1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachinePostDominators.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCDwarf.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <map>
63 #include <utility>
64 #include <vector>
65 
66 #define DEBUG_TYPE "hexagon-pei"
67 
68 // Hexagon stack frame layout as defined by the ABI:
69 //
70 //                                                       Incoming arguments
71 //                                                       passed via stack
72 //                                                                      |
73 //                                                                      |
74 //        SP during function's                 FP during function's     |
75 //    +-- runtime (top of stack)               runtime (bottom) --+     |
76 //    |                                                           |     |
77 // --++---------------------+------------------+-----------------++-+-------
78 //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
79 //   |   called functions   |  local objects   |  local objects  |FP|
80 // --+----------------------+------------------+-----------------+--+-------
81 //    <-    size known    -> <- size unknown -> <- size known  ->
82 //
83 // Low address                                                 High address
84 //
85 // <--- stack growth
86 //
87 //
88 // - In any circumstances, the outgoing function arguments are always accessi-
89 //   ble using the SP, and the incoming arguments are accessible using the FP.
90 // - If the local objects are not aligned, they can always be accessed using
91 //   the FP.
92 // - If there are no variable-sized objects, the local objects can always be
93 //   accessed using the SP, regardless whether they are aligned or not. (The
94 //   alignment padding will be at the bottom of the stack (highest address),
95 //   and so the offset with respect to the SP will be known at the compile-
96 //   -time.)
97 //
98 // The only complication occurs if there are both, local aligned objects, and
99 // dynamically allocated (variable-sized) objects. The alignment pad will be
100 // placed between the FP and the local objects, thus preventing the use of the
101 // FP to access the local objects. At the same time, the variable-sized objects
102 // will be between the SP and the local objects, thus introducing an unknown
103 // distance from the SP to the locals.
104 //
105 // To avoid this problem, a new register is created that holds the aligned
106 // address of the bottom of the stack, referred in the sources as AP (aligned
107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
108 // that aligns AP to the required boundary (a maximum of the alignments of
109 // all stack objects, fixed- and variable-sized). All local objects[1] will
110 // then use AP as the base pointer.
111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
112 // their name from being allocated at fixed locations on the stack, relative
113 // to the FP. In the presence of dynamic allocation and local alignment, such
114 // objects can only be accessed through the FP.
115 //
116 // Illustration of the AP:
117 //                                                                FP --+
118 //                                                                     |
119 // ---------------+---------------------+-----+-----------------------++-+--
120 //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
121 //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
122 // ---------------+---------------------+-----+-----------------+-----+--+--
123 //                                      |<-- Multiple of the -->|
124 //                                           stack alignment    +-- AP
125 //
126 // The AP is set up at the beginning of the function. Since it is not a dedi-
127 // cated (reserved) register, it needs to be kept live throughout the function
128 // to be available as the base register for local object accesses.
129 // Normally, an address of a stack objects is obtained by a pseudo-instruction
130 // PS_fi. To access local objects with the AP register present, a different
131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
132 // argument compared to PS_fi: the first input register is the AP register.
133 // This keeps the register live between its definition and its uses.
134 
135 // The AP register is originally set up using pseudo-instruction PS_aligna:
136 //   AP = PS_aligna A
137 // where
138 //   A  - required stack alignment
139 // The alignment value must be the maximum of all alignments required by
140 // any stack object.
141 
142 // The dynamic allocation uses a pseudo-instruction PS_alloca:
143 //   Rd = PS_alloca Rs, A
144 // where
145 //   Rd - address of the allocated space
146 //   Rs - minimum size (the actual allocated can be larger to accommodate
147 //        alignment)
148 //   A  - required alignment
149 
150 using namespace llvm;
151 
152 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
153     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
154 
155 static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
156     cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
157     cl::ZeroOrMore);
158 
159 static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
160     cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
161     cl::init(6), cl::ZeroOrMore);
162 
163 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
164     cl::Hidden, cl::desc("Specify Os spill func threshold"),
165     cl::init(1), cl::ZeroOrMore);
166 
167 static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
168     cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
169     cl::init(false), cl::ZeroOrMore);
170 
171 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
172     cl::init(true), cl::Hidden, cl::ZeroOrMore,
173     cl::desc("Enable stack frame shrink wrapping"));
174 
175 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit",
176     cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore,
177     cl::desc("Max count of stack frame shrink-wraps"));
178 
179 static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long",
180     cl::Hidden, cl::desc("Enable long calls for save-restore stubs."),
181     cl::init(false), cl::ZeroOrMore);
182 
183 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
184     cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
185 
186 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
187     cl::init(true), cl::desc("Optimize spill slots"));
188 
189 #ifndef NDEBUG
190 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
191     cl::init(std::numeric_limits<unsigned>::max()));
192 static unsigned SpillOptCount = 0;
193 #endif
194 
195 namespace llvm {
196 
197   void initializeHexagonCallFrameInformationPass(PassRegistry&);
198   FunctionPass *createHexagonCallFrameInformation();
199 
200 } // end namespace llvm
201 
202 namespace {
203 
204   class HexagonCallFrameInformation : public MachineFunctionPass {
205   public:
206     static char ID;
207 
208     HexagonCallFrameInformation() : MachineFunctionPass(ID) {
209       PassRegistry &PR = *PassRegistry::getPassRegistry();
210       initializeHexagonCallFrameInformationPass(PR);
211     }
212 
213     bool runOnMachineFunction(MachineFunction &MF) override;
214 
215     MachineFunctionProperties getRequiredProperties() const override {
216       return MachineFunctionProperties().set(
217           MachineFunctionProperties::Property::NoVRegs);
218     }
219   };
220 
221   char HexagonCallFrameInformation::ID = 0;
222 
223 } // end anonymous namespace
224 
225 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
226   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
227   bool NeedCFI = MF.needsFrameMoves();
228 
229   if (!NeedCFI)
230     return false;
231   HFI.insertCFIInstructions(MF);
232   return true;
233 }
234 
235 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
236                 "Hexagon call frame information", false, false)
237 
238 FunctionPass *llvm::createHexagonCallFrameInformation() {
239   return new HexagonCallFrameInformation();
240 }
241 
242 /// Map a register pair Reg to the subregister that has the greater "number",
243 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
244 static unsigned getMax32BitSubRegister(unsigned Reg,
245                                        const TargetRegisterInfo &TRI,
246                                        bool hireg = true) {
247     if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
248       return Reg;
249 
250     unsigned RegNo = 0;
251     for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
252       if (hireg) {
253         if (*SubRegs > RegNo)
254           RegNo = *SubRegs;
255       } else {
256         if (!RegNo || *SubRegs < RegNo)
257           RegNo = *SubRegs;
258       }
259     }
260     return RegNo;
261 }
262 
263 /// Returns the callee saved register with the largest id in the vector.
264 static unsigned getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,
265                                      const TargetRegisterInfo &TRI) {
266   static_assert(Hexagon::R1 > 0,
267                 "Assume physical registers are encoded as positive integers");
268   if (CSI.empty())
269     return 0;
270 
271   unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
272   for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
273     unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
274     if (Reg > Max)
275       Max = Reg;
276   }
277   return Max;
278 }
279 
280 /// Checks if the basic block contains any instruction that needs a stack
281 /// frame to be already in place.
282 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
283                             const HexagonRegisterInfo &HRI) {
284     for (const MachineInstr &MI : MBB) {
285       if (MI.isCall())
286         return true;
287       unsigned Opc = MI.getOpcode();
288       switch (Opc) {
289         case Hexagon::PS_alloca:
290         case Hexagon::PS_aligna:
291           return true;
292         default:
293           break;
294       }
295       // Check individual operands.
296       for (const MachineOperand &MO : MI.operands()) {
297         // While the presence of a frame index does not prove that a stack
298         // frame will be required, all frame indexes should be within alloc-
299         // frame/deallocframe. Otherwise, the code that translates a frame
300         // index into an offset would have to be aware of the placement of
301         // the frame creation/destruction instructions.
302         if (MO.isFI())
303           return true;
304         if (MO.isReg()) {
305           Register R = MO.getReg();
306           // Virtual registers will need scavenging, which then may require
307           // a stack slot.
308           if (R.isVirtual())
309             return true;
310           for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
311             if (CSR[*S])
312               return true;
313           continue;
314         }
315         if (MO.isRegMask()) {
316           // A regmask would normally have all callee-saved registers marked
317           // as preserved, so this check would not be needed, but in case of
318           // ever having other regmasks (for other calling conventions),
319           // make sure they would be processed correctly.
320           const uint32_t *BM = MO.getRegMask();
321           for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
322             unsigned R = x;
323             // If this regmask does not preserve a CSR, a frame will be needed.
324             if (!(BM[R/32] & (1u << (R%32))))
325               return true;
326           }
327         }
328       }
329     }
330     return false;
331 }
332 
333   /// Returns true if MBB has a machine instructions that indicates a tail call
334   /// in the block.
335 static bool hasTailCall(const MachineBasicBlock &MBB) {
336     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
337     if (I == MBB.end())
338       return false;
339     unsigned RetOpc = I->getOpcode();
340     return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
341 }
342 
343 /// Returns true if MBB contains an instruction that returns.
344 static bool hasReturn(const MachineBasicBlock &MBB) {
345     for (const MachineInstr &MI : MBB.terminators())
346       if (MI.isReturn())
347         return true;
348     return false;
349 }
350 
351 /// Returns the "return" instruction from this block, or nullptr if there
352 /// isn't any.
353 static MachineInstr *getReturn(MachineBasicBlock &MBB) {
354     for (auto &I : MBB)
355       if (I.isReturn())
356         return &I;
357     return nullptr;
358 }
359 
360 static bool isRestoreCall(unsigned Opc) {
361     switch (Opc) {
362       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
363       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
364       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
365       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
366       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
367       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
368       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
369       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
370         return true;
371     }
372     return false;
373 }
374 
375 static inline bool isOptNone(const MachineFunction &MF) {
376     return MF.getFunction().hasOptNone() ||
377            MF.getTarget().getOptLevel() == CodeGenOpt::None;
378 }
379 
380 static inline bool isOptSize(const MachineFunction &MF) {
381     const Function &F = MF.getFunction();
382     return F.hasOptSize() && !F.hasMinSize();
383 }
384 
385 static inline bool isMinSize(const MachineFunction &MF) {
386     return MF.getFunction().hasMinSize();
387 }
388 
389 /// Implements shrink-wrapping of the stack frame. By default, stack frame
390 /// is created in the function entry block, and is cleaned up in every block
391 /// that returns. This function finds alternate blocks: one for the frame
392 /// setup (prolog) and one for the cleanup (epilog).
