1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonInstrInfo.h"
14 #include "Hexagon.h"
15 #include "HexagonFrameLowering.h"
16 #include "HexagonHazardRecognizer.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/DFAPacketizer.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCInstBuilder.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCInstrItineraries.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <cassert>
56 #include <cctype>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <optional>
61 #include <string>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "hexagon-instrinfo"
67 
68 #define GET_INSTRINFO_CTOR_DTOR
69 #define GET_INSTRMAP_INFO
70 #include "HexagonDepTimingClasses.h"
71 #include "HexagonGenDFAPacketizer.inc"
72 #include "HexagonGenInstrInfo.inc"
73 
74 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
75   cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
76                             "packetization boundary."));
77 
78 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
79   cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
80 
81 static cl::opt<bool> DisableNVSchedule(
82     "disable-hexagon-nv-schedule", cl::Hidden,
83     cl::desc("Disable schedule adjustment for new value stores."));
84 
85 static cl::opt<bool> EnableTimingClassLatency(
86   "enable-timing-class-latency", cl::Hidden, cl::init(false),
87   cl::desc("Enable timing class latency"));
88 
89 static cl::opt<bool> EnableALUForwarding(
90   "enable-alu-forwarding", cl::Hidden, cl::init(true),
91   cl::desc("Enable vec alu forwarding"));
92 
93 static cl::opt<bool> EnableACCForwarding(
94   "enable-acc-forwarding", cl::Hidden, cl::init(true),
95   cl::desc("Enable vec acc forwarding"));
96 
97 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
98                                          cl::init(true), cl::Hidden,
99                                          cl::desc("branch relax asm"));
100 
101 static cl::opt<bool>
102     UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden,
103                     cl::desc("Use the DFA based hazard recognizer."));
104 
105 /// Constants for Hexagon instructions.
106 const int Hexagon_MEMW_OFFSET_MAX = 4095;
107 const int Hexagon_MEMW_OFFSET_MIN = -4096;
108 const int Hexagon_MEMD_OFFSET_MAX = 8191;
109 const int Hexagon_MEMD_OFFSET_MIN = -8192;
110 const int Hexagon_MEMH_OFFSET_MAX = 2047;
111 const int Hexagon_MEMH_OFFSET_MIN = -2048;
112 const int Hexagon_MEMB_OFFSET_MAX = 1023;
113 const int Hexagon_MEMB_OFFSET_MIN = -1024;
114 const int Hexagon_ADDI_OFFSET_MAX = 32767;
115 const int Hexagon_ADDI_OFFSET_MIN = -32768;
116 
117 // Pin the vtable to this file.
118 void HexagonInstrInfo::anchor() {}
119 
120 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
121   : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
122     Subtarget(ST) {}
123 
124 namespace llvm {
125 namespace HexagonFUnits {
126   bool isSlot0Only(unsigned units);
127 }
128 }
129 
130 static bool isIntRegForSubInst(Register Reg) {
131   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
132          (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
133 }
134 
135 static bool isDblRegForSubInst(Register Reg, const HexagonRegisterInfo &HRI) {
136   return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
137          isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
138 }
139 
140 /// Calculate number of instructions excluding the debug instructions.
141 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
142                               MachineBasicBlock::const_instr_iterator MIE) {
143   unsigned Count = 0;
144   for (; MIB != MIE; ++MIB) {
145     if (!MIB->isDebugInstr())
146       ++Count;
147   }
148   return Count;
149 }
150 
151 // Check if the A2_tfrsi instruction is cheap or not. If the operand has
152 // to be constant-extendend it is not cheap since it occupies two slots
153 // in a packet.
154 bool HexagonInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
155   // Enable the following steps only at Os/Oz
156   if (!(MI.getMF()->getFunction().hasOptSize()))
157     return MI.isAsCheapAsAMove();
158 
159   if (MI.getOpcode() == Hexagon::A2_tfrsi) {
160     auto Op = MI.getOperand(1);
161     // If the instruction has a global address as operand, it is not cheap
162     // since the operand will be constant extended.
163     if (Op.isGlobal())
164       return false;
165     // If the instruction has an operand of size > 16bits, its will be
166     // const-extended and hence, it is not cheap.
167     if (Op.isImm()) {
168       int64_t Imm = Op.getImm();
169       if (!isInt<16>(Imm))
170         return false;
171     }
172   }
173   return MI.isAsCheapAsAMove();
174 }
175 
176 // Do not sink floating point instructions that updates USR register.
177 // Example:
178 //    feclearexcept
179 //    F2_conv_w2sf
180 //    fetestexcept
181 // MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions.
182 // TODO: On some of these floating point instructions, USR is marked as Use.
183 // In reality, these instructions also Def the USR. If USR is marked as Def,
184 // some of the assumptions in assembler packetization are broken.
185 bool HexagonInstrInfo::shouldSink(const MachineInstr &MI) const {
186   // Assumption: A floating point instruction that reads the USR will write
187   // the USR as well.
188   if (isFloat(MI) && MI.hasRegisterImplicitUseOperand(Hexagon::USR))
189     return false;
190   return true;
191 }
192 
193 /// Find the hardware loop instruction used to set-up the specified loop.
194 /// On Hexagon, we have two instructions used to set-up the hardware loop
195 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
196 /// to indicate the end of a loop.
197 MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB,
198       unsigned EndLoopOp, MachineBasicBlock *TargetBB,
199       SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
200   unsigned LOOPi;
201   unsigned LOOPr;
202   if (EndLoopOp == Hexagon::ENDLOOP0) {
203     LOOPi = Hexagon::J2_loop0i;
204     LOOPr = Hexagon::J2_loop0r;
205   } else { // EndLoopOp == Hexagon::EndLOOP1
206     LOOPi = Hexagon::J2_loop1i;
207     LOOPr = Hexagon::J2_loop1r;
208   }
209 
210   // The loop set-up instruction will be in a predecessor block
211   for (MachineBasicBlock *PB : BB->predecessors()) {
212     // If this has been visited, already skip it.
213     if (!Visited.insert(PB).second)
214       continue;
215     if (PB == BB)
216       continue;
217     for (MachineInstr &I : llvm::reverse(PB->instrs())) {
218       unsigned Opc = I.getOpcode();
219       if (Opc == LOOPi || Opc == LOOPr)
220         return &I;
221       // We've reached a different loop, which means the loop01 has been
222       // removed.
223       if (Opc == EndLoopOp && I.getOperand(0).getMBB() != TargetBB)
224         return nullptr;
225     }
226     // Check the predecessors for the LOOP instruction.
227     if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
228       return Loop;
229   }
230   return nullptr;
231 }
232 
233 /// Gather register def/uses from MI.
234 /// This treats possible (predicated) defs as actually happening ones
235 /// (conservatively).
236 static inline void parseOperands(const MachineInstr &MI,
237       SmallVectorImpl<Register> &Defs, SmallVectorImpl<Register> &Uses) {
238   Defs.clear();
239   Uses.clear();
240 
241   for (const MachineOperand &MO : MI.operands()) {
242     if (!MO.isReg())
243       continue;
244 
245     Register Reg = MO.getReg();
246     if (!Reg)
247       continue;
248 
249     if (MO.isUse())
250       Uses.push_back(MO.getReg());
251 
252     if (MO.isDef())
253       Defs.push_back(MO.getReg());
254   }
255 }
256 
257 // Position dependent, so check twice for swap.
258 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
259   switch (Ga) {
260   case HexagonII::HSIG_None:
261   default:
262     return false;
263   case HexagonII::HSIG_L1:
264     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
265   case HexagonII::HSIG_L2:
266     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
267             Gb == HexagonII::HSIG_A);
268   case HexagonII::HSIG_S1:
269     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
270             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
271   case HexagonII::HSIG_S2:
272     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
273             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
274             Gb == HexagonII::HSIG_A);
275   case HexagonII::HSIG_A:
276     return (Gb == HexagonII::HSIG_A);
277   case HexagonII::HSIG_Compound:
278     return (Gb == HexagonII::HSIG_Compound);
279   }
280   return false;
281 }
282 
283 /// isLoadFromStackSlot - If the specified machine instruction is a direct
284 /// load from a stack slot, return the virtual or physical register number of
285 /// the destination along with the FrameIndex of the loaded stack slot.  If
286 /// not, return 0.  This predicate must return 0 if the instruction has
287 /// any side effects other than loading from the stack slot.
288 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
289                                                int &FrameIndex) const {
290   switch (MI.getOpcode()) {
291     default:
292       break;
293     case Hexagon::L2_loadri_io:
294     case Hexagon::L2_loadrd_io:
295     case Hexagon::V6_vL32b_ai:
296     case Hexagon::V6_vL32b_nt_ai:
297     case Hexagon::V6_vL32Ub_ai:
298     case Hexagon::LDriw_pred:
299     case Hexagon::LDriw_ctr:
300     case Hexagon::PS_vloadrq_ai:
301     case Hexagon::PS_vloadrw_ai:
302     case Hexagon::PS_vloadrw_nt_ai: {
303       const MachineOperand OpFI = MI.getOperand(1);
304       if (!OpFI.isFI())
305         return 0;
306       const MachineOperand OpOff = MI.getOperand(2);
307       if (!OpOff.isImm() || OpOff.getImm() != 0)
308         return 0;
309       FrameIndex = OpFI.getIndex();
310       return MI.getOperand(0).getReg();
311     }
312 
313     case Hexagon::L2_ploadrit_io:
314     case Hexagon::L2_ploadrif_io:
315     case Hexagon::L2_ploadrdt_io:
316     case Hexagon::L2_ploadrdf_io: {
317       const MachineOperand OpFI = MI.getOperand(2);
318       if (!OpFI.isFI())
319         return 0;
320       const MachineOperand OpOff = MI.getOperand(3);
321       if (!OpOff.isImm() || OpOff.getImm() != 0)
322         return 0;
323       FrameIndex = OpFI.getIndex();
324       return MI.getOperand(0).getReg();
325     }
326   }
327 
328   return 0;
329 }
330 
331 /// isStoreToStackSlot - If the specified machine instruction is a direct
332 /// store to a stack slot, return the virtual or physical register number of
333 /// the source reg along with the FrameIndex of the loaded stack slot.  If
334 /// not, return 0.  This predicate must return 0 if the instruction has
335 /// any side effects other than storing to the stack slot.
336 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
337                                               int &FrameIndex) const {
338   switch (MI.getOpcode()) {
339     default:
340       break;
341     case Hexagon::S2_storerb_io:
342     case Hexagon::S2_storerh_io:
343     case Hexagon::S2_storeri_io:
344     case Hexagon::S2_storerd_io:
345     case Hexagon::V6_vS32b_ai:
346     case Hexagon::V6_vS32Ub_ai:
347     case Hexagon::STriw_pred:
348     case Hexagon::STriw_ctr:
349     case Hexagon::PS_vstorerq_ai:
350     case Hexagon::PS_vstorerw_ai: {
351       const MachineOperand &OpFI = MI.getOperand(0);
352       if (!OpFI.isFI())
353         return 0;
354       const MachineOperand &OpOff = MI.getOperand(1);
355       if (!OpOff.isImm() || OpOff.getImm() != 0)
356         return 0;
357       FrameIndex = OpFI.getIndex();
358       return MI.getOperand(2).getReg();
359     }
360 
361     case Hexagon::S2_pstorerbt_io:
362     case Hexagon::S2_pstorerbf_io:
363     case Hexagon::S2_pstorerht_io:
364     case Hexagon::S2_pstorerhf_io:
365     case Hexagon::S2_pstorerit_io:
366     case Hexagon::S2_pstorerif_io:
367     case Hexagon::S2_pstorerdt_io:
368     case Hexagon::S2_pstorerdf_io: {
369       const MachineOperand &OpFI = MI.getOperand(1);
370       if (!OpFI.isFI())
371         return 0;
372       const MachineOperand &OpOff = MI.getOperand(2);
373       if (!OpOff.isImm() || OpOff.getImm() != 0)
374         return 0;
375       FrameIndex = OpFI.getIndex();
376       return MI.getOperand(3).getReg();
377     }
378   }
379 
380   return 0;
381 }
382 
383 /// This function checks if the instruction or bundle of instructions
384 /// has load from stack slot and returns frameindex and machine memory
385 /// operand of that instruction if true.
386 bool HexagonInstrInfo::hasLoadFromStackSlot(
387     const MachineInstr &MI,
388     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
389   if (MI.isBundle()) {
390     const MachineBasicBlock *MBB = MI.getParent();
391     MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
392     for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
393       if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
394         return true;
395     return false;
396   }
397 
398   return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses);
399 }
400 
401 /// This function checks if the instruction or bundle of instructions
402 /// has store to stack slot and returns frameindex and machine memory
403 /// operand of that instruction if true.
404 bool HexagonInstrInfo::hasStoreToStackSlot(
405     const MachineInstr &MI,
406     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
407   if (MI.isBundle()) {
408     const MachineBasicBlock *MBB = MI.getParent();
409     MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
410     for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
411       if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
412         return true;
413     return false;
414   }
415 
416   return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses);
417 }
418 
419 /// This function can analyze one/two way branching only and should (mostly) be
420 /// called by target independent side.
421 /// First entry is always the opcode of the branching instruction, except when
422 /// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a
423 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
424 /// e.g. Jump_c p will have
425 /// Cond[0] = Jump_c
426 /// Cond[1] = p
427 /// HW-loop ENDLOOP:
428 /// Cond[0] = ENDLOOP
429 /// Cond[1] = MBB
430 /// New value jump:
431 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
432 /// Cond[1] = R
433 /// Cond[2] = Imm
434 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
435                                      MachineBasicBlock *&TBB,
436                                      MachineBasicBlock *&FBB,
437                                      SmallVectorImpl<MachineOperand> &Cond,
438                                      bool AllowModify) const {
439   TBB = nullptr;
440   FBB = nullptr;
441   Cond.clear();
442 
443   // If the block has no terminators, it just falls into the block after it.
444   MachineBasicBlock::instr_iterator I = MBB.instr_end();
445   if (I == MBB.instr_begin())
446     return false;
447 
448   // A basic block may looks like this:
449   //
450   //  [   insn
451   //     EH_LABEL
452   //      insn
453   //      insn
454   //      insn
455   //     EH_LABEL
456   //      insn     ]
457   //
458   // It has two succs but does not have a terminator
459   // Don't know how to handle it.
460   do {
461     --I;
462     if (I->isEHLabel())
463       // Don't analyze EH branches.
464       return true;
465   } while (I != MBB.instr_begin());
466 
467   I = MBB.instr_end();
468   --I;
469 
470   while (I->isDebugInstr()) {
471     if (I == MBB.instr_begin())
472       return false;
473     --I;
474   }
475 
476   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
477                      I->getOperand(0).isMBB();
478   // Delete the J2_jump if it's equivalent to a fall-through.
479   if (AllowModify && JumpToBlock &&
480       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
481     LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
482     I->eraseFromParent();
483     I = MBB.instr_end();
484     if (I == MBB.instr_begin())
485       return false;
486     --I;
487   }
488   if (!isUnpredicatedTerminator(*I))
489     return false;
490 
491   // Get the last instruction in the block.
492   MachineInstr *LastInst = &*I;
493   MachineInstr *SecondLastInst = nullptr;
494   // Find one more terminator if present.
495   while (true) {
496     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
497       if (!SecondLastInst)
498         SecondLastInst = &*I;
499       else
500         // This is a third branch.
501         return true;
502     }
503     if (I == MBB.instr_begin())
504       break;
505     --I;
506   }
507 
508   int LastOpcode = LastInst->getOpcode();
509   int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
510   // If the branch target is not a basic block, it could be a tail call.
511   // (It is, if the target is a function.)
512   if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
513     return true;
514   if (SecLastOpcode == Hexagon::J2_jump &&
515       !SecondLastInst->getOperand(0).isMBB())
516     return true;
517 
518   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
519   bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
520 
521   if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
522     return true;
523 
524   // If there is only one terminator instruction, process it.
525   if (LastInst && !SecondLastInst) {
526     if (LastOpcode == Hexagon::J2_jump) {
527       TBB = LastInst->getOperand(0).getMBB();
528       return false;
529     }
530     if (isEndLoopN(LastOpcode)) {
531       TBB = LastInst->getOperand(0).getMBB();
532       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
533       Cond.push_back(LastInst->getOperand(0));
534       return false;
535     }
536     if (LastOpcodeHasJMP_c) {
537       TBB = LastInst->getOperand(1).getMBB();
538       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
539       Cond.push_back(LastInst->getOperand(0));
540       return false;
541     }
542     // Only supporting rr/ri versions of new-value jumps.
543     if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
544       TBB = LastInst->getOperand(2).getMBB();
545       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
546       Cond.push_back(LastInst->getOperand(0));
547       Cond.push_back(LastInst->getOperand(1));
548       return false;
549     }
550     LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
551                       << " with one jump\n";);
552     // Otherwise, don't know what this is.
553     return true;
554   }
555 
556   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
557   bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
558   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
559     if (!SecondLastInst->getOperand(1).isMBB())
560       return true;
561     TBB =  SecondLastInst->getOperand(1).getMBB();
562     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
563     Cond.push_back(SecondLastInst->getOperand(0));
564     FBB = LastInst->getOperand(0).getMBB();
565     return false;
566   }
567 
568   // Only supporting rr/ri versions of new-value jumps.
569   if (SecLastOpcodeHasNVJump &&
570       (SecondLastInst->getNumExplicitOperands() == 3) &&
571       (LastOpcode == Hexagon::J2_jump)) {
572     TBB = SecondLastInst->getOperand(2).getMBB();
573     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
574     Cond.push_back(SecondLastInst->getOperand(0));
575     Cond.push_back(SecondLastInst->getOperand(1));
576     FBB = LastInst->getOperand(0).getMBB();
577     return false;
578   }
579 
580   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
581   // executed, so remove it.
582   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
583     TBB = SecondLastInst->getOperand(0).getMBB();
584     I = LastInst->getIterator();
585     if (AllowModify)
586       I->eraseFromParent();
587     return false;
588   }
589 
590   // If the block ends with an ENDLOOP, and J2_jump, handle it.
591   if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
592     TBB = SecondLastInst->getOperand(0).getMBB();
593     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
594     Cond.push_back(SecondLastInst->getOperand(0));
595     FBB = LastInst->getOperand(0).getMBB();
596     return false;
597   }
598   LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
599                     << " with two jumps";);
600   // Otherwise, can't handle this.
601   return true;
602 }
603 
604 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
605                                         int *BytesRemoved) const {
606   assert(!BytesRemoved && "code size not handled");
607 
608   LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
609   MachineBasicBlock::iterator I = MBB.end();
610   unsigned Count = 0;
611   while (I != MBB.begin()) {
612     --I;
613     if (I->isDebugInstr())
614       continue;
615     // Only removing branches from end of MBB.
616     if (!I->isBranch())
617       return Count;
618     if (Count && (I->getOpcode() == Hexagon::J2_jump))
619       llvm_unreachable("Malformed basic block: unconditional branch not last");
620     MBB.erase(&MBB.back());
621     I = MBB.end();
622     ++Count;
623   }
624   return Count;
625 }
626 
627 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
628                                         MachineBasicBlock *TBB,
629                                         MachineBasicBlock *FBB,
630                                         ArrayRef<MachineOperand> Cond,
631                                         const DebugLoc &DL,
632                                         int *BytesAdded) const {
633   unsigned BOpc   = Hexagon::J2_jump;
634   unsigned BccOpc = Hexagon::J2_jumpt;
635   assert(validateBranchCond(Cond) && "Invalid branching condition");
636   assert(TBB && "insertBranch must not be told to insert a fallthrough");
637   assert(!BytesAdded && "code size not handled");
638 
639   // Check if reverseBranchCondition has asked to reverse this branch
640   // If we want to reverse the branch an odd number of times, we want
641   // J2_jumpf.
642   if (!Cond.empty() && Cond[0].isImm())
643     BccOpc = Cond[0].getImm();
644 
645   if (!FBB) {
646     if (Cond.empty()) {
647       // Due to a bug in TailMerging/CFG Optimization, we need to add a
648       // special case handling of a predicated jump followed by an
649       // unconditional jump. If not, Tail Merging and CFG Optimization go
650       // into an infinite loop.
651       MachineBasicBlock *NewTBB, *NewFBB;
652       SmallVector<MachineOperand, 4> Cond;
653       auto Term = MBB.getFirstTerminator();
654       if (Term != MBB.end() && isPredicated(*Term) &&
655           !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
656           MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
657         reverseBranchCondition(Cond);
658         removeBranch(MBB);
659         return insertBranch(MBB, TBB, nullptr, Cond, DL);
660       }
661       BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
662     } else if (isEndLoopN(Cond[0].getImm())) {
663       int EndLoopOp = Cond[0].getImm();
664       assert(Cond[1].isMBB());
665       // Since we're adding an ENDLOOP, there better be a LOOP instruction.
666       // Check for it, and change the BB target if needed.
