1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a simple VLIW packetizer using DFA. The packetizer works on
10 // machine basic blocks. For each instruction I in BB, the packetizer consults
11 // the DFA to see if machine resources are available to execute I. If so, the
12 // packetizer checks if I depends on any instruction J in the current packet.
13 // If no dependency is found, I is added to current packet and machine resource
14 // is marked as taken. If any dependency is found, a target API call is made to
15 // prune the dependence.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "HexagonVLIWPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonInstrInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "packets"
57 
58 static cl::opt<bool>
59     DisablePacketizer("disable-packetizer", cl::Hidden,
60                       cl::desc("Disable Hexagon packetizer pass"));
61 
62 static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
63                                 cl::init(true),
64                                 cl::desc("Allow slot1 store and slot0 load"));
65 
66 static cl::opt<bool> PacketizeVolatiles(
67     "hexagon-packetize-volatiles", cl::Hidden, cl::init(true),
68     cl::desc("Allow non-solo packetization of volatile memory references"));
69 
70 static cl::opt<bool>
71     EnableGenAllInsnClass("enable-gen-insn", cl::Hidden,
72                           cl::desc("Generate all instruction with TC"));
73 
74 static cl::opt<bool>
75     DisableVecDblNVStores("disable-vecdbl-nv-stores", cl::Hidden,
76                           cl::desc("Disable vector double new-value-stores"));
77 
78 extern cl::opt<bool> ScheduleInlineAsm;
79 
80 namespace llvm {
81 
82 FunctionPass *createHexagonPacketizer(bool Minimal);
83 void initializeHexagonPacketizerPass(PassRegistry&);
84 
85 } // end namespace llvm
86 
87 namespace {
88 
89   class HexagonPacketizer : public MachineFunctionPass {
90   public:
91     static char ID;
92 
93     HexagonPacketizer(bool Min = false)
94       : MachineFunctionPass(ID), Minimal(Min) {}
95 
96     void getAnalysisUsage(AnalysisUsage &AU) const override {
97       AU.setPreservesCFG();
98       AU.addRequired<AAResultsWrapperPass>();
99       AU.addRequired<MachineBranchProbabilityInfo>();
100       AU.addRequired<MachineDominatorTree>();
101       AU.addRequired<MachineLoopInfo>();
102       AU.addPreserved<MachineDominatorTree>();
103       AU.addPreserved<MachineLoopInfo>();
104       MachineFunctionPass::getAnalysisUsage(AU);
105     }
106 
107     StringRef getPassName() const override { return "Hexagon Packetizer"; }
108     bool runOnMachineFunction(MachineFunction &Fn) override;
109 
110     MachineFunctionProperties getRequiredProperties() const override {
111       return MachineFunctionProperties().set(
112           MachineFunctionProperties::Property::NoVRegs);
113     }
114 
115   private:
116     const HexagonInstrInfo *HII = nullptr;
117     const HexagonRegisterInfo *HRI = nullptr;
118     const bool Minimal = false;
119   };
120 
121 } // end anonymous namespace
122 
123 char HexagonPacketizer::ID = 0;
124 
125 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
126                       "Hexagon Packetizer", false, false)
127 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
128 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
129 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
130 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
131 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
132                     "Hexagon Packetizer", false, false)
133 
134 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
135       MachineLoopInfo &MLI, AAResults *AA,
136       const MachineBranchProbabilityInfo *MBPI, bool Minimal)
137     : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
138       Minimal(Minimal) {
139   HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
140   HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
141 
142   addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
143   addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
144   addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
145 }
146 
147 // Check if FirstI modifies a register that SecondI reads.
148 static bool hasWriteToReadDep(const MachineInstr &FirstI,
149                               const MachineInstr &SecondI,
150                               const TargetRegisterInfo *TRI) {
151   for (auto &MO : FirstI.operands()) {
152     if (!MO.isReg() || !MO.isDef())
153       continue;
154     Register R = MO.getReg();
155     if (SecondI.readsRegister(R, TRI))
156       return true;
157   }
158   return false;
159 }
160 
161 
162 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
163       MachineBasicBlock::iterator BundleIt, bool Before) {
164   MachineBasicBlock::instr_iterator InsertPt;
165   if (Before)
166     InsertPt = BundleIt.getInstrIterator();
167   else
168     InsertPt = std::next(BundleIt).getInstrIterator();
169 
170   MachineBasicBlock &B = *MI.getParent();
171   // The instruction should at least be bundled with the preceding instruction
172   // (there will always be one, i.e. BUNDLE, if nothing else).
173   assert(MI.isBundledWithPred());
174   if (MI.isBundledWithSucc()) {
175     MI.clearFlag(MachineInstr::BundledSucc);
176     MI.clearFlag(MachineInstr::BundledPred);
177   } else {
178     // If it's not bundled with the successor (i.e. it is the last one
179     // in the bundle), then we can simply unbundle it from the predecessor,
180     // which will take care of updating the predecessor's flag.
181     MI.unbundleFromPred();
182   }
183   B.splice(InsertPt, &B, MI.getIterator());
184 
185   // Get the size of the bundle without asserting.
186   MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
187   MachineBasicBlock::const_instr_iterator E = B.instr_end();
188   unsigned Size = 0;
189   for (++I; I != E && I->isBundledWithPred(); ++I)
190     ++Size;
191 
192   // If there are still two or more instructions, then there is nothing
193   // else to be done.
194   if (Size > 1)
195     return BundleIt;
196 
197   // Otherwise, extract the single instruction out and delete the bundle.
198   MachineBasicBlock::iterator NextIt = std::next(BundleIt);
199   MachineInstr &SingleI = *BundleIt->getNextNode();
200   SingleI.unbundleFromPred();
201   assert(!SingleI.isBundledWithSucc());
202   BundleIt->eraseFromParent();
203   return NextIt;
204 }
205 
206 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
207   // FIXME: This pass causes verification failures.
208   MF.getProperties().set(
209       MachineFunctionProperties::Property::FailsVerification);
210 
211   auto &HST = MF.getSubtarget<HexagonSubtarget>();
212   HII = HST.getInstrInfo();
213   HRI = HST.getRegisterInfo();
214   auto &MLI = getAnalysis<MachineLoopInfo>();
215   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
216   auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
217 
218   if (EnableGenAllInsnClass)
219     HII->genAllInsnTimingClasses(MF);
220 
221   // Instantiate the packetizer.
222   bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
223                  skipFunction(MF.getFunction());
224   HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
225 
226   // DFA state table should not be empty.