393 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
394       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
395   static unsigned ShrinkCounter = 0;
396 
397   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() &&
398       MF.getFunction().isVarArg())
399     return;
400   if (ShrinkLimit.getPosition()) {
401     if (ShrinkCounter >= ShrinkLimit)
402       return;
403     ShrinkCounter++;
404   }
405 
406   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
407 
408   MachineDominatorTree MDT;
409   MDT.runOnMachineFunction(MF);
410   MachinePostDominatorTree MPT;
411   MPT.runOnMachineFunction(MF);
412 
413   using UnsignedMap = DenseMap<unsigned, unsigned>;
414   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
415 
416   UnsignedMap RPO;
417   RPOTType RPOT(&MF);
418   unsigned RPON = 0;
419   for (auto &I : RPOT)
420     RPO[I->getNumber()] = RPON++;
421 
422   // Don't process functions that have loops, at least for now. Placement
423   // of prolog and epilog must take loop structure into account. For simpli-
424   // city don't do it right now.
425   for (auto &I : MF) {
426     unsigned BN = RPO[I.getNumber()];
427     for (MachineBasicBlock *Succ : I.successors())
428       // If found a back-edge, return.
429       if (RPO[Succ->getNumber()] <= BN)
430         return;
431   }
432 
433   // Collect the set of blocks that need a stack frame to execute. Scan
434   // each block for uses/defs of callee-saved registers, calls, etc.
435   SmallVector<MachineBasicBlock*,16> SFBlocks;
436   BitVector CSR(Hexagon::NUM_TARGET_REGS);
437   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
438     for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
439       CSR[*S] = true;
440 
441   for (auto &I : MF)
442     if (needsStackFrame(I, CSR, HRI))
443       SFBlocks.push_back(&I);
444 
445   LLVM_DEBUG({
446     dbgs() << "Blocks needing SF: {";
447     for (auto &B : SFBlocks)
448       dbgs() << " " << printMBBReference(*B);
449     dbgs() << " }\n";
450   });
451   // No frame needed?
452   if (SFBlocks.empty())
453     return;
454 
455   // Pick a common dominator and a common post-dominator.
456   MachineBasicBlock *DomB = SFBlocks[0];
457   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
458     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
459     if (!DomB)
460       break;
461   }
462   MachineBasicBlock *PDomB = SFBlocks[0];
463   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
464     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
465     if (!PDomB)
466       break;
467   }
468   LLVM_DEBUG({
469     dbgs() << "Computed dom block: ";
470     if (DomB)
471       dbgs() << printMBBReference(*DomB);
472     else
473       dbgs() << "<null>";
474     dbgs() << ", computed pdom block: ";
475     if (PDomB)
476       dbgs() << printMBBReference(*PDomB);
477     else
478       dbgs() << "<null>";
479     dbgs() << "\n";
480   });
481   if (!DomB || !PDomB)
482     return;
483 
484   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
485   if (!MDT.dominates(DomB, PDomB)) {
486     LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
487     return;
488   }
489   if (!MPT.dominates(PDomB, DomB)) {
490     LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
491     return;
492   }
493 
494   // Finally, everything seems right.
495   PrologB = DomB;
496   EpilogB = PDomB;
497 }
498 
499 /// Perform most of the PEI work here:
500 /// - saving/restoring of the callee-saved registers,
501 /// - stack frame creation and destruction.
502 /// Normally, this work is distributed among various functions, but doing it
503 /// in one place allows shrink-wrapping of the stack frame.
504 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
505                                         MachineBasicBlock &MBB) const {
506   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
507 
508   MachineFrameInfo &MFI = MF.getFrameInfo();
509   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
510 
511   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
512   if (EnableShrinkWrapping)
513     findShrunkPrologEpilog(MF, PrologB, EpilogB);
514 
515   bool PrologueStubs = false;
516   insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
517   insertPrologueInBlock(*PrologB, PrologueStubs);
518   updateEntryPaths(MF, *PrologB);
519 
520   if (EpilogB) {
521     insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
522     insertEpilogueInBlock(*EpilogB);
523   } else {
524     for (auto &B : MF)
525       if (B.isReturnBlock())
526         insertCSRRestoresInBlock(B, CSI, HRI);
527 
528     for (auto &B : MF)
529       if (B.isReturnBlock())
530         insertEpilogueInBlock(B);
531 
532     for (auto &B : MF) {
533       if (B.empty())
534         continue;
535       MachineInstr *RetI = getReturn(B);
536       if (!RetI || isRestoreCall(RetI->getOpcode()))
537         continue;
538       for (auto &R : CSI)
539         RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
540     }
541   }
542 
543   if (EpilogB) {
544     // If there is an epilog block, it may not have a return instruction.
545     // In such case, we need to add the callee-saved registers as live-ins
546     // in all blocks on all paths from the epilog to any return block.
547     unsigned MaxBN = MF.getNumBlockIDs();
548     BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
549     updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
550   }
551 }
552 
553 /// Returns true if the target can safely skip saving callee-saved registers
554 /// for noreturn nounwind functions.
555 bool HexagonFrameLowering::enableCalleeSaveSkip(
556     const MachineFunction &MF) const {
557   const auto &F = MF.getFunction();
558   assert(F.hasFnAttribute(Attribute::NoReturn) &&
559          F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
560          !F.getFunction().hasFnAttribute(Attribute::UWTable));
561   (void)F;
562 
563   // No need to save callee saved registers if the function does not return.
564   return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
565 }
566 
567 // Helper function used to determine when to eliminate the stack frame for
568 // functions marked as noreturn and when the noreturn-stack-elim options are
569 // specified. When both these conditions are true, then a FP may not be needed
570 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
571 // but it used to check if the allocframe can be eliminated as well.
572 static bool enableAllocFrameElim(const MachineFunction &MF) {
573   const auto &F = MF.getFunction();
574   const auto &MFI = MF.getFrameInfo();
575   const auto &HST = MF.getSubtarget<HexagonSubtarget>();
576   assert(!MFI.hasVarSizedObjects() &&
577          !HST.getRegisterInfo()->hasStackRealignment(MF));
578   return F.hasFnAttribute(Attribute::NoReturn) &&
579     F.hasFnAttribute(Attribute::NoUnwind) &&
580     !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
581     MFI.getStackSize() == 0;
582 }
583 
584 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
585       bool PrologueStubs) const {
586   MachineFunction &MF = *MBB.getParent();
587   MachineFrameInfo &MFI = MF.getFrameInfo();
588   auto &HST = MF.getSubtarget<HexagonSubtarget>();
589   auto &HII = *HST.getInstrInfo();
590   auto &HRI = *HST.getRegisterInfo();
591 
592   Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign());
593 
594   // Calculate the total stack frame size.
595   // Get the number of bytes to allocate from the FrameInfo.
596   unsigned FrameSize = MFI.getStackSize();
597   // Round up the max call frame size to the max alignment on the stack.
598   unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
599   MFI.setMaxCallFrameSize(MaxCFA);
600 
601   FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
602   MFI.setStackSize(FrameSize);
603 
604   bool AlignStack = (MaxAlign > getStackAlign());
605 
606   // Get the number of bytes to allocate from the FrameInfo.
607   unsigned NumBytes = MFI.getStackSize();
608   unsigned SP = HRI.getStackRegister();
609   unsigned MaxCF = MFI.getMaxCallFrameSize();
610   MachineBasicBlock::iterator InsertPt = MBB.begin();
611 
612   SmallVector<MachineInstr *, 4> AdjustRegs;
613   for (auto &MBB : MF)
614     for (auto &MI : MBB)
615       if (MI.getOpcode() == Hexagon::PS_alloca)
616         AdjustRegs.push_back(&MI);
617 
618   for (auto MI : AdjustRegs) {
619     assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
620     expandAlloca(MI, HII, SP, MaxCF);
621     MI->eraseFromParent();
622   }
623 
624   DebugLoc dl = MBB.findDebugLoc(InsertPt);
625 
626   if (MF.getFunction().isVarArg() &&
627       MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
628     // Calculate the size of register saved area.
629     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
630     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0)
631                                               ? NumVarArgRegs * 4
632                                               : NumVarArgRegs * 4 + 4;
633     if (RegisterSavedAreaSizePlusPadding > 0) {
634       // Decrement the stack pointer by size of register saved area plus
635       // padding if any.
636       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
637         .addReg(SP)
638         .addImm(-RegisterSavedAreaSizePlusPadding)
639         .setMIFlag(MachineInstr::FrameSetup);
640 
641       int NumBytes = 0;
642       // Copy all the named arguments below register saved area.
643       auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
644       for (int i = HMFI.getFirstNamedArgFrameIndex(),
645                e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) {
646         uint64_t ObjSize = MFI.getObjectSize(i);
647         Align ObjAlign = MFI.getObjectAlign(i);
648 
649         // Determine the kind of load/store that should be used.
650         unsigned LDOpc, STOpc;
651         uint64_t OpcodeChecker = ObjAlign.value();
652 
653         // Handle cases where alignment of an object is > its size.
654         if (ObjAlign > ObjSize) {
655           if (ObjSize <= 1)
656             OpcodeChecker = 1;
657           else if (ObjSize <= 2)
658             OpcodeChecker = 2;
659           else if (ObjSize <= 4)
660             OpcodeChecker = 4;
661           else if (ObjSize > 4)
662             OpcodeChecker = 8;
663         }
664 
665         switch (OpcodeChecker) {
666           case 1:
667             LDOpc = Hexagon::L2_loadrb_io;
668             STOpc = Hexagon::S2_storerb_io;
669             break;
670           case 2:
671             LDOpc = Hexagon::L2_loadrh_io;
672             STOpc = Hexagon::S2_storerh_io;
673             break;
674           case 4:
675             LDOpc = Hexagon::L2_loadri_io;
676             STOpc = Hexagon::S2_storeri_io;
677             break;
678           case 8:
679           default:
680             LDOpc = Hexagon::L2_loadrd_io;
681             STOpc = Hexagon::S2_storerd_io;
682             break;
683         }
684 
685         unsigned RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3
686                                                           : Hexagon::R6;
687         int LoadStoreCount = ObjSize / OpcodeChecker;
688 
689         if (ObjSize % OpcodeChecker)
690           ++LoadStoreCount;
691 
692         // Get the start location of the load. NumBytes is basically the
693         // offset from the stack pointer of previous function, which would be
694         // the caller in this case, as this function has variable argument
695         // list.
696         if (NumBytes != 0)
697           NumBytes = alignTo(NumBytes, ObjAlign);
698 
699         int Count = 0;
700         while (Count < LoadStoreCount) {
701           // Load the value of the named argument on stack.
702           BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed)
703               .addReg(SP)
704               .addImm(RegisterSavedAreaSizePlusPadding +
705                       ObjAlign.value() * Count + NumBytes)
706               .setMIFlag(MachineInstr::FrameSetup);
707 
708           // Store it below the register saved area plus padding.
709           BuildMI(MBB, InsertPt, dl, HII.get(STOpc))
710               .addReg(SP)
711               .addImm(ObjAlign.value() * Count + NumBytes)
712               .addReg(RegUsed)
713               .setMIFlag(MachineInstr::FrameSetup);
714 
715           Count++;
716         }
717         NumBytes += MFI.getObjectSize(i);
718       }
719 
720       // Make NumBytes 8 byte aligned
721       NumBytes = alignTo(NumBytes, 8);
722 
723       // If the number of registers having variable arguments is odd,
724       // leave 4 bytes of padding to get to the location where first
725       // variable argument which was passed through register was copied.