667       SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
668       MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
669                                          VisitedBBs);
670       assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
671       Loop->getOperand(0).setMBB(TBB);
672       // Add the ENDLOOP after the finding the LOOP0.
673       BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
674     } else if (isNewValueJump(Cond[0].getImm())) {
675       assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
676       // New value jump
677       // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
678       // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
679       unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
680       LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
681                         << printMBBReference(MBB););
682       if (Cond[2].isReg()) {
683         unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
684         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
685           addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
686       } else if(Cond[2].isImm()) {
687         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
688           addImm(Cond[2].getImm()).addMBB(TBB);
689       } else
690         llvm_unreachable("Invalid condition for branching");
691     } else {
692       assert((Cond.size() == 2) && "Malformed cond vector");
693       const MachineOperand &RO = Cond[1];
694       unsigned Flags = getUndefRegState(RO.isUndef());
695       BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
696     }
697     return 1;
698   }
699   assert((!Cond.empty()) &&
700          "Cond. cannot be empty when multiple branchings are required");
701   assert((!isNewValueJump(Cond[0].getImm())) &&
702          "NV-jump cannot be inserted with another branch");
703   // Special case for hardware loops.  The condition is a basic block.
704   if (isEndLoopN(Cond[0].getImm())) {
705     int EndLoopOp = Cond[0].getImm();
706     assert(Cond[1].isMBB());
707     // Since we're adding an ENDLOOP, there better be a LOOP instruction.
708     // Check for it, and change the BB target if needed.
709     SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
710     MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
711                                        VisitedBBs);
712     assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
713     Loop->getOperand(0).setMBB(TBB);
714     // Add the ENDLOOP after the finding the LOOP0.
715     BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
716   } else {
717     const MachineOperand &RO = Cond[1];
718     unsigned Flags = getUndefRegState(RO.isUndef());
719     BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
720   }
721   BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
722 
723   return 2;
724 }
725 
726 namespace {
727 class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
728   MachineInstr *Loop, *EndLoop;
729   MachineFunction *MF;
730   const HexagonInstrInfo *TII;
731   int64_t TripCount;
732   Register LoopCount;
733   DebugLoc DL;
734 
735 public:
736   HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop)
737       : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()),
738         TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()),
739         DL(Loop->getDebugLoc()) {
740     // Inspect the Loop instruction up-front, as it may be deleted when we call
741     // createTripCountGreaterCondition.
742     TripCount = Loop->getOpcode() == Hexagon::J2_loop0r
743                     ? -1
744                     : Loop->getOperand(1).getImm();
745     if (TripCount == -1)
746       LoopCount = Loop->getOperand(1).getReg();
747   }
748 
749   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
750     // Only ignore the terminator.
751     return MI == EndLoop;
752   }
753 
754   std::optional<bool> createTripCountGreaterCondition(
755       int TC, MachineBasicBlock &MBB,
756       SmallVectorImpl<MachineOperand> &Cond) override {
757     if (TripCount == -1) {
758       // Check if we're done with the loop.
759       Register Done = TII->createVR(MF, MVT::i1);
760       MachineInstr *NewCmp = BuildMI(&MBB, DL,
761                                      TII->get(Hexagon::C2_cmpgtui), Done)
762                                  .addReg(LoopCount)
763                                  .addImm(TC);
764       Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
765       Cond.push_back(NewCmp->getOperand(0));
766       return {};
767     }
768 
769     return TripCount > TC;
770   }
771 
772   void setPreheader(MachineBasicBlock *NewPreheader) override {
773     NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(),
774                          Loop);
775   }
776 
777   void adjustTripCount(int TripCountAdjust) override {
778     // If the loop trip count is a compile-time value, then just change the
779     // value.
780     if (Loop->getOpcode() == Hexagon::J2_loop0i ||
781         Loop->getOpcode() == Hexagon::J2_loop1i) {
782       int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust;
783       assert(TripCount > 0 && "Can't create an empty or negative loop!");
784       Loop->getOperand(1).setImm(TripCount);
785       return;
786     }
787 
788     // The loop trip count is a run-time value. We generate code to subtract
789     // one from the trip count, and update the loop instruction.
790     Register LoopCount = Loop->getOperand(1).getReg();
791     Register NewLoopCount = TII->createVR(MF, MVT::i32);
792     BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(),
793             TII->get(Hexagon::A2_addi), NewLoopCount)
794         .addReg(LoopCount)
795         .addImm(TripCountAdjust);
796     Loop->getOperand(1).setReg(NewLoopCount);
797   }
798 
799   void disposed() override { Loop->eraseFromParent(); }
800 };
801 } // namespace
802 
803 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
804 HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
805   // We really "analyze" only hardware loops right now.
806   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
807 
808   if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) {
809     SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
810     MachineInstr *LoopInst = findLoopInstr(
811         LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs);
812     if (LoopInst)
813       return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I);
814   }
815   return nullptr;
816 }
817 
818 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
819       unsigned NumCycles, unsigned ExtraPredCycles,
820       BranchProbability Probability) const {
821   return nonDbgBBSize(&MBB) <= 3;
822 }
823 
824 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
825       unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
826       unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
827       const {
828   return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
829 }
830 
831 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
832       unsigned NumInstrs, BranchProbability Probability) const {
833   return NumInstrs <= 4;
834 }
835 
836 static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
837   SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
838   const MachineBasicBlock &B = *MI.getParent();
839   Regs.addLiveIns(B);
840   auto E = MachineBasicBlock::const_iterator(MI.getIterator());
841   for (auto I = B.begin(); I != E; ++I) {
842     Clobbers.clear();
843     Regs.stepForward(*I, Clobbers);
844   }
845 }
846 
847 static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
848   const MachineBasicBlock &B = *MI.getParent();
849   Regs.addLiveOuts(B);
850   auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
851   for (auto I = B.rbegin(); I != E; ++I)
852     Regs.stepBackward(*I);
853 }
854 
855 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
856                                    MachineBasicBlock::iterator I,
857                                    const DebugLoc &DL, MCRegister DestReg,
858                                    MCRegister SrcReg, bool KillSrc) const {
859   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
860   unsigned KillFlag = getKillRegState(KillSrc);
861 
862   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
863     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
864       .addReg(SrcReg, KillFlag);
865     return;
866   }
867   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
868     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
869       .addReg(SrcReg, KillFlag);
870     return;
871   }
872   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
873     // Map Pd = Ps to Pd = or(Ps, Ps).
874     BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
875       .addReg(SrcReg).addReg(SrcReg, KillFlag);
876     return;
877   }
878   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
879       Hexagon::IntRegsRegClass.contains(SrcReg)) {
880     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
881       .addReg(SrcReg, KillFlag);
882     return;
883   }
884   if (Hexagon::IntRegsRegClass.contains(DestReg) &&
885       Hexagon::CtrRegsRegClass.contains(SrcReg)) {
886     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
887       .addReg(SrcReg, KillFlag);
888     return;
889   }
890   if (Hexagon::ModRegsRegClass.contains(DestReg) &&
891       Hexagon::IntRegsRegClass.contains(SrcReg)) {
892     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
893       .addReg(SrcReg, KillFlag);
894     return;
895   }
896   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
897       Hexagon::IntRegsRegClass.contains(DestReg)) {
898     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
899       .addReg(SrcReg, KillFlag);
900     return;
901   }
902   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
903       Hexagon::PredRegsRegClass.contains(DestReg)) {
904     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
905       .addReg(SrcReg, KillFlag);
906     return;
907   }
908   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
909       Hexagon::IntRegsRegClass.contains(DestReg)) {
910     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
911       .addReg(SrcReg, KillFlag);
912     return;
913   }
914   if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
915     BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
916       addReg(SrcReg, KillFlag);
917     return;
918   }
919   if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
920     LivePhysRegs LiveAtMI(HRI);
921     getLiveInRegsAt(LiveAtMI, *I);
922     Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
923     Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
924     unsigned UndefLo = getUndefRegState(!LiveAtMI.contains(SrcLo));
925     unsigned UndefHi = getUndefRegState(!LiveAtMI.contains(SrcHi));
926     BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
927       .addReg(SrcHi, KillFlag | UndefHi)
928       .addReg(SrcLo, KillFlag | UndefLo);
929     return;
930   }
931   if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
932     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
933       .addReg(SrcReg)
934       .addReg(SrcReg, KillFlag);
935     return;
936   }
937   if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
938       Hexagon::HvxVRRegClass.contains(DestReg)) {
939     llvm_unreachable("Unimplemented pred to vec");
940     return;
941   }
942   if (Hexagon::HvxQRRegClass.contains(DestReg) &&
943       Hexagon::HvxVRRegClass.contains(SrcReg)) {
944     llvm_unreachable("Unimplemented vec to pred");
945     return;
946   }
947 
948 #ifndef NDEBUG
949   // Show the invalid registers to ease debugging.
950   dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
951          << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
952 #endif
953   llvm_unreachable("Unimplemented");
954 }
955 
956 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
957                                            MachineBasicBlock::iterator I,
958                                            Register SrcReg, bool isKill, int FI,
959                                            const TargetRegisterClass *RC,
960                                            const TargetRegisterInfo *TRI,
961                                            Register VReg) const {
962   DebugLoc DL = MBB.findDebugLoc(I);
963   MachineFunction &MF = *MBB.getParent();
964   MachineFrameInfo &MFI = MF.getFrameInfo();
965   unsigned KillFlag = getKillRegState(isKill);
966 
967   MachineMemOperand *MMO = MF.getMachineMemOperand(
968       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
969       MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
970 
971   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
972     BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
973       .addFrameIndex(FI).addImm(0)
974       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
975   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
976     BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
977       .addFrameIndex(FI).addImm(0)
978       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
979   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
980     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
981       .addFrameIndex(FI).addImm(0)
982       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
983   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
984     BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
985       .addFrameIndex(FI).addImm(0)
986       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
987   } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
988     BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
989       .addFrameIndex(FI).addImm(0)
990       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
991   } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
992     BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerv_ai))
993       .addFrameIndex(FI).addImm(0)
994       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
995   } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
996     BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerw_ai))
997       .addFrameIndex(FI).addImm(0)
998       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
999   } else {
1000     llvm_unreachable("Unimplemented");
1001   }
1002 }
1003 
1004 void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1005                                             MachineBasicBlock::iterator I,
1006                                             Register DestReg, int FI,
1007                                             const TargetRegisterClass *RC,
1008                                             const TargetRegisterInfo *TRI,
1009                                             Register VReg) const {
1010   DebugLoc DL = MBB.findDebugLoc(I);
1011   MachineFunction &MF = *MBB.getParent();
1012   MachineFrameInfo &MFI = MF.getFrameInfo();
1013 
1014   MachineMemOperand *MMO = MF.getMachineMemOperand(
1015       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1016       MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
1017 
1018   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
1019     BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
1020       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1021   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
1022     BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
1023       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1024   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
1025     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
1026       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1027   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
1028     BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
1029       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1030   } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
1031     BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
1032       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1033   } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
1034     BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrv_ai), DestReg)
1035       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1036   } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
1037     BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrw_ai), DestReg)
1038       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1039   } else {
1040     llvm_unreachable("Can't store this register to stack slot");
1041   }
1042 }
1043 
1044 /// expandPostRAPseudo - This function is called for all pseudo instructions
1045 /// that remain after register allocation. Many pseudo instructions are
1046 /// created to help register allocation. This is the place to convert them
1047 /// into real instructions. The target can edit MI in place, or it can insert
1048 /// new instructions and erase MI. The function should return true if
1049 /// anything was changed.
1050 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1051   MachineBasicBlock &MBB = *MI.getParent();
1052   MachineFunction &MF = *MBB.getParent();
1053   MachineRegisterInfo &MRI = MF.getRegInfo();
1054   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1055   LivePhysRegs LiveIn(HRI), LiveOut(HRI);
1056   DebugLoc DL = MI.getDebugLoc();
1057   unsigned Opc = MI.getOpcode();
1058 
1059   auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1060     Register Mx = MI.getOperand(MxOp).getReg();
1061     Register CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1062     BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1063         .add(MI.getOperand((HasImm ? 5 : 4)));
1064     auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1065         .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1066     if (HasImm)
1067       MIB.add(MI.getOperand(4));
1068     MIB.addReg(CSx, RegState::Implicit);
1069     MBB.erase(MI);
1070     return true;
1071   };
1072 
1073   auto UseAligned = [&](const MachineInstr &MI, Align NeedAlign) {
1074     if (MI.memoperands().empty())
1075       return false;
1076     return all_of(MI.memoperands(), [NeedAlign](const MachineMemOperand *MMO) {
1077       return MMO->getAlign() >= NeedAlign;
1078     });
1079   };
1080 
1081   switch (Opc) {
1082     case Hexagon::PS_call_instrprof_custom: {
1083       auto Op0 = MI.getOperand(0);
1084       assert(Op0.isGlobal() &&
1085              "First operand must be a global containing handler name.");
1086       const GlobalValue *NameVar = Op0.getGlobal();
1087       const GlobalVariable *GV = dyn_cast<GlobalVariable>(NameVar);
1088       auto *Arr = cast<ConstantDataArray>(GV->getInitializer());
1089       StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
1090 
1091       MachineOperand &Op1 = MI.getOperand(1);
1092       // Set R0 with the imm value to be passed to the custom profiling handler.
1093       BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrsi), Hexagon::R0)
1094         .addImm(Op1.getImm());
1095       // The call to the custom handler is being treated as a special one as the
1096       // callee is responsible for saving and restoring all the registers
1097       // (including caller saved registers) it needs to modify. This is
1098       // done to reduce the impact of instrumentation on the code being
1099       // instrumented/profiled.
1100       // NOTE: R14, R15 and R28 are reserved for PLT handling. These registers
1101       // are in the Def list of the Hexagon::PS_call_instrprof_custom and
1102       // therefore will be handled appropriately duing register allocation.
1103 
1104       // TODO: It may be a good idea to add a separate pseudo instruction for
1105       // static relocation which doesn't need to reserve r14, r15 and r28.
1106 
1107       auto MIB = BuildMI(MBB, MI, DL, get(Hexagon::J2_call))
1108                  .addUse(Hexagon::R0, RegState::Implicit|RegState::InternalRead)
1109                  .addDef(Hexagon::R29, RegState::ImplicitDefine)
1110                  .addDef(Hexagon::R30, RegState::ImplicitDefine)
1111                  .addDef(Hexagon::R14, RegState::ImplicitDefine)
1112                  .addDef(Hexagon::R15, RegState::ImplicitDefine)
1113                  .addDef(Hexagon::R28, RegState::ImplicitDefine);
1114       const char *cstr = MF.createExternalSymbolName(NameStr);
1115       MIB.addExternalSymbol(cstr);
1116       MBB.erase(MI);
1117       return true;
1118     }
1119     case TargetOpcode::COPY: {
1120       MachineOperand &MD = MI.getOperand(0);
1121       MachineOperand &MS = MI.getOperand(1);
1122       MachineBasicBlock::iterator MBBI = MI.getIterator();
1123       if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1124         copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1125         std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1126       }
1127       MBB.erase(MBBI);
1128       return true;
1129     }
1130     case Hexagon::PS_aligna:
1131       BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1132           .addReg(HRI.getFrameRegister())
1133           .addImm(-MI.getOperand(1).getImm());
1134       MBB.erase(MI);
1135       return true;
1136     case Hexagon::V6_vassignp: {
1137       Register SrcReg = MI.getOperand(1).getReg();
1138       Register DstReg = MI.getOperand(0).getReg();
1139       Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1140       Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1141       getLiveInRegsAt(LiveIn, MI);
1142       unsigned UndefLo = getUndefRegState(!LiveIn.contains(SrcLo));
1143       unsigned UndefHi = getUndefRegState(!LiveIn.contains(SrcHi));
1144       unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1145       BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1146           .addReg(SrcHi, UndefHi)
1147           .addReg(SrcLo, Kill | UndefLo);
1148       MBB.erase(MI);
1149       return true;
1150     }
1151     case Hexagon::V6_lo: {
1152       Register SrcReg = MI.getOperand(1).getReg();
1153       Register DstReg = MI.getOperand(0).getReg();
1154       Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1155       copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1156       MBB.erase(MI);
1157       MRI.clearKillFlags(SrcSubLo);
1158       return true;
1159     }
1160     case Hexagon::V6_hi: {
1161       Register SrcReg = MI.getOperand(1).getReg();
1162       Register DstReg = MI.getOperand(0).getReg();
1163       Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1164       copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1165       MBB.erase(MI);
1166       MRI.clearKillFlags(SrcSubHi);
1167       return true;
1168     }
1169     case Hexagon::PS_vloadrv_ai: {
1170       Register DstReg = MI.getOperand(0).getReg();
1171       const MachineOperand &BaseOp = MI.getOperand(1);
1172       assert(BaseOp.getSubReg() == 0);
1173       int Offset = MI.getOperand(2).getImm();
1174       Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1175       unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1176                                                   : Hexagon::V6_vL32Ub_ai;
1177       BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
1178           .addReg(BaseOp.getReg(), getRegState(BaseOp))
1179           .addImm(Offset)
1180           .cloneMemRefs(MI);
1181       MBB.erase(MI);
1182       return true;
1183     }
1184     case Hexagon::PS_vloadrw_ai: {
1185       Register DstReg = MI.getOperand(0).getReg();
1186       const MachineOperand &BaseOp = MI.getOperand(1);
1187       assert(BaseOp.getSubReg() == 0);
1188       int Offset = MI.getOperand(2).getImm();
1189       unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1190       Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1191       unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1192                                                   : Hexagon::V6_vL32Ub_ai;
1193       BuildMI(MBB, MI, DL, get(NewOpc),
1194               HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1195           .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1196           .addImm(Offset)
1197           .cloneMemRefs(MI);
1198       BuildMI(MBB, MI, DL, get(NewOpc),
1199               HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1200           .addReg(BaseOp.getReg(), getRegState(BaseOp))
1201           .addImm(Offset + VecOffset)
1202           .cloneMemRefs(MI);
1203       MBB.erase(MI);
1204       return true;
1205     }
1206     case Hexagon::PS_vstorerv_ai: {
1207       const MachineOperand &SrcOp = MI.getOperand(2);
1208       assert(SrcOp.getSubReg() == 0);
1209       const MachineOperand &BaseOp = MI.getOperand(0);
1210       assert(BaseOp.getSubReg() == 0);
1211       int Offset = MI.getOperand(1).getImm();
1212       Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1213       unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1214                                                   : Hexagon::V6_vS32Ub_ai;
1215       BuildMI(MBB, MI, DL, get(NewOpc))
1216           .addReg(BaseOp.getReg(), getRegState(BaseOp))
1217           .addImm(Offset)
1218           .addReg(SrcOp.getReg(), getRegState(SrcOp))
1219           .cloneMemRefs(MI);
1220       MBB.erase(MI);
1221       return true;
1222     }
1223     case Hexagon::PS_vstorerw_ai: {
1224       Register SrcReg = MI.getOperand(2).getReg();
1225       const MachineOperand &BaseOp = MI.getOperand(0);
1226       assert(BaseOp.getSubReg() == 0);
1227       int Offset = MI.getOperand(1).getImm();
1228       unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1229       Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1230       unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1231                                                   : Hexagon::V6_vS32Ub_ai;
1232       BuildMI(MBB, MI, DL, get(NewOpc))
1233           .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1234           .addImm(Offset)
1235           .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo))
1236           .cloneMemRefs(MI);
1237       BuildMI(MBB, MI, DL, get(NewOpc))
1238           .addReg(BaseOp.getReg(), getRegState(BaseOp))
1239           .addImm(Offset + VecOffset)
1240           .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi))
1241           .cloneMemRefs(MI);
1242       MBB.erase(MI);
1243       return true;
1244     }
1245     case Hexagon::PS_true: {
1246       Register Reg = MI.getOperand(0).getReg();
1247       BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1248         .addReg(Reg, RegState::Undef)
1249         .addReg(Reg, RegState::Undef);
1250       MBB.erase(MI);
1251       return true;
1252     }
1253     case Hexagon::PS_false: {
1254       Register Reg = MI.getOperand(0).getReg();
1255       BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1256         .addReg(Reg, RegState::Undef)
1257         .addReg(Reg, RegState::Undef);
1258       MBB.erase(MI);
1259       return true;
1260     }
1261     case Hexagon::PS_qtrue: {
1262       BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1263         .addReg(Hexagon::V0, RegState::Undef)
1264         .addReg(Hexagon::V0, RegState::Undef);
1265       MBB.erase(MI);
1266       return true;
1267     }
1268     case Hexagon::PS_qfalse: {
1269       BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1270         .addReg(Hexagon::V0, RegState::Undef)
1271         .addReg(Hexagon::V0, RegState::Undef);
1272       MBB.erase(MI);
1273       return true;
1274     }
1275     case Hexagon::PS_vdd0: {
1276       Register Vd = MI.getOperand(0).getReg();
1277       BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1278         .addReg(Vd, RegState::Undef)
1279         .addReg(Vd, RegState::Undef);
1280       MBB.erase(MI);
1281       return true;
1282     }
1283     case Hexagon::PS_vmulw: {
1284       // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1285       Register DstReg = MI.getOperand(0).getReg();
1286       Register Src1Reg = MI.getOperand(1).getReg();
1287       Register Src2Reg = MI.getOperand(2).getReg();
1288       Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1289       Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1290       Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1291       Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1292       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1293               HRI.getSubReg(DstReg, Hexagon::isub_hi))
1294           .addReg(Src1SubHi)
1295           .addReg(Src2SubHi);
1296       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1297               HRI.getSubReg(DstReg, Hexagon::isub_lo))
1298           .addReg(Src1SubLo)
1299           .addReg(Src2SubLo);
1300       MBB.erase(MI);
1301       MRI.clearKillFlags(Src1SubHi);
1302       MRI.clearKillFlags(Src1SubLo);
1303       MRI.clearKillFlags(Src2SubHi);
1304       MRI.clearKillFlags(Src2SubLo);
1305       return true;
1306     }
1307     case Hexagon::PS_vmulw_acc: {
1308       // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1309       Register DstReg = MI.getOperand(0).getReg();
1310       Register Src1Reg = MI.getOperand(1).getReg();
1311       Register Src2Reg = MI.getOperand(2).getReg();
1312       Register Src3Reg = MI.getOperand(3).getReg();
1313       Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1314       Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1315       Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1316       Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1317       Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1318       Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1319       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1320               HRI.getSubReg(DstReg, Hexagon::isub_hi))
1321           .addReg(Src1SubHi)
1322           .addReg(Src2SubHi)
1323           .addReg(Src3SubHi);
1324       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1325               HRI.getSubReg(DstReg, Hexagon::isub_lo))
1326           .addReg(Src1SubLo)
1327           .addReg(Src2SubLo)
1328           .addReg(Src3SubLo);
1329       MBB.erase(MI);
1330       MRI.clearKillFlags(Src1SubHi);
1331       MRI.clearKillFlags(Src1SubLo);
1332       MRI.clearKillFlags(Src2SubHi);
1333       MRI.clearKillFlags(Src2SubLo);
1334       MRI.clearKillFlags(Src3SubHi);
1335       MRI.clearKillFlags(Src3SubLo);
1336       return true;
1337     }
1338     case Hexagon::PS_pselect: {
1339       const MachineOperand &Op0 = MI.getOperand(0);
1340       const MachineOperand &Op1 = MI.getOperand(1);
1341       const MachineOperand &Op2 = MI.getOperand(2);
1342       const MachineOperand &Op3 = MI.getOperand(3);
1343       Register Rd = Op0.getReg();
1344       Register Pu = Op1.getReg();
1345       Register Rs = Op2.getReg();
1346       Register Rt = Op3.getReg();
1347       DebugLoc DL = MI.getDebugLoc();
1348       unsigned K1 = getKillRegState(Op1.isKill());
1349       unsigned K2 = getKillRegState(Op2.isKill());
1350       unsigned K3 = getKillRegState(Op3.isKill());
1351       if (Rd != Rs)
1352         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1353           .addReg(Pu, (Rd == Rt) ? K1 : 0)
1354           .addReg(Rs, K2);
1355       if (Rd != Rt)
1356         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1357           .addReg(Pu, K1)
1358           .addReg(Rt, K3);
1359       MBB.erase(MI);
1360       return true;
1361     }
1362     case Hexagon::PS_vselect: {
1363       const MachineOperand &Op0 = MI.getOperand(0);
1364       const MachineOperand &Op1 = MI.getOperand(1);
1365       const MachineOperand &Op2 = MI.getOperand(2);
1366       const MachineOperand &Op3 = MI.getOperand(3);
1367       getLiveOutRegsAt(LiveOut, MI);
1368       bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1369       Register PReg = Op1.getReg();
1370       assert(Op1.getSubReg() == 0);
1371       unsigned PState = getRegState(Op1);
1372 
1373       if (Op0.getReg() != Op2.getReg()) {
1374         unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1375                                                   : PState;
1376         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1377                      .add(Op0)
1378                      .addReg(PReg, S)
1379                      .add(Op2);
1380         if (IsDestLive)
1381           T.addReg(Op0.getReg(), RegState::Implicit);
1382         IsDestLive = true;
1383       }
1384       if (Op0.getReg() != Op3.getReg()) {
1385         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1386                      .add(Op0)
1387                      .addReg(PReg, PState)
1388                      .add(Op3);
1389         if (IsDestLive)
1390           T.addReg(Op0.getReg(), RegState::Implicit);
1391       }
1392       MBB.erase(MI);
1393       return true;
1394     }
1395     case Hexagon::PS_wselect: {
1396       MachineOperand &Op0 = MI.getOperand(0);
1397       MachineOperand &Op1 = MI.getOperand(1);
1398       MachineOperand &Op2 = MI.getOperand(2);
1399       MachineOperand &Op3 = MI.getOperand(3);
1400       getLiveOutRegsAt(LiveOut, MI);
1401       bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1402       Register PReg = Op1.getReg();
1403       assert(Op1.getSubReg() == 0);
1404       unsigned PState = getRegState(Op1);
1405 
1406       if (Op0.getReg() != Op2.getReg()) {
1407         unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1408                                                   : PState;
1409         Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1410         Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1411         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1412                      .add(Op0)
1413                      .addReg(PReg, S)
1414                      .addReg(SrcHi)
1415                      .addReg(SrcLo);
1416         if (IsDestLive)
1417           T.addReg(Op0.getReg(), RegState::Implicit);
1418         IsDestLive = true;
1419       }
1420       if (Op0.getReg() != Op3.getReg()) {
1421         Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1422         Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1423         auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1424                      .add(Op0)
1425                      .addReg(PReg, PState)
1426                      .addReg(SrcHi)
1427                      .addReg(SrcLo);
1428         if (IsDestLive)
1429           T.addReg(Op0.getReg(), RegState::Implicit);
1430       }
1431       MBB.erase(MI);
1432       return true;
1433     }
1434 
1435     case Hexagon::PS_crash: {
1436       // Generate a misaligned load that is guaranteed to cause a crash.