227   assert(Packetizer.getResourceTracker() && "Empty DFA table!");
228 
229   // Loop over all basic blocks and remove KILL pseudo-instructions
230   // These instructions confuse the dependence analysis. Consider:
231   // D0 = ...   (Insn 0)
232   // R0 = KILL R0, D0 (Insn 1)
233   // R0 = ... (Insn 2)
234   // Here, Insn 1 will result in the dependence graph not emitting an output
235   // dependence between Insn 0 and Insn 2. This can lead to incorrect
236   // packetization
237   for (MachineBasicBlock &MB : MF) {
238     for (MachineInstr &MI : llvm::make_early_inc_range(MB))
239       if (MI.isKill())
240         MB.erase(&MI);
241   }
242 
243   // TinyCore with Duplexes: Translate to big-instructions.
244   if (HST.isTinyCoreWithDuplex())
245     HII->translateInstrsForDup(MF, true);
246 
247   // Loop over all of the basic blocks.
248   for (auto &MB : MF) {
249     auto Begin = MB.begin(), End = MB.end();
250     while (Begin != End) {
251       // Find the first non-boundary starting from the end of the last
252       // scheduling region.
253       MachineBasicBlock::iterator RB = Begin;
254       while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
255         ++RB;
256       // Find the first boundary starting from the beginning of the new
257       // region.
258       MachineBasicBlock::iterator RE = RB;
259       while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
260         ++RE;
261       // Add the scheduling boundary if it's not block end.
262       if (RE != End)
263         ++RE;
264       // If RB == End, then RE == End.
265       if (RB != End)
266         Packetizer.PacketizeMIs(&MB, RB, RE);
267 
268       Begin = RE;
269     }
270   }
271 
272   // TinyCore with Duplexes: Translate to tiny-instructions.
273   if (HST.isTinyCoreWithDuplex())
274     HII->translateInstrsForDup(MF, false);
275 
276   Packetizer.unpacketizeSoloInstrs(MF);
277   return true;
278 }
279 
280 // Reserve resources for a constant extender. Trigger an assertion if the
281 // reservation fails.
282 void HexagonPacketizerList::reserveResourcesForConstExt() {
283   if (!tryAllocateResourcesForConstExt(true))
284     llvm_unreachable("Resources not available");
285 }
286 
287 bool HexagonPacketizerList::canReserveResourcesForConstExt() {
288   return tryAllocateResourcesForConstExt(false);
289 }
290 
291 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
292 // return true, otherwise, return false.
293 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
294   auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
295   bool Avail = ResourceTracker->canReserveResources(*ExtMI);
296   if (Reserve && Avail)
297     ResourceTracker->reserveResources(*ExtMI);
298   MF.deleteMachineInstr(ExtMI);
299   return Avail;
300 }
301 
302 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
303       SDep::Kind DepType, unsigned DepReg) {
304   // Check for LR dependence.
305   if (DepReg == HRI->getRARegister())
306     return true;
307 
308   if (HII->isDeallocRet(MI))
309     if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
310       return true;
311 
312   // Call-like instructions can be packetized with preceding instructions
313   // that define registers implicitly used or modified by the call. Explicit
314   // uses are still prohibited, as in the case of indirect calls:
315   //   r0 = ...
316   //   J2_jumpr r0
317   if (DepType == SDep::Data) {
318     for (const MachineOperand &MO : MI.operands())
319       if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
320         return true;
321   }
322 
323   return false;
324 }
325 
326 static bool isRegDependence(const SDep::Kind DepType) {
327   return DepType == SDep::Data || DepType == SDep::Anti ||
328          DepType == SDep::Output;
329 }
330 
331 static bool isDirectJump(const MachineInstr &MI) {
332   return MI.getOpcode() == Hexagon::J2_jump;
333 }
334 
335 static bool isSchedBarrier(const MachineInstr &MI) {
336   switch (MI.getOpcode()) {
337   case Hexagon::Y2_barrier:
338     return true;
339   }
340   return false;
341 }
342 
343 static bool isControlFlow(const MachineInstr &MI) {
344   return MI.getDesc().isTerminator() || MI.getDesc().isCall();
345 }
346 
347 /// Returns true if the instruction modifies a callee-saved register.
348 static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
349                                      const TargetRegisterInfo *TRI) {
350   const MachineFunction &MF = *MI.getParent()->getParent();
351   for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
352     if (MI.modifiesRegister(*CSR, TRI))
353       return true;
354   return false;
355 }
356 
357 // Returns true if an instruction can be promoted to .new predicate or
358 // new-value store.
359 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
360       const TargetRegisterClass *NewRC) {
361   // Vector stores can be predicated, and can be new-value stores, but
362   // they cannot be predicated on a .new predicate value.
363   if (NewRC == &Hexagon::PredRegsRegClass) {
364     if (HII->isHVXVec(MI) && MI.mayStore())
365       return false;
366     return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
367   }
368   // If the class is not PredRegs, it could only apply to new-value stores.
369   return HII->mayBeNewStore(MI);
370 }
371 
372 // Promote an instructiont to its .cur form.
373 // At this time, we have already made a call to canPromoteToDotCur and made
374 // sure that it can *indeed* be promoted.
375 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
376       SDep::Kind DepType, MachineBasicBlock::iterator &MII,
377       const TargetRegisterClass* RC) {
378   assert(DepType == SDep::Data);
379   int CurOpcode = HII->getDotCurOp(MI);
380   MI.setDesc(HII->get(CurOpcode));
381   return true;
382 }
383 
384 void HexagonPacketizerList::cleanUpDotCur() {
385   MachineInstr *MI = nullptr;
386   for (auto *BI : CurrentPacketMIs) {
387     LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
388     if (HII->isDotCurInst(*BI)) {
389       MI = BI;
390       continue;
391     }
392     if (MI) {
393       for (auto &MO : BI->operands())
394         if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
395           return;
396     }
397   }
398   if (!MI)
399     return;
400   // We did not find a use of the CUR, so de-cur it.
401   MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
402   LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
403 }
404 
405 // Check to see if an instruction can be dot cur.
406 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
407       const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
408       const TargetRegisterClass *RC) {
409   if (!HII->isHVXVec(MI))
410     return false;
411   if (!HII->isHVXVec(*MII))
412     return false;
413 
414   // Already a dot new instruction.
415   if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
416     return false;
417 
418   if (!HII->mayBeCurLoad(MI))
419     return false;
420 
421   // The "cur value" cannot come from inline asm.
422   if (PacketSU->getInstr()->isInlineAsm())
423     return false;
424 
425   // Make sure candidate instruction uses cur.