726       NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4;
727 
728       for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) {
729         BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io))
730           .addReg(SP)
731           .addImm(NumBytes + 4 * i)
732           .addReg(Hexagon::R0 + j)
733           .setMIFlag(MachineInstr::FrameSetup);
734       }
735     }
736   }
737 
738   if (hasFP(MF)) {
739     insertAllocframe(MBB, InsertPt, NumBytes);
740     if (AlignStack) {
741       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
742           .addReg(SP)
743           .addImm(-int64_t(MaxAlign.value()));
744     }
745     // If the stack-checking is enabled, and we spilled the callee-saved
746     // registers inline (i.e. did not use a spill function), then call
747     // the stack checker directly.
748     if (EnableStackOVFSanitizer && !PrologueStubs)
749       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
750              .addExternalSymbol("__runtime_stack_check");
751   } else if (NumBytes > 0) {
752     assert(alignTo(NumBytes, 8) == NumBytes);
753     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
754       .addReg(SP)
755       .addImm(-int(NumBytes));
756   }
757 }
758 
759 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
760   MachineFunction &MF = *MBB.getParent();
761   auto &HST = MF.getSubtarget<HexagonSubtarget>();
762   auto &HII = *HST.getInstrInfo();
763   auto &HRI = *HST.getRegisterInfo();
764   unsigned SP = HRI.getStackRegister();
765 
766   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
767   DebugLoc dl = MBB.findDebugLoc(InsertPt);
768 
769   if (!hasFP(MF)) {
770     MachineFrameInfo &MFI = MF.getFrameInfo();
771     unsigned NumBytes = MFI.getStackSize();
772     if (MF.getFunction().isVarArg() &&
773         MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
774       // On Hexagon Linux, deallocate the stack for the register saved area.
775       int NumVarArgRegs = 6 - FirstVarArgSavedReg;
776       int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
777         (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
778       NumBytes += RegisterSavedAreaSizePlusPadding;
779     }
780     if (NumBytes) {
781       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
782         .addReg(SP)
783         .addImm(NumBytes);
784     }
785     return;
786   }
787 
788   MachineInstr *RetI = getReturn(MBB);
789   unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
790 
791   // Handle EH_RETURN.
792   if (RetOpc == Hexagon::EH_RETURN_JMPR) {
793     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
794         .addDef(Hexagon::D15)
795         .addReg(Hexagon::R30);
796     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
797         .addReg(SP)
798         .addReg(Hexagon::R28);
799     return;
800   }
801 
802   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
803   // frame instruction if we encounter it.
804   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
805       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
806       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
807       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
808     MachineBasicBlock::iterator It = RetI;
809     ++It;
810     // Delete all instructions after the RESTORE (except labels).
811     while (It != MBB.end()) {
812       if (!It->isLabel())
813         It = MBB.erase(It);
814       else
815         ++It;
816     }
817     return;
818   }
819 
820   // It is possible that the restoring code is a call to a library function.
821   // All of the restore* functions include "deallocframe", so we need to make
822   // sure that we don't add an extra one.
823   bool NeedsDeallocframe = true;
824   if (!MBB.empty() && InsertPt != MBB.begin()) {
825     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
826     unsigned COpc = PrevIt->getOpcode();
827     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
828         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
829         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
830         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
831         COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
832       NeedsDeallocframe = false;
833   }
834 
835   if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() ||
836       !MF.getFunction().isVarArg()) {
837     if (!NeedsDeallocframe)
838       return;
839     // If the returning instruction is PS_jmpret, replace it with
840     // dealloc_return, otherwise just add deallocframe. The function
841     // could be returning via a tail call.
842     if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
843       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
844       .addDef(Hexagon::D15)
845       .addReg(Hexagon::R30);
846       return;
847     }
848     unsigned NewOpc = Hexagon::L4_return;
849     MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
850       .addDef(Hexagon::D15)
851       .addReg(Hexagon::R30);
852     // Transfer the function live-out registers.
853     NewI->copyImplicitOps(MF, *RetI);
854     MBB.erase(RetI);
855   } else {
856     // L2_deallocframe instruction after it.
857     // Calculate the size of register saved area.
858     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
859     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
860       (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
861 
862     MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
863     MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end()
864                                                           : std::prev(Term);
865     if (I == MBB.end() ||
866        (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT &&
867         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC &&
868         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 &&
869         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC))
870       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
871         .addDef(Hexagon::D15)
872         .addReg(Hexagon::R30);
873     if (RegisterSavedAreaSizePlusPadding != 0)
874       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
875         .addReg(SP)
876         .addImm(RegisterSavedAreaSizePlusPadding);
877   }
878 }
879 
880 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
881       MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
882   MachineFunction &MF = *MBB.getParent();
883   auto &HST = MF.getSubtarget<HexagonSubtarget>();
884   auto &HII = *HST.getInstrInfo();
885   auto &HRI = *HST.getRegisterInfo();
886 
887   // Check for overflow.
888   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
889   const unsigned int ALLOCFRAME_MAX = 16384;
890 
891   // Create a dummy memory operand to avoid allocframe from being treated as
892   // a volatile memory reference.
893   auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
894                                       MachineMemOperand::MOStore, 4, Align(4));
895 
896   DebugLoc dl = MBB.findDebugLoc(InsertPt);
897   unsigned SP = HRI.getStackRegister();
898 
899   if (NumBytes >= ALLOCFRAME_MAX) {
900     // Emit allocframe(#0).
901     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
902       .addDef(SP)
903       .addReg(SP)
904       .addImm(0)
905       .addMemOperand(MMO);
906 
907     // Subtract the size from the stack pointer.
908     unsigned SP = HRI.getStackRegister();
909     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
910       .addReg(SP)
911       .addImm(-int(NumBytes));
912   } else {
913     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
914       .addDef(SP)
915       .addReg(SP)
916       .addImm(NumBytes)
917       .addMemOperand(MMO);
918   }
919 }
920 
921 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
922       MachineBasicBlock &SaveB) const {
923   SetVector<unsigned> Worklist;
924 
925   MachineBasicBlock &EntryB = MF.front();
926   Worklist.insert(EntryB.getNumber());
927 
928   unsigned SaveN = SaveB.getNumber();
929   auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
930 
931   for (unsigned i = 0; i < Worklist.size(); ++i) {
932     unsigned BN = Worklist[i];
933     MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
934     for (auto &R : CSI)
935       if (!MBB.isLiveIn(R.getReg()))
936         MBB.addLiveIn(R.getReg());
937     if (BN != SaveN)
938       for (auto &SB : MBB.successors())
939         Worklist.insert(SB->getNumber());
940   }
941 }
942 
943 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
944       MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
945       BitVector &Path) const {
946   assert(MBB.getNumber() >= 0);
947   unsigned BN = MBB.getNumber();
948   if (Path[BN] || DoneF[BN])
949     return false;
950   if (DoneT[BN])
951     return true;
952 
953   auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
954 
955   Path[BN] = true;
956   bool ReachedExit = false;
957   for (auto &SB : MBB.successors())
958     ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
959 
960   if (!MBB.empty() && MBB.back().isReturn()) {
961     // Add implicit uses of all callee-saved registers to the reached
962     // return instructions. This is to prevent the anti-dependency breaker
963     // from renaming these registers.
964     MachineInstr &RetI = MBB.back();
965     if (!isRestoreCall(RetI.getOpcode()))
966       for (auto &R : CSI)
967         RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
968     ReachedExit = true;
969   }
970 
971   // We don't want to add unnecessary live-ins to the restore block: since
972   // the callee-saved registers are being defined in it, the entry of the
973   // restore block cannot be on the path from the definitions to any exit.
974   if (ReachedExit && &MBB != &RestoreB) {
975     for (auto &R : CSI)
976       if (!MBB.isLiveIn(R.getReg()))
977         MBB.addLiveIn(R.getReg());
978     DoneT[BN] = true;
979   }
980   if (!ReachedExit)
981     DoneF[BN] = true;
982 
983   Path[BN] = false;
984   return ReachedExit;
985 }
986 
987 static Optional<MachineBasicBlock::iterator>
988 findCFILocation(MachineBasicBlock &B) {
989     // The CFI instructions need to be inserted right after allocframe.
990     // An exception to this is a situation where allocframe is bundled
991     // with a call: then the CFI instructions need to be inserted before
992     // the packet with the allocframe+call (in case the call throws an
993     // exception).
994     auto End = B.instr_end();
995 
996     for (MachineInstr &I : B) {
997       MachineBasicBlock::iterator It = I.getIterator();
998       if (!I.isBundle()) {
999         if (I.getOpcode() == Hexagon::S2_allocframe)
1000           return std::next(It);
1001         continue;
1002       }
1003       // I is a bundle.
1004       bool HasCall = false, HasAllocFrame = false;
1005       auto T = It.getInstrIterator();
1006       while (++T != End && T->isBundled()) {
1007         if (T->getOpcode() == Hexagon::S2_allocframe)
1008           HasAllocFrame = true;
1009         else if (T->isCall())
1010           HasCall = true;
1011       }
1012       if (HasAllocFrame)
1013         return HasCall ? It : std::next(It);
1014     }
1015     return None;
1016 }
1017 
1018 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
1019   for (auto &B : MF) {
1020     auto At = findCFILocation(B);
1021     if (At.hasValue())
1022       insertCFIInstructionsAt(B, At.getValue());
1023   }
1024 }
1025 
1026 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
1027       MachineBasicBlock::iterator At) const {
1028   MachineFunction &MF = *MBB.getParent();
1029   MachineFrameInfo &MFI = MF.getFrameInfo();
1030   MachineModuleInfo &MMI = MF.getMMI();
1031   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1032   auto &HII = *HST.getInstrInfo();
1033   auto &HRI = *HST.getRegisterInfo();
1034 
1035   // If CFI instructions have debug information attached, something goes
1036   // wrong with the final assembly generation: the prolog_end is placed
1037   // in a wrong location.
1038   DebugLoc DL;
1039   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
1040 
1041   MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1042   bool HasFP = hasFP(MF);
1043 
1044   if (HasFP) {
1045     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
1046     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
1047 
1048     // Define CFA via an offset from the value of FP.
1049     //
1050     //  -8   -4    0 (SP)
1051     // --+----+----+---------------------
1052     //   | FP | LR |          increasing addresses -->
1053     // --+----+----+---------------------
1054     //   |         +-- Old SP (before allocframe)
1055     //   +-- New FP (after allocframe)
1056     //
1057     // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1058     // MCCFIInstruction::createOffset takes the offset without sign change.