1437       class CrashPseudoSourceValue : public PseudoSourceValue {
1438       public:
1439         CrashPseudoSourceValue(const TargetMachine &TM)
1440             : PseudoSourceValue(TargetCustom, TM) {}
1441 
1442         bool isConstant(const MachineFrameInfo *) const override {
1443           return false;
1444         }
1445         bool isAliased(const MachineFrameInfo *) const override {
1446           return false;
1447         }
1448         bool mayAlias(const MachineFrameInfo *) const override {
1449           return false;
1450         }
1451         void printCustom(raw_ostream &OS) const override {
1452           OS << "MisalignedCrash";
1453         }
1454       };
1455 
1456       static const CrashPseudoSourceValue CrashPSV(MF.getTarget());
1457       MachineMemOperand *MMO = MF.getMachineMemOperand(
1458           MachinePointerInfo(&CrashPSV),
1459           MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8,
1460           Align(1));
1461       BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
1462         .addImm(0xBADC0FEE)  // Misaligned load.
1463         .addMemOperand(MMO);
1464       MBB.erase(MI);
1465       return true;
1466     }
1467 
1468     case Hexagon::PS_tailcall_i:
1469       MI.setDesc(get(Hexagon::J2_jump));
1470       return true;
1471     case Hexagon::PS_tailcall_r:
1472     case Hexagon::PS_jmpret:
1473       MI.setDesc(get(Hexagon::J2_jumpr));
1474       return true;
1475     case Hexagon::PS_jmprett:
1476       MI.setDesc(get(Hexagon::J2_jumprt));
1477       return true;
1478     case Hexagon::PS_jmpretf:
1479       MI.setDesc(get(Hexagon::J2_jumprf));
1480       return true;
1481     case Hexagon::PS_jmprettnewpt:
1482       MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1483       return true;
1484     case Hexagon::PS_jmpretfnewpt:
1485       MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1486       return true;
1487     case Hexagon::PS_jmprettnew:
1488       MI.setDesc(get(Hexagon::J2_jumprtnew));
1489       return true;
1490     case Hexagon::PS_jmpretfnew:
1491       MI.setDesc(get(Hexagon::J2_jumprfnew));
1492       return true;
1493 
1494     case Hexagon::PS_loadrub_pci:
1495       return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true,  /*MxOp*/4);
1496     case Hexagon::PS_loadrb_pci:
1497       return RealCirc(Hexagon::L2_loadrb_pci,  /*HasImm*/true,  /*MxOp*/4);
1498     case Hexagon::PS_loadruh_pci:
1499       return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true,  /*MxOp*/4);
1500     case Hexagon::PS_loadrh_pci:
1501       return RealCirc(Hexagon::L2_loadrh_pci,  /*HasImm*/true,  /*MxOp*/4);
1502     case Hexagon::PS_loadri_pci:
1503       return RealCirc(Hexagon::L2_loadri_pci,  /*HasImm*/true,  /*MxOp*/4);
1504     case Hexagon::PS_loadrd_pci:
1505       return RealCirc(Hexagon::L2_loadrd_pci,  /*HasImm*/true,  /*MxOp*/4);
1506     case Hexagon::PS_loadrub_pcr:
1507       return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1508     case Hexagon::PS_loadrb_pcr:
1509       return RealCirc(Hexagon::L2_loadrb_pcr,  /*HasImm*/false, /*MxOp*/3);
1510     case Hexagon::PS_loadruh_pcr:
1511       return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1512     case Hexagon::PS_loadrh_pcr:
1513       return RealCirc(Hexagon::L2_loadrh_pcr,  /*HasImm*/false, /*MxOp*/3);
1514     case Hexagon::PS_loadri_pcr:
1515       return RealCirc(Hexagon::L2_loadri_pcr,  /*HasImm*/false, /*MxOp*/3);
1516     case Hexagon::PS_loadrd_pcr:
1517       return RealCirc(Hexagon::L2_loadrd_pcr,  /*HasImm*/false, /*MxOp*/3);
1518     case Hexagon::PS_storerb_pci:
1519       return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true,  /*MxOp*/3);
1520     case Hexagon::PS_storerh_pci:
1521       return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true,  /*MxOp*/3);
1522     case Hexagon::PS_storerf_pci:
1523       return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true,  /*MxOp*/3);
1524     case Hexagon::PS_storeri_pci:
1525       return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true,  /*MxOp*/3);
1526     case Hexagon::PS_storerd_pci:
1527       return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true,  /*MxOp*/3);
1528     case Hexagon::PS_storerb_pcr:
1529       return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1530     case Hexagon::PS_storerh_pcr:
1531       return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1532     case Hexagon::PS_storerf_pcr:
1533       return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1534     case Hexagon::PS_storeri_pcr:
1535       return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1536     case Hexagon::PS_storerd_pcr:
1537       return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1538   }
1539 
1540   return false;
1541 }
1542 
1543 MachineBasicBlock::instr_iterator
1544 HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const {
1545   MachineBasicBlock &MBB = *MI.getParent();
1546   const DebugLoc &DL = MI.getDebugLoc();
1547   unsigned Opc = MI.getOpcode();
1548   MachineBasicBlock::iterator First;
1549 
1550   switch (Opc) {
1551     case Hexagon::V6_vgathermh_pseudo:
1552       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1553                   .add(MI.getOperand(2))
1554                   .add(MI.getOperand(3))
1555                   .add(MI.getOperand(4));
1556       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1557           .add(MI.getOperand(0))
1558           .addImm(MI.getOperand(1).getImm())
1559           .addReg(Hexagon::VTMP);
1560       MBB.erase(MI);
1561       return First.getInstrIterator();
1562 
1563     case Hexagon::V6_vgathermw_pseudo:
1564       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1565                   .add(MI.getOperand(2))
1566                   .add(MI.getOperand(3))
1567                   .add(MI.getOperand(4));
1568       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1569           .add(MI.getOperand(0))
1570           .addImm(MI.getOperand(1).getImm())
1571           .addReg(Hexagon::VTMP);
1572       MBB.erase(MI);
1573       return First.getInstrIterator();
1574 
1575     case Hexagon::V6_vgathermhw_pseudo:
1576       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1577                   .add(MI.getOperand(2))
1578                   .add(MI.getOperand(3))
1579                   .add(MI.getOperand(4));
1580       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1581           .add(MI.getOperand(0))
1582           .addImm(MI.getOperand(1).getImm())
1583           .addReg(Hexagon::VTMP);
1584       MBB.erase(MI);
1585       return First.getInstrIterator();
1586 
1587     case Hexagon::V6_vgathermhq_pseudo:
1588       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1589                   .add(MI.getOperand(2))
1590                   .add(MI.getOperand(3))
1591                   .add(MI.getOperand(4))
1592                   .add(MI.getOperand(5));
1593       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1594           .add(MI.getOperand(0))
1595           .addImm(MI.getOperand(1).getImm())
1596           .addReg(Hexagon::VTMP);
1597       MBB.erase(MI);
1598       return First.getInstrIterator();
1599 
1600     case Hexagon::V6_vgathermwq_pseudo:
1601       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1602                   .add(MI.getOperand(2))
1603                   .add(MI.getOperand(3))
1604                   .add(MI.getOperand(4))
1605                   .add(MI.getOperand(5));
1606       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1607           .add(MI.getOperand(0))
1608           .addImm(MI.getOperand(1).getImm())
1609           .addReg(Hexagon::VTMP);
1610       MBB.erase(MI);
1611       return First.getInstrIterator();
1612 
1613     case Hexagon::V6_vgathermhwq_pseudo:
1614       First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1615                   .add(MI.getOperand(2))
1616                   .add(MI.getOperand(3))
1617                   .add(MI.getOperand(4))
1618                   .add(MI.getOperand(5));
1619       BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1620           .add(MI.getOperand(0))
1621           .addImm(MI.getOperand(1).getImm())
1622           .addReg(Hexagon::VTMP);
1623       MBB.erase(MI);
1624       return First.getInstrIterator();
1625   }
1626 
1627   return MI.getIterator();
1628 }
1629 
1630 // We indicate that we want to reverse the branch by
1631 // inserting the reversed branching opcode.
1632 bool HexagonInstrInfo::reverseBranchCondition(
1633       SmallVectorImpl<MachineOperand> &Cond) const {
1634   if (Cond.empty())
1635     return true;
1636   assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1637   unsigned opcode = Cond[0].getImm();
1638   //unsigned temp;
1639   assert(get(opcode).isBranch() && "Should be a branching condition.");
1640   if (isEndLoopN(opcode))
1641     return true;
1642   unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1643   Cond[0].setImm(NewOpcode);
1644   return false;
1645 }
1646 
1647 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1648       MachineBasicBlock::iterator MI) const {
1649   DebugLoc DL;
1650   BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1651 }
1652 
1653 bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
1654   return getAddrMode(MI) == HexagonII::PostInc;
1655 }
1656 
1657 // Returns true if an instruction is predicated irrespective of the predicate
1658 // sense. For example, all of the following will return true.
1659 // if (p0) R1 = add(R2, R3)
1660 // if (!p0) R1 = add(R2, R3)
1661 // if (p0.new) R1 = add(R2, R3)
1662 // if (!p0.new) R1 = add(R2, R3)
1663 // Note: New-value stores are not included here as in the current
1664 // implementation, we don't need to check their predicate sense.
1665 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
1666   const uint64_t F = MI.getDesc().TSFlags;
1667   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1668 }
1669 
1670 bool HexagonInstrInfo::PredicateInstruction(
1671     MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
1672   if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1673       isEndLoopN(Cond[0].getImm())) {
1674     LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1675     return false;
1676   }
1677   int Opc = MI.getOpcode();
1678   assert (isPredicable(MI) && "Expected predicable instruction");
1679   bool invertJump = predOpcodeHasNot(Cond);
1680 
1681   // We have to predicate MI "in place", i.e. after this function returns,
1682   // MI will need to be transformed into a predicated form. To avoid com-
1683   // plicated manipulations with the operands (handling tied operands,
1684   // etc.), build a new temporary instruction, then overwrite MI with it.
1685 
1686   MachineBasicBlock &B = *MI.getParent();
1687   DebugLoc DL = MI.getDebugLoc();
1688   unsigned PredOpc = getCondOpcode(Opc, invertJump);
1689   MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1690   unsigned NOp = 0, NumOps = MI.getNumOperands();
1691   while (NOp < NumOps) {
1692     MachineOperand &Op = MI.getOperand(NOp);
1693     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1694       break;
1695     T.add(Op);
1696     NOp++;
1697   }
1698 
1699   Register PredReg;
1700   unsigned PredRegPos, PredRegFlags;
1701   bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1702   (void)GotPredReg;
1703   assert(GotPredReg);
1704   T.addReg(PredReg, PredRegFlags);
1705   while (NOp < NumOps)
1706     T.add(MI.getOperand(NOp++));
1707 
1708   MI.setDesc(get(PredOpc));
1709   while (unsigned n = MI.getNumOperands())
1710     MI.removeOperand(n-1);
1711   for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1712     MI.addOperand(T->getOperand(i));
1713 
1714   MachineBasicBlock::instr_iterator TI = T->getIterator();
1715   B.erase(TI);
1716 
1717   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1718   MRI.clearKillFlags(PredReg);
1719   return true;
1720 }
1721 
1722 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1723       ArrayRef<MachineOperand> Pred2) const {
1724   // TODO: Fix this
1725   return false;
1726 }
1727 
1728 bool HexagonInstrInfo::ClobbersPredicate(MachineInstr &MI,
1729                                          std::vector<MachineOperand> &Pred,
1730                                          bool SkipDead) const {
1731   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1732 
1733   for (const MachineOperand &MO : MI.operands()) {
1734     if (MO.isReg()) {
1735       if (!MO.isDef())
1736         continue;
1737       const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1738       if (RC == &Hexagon::PredRegsRegClass) {
1739         Pred.push_back(MO);
1740         return true;
1741       }
1742       continue;
1743     } else if (MO.isRegMask()) {
1744       for (Register PR : Hexagon::PredRegsRegClass) {
1745         if (!MI.modifiesRegister(PR, &HRI))
1746           continue;
1747         Pred.push_back(MO);
1748         return true;
1749       }
1750     }
1751   }
1752   return false;
1753 }
1754 
1755 bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
1756   if (!MI.getDesc().isPredicable())
1757     return false;
1758 
1759   if (MI.isCall() || isTailCall(MI)) {
1760     if (!Subtarget.usePredicatedCalls())
1761       return false;
1762   }
1763 
1764   // HVX loads are not predicable on v60, but are on v62.
1765   if (!Subtarget.hasV62Ops()) {
1766     switch (MI.getOpcode()) {
1767       case Hexagon::V6_vL32b_ai:
1768       case Hexagon::V6_vL32b_pi:
1769       case Hexagon::V6_vL32b_ppu:
1770       case Hexagon::V6_vL32b_cur_ai:
1771       case Hexagon::V6_vL32b_cur_pi:
1772       case Hexagon::V6_vL32b_cur_ppu:
1773       case Hexagon::V6_vL32b_nt_ai:
1774       case Hexagon::V6_vL32b_nt_pi:
1775       case Hexagon::V6_vL32b_nt_ppu:
1776       case Hexagon::V6_vL32b_tmp_ai:
1777       case Hexagon::V6_vL32b_tmp_pi:
1778       case Hexagon::V6_vL32b_tmp_ppu:
1779       case Hexagon::V6_vL32b_nt_cur_ai:
1780       case Hexagon::V6_vL32b_nt_cur_pi:
1781       case Hexagon::V6_vL32b_nt_cur_ppu:
1782       case Hexagon::V6_vL32b_nt_tmp_ai:
1783       case Hexagon::V6_vL32b_nt_tmp_pi:
1784       case Hexagon::V6_vL32b_nt_tmp_ppu:
1785         return false;
1786     }
1787   }
1788   return true;
1789 }
1790 
1791 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1792                                             const MachineBasicBlock *MBB,
1793                                             const MachineFunction &MF) const {
1794   // Debug info is never a scheduling boundary. It's necessary to be explicit
1795   // due to the special treatment of IT instructions below, otherwise a
1796   // dbg_value followed by an IT will result in the IT instruction being
1797   // considered a scheduling hazard, which is wrong. It should be the actual
1798   // instruction preceding the dbg_value instruction(s), just like it is
1799   // when debug info is not present.
1800   if (MI.isDebugInstr())
1801     return false;
1802 
1803   // Throwing call is a boundary.
1804   if (MI.isCall()) {
1805     // Don't mess around with no return calls.
1806     if (doesNotReturn(MI))
1807       return true;
1808     // If any of the block's successors is a landing pad, this could be a
1809     // throwing call.
1810     for (auto *I : MBB->successors())
1811       if (I->isEHPad())
1812         return true;
1813   }
1814 
1815   // Terminators and labels can't be scheduled around.
