S2_ct1:
875     case S2_ct1p:
876       return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
877     case S5_popcountp:
878       // TODO
879       break;
880 
881     case C2_all8: {
882       RegisterCell P1 = rc(1);
883       bool Has0 = false, All1 = true;
884       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
885         if (!P1[i].is(1))
886           All1 = false;
887         if (!P1[i].is(0))
888           continue;
889         Has0 = true;
890         break;
891       }
892       if (!Has0 && !All1)
893         break;
894       RegisterCell RC(W0);
895       RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
896       return rr0(RC, Outputs);
897     }
898     case C2_any8: {
899       RegisterCell P1 = rc(1);
900       bool Has1 = false, All0 = true;
901       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
902         if (!P1[i].is(0))
903           All0 = false;
904         if (!P1[i].is(1))
905           continue;
906         Has1 = true;
907         break;
908       }
909       if (!Has1 && !All0)
910         break;
911       RegisterCell RC(W0);
912       RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
913       return rr0(RC, Outputs);
914     }
915     case C2_and:
916       return rr0(eAND(rc(1), rc(2)), Outputs);
917     case C2_andn:
918       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
919     case C2_not:
920       return rr0(eNOT(rc(1)), Outputs);
921     case C2_or:
922       return rr0(eORL(rc(1), rc(2)), Outputs);
923     case C2_orn:
924       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
925     case C2_xor:
926       return rr0(eXOR(rc(1), rc(2)), Outputs);
927     case C4_and_and:
928       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
929     case C4_and_andn:
930       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
931     case C4_and_or:
932       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
933     case C4_and_orn:
934       return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
935     case C4_or_and:
936       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
937     case C4_or_andn:
938       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
939     case C4_or_or:
940       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
941     case C4_or_orn:
942       return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
943     case C2_bitsclr:
944     case C2_bitsclri:
945     case C2_bitsset:
946     case C4_nbitsclr:
947     case C4_nbitsclri:
948     case C4_nbitsset:
949       // TODO
950       break;
951     case S2_tstbit_i:
952     case S4_ntstbit_i: {
953       BT::BitValue V = rc(1)[im(2)];
954       if (V.is(0) || V.is(1)) {
955         // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
956         bool TV = (Opc == S2_tstbit_i);
957         BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
958         return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
959       }
960       break;
961     }
962 
963     default:
964       // For instructions that define a single predicate registers, store
965       // the low 8 bits of the register only.
966       if (unsigned DefR = getUniqueDefVReg(MI)) {
967         if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
968           BT::RegisterRef PD(DefR, 0);
969           uint16_t RW = getRegBitWidth(PD);
970           uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
971           RegisterCell RC = RegisterCell::self(DefR, RW);
972           RC.fill(PW, RW, BT::BitValue::Zero);
973           putCell(PD, RC, Outputs);
974           return true;
975         }
976       }
977       return MachineEvaluator::evaluate(MI, Inputs, Outputs);
978   }
979   #undef im
980   #undef rc
981   #undef op
982   return false;
983 }
984 
985 bool HexagonEvaluator::evaluate(const MachineInstr &BI,
986                                 const CellMapType &Inputs,
987                                 BranchTargetList &Targets,
988                                 bool &FallsThru) const {
989   // We need to evaluate one branch at a time. TII::analyzeBranch checks
990   // all the branches in a basic block at once, so we cannot use it.
991   unsigned Opc = BI.getOpcode();
992   bool SimpleBranch = false;
993   bool Negated = false;
994   switch (Opc) {
995     case Hexagon::J2_jumpf:
996     case Hexagon::J2_jumpfpt:
997     case Hexagon::J2_jumpfnew:
998     case Hexagon::J2_jumpfnewpt:
999       Negated = true;
1000       LLVM_FALLTHROUGH;
1001     case Hexagon::J2_jumpt:
1002     case Hexagon::J2_jumptpt:
1003     case Hexagon::J2_jumptnew:
1004     case Hexagon::J2_jumptnewpt:
1005       // Simple branch:  if([!]Pn) jump ...
1006       // i.e. Op0 = predicate, Op1 = branch target.
1007       SimpleBranch = true;
1008       break;
1009     case Hexagon::J2_jump:
1010       Targets.insert(BI.getOperand(0).getMBB());
1011       FallsThru = false;
1012       return true;
1013     default:
1014       // If the branch is of unknown type, assume that all successors are
1015       // executable.
1016       return false;
1017   }
1018 
1019   if (!SimpleBranch)
1020     return false;
1021 
1022   // BI is a conditional branch if we got here.