1059     auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8);
1060     BuildMI(MBB, At, DL, CFID)
1061         .addCFIIndex(MF.addFrameInst(DefCfa));
1062     // R31 (return addr) = CFA - 4
1063     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
1064     BuildMI(MBB, At, DL, CFID)
1065         .addCFIIndex(MF.addFrameInst(OffR31));
1066     // R30 (frame ptr) = CFA - 8
1067     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
1068     BuildMI(MBB, At, DL, CFID)
1069         .addCFIIndex(MF.addFrameInst(OffR30));
1070   }
1071 
1072   static unsigned int RegsToMove[] = {
1073     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
1074     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
1075     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
1076     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
1077     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
1078     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
1079     Hexagon::NoRegister
1080   };
1081 
1082   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1083 
1084   for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
1085     unsigned Reg = RegsToMove[i];
1086     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
1087       return C.getReg() == Reg;
1088     };
1089     auto F = find_if(CSI, IfR);
1090     if (F == CSI.end())
1091       continue;
1092 
1093     int64_t Offset;
1094     if (HasFP) {
1095       // If the function has a frame pointer (i.e. has an allocframe),
1096       // then the CFA has been defined in terms of FP. Any offsets in
1097       // the following CFI instructions have to be defined relative
1098       // to FP, which points to the bottom of the stack frame.
1099       // The function getFrameIndexReference can still choose to use SP
1100       // for the offset calculation, so we cannot simply call it here.
1101       // Instead, get the offset (relative to the FP) directly.
1102       Offset = MFI.getObjectOffset(F->getFrameIdx());
1103     } else {
1104       Register FrameReg;
1105       Offset =
1106           getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed();
1107     }
1108     // Subtract 8 to make room for R30 and R31, which are added above.
1109     Offset -= 8;
1110 
1111     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
1112       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
1113       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
1114                                                    Offset);
1115       BuildMI(MBB, At, DL, CFID)
1116           .addCFIIndex(MF.addFrameInst(OffReg));
1117     } else {
1118       // Split the double regs into subregs, and generate appropriate
1119       // cfi_offsets.
1120       // The only reason, we are split double regs is, llvm-mc does not
1121       // understand paired registers for cfi_offset.
1122       // Eg .cfi_offset r1:0, -64
1123 
1124       Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
1125       Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
1126       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
1127       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
1128       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
1129                                                   Offset+4);
1130       BuildMI(MBB, At, DL, CFID)
1131           .addCFIIndex(MF.addFrameInst(OffHi));
1132       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
1133                                                   Offset);
1134       BuildMI(MBB, At, DL, CFID)
1135           .addCFIIndex(MF.addFrameInst(OffLo));
1136     }
1137   }
1138 }
1139 
1140 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
1141   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1142     return false;
1143 
1144   auto &MFI = MF.getFrameInfo();
1145   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1146   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1147   bool HasAlloca = MFI.hasVarSizedObjects();
1148 
1149   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
1150   // that this shouldn't be required, but doing so now because gcc does and
1151   // gdb can't break at the start of the function without it.  Will remove if
1152   // this turns out to be a gdb bug.
1153   //
1154   if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
1155     return true;
1156 
1157   // By default we want to use SP (since it's always there). FP requires
1158   // some setup (i.e. ALLOCFRAME).
1159   // Both, alloca and stack alignment modify the stack pointer by an
1160   // undetermined value, so we need to save it at the entry to the function
1161   // (i.e. use allocframe).
1162   if (HasAlloca || HasExtraAlign)
1163     return true;
1164 
1165   if (MFI.getStackSize() > 0) {
1166     // If FP-elimination is disabled, we have to use FP at this point.
1167     const TargetMachine &TM = MF.getTarget();
1168     if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
1169       return true;
1170     if (EnableStackOVFSanitizer)
1171       return true;
1172   }
1173 
1174   const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1175   if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
1176     return true;
1177 
1178   return false;
1179 }
1180 
1181 enum SpillKind {
1182   SK_ToMem,
1183   SK_FromMem,
1184   SK_FromMemTailcall
1185 };
1186 
1187 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
1188       bool Stkchk = false) {
1189   const char * V4SpillToMemoryFunctions[] = {
1190     "__save_r16_through_r17",
1191     "__save_r16_through_r19",
1192     "__save_r16_through_r21",
1193     "__save_r16_through_r23",
1194     "__save_r16_through_r25",
1195     "__save_r16_through_r27" };
1196 
1197   const char * V4SpillToMemoryStkchkFunctions[] = {
1198     "__save_r16_through_r17_stkchk",
1199     "__save_r16_through_r19_stkchk",
1200     "__save_r16_through_r21_stkchk",
1201     "__save_r16_through_r23_stkchk",
1202     "__save_r16_through_r25_stkchk",
1203     "__save_r16_through_r27_stkchk" };
1204 
1205   const char * V4SpillFromMemoryFunctions[] = {
1206     "__restore_r16_through_r17_and_deallocframe",
1207     "__restore_r16_through_r19_and_deallocframe",
1208     "__restore_r16_through_r21_and_deallocframe",
1209     "__restore_r16_through_r23_and_deallocframe",
1210     "__restore_r16_through_r25_and_deallocframe",
1211     "__restore_r16_through_r27_and_deallocframe" };
1212 
1213   const char * V4SpillFromMemoryTailcallFunctions[] = {
1214     "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1215     "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1216     "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1217     "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1218     "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1219     "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1220   };
1221 
1222   const char **SpillFunc = nullptr;
1223 
1224   switch(SpillType) {
1225   case SK_ToMem:
1226     SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
1227                        : V4SpillToMemoryFunctions;
1228     break;
1229   case SK_FromMem:
1230     SpillFunc = V4SpillFromMemoryFunctions;
1231     break;
1232   case SK_FromMemTailcall:
1233     SpillFunc = V4SpillFromMemoryTailcallFunctions;
1234     break;
1235   }
1236   assert(SpillFunc && "Unknown spill kind");
1237 
1238   // Spill all callee-saved registers up to the highest register used.
1239   switch (MaxReg) {
1240   case Hexagon::R17:
1241     return SpillFunc[0];
1242   case Hexagon::R19:
1243     return SpillFunc[1];
1244   case Hexagon::R21:
1245     return SpillFunc[2];
1246   case Hexagon::R23:
1247     return SpillFunc[3];
1248   case Hexagon::R25:
1249     return SpillFunc[4];
1250   case Hexagon::R27:
1251     return SpillFunc[5];
1252   default:
1253     llvm_unreachable("Unhandled maximum callee save register");
1254   }
1255   return nullptr;
1256 }
1257 
1258 StackOffset
1259 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1260                                              Register &FrameReg) const {
1261   auto &MFI = MF.getFrameInfo();
1262   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1263 
1264   int Offset = MFI.getObjectOffset(FI);
1265   bool HasAlloca = MFI.hasVarSizedObjects();
1266   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1267   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
1268 
1269   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1270   unsigned FrameSize = MFI.getStackSize();
1271   Register SP = HRI.getStackRegister();
1272   Register FP = HRI.getFrameRegister();
1273   Register AP = HMFI.getStackAlignBasePhysReg();
1274   // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1275   // is true. HasExtraAlign may be set because of vector spills, without
1276   // aligned locals or aligned outgoing function arguments. Since vector
1277   // spills will ultimately be "unaligned", it is safe to use FP as the
1278   // base register.
1279   // In fact, in such a scenario the stack is actually not required to be
1280   // aligned, although it may end up being aligned anyway, since this
1281   // particular case is not easily detectable. The alignment will be
1282   // unnecessary, but not incorrect.
1283   // Unfortunately there is no quick way to verify that the above is
1284   // indeed the case (and that it's not a result of an error), so just
1285   // assume that missing AP will be replaced by FP.
1286   // (A better fix would be to rematerialize AP from FP and always align
1287   // vector spills.)
1288   if (AP == 0)
1289     AP = FP;
1290 
1291   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
1292   // Use FP at -O0, except when there are objects with extra alignment.
1293   // That additional alignment requirement may cause a pad to be inserted,
1294   // which will make it impossible to use FP to access objects located
1295   // past the pad.
1296   if (NoOpt && !HasExtraAlign)
1297     UseFP = true;
1298   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
1299     // Fixed and preallocated objects will be located before any padding
1300     // so FP must be used to access them.
1301     UseFP |= (HasAlloca || HasExtraAlign);
1302   } else {
1303     if (HasAlloca) {
1304       if (HasExtraAlign)
1305         UseAP = true;
1306       else
1307         UseFP = true;
1308     }
1309   }
1310 
1311   // If FP was picked, then there had better be FP.
1312   bool HasFP = hasFP(MF);
1313   assert((HasFP || !UseFP) && "This function must have frame pointer");
1314 
1315   // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1316   // FP/LR. If the base register is used to access an object across these
1317   // 8 bytes, then the offset will need to be adjusted by 8.
1318   //
1319   // After allocframe:
1320   //                    HexagonISelLowering adds 8 to ---+
1321   //                    the offsets of all stack-based   |
1322   //                    arguments (*)                    |
1323   //                                                     |
1324   //   getObjectOffset < 0   0     8  getObjectOffset >= 8
1325   // ------------------------+-----+------------------------> increasing
1326   //     <local objects>     |FP/LR|    <input arguments>     addresses
1327   // -----------------+------+-----+------------------------>
1328   //                  |      |
1329   //    SP/AP point --+      +-- FP points here (**)
1330   //    somewhere on
1331   //    this side of FP/LR
1332   //
1333   // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1334   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1335 
1336   // The lowering assumes that FP/LR is present, and so the offsets of
1337   // the formal arguments start at 8. If FP/LR is not there we need to
1338   // reduce the offset by 8.
1339   if (Offset > 0 && !HasFP)
1340     Offset -= 8;
1341 
1342   if (UseFP)
1343     FrameReg = FP;
1344   else if (UseAP)
1345     FrameReg = AP;
1346   else
1347     FrameReg = SP;
1348 
1349   // Calculate the actual offset in the instruction. If there is no FP
1350   // (in other words, no allocframe), then SP will not be adjusted (i.e.
1351   // there will be no SP -= FrameSize), so the frame size should not be
1352   // added to the calculated offset.
1353   int RealOffset = Offset;
1354   if (!UseFP && !UseAP)
1355     RealOffset = FrameSize+Offset;
1356   return StackOffset::getFixed(RealOffset);
1357 }
1358 
1359 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1360       const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1361       bool &PrologueStubs) const {
1362   if (CSI.empty())
1363     return true;
1364 
1365   MachineBasicBlock::iterator MI = MBB.begin();
1366   PrologueStubs = false;
1367   MachineFunction &MF = *MBB.getParent();
1368   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1369   auto &HII = *HST.getInstrInfo();
1370 
1371   if (useSpillFunction(MF, CSI)) {
1372     PrologueStubs = true;
1373     unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1374     bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1375     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1376                                                StkOvrFlowEnabled);
1377     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1378     bool IsPIC = HTM.isPositionIndependent();
1379     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1380 
1381     // Call spill function.
1382     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1383     unsigned SpillOpc;
1384     if (StkOvrFlowEnabled) {
1385       if (LongCalls)
1386         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1387                          : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
1388       else
1389         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1390                          : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1391     } else {
1392       if (LongCalls)
1393         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1394                          : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
1395       else
1396         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1397                          : Hexagon::SAVE_REGISTERS_CALL_V4;
1398     }
1399 
1400     MachineInstr *SaveRegsCall =
1401         BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1402           .addExternalSymbol(SpillFun);
1403 
1404     // Add callee-saved registers as use.