1816   if (MI.getDesc().isTerminator() || MI.isPosition())
1817     return true;
1818 
1819   // INLINEASM_BR can jump to another block
1820   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1821     return true;
1822 
1823   if (MI.isInlineAsm() && !ScheduleInlineAsm)
1824     return true;
1825 
1826   return false;
1827 }
1828 
1829 /// Measure the specified inline asm to determine an approximation of its
1830 /// length.
1831 /// Comments (which run till the next SeparatorString or newline) do not
1832 /// count as an instruction.
1833 /// Any other non-whitespace text is considered an instruction, with
1834 /// multiple instructions separated by SeparatorString or newlines.
1835 /// Variable-length instructions are not handled here; this function
1836 /// may be overloaded in the target code to do that.
1837 /// Hexagon counts the number of ##'s and adjust for that many
1838 /// constant exenders.
1839 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1840                                               const MCAsmInfo &MAI,
1841                                               const TargetSubtargetInfo *STI) const {
1842   StringRef AStr(Str);
1843   // Count the number of instructions in the asm.
1844   bool atInsnStart = true;
1845   unsigned Length = 0;
1846   const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
1847   for (; *Str; ++Str) {
1848     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1849                                 strlen(MAI.getSeparatorString())) == 0)
1850       atInsnStart = true;
1851     if (atInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
1852       Length += MaxInstLength;
1853       atInsnStart = false;
1854     }
1855     if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1856                                MAI.getCommentString().size()) == 0)
1857       atInsnStart = false;
1858   }
1859 
1860   // Add to size number of constant extenders seen * 4.
1861   StringRef Occ("##");
1862   Length += AStr.count(Occ)*4;
1863   return Length;
1864 }
1865 
1866 ScheduleHazardRecognizer*
1867 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1868       const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1869   if (UseDFAHazardRec)
1870     return new HexagonHazardRecognizer(II, this, Subtarget);
1871   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1872 }
1873 
1874 /// For a comparison instruction, return the source registers in
1875 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1876 /// compares against in CmpValue. Return true if the comparison instruction
1877 /// can be analyzed.
1878 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1879                                       Register &SrcReg2, int64_t &Mask,
1880                                       int64_t &Value) const {
1881   unsigned Opc = MI.getOpcode();
1882 
1883   // Set mask and the first source register.
1884   switch (Opc) {
1885     case Hexagon::C2_cmpeq:
1886     case Hexagon::C2_cmpeqp:
1887     case Hexagon::C2_cmpgt:
1888     case Hexagon::C2_cmpgtp:
1889     case Hexagon::C2_cmpgtu:
1890     case Hexagon::C2_cmpgtup:
1891     case Hexagon::C4_cmpneq:
1892     case Hexagon::C4_cmplte:
1893     case Hexagon::C4_cmplteu:
1894     case Hexagon::C2_cmpeqi:
1895     case Hexagon::C2_cmpgti:
1896     case Hexagon::C2_cmpgtui:
1897     case Hexagon::C4_cmpneqi:
1898     case Hexagon::C4_cmplteui:
1899     case Hexagon::C4_cmpltei:
1900       SrcReg = MI.getOperand(1).getReg();
1901       Mask = ~0;
1902       break;
1903     case Hexagon::A4_cmpbeq:
1904     case Hexagon::A4_cmpbgt:
1905     case Hexagon::A4_cmpbgtu:
1906     case Hexagon::A4_cmpbeqi:
1907     case Hexagon::A4_cmpbgti:
1908     case Hexagon::A4_cmpbgtui:
1909       SrcReg = MI.getOperand(1).getReg();
1910       Mask = 0xFF;
1911       break;
1912     case Hexagon::A4_cmpheq:
1913     case Hexagon::A4_cmphgt:
1914     case Hexagon::A4_cmphgtu:
1915     case Hexagon::A4_cmpheqi:
1916     case Hexagon::A4_cmphgti:
1917     case Hexagon::A4_cmphgtui:
1918       SrcReg = MI.getOperand(1).getReg();
1919       Mask = 0xFFFF;
1920       break;
1921   }
1922 
1923   // Set the value/second source register.
1924   switch (Opc) {
1925     case Hexagon::C2_cmpeq:
1926     case Hexagon::C2_cmpeqp:
1927     case Hexagon::C2_cmpgt:
1928     case Hexagon::C2_cmpgtp:
1929     case Hexagon::C2_cmpgtu:
1930     case Hexagon::C2_cmpgtup:
1931     case Hexagon::A4_cmpbeq:
1932     case Hexagon::A4_cmpbgt:
1933     case Hexagon::A4_cmpbgtu:
1934     case Hexagon::A4_cmpheq:
1935     case Hexagon::A4_cmphgt:
1936     case Hexagon::A4_cmphgtu:
1937     case Hexagon::C4_cmpneq:
1938     case Hexagon::C4_cmplte:
1939     case Hexagon::C4_cmplteu:
1940       SrcReg2 = MI.getOperand(2).getReg();
1941       Value = 0;
1942       return true;
1943 
1944     case Hexagon::C2_cmpeqi:
1945     case Hexagon::C2_cmpgtui:
1946     case Hexagon::C2_cmpgti:
1947     case Hexagon::C4_cmpneqi:
1948     case Hexagon::C4_cmplteui:
1949     case Hexagon::C4_cmpltei:
1950     case Hexagon::A4_cmpbeqi:
1951     case Hexagon::A4_cmpbgti:
1952     case Hexagon::A4_cmpbgtui:
1953     case Hexagon::A4_cmpheqi:
1954     case Hexagon::A4_cmphgti:
1955     case Hexagon::A4_cmphgtui: {
1956       SrcReg2 = 0;
1957       const MachineOperand &Op2 = MI.getOperand(2);
1958       if (!Op2.isImm())
1959         return false;
1960       Value = MI.getOperand(2).getImm();
1961       return true;
1962     }
1963   }
1964 
1965   return false;
1966 }
1967 
1968 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1969                                            const MachineInstr &MI,
1970                                            unsigned *PredCost) const {
1971   return getInstrTimingClassLatency(ItinData, MI);
1972 }
1973 
1974 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1975     const TargetSubtargetInfo &STI) const {
1976   const InstrItineraryData *II = STI.getInstrItineraryData();
1977   return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1978 }
1979 
1980 // Inspired by this pair:
1981 //  %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1982 //  S2_storeri_io %r29, 132, killed %r1; flags:  mem:ST4[FixedStack1]
1983 // Currently AA considers the addresses in these instructions to be aliasing.
1984 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1985     const MachineInstr &MIa, const MachineInstr &MIb) const {
1986   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1987       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1988     return false;
1989 
1990   // Instructions that are pure loads, not loads and stores like memops are not
1991   // dependent.
1992   if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1993     return true;
1994 
1995   // Get the base register in MIa.
1996   unsigned BasePosA, OffsetPosA;
1997   if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
1998     return false;
1999   const MachineOperand &BaseA = MIa.getOperand(BasePosA);
2000   Register BaseRegA = BaseA.getReg();
2001   unsigned BaseSubA = BaseA.getSubReg();
2002 
2003   // Get the base register in MIb.
2004   unsigned BasePosB, OffsetPosB;
2005   if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
2006     return false;
2007   const MachineOperand &BaseB = MIb.getOperand(BasePosB);
2008   Register BaseRegB = BaseB.getReg();
2009   unsigned BaseSubB = BaseB.getSubReg();
2010 
2011   if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
2012     return false;
2013 
2014   // Get the access sizes.
2015   unsigned SizeA = getMemAccessSize(MIa);
2016   unsigned SizeB = getMemAccessSize(MIb);
2017 
2018   // Get the offsets. Handle immediates only for now.
2019   const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
2020   const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
2021   if (!MIa.getOperand(OffsetPosA).isImm() ||
2022       !MIb.getOperand(OffsetPosB).isImm())
2023     return false;
2024   int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
2025   int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
2026 
2027   // This is a mem access with the same base register and known offsets from it.
2028   // Reason about it.
2029   if (OffsetA > OffsetB) {
2030     uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
2031     return SizeB <= OffDiff;
2032   }
2033   if (OffsetA < OffsetB) {
2034     uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
2035     return SizeA <= OffDiff;
2036   }
2037 
2038   return false;
2039 }
2040 
2041 /// If the instruction is an increment of a constant value, return the amount.
2042 bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
2043       int &Value) const {
2044   if (isPostIncrement(MI)) {
2045     unsigned BasePos = 0, OffsetPos = 0;
2046     if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
2047       return false;
2048     const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
2049     if (OffsetOp.isImm()) {
2050       Value = OffsetOp.getImm();
2051       return true;
2052     }
2053   } else if (MI.getOpcode() == Hexagon::A2_addi) {
2054     const MachineOperand &AddOp = MI.getOperand(2);
2055     if (AddOp.isImm()) {
2056       Value = AddOp.getImm();
2057       return true;
2058     }
2059   }
2060 
2061   return false;
2062 }
2063 
2064 std::pair<unsigned, unsigned>
2065 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2066   return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
2067                         TF & HexagonII::MO_Bitmasks);
2068 }
2069 
2070 ArrayRef<std::pair<unsigned, const char*>>
2071 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2072   using namespace HexagonII;
2073 
2074   static const std::pair<unsigned, const char*> Flags[] = {
2075     {MO_PCREL,  "hexagon-pcrel"},
2076     {MO_GOT,    "hexagon-got"},
2077     {MO_LO16,   "hexagon-lo16"},
2078     {MO_HI16,   "hexagon-hi16"},
2079     {MO_GPREL,  "hexagon-gprel"},
2080     {MO_GDGOT,  "hexagon-gdgot"},
2081     {MO_GDPLT,  "hexagon-gdplt"},
2082     {MO_IE,     "hexagon-ie"},
2083     {MO_IEGOT,  "hexagon-iegot"},
2084     {MO_TPREL,  "hexagon-tprel"}
2085   };
2086   return ArrayRef(Flags);
2087 }
2088 
2089 ArrayRef<std::pair<unsigned, const char*>>
2090 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2091   using namespace HexagonII;
2092 
2093   static const std::pair<unsigned, const char*> Flags[] = {
2094     {HMOTF_ConstExtended, "hexagon-ext"}
2095   };
2096   return ArrayRef(Flags);
2097 }
2098 
2099 Register HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
2100   MachineRegisterInfo &MRI = MF->getRegInfo();
2101   const TargetRegisterClass *TRC;
2102   if (VT == MVT::i1) {
2103     TRC = &Hexagon::PredRegsRegClass;
2104   } else if (VT == MVT::i32 || VT == MVT::f32) {
2105     TRC = &Hexagon::IntRegsRegClass;
2106   } else if (VT == MVT::i64 || VT == MVT::f64) {
2107     TRC = &Hexagon::DoubleRegsRegClass;
2108   } else {
2109     llvm_unreachable("Cannot handle this register class");
2110   }
2111 
2112   Register NewReg = MRI.createVirtualRegister(TRC);
2113   return NewReg;
2114 }
2115 
2116 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
2117   return (getAddrMode(MI) == HexagonII::AbsoluteSet);
2118 }
2119 
2120 bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
2121   const uint64_t F = MI.getDesc().TSFlags;
2122   return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
2123 }
2124 
2125 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const {
2126   return getAddrMode(MI) == HexagonII::BaseImmOffset;
2127 }
2128 
2129 bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
2130   return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
2131          !MI.getDesc().mayStore() &&
2132          MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
2133          MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
2134          !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
2135 }
2136 
2137 // Return true if the instruction is a compound branch instruction.
2138 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
2139   return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
2140 }
2141 
2142 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2143 // isFPImm and later getFPImm as well.
2144 bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
2145   const uint64_t F = MI.getDesc().TSFlags;
2146   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
2147   if (isExtended) // Instruction must be extended.
2148     return true;
2149 
2150   unsigned isExtendable =
2151     (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
2152   if (!isExtendable)
2153     return false;
2154 
2155   if (MI.isCall())
2156     return false;
2157 
2158   short ExtOpNum = getCExtOpNum(MI);
2159   const MachineOperand &MO = MI.getOperand(ExtOpNum);
2160   // Use MO operand flags to determine if MO
2161   // has the HMOTF_ConstExtended flag set.
2162   if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2163     return true;
2164   // If this is a Machine BB address we are talking about, and it is
2165   // not marked as extended, say so.
2166   if (MO.isMBB())
2167     return false;
2168 
2169   // We could be using an instruction with an extendable immediate and shoehorn
2170   // a global address into it. If it is a global address it will be constant
2171   // extended. We do this for COMBINE.
2172   if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2173       MO.isJTI() || MO.isCPI() || MO.isFPImm())
2174     return true;
2175 
2176   // If the extendable operand is not 'Immediate' type, the instruction should
2177   // have 'isExtended' flag set.
2178   assert(MO.isImm() && "Extendable operand must be Immediate type");
2179 
2180   int MinValue = getMinValue(MI);
2181   int MaxValue = getMaxValue(MI);
2182   int ImmValue = MO.getImm();
2183 
2184   return (ImmValue < MinValue || ImmValue > MaxValue);
2185 }
2186 
2187 bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
2188   switch (MI.getOpcode()) {
2189   case Hexagon::L4_return:
2190   case Hexagon::L4_return_t:
2191   case Hexagon::L4_return_f:
2192   case Hexagon::L4_return_tnew_pnt:
2193   case Hexagon::L4_return_fnew_pnt:
2194   case Hexagon::L4_return_tnew_pt:
2195   case Hexagon::L4_return_fnew_pt:
2196     return true;
2197   }
2198   return false;
2199 }
2200 
2201 // Return true when ConsMI uses a register defined by ProdMI.
2202 bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
2203       const MachineInstr &ConsMI) const {
2204   if (!ProdMI.getDesc().getNumDefs())
2205     return false;
2206   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2207 
2208   SmallVector<Register, 4> DefsA;
2209   SmallVector<Register, 4> DefsB;
2210   SmallVector<Register, 8> UsesA;
2211   SmallVector<Register, 8> UsesB;
2212 
2213   parseOperands(ProdMI, DefsA, UsesA);
2214   parseOperands(ConsMI, DefsB, UsesB);
2215 
2216   for (auto &RegA : DefsA)
2217     for (auto &RegB : UsesB) {
2218       // True data dependency.
2219       if (RegA == RegB)
2220         return true;
2221 
2222       if (RegA.isPhysical())
2223         for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
2224           if (RegB == *SubRegs)
2225             return true;
2226 
2227       if (RegB.isPhysical())
2228         for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
2229           if (RegA == *SubRegs)
2230             return true;
2231     }
2232 
2233   return false;
2234 }
2235 
2236 // Returns true if the instruction is alread a .cur.
2237 bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
2238   switch (MI.getOpcode()) {
2239   case Hexagon::V6_vL32b_cur_pi:
2240   case Hexagon::V6_vL32b_cur_ai:
2241     return true;
2242   }
2243   return false;
2244 }
2245 
2246 // Returns true, if any one of the operands is a dot new
2247 // insn, whether it is predicated dot new or register dot new.
2248 bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
2249   if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
2250     return true;
2251 
2252   return false;
2253 }
2254 
2255 /// Symmetrical. See if these two instructions are fit for duplex pair.
2256 bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
2257       const MachineInstr &MIb) const {
2258   HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
2259   HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
2260   return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2261 }
2262 
2263 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2264   return (Opcode == Hexagon::ENDLOOP0 ||
2265           Opcode == Hexagon::ENDLOOP1);
2266 }
2267 
2268 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2269   switch(OpType) {
2270   case MachineOperand::MO_MachineBasicBlock:
2271   case MachineOperand::MO_GlobalAddress:
2272   case MachineOperand::MO_ExternalSymbol:
2273   case MachineOperand::MO_JumpTableIndex:
2274   case MachineOperand::MO_ConstantPoolIndex:
2275   case MachineOperand::MO_BlockAddress:
2276     return true;
2277   default:
2278     return false;
2279   }
2280 }
2281 
2282 bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
2283   const MCInstrDesc &MID = MI.getDesc();
2284   const uint64_t F = MID.TSFlags;
2285   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
2286     return true;
2287 
2288   // TODO: This is largely obsolete now. Will need to be removed
2289   // in consecutive patches.
2290   switch (MI.getOpcode()) {
2291     // PS_fi and PS_fia remain special cases.
2292     case Hexagon::PS_fi:
2293     case Hexagon::PS_fia:
2294       return true;
2295     default:
2296       return false;
2297   }
2298   return  false;
2299 }
2300 
2301 // This returns true in two cases:
2302 // - The OP code itself indicates that this is an extended instruction.
2303 // - One of MOs has been marked with HMOTF_ConstExtended flag.
2304 bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
2305   // First check if this is permanently extended op code.
2306   const uint64_t F = MI.getDesc().TSFlags;
2307   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
2308     return true;
2309   // Use MO operand flags to determine if one of MI's operands
2310   // has HMOTF_ConstExtended flag set.
2311   for (const MachineOperand &MO : MI.operands())
2312     if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2313       return true;
2314   return  false;
2315 }
2316 
2317 bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
2318   unsigned Opcode = MI.getOpcode();
2319   const uint64_t F = get(Opcode).TSFlags;
2320   return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2321 }
2322 
2323 // No V60 HVX VMEM with A_INDIRECT.
2324 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
2325       const MachineInstr &J) const {
2326   if (!isHVXVec(I))
2327     return false;
2328   if (!I.mayLoad() && !I.mayStore())
2329     return false;
2330   return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2331 }
2332 
2333 bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
2334   switch (MI.getOpcode()) {
2335   case Hexagon::J2_callr:
2336   case Hexagon::J2_callrf:
2337   case Hexagon::J2_callrt:
2338   case Hexagon::PS_call_nr:
2339     return true;
2340   }
2341   return false;
2342 }
2343 
2344 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
2345   switch (MI.getOpcode()) {
2346   case Hexagon::L4_return:
2347   case Hexagon::L4_return_t:
2348   case Hexagon::L4_return_f:
2349   case Hexagon::L4_return_fnew_pnt:
2350   case Hexagon::L4_return_fnew_pt:
2351   case Hexagon::L4_return_tnew_pnt:
2352   case Hexagon::L4_return_tnew_pt:
2353     return true;
2354   }
2355   return false;
2356 }
2357 
2358 bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
2359   switch (MI.getOpcode()) {
2360   case Hexagon::J2_jumpr:
2361   case Hexagon::J2_jumprt:
2362   case Hexagon::J2_jumprf:
2363   case Hexagon::J2_jumprtnewpt:
2364   case Hexagon::J2_jumprfnewpt:
2365   case Hexagon::J2_jumprtnew:
2366   case Hexagon::J2_jumprfnew:
2367     return true;
2368   }
2369   return false;
2370 }
2371 
2372 // Return true if a given MI can accommodate given offset.
2373 // Use abs estimate as oppose to the exact number.
2374 // TODO: This will need to be changed to use MC level
2375 // definition of instruction extendable field size.
2376 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
2377       unsigned offset) const {
2378   // This selection of jump instructions matches to that what
2379   // analyzeBranch can parse, plus NVJ.
2380   if (isNewValueJump(MI)) // r9:2
2381     return isInt<11>(offset);
2382 
2383   switch (MI.getOpcode()) {
2384   // Still missing Jump to address condition on register value.
2385   default:
2386     return false;
2387   case Hexagon::J2_jump: // bits<24> dst; // r22:2
2388   case Hexagon::J2_call:
2389   case Hexagon::PS_call_nr:
2390     return isInt<24>(offset);
2391   case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2392   case Hexagon::J2_jumpf:
2393   case Hexagon::J2_jumptnew:
2394   case Hexagon::J2_jumptnewpt:
2395   case Hexagon::J2_jumpfnew:
2396   case Hexagon::J2_jumpfnewpt:
2397   case Hexagon::J2_callt:
2398   case Hexagon::J2_callf:
2399     return isInt<17>(offset);
2400   case Hexagon::J2_loop0i:
2401   case Hexagon::J2_loop0iext:
2402   case Hexagon::J2_loop0r:
2403   case Hexagon::J2_loop0rext:
2404   case Hexagon::J2_loop1i:
2405   case Hexagon::J2_loop1iext:
2406   case Hexagon::J2_loop1r:
2407   case Hexagon::J2_loop1rext:
2408     return isInt<9>(offset);
2409   // TODO: Add all the compound branches here. Can we do this in Relation model?
2410   case Hexagon::J4_cmpeqi_tp0_jump_nt:
2411   case Hexagon::J4_cmpeqi_tp1_jump_nt:
2412   case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2413   case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2414     return isInt<11>(offset);
2415   }
2416 }
2417 
2418 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
2419   // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2420   // resource, but all operands can be received late like an ALU instruction.