426   LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
427              dbgs() << "in packet\n";);
428   MachineInstr &MJ = *MII;
429   LLVM_DEBUG({
430     dbgs() << "Checking CUR against ";
431     MJ.dump();
432   });
433   Register DestReg = MI.getOperand(0).getReg();
434   bool FoundMatch = false;
435   for (auto &MO : MJ.operands())
436     if (MO.isReg() && MO.getReg() == DestReg)
437       FoundMatch = true;
438   if (!FoundMatch)
439     return false;
440 
441   // Check for existing uses of a vector register within the packet which
442   // would be affected by converting a vector load into .cur formt.
443   for (auto *BI : CurrentPacketMIs) {
444     LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
445     if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
446       return false;
447   }
448 
449   LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
450   // We can convert the opcode into a .cur.
451   return true;
452 }
453 
454 // Promote an instruction to its .new form. At this time, we have already
455 // made a call to canPromoteToDotNew and made sure that it can *indeed* be
456 // promoted.
457 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
458       SDep::Kind DepType, MachineBasicBlock::iterator &MII,
459       const TargetRegisterClass* RC) {
460   assert(DepType == SDep::Data);
461   int NewOpcode;
462   if (RC == &Hexagon::PredRegsRegClass)
463     NewOpcode = HII->getDotNewPredOp(MI, MBPI);
464   else
465     NewOpcode = HII->getDotNewOp(MI);
466   MI.setDesc(HII->get(NewOpcode));
467   return true;
468 }
469 
470 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
471   int NewOpcode = HII->getDotOldOp(MI);
472   MI.setDesc(HII->get(NewOpcode));
473   return true;
474 }
475 
476 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
477   unsigned Opc = MI.getOpcode();
478   switch (Opc) {
479     case Hexagon::S2_storerd_io:
480     case Hexagon::S2_storeri_io:
481     case Hexagon::S2_storerh_io:
482     case Hexagon::S2_storerb_io:
483       break;
484     default:
485       llvm_unreachable("Unexpected instruction");
486   }
487   unsigned FrameSize = MF.getFrameInfo().getStackSize();
488   MachineOperand &Off = MI.getOperand(1);
489   int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
490   if (HII->isValidOffset(Opc, NewOff, HRI)) {
491     Off.setImm(NewOff);
492     return true;
493   }
494   return false;
495 }
496 
497 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
498   unsigned Opc = MI.getOpcode();
499   switch (Opc) {
500     case Hexagon::S2_storerd_io:
501     case Hexagon::S2_storeri_io:
502     case Hexagon::S2_storerh_io:
503     case Hexagon::S2_storerb_io:
504       break;
505     default:
506       llvm_unreachable("Unexpected instruction");
507   }
508   unsigned FrameSize = MF.getFrameInfo().getStackSize();
509   MachineOperand &Off = MI.getOperand(1);
510   Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
511 }
512 
513 /// Return true if we can update the offset in MI so that MI and MJ
514 /// can be packetized together.
515 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
516   assert(SUI->getInstr() && SUJ->getInstr());
517   MachineInstr &MI = *SUI->getInstr();
518   MachineInstr &MJ = *SUJ->getInstr();
519 
520   unsigned BPI, OPI;
521   if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
522     return false;
523   unsigned BPJ, OPJ;
524   if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
525     return false;
526   Register Reg = MI.getOperand(BPI).getReg();
527   if (Reg != MJ.getOperand(BPJ).getReg())
528     return false;
529   // Make sure that the dependences do not restrict adding MI to the packet.
530   // That is, ignore anti dependences, and make sure the only data dependence
531   // involves the specific register.
532   for (const auto &PI : SUI->Preds)
533     if (PI.getKind() != SDep::Anti &&
534         (PI.getKind() != SDep::Data || PI.getReg() != Reg))
535       return false;
536   int Incr;
537   if (!HII->getIncrementValue(MJ, Incr))
538     return false;
539 
540   int64_t Offset = MI.getOperand(OPI).getImm();
541   if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
542     return false;
543 
544   MI.getOperand(OPI).setImm(Offset + Incr);
545   ChangedOffset = Offset;
546   return true;
547 }
548 
549 /// Undo the changed offset. This is needed if the instruction cannot be
550 /// added to the current packet due to a different instruction.
551 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
552   unsigned BP, OP;
553   if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
554     llvm_unreachable("Unable to find base and offset operands.");
555   MI.getOperand(OP).setImm(ChangedOffset);
556 }
557 
558 enum PredicateKind {
559   PK_False,
560   PK_True,
561   PK_Unknown
562 };
563 
564 /// Returns true if an instruction is predicated on p0 and false if it's
565 /// predicated on !p0.
566 static PredicateKind getPredicateSense(const MachineInstr &MI,
567                                        const HexagonInstrInfo *HII) {
568   if (!HII->isPredicated(MI))
569     return PK_Unknown;
570   if (HII->isPredicatedTrue(MI))
571     return PK_True;
572   return PK_False;
573 }
574 
575 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
576       const HexagonInstrInfo *HII) {
577   assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
578 #ifndef NDEBUG
579   // Post Increment means duplicates. Use dense map to find duplicates in the
580   // list. Caution: Densemap initializes with the minimum of 64 buckets,
581   // whereas there are at most 5 operands in the post increment.
582   DenseSet<unsigned> DefRegsSet;
583   for (auto &MO : MI.operands())
584     if (MO.isReg() && MO.isDef())
585       DefRegsSet.insert(MO.getReg());
586 
587   for (auto &MO : MI.operands())
588     if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
589       return MO;
590 #else
591   if (MI.mayLoad()) {
592     const MachineOperand &Op1 = MI.getOperand(1);
593     // The 2nd operand is always the post increment operand in load.
594     assert(Op1.isReg() && "Post increment operand has be to a register.");
595     return Op1;
596   }
597   if (MI.getDesc().mayStore()) {
598     const MachineOperand &Op0 = MI.getOperand(0);
599     // The 1st operand is always the post increment operand in store.
600     assert(Op0.isReg() && "Post increment operand has be to a register.");
601     return Op0;
602   }
603 #endif
604   // we should never come here.
605   llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
606 }
607 
608 // Get the value being stored.
609 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
610   // value being stored is always the last operand.
611   return MI.getOperand(MI.getNumOperands()-1);
612 }
613 
614 static bool isLoadAbsSet(const MachineInstr &MI) {
615   unsigned Opc = MI.getOpcode();
616   switch (Opc) {
617     case Hexagon::L4_loadrd_ap:
618     case Hexagon::L4_loadrb_ap:
619     case Hexagon::L4_loadrh_ap:
620     case Hexagon::L4_loadrub_ap:
621     case Hexagon::L4_loadruh_ap:
622     case Hexagon::L4_loadri_ap:
623       return true;
624   }
625   return false;
626 }
627 
628 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
629   assert(isLoadAbsSet(MI));
630   return MI.getOperand(1);
631 }
632 
633 // Can be new value store?