1023   RegisterRef PR = BI.getOperand(0);
1024   RegisterCell PC = getCell(PR, Inputs);
1025   const BT::BitValue &Test = PC[0];
1026 
1027   // If the condition is neither true nor false, then it's unknown.
1028   if (!Test.is(0) && !Test.is(1))
1029     return false;
1030 
1031   // "Test.is(!Negated)" means "branch condition is true".
1032   if (!Test.is(!Negated)) {
1033     // Condition known to be false.
1034     FallsThru = true;
1035     return true;
1036   }
1037 
1038   Targets.insert(BI.getOperand(1).getMBB());
1039   FallsThru = false;
1040   return true;
1041 }
1042 
1043 unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
1044   unsigned DefReg = 0;
1045   for (const MachineOperand &Op : MI.operands()) {
1046     if (!Op.isReg() || !Op.isDef())
1047       continue;
1048     Register R = Op.getReg();
1049     if (!R.isVirtual())
1050       continue;
1051     if (DefReg != 0)
1052       return 0;
1053     DefReg = R;
1054   }
1055   return DefReg;
1056 }
1057 
1058 bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
1059                                     const CellMapType &Inputs,
1060                                     CellMapType &Outputs) const {
1061   using namespace Hexagon;
1062 
1063   if (TII.isPredicated(MI))
1064     return false;
1065   assert(MI.mayLoad() && "A load that mayn't?");
1066   unsigned Opc = MI.getOpcode();
1067 
1068   uint16_t BitNum;
1069   bool SignEx;
1070 
1071   switch (Opc) {
1072     default:
1073       return false;
1074 
1075 #if 0
1076     // memb_fifo
1077     case L2_loadalignb_pbr:
1078     case L2_loadalignb_pcr:
1079     case L2_loadalignb_pi:
1080     // memh_fifo
1081     case L2_loadalignh_pbr:
1082     case L2_loadalignh_pcr:
1083     case L2_loadalignh_pi:
1084     // membh
1085     case L2_loadbsw2_pbr:
1086     case L2_loadbsw2_pci:
1087     case L2_loadbsw2_pcr:
1088     case L2_loadbsw2_pi:
1089     case L2_loadbsw4_pbr:
1090     case L2_loadbsw4_pci:
1091     case L2_loadbsw4_pcr:
1092     case L2_loadbsw4_pi:
1093     // memubh
1094     case L2_loadbzw2_pbr:
1095     case L2_loadbzw2_pci:
1096     case L2_loadbzw2_pcr:
1097     case L2_loadbzw2_pi:
1098     case L2_loadbzw4_pbr:
1099     case L2_loadbzw4_pci:
1100     case L2_loadbzw4_pcr:
1101     case L2_loadbzw4_pi:
1102 #endif
1103 
1104     case L2_loadrbgp:
1105     case L2_loadrb_io:
1106     case L2_loadrb_pbr:
1107     case L2_loadrb_pci:
1108     case L2_loadrb_pcr:
1109     case L2_loadrb_pi:
1110     case PS_loadrbabs:
1111     case L4_loadrb_ap:
1112     case L4_loadrb_rr:
1113     case L4_loadrb_ur:
1114       BitNum = 8;
1115       SignEx = true;
1116       break;
1117 
1118     case L2_loadrubgp:
1119     case L2_loadrub_io:
1120     case L2_loadrub_pbr:
1121     case L2_loadrub_pci:
1122     case L2_loadrub_pcr:
1123     case L2_loadrub_pi:
1124     case PS_loadrubabs:
1125     case L4_loadrub_ap:
1126     case L4_loadrub_rr:
1127     case L4_loadrub_ur:
1128       BitNum = 8;
1129       SignEx = false;
1130       break;
1131 
1132     case L2_loadrhgp:
1133     case L2_loadrh_io:
1134     case L2_loadrh_pbr:
1135     case L2_loadrh_pci:
1136     case L2_loadrh_pcr:
1137     case L2_loadrh_pi:
1138     case PS_loadrhabs:
1139     case L4_loadrh_ap:
1140     case L4_loadrh_rr:
1141     case L4_loadrh_ur:
1142       BitNum = 16;
1143       SignEx = true;
1144       break;
1145 
1146     case L2_loadruhgp:
1147     case L2_loadruh_io:
1148     case L2_loadruh_pbr:
1149     case L2_loadruh_pci:
1150     case L2_loadruh_pcr:
1151     case L2_loadruh_pi:
1152     case L4_loadruh_rr:
1153     case PS_loadruhabs:
1154     case L4_loadruh_ap:
1155     case L4_loadruh_ur:
1156       BitNum = 16;
1157       SignEx = false;
1158       break;
1159 
1160     case L2_loadrigp:
1161     case L2_loadri_io:
1162     case L2_loadri_pbr:
1163     case L2_loadri_pci:
1164     case L2_loadri_pcr:
1165     case L2_loadri_pi:
1166     case L2_loadw_locked:
1167     case PS_loadriabs:
1168     case L4_loadri_ap:
1169     case L4_loadri_rr:
1170     case L4_loadri_ur:
1171     case LDriw_pred:
1172       BitNum = 32;
1173       SignEx = true;
1174       break;
1175 
1176     case L2_loadrdgp:
1177     case L2_loadrd_io:
1178     case L2_loadrd_pbr:
1179     case L2_loadrd_pci:
1180     case L2_loadrd_pcr:
1181     case L2_loadrd_pi:
1182     case L4_loadd_locked:
1183     case PS_loadrdabs:
1184     case L4_loadrd_ap:
1185     case L4_loadrd_rr:
1186     case L4_loadrd_ur:
1187       BitNum = 64;
1188       SignEx = true;
1189       break;
1190   }
1191 
1192   const MachineOperand &MD = MI.getOperand(0);
1193   assert(MD.isReg() && MD.isDef());
1194   RegisterRef RD = MD;
1195 
1196   uint16_t W = getRegBitWidth(RD);
1197   assert(W >= BitNum && BitNum > 0);
1198   RegisterCell Res(W);
1199 
1200   for (uint16_t i = 0; i < BitNum; ++i)
1201     Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1202 
1203   if (SignEx) {
1204     const BT::BitValue &Sign = Res[BitNum-1];
1205     for (uint16_t i = BitNum; i < W; ++i)
1206       Res[i] = BT::BitValue::ref(Sign);
1207   } else {
1208     for (uint16_t i = BitNum; i < W; ++i)
1209       Res[i] = BT::BitValue::Zero;
1210   }
1211 
1212   putCell(RD, Res, Outputs);
1213   return true;
1214 }
1215 
1216 bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1217                                           const CellMapType &Inputs,
1218                                           CellMapType &Outputs) const {
1219   // If MI defines a formal parameter, but is not a copy (loads are handled
1220   // in evaluateLoad), then it's not clear what to do.
1221   assert(MI.isCopy());
1222 
1223   RegisterRef RD = MI.getOperand(0);
1224   RegisterRef RS = MI.getOperand(1);
1225   assert(RD.Sub == 0);
1226   if (!Register::isPhysicalRegister(RS.Reg))
1227     return false;
1228   RegExtMap::const_iterator F = VRX.find(RD.Reg);
1229   if (F == VRX.end())
1230     return false;
1231 
1232   uint16_t EW = F->second.Width;
1233   // Store RD's cell into the map. This will associate the cell with a virtual
1234   // register, and make zero-/sign-extends possible (otherwise we would be ex-
1235   // tending "self" bit values, which will have no effect, since "self" values
1236   // cannot be references to anything).
1237   putCell(RD, getCell(RS, Inputs), Outputs);
1238 
1239   RegisterCell Res;
1240   // Read RD's cell from the outputs instead of RS's cell from the inputs:
1241   if (F->second.Type == ExtType::SExt)
1242     Res = eSXT(getCell(RD, Outputs), EW);
1243   else if (F->second.Type == ExtType::ZExt)
1244     Res = eZXT(getCell(RD, Outputs), EW);
1245 
1246   putCell(RD, Res, Outputs);
1247   return true;
1248 }
1249 
1250 unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1251   using namespace Hexagon;
1252 
1253   bool Is64 = DoubleRegsRegClass.contains(PReg);
1254   assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1255 
1256   static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1257   static const unsigned Phys64[] = { D0, D1, D2 };
1258   const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1259   const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1260 
1261   // Return the first parameter register of the required width.
1262   if (PReg == 0)
1263     return (Width <= 32) ? Phys32[0] : Phys64[0];
1264 
1265   // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1266   // next register.
1267   unsigned Idx32 = 0, Idx64 = 0;
1268   if (!Is64) {
1269     while (Idx32 < Num32) {
1270       if (Phys32[Idx32] == PReg)
1271         break;
1272       Idx32++;
1273     }
1274     Idx64 = Idx32/2;
1275   } else {
1276     while (Idx64 < Num64) {
1277       if (Phys64[Idx64] == PReg)
1278         break;
1279       Idx64++;
1280     }
1281     Idx32 = Idx64*2+1;
1282   }
1283 
1284   if (Width <= 32)
1285     return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1286   return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1287 }
1288 
1289 unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1290   for (std::pair<unsigned,unsigned> P : MRI.liveins())
1291     if (P.first == PReg)
1292       return P.second;
1293   return 0;
1294 }
1295