2421   return getType(MI) == HexagonII::TypeCVI_VX_LATE;
2422 }
2423 
2424 bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
2425   unsigned Opcode = MI.getOpcode();
2426   return Opcode == Hexagon::J2_loop0i    ||
2427          Opcode == Hexagon::J2_loop0r    ||
2428          Opcode == Hexagon::J2_loop0iext ||
2429          Opcode == Hexagon::J2_loop0rext ||
2430          Opcode == Hexagon::J2_loop1i    ||
2431          Opcode == Hexagon::J2_loop1r    ||
2432          Opcode == Hexagon::J2_loop1iext ||
2433          Opcode == Hexagon::J2_loop1rext;
2434 }
2435 
2436 bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
2437   switch (MI.getOpcode()) {
2438     default: return false;
2439     case Hexagon::L4_iadd_memopw_io:
2440     case Hexagon::L4_isub_memopw_io:
2441     case Hexagon::L4_add_memopw_io:
2442     case Hexagon::L4_sub_memopw_io:
2443     case Hexagon::L4_and_memopw_io:
2444     case Hexagon::L4_or_memopw_io:
2445     case Hexagon::L4_iadd_memoph_io:
2446     case Hexagon::L4_isub_memoph_io:
2447     case Hexagon::L4_add_memoph_io:
2448     case Hexagon::L4_sub_memoph_io:
2449     case Hexagon::L4_and_memoph_io:
2450     case Hexagon::L4_or_memoph_io:
2451     case Hexagon::L4_iadd_memopb_io:
2452     case Hexagon::L4_isub_memopb_io:
2453     case Hexagon::L4_add_memopb_io:
2454     case Hexagon::L4_sub_memopb_io:
2455     case Hexagon::L4_and_memopb_io:
2456     case Hexagon::L4_or_memopb_io:
2457     case Hexagon::L4_ior_memopb_io:
2458     case Hexagon::L4_ior_memoph_io:
2459     case Hexagon::L4_ior_memopw_io:
2460     case Hexagon::L4_iand_memopb_io:
2461     case Hexagon::L4_iand_memoph_io:
2462     case Hexagon::L4_iand_memopw_io:
2463     return true;
2464   }
2465   return false;
2466 }
2467 
2468 bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
2469   const uint64_t F = MI.getDesc().TSFlags;
2470   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2471 }
2472 
2473 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2474   const uint64_t F = get(Opcode).TSFlags;
2475   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2476 }
2477 
2478 bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
2479   return isNewValueJump(MI) || isNewValueStore(MI);
2480 }
2481 
2482 bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
2483   return isNewValue(MI) && MI.isBranch();
2484 }
2485 
2486 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2487   return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2488 }
2489 
2490 bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
2491   const uint64_t F = MI.getDesc().TSFlags;
2492   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2493 }
2494 
2495 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2496   const uint64_t F = get(Opcode).TSFlags;
2497   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2498 }
2499 
2500 // Returns true if a particular operand is extendable for an instruction.
2501 bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
2502     unsigned OperandNum) const {
2503   const uint64_t F = MI.getDesc().TSFlags;
2504   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2505           == OperandNum;
2506 }
2507 
2508 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
2509   const uint64_t F = MI.getDesc().TSFlags;
2510   assert(isPredicated(MI));
2511   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2512 }
2513 
2514 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2515   const uint64_t F = get(Opcode).TSFlags;
2516   assert(isPredicated(Opcode));
2517   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2518 }
2519 
2520 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
2521   const uint64_t F = MI.getDesc().TSFlags;
2522   return !((F >> HexagonII::PredicatedFalsePos) &
2523            HexagonII::PredicatedFalseMask);
2524 }
2525 
2526 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2527   const uint64_t F = get(Opcode).TSFlags;
2528   // Make sure that the instruction is predicated.
2529   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2530   return !((F >> HexagonII::PredicatedFalsePos) &
2531            HexagonII::PredicatedFalseMask);
2532 }
2533 
2534 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2535   const uint64_t F = get(Opcode).TSFlags;
2536   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2537 }
2538 
2539 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2540   const uint64_t F = get(Opcode).TSFlags;
2541   return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2542 }
2543 
2544 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2545   const uint64_t F = get(Opcode).TSFlags;
2546   assert(get(Opcode).isBranch() &&
2547          (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2548   return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2549 }
2550 
2551 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
2552   return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2553          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2554          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2555          MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2556 }
2557 
2558 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
2559   switch (MI.getOpcode()) {
2560   // Byte
2561   case Hexagon::L2_loadrb_io:
2562   case Hexagon::L4_loadrb_ur:
2563   case Hexagon::L4_loadrb_ap:
2564   case Hexagon::L2_loadrb_pr:
2565   case Hexagon::L2_loadrb_pbr:
2566   case Hexagon::L2_loadrb_pi:
2567   case Hexagon::L2_loadrb_pci:
2568   case Hexagon::L2_loadrb_pcr:
2569   case Hexagon::L2_loadbsw2_io:
2570   case Hexagon::L4_loadbsw2_ur:
2571   case Hexagon::L4_loadbsw2_ap:
2572   case Hexagon::L2_loadbsw2_pr:
2573   case Hexagon::L2_loadbsw2_pbr:
2574   case Hexagon::L2_loadbsw2_pi:
2575   case Hexagon::L2_loadbsw2_pci:
2576   case Hexagon::L2_loadbsw2_pcr:
2577   case Hexagon::L2_loadbsw4_io:
2578   case Hexagon::L4_loadbsw4_ur:
2579   case Hexagon::L4_loadbsw4_ap:
2580   case Hexagon::L2_loadbsw4_pr:
2581   case Hexagon::L2_loadbsw4_pbr:
2582   case Hexagon::L2_loadbsw4_pi:
2583   case Hexagon::L2_loadbsw4_pci:
2584   case Hexagon::L2_loadbsw4_pcr:
2585   case Hexagon::L4_loadrb_rr:
2586   case Hexagon::L2_ploadrbt_io:
2587   case Hexagon::L2_ploadrbt_pi:
2588   case Hexagon::L2_ploadrbf_io:
2589   case Hexagon::L2_ploadrbf_pi:
2590   case Hexagon::L2_ploadrbtnew_io:
2591   case Hexagon::L2_ploadrbfnew_io:
2592   case Hexagon::L4_ploadrbt_rr:
2593   case Hexagon::L4_ploadrbf_rr:
2594   case Hexagon::L4_ploadrbtnew_rr:
2595   case Hexagon::L4_ploadrbfnew_rr:
2596   case Hexagon::L2_ploadrbtnew_pi:
2597   case Hexagon::L2_ploadrbfnew_pi:
2598   case Hexagon::L4_ploadrbt_abs:
2599   case Hexagon::L4_ploadrbf_abs:
2600   case Hexagon::L4_ploadrbtnew_abs:
2601   case Hexagon::L4_ploadrbfnew_abs:
2602   case Hexagon::L2_loadrbgp:
2603   // Half
2604   case Hexagon::L2_loadrh_io:
2605   case Hexagon::L4_loadrh_ur:
2606   case Hexagon::L4_loadrh_ap:
2607   case Hexagon::L2_loadrh_pr:
2608   case Hexagon::L2_loadrh_pbr:
2609   case Hexagon::L2_loadrh_pi:
2610   case Hexagon::L2_loadrh_pci:
2611   case Hexagon::L2_loadrh_pcr:
2612   case Hexagon::L4_loadrh_rr:
2613   case Hexagon::L2_ploadrht_io:
2614   case Hexagon::L2_ploadrht_pi:
2615   case Hexagon::L2_ploadrhf_io:
2616   case Hexagon::L2_ploadrhf_pi:
2617   case Hexagon::L2_ploadrhtnew_io:
2618   case Hexagon::L2_ploadrhfnew_io:
2619   case Hexagon::L4_ploadrht_rr:
2620   case Hexagon::L4_ploadrhf_rr:
2621   case Hexagon::L4_ploadrhtnew_rr:
2622   case Hexagon::L4_ploadrhfnew_rr:
2623   case Hexagon::L2_ploadrhtnew_pi:
2624   case Hexagon::L2_ploadrhfnew_pi:
2625   case Hexagon::L4_ploadrht_abs:
2626   case Hexagon::L4_ploadrhf_abs:
2627   case Hexagon::L4_ploadrhtnew_abs:
2628   case Hexagon::L4_ploadrhfnew_abs:
2629   case Hexagon::L2_loadrhgp:
2630     return true;
2631   default:
2632     return false;
2633   }
2634 }
2635 
2636 bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
2637   const uint64_t F = MI.getDesc().TSFlags;
2638   return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2639 }
2640 
2641 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
2642   switch (MI.getOpcode()) {
2643   case Hexagon::STriw_pred:
2644   case Hexagon::LDriw_pred:
2645     return true;
2646   default:
2647     return false;
2648   }
2649 }
2650 
2651 bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
2652   if (!MI.isBranch())
2653     return false;
2654 
2655   for (auto &Op : MI.operands())
2656     if (Op.isGlobal() || Op.isSymbol())
2657       return true;
2658   return false;
2659 }
2660 
2661 // Returns true when SU has a timing class TC1.
2662 bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
2663   unsigned SchedClass = MI.getDesc().getSchedClass();
2664   return is_TC1(SchedClass);
2665 }
2666 
2667 bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
2668   unsigned SchedClass = MI.getDesc().getSchedClass();
2669   return is_TC2(SchedClass);
2670 }
2671 
2672 bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
2673   unsigned SchedClass = MI.getDesc().getSchedClass();
2674   return is_TC2early(SchedClass);
2675 }
2676 
2677 bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
2678   unsigned SchedClass = MI.getDesc().getSchedClass();
2679   return is_TC4x(SchedClass);
2680 }
2681 
2682 // Schedule this ASAP.
2683 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
2684       const MachineInstr &MI2) const {
2685   if (mayBeCurLoad(MI1)) {
2686     // if (result of SU is used in Next) return true;
2687     Register DstReg = MI1.getOperand(0).getReg();
2688     int N = MI2.getNumOperands();
2689     for (int I = 0; I < N; I++)
2690       if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2691         return true;
2692   }
2693   if (mayBeNewStore(MI2))
2694     if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2695       if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2696           MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2697         return true;
2698   return false;
2699 }
2700 
2701 bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
2702   const uint64_t V = getType(MI);
2703   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2704 }
2705 
2706 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2707 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
2708   int Size = VT.getSizeInBits() / 8;
2709   if (Offset % Size != 0)
2710     return false;
2711   int Count = Offset / Size;
2712 
2713   switch (VT.getSimpleVT().SimpleTy) {
2714     // For scalars the auto-inc is s4
2715     case MVT::i8:
2716     case MVT::i16:
2717     case MVT::i32:
2718     case MVT::i64:
2719     case MVT::f32:
2720     case MVT::f64:
2721     case MVT::v2i16:
2722     case MVT::v2i32:
2723     case MVT::v4i8:
2724     case MVT::v4i16:
2725     case MVT::v8i8:
2726       return isInt<4>(Count);
2727     // For HVX vectors the auto-inc is s3
2728     case MVT::v64i8:
2729     case MVT::v32i16:
2730     case MVT::v16i32:
2731     case MVT::v8i64:
2732     case MVT::v128i8:
2733     case MVT::v64i16:
2734     case MVT::v32i32:
2735     case MVT::v16i64:
2736       return isInt<3>(Count);
2737     default:
2738       break;
2739   }
2740 
2741   llvm_unreachable("Not an valid type!");
2742 }
2743 
2744 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2745       const TargetRegisterInfo *TRI, bool Extend) const {
2746   // This function is to check whether the "Offset" is in the correct range of
2747   // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2748   // inserted to calculate the final address. Due to this reason, the function
2749   // assumes that the "Offset" has correct alignment.
2750   // We used to assert if the offset was not properly aligned, however,
2751   // there are cases where a misaligned pointer recast can cause this
2752   // problem, and we need to allow for it. The front end warns of such
2753   // misaligns with respect to load size.
2754   switch (Opcode) {
2755   case Hexagon::PS_vstorerq_ai:
2756   case Hexagon::PS_vstorerv_ai:
2757   case Hexagon::PS_vstorerw_ai:
2758   case Hexagon::PS_vstorerw_nt_ai:
2759   case Hexagon::PS_vloadrq_ai:
2760   case Hexagon::PS_vloadrv_ai:
2761   case Hexagon::PS_vloadrw_ai:
2762   case Hexagon::PS_vloadrw_nt_ai:
2763   case Hexagon::V6_vL32b_ai:
2764   case Hexagon::V6_vS32b_ai:
2765   case Hexagon::V6_vS32b_qpred_ai:
2766   case Hexagon::V6_vS32b_nqpred_ai:
2767   case Hexagon::V6_vL32b_nt_ai:
2768   case Hexagon::V6_vS32b_nt_ai:
2769   case Hexagon::V6_vL32Ub_ai:
2770   case Hexagon::V6_vS32Ub_ai:
2771   case Hexagon::V6_vgathermh_pseudo:
2772   case Hexagon::V6_vgathermw_pseudo:
2773   case Hexagon::V6_vgathermhw_pseudo:
2774   case Hexagon::V6_vgathermhq_pseudo:
2775   case Hexagon::V6_vgathermwq_pseudo:
2776   case Hexagon::V6_vgathermhwq_pseudo: {
2777     unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2778     assert(isPowerOf2_32(VectorSize));
2779     if (Offset & (VectorSize-1))
2780       return false;
2781     return isInt<4>(Offset >> Log2_32(VectorSize));
2782   }
2783 
2784   case Hexagon::J2_loop0i:
2785   case Hexagon::J2_loop1i:
2786     return isUInt<10>(Offset);
2787 
2788   case Hexagon::S4_storeirb_io:
2789   case Hexagon::S4_storeirbt_io:
2790   case Hexagon::S4_storeirbf_io:
2791     return isUInt<6>(Offset);
2792 
2793   case Hexagon::S4_storeirh_io:
2794   case Hexagon::S4_storeirht_io:
2795   case Hexagon::S4_storeirhf_io:
2796     return isShiftedUInt<6,1>(Offset);
2797 
2798   case Hexagon::S4_storeiri_io:
2799   case Hexagon::S4_storeirit_io:
2800   case Hexagon::S4_storeirif_io:
2801     return isShiftedUInt<6,2>(Offset);
2802   // Handle these two compare instructions that are not extendable.
2803   case Hexagon::A4_cmpbeqi:
2804     return isUInt<8>(Offset);
2805   case Hexagon::A4_cmpbgti:
2806     return isInt<8>(Offset);
2807   }
2808 
2809   if (Extend)
2810     return true;
2811 
2812   switch (Opcode) {
2813   case Hexagon::L2_loadri_io:
2814   case Hexagon::S2_storeri_io:
2815     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2816       (Offset <= Hexagon_MEMW_OFFSET_MAX);
2817 
2818   case Hexagon::L2_loadrd_io:
2819   case Hexagon::S2_storerd_io:
2820     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2821       (Offset <= Hexagon_MEMD_OFFSET_MAX);
2822 
2823   case Hexagon::L2_loadrh_io:
2824   case Hexagon::L2_loadruh_io:
2825   case Hexagon::S2_storerh_io:
2826   case Hexagon::S2_storerf_io:
2827     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2828       (Offset <= Hexagon_MEMH_OFFSET_MAX);
2829 
2830   case Hexagon::L2_loadrb_io:
2831   case Hexagon::L2_loadrub_io:
2832   case Hexagon::S2_storerb_io:
2833     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2834       (Offset <= Hexagon_MEMB_OFFSET_MAX);
2835 
2836   case Hexagon::A2_addi:
2837     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2838       (Offset <= Hexagon_ADDI_OFFSET_MAX);
2839 
2840   case Hexagon::L4_iadd_memopw_io:
2841   case Hexagon::L4_isub_memopw_io:
2842   case Hexagon::L4_add_memopw_io:
2843   case Hexagon::L4_sub_memopw_io:
2844   case Hexagon::L4_iand_memopw_io:
2845   case Hexagon::L4_ior_memopw_io:
2846   case Hexagon::L4_and_memopw_io:
2847   case Hexagon::L4_or_memopw_io:
2848     return (0 <= Offset && Offset <= 255);
2849 
2850   case Hexagon::L4_iadd_memoph_io:
2851   case Hexagon::L4_isub_memoph_io:
2852   case Hexagon::L4_add_memoph_io:
2853   case Hexagon::L4_sub_memoph_io:
2854   case Hexagon::L4_iand_memoph_io:
2855   case Hexagon::L4_ior_memoph_io:
2856   case Hexagon::L4_and_memoph_io:
2857   case Hexagon::L4_or_memoph_io:
2858     return (0 <= Offset && Offset <= 127);
2859 
2860   case Hexagon::L4_iadd_memopb_io:
2861   case Hexagon::L4_isub_memopb_io:
2862   case Hexagon::L4_add_memopb_io:
2863   case Hexagon::L4_sub_memopb_io:
2864   case Hexagon::L4_iand_memopb_io:
2865   case Hexagon::L4_ior_memopb_io:
2866   case Hexagon::L4_and_memopb_io:
2867   case Hexagon::L4_or_memopb_io:
2868     return (0 <= Offset && Offset <= 63);
2869 
2870   // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2871   // any size. Later pass knows how to handle it.
2872   case Hexagon::STriw_pred:
2873   case Hexagon::LDriw_pred:
2874   case Hexagon::STriw_ctr:
2875   case Hexagon::LDriw_ctr:
2876     return true;
2877 
2878   case Hexagon::PS_fi:
2879   case Hexagon::PS_fia:
2880   case Hexagon::INLINEASM:
2881     return true;
2882 
2883   case Hexagon::L2_ploadrbt_io:
2884   case Hexagon::L2_ploadrbf_io:
2885   case Hexagon::L2_ploadrubt_io:
2886   case Hexagon::L2_ploadrubf_io:
2887   case Hexagon::S2_pstorerbt_io:
2888   case Hexagon::S2_pstorerbf_io:
2889     return isUInt<6>(Offset);
2890 
2891   case Hexagon::L2_ploadrht_io:
2892   case Hexagon::L2_ploadrhf_io:
2893   case Hexagon::L2_ploadruht_io:
2894   case Hexagon::L2_ploadruhf_io:
2895   case Hexagon::S2_pstorerht_io:
2896   case Hexagon::S2_pstorerhf_io:
2897     return isShiftedUInt<6,1>(Offset);
2898 
2899   case Hexagon::L2_ploadrit_io:
2900   case Hexagon::L2_ploadrif_io:
2901   case Hexagon::S2_pstorerit_io:
2902   case Hexagon::S2_pstorerif_io:
2903     return isShiftedUInt<6,2>(Offset);
2904 
2905   case Hexagon::L2_ploadrdt_io:
2906   case Hexagon::L2_ploadrdf_io:
2907   case Hexagon::S2_pstorerdt_io:
2908   case Hexagon::S2_pstorerdf_io:
2909     return isShiftedUInt<6,3>(Offset);
2910 
2911   case Hexagon::L2_loadbsw2_io:
2912   case Hexagon::L2_loadbzw2_io:
2913     return isShiftedInt<11,1>(Offset);
2914 
2915   case Hexagon::L2_loadbsw4_io:
2916   case Hexagon::L2_loadbzw4_io:
2917     return isShiftedInt<11,2>(Offset);
2918   } // switch
2919 
2920   dbgs() << "Failed Opcode is : " << Opcode << " (" << getName(Opcode)
2921          << ")\n";
2922   llvm_unreachable("No offset range is defined for this opcode. "
2923                    "Please define it in the above switch statement!");
2924 }
2925 
2926 bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
2927   return isHVXVec(MI) && isAccumulator(MI);
2928 }
2929 
2930 bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
2931   const uint64_t F = get(MI.getOpcode()).TSFlags;
2932   const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2933   return
2934     V == HexagonII::TypeCVI_VA         ||
2935     V == HexagonII::TypeCVI_VA_DV;
2936 }
2937 
2938 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
2939       const MachineInstr &ConsMI) const {
2940   if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2941     return true;
2942 
2943   if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2944     return true;
2945 
2946   if (mayBeNewStore(ConsMI))
2947     return true;
2948 
2949   return false;
2950 }
2951 
2952 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
2953   switch (MI.getOpcode()) {
2954   // Byte
2955   case Hexagon::L2_loadrub_io:
2956   case Hexagon::L4_loadrub_ur:
2957   case Hexagon::L4_loadrub_ap:
2958   case Hexagon::L2_loadrub_pr:
2959   case Hexagon::L2_loadrub_pbr:
2960   case Hexagon::L2_loadrub_pi:
2961   case Hexagon::L2_loadrub_pci:
2962   case Hexagon::L2_loadrub_pcr:
2963   case Hexagon::L2_loadbzw2_io:
2964   case Hexagon::L4_loadbzw2_ur:
2965   case Hexagon::L4_loadbzw2_ap:
2966   case Hexagon::L2_loadbzw2_pr:
2967   case Hexagon::L2_loadbzw2_pbr:
2968   case Hexagon::L2_loadbzw2_pi:
2969   case Hexagon::L2_loadbzw2_pci:
2970   case Hexagon::L2_loadbzw2_pcr:
2971   case Hexagon::L2_loadbzw4_io:
2972   case Hexagon::L4_loadbzw4_ur:
2973   case Hexagon::L4_loadbzw4_ap:
2974   case Hexagon::L2_loadbzw4_pr:
2975   case Hexagon::L2_loadbzw4_pbr:
2976   case Hexagon::L2_loadbzw4_pi:
2977   case Hexagon::L2_loadbzw4_pci:
2978   case Hexagon::L2_loadbzw4_pcr:
2979   case Hexagon::L4_loadrub_rr:
2980   case Hexagon::L2_ploadrubt_io:
2981   case Hexagon::L2_ploadrubt_pi:
2982   case Hexagon::L2_ploadrubf_io:
2983   case Hexagon::L2_ploadrubf_pi:
2984   case Hexagon::L2_ploadrubtnew_io:
2985   case Hexagon::L2_ploadrubfnew_io:
2986   case Hexagon::L4_ploadrubt_rr:
2987   case Hexagon::L4_ploadrubf_rr:
2988   case Hexagon::L4_ploadrubtnew_rr:
2989   case Hexagon::L4_ploadrubfnew_rr:
2990   case Hexagon::L2_ploadrubtnew_pi:
2991   case Hexagon::L2_ploadrubfnew_pi:
2992   case Hexagon::L4_ploadrubt_abs:
2993   case Hexagon::L4_ploadrubf_abs:
2994   case Hexagon::L4_ploadrubtnew_abs:
2995   case Hexagon::L4_ploadrubfnew_abs:
2996   case Hexagon::L2_loadrubgp:
2997   // Half
2998   case Hexagon::L2_loadruh_io:
2999   case Hexagon::L4_loadruh_ur:
3000   case Hexagon::L4_loadruh_ap:
3001   case Hexagon::L2_loadruh_pr:
3002   case Hexagon::L2_loadruh_pbr:
3003   case Hexagon::L2_loadruh_pi:
3004   case Hexagon::L2_loadruh_pci:
3005   case Hexagon::L2_loadruh_pcr:
3006   case Hexagon::L4_loadruh_rr:
3007   case Hexagon::L2_ploadruht_io:
3008   case Hexagon::L2_ploadruht_pi:
3009   case Hexagon::L2_ploadruhf_io:
3010   case Hexagon::L2_ploadruhf_pi:
3011   case Hexagon::L2_ploadruhtnew_io:
3012   case Hexagon::L2_ploadruhfnew_io:
3013   case Hexagon::L4_ploadruht_rr:
3014   case Hexagon::L4_ploadruhf_rr:
3015   case Hexagon::L4_ploadruhtnew_rr:
3016   case Hexagon::L4_ploadruhfnew_rr:
3017   case Hexagon::L2_ploadruhtnew_pi:
3018   case Hexagon::L2_ploadruhfnew_pi:
3019   case Hexagon::L4_ploadruht_abs:
3020   case Hexagon::L4_ploadruhf_abs:
3021   case Hexagon::L4_ploadruhtnew_abs:
3022   case Hexagon::L4_ploadruhfnew_abs:
3023   case Hexagon::L2_loadruhgp:
3024     return true;
3025   default:
3026     return false;
3027   }
3028 }
3029 
3030 // Add latency to instruction.