634 // Following restrictions are to be respected in convert a store into
635 // a new value store.
636 // 1. If an instruction uses auto-increment, its address register cannot
637 //    be a new-value register. Arch Spec 5.4.2.1
638 // 2. If an instruction uses absolute-set addressing mode, its address
639 //    register cannot be a new-value register. Arch Spec 5.4.2.1.
640 // 3. If an instruction produces a 64-bit result, its registers cannot be used
641 //    as new-value registers. Arch Spec 5.4.2.2.
642 // 4. If the instruction that sets the new-value register is conditional, then
643 //    the instruction that uses the new-value register must also be conditional,
644 //    and both must always have their predicates evaluate identically.
645 //    Arch Spec 5.4.2.3.
646 // 5. There is an implied restriction that a packet cannot have another store,
647 //    if there is a new value store in the packet. Corollary: if there is
648 //    already a store in a packet, there can not be a new value store.
649 //    Arch Spec: 3.4.4.2
650 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
651       const MachineInstr &PacketMI, unsigned DepReg) {
652   // Make sure we are looking at the store, that can be promoted.
653   if (!HII->mayBeNewStore(MI))
654     return false;
655 
656   // Make sure there is dependency and can be new value'd.
657   const MachineOperand &Val = getStoreValueOperand(MI);
658   if (Val.isReg() && Val.getReg() != DepReg)
659     return false;
660 
661   const MCInstrDesc& MCID = PacketMI.getDesc();
662 
663   // First operand is always the result.
664   const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
665   // Double regs can not feed into new value store: PRM section: 5.4.2.2.
666   if (PacketRC == &Hexagon::DoubleRegsRegClass)
667     return false;
668 
669   // New-value stores are of class NV (slot 0), dual stores require class ST
670   // in slot 0 (PRM 5.5).
671   for (auto *I : CurrentPacketMIs) {
672     SUnit *PacketSU = MIToSUnit.find(I)->second;
673     if (PacketSU->getInstr()->mayStore())
674       return false;
675   }
676 
677   // Make sure it's NOT the post increment register that we are going to
678   // new value.
679   if (HII->isPostIncrement(MI) &&
680       getPostIncrementOperand(MI, HII).getReg() == DepReg) {
681     return false;
682   }
683 
684   if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
685       getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
686     // If source is post_inc, or absolute-set addressing, it can not feed
687     // into new value store
688     //   r3 = memw(r2++#4)
689     //   memw(r30 + #-1404) = r2.new -> can not be new value store
690     // arch spec section: 5.4.2.1.
691     return false;
692   }
693 
694   if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
695     return false;
696 
697   // If the source that feeds the store is predicated, new value store must
698   // also be predicated.
699   if (HII->isPredicated(PacketMI)) {
700     if (!HII->isPredicated(MI))
701       return false;
702 
703     // Check to make sure that they both will have their predicates
704     // evaluate identically.
705     unsigned predRegNumSrc = 0;
706     unsigned predRegNumDst = 0;
707     const TargetRegisterClass* predRegClass = nullptr;
708 
709     // Get predicate register used in the source instruction.
710     for (auto &MO : PacketMI.operands()) {
711       if (!MO.isReg())
712         continue;
713       predRegNumSrc = MO.getReg();
714       predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
715       if (predRegClass == &Hexagon::PredRegsRegClass)
716         break;
717     }
718     assert((predRegClass == &Hexagon::PredRegsRegClass) &&
719         "predicate register not found in a predicated PacketMI instruction");
720 
721     // Get predicate register used in new-value store instruction.
722     for (auto &MO : MI.operands()) {
723       if (!MO.isReg())
724         continue;
725       predRegNumDst = MO.getReg();
726       predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
727       if (predRegClass == &Hexagon::PredRegsRegClass)
728         break;
729     }
730     assert((predRegClass == &Hexagon::PredRegsRegClass) &&
731            "predicate register not found in a predicated MI instruction");
732 
733     // New-value register producer and user (store) need to satisfy these
734     // constraints:
735     // 1) Both instructions should be predicated on the same register.
736     // 2) If producer of the new-value register is .new predicated then store
737     // should also be .new predicated and if producer is not .new predicated
738     // then store should not be .new predicated.
739     // 3) Both new-value register producer and user should have same predicate
740     // sense, i.e, either both should be negated or both should be non-negated.
741     if (predRegNumDst != predRegNumSrc ||
742         HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
743         getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
744       return false;
745   }
746 
747   // Make sure that other than the new-value register no other store instruction
748   // register has been modified in the same packet. Predicate registers can be
749   // modified by they should not be modified between the producer and the store
750   // instruction as it will make them both conditional on different values.
751   // We already know this to be true for all the instructions before and
752   // including PacketMI. Howerver, we need to perform the check for the
753   // remaining instructions in the packet.
754 
755   unsigned StartCheck = 0;
756 
757   for (auto *I : CurrentPacketMIs) {
758     SUnit *TempSU = MIToSUnit.find(I)->second;
759     MachineInstr &TempMI = *TempSU->getInstr();
760 
761     // Following condition is true for all the instructions until PacketMI is
762     // reached (StartCheck is set to 0 before the for loop).
763     // StartCheck flag is 1 for all the instructions after PacketMI.
764     if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
765       continue;                              // encountering PacketMI.
766 
767     StartCheck = 1;
768     if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
769       continue;
770 
771     for (auto &MO : MI.operands())
772       if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
773         return false;
774   }
775 
776   // Make sure that for non-POST_INC stores:
777   // 1. The only use of reg is DepReg and no other registers.
778   //    This handles base+index registers.
779   //    The following store can not be dot new.
780   //    Eg.   r0 = add(r0, #3)
781   //          memw(r1+r0<<#2) = r0
782   if (!HII->isPostIncrement(MI)) {
783     for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
784       const MachineOperand &MO = MI.getOperand(opNum);
785       if (MO.isReg() && MO.getReg() == DepReg)
786         return false;
787     }
788   }
789 
790   // If data definition is because of implicit definition of the register,
791   // do not newify the store. Eg.
792   // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
793   // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
794   for (auto &MO : PacketMI.operands()) {
795     if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
796       return false;
797     if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
798       continue;
799     Register R = MO.getReg();
800     if (R == DepReg || HRI->isSuperRegister(DepReg, R))
801       return false;
802   }
803 
804   // Handle imp-use of super reg case. There is a target independent side
805   // change that should prevent this situation but I am handling it for
806   // just-in-case. For example, we cannot newify R2 in the following case:
807   // %r3 = A2_tfrsi 0;
808   // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
809   for (auto &MO : MI.operands()) {
810     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
811       return false;
812   }
813 
814   // Can be dot new store.