1405     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1406     // Add live in registers.
1407     for (const CalleeSavedInfo &I : CSI)
1408       MBB.addLiveIn(I.getReg());
1409     return true;
1410   }
1411 
1412   for (const CalleeSavedInfo &I : CSI) {
1413     Register Reg = I.getReg();
1414     // Add live in registers. We treat eh_return callee saved register r0 - r3
1415     // specially. They are not really callee saved registers as they are not
1416     // supposed to be killed.
1417     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1418     int FI = I.getFrameIdx();
1419     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1420     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
1421     if (IsKill)
1422       MBB.addLiveIn(Reg);
1423   }
1424   return true;
1425 }
1426 
1427 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1428       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1429   if (CSI.empty())
1430     return false;
1431 
1432   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1433   MachineFunction &MF = *MBB.getParent();
1434   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1435   auto &HII = *HST.getInstrInfo();
1436 
1437   if (useRestoreFunction(MF, CSI)) {
1438     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1439     unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
1440     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1441     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1442     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1443     bool IsPIC = HTM.isPositionIndependent();
1444     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1445 
1446     // Call spill function.
1447     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1448                                   : MBB.findDebugLoc(MBB.end());
1449     MachineInstr *DeallocCall = nullptr;
1450 
1451     if (HasTC) {
1452       unsigned RetOpc;
1453       if (LongCalls)
1454         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1455                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
1456       else
1457         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1458                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1459       DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
1460           .addExternalSymbol(RestoreFn);
1461     } else {
1462       // The block has a return.
1463       MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1464       assert(It->isReturn() && std::next(It) == MBB.end());
1465       unsigned RetOpc;
1466       if (LongCalls)
1467         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1468                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
1469       else
1470         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1471                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1472       DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
1473           .addExternalSymbol(RestoreFn);
1474       // Transfer the function live-out registers.
1475       DeallocCall->copyImplicitOps(MF, *It);
1476     }
1477     addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1478     return true;
1479   }
1480 
1481   for (const CalleeSavedInfo &I : CSI) {
1482     Register Reg = I.getReg();
1483     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1484     int FI = I.getFrameIdx();
1485     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
1486   }
1487 
1488   return true;
1489 }
1490 
1491 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1492     MachineFunction &MF, MachineBasicBlock &MBB,
1493     MachineBasicBlock::iterator I) const {
1494   MachineInstr &MI = *I;
1495   unsigned Opc = MI.getOpcode();
1496   (void)Opc; // Silence compiler warning.
1497   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1498          "Cannot handle this call frame pseudo instruction");
1499   return MBB.erase(I);
1500 }
1501 
1502 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1503     MachineFunction &MF, RegScavenger *RS) const {
1504   // If this function has uses aligned stack and also has variable sized stack
1505   // objects, then we need to map all spill slots to fixed positions, so that
1506   // they can be accessed through FP. Otherwise they would have to be accessed
1507   // via AP, which may not be available at the particular place in the program.
1508   MachineFrameInfo &MFI = MF.getFrameInfo();
1509   bool HasAlloca = MFI.hasVarSizedObjects();
1510   bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign());
1511 
1512   if (!HasAlloca || !NeedsAlign)
1513     return;
1514 
1515   SmallSet<int, 4> DealignSlots;
1516   unsigned LFS = MFI.getLocalFrameSize();
1517   for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
1518     if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i))
1519       continue;
1520     unsigned S = MFI.getObjectSize(i);
1521     // Reduce the alignment to at most 8. This will require unaligned vector
1522     // stores if they happen here.
1523     Align A = std::max(MFI.getObjectAlign(i), Align(8));
1524     MFI.setObjectAlignment(i, Align(8));
1525     LFS = alignTo(LFS+S, A);
1526     MFI.mapLocalFrameObject(i, -static_cast<int64_t>(LFS));
1527     DealignSlots.insert(i);
1528   }
1529 
1530   MFI.setLocalFrameSize(LFS);
1531   Align A = MFI.getLocalFrameMaxAlign();
1532   assert(A <= 8 && "Unexpected local frame alignment");
1533   if (A == 1)
1534     MFI.setLocalFrameMaxAlign(Align(8));
1535   MFI.setUseLocalStackAllocationBlock(true);
1536 
1537   // Go over all MachineMemOperands in the code, and change the ones that
1538   // refer to the dealigned stack slots to reflect the new alignment.
1539   if (!DealignSlots.empty()) {
1540     for (MachineBasicBlock &BB : MF) {
1541       for (MachineInstr &MI : BB) {
1542         bool KeepOld = true;
1543         ArrayRef<MachineMemOperand*> memops = MI.memoperands();
1544         SmallVector<MachineMemOperand*,1> new_memops;
1545         for (MachineMemOperand *MMO : memops) {
1546           auto *PV = MMO->getPseudoValue();
1547           if (auto *FS = dyn_cast_or_null<FixedStackPseudoSourceValue>(PV)) {
1548             int FI = FS->getFrameIndex();
1549             if (DealignSlots.count(FI)) {
1550               auto *NewMMO = MF.getMachineMemOperand(
1551                   MMO->getPointerInfo(), MMO->getFlags(), MMO->getSize(),
1552                   MFI.getObjectAlign(FI), MMO->getAAInfo(), MMO->getRanges(),
1553                   MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
1554                   MMO->getFailureOrdering());
1555               new_memops.push_back(NewMMO);
1556               KeepOld = false;
1557               continue;
1558             }
1559           }
1560           new_memops.push_back(MMO);
1561         }
1562         if (!KeepOld)
1563           MI.setMemRefs(MF, new_memops);
1564       }
1565     }
1566   }
1567 
1568   // Set the physical aligned-stack base address register.
1569   unsigned AP = 0;
1570   if (const MachineInstr *AI = getAlignaInstr(MF))
1571     AP = AI->getOperand(0).getReg();
1572   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1573   HMFI.setStackAlignBasePhysReg(AP);
1574 }
1575 
1576 /// Returns true if there are no caller-saved registers available in class RC.
1577 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1578       const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1579   MachineRegisterInfo &MRI = MF.getRegInfo();
1580 
1581   auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
1582     for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1583       if (MRI.isPhysRegUsed(*AI))
1584         return true;
1585     return false;
1586   };
1587 
1588   // Check for an unused caller-saved register. Callee-saved registers
1589   // have become pristine by now.
1590   for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1591     if (!IsUsed(*P))
1592       return false;
1593 
1594   // All caller-saved registers are used.
1595   return true;
1596 }
1597 
1598 #ifndef NDEBUG
1599 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1600   dbgs() << '{';
1601   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1602     unsigned R = x;
1603     dbgs() << ' ' << printReg(R, &TRI);
1604   }
1605   dbgs() << " }";
1606 }
1607 #endif
1608 
1609 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1610       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1611   LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
1612   MachineFrameInfo &MFI = MF.getFrameInfo();
1613   BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1614 
1615   // Generate a set of unique, callee-saved registers (SRegs), where each
1616   // register in the set is maximal in terms of sub-/super-register relation,
1617   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1618 
1619   // (1) For each callee-saved register, add that register and all of its
1620   // sub-registers to SRegs.
1621   LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1622   for (const CalleeSavedInfo &I : CSI) {
1623     Register R = I.getReg();
1624     LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
1625     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1626       SRegs[*SR] = true;
1627   }
1628   LLVM_DEBUG(dbgs() << " }\n");
1629   LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
1630              dbgs() << "\n");
1631 
1632   // (2) For each reserved register, remove that register and all of its
1633   // sub- and super-registers from SRegs.
1634   BitVector Reserved = TRI->getReservedRegs(MF);
1635   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1636     unsigned R = x;
1637     for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1638       SRegs[*SR] = false;
1639   }
1640   LLVM_DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI);
1641              dbgs() << "\n");
1642   LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
1643              dbgs() << "\n");
1644 
1645   // (3) Collect all registers that have at least one sub-register in SRegs,
1646   // and also have no sub-registers that are reserved. These will be the can-
1647   // didates for saving as a whole instead of their individual sub-registers.
1648   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1649   BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1650   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1651     unsigned R = x;
1652     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1653       TmpSup[*SR] = true;
1654   }
1655   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1656     unsigned R = x;
1657     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1658       if (!Reserved[*SR])
1659         continue;
1660       TmpSup[R] = false;
1661       break;
1662     }
1663   }
1664   LLVM_DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI);
1665              dbgs() << "\n");
1666 
1667   // (4) Include all super-registers found in (3) into SRegs.
1668   SRegs |= TmpSup;
1669   LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
1670              dbgs() << "\n");
1671 
1672   // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1673   // remove R from SRegs.
1674   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1675     unsigned R = x;
1676     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1677       if (!SRegs[*SR])
1678         continue;
1679       SRegs[R] = false;
1680       break;
1681     }
1682   }
1683   LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
1684              dbgs() << "\n");
1685 
1686   // Now, for each register that has a fixed stack slot, create the stack
1687   // object for it.
1688   CSI.clear();
1689 
1690   using SpillSlot = TargetFrameLowering::SpillSlot;
1691 
1692   unsigned NumFixed;
1693   int MinOffset = 0;  // CS offsets are negative.
1694   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1695   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1696     if (!SRegs[S->Reg])
1697       continue;
1698     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1699     int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
1700     MinOffset = std::min(MinOffset, S->Offset);
1701     CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1702     SRegs[S->Reg] = false;
1703   }
1704 
1705   // There can be some registers that don't have fixed slots. For example,
1706   // we need to store R0-R3 in functions with exception handling. For each
1707   // such register, create a non-fixed stack object.
1708   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1709     unsigned R = x;
1710     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1711     unsigned Size = TRI->getSpillSize(*RC);
1712     int Off = MinOffset - Size;
1713     Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign());
1714     Off &= -Alignment.value();
1715     int FI = MFI.CreateFixedSpillStackObject(Size, Off);
1716     MinOffset = std::min(MinOffset, Off);
1717     CSI.push_back(CalleeSavedInfo(R, FI));
1718     SRegs[R] = false;
1719   }
1720 
1721   LLVM_DEBUG({
1722     dbgs() << "CS information: {";
1723     for (const CalleeSavedInfo &I : CSI) {
1724       int FI = I.getFrameIdx();
1725       int Off = MFI.getObjectOffset(FI);
1726       dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp";
1727       if (Off >= 0)
1728         dbgs() << '+';
1729       dbgs() << Off;
1730     }
1731     dbgs() << " }\n";
1732   });
1733 
1734 #ifndef NDEBUG
1735   // Verify that all registers were handled.