3031 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
3032       const MachineInstr &MI2) const {
3033   if (isHVXVec(MI1) && isHVXVec(MI2))
3034     if (!isVecUsableNextPacket(MI1, MI2))
3035       return true;
3036   return false;
3037 }
3038 
3039 /// Get the base register and byte offset of a load/store instr.
3040 bool HexagonInstrInfo::getMemOperandsWithOffsetWidth(
3041     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
3042     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3043     const TargetRegisterInfo *TRI) const {
3044   OffsetIsScalable = false;
3045   const MachineOperand *BaseOp = getBaseAndOffset(LdSt, Offset, Width);
3046   if (!BaseOp || !BaseOp->isReg())
3047     return false;
3048   BaseOps.push_back(BaseOp);
3049   return true;
3050 }
3051 
3052 /// Can these instructions execute at the same time in a bundle.
3053 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
3054       const MachineInstr &Second) const {
3055   if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
3056     const MachineOperand &Op = Second.getOperand(0);
3057     if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
3058       return true;
3059   }
3060   if (DisableNVSchedule)
3061     return false;
3062   if (mayBeNewStore(Second)) {
3063     // Make sure the definition of the first instruction is the value being
3064     // stored.
3065     const MachineOperand &Stored =
3066       Second.getOperand(Second.getNumOperands() - 1);
3067     if (!Stored.isReg())
3068       return false;
3069     for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
3070       const MachineOperand &Op = First.getOperand(i);
3071       if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
3072         return true;
3073     }
3074   }
3075   return false;
3076 }
3077 
3078 bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
3079   unsigned Opc = CallMI.getOpcode();
3080   return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
3081 }
3082 
3083 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
3084   for (auto &I : *B)
3085     if (I.isEHLabel())
3086       return true;
3087   return false;
3088 }
3089 
3090 // Returns true if an instruction can be converted into a non-extended
3091 // equivalent instruction.
3092 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
3093   short NonExtOpcode;
3094   // Check if the instruction has a register form that uses register in place
3095   // of the extended operand, if so return that as the non-extended form.
3096   if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
3097     return true;
3098 
3099   if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
3100     // Check addressing mode and retrieve non-ext equivalent instruction.
3101 
3102     switch (getAddrMode(MI)) {
3103     case HexagonII::Absolute:
3104       // Load/store with absolute addressing mode can be converted into
3105       // base+offset mode.
3106       NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
3107       break;
3108     case HexagonII::BaseImmOffset:
3109       // Load/store with base+offset addressing mode can be converted into
3110       // base+register offset addressing mode. However left shift operand should
3111       // be set to 0.
3112       NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
3113       break;
3114     case HexagonII::BaseLongOffset:
3115       NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
3116       break;
3117     default:
3118       return false;
3119     }
3120     if (NonExtOpcode < 0)
3121       return false;
3122     return true;
3123   }
3124   return false;
3125 }
3126 
3127 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
3128   return Hexagon::getRealHWInstr(MI.getOpcode(),
3129                                  Hexagon::InstrType_Pseudo) >= 0;
3130 }
3131 
3132 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
3133       const {
3134   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3135   while (I != E) {
3136     if (I->isBarrier())
3137       return true;
3138     ++I;
3139   }
3140   return false;
3141 }
3142 
3143 // Returns true, if a LD insn can be promoted to a cur load.
3144 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
3145   const uint64_t F = MI.getDesc().TSFlags;
3146   return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
3147          Subtarget.hasV60Ops();
3148 }
3149 
3150 // Returns true, if a ST insn can be promoted to a new-value store.
3151 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
3152   if (MI.mayStore() && !Subtarget.useNewValueStores())
3153     return false;
3154 
3155   const uint64_t F = MI.getDesc().TSFlags;
3156   return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
3157 }
3158 
3159 bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
3160       const MachineInstr &ConsMI) const {
3161   // There is no stall when ProdMI is not a V60 vector.
3162   if (!isHVXVec(ProdMI))
3163     return false;
3164 
3165   // There is no stall when ProdMI and ConsMI are not dependent.
3166   if (!isDependent(ProdMI, ConsMI))
3167     return false;
3168 
3169   // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3170   // are scheduled in consecutive packets.
3171   if (isVecUsableNextPacket(ProdMI, ConsMI))
3172     return false;
3173 
3174   return true;
3175 }
3176 
3177 bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
3178       MachineBasicBlock::const_instr_iterator BII) const {
3179   // There is no stall when I is not a V60 vector.
3180   if (!isHVXVec(MI))
3181     return false;
3182 
3183   MachineBasicBlock::const_instr_iterator MII = BII;
3184   MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3185 
3186   if (!MII->isBundle())
3187     return producesStall(*MII, MI);
3188 
3189   for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3190     const MachineInstr &J = *MII;
3191     if (producesStall(J, MI))
3192       return true;
3193   }
3194   return false;
3195 }
3196 
3197 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
3198       Register PredReg) const {
3199   for (const MachineOperand &MO : MI.operands()) {
3200     // Predicate register must be explicitly defined.
3201     if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3202       return false;
3203     if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3204       return false;
3205   }
3206 
3207   // Instruction that produce late predicate cannot be used as sources of
3208   // dot-new.
3209   switch (MI.getOpcode()) {
3210     case Hexagon::A4_addp_c:
3211     case Hexagon::A4_subp_c:
3212     case Hexagon::A4_tlbmatch:
3213     case Hexagon::A5_ACS:
3214     case Hexagon::F2_sfinvsqrta:
3215     case Hexagon::F2_sfrecipa:
3216     case Hexagon::J2_endloop0:
3217     case Hexagon::J2_endloop01:
3218     case Hexagon::J2_ploop1si:
3219     case Hexagon::J2_ploop1sr:
3220     case Hexagon::J2_ploop2si:
3221     case Hexagon::J2_ploop2sr:
3222     case Hexagon::J2_ploop3si:
3223     case Hexagon::J2_ploop3sr:
3224     case Hexagon::S2_cabacdecbin:
3225     case Hexagon::S2_storew_locked:
3226     case Hexagon::S4_stored_locked:
3227       return false;
3228   }
3229   return true;
3230 }
3231 
3232 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3233   return Opcode == Hexagon::J2_jumpt      ||
3234          Opcode == Hexagon::J2_jumptpt    ||
3235          Opcode == Hexagon::J2_jumpf      ||
3236          Opcode == Hexagon::J2_jumpfpt    ||
3237          Opcode == Hexagon::J2_jumptnew   ||
3238          Opcode == Hexagon::J2_jumpfnew   ||
3239          Opcode == Hexagon::J2_jumptnewpt ||
3240          Opcode == Hexagon::J2_jumpfnewpt;
3241 }
3242 
3243 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
3244   if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3245     return false;
3246   return !isPredicatedTrue(Cond[0].getImm());
3247 }
3248 
3249 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
3250   const uint64_t F = MI.getDesc().TSFlags;
3251   return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
3252 }
3253 
3254 // Returns the base register in a memory access (load/store). The offset is
3255 // returned in Offset and the access size is returned in AccessSize.
3256 // If the base operand has a subregister or the offset field does not contain
3257 // an immediate value, return nullptr.
3258 MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
3259                                                    int64_t &Offset,
3260                                                    unsigned &AccessSize) const {
3261   // Return if it is not a base+offset type instruction or a MemOp.
3262   if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
3263       getAddrMode(MI) != HexagonII::BaseLongOffset &&
3264       !isMemOp(MI) && !isPostIncrement(MI))
3265     return nullptr;
3266 
3267   AccessSize = getMemAccessSize(MI);
3268 
3269   unsigned BasePos = 0, OffsetPos = 0;
3270   if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3271     return nullptr;
3272 
3273   // Post increment updates its EA after the mem access,
3274   // so we need to treat its offset as zero.
3275   if (isPostIncrement(MI)) {
3276     Offset = 0;
3277   } else {
3278     const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3279     if (!OffsetOp.isImm())
3280       return nullptr;
3281     Offset = OffsetOp.getImm();
3282   }
3283 
3284   const MachineOperand &BaseOp = MI.getOperand(BasePos);
3285   if (BaseOp.getSubReg() != 0)
3286     return nullptr;
3287   return &const_cast<MachineOperand&>(BaseOp);
3288 }
3289 
3290 /// Return the position of the base and offset operands for this instruction.
3291 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
3292       unsigned &BasePos, unsigned &OffsetPos) const {
3293   if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI))
3294     return false;
3295 
3296   // Deal with memops first.
3297   if (isMemOp(MI)) {
3298     BasePos = 0;
3299     OffsetPos = 1;
3300   } else if (MI.mayStore()) {
3301     BasePos = 0;
3302     OffsetPos = 1;
3303   } else if (MI.mayLoad()) {
3304     BasePos = 1;
3305     OffsetPos = 2;
3306   } else
3307     return false;
3308 
3309   if (isPredicated(MI)) {
3310     BasePos++;
3311     OffsetPos++;
3312   }
3313   if (isPostIncrement(MI)) {
3314     BasePos++;
3315     OffsetPos++;
3316   }
3317 
3318   if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3319     return false;
3320 
3321   return true;
3322 }
3323 
3324 // Inserts branching instructions in reverse order of their occurrence.
3325 // e.g. jump_t t1 (i1)
3326 // jump t2        (i2)
3327 // Jumpers = {i2, i1}
3328 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
3329       MachineBasicBlock& MBB) const {
3330   SmallVector<MachineInstr*, 2> Jumpers;
3331   // If the block has no terminators, it just falls into the block after it.
3332   MachineBasicBlock::instr_iterator I = MBB.instr_end();
3333   if (I == MBB.instr_begin())
3334     return Jumpers;
3335 
3336   // A basic block may looks like this:
3337   //
3338   //  [   insn
3339   //     EH_LABEL
3340   //      insn
3341   //      insn
3342   //      insn
3343   //     EH_LABEL
3344   //      insn     ]
3345   //
3346   // It has two succs but does not have a terminator
3347   // Don't know how to handle it.
3348   do {
3349     --I;
3350     if (I->isEHLabel())
3351       return Jumpers;
3352   } while (I != MBB.instr_begin());
3353 
3354   I = MBB.instr_end();
3355   --I;
3356 
3357   while (I->isDebugInstr()) {
3358     if (I == MBB.instr_begin())
3359       return Jumpers;
3360     --I;
3361   }
3362   if (!isUnpredicatedTerminator(*I))
3363     return Jumpers;
3364 
3365   // Get the last instruction in the block.
3366   MachineInstr *LastInst = &*I;
3367   Jumpers.push_back(LastInst);
3368   MachineInstr *SecondLastInst = nullptr;
3369   // Find one more terminator if present.
3370   do {
3371     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3372       if (!SecondLastInst) {
3373         SecondLastInst = &*I;
3374         Jumpers.push_back(SecondLastInst);
3375       } else // This is a third branch.
3376         return Jumpers;
3377     }
3378     if (I == MBB.instr_begin())
3379       break;
3380     --I;
3381   } while (true);
3382   return Jumpers;
3383 }
3384 
3385 // Returns Operand Index for the constant extended instruction.
3386 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
3387   const uint64_t F = MI.getDesc().TSFlags;
3388   return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
3389 }
3390 
3391 // See if instruction could potentially be a duplex candidate.
3392 // If so, return its group. Zero otherwise.
3393 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
3394       const MachineInstr &MI) const {
3395   Register DstReg, SrcReg, Src1Reg, Src2Reg;
3396 
3397   switch (MI.getOpcode()) {
3398   default:
3399     return HexagonII::HCG_None;
3400   //
3401   // Compound pairs.
3402   // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3403   // "Rd16=#U6 ; jump #r9:2"
3404   // "Rd16=Rs16 ; jump #r9:2"
3405   //
3406   case Hexagon::C2_cmpeq:
3407   case Hexagon::C2_cmpgt:
3408   case Hexagon::C2_cmpgtu:
3409     DstReg = MI.getOperand(0).getReg();
3410     Src1Reg = MI.getOperand(1).getReg();
3411     Src2Reg = MI.getOperand(2).getReg();
3412     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3413         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3414         isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3415       return HexagonII::HCG_A;
3416     break;
3417   case Hexagon::C2_cmpeqi:
3418   case Hexagon::C2_cmpgti:
3419   case Hexagon::C2_cmpgtui:
3420     // P0 = cmp.eq(Rs,#u2)
3421     DstReg = MI.getOperand(0).getReg();
3422     SrcReg = MI.getOperand(1).getReg();
3423     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3424         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3425         isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3426         ((isUInt<5>(MI.getOperand(2).getImm())) ||
3427          (MI.getOperand(2).getImm() == -1)))
3428       return HexagonII::HCG_A;
3429     break;
3430   case Hexagon::A2_tfr:
3431     // Rd = Rs
3432     DstReg = MI.getOperand(0).getReg();
3433     SrcReg = MI.getOperand(1).getReg();
3434     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3435       return HexagonII::HCG_A;
3436     break;
3437   case Hexagon::A2_tfrsi:
3438     // Rd = #u6
3439     // Do not test for #u6 size since the const is getting extended
3440     // regardless and compound could be formed.
3441     DstReg = MI.getOperand(0).getReg();
3442     if (isIntRegForSubInst(DstReg))
3443       return HexagonII::HCG_A;
3444     break;
3445   case Hexagon::S2_tstbit_i:
3446     DstReg = MI.getOperand(0).getReg();
3447     Src1Reg = MI.getOperand(1).getReg();
3448     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3449         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3450         MI.getOperand(2).isImm() &&
3451         isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3452       return HexagonII::HCG_A;
3453     break;
3454   // The fact that .new form is used pretty much guarantees
3455   // that predicate register will match. Nevertheless,
3456   // there could be some false positives without additional
3457   // checking.
3458   case Hexagon::J2_jumptnew:
3459   case Hexagon::J2_jumpfnew:
3460   case Hexagon::J2_jumptnewpt:
3461   case Hexagon::J2_jumpfnewpt:
3462     Src1Reg = MI.getOperand(0).getReg();
3463     if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3464         (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3465       return HexagonII::HCG_B;
3466     break;
3467   // Transfer and jump:
3468   // Rd=#U6 ; jump #r9:2
3469   // Rd=Rs ; jump #r9:2
3470   // Do not test for jump range here.
3471   case Hexagon::J2_jump:
3472   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3473   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3474     return HexagonII::HCG_C;
3475   }
3476 
3477   return HexagonII::HCG_None;
3478 }
3479 
3480 // Returns -1 when there is no opcode found.
3481 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
3482       const MachineInstr &GB) const {
3483   assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
3484   assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
3485   if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3486       (GB.getOpcode() != Hexagon::J2_jumptnew))
3487     return -1u;
3488   Register DestReg = GA.getOperand(0).getReg();
3489   if (!GB.readsRegister(DestReg))
3490     return -1u;
3491   if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3492     return -1u;
3493   // The value compared against must be either u5 or -1.
3494   const MachineOperand &CmpOp = GA.getOperand(2);
3495   if (!CmpOp.isImm())
3496     return -1u;
3497   int V = CmpOp.getImm();
3498   if (V == -1)
3499     return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3500                                   : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3501   if (!isUInt<5>(V))
3502     return -1u;
3503   return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3504                                 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3505 }
3506 
3507 // Returns -1 if there is no opcode found.
3508 int HexagonInstrInfo::getDuplexOpcode(const MachineInstr &MI,
3509                                       bool ForBigCore) const {
3510   // Static table to switch the opcodes across Tiny Core and Big Core.
3511   // dup_ opcodes are Big core opcodes.
3512   // NOTE: There are special instructions that need to handled later.
3513   // L4_return* instructions, they will only occupy SLOT0 (on big core too).
3514   // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2.
3515   // The compiler need to base the root instruction to L6_return_map_to_raw
3516   // which can go any slot.
3517   static const std::map<unsigned, unsigned> DupMap = {
3518       {Hexagon::A2_add, Hexagon::dup_A2_add},
3519       {Hexagon::A2_addi, Hexagon::dup_A2_addi},
3520       {Hexagon::A2_andir, Hexagon::dup_A2_andir},
3521       {Hexagon::A2_combineii, Hexagon::dup_A2_combineii},
3522       {Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb},
3523       {Hexagon::A2_sxth, Hexagon::dup_A2_sxth},
3524       {Hexagon::A2_tfr, Hexagon::dup_A2_tfr},
3525       {Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi},
3526       {Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb},
3527       {Hexagon::A2_zxth, Hexagon::dup_A2_zxth},
3528       {Hexagon::A4_combineii, Hexagon::dup_A4_combineii},
3529       {Hexagon::A4_combineir, Hexagon::dup_A4_combineir},
3530       {Hexagon::A4_combineri, Hexagon::dup_A4_combineri},
3531       {Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif},
3532       {Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit},
3533       {Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif},
3534       {Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit},
3535       {Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi},
3536       {Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe},
3537       {Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io},
3538       {Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io},
3539       {Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io},
3540       {Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io},
3541       {Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io},
3542       {Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io},
3543       {Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe},
3544       {Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io},
3545       {Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io},
3546       {Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io},
3547       {Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io},
3548       {Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io},
3549       {Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io},
3550   };
3551   unsigned OpNum = MI.getOpcode();
3552   // Conversion to Big core.
3553   if (ForBigCore) {
3554     auto Iter = DupMap.find(OpNum);
3555     if (Iter != DupMap.end())
3556       return Iter->second;
3557   } else { // Conversion to Tiny core.
3558     for (const auto &Iter : DupMap)
3559       if (Iter.second == OpNum)
3560         return Iter.first;
3561   }
3562   return -1;
3563 }
3564 
3565 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3566   enum Hexagon::PredSense inPredSense;
3567   inPredSense = invertPredicate ? Hexagon::PredSense_false :
3568                                   Hexagon::PredSense_true;
3569   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3570   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3571     return CondOpcode;
3572 
3573   llvm_unreachable("Unexpected predicable instruction");
3574 }
3575 
3576 // Return the cur value instruction for a given store.