815   return true;
816 }
817 
818 // Can this MI to promoted to either new value store or new value jump.
819 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
820       const SUnit *PacketSU, unsigned DepReg,
821       MachineBasicBlock::iterator &MII) {
822   if (!HII->mayBeNewStore(MI))
823     return false;
824 
825   // Check to see the store can be new value'ed.
826   MachineInstr &PacketMI = *PacketSU->getInstr();
827   if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
828     return true;
829 
830   // Check to see the compare/jump can be new value'ed.
831   // This is done as a pass on its own. Don't need to check it here.
832   return false;
833 }
834 
835 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
836       unsigned DepReg) {
837   for (auto &MO : I.operands()) {
838     if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
839       return true;
840     if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
841       continue;
842     if (CheckDef == MO.isDef())
843       return true;
844   }
845   return false;
846 }
847 
848 // Check to see if an instruction can be dot new.
849 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
850       const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
851       const TargetRegisterClass* RC) {
852   // Already a dot new instruction.
853   if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
854     return false;
855 
856   if (!isNewifiable(MI, RC))
857     return false;
858 
859   const MachineInstr &PI = *PacketSU->getInstr();
860 
861   // The "new value" cannot come from inline asm.
862   if (PI.isInlineAsm())
863     return false;
864 
865   // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
866   // sense.
867   if (PI.isImplicitDef())
868     return false;
869 
870   // If dependency is trough an implicitly defined register, we should not
871   // newify the use.
872   if (isImplicitDependency(PI, true, DepReg) ||
873       isImplicitDependency(MI, false, DepReg))
874     return false;
875 
876   const MCInstrDesc& MCID = PI.getDesc();
877   const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
878   if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
879     return false;
880 
881   // predicate .new
882   if (RC == &Hexagon::PredRegsRegClass)
883     return HII->predCanBeUsedAsDotNew(PI, DepReg);
884 
885   if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
886     return false;
887 
888   // Create a dot new machine instruction to see if resources can be
889   // allocated. If not, bail out now.
890   int NewOpcode = (RC != &Hexagon::PredRegsRegClass) ? HII->getDotNewOp(MI) :
891     HII->getDotNewPredOp(MI, MBPI);
892   const MCInstrDesc &D = HII->get(NewOpcode);
893   MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
894   bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
895   MF.deleteMachineInstr(NewMI);
896   if (!ResourcesAvailable)
897     return false;
898 
899   // New Value Store only. New Value Jump generated as a separate pass.
900   if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
901     return false;
902 
903   return true;
904 }
905 
906 // Go through the packet instructions and search for an anti dependency between
907 // them and DepReg from MI. Consider this case:
908 // Trying to add
909 // a) %r1 = TFRI_cdNotPt %p3, 2
910 // to this packet:
911 // {
912 //   b) %p0 = C2_or killed %p3, killed %p0
913 //   c) %p3 = C2_tfrrp %r23
914 //   d) %r1 = C2_cmovenewit %p3, 4
915 //  }
916 // The P3 from a) and d) will be complements after
917 // a)'s P3 is converted to .new form
918 // Anti-dep between c) and b) is irrelevant for this case
919 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
920                                                         unsigned DepReg) {
921   SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
922 
923   for (auto *I : CurrentPacketMIs) {
924     // We only care for dependencies to predicated instructions
925     if (!HII->isPredicated(*I))
926       continue;
927 
928     // Scheduling Unit for current insn in the packet
929     SUnit *PacketSU = MIToSUnit.find(I)->second;
930 
931     // Look at dependencies between current members of the packet and
932     // predicate defining instruction MI. Make sure that dependency is
933     // on the exact register we care about.
934     if (PacketSU->isSucc(PacketSUDep)) {
935       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
936         auto &Dep = PacketSU->Succs[i];
937         if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
938             Dep.getReg() == DepReg)
939           return true;
940       }
941     }
942   }
943 
944   return false;
945 }
946 
947 /// Gets the predicate register of a predicated instruction.
948 static unsigned getPredicatedRegister(MachineInstr &MI,
949                                       const HexagonInstrInfo *QII) {
950   /// We use the following rule: The first predicate register that is a use is
951   /// the predicate register of a predicated instruction.
952   assert(QII->isPredicated(MI) && "Must be predicated instruction");
953 
954   for (auto &Op : MI.operands()) {
955     if (Op.isReg() && Op.getReg() && Op.isUse() &&
956         Hexagon::PredRegsRegClass.contains(Op.getReg()))
957       return Op.getReg();
958   }
959 
960   llvm_unreachable("Unknown instruction operand layout");
961   return 0;
962 }
963 
964 // Given two predicated instructions, this function detects whether
965 // the predicates are complements.
966 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
967                                                      MachineInstr &MI2) {
968   // If we don't know the predicate sense of the instructions bail out early, we
969   // need it later.
970   if (getPredicateSense(MI1, HII) == PK_Unknown ||
971       getPredicateSense(MI2, HII) == PK_Unknown)
972     return false;
973 
974   // Scheduling unit for candidate.
975   SUnit *SU = MIToSUnit[&MI1];
976 
977   // One corner case deals with the following scenario:
978   // Trying to add
979   // a) %r24 = A2_tfrt %p0, %r25
980   // to this packet:
981   // {
982   //   b) %r25 = A2_tfrf %p0, %r24
983   //   c) %p0 = C2_cmpeqi %r26, 1
984   // }
985   //
986   // On general check a) and b) are complements, but presence of c) will
987   // convert a) to .new form, and then it is not a complement.
988   // We attempt to detect it by analyzing existing dependencies in the packet.
989 
990   // Analyze relationships between all existing members of the packet.
991   // Look for Anti dependecy on the same predicate reg as used in the
992   // candidate.
993   for (auto *I : CurrentPacketMIs) {
994     // Scheduling Unit for current insn in the packet.
995     SUnit *PacketSU = MIToSUnit.find(I)->second;
996 
997     // If this instruction in the packet is succeeded by the candidate...
998     if (PacketSU->isSucc(SU)) {
999       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
1000         auto Dep = PacketSU->Succs[i];
1001         // The corner case exist when there is true data dependency between
1002         // candidate and one of current packet members, this dep is on
1003         // predicate reg, and there already exist anti dep on the same pred in
1004         // the packet.
1005         if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
1006             Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
1007           // Here I know that I is predicate setting instruction with true
1008           // data dep to candidate on the register we care about - c) in the
1009           // above example. Now I need to see if there is an anti dependency
1010           // from c) to any other instruction in the same packet on the pred
1011           // reg of interest.
1012           if (restrictingDepExistInPacket(*I, Dep.getReg()))
1013             return false;
1014         }
1015       }
1016     }
1017   }
1018 
1019   // If the above case does not apply, check regular complement condition.