1736   bool MissedReg = false;
1737   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1738     unsigned R = x;
1739     dbgs() << printReg(R, TRI) << ' ';
1740     MissedReg = true;
1741   }
1742   if (MissedReg)
1743     llvm_unreachable("...there are unhandled callee-saved registers!");
1744 #endif
1745 
1746   return true;
1747 }
1748 
1749 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1750       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1751       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1752   MachineInstr *MI = &*It;
1753   DebugLoc DL = MI->getDebugLoc();
1754   Register DstR = MI->getOperand(0).getReg();
1755   Register SrcR = MI->getOperand(1).getReg();
1756   if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1757       !Hexagon::ModRegsRegClass.contains(SrcR))
1758     return false;
1759 
1760   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1761   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
1762   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1763     .addReg(TmpR, RegState::Kill);
1764 
1765   NewRegs.push_back(TmpR);
1766   B.erase(It);
1767   return true;
1768 }
1769 
1770 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1771       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1772       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1773   MachineInstr *MI = &*It;
1774   if (!MI->getOperand(0).isFI())
1775     return false;
1776 
1777   DebugLoc DL = MI->getDebugLoc();
1778   unsigned Opc = MI->getOpcode();
1779   Register SrcR = MI->getOperand(2).getReg();
1780   bool IsKill = MI->getOperand(2).isKill();
1781   int FI = MI->getOperand(0).getIndex();
1782 
1783   // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register
1784   // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register
1785   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1786   unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1787                                                  : Hexagon::A2_tfrcrr;
1788   BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1789     .addReg(SrcR, getKillRegState(IsKill));
1790 
1791   // S2_storeri_io FI, 0, TmpR
1792   BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1793       .addFrameIndex(FI)
1794       .addImm(0)
1795       .addReg(TmpR, RegState::Kill)
1796       .cloneMemRefs(*MI);
1797 
1798   NewRegs.push_back(TmpR);
1799   B.erase(It);
1800   return true;
1801 }
1802 
1803 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1804       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1805       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1806   MachineInstr *MI = &*It;
1807   if (!MI->getOperand(1).isFI())
1808     return false;
1809 
1810   DebugLoc DL = MI->getDebugLoc();
1811   unsigned Opc = MI->getOpcode();
1812   Register DstR = MI->getOperand(0).getReg();
1813   int FI = MI->getOperand(1).getIndex();
1814 
1815   // TmpR = L2_loadri_io FI, 0
1816   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1817   BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1818       .addFrameIndex(FI)
1819       .addImm(0)
1820       .cloneMemRefs(*MI);
1821 
1822   // DstR = C2_tfrrp TmpR   if DstR is a predicate register
1823   // DstR = A2_tfrrcr TmpR  if DstR is a modifier register
1824   unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1825                                                  : Hexagon::A2_tfrrcr;
1826   BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1827     .addReg(TmpR, RegState::Kill);
1828 
1829   NewRegs.push_back(TmpR);
1830   B.erase(It);
1831   return true;
1832 }
1833 
1834 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1835       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1836       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1837   MachineInstr *MI = &*It;
1838   if (!MI->getOperand(0).isFI())
1839     return false;
1840 
1841   DebugLoc DL = MI->getDebugLoc();
1842   Register SrcR = MI->getOperand(2).getReg();
1843   bool IsKill = MI->getOperand(2).isKill();
1844   int FI = MI->getOperand(0).getIndex();
1845   auto *RC = &Hexagon::HvxVRRegClass;
1846 
1847   // Insert transfer to general vector register.
1848   //   TmpR0 = A2_tfrsi 0x01010101
1849   //   TmpR1 = V6_vandqrt Qx, TmpR0
1850   //   store FI, 0, TmpR1
1851   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1852   Register TmpR1 = MRI.createVirtualRegister(RC);
1853 
1854   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1855     .addImm(0x01010101);
1856 
1857   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
1858     .addReg(SrcR, getKillRegState(IsKill))
1859     .addReg(TmpR0, RegState::Kill);
1860 
1861   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1862   HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
1863   expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1864 
1865   NewRegs.push_back(TmpR0);
1866   NewRegs.push_back(TmpR1);
1867   B.erase(It);
1868   return true;
1869 }
1870 
1871 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1872       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1873       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1874   MachineInstr *MI = &*It;
1875   if (!MI->getOperand(1).isFI())
1876     return false;
1877 
1878   DebugLoc DL = MI->getDebugLoc();
1879   Register DstR = MI->getOperand(0).getReg();
1880   int FI = MI->getOperand(1).getIndex();
1881   auto *RC = &Hexagon::HvxVRRegClass;
1882 
1883   // TmpR0 = A2_tfrsi 0x01010101
1884   // TmpR1 = load FI, 0
1885   // DstR = V6_vandvrt TmpR1, TmpR0
1886   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1887   Register TmpR1 = MRI.createVirtualRegister(RC);
1888 
1889   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1890     .addImm(0x01010101);
1891   MachineFunction &MF = *B.getParent();
1892   auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1893   HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
1894   expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1895 
1896   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
1897     .addReg(TmpR1, RegState::Kill)
1898     .addReg(TmpR0, RegState::Kill);
1899 
1900   NewRegs.push_back(TmpR0);
1901   NewRegs.push_back(TmpR1);
1902   B.erase(It);
1903   return true;
1904 }
1905 
1906 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1907       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1908       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1909   MachineFunction &MF = *B.getParent();
1910   auto &MFI = MF.getFrameInfo();
1911   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1912   MachineInstr *MI = &*It;
1913   if (!MI->getOperand(0).isFI())
1914     return false;
1915 
1916   // It is possible that the double vector being stored is only partially
1917   // defined. From the point of view of the liveness tracking, it is ok to
1918   // store it as a whole, but if we break it up we may end up storing a
1919   // register that is entirely undefined.
1920   LivePhysRegs LPR(HRI);
1921   LPR.addLiveIns(B);
1922   SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
1923   for (auto R = B.begin(); R != It; ++R) {
1924     Clobbers.clear();
1925     LPR.stepForward(*R, Clobbers);
1926   }
1927 
1928   DebugLoc DL = MI->getDebugLoc();
1929   Register SrcR = MI->getOperand(2).getReg();
1930   Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
1931   Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
1932   bool IsKill = MI->getOperand(2).isKill();
1933   int FI = MI->getOperand(0).getIndex();
1934   bool NeedsAligna = needsAligna(MF);
1935 
1936   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1937   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1938   Align HasAlign = MFI.getObjectAlign(FI);
1939   unsigned StoreOpc;
1940 
1941   auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1942     return !NeedsAligna && (NeedAlign <= HasAlign);
1943   };
1944 
1945   // Store low part.
1946   if (LPR.contains(SrcLo)) {
1947     StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1948                                                : Hexagon::V6_vS32Ub_ai;
1949     BuildMI(B, It, DL, HII.get(StoreOpc))
1950         .addFrameIndex(FI)
1951         .addImm(0)
1952         .addReg(SrcLo, getKillRegState(IsKill))
1953         .cloneMemRefs(*MI);
1954   }
1955 
1956   // Store high part.
1957   if (LPR.contains(SrcHi)) {
1958     StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1959                                                : Hexagon::V6_vS32Ub_ai;
1960     BuildMI(B, It, DL, HII.get(StoreOpc))
1961         .addFrameIndex(FI)
1962         .addImm(Size)
1963         .addReg(SrcHi, getKillRegState(IsKill))
1964         .cloneMemRefs(*MI);
1965   }
1966 
1967   B.erase(It);
1968   return true;
1969 }
1970 
1971 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1972       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1973       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1974   MachineFunction &MF = *B.getParent();
1975   auto &MFI = MF.getFrameInfo();
1976   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1977   MachineInstr *MI = &*It;
1978   if (!MI->getOperand(1).isFI())
1979     return false;
1980 
1981   DebugLoc DL = MI->getDebugLoc();
1982   Register DstR = MI->getOperand(0).getReg();
1983   Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
1984   Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
1985   int FI = MI->getOperand(1).getIndex();
1986   bool NeedsAligna = needsAligna(MF);
1987 
1988   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1989   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1990   Align HasAlign = MFI.getObjectAlign(FI);
1991   unsigned LoadOpc;
1992 
1993   auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1994     return !NeedsAligna && (NeedAlign <= HasAlign);
1995   };
1996 
1997   // Load low part.
1998   LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
1999                                             : Hexagon::V6_vL32Ub_ai;
2000   BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
2001       .addFrameIndex(FI)
2002       .addImm(0)
2003       .cloneMemRefs(*MI);
2004 
2005   // Load high part.
2006   LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2007                                             : Hexagon::V6_vL32Ub_ai;
2008   BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
2009       .addFrameIndex(FI)
2010       .addImm(Size)
2011       .cloneMemRefs(*MI);
2012 
2013   B.erase(It);
2014   return true;
2015 }
2016 
2017 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
2018       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2019       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2020   MachineFunction &MF = *B.getParent();
2021   auto &MFI = MF.getFrameInfo();
2022   MachineInstr *MI = &*It;
2023   if (!MI->getOperand(0).isFI())
2024     return false;
2025 
2026   bool NeedsAligna = needsAligna(MF);
2027   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2028   DebugLoc DL = MI->getDebugLoc();
2029   Register SrcR = MI->getOperand(2).getReg();
2030   bool IsKill = MI->getOperand(2).isKill();
2031   int FI = MI->getOperand(0).getIndex();
2032 
2033   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2034   Align HasAlign = MFI.getObjectAlign(FI);
2035   bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2036   unsigned StoreOpc = UseAligned ? Hexagon::V6_vS32b_ai
2037                                  : Hexagon::V6_vS32Ub_ai;
2038   BuildMI(B, It, DL, HII.get(StoreOpc))
2039       .addFrameIndex(FI)
2040       .addImm(0)
2041       .addReg(SrcR, getKillRegState(IsKill))
2042       .cloneMemRefs(*MI);
2043 
2044   B.erase(It);
2045   return true;
2046 }
2047 
2048 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
2049       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2050       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2051   MachineFunction &MF = *B.getParent();
2052   auto &MFI = MF.getFrameInfo();
2053   MachineInstr *MI = &*It;
2054   if (!MI->getOperand(1).isFI())
2055     return false;
2056 
2057   bool NeedsAligna = needsAligna(MF);
2058   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2059   DebugLoc DL = MI->getDebugLoc();
2060   Register DstR = MI->getOperand(0).getReg();
2061   int FI = MI->getOperand(1).getIndex();
2062 
2063   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2064   Align HasAlign = MFI.getObjectAlign(FI);
2065   bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2066   unsigned LoadOpc = UseAligned ? Hexagon::V6_vL32b_ai
2067                                 : Hexagon::V6_vL32Ub_ai;
2068   BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
2069       .addFrameIndex(FI)
2070       .addImm(0)
2071       .cloneMemRefs(*MI);
2072 
2073   B.erase(It);
2074   return true;
2075 }
2076 
2077 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
2078       SmallVectorImpl<unsigned> &NewRegs) const {
2079   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
2080   MachineRegisterInfo &MRI = MF.getRegInfo();
2081   bool Changed = false;
2082 
2083   for (auto &B : MF) {
2084     // Traverse the basic block.