3577 int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
3578   switch (MI.getOpcode()) {
3579   default: llvm_unreachable("Unknown .cur type");
3580   case Hexagon::V6_vL32b_pi:
3581     return Hexagon::V6_vL32b_cur_pi;
3582   case Hexagon::V6_vL32b_ai:
3583     return Hexagon::V6_vL32b_cur_ai;
3584   case Hexagon::V6_vL32b_nt_pi:
3585     return Hexagon::V6_vL32b_nt_cur_pi;
3586   case Hexagon::V6_vL32b_nt_ai:
3587     return Hexagon::V6_vL32b_nt_cur_ai;
3588   case Hexagon::V6_vL32b_ppu:
3589     return Hexagon::V6_vL32b_cur_ppu;
3590   case Hexagon::V6_vL32b_nt_ppu:
3591     return Hexagon::V6_vL32b_nt_cur_ppu;
3592   }
3593   return 0;
3594 }
3595 
3596 // Return the regular version of the .cur instruction.
3597 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
3598   switch (MI.getOpcode()) {
3599   default: llvm_unreachable("Unknown .cur type");
3600   case Hexagon::V6_vL32b_cur_pi:
3601     return Hexagon::V6_vL32b_pi;
3602   case Hexagon::V6_vL32b_cur_ai:
3603     return Hexagon::V6_vL32b_ai;
3604   case Hexagon::V6_vL32b_nt_cur_pi:
3605     return Hexagon::V6_vL32b_nt_pi;
3606   case Hexagon::V6_vL32b_nt_cur_ai:
3607     return Hexagon::V6_vL32b_nt_ai;
3608   case Hexagon::V6_vL32b_cur_ppu:
3609     return Hexagon::V6_vL32b_ppu;
3610   case Hexagon::V6_vL32b_nt_cur_ppu:
3611     return Hexagon::V6_vL32b_nt_ppu;
3612   }
3613   return 0;
3614 }
3615 
3616 // The diagram below shows the steps involved in the conversion of a predicated
3617 // store instruction to its .new predicated new-value form.
3618 //
3619 // Note: It doesn't include conditional new-value stores as they can't be
3620 // converted to .new predicate.
3621 //
3622 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3623 //                ^           ^
3624 //               /             \ (not OK. it will cause new-value store to be
3625 //              /               X conditional on p0.new while R2 producer is
3626 //             /                 \ on p0)
3627 //            /                   \.
3628 //     p.new store                 p.old NV store
3629 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
3630 //            ^                  ^
3631 //             \                /
3632 //              \              /
3633 //               \            /
3634 //                 p.old store
3635 //             [if (p0)memw(R0+#0)=R2]
3636 //
3637 // The following set of instructions further explains the scenario where
3638 // conditional new-value store becomes invalid when promoted to .new predicate
3639 // form.
3640 //
3641 // { 1) if (p0) r0 = add(r1, r2)
3642 //   2) p0 = cmp.eq(r3, #0) }
3643 //
3644 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
3645 // the first two instructions because in instr 1, r0 is conditional on old value
3646 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3647 // is not valid for new-value stores.
3648 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3649 // from the "Conditional Store" list. Because a predicated new value store
3650 // would NOT be promoted to a double dot new store. See diagram below:
3651 // This function returns yes for those stores that are predicated but not
3652 // yet promoted to predicate dot new instructions.
3653 //
3654 //                          +---------------------+
3655 //                    /-----| if (p0) memw(..)=r0 |---------\~
3656 //                   ||     +---------------------+         ||
3657 //          promote  ||       /\       /\                   ||  promote
3658 //                   ||      /||\     /||\                  ||
3659 //                  \||/    demote     ||                  \||/
3660 //                   \/       ||       ||                   \/
3661 //       +-------------------------+   ||   +-------------------------+
3662 //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
3663 //       +-------------------------+   ||   +-------------------------+
3664 //                        ||           ||         ||
3665 //                        ||         demote      \||/
3666 //                      promote        ||         \/ NOT possible
3667 //                        ||           ||         /\~
3668 //                       \||/          ||        /||\~
3669 //                        \/           ||         ||
3670 //                      +-----------------------------+
3671 //                      | if (p0.new) memw(..)=r0.new |
3672 //                      +-----------------------------+
3673 //                           Double Dot New Store
3674 //
3675 // Returns the most basic instruction for the .new predicated instructions and
3676 // new-value stores.
3677 // For example, all of the following instructions will be converted back to the
3678 // same instruction:
3679 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
3680 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
3681 // 3) if (p0.new) memw(R0+#0) = R1      --->
3682 //
3683 // To understand the translation of instruction 1 to its original form, consider
3684 // a packet with 3 instructions.
3685 // { p0 = cmp.eq(R0,R1)
3686 //   if (p0.new) R2 = add(R3, R4)
3687 //   R5 = add (R3, R1)
3688 // }
3689 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3690 //
3691 // This instruction can be part of the previous packet only if both p0 and R2
3692 // are promoted to .new values. This promotion happens in steps, first
3693 // predicate register is promoted to .new and in the next iteration R2 is
3694 // promoted. Therefore, in case of dependence check failure (due to R5) during
3695 // next iteration, it should be converted back to its most basic form.
3696 
3697 // Return the new value instruction for a given store.
3698 int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
3699   int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3700   if (NVOpcode >= 0) // Valid new-value store instruction.
3701     return NVOpcode;
3702 
3703   switch (MI.getOpcode()) {
3704   default:
3705     report_fatal_error(Twine("Unknown .new type: ") +
3706                        std::to_string(MI.getOpcode()));
3707   case Hexagon::S4_storerb_ur:
3708     return Hexagon::S4_storerbnew_ur;
3709 
3710   case Hexagon::S2_storerb_pci:
3711     return Hexagon::S2_storerb_pci;
3712 
3713   case Hexagon::S2_storeri_pci:
3714     return Hexagon::S2_storeri_pci;
3715 
3716   case Hexagon::S2_storerh_pci:
3717     return Hexagon::S2_storerh_pci;
3718 
3719   case Hexagon::S2_storerd_pci:
3720     return Hexagon::S2_storerd_pci;
3721 
3722   case Hexagon::S2_storerf_pci:
3723     return Hexagon::S2_storerf_pci;
3724 
3725   case Hexagon::V6_vS32b_ai:
3726     return Hexagon::V6_vS32b_new_ai;
3727 
3728   case Hexagon::V6_vS32b_pi:
3729     return Hexagon::V6_vS32b_new_pi;
3730   }
3731   return 0;
3732 }
3733 
3734 // Returns the opcode to use when converting MI, which is a conditional jump,
3735 // into a conditional instruction which uses the .new value of the predicate.
3736 // We also use branch probabilities to add a hint to the jump.
3737 // If MBPI is null, all edges will be treated as equally likely for the
3738 // purposes of establishing a predication hint.
3739 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
3740       const MachineBranchProbabilityInfo *MBPI) const {
3741   // We assume that block can have at most two successors.
3742   const MachineBasicBlock *Src = MI.getParent();
3743   const MachineOperand &BrTarget = MI.getOperand(1);
3744   bool Taken = false;
3745   const BranchProbability OneHalf(1, 2);
3746 
3747   auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3748                                     const MachineBasicBlock *Dst) {
3749     if (MBPI)
3750       return MBPI->getEdgeProbability(Src, Dst);
3751     return BranchProbability(1, Src->succ_size());
3752   };
3753 
3754   if (BrTarget.isMBB()) {
3755     const MachineBasicBlock *Dst = BrTarget.getMBB();
3756     Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3757   } else {
3758     // The branch target is not a basic block (most likely a function).
3759     // Since BPI only gives probabilities for targets that are basic blocks,
3760     // try to identify another target of this branch (potentially a fall-
3761     // -through) and check the probability of that target.
3762     //
3763     // The only handled branch combinations are:
3764     // - one conditional branch,
3765     // - one conditional branch followed by one unconditional branch.
3766     // Otherwise, assume not-taken.
3767     assert(MI.isConditionalBranch());
3768     const MachineBasicBlock &B = *MI.getParent();
3769     bool SawCond = false, Bad = false;
3770     for (const MachineInstr &I : B) {
3771       if (!I.isBranch())
3772         continue;
3773       if (I.isConditionalBranch()) {
3774         SawCond = true;
3775         if (&I != &MI) {
3776           Bad = true;
3777           break;
3778         }
3779       }
3780       if (I.isUnconditionalBranch() && !SawCond) {
3781         Bad = true;
3782         break;
3783       }
3784     }
3785     if (!Bad) {
3786       MachineBasicBlock::const_instr_iterator It(MI);
3787       MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3788       if (NextIt == B.instr_end()) {
3789         // If this branch is the last, look for the fall-through block.
3790         for (const MachineBasicBlock *SB : B.successors()) {
3791           if (!B.isLayoutSuccessor(SB))
3792             continue;
3793           Taken = getEdgeProbability(Src, SB) < OneHalf;
3794           break;
3795         }
3796       } else {
3797         assert(NextIt->isUnconditionalBranch());
3798         // Find the first MBB operand and assume it's the target.
3799         const MachineBasicBlock *BT = nullptr;
3800         for (const MachineOperand &Op : NextIt->operands()) {
3801           if (!Op.isMBB())
3802             continue;
3803           BT = Op.getMBB();
3804           break;
3805         }
3806         Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3807       }
3808     } // if (!Bad)
3809   }
3810 
3811   // The Taken flag should be set to something reasonable by this point.
3812 
3813   switch (MI.getOpcode()) {
3814   case Hexagon::J2_jumpt:
3815     return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3816   case Hexagon::J2_jumpf:
3817     return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3818 
3819   default:
3820     llvm_unreachable("Unexpected jump instruction.");
3821   }
3822 }
3823 
3824 // Return .new predicate version for an instruction.
3825 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
3826       const MachineBranchProbabilityInfo *MBPI) const {
3827   switch (MI.getOpcode()) {
3828   // Condtional Jumps
3829   case Hexagon::J2_jumpt:
3830   case Hexagon::J2_jumpf:
3831     return getDotNewPredJumpOp(MI, MBPI);
3832   }
3833 
3834   int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3835   if (NewOpcode >= 0)
3836     return NewOpcode;
3837   return 0;
3838 }
3839 
3840 int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
3841   int NewOp = MI.getOpcode();
3842   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3843     NewOp = Hexagon::getPredOldOpcode(NewOp);
3844     // All Hexagon architectures have prediction bits on dot-new branches,
3845     // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3846     // to pick the right opcode when converting back to dot-old.
3847     if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
3848       switch (NewOp) {
3849       case Hexagon::J2_jumptpt:
3850         NewOp = Hexagon::J2_jumpt;
3851         break;
3852       case Hexagon::J2_jumpfpt:
3853         NewOp = Hexagon::J2_jumpf;
3854         break;
3855       case Hexagon::J2_jumprtpt:
3856         NewOp = Hexagon::J2_jumprt;
3857         break;
3858       case Hexagon::J2_jumprfpt:
3859         NewOp = Hexagon::J2_jumprf;
3860         break;
3861       }
3862     }
3863     assert(NewOp >= 0 &&
3864            "Couldn't change predicate new instruction to its old form.");
3865   }
3866 
3867   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3868     NewOp = Hexagon::getNonNVStore(NewOp);
3869     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3870   }
3871 
3872   if (Subtarget.hasV60Ops())
3873     return NewOp;
3874 
3875   // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3876   switch (NewOp) {
3877   case Hexagon::J2_jumpfpt:
3878     return Hexagon::J2_jumpf;
3879   case Hexagon::J2_jumptpt:
3880     return Hexagon::J2_jumpt;
3881   case Hexagon::J2_jumprfpt:
3882     return Hexagon::J2_jumprf;
3883   case Hexagon::J2_jumprtpt:
3884     return Hexagon::J2_jumprt;
3885   }
3886   return NewOp;
3887 }
3888 
3889 // See if instruction could potentially be a duplex candidate.
3890 // If so, return its group. Zero otherwise.
3891 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3892       const MachineInstr &MI) const {
3893   Register DstReg, SrcReg, Src1Reg, Src2Reg;
3894   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3895 
3896   switch (MI.getOpcode()) {
3897   default:
3898     return HexagonII::HSIG_None;
3899   //
3900   // Group L1:
3901   //
3902   // Rd = memw(Rs+#u4:2)
3903   // Rd = memub(Rs+#u4:0)
3904   case Hexagon::L2_loadri_io:
3905   case Hexagon::dup_L2_loadri_io:
3906     DstReg = MI.getOperand(0).getReg();
3907     SrcReg = MI.getOperand(1).getReg();
3908     // Special case this one from Group L2.
3909     // Rd = memw(r29+#u5:2)
3910     if (isIntRegForSubInst(DstReg)) {
3911       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3912           HRI.getStackRegister() == SrcReg &&
3913           MI.getOperand(2).isImm() &&
3914           isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3915         return HexagonII::HSIG_L2;
3916       // Rd = memw(Rs+#u4:2)
3917       if (isIntRegForSubInst(SrcReg) &&
3918           (MI.getOperand(2).isImm() &&
3919           isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3920         return HexagonII::HSIG_L1;
3921     }
3922     break;
3923   case Hexagon::L2_loadrub_io:
3924   case Hexagon::dup_L2_loadrub_io:
3925     // Rd = memub(Rs+#u4:0)
3926     DstReg = MI.getOperand(0).getReg();
3927     SrcReg = MI.getOperand(1).getReg();
3928     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3929         MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3930       return HexagonII::HSIG_L1;
3931     break;
3932   //
3933   // Group L2:
3934   //
3935   // Rd = memh/memuh(Rs+#u3:1)
3936   // Rd = memb(Rs+#u3:0)
3937   // Rd = memw(r29+#u5:2) - Handled above.
3938   // Rdd = memd(r29+#u5:3)
3939   // deallocframe
3940   // [if ([!]p0[.new])] dealloc_return
3941   // [if ([!]p0[.new])] jumpr r31
3942   case Hexagon::L2_loadrh_io:
3943   case Hexagon::L2_loadruh_io:
3944   case Hexagon::dup_L2_loadrh_io:
3945   case Hexagon::dup_L2_loadruh_io:
3946     // Rd = memh/memuh(Rs+#u3:1)
3947     DstReg = MI.getOperand(0).getReg();
3948     SrcReg = MI.getOperand(1).getReg();
3949     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3950         MI.getOperand(2).isImm() &&
3951         isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3952       return HexagonII::HSIG_L2;
3953     break;
3954   case Hexagon::L2_loadrb_io:
3955   case Hexagon::dup_L2_loadrb_io:
3956     // Rd = memb(Rs+#u3:0)
3957     DstReg = MI.getOperand(0).getReg();
3958     SrcReg = MI.getOperand(1).getReg();
3959     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3960         MI.getOperand(2).isImm() &&
3961         isUInt<3>(MI.getOperand(2).getImm()))
3962       return HexagonII::HSIG_L2;
3963     break;
3964   case Hexagon::L2_loadrd_io:
3965   case Hexagon::dup_L2_loadrd_io:
3966     // Rdd = memd(r29+#u5:3)
3967     DstReg = MI.getOperand(0).getReg();
3968     SrcReg = MI.getOperand(1).getReg();
3969     if (isDblRegForSubInst(DstReg, HRI) &&
3970         Hexagon::IntRegsRegClass.contains(SrcReg) &&
3971         HRI.getStackRegister() == SrcReg &&
3972         MI.getOperand(2).isImm() &&
3973         isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3974       return HexagonII::HSIG_L2;
3975     break;
3976   // dealloc_return is not documented in Hexagon Manual, but marked
3977   // with A_SUBINSN attribute in iset_v4classic.py.
3978   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3979   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3980   case Hexagon::L4_return:
3981   case Hexagon::L2_deallocframe:
3982   case Hexagon::dup_L2_deallocframe:
3983     return HexagonII::HSIG_L2;
3984   case Hexagon::EH_RETURN_JMPR:
3985   case Hexagon::PS_jmpret:
3986   case Hexagon::SL2_jumpr31:
3987     // jumpr r31
3988     // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3989     DstReg = MI.getOperand(0).getReg();
3990     if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3991       return HexagonII::HSIG_L2;
3992     break;
3993   case Hexagon::PS_jmprett:
3994   case Hexagon::PS_jmpretf:
3995   case Hexagon::PS_jmprettnewpt:
3996   case Hexagon::PS_jmpretfnewpt:
3997   case Hexagon::PS_jmprettnew:
3998   case Hexagon::PS_jmpretfnew:
3999   case Hexagon::SL2_jumpr31_t:
4000   case Hexagon::SL2_jumpr31_f:
4001   case Hexagon::SL2_jumpr31_tnew:
4002   case Hexagon::SL2_jumpr31_fnew:
4003     DstReg = MI.getOperand(1).getReg();
4004     SrcReg = MI.getOperand(0).getReg();
4005     // [if ([!]p0[.new])] jumpr r31
4006     if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
4007         (Hexagon::P0 == SrcReg)) &&
4008         (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
4009       return HexagonII::HSIG_L2;
4010     break;
4011   case Hexagon::L4_return_t:
4012   case Hexagon::L4_return_f:
4013   case Hexagon::L4_return_tnew_pnt:
4014   case Hexagon::L4_return_fnew_pnt:
4015   case Hexagon::L4_return_tnew_pt:
4016   case Hexagon::L4_return_fnew_pt:
4017     // [if ([!]p0[.new])] dealloc_return
4018     SrcReg = MI.getOperand(0).getReg();
4019     if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
4020       return HexagonII::HSIG_L2;
4021     break;
4022   //
4023   // Group S1:
4024   //
4025   // memw(Rs+#u4:2) = Rt
4026   // memb(Rs+#u4:0) = Rt
4027   case Hexagon::S2_storeri_io:
4028   case Hexagon::dup_S2_storeri_io:
4029     // Special case this one from Group S2.
4030     // memw(r29+#u5:2) = Rt
4031     Src1Reg = MI.getOperand(0).getReg();
4032     Src2Reg = MI.getOperand(2).getReg();
4033     if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4034         isIntRegForSubInst(Src2Reg) &&
4035         HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4036         isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
4037       return HexagonII::HSIG_S2;
4038     // memw(Rs+#u4:2) = Rt
4039     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4040         MI.getOperand(1).isImm() &&
4041         isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
4042       return HexagonII::HSIG_S1;
4043     break;
4044   case Hexagon::S2_storerb_io:
4045   case Hexagon::dup_S2_storerb_io:
4046     // memb(Rs+#u4:0) = Rt
4047     Src1Reg = MI.getOperand(0).getReg();
4048     Src2Reg = MI.getOperand(2).getReg();
4049     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4050         MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
4051       return HexagonII::HSIG_S1;
4052     break;
4053   //
4054   // Group S2:
4055   //
4056   // memh(Rs+#u3:1) = Rt
4057   // memw(r29+#u5:2) = Rt
4058   // memd(r29+#s6:3) = Rtt
4059   // memw(Rs+#u4:2) = #U1
4060   // memb(Rs+#u4) = #U1
4061   // allocframe(#u5:3)
4062   case Hexagon::S2_storerh_io:
4063   case Hexagon::dup_S2_storerh_io:
4064     // memh(Rs+#u3:1) = Rt
4065     Src1Reg = MI.getOperand(0).getReg();
4066     Src2Reg = MI.getOperand(2).getReg();
4067     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4068         MI.getOperand(1).isImm() &&
4069         isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
4070       return HexagonII::HSIG_S1;
4071     break;
4072   case Hexagon::S2_storerd_io:
4073   case Hexagon::dup_S2_storerd_io:
4074     // memd(r29+#s6:3) = Rtt
4075     Src1Reg = MI.getOperand(0).getReg();
4076     Src2Reg = MI.getOperand(2).getReg();
4077     if (isDblRegForSubInst(Src2Reg, HRI) &&
4078         Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4079         HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4080         isShiftedInt<6,3>(MI.getOperand(1).getImm()))
4081       return HexagonII::HSIG_S2;
4082     break;
4083   case Hexagon::S4_storeiri_io:
4084   case Hexagon::dup_S4_storeiri_io:
4085     // memw(Rs+#u4:2) = #U1
4086     Src1Reg = MI.getOperand(0).getReg();
4087     if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
4088         isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
4089         MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4090       return HexagonII::HSIG_S2;
4091     break;
4092   case Hexagon::S4_storeirb_io:
4093   case Hexagon::dup_S4_storeirb_io:
4094     // memb(Rs+#u4) = #U1
4095     Src1Reg = MI.getOperand(0).getReg();
4096     if (isIntRegForSubInst(Src1Reg) &&
4097         MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
4098         MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4099       return HexagonII::HSIG_S2;
4100     break;
4101   case Hexagon::S2_allocframe:
4102   case Hexagon::dup_S2_allocframe:
4103     if (MI.getOperand(2).isImm() &&
4104         isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
4105       return HexagonII::HSIG_S1;
4106     break;
4107   //
4108   // Group A:
4109   //
4110   // Rx = add(Rx,#s7)
4111   // Rd = Rs
4112   // Rd = #u6
4113   // Rd = #-1
4114   // if ([!]P0[.new]) Rd = #0
4115   // Rd = add(r29,#u6:2)
4116   // Rx = add(Rx,Rs)
4117   // P0 = cmp.eq(Rs,#u2)
4118   // Rdd = combine(#0,Rs)
4119   // Rdd = combine(Rs,#0)
4120   // Rdd = combine(#u2,#U2)
4121   // Rd = add(Rs,#1)
4122   // Rd = add(Rs,#-1)
4123   // Rd = sxth/sxtb/zxtb/zxth(Rs)
4124   // Rd = and(Rs,#1)
4125   case Hexagon::A2_addi:
4126   case Hexagon::dup_A2_addi:
4127     DstReg = MI.getOperand(0).getReg();
4128     SrcReg = MI.getOperand(1).getReg();
4129     if (isIntRegForSubInst(DstReg)) {
4130       // Rd = add(r29,#u6:2)
4131       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
4132         HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
4133         isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
4134         return HexagonII::HSIG_A;
4135       // Rx = add(Rx,#s7)
4136       if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
4137           isInt<7>(MI.getOperand(2).getImm()))
4138         return HexagonII::HSIG_A;
4139       // Rd = add(Rs,#1)
4140       // Rd = add(Rs,#-1)
4141       if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
4142           ((MI.getOperand(2).getImm() == 1) ||
4143           (MI.getOperand(2).getImm() == -1)))
4144         return HexagonII::HSIG_A;
4145     }
4146     break;
4147   case Hexagon::A2_add:
4148   case Hexagon::dup_A2_add:
4149     // Rx = add(Rx,Rs)
4150     DstReg = MI.getOperand(0).getReg();
4151     Src1Reg = MI.getOperand(1).getReg();
4152     Src2Reg = MI.getOperand(2).getReg();
4153     if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
4154         isIntRegForSubInst(Src2Reg))
4155       return HexagonII::HSIG_A;
4156     break;
4157   case Hexagon::A2_andir:
4158   case Hexagon::dup_A2_andir:
4159     // Same as zxtb.