1020   // Check that the predicate register is the same and that the predicate
1021   // sense is different We also need to differentiate .old vs. .new: !p0
1022   // is not complementary to p0.new.
1023   unsigned PReg1 = getPredicatedRegister(MI1, HII);
1024   unsigned PReg2 = getPredicatedRegister(MI2, HII);
1025   return PReg1 == PReg2 &&
1026          Hexagon::PredRegsRegClass.contains(PReg1) &&
1027          Hexagon::PredRegsRegClass.contains(PReg2) &&
1028          getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
1029          HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
1030 }
1031 
1032 // Initialize packetizer flags.
1033 void HexagonPacketizerList::initPacketizerState() {
1034   Dependence = false;
1035   PromotedToDotNew = false;
1036   GlueToNewValueJump = false;
1037   GlueAllocframeStore = false;
1038   FoundSequentialDependence = false;
1039   ChangedOffset = INT64_MAX;
1040 }
1041 
1042 // Ignore bundling of pseudo instructions.
1043 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
1044                                                     const MachineBasicBlock *) {
1045   if (MI.isDebugInstr())
1046     return true;
1047 
1048   if (MI.isCFIInstruction())
1049     return false;
1050 
1051   // We must print out inline assembly.
1052   if (MI.isInlineAsm())
1053     return false;
1054 
1055   if (MI.isImplicitDef())
1056     return false;
1057 
1058   // We check if MI has any functional units mapped to it. If it doesn't,
1059   // we ignore the instruction.
1060   const MCInstrDesc& TID = MI.getDesc();
1061   auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
1062   return !IS->getUnits();
1063 }
1064 
1065 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
1066   // Ensure any bundles created by gather packetize remain separate.
1067   if (MI.isBundle())
1068     return true;
1069 
1070   if (MI.isEHLabel() || MI.isCFIInstruction())
1071     return true;
1072 
1073   // Consider inline asm to not be a solo instruction by default.
1074   // Inline asm will be put in a packet temporarily, but then it will be
1075   // removed, and placed outside of the packet (before or after, depending
1076   // on dependencies).  This is to reduce the impact of inline asm as a
1077   // "packet splitting" instruction.
1078   if (MI.isInlineAsm() && !ScheduleInlineAsm)
1079     return true;
1080 
1081   if (isSchedBarrier(MI))
1082     return true;
1083 
1084   if (HII->isSolo(MI))
1085     return true;
1086 
1087   if (MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_ENTER ||
1088       MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_EXIT ||
1089       MI.getOpcode() == Hexagon::PATCHABLE_TAIL_CALL)
1090     return true;
1091 
1092   if (MI.getOpcode() == Hexagon::A2_nop)
1093     return true;
1094 
1095   return false;
1096 }
1097 
1098 // Quick check if instructions MI and MJ cannot coexist in the same packet.
1099 // Limit the tests to be "one-way", e.g.  "if MI->isBranch and MJ->isInlineAsm",
1100 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
1101 // For full test call this function twice:
1102 //   cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
1103 // Doing the test only one way saves the amount of code in this function,
1104 // since every test would need to be repeated with the MI and MJ reversed.
1105 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
1106       const HexagonInstrInfo &HII) {
1107   const MachineFunction *MF = MI.getParent()->getParent();
1108   if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
1109       HII.isHVXMemWithAIndirect(MI, MJ))
1110     return true;
1111 
1112   // Don't allow a store and an instruction that must be in slot0 and
1113   // doesn't allow a slot1 instruction.
1114   if (MI.mayStore() && HII.isRestrictNoSlot1Store(MJ) && HII.isPureSlot0(MJ))
1115     return true;
1116 
1117   // An inline asm cannot be together with a branch, because we may not be
1118   // able to remove the asm out after packetizing (i.e. if the asm must be
1119   // moved past the bundle).  Similarly, two asms cannot be together to avoid
1120   // complications when determining their relative order outside of a bundle.
1121   if (MI.isInlineAsm())
1122     return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
1123            MJ.isCall() || MJ.isTerminator();
1124 
1125   // New-value stores cannot coexist with any other stores.
1126   if (HII.isNewValueStore(MI) && MJ.mayStore())
1127     return true;
1128 
1129   switch (MI.getOpcode()) {
1130   case Hexagon::S2_storew_locked:
1131   case Hexagon::S4_stored_locked:
1132   case Hexagon::L2_loadw_locked:
1133   case Hexagon::L4_loadd_locked:
1134   case Hexagon::Y2_dccleana:
1135   case Hexagon::Y2_dccleaninva:
1136   case Hexagon::Y2_dcinva:
1137   case Hexagon::Y2_dczeroa:
1138   case Hexagon::Y4_l2fetch:
1139   case Hexagon::Y5_l2fetch: {
1140     // These instructions can only be grouped with ALU32 or non-floating-point
1141     // XTYPE instructions.  Since there is no convenient way of identifying fp
1142     // XTYPE instructions, only allow grouping with ALU32 for now.
1143     unsigned TJ = HII.getType(MJ);
1144     if (TJ != HexagonII::TypeALU32_2op &&
1145         TJ != HexagonII::TypeALU32_3op &&
1146         TJ != HexagonII::TypeALU32_ADDI)
1147       return true;
1148     break;
1149   }
1150   default:
1151     break;
1152   }
1153 
1154   // "False" really means that the quick check failed to determine if
1155   // I and J cannot coexist.
1156   return false;
1157 }
1158 
1159 // Full, symmetric check.
1160 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
1161       const MachineInstr &MJ) {
1162   return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
1163 }
1164 
1165 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
1166   for (auto &B : MF) {
1167     MachineBasicBlock::iterator BundleIt;
1168     for (MachineInstr &MI : llvm::make_early_inc_range(B.instrs())) {
1169       if (MI.isBundle())
1170         BundleIt = MI.getIterator();
1171       if (!MI.isInsideBundle())
1172         continue;
1173 
1174       // Decide on where to insert the instruction that we are pulling out.
1175       // Debug instructions always go before the bundle, but the placement of
1176       // INLINE_ASM depends on potential dependencies.  By default, try to
1177       // put it before the bundle, but if the asm writes to a register that
1178       // other instructions in the bundle read, then we need to place it
1179       // after the bundle (to preserve the bundle semantics).
1180       bool InsertBeforeBundle;
1181       if (MI.isInlineAsm())
1182         InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
1183       else if (MI.isDebugValue())
1184         InsertBeforeBundle = true;
1185       else
1186         continue;
1187 
1188       BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
1189     }
1190   }
1191 }
1192 
1193 // Check if a given instruction is of class "system".