2085     MachineBasicBlock::iterator NextI;
2086     for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
2087       MachineInstr *MI = &*I;
2088       NextI = std::next(I);
2089       unsigned Opc = MI->getOpcode();
2090 
2091       switch (Opc) {
2092         case TargetOpcode::COPY:
2093           Changed |= expandCopy(B, I, MRI, HII, NewRegs);
2094           break;
2095         case Hexagon::STriw_pred:
2096         case Hexagon::STriw_ctr:
2097           Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
2098           break;
2099         case Hexagon::LDriw_pred:
2100         case Hexagon::LDriw_ctr:
2101           Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
2102           break;
2103         case Hexagon::PS_vstorerq_ai:
2104           Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
2105           break;
2106         case Hexagon::PS_vloadrq_ai:
2107           Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
2108           break;
2109         case Hexagon::PS_vloadrw_ai:
2110           Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
2111           break;
2112         case Hexagon::PS_vstorerw_ai:
2113           Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
2114           break;
2115       }
2116     }
2117   }
2118 
2119   return Changed;
2120 }
2121 
2122 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
2123                                                 BitVector &SavedRegs,
2124                                                 RegScavenger *RS) const {
2125   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2126 
2127   SavedRegs.resize(HRI.getNumRegs());
2128 
2129   // If we have a function containing __builtin_eh_return we want to spill and
2130   // restore all callee saved registers. Pretend that they are used.
2131   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2132     for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
2133       SavedRegs.set(*R);
2134 
2135   // Replace predicate register pseudo spill code.
2136   SmallVector<unsigned,8> NewRegs;
2137   expandSpillMacros(MF, NewRegs);
2138   if (OptimizeSpillSlots && !isOptNone(MF))
2139     optimizeSpillSlots(MF, NewRegs);
2140 
2141   // We need to reserve a spill slot if scavenging could potentially require
2142   // spilling a scavenged register.
2143   if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
2144     MachineFrameInfo &MFI = MF.getFrameInfo();
2145     MachineRegisterInfo &MRI = MF.getRegInfo();
2146     SetVector<const TargetRegisterClass*> SpillRCs;
2147     // Reserve an int register in any case, because it could be used to hold
2148     // the stack offset in case it does not fit into a spill instruction.
2149     SpillRCs.insert(&Hexagon::IntRegsRegClass);
2150 
2151     for (unsigned VR : NewRegs)
2152       SpillRCs.insert(MRI.getRegClass(VR));
2153 
2154     for (auto *RC : SpillRCs) {
2155       if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
2156         continue;
2157       unsigned Num = 1;
2158       switch (RC->getID()) {
2159         case Hexagon::IntRegsRegClassID:
2160           Num = NumberScavengerSlots;
2161           break;
2162         case Hexagon::HvxQRRegClassID:
2163           Num = 2; // Vector predicate spills also need a vector register.
2164           break;
2165       }
2166       unsigned S = HRI.getSpillSize(*RC);
2167       Align A = HRI.getSpillAlign(*RC);
2168       for (unsigned i = 0; i < Num; i++) {
2169         int NewFI = MFI.CreateSpillStackObject(S, A);
2170         RS->addScavengingFrameIndex(NewFI);
2171       }
2172     }
2173   }
2174 
2175   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2176 }
2177 
2178 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
2179       HexagonBlockRanges::IndexRange &FIR,
2180       HexagonBlockRanges::InstrIndexMap &IndexMap,
2181       HexagonBlockRanges::RegToRangeMap &DeadMap,
2182       const TargetRegisterClass *RC) const {
2183   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2184   auto &MRI = MF.getRegInfo();
2185 
2186   auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
2187     auto F = DeadMap.find({Reg,0});
2188     if (F == DeadMap.end())
2189       return false;
2190     for (auto &DR : F->second)
2191       if (DR.contains(FIR))
2192         return true;
2193     return false;
2194   };
2195 
2196   for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
2197     bool Dead = true;
2198     for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
2199       if (isDead(R.Reg))
2200         continue;
2201       Dead = false;
2202       break;
2203     }
2204     if (Dead)
2205       return Reg;
2206   }
2207   return 0;
2208 }
2209 
2210 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
2211       SmallVectorImpl<unsigned> &VRegs) const {
2212   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2213   auto &HII = *HST.getInstrInfo();
2214   auto &HRI = *HST.getRegisterInfo();
2215   auto &MRI = MF.getRegInfo();
2216   HexagonBlockRanges HBR(MF);
2217 
2218   using BlockIndexMap =
2219       std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
2220   using BlockRangeMap =
2221       std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
2222   using IndexType = HexagonBlockRanges::IndexType;
2223 
2224   struct SlotInfo {
2225     BlockRangeMap Map;
2226     unsigned Size = 0;
2227     const TargetRegisterClass *RC = nullptr;
2228 
2229     SlotInfo() = default;
2230   };
2231 
2232   BlockIndexMap BlockIndexes;
2233   SmallSet<int,4> BadFIs;
2234   std::map<int,SlotInfo> FIRangeMap;
2235 
2236   // Accumulate register classes: get a common class for a pre-existing
2237   // class HaveRC and a new class NewRC. Return nullptr if a common class
2238   // cannot be found, otherwise return the resulting class. If HaveRC is
2239   // nullptr, assume that it is still unset.
2240   auto getCommonRC =
2241       [](const TargetRegisterClass *HaveRC,
2242          const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
2243     if (HaveRC == nullptr || HaveRC == NewRC)
2244       return NewRC;
2245     // Different classes, both non-null. Pick the more general one.
2246     if (HaveRC->hasSubClassEq(NewRC))
2247       return HaveRC;
2248     if (NewRC->hasSubClassEq(HaveRC))
2249       return NewRC;
2250     return nullptr;
2251   };
2252 
2253   // Scan all blocks in the function. Check all occurrences of frame indexes,
2254   // and collect relevant information.
2255   for (auto &B : MF) {
2256     std::map<int,IndexType> LastStore, LastLoad;
2257     // Emplace appears not to be supported in gcc 4.7.2-4.
2258     //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2259     auto P = BlockIndexes.insert(
2260                 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
2261     auto &IndexMap = P.first->second;
2262     LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
2263                       << IndexMap << '\n');
2264 
2265     for (auto &In : B) {
2266       int LFI, SFI;
2267       bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
2268       bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
2269       if (Load && Store) {
2270         // If it's both a load and a store, then we won't handle it.
2271         BadFIs.insert(LFI);
2272         BadFIs.insert(SFI);
2273         continue;
2274       }
2275       // Check for register classes of the register used as the source for
2276       // the store, and the register used as the destination for the load.
2277       // Also, only accept base+imm_offset addressing modes. Other addressing
2278       // modes can have side-effects (post-increments, etc.). For stack
2279       // slots they are very unlikely, so there is not much loss due to
2280       // this restriction.
2281       if (Load || Store) {
2282         int TFI = Load ? LFI : SFI;
2283         unsigned AM = HII.getAddrMode(In);
2284         SlotInfo &SI = FIRangeMap[TFI];
2285         bool Bad = (AM != HexagonII::BaseImmOffset);
2286         if (!Bad) {
2287           // If the addressing mode is ok, check the register class.
2288           unsigned OpNum = Load ? 0 : 2;
2289           auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
2290           RC = getCommonRC(SI.RC, RC);
2291           if (RC == nullptr)
2292             Bad = true;
2293           else
2294             SI.RC = RC;
2295         }
2296         if (!Bad) {
2297           // Check sizes.
2298           unsigned S = HII.getMemAccessSize(In);
2299           if (SI.Size != 0 && SI.Size != S)
2300             Bad = true;
2301           else
2302             SI.Size = S;
2303         }
2304         if (!Bad) {
2305           for (auto *Mo : In.memoperands()) {
2306             if (!Mo->isVolatile() && !Mo->isAtomic())
2307               continue;
2308             Bad = true;
2309             break;
2310           }
2311         }
2312         if (Bad)
2313           BadFIs.insert(TFI);
2314       }
2315 
2316       // Locate uses of frame indices.
2317       for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
2318         const MachineOperand &Op = In.getOperand(i);
2319         if (!Op.isFI())
2320           continue;
2321         int FI = Op.getIndex();
2322         // Make sure that the following operand is an immediate and that
2323         // it is 0. This is the offset in the stack object.
2324         if (i+1 >= n || !In.getOperand(i+1).isImm() ||
2325             In.getOperand(i+1).getImm() != 0)
2326           BadFIs.insert(FI);
2327         if (BadFIs.count(FI))
2328           continue;
2329 
2330         IndexType Index = IndexMap.getIndex(&In);
2331         if (Load) {
2332           if (LastStore[FI] == IndexType::None)
2333             LastStore[FI] = IndexType::Entry;
2334           LastLoad[FI] = Index;
2335         } else if (Store) {
2336           HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2337           if (LastStore[FI] != IndexType::None)
2338             RL.add(LastStore[FI], LastLoad[FI], false, false);
2339           else if (LastLoad[FI] != IndexType::None)
2340             RL.add(IndexType::Entry, LastLoad[FI], false, false);
2341           LastLoad[FI] = IndexType::None;
2342           LastStore[FI] = Index;
2343         } else {
2344           BadFIs.insert(FI);
2345         }
2346       }
2347     }
2348 
2349     for (auto &I : LastLoad) {
2350       IndexType LL = I.second;
2351       if (LL == IndexType::None)
2352         continue;
2353       auto &RL = FIRangeMap[I.first].Map[&B];
2354       IndexType &LS = LastStore[I.first];
2355       if (LS != IndexType::None)
2356         RL.add(LS, LL, false, false);
2357       else
2358         RL.add(IndexType::Entry, LL, false, false);
2359       LS = IndexType::None;
2360     }
2361     for (auto &I : LastStore) {
2362       IndexType LS = I.second;
2363       if (LS == IndexType::None)
2364         continue;
2365       auto &RL = FIRangeMap[I.first].Map[&B];
2366       RL.add(LS, IndexType::None, false, false);
2367     }
2368   }
2369 
2370   LLVM_DEBUG({
2371     for (auto &P : FIRangeMap) {
2372       dbgs() << "fi#" << P.first;
2373       if (BadFIs.count(P.first))
2374         dbgs() << " (bad)";
2375       dbgs() << "  RC: ";
2376       if (P.second.RC != nullptr)
2377         dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2378       else
2379         dbgs() << "<null>\n";
2380       for (auto &R : P.second.Map)
2381         dbgs() << "  " << printMBBReference(*R.first) << " { " << R.second
2382                << "}\n";
2383     }
2384   });
2385 
2386   // When a slot is loaded from in a block without being stored to in the
2387   // same block, it is live-on-entry to this block. To avoid CFG analysis,
2388   // consider this slot to be live-on-exit from all blocks.