4160     // Rd16=and(Rs16,#255)
4161     // Rd16=and(Rs16,#1)
4162     DstReg = MI.getOperand(0).getReg();
4163     SrcReg = MI.getOperand(1).getReg();
4164     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
4165         MI.getOperand(2).isImm() &&
4166         ((MI.getOperand(2).getImm() == 1) ||
4167         (MI.getOperand(2).getImm() == 255)))
4168       return HexagonII::HSIG_A;
4169     break;
4170   case Hexagon::A2_tfr:
4171   case Hexagon::dup_A2_tfr:
4172     // Rd = Rs
4173     DstReg = MI.getOperand(0).getReg();
4174     SrcReg = MI.getOperand(1).getReg();
4175     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4176       return HexagonII::HSIG_A;
4177     break;
4178   case Hexagon::A2_tfrsi:
4179   case Hexagon::dup_A2_tfrsi:
4180     // Rd = #u6
4181     // Do not test for #u6 size since the const is getting extended
4182     // regardless and compound could be formed.
4183     // Rd = #-1
4184     DstReg = MI.getOperand(0).getReg();
4185     if (isIntRegForSubInst(DstReg))
4186       return HexagonII::HSIG_A;
4187     break;
4188   case Hexagon::C2_cmoveit:
4189   case Hexagon::C2_cmovenewit:
4190   case Hexagon::C2_cmoveif:
4191   case Hexagon::C2_cmovenewif:
4192   case Hexagon::dup_C2_cmoveit:
4193   case Hexagon::dup_C2_cmovenewit:
4194   case Hexagon::dup_C2_cmoveif:
4195   case Hexagon::dup_C2_cmovenewif:
4196     // if ([!]P0[.new]) Rd = #0
4197     // Actual form:
4198     // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
4199     DstReg = MI.getOperand(0).getReg();
4200     SrcReg = MI.getOperand(1).getReg();
4201     if (isIntRegForSubInst(DstReg) &&
4202         Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
4203         MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
4204       return HexagonII::HSIG_A;
4205     break;
4206   case Hexagon::C2_cmpeqi:
4207   case Hexagon::dup_C2_cmpeqi:
4208     // P0 = cmp.eq(Rs,#u2)
4209     DstReg = MI.getOperand(0).getReg();
4210     SrcReg = MI.getOperand(1).getReg();
4211     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
4212         Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
4213         MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
4214       return HexagonII::HSIG_A;
4215     break;
4216   case Hexagon::A2_combineii:
4217   case Hexagon::A4_combineii:
4218   case Hexagon::dup_A2_combineii:
4219   case Hexagon::dup_A4_combineii:
4220     // Rdd = combine(#u2,#U2)
4221     DstReg = MI.getOperand(0).getReg();
4222     if (isDblRegForSubInst(DstReg, HRI) &&
4223         ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
4224         (MI.getOperand(1).isGlobal() &&
4225         isUInt<2>(MI.getOperand(1).getOffset()))) &&
4226         ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
4227         (MI.getOperand(2).isGlobal() &&
4228         isUInt<2>(MI.getOperand(2).getOffset()))))
4229       return HexagonII::HSIG_A;
4230     break;
4231   case Hexagon::A4_combineri:
4232   case Hexagon::dup_A4_combineri:
4233     // Rdd = combine(Rs,#0)
4234     // Rdd = combine(Rs,#0)
4235     DstReg = MI.getOperand(0).getReg();
4236     SrcReg = MI.getOperand(1).getReg();
4237     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4238         ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
4239         (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4240       return HexagonII::HSIG_A;
4241     break;
4242   case Hexagon::A4_combineir:
4243   case Hexagon::dup_A4_combineir:
4244     // Rdd = combine(#0,Rs)
4245     DstReg = MI.getOperand(0).getReg();
4246     SrcReg = MI.getOperand(2).getReg();
4247     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4248         ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4249         (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4250       return HexagonII::HSIG_A;
4251     break;
4252   case Hexagon::A2_sxtb:
4253   case Hexagon::A2_sxth:
4254   case Hexagon::A2_zxtb:
4255   case Hexagon::A2_zxth:
4256   case Hexagon::dup_A2_sxtb:
4257   case Hexagon::dup_A2_sxth:
4258   case Hexagon::dup_A2_zxtb:
4259   case Hexagon::dup_A2_zxth:
4260     // Rd = sxth/sxtb/zxtb/zxth(Rs)
4261     DstReg = MI.getOperand(0).getReg();
4262     SrcReg = MI.getOperand(1).getReg();
4263     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4264       return HexagonII::HSIG_A;
4265     break;
4266   }
4267 
4268   return HexagonII::HSIG_None;
4269 }
4270 
4271 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
4272   return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4273 }
4274 
4275 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4276       const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4277   // Default to one cycle for no itinerary. However, an "empty" itinerary may
4278   // still have a MinLatency property, which getStageLatency checks.
4279   if (!ItinData)
4280     return getInstrLatency(ItinData, MI);
4281 
4282   if (MI.isTransient())
4283     return 0;
4284   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4285 }
4286 
4287 /// getOperandLatency - Compute and return the use operand latency of a given
4288 /// pair of def and use.
4289 /// In most cases, the static scheduling itinerary was enough to determine the
4290 /// operand latency. But it may not be possible for instructions with variable
4291 /// number of defs / uses.
4292 ///
4293 /// This is a raw interface to the itinerary that may be directly overriden by
4294 /// a target. Use computeOperandLatency to get the best estimate of latency.
4295 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4296                                         const MachineInstr &DefMI,
4297                                         unsigned DefIdx,
4298                                         const MachineInstr &UseMI,
4299                                         unsigned UseIdx) const {
4300   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4301 
4302   // Get DefIdx and UseIdx for super registers.
4303   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4304 
4305   if (DefMO.isReg() && DefMO.getReg().isPhysical()) {
4306     if (DefMO.isImplicit()) {
4307       for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
4308         int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
4309         if (Idx != -1) {
4310           DefIdx = Idx;
4311           break;
4312         }
4313       }
4314     }
4315 
4316     const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4317     if (UseMO.isImplicit()) {
4318       for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
4319         int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
4320         if (Idx != -1) {
4321           UseIdx = Idx;
4322           break;
4323         }
4324       }
4325     }
4326   }
4327 
4328   int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
4329                                                    UseMI, UseIdx);
4330   if (!Latency)
4331     // We should never have 0 cycle latency between two instructions unless
4332     // they can be packetized together. However, this decision can't be made
4333     // here.
4334     Latency = 1;
4335   return Latency;
4336 }
4337 
4338 // inverts the predication logic.
4339 // p -> NotP
4340 // NotP -> P
4341 bool HexagonInstrInfo::getInvertedPredSense(
4342       SmallVectorImpl<MachineOperand> &Cond) const {
4343   if (Cond.empty())
4344     return false;
4345   unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4346   Cond[0].setImm(Opc);
4347   return true;
4348 }
4349 
4350 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
4351   int InvPredOpcode;
4352   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4353                                         : Hexagon::getTruePredOpcode(Opc);
4354   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4355     return InvPredOpcode;
4356 
4357   llvm_unreachable("Unexpected predicated instruction");
4358 }
4359 
4360 // Returns the max value that doesn't need to be extended.
4361 int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
4362   const uint64_t F = MI.getDesc().TSFlags;
4363   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4364                     & HexagonII::ExtentSignedMask;
4365   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4366                     & HexagonII::ExtentBitsMask;
4367 
4368   if (isSigned) // if value is signed
4369     return ~(-1U << (bits - 1));
4370   else
4371     return ~(-1U << bits);
4372 }
4373 
4374 
4375 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const {
4376   switch (MI.getOpcode()) {
4377   case Hexagon::L2_loadrbgp:
4378   case Hexagon::L2_loadrdgp:
4379   case Hexagon::L2_loadrhgp:
4380   case Hexagon::L2_loadrigp:
4381   case Hexagon::L2_loadrubgp:
4382   case Hexagon::L2_loadruhgp:
4383   case Hexagon::S2_storerbgp:
4384   case Hexagon::S2_storerbnewgp:
4385   case Hexagon::S2_storerhgp:
4386   case Hexagon::S2_storerhnewgp:
4387   case Hexagon::S2_storerigp:
4388   case Hexagon::S2_storerinewgp:
4389   case Hexagon::S2_storerdgp:
4390   case Hexagon::S2_storerfgp:
4391     return true;
4392   }
4393   const uint64_t F = MI.getDesc().TSFlags;
4394   unsigned addrMode =
4395     ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
4396   // Disallow any base+offset instruction. The assembler does not yet reorder
4397   // based up any zero offset instruction.
4398   return (addrMode == HexagonII::BaseRegOffset ||
4399           addrMode == HexagonII::BaseImmOffset ||
4400           addrMode == HexagonII::BaseLongOffset);
4401 }
4402 
4403 bool HexagonInstrInfo::isPureSlot0(const MachineInstr &MI) const {
4404   // Workaround for the Global Scheduler. Sometimes, it creates
4405   // A4_ext as a Pseudo instruction and calls this function to see if
4406   // it can be added to an existing bundle. Since the instruction doesn't
4407   // belong to any BB yet, we can't use getUnits API.
4408   if (MI.getOpcode() == Hexagon::A4_ext)
4409     return false;
4410 
4411   unsigned FuncUnits = getUnits(MI);
4412   return HexagonFUnits::isSlot0Only(FuncUnits);
4413 }
4414 
4415 bool HexagonInstrInfo::isRestrictNoSlot1Store(const MachineInstr &MI) const {
4416   const uint64_t F = MI.getDesc().TSFlags;
4417   return ((F >> HexagonII::RestrictNoSlot1StorePos) &
4418           HexagonII::RestrictNoSlot1StoreMask);
4419 }
4420 
4421 void HexagonInstrInfo::changeDuplexOpcode(MachineBasicBlock::instr_iterator MII,
4422                                           bool ToBigInstrs) const {
4423   int Opcode = -1;
4424   if (ToBigInstrs) { // To BigCore Instr.
4425     // Check if the instruction can form a Duplex.
4426     if (getDuplexCandidateGroup(*MII))
4427       // Get the opcode marked "dup_*" tag.
4428       Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4429   } else // To TinyCore Instr.
4430     Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4431 
4432   // Change the opcode of the instruction.
4433   if (Opcode >= 0)
4434     MII->setDesc(get(Opcode));
4435 }
4436 
4437 // This function is used to translate instructions to facilitate generating
4438 // Duplexes on TinyCore.
4439 void HexagonInstrInfo::translateInstrsForDup(MachineFunction &MF,
4440                                              bool ToBigInstrs) const {
4441   for (auto &MB : MF)
4442     for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(),
4443                                            End = MB.instr_end();
4444          Instr != End; ++Instr)
4445       changeDuplexOpcode(Instr, ToBigInstrs);
4446 }
4447 
4448 // This is a specialized form of above function.
4449 void HexagonInstrInfo::translateInstrsForDup(
4450     MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const {
4451   MachineBasicBlock *MBB = MII->getParent();
4452   while ((MII != MBB->instr_end()) && MII->isInsideBundle()) {
4453     changeDuplexOpcode(MII, ToBigInstrs);
4454     ++MII;
4455   }
4456 }
4457 
4458 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
4459   using namespace HexagonII;
4460 
4461   const uint64_t F = MI.getDesc().TSFlags;
4462   unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4463   unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4464   if (Size != 0)
4465     return Size;
4466   // Y2_dcfetchbo is special
4467   if (MI.getOpcode() == Hexagon::Y2_dcfetchbo)
4468     return HexagonII::DoubleWordAccess;
4469 
4470   // Handle vector access sizes.
4471   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4472   switch (S) {
4473     case HexagonII::HVXVectorAccess:
4474       return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4475     default:
4476       llvm_unreachable("Unexpected instruction");
4477   }
4478 }
4479 
4480 // Returns the min value that doesn't need to be extended.
4481 int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
4482   const uint64_t F = MI.getDesc().TSFlags;
4483   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4484                     & HexagonII::ExtentSignedMask;
4485   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
4486                     & HexagonII::ExtentBitsMask;
4487 
4488   if (isSigned) // if value is signed
4489     return -1U << (bits - 1);
4490   else
4491     return 0;
4492 }
4493 
4494 // Returns opcode of the non-extended equivalent instruction.
4495 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
4496   // Check if the instruction has a register form that uses register in place
4497   // of the extended operand, if so return that as the non-extended form.
4498   short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4499     if (NonExtOpcode >= 0)
4500       return NonExtOpcode;
4501 
4502   if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4503     // Check addressing mode and retrieve non-ext equivalent instruction.
4504     switch (getAddrMode(MI)) {
4505     case HexagonII::Absolute:
4506       return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4507     case HexagonII::BaseImmOffset:
4508       return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4509     case HexagonII::BaseLongOffset:
4510       return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4511 
4512     default:
4513       return -1;
4514     }
4515   }
4516   return -1;
4517 }
4518 
4519 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
4520       Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4521   if (Cond.empty())
4522     return false;
4523   assert(Cond.size() == 2);
4524   if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4525     LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4526     return false;
4527   }
4528   PredReg = Cond[1].getReg();
4529   PredRegPos = 1;
4530   // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4531   PredRegFlags = 0;
4532   if (Cond[1].isImplicit())
4533     PredRegFlags = RegState::Implicit;
4534   if (Cond[1].isUndef())
4535     PredRegFlags |= RegState::Undef;
4536   return true;
4537 }
4538 
4539 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
4540   return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4541 }
4542 
4543 short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
4544   return Hexagon::getRegForm(MI.getOpcode());
4545 }
4546 
4547 // Return the number of bytes required to encode the instruction.
4548 // Hexagon instructions are fixed length, 4 bytes, unless they
4549 // use a constant extender, which requires another 4 bytes.
4550 // For debug instructions and prolog labels, return 0.
4551 unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
4552   if (MI.isDebugInstr() || MI.isPosition())
4553     return 0;
4554 
4555   unsigned Size = MI.getDesc().getSize();
4556   if (!Size)
4557     // Assume the default insn size in case it cannot be determined
4558     // for whatever reason.
4559     Size = HEXAGON_INSTR_SIZE;
4560 
4561   if (isConstExtended(MI) || isExtended(MI))
4562     Size += HEXAGON_INSTR_SIZE;
4563 
4564   // Try and compute number of instructions in asm.
4565   if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4566     const MachineBasicBlock &MBB = *MI.getParent();
4567     const MachineFunction *MF = MBB.getParent();
4568     const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4569 
4570     // Count the number of register definitions to find the asm string.
4571     unsigned NumDefs = 0;
4572     for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4573          ++NumDefs)
4574       assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4575 
4576     assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4577     // Disassemble the AsmStr and approximate number of instructions.
4578     const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4579     Size = getInlineAsmLength(AsmStr, *MAI);
4580   }
4581 
4582   return Size;
4583 }
4584 
4585 uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
4586   const uint64_t F = MI.getDesc().TSFlags;
4587   return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
4588 }
4589 
4590 InstrStage::FuncUnits HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
4591   const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4592   const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4593 
4594   return IS.getUnits();
4595 }
4596 
4597 // Calculate size of the basic block without debug instructions.
4598 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
4599   return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4600 }
4601 
4602 unsigned HexagonInstrInfo::nonDbgBundleSize(
4603       MachineBasicBlock::const_iterator BundleHead) const {
4604   assert(BundleHead->isBundle() && "Not a bundle header");
4605   auto MII = BundleHead.getInstrIterator();
4606   // Skip the bundle header.
4607   return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4608 }
4609 
4610 /// immediateExtend - Changes the instruction in place to one using an immediate
4611 /// extender.
4612 void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
4613   assert((isExtendable(MI)||isConstExtended(MI)) &&
4614                                "Instruction must be extendable");
4615   // Find which operand is extendable.
4616   short ExtOpNum = getCExtOpNum(MI);
4617   MachineOperand &MO = MI.getOperand(ExtOpNum);
4618   // This needs to be something we understand.
4619   assert((MO.isMBB() || MO.isImm()) &&
4620          "Branch with unknown extendable field type");
4621   // Mark given operand as extended.
4622   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
4623 }
4624 
4625 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4626       MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4627   LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4628                     << printMBBReference(*NewTarget);
4629              MI.dump(););
4630   assert(MI.isBranch());
4631   unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4632   int TargetPos = MI.getNumOperands() - 1;
4633   // In general branch target is the last operand,
4634   // but some implicit defs added at the end might change it.
4635   while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4636     --TargetPos;
4637   assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4638   MI.getOperand(TargetPos).setMBB(NewTarget);
4639   if (EnableBranchPrediction && isPredicatedNew(MI)) {
4640     NewOpcode = reversePrediction(NewOpcode);
4641   }
4642   MI.setDesc(get(NewOpcode));
4643   return true;
4644 }
4645 
4646 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
4647   /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4648   MachineFunction::iterator A = MF.begin();
4649   MachineBasicBlock &B = *A;
4650   MachineBasicBlock::iterator I = B.begin();
4651   DebugLoc DL = I->getDebugLoc();
4652   MachineInstr *NewMI;
4653 
4654   for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4655        insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4656     NewMI = BuildMI(B, I, DL, get(insn));
4657     LLVM_DEBUG(dbgs() << "\n"
4658                       << getName(NewMI->getOpcode())
4659                       << "  Class: " << NewMI->getDesc().getSchedClass());
4660     NewMI->eraseFromParent();
4661   }
4662   /* --- The code above is used to generate complete set of Hexagon Insn --- */
4663 }
4664 
4665 // inverts the predication logic.
4666 // p -> NotP
4667 // NotP -> P
4668 bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
4669   LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4670   MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4671   return true;
4672 }
4673 
4674 // Reverse the branch prediction.
4675 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4676   int PredRevOpcode = -1;
4677   if (isPredictedTaken(Opcode))
4678     PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4679   else
4680     PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4681   assert(PredRevOpcode > 0);
4682   return PredRevOpcode;
4683 }
4684 
4685 // TODO: Add more rigorous validation.
4686 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
4687       const {
4688   return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4689 }
4690 
4691 void HexagonInstrInfo::
4692 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const {
4693   assert(MIB->isBundle());
4694   MachineOperand &Operand = MIB->getOperand(0);
4695   if (Operand.isImm())
4696     Operand.setImm(Operand.getImm() | memShufDisabledMask);
4697   else
4698     MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4699 }
4700 
4701 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const {
4702   assert(MIB.isBundle());
4703   const MachineOperand &Operand = MIB.getOperand(0);
4704   return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4705 }
4706 
4707 // Addressing mode relations.
4708 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
4709   return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4710 }
4711 
4712 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
4713   return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4714 }
4715 
4716 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const {
4717   return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4718 }
4719 
4720 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
4721   return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4722 }
4723 
4724 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const {
4725   return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4726 }
4727 
4728 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
4729   return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4730 }
4731 
4732 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
4733   return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4734 }
4735 
4736 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
4737   return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
4738 }
4739 
4740 MCInst HexagonInstrInfo::getNop() const {
4741   static const MCInst Nop = MCInstBuilder(Hexagon::A2_nop);
4742 
4743   return MCInstBuilder(Hexagon::BUNDLE)
4744     .addImm(0)
4745     .addInst(&Nop);
4746 }
4747