1194 static bool isSystemInstr(const MachineInstr &MI) {
1195   unsigned Opc = MI.getOpcode();
1196   switch (Opc) {
1197     case Hexagon::Y2_barrier:
1198     case Hexagon::Y2_dcfetchbo:
1199     case Hexagon::Y4_l2fetch:
1200     case Hexagon::Y5_l2fetch:
1201       return true;
1202   }
1203   return false;
1204 }
1205 
1206 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
1207                                               const MachineInstr &J) {
1208   // The dependence graph may not include edges between dead definitions,
1209   // so without extra checks, we could end up packetizing two instruction
1210   // defining the same (dead) register.
1211   if (I.isCall() || J.isCall())
1212     return false;
1213   if (HII->isPredicated(I) || HII->isPredicated(J))
1214     return false;
1215 
1216   BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
1217   for (auto &MO : I.operands()) {
1218     if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1219       continue;
1220     DeadDefs[MO.getReg()] = true;
1221   }
1222 
1223   for (auto &MO : J.operands()) {
1224     if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1225       continue;
1226     Register R = MO.getReg();
1227     if (R != Hexagon::USR_OVF && DeadDefs[R])
1228       return true;
1229   }
1230   return false;
1231 }
1232 
1233 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
1234                                                  const MachineInstr &J) {
1235   // A save callee-save register function call can only be in a packet
1236   // with instructions that don't write to the callee-save registers.
1237   if ((HII->isSaveCalleeSavedRegsCall(I) &&
1238        doesModifyCalleeSavedReg(J, HRI)) ||
1239       (HII->isSaveCalleeSavedRegsCall(J) &&
1240        doesModifyCalleeSavedReg(I, HRI)))
1241     return true;
1242 
1243   // Two control flow instructions cannot go in the same packet.
1244   if (isControlFlow(I) && isControlFlow(J))
1245     return true;
1246 
1247   // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
1248   // contain a speculative indirect jump,
1249   // a new-value compare jump or a dealloc_return.
1250   auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
1251     if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
1252       return true;
1253     if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
1254       return true;
1255     return false;
1256   };
1257 
1258   if (HII->isLoopN(I) && isBadForLoopN(J))
1259     return true;
1260   if (HII->isLoopN(J) && isBadForLoopN(I))
1261     return true;
1262 
1263   // dealloc_return cannot appear in the same packet as a conditional or
1264   // unconditional jump.
1265   return HII->isDeallocRet(I) &&
1266          (J.isBranch() || J.isCall() || J.isBarrier());
1267 }
1268 
1269 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
1270                                                  const MachineInstr &J) {
1271   // Adding I to a packet that has J.
1272 
1273   // Regmasks are not reflected in the scheduling dependency graph, so
1274   // we need to check them manually. This code assumes that regmasks only
1275   // occur on calls, and the problematic case is when we add an instruction
1276   // defining a register R to a packet that has a call that clobbers R via
1277   // a regmask. Those cannot be packetized together, because the call will
1278   // be executed last. That's also a reson why it is ok to add a call
1279   // clobbering R to a packet that defines R.
1280 
1281   // Look for regmasks in J.
1282   for (const MachineOperand &OpJ : J.operands()) {
1283     if (!OpJ.isRegMask())
1284       continue;
1285     assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
1286     for (const MachineOperand &OpI : I.operands()) {
1287       if (OpI.isReg()) {
1288         if (OpJ.clobbersPhysReg(OpI.getReg()))
1289           return true;
1290       } else if (OpI.isRegMask()) {
1291         // Both are regmasks. Assume that they intersect.
1292         return true;
1293       }
1294     }
1295   }
1296   return false;
1297 }
1298 
1299 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
1300                                                    const MachineInstr &J) {
1301   bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
1302   bool StoreI = I.mayStore(), StoreJ = J.mayStore();
1303   if ((SysI && StoreJ) || (SysJ && StoreI))
1304     return true;
1305 
1306   if (StoreI && StoreJ) {
1307     if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
1308       return true;
1309   } else {
1310     // A memop cannot be in the same packet with another memop or a store.
1311     // Two stores can be together, but here I and J cannot both be stores.
1312     bool MopStI = HII->isMemOp(I) || StoreI;
1313     bool MopStJ = HII->isMemOp(J) || StoreJ;
1314     if (MopStI && MopStJ)
1315       return true;
1316   }
1317 
1318   return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
1319 }
1320 
1321 // SUI is the current instruction that is outside of the current packet.
1322 // SUJ is the current instruction inside the current packet against which that
1323 // SUI will be packetized.
1324 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1325   assert(SUI->getInstr() && SUJ->getInstr());
1326   MachineInstr &I = *SUI->getInstr();
1327   MachineInstr &J = *SUJ->getInstr();
1328 
1329   // Clear IgnoreDepMIs when Packet starts.
1330   if (CurrentPacketMIs.size() == 1)
1331     IgnoreDepMIs.clear();
1332 
1333   MachineBasicBlock::iterator II = I.getIterator();
1334 
1335   // Solo instructions cannot go in the packet.
1336   assert(!isSoloInstruction(I) && "Unexpected solo instr!");
1337 
1338   if (cannotCoexist(I, J))
1339     return false;
1340 
1341   Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
1342   if (Dependence)
1343     return false;
1344 
1345   // Regmasks are not accounted for in the scheduling graph, so we need
1346   // to explicitly check for dependencies caused by them. They should only
1347   // appear on calls, so it's not too pessimistic to reject all regmask
1348   // dependencies.
1349   Dependence = hasRegMaskDependence(I, J);
1350   if (Dependence)
1351     return false;
1352 
1353   // Dual-store does not allow second store, if the first store is not
1354   // in SLOT0. New value store, new value jump, dealloc_return and memop
1355   // always take SLOT0. Arch spec 3.4.4.2.
1356   Dependence = hasDualStoreDependence(I, J);
1357   if (Dependence)
1358     return false;
1359 
1360   // If an instruction feeds new value jump, glue it.
1361   MachineBasicBlock::iterator NextMII = I.getIterator();
1362   ++NextMII;
1363   if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
1364     MachineInstr &NextMI = *NextMII;
1365 
1366     bool secondRegMatch = false;
1367     const MachineOperand &NOp0 = NextMI.getOperand(0);
1368     const MachineOperand &NOp1 = NextMI.getOperand(1);
1369 
1370     if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
1371       secondRegMatch = true;
1372 
1373     for (MachineInstr *PI : CurrentPacketMIs) {
1374       // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
1375       if (PI->isCall()) {
1376         Dependence = true;
1377         break;
1378       }
1379       // Validate:
1380       // 1. Packet does not have a store in it.
1381       // 2. If the first operand of the nvj is newified, and the second
1382       //    operand is also a reg, it (second reg) is not defined in
1383       //    the same packet.