2389   SmallSet<int,4> LoxFIs;
2390 
2391   std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2392 
2393   for (auto &P : FIRangeMap) {
2394     // P = pair(FI, map: BB->RangeList)
2395     if (BadFIs.count(P.first))
2396       continue;
2397     for (auto &B : MF) {
2398       auto F = P.second.Map.find(&B);
2399       // F = pair(BB, RangeList)
2400       if (F == P.second.Map.end() || F->second.empty())
2401         continue;
2402       HexagonBlockRanges::IndexRange &IR = F->second.front();
2403       if (IR.start() == IndexType::Entry)
2404         LoxFIs.insert(P.first);
2405       BlockFIMap[&B].push_back(P.first);
2406     }
2407   }
2408 
2409   LLVM_DEBUG({
2410     dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2411     for (auto &P : BlockFIMap) {
2412       auto &FIs = P.second;
2413       if (FIs.empty())
2414         continue;
2415       dbgs() << "  " << printMBBReference(*P.first) << ": {";
2416       for (auto I : FIs) {
2417         dbgs() << " fi#" << I;
2418         if (LoxFIs.count(I))
2419           dbgs() << '*';
2420       }
2421       dbgs() << " }\n";
2422     }
2423   });
2424 
2425 #ifndef NDEBUG
2426   bool HasOptLimit = SpillOptMax.getPosition();
2427 #endif
2428 
2429   // eliminate loads, when all loads eliminated, eliminate all stores.
2430   for (auto &B : MF) {
2431     auto F = BlockIndexes.find(&B);
2432     assert(F != BlockIndexes.end());
2433     HexagonBlockRanges::InstrIndexMap &IM = F->second;
2434     HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2435     HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2436     LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
2437                       << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2438 
2439     for (auto FI : BlockFIMap[&B]) {
2440       if (BadFIs.count(FI))
2441         continue;
2442       LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2443       HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2444       for (auto &Range : RL) {
2445         LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2446         if (!IndexType::isInstr(Range.start()) ||
2447             !IndexType::isInstr(Range.end()))
2448           continue;
2449         MachineInstr &SI = *IM.getInstr(Range.start());
2450         MachineInstr &EI = *IM.getInstr(Range.end());
2451         assert(SI.mayStore() && "Unexpected start instruction");
2452         assert(EI.mayLoad() && "Unexpected end instruction");
2453         MachineOperand &SrcOp = SI.getOperand(2);
2454 
2455         HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2456                                                   SrcOp.getSubReg() };
2457         auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
2458         // The this-> is needed to unconfuse MSVC.
2459         unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2460         LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
2461                           << '\n');
2462         if (FoundR == 0)
2463           continue;
2464 #ifndef NDEBUG
2465         if (HasOptLimit) {
2466           if (SpillOptCount >= SpillOptMax)
2467             return;
2468           SpillOptCount++;
2469         }
2470 #endif
2471 
2472         // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2473         MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
2474         MachineInstr *CopyIn = nullptr;
2475         if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2476           const DebugLoc &DL = SI.getDebugLoc();
2477           CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2478                        .add(SrcOp);
2479         }
2480 
2481         ++StartIt;
2482         // Check if this is a last store and the FI is live-on-exit.
2483         if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2484           // Update store's source register.
2485           if (unsigned SR = SrcOp.getSubReg())
2486             SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2487           else
2488             SrcOp.setReg(FoundR);
2489           SrcOp.setSubReg(0);
2490           // We are keeping this register live.
2491           SrcOp.setIsKill(false);
2492         } else {
2493           B.erase(&SI);
2494           IM.replaceInstr(&SI, CopyIn);
2495         }
2496 
2497         auto EndIt = std::next(EI.getIterator());
2498         for (auto It = StartIt; It != EndIt; It = NextIt) {
2499           MachineInstr &MI = *It;
2500           NextIt = std::next(It);
2501           int TFI;
2502           if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
2503             continue;
2504           Register DstR = MI.getOperand(0).getReg();
2505           assert(MI.getOperand(0).getSubReg() == 0);
2506           MachineInstr *CopyOut = nullptr;
2507           if (DstR != FoundR) {
2508             DebugLoc DL = MI.getDebugLoc();
2509             unsigned MemSize = HII.getMemAccessSize(MI);
2510             assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2511             unsigned CopyOpc = TargetOpcode::COPY;
2512             if (HII.isSignExtendingLoad(MI))
2513               CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2514             else if (HII.isZeroExtendingLoad(MI))
2515               CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2516             CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2517                         .addReg(FoundR, getKillRegState(&MI == &EI));
2518           }
2519           IM.replaceInstr(&MI, CopyOut);
2520           B.erase(It);
2521         }
2522 
2523         // Update the dead map.
2524         HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2525         for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2526           DM[RR].subtract(Range);
2527       } // for Range in range list
2528     }
2529   }
2530 }
2531 
2532 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2533       const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
2534   MachineBasicBlock &MB = *AI->getParent();
2535   DebugLoc DL = AI->getDebugLoc();
2536   unsigned A = AI->getOperand(2).getImm();
2537 
2538   // Have
2539   //    Rd  = alloca Rs, #A
2540   //
2541   // If Rs and Rd are different registers, use this sequence:
2542   //    Rd  = sub(r29, Rs)
2543   //    r29 = sub(r29, Rs)
2544   //    Rd  = and(Rd, #-A)    ; if necessary
2545   //    r29 = and(r29, #-A)   ; if necessary
2546   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2547   // otherwise, do
2548   //    Rd  = sub(r29, Rs)
2549   //    Rd  = and(Rd, #-A)    ; if necessary
2550   //    r29 = Rd
2551   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2552 
2553   MachineOperand &RdOp = AI->getOperand(0);
2554   MachineOperand &RsOp = AI->getOperand(1);
2555   unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
2556 
2557   // Rd = sub(r29, Rs)
2558   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2559       .addReg(SP)
2560       .addReg(Rs);
2561   if (Rs != Rd) {
2562     // r29 = sub(r29, Rs)
2563     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2564         .addReg(SP)
2565         .addReg(Rs);
2566   }
2567   if (A > 8) {
2568     // Rd  = and(Rd, #-A)
2569     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2570         .addReg(Rd)
2571         .addImm(-int64_t(A));
2572     if (Rs != Rd)
2573       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2574           .addReg(SP)
2575           .addImm(-int64_t(A));
2576   }
2577   if (Rs == Rd) {
2578     // r29 = Rd
2579     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2580         .addReg(Rd);
2581   }
2582   if (CF > 0) {
2583     // Rd = add(Rd, #CF)
2584     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2585         .addReg(Rd)
2586         .addImm(CF);
2587   }
2588 }
2589 
2590 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2591   const MachineFrameInfo &MFI = MF.getFrameInfo();
2592   if (!MFI.hasVarSizedObjects())
2593     return false;
2594   // Do not check for max stack object alignment here, because the stack
2595   // may not be complete yet. Assume that we will need PS_aligna if there
2596   // are variable-sized objects.
2597   return true;
2598 }
2599 
2600 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2601       const MachineFunction &MF) const {
2602   for (auto &B : MF)
2603     for (auto &I : B)
2604       if (I.getOpcode() == Hexagon::PS_aligna)
2605         return &I;
2606   return nullptr;
2607 }
2608 
2609 /// Adds all callee-saved registers as implicit uses or defs to the
2610 /// instruction.
2611 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2612       const CSIVect &CSI, bool IsDef, bool IsKill) const {
2613   // Add the callee-saved registers as implicit uses.
2614   for (auto &R : CSI)
2615     MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2616 }
2617 
2618 /// Determine whether the callee-saved register saves and restores should
2619 /// be generated via inline code. If this function returns "true", inline
2620 /// code will be generated. If this function returns "false", additional
2621 /// checks are performed, which may still lead to the inline code.
2622 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
2623       const CSIVect &CSI) const {
2624   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl())
2625     return true;
2626   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2627     return true;
2628   if (!hasFP(MF))
2629     return true;
2630   if (!isOptSize(MF) && !isMinSize(MF))
2631     if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
2632       return true;
2633 
2634   // Check if CSI only has double registers, and if the registers form
2635   // a contiguous block starting from D8.
2636   BitVector Regs(Hexagon::NUM_TARGET_REGS);
2637   for (const CalleeSavedInfo &I : CSI) {
2638     Register R = I.getReg();
2639     if (!Hexagon::DoubleRegsRegClass.contains(R))
2640       return true;
2641     Regs[R] = true;
2642   }
2643   int F = Regs.find_first();
2644   if (F != Hexagon::D8)
2645     return true;
2646   while (F >= 0) {
2647     int N = Regs.find_next(F);
2648     if (N >= 0 && N != F+1)
2649       return true;
2650     F = N;
2651   }
2652 
2653   return false;
2654 }
2655 
2656 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
2657       const CSIVect &CSI) const {
2658   if (shouldInlineCSR(MF, CSI))
2659     return false;
2660   unsigned NumCSI = CSI.size();
2661   if (NumCSI <= 1)
2662     return false;
2663 
2664   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2665                                      : SpillFuncThreshold;
2666   return Threshold < NumCSI;
2667 }
2668 
2669 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
2670       const CSIVect &CSI) const {
2671   if (shouldInlineCSR(MF, CSI))
2672     return false;
2673   // The restore functions do a bit more than just restoring registers.
2674   // The non-returning versions will go back directly to the caller's
2675   // caller, others will clean up the stack frame in preparation for
2676   // a tail call. Using them can still save code size even if only one
2677   // register is getting restores. Make the decision based on -Oz:
2678   // using -Os will use inline restore for a single register.
2679   if (isMinSize(MF))
2680     return true;
2681   unsigned NumCSI = CSI.size();
2682   if (NumCSI <= 1)
2683     return false;
2684 
2685   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2686                                      : SpillFuncThreshold;
2687   return Threshold < NumCSI;
2688 }
2689 
2690 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
2691   unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
2692   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2693   // A fairly simplistic guess as to whether a potential load/store to a
2694   // stack location could require an extra register.
2695   if (HST.useHVXOps() && StackSize > 256)
2696     return true;
2697 
2698   // Check if the function has store-immediate instructions that access
2699   // the stack. Since the offset field is not extendable, if the stack
2700   // size exceeds the offset limit (6 bits, shifted), the stores will
2701   // require a new base register.
2702   bool HasImmStack = false;
2703   unsigned MinLS = ~0u;   // Log_2 of the memory access size.
2704 
2705   for (const MachineBasicBlock &B : MF) {
2706     for (const MachineInstr &MI : B) {
2707       unsigned LS = 0;
2708       switch (MI.getOpcode()) {
2709         case Hexagon::S4_storeirit_io:
2710         case Hexagon::S4_storeirif_io:
2711         case Hexagon::S4_storeiri_io:
2712           ++LS;
2713           LLVM_FALLTHROUGH;
2714         case Hexagon::S4_storeirht_io:
2715         case Hexagon::S4_storeirhf_io:
2716         case Hexagon::S4_storeirh_io:
2717           ++LS;
2718           LLVM_FALLTHROUGH;
2719         case Hexagon::S4_storeirbt_io:
2720         case Hexagon::S4_storeirbf_io:
2721         case Hexagon::S4_storeirb_io:
2722           if (MI.getOperand(0).isFI())
2723             HasImmStack = true;
2724           MinLS = std::min(MinLS, LS);
2725           break;
2726       }
2727     }
2728   }
2729 
2730   if (HasImmStack)
2731     return !isUInt<6>(StackSize >> MinLS);
2732 
2733   return false;
2734 }
2735