1384       // 3. If the second operand of the nvj is newified, (which means
1385       //    first operand is also a reg), first reg is not defined in
1386       //    the same packet.
1387       if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
1388           HII->isLoopN(*PI)) {
1389         Dependence = true;
1390         break;
1391       }
1392       // Check #2/#3.
1393       const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
1394       if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
1395         Dependence = true;
1396         break;
1397       }
1398     }
1399 
1400     GlueToNewValueJump = true;
1401     if (Dependence)
1402       return false;
1403   }
1404 
1405   // There no dependency between a prolog instruction and its successor.
1406   if (!SUJ->isSucc(SUI))
1407     return true;
1408 
1409   for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
1410     if (FoundSequentialDependence)
1411       break;
1412 
1413     if (SUJ->Succs[i].getSUnit() != SUI)
1414       continue;
1415 
1416     SDep::Kind DepType = SUJ->Succs[i].getKind();
1417     // For direct calls:
1418     // Ignore register dependences for call instructions for packetization
1419     // purposes except for those due to r31 and predicate registers.
1420     //
1421     // For indirect calls:
1422     // Same as direct calls + check for true dependences to the register
1423     // used in the indirect call.
1424     //
1425     // We completely ignore Order dependences for call instructions.
1426     //
1427     // For returns:
1428     // Ignore register dependences for return instructions like jumpr,
1429     // dealloc return unless we have dependencies on the explicit uses
1430     // of the registers used by jumpr (like r31) or dealloc return
1431     // (like r29 or r30).
1432     unsigned DepReg = 0;
1433     const TargetRegisterClass *RC = nullptr;
1434     if (DepType == SDep::Data) {
1435       DepReg = SUJ->Succs[i].getReg();
1436       RC = HRI->getMinimalPhysRegClass(DepReg);
1437     }
1438 
1439     if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
1440       if (!isRegDependence(DepType))
1441         continue;
1442       if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
1443         continue;
1444     }
1445 
1446     if (DepType == SDep::Data) {
1447       if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
1448         if (promoteToDotCur(J, DepType, II, RC))
1449           continue;
1450     }
1451 
1452     // Data dpendence ok if we have load.cur.
1453     if (DepType == SDep::Data && HII->isDotCurInst(J)) {
1454       if (HII->isHVXVec(I))
1455         continue;
1456     }
1457 
1458     // For instructions that can be promoted to dot-new, try to promote.
1459     if (DepType == SDep::Data) {
1460       if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
1461         if (promoteToDotNew(I, DepType, II, RC)) {
1462           PromotedToDotNew = true;
1463           if (cannotCoexist(I, J))
1464             FoundSequentialDependence = true;
1465           continue;
1466         }
1467       }
1468       if (HII->isNewValueJump(I))
1469         continue;
1470     }
1471 
1472     // For predicated instructions, if the predicates are complements then
1473     // there can be no dependence.
1474     if (HII->isPredicated(I) && HII->isPredicated(J) &&
1475         arePredicatesComplements(I, J)) {
1476       // Not always safe to do this translation.
1477       // DAG Builder attempts to reduce dependence edges using transitive
1478       // nature of dependencies. Here is an example:
1479       //
1480       // r0 = tfr_pt ... (1)
1481       // r0 = tfr_pf ... (2)
1482       // r0 = tfr_pt ... (3)
1483       //
1484       // There will be an output dependence between (1)->(2) and (2)->(3).
1485       // However, there is no dependence edge between (1)->(3). This results
1486       // in all 3 instructions going in the same packet. We ignore dependce
1487       // only once to avoid this situation.
1488       auto Itr = find(IgnoreDepMIs, &J);
1489       if (Itr != IgnoreDepMIs.end()) {
1490         Dependence = true;
1491         return false;
1492       }
1493       IgnoreDepMIs.push_back(&I);
1494       continue;
1495     }
1496 
1497     // Ignore Order dependences between unconditional direct branches
1498     // and non-control-flow instructions.
1499     if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
1500         DepType == SDep::Order)
1501       continue;
1502 
1503     // Ignore all dependences for jumps except for true and output
1504     // dependences.
1505     if (I.isConditionalBranch() && DepType != SDep::Data &&
1506         DepType != SDep::Output)
1507       continue;
1508 
1509     if (DepType == SDep::Output) {
1510       FoundSequentialDependence = true;
1511       break;
1512     }
1513 
1514     // For Order dependences:
1515     // 1. Volatile loads/stores can be packetized together, unless other
1516     //    rules prevent is.
1517     // 2. Store followed by a load is not allowed.
1518     // 3. Store followed by a store is valid.
1519     // 4. Load followed by any memory operation is allowed.
1520     if (DepType == SDep::Order) {
1521       if (!PacketizeVolatiles) {
1522         bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
1523         if (OrdRefs) {
1524           FoundSequentialDependence = true;
1525           break;
1526         }
1527       }
1528       // J is first, I is second.
1529       bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
1530       bool LoadI = I.mayLoad(), StoreI = I.mayStore();
1531       bool NVStoreJ = HII->isNewValueStore(J);
1532       bool NVStoreI = HII->isNewValueStore(I);
1533       bool IsVecJ = HII->isHVXVec(J);
1534       bool IsVecI = HII->isHVXVec(I);
1535 
1536       // Don't reorder the loads if there is an order dependence. This would
1537       // occur if the first instruction must go in slot0.
1538       if (LoadJ && LoadI && HII->isPureSlot0(J)) {
1539         FoundSequentialDependence = true;
1540         break;
1541       }
1542 
1543       if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
1544           ((LoadJ && StoreI && !NVStoreI) ||
1545            (StoreJ && LoadI && !NVStoreJ)) &&
1546           (J.getOpcode() != Hexagon::S2_allocframe &&
1547            I.getOpcode() != Hexagon::S2_allocframe) &&
1548           (J.getOpcode() != Hexagon::L2_deallocframe &&
1549            I.getOpcode() != Hexagon::L2_deallocframe) &&
1550           (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
1551         setmemShufDisabled(true);
1552       else
1553         if (StoreJ && LoadI && alias(J, I)) {
1554           FoundSequentialDependence = true;
1555           break;
1556         }
1557 
1558       if (!StoreJ)
1559         if (!LoadJ || (!LoadI && !StoreI)) {
1560           // If J is neither load nor store, assume a dependency.
1561           // If J is a load, but I is neither, also assume a dependency.
1562           FoundSequentialDependence = true;
1563           break;
1564         }
1565       // Store followed by store: not OK on V2.
1566       // Store followed by load: not OK on all.
1567       // Load followed by store: OK on all.
1568       // Load followed by load: OK on all.
1569       continue;
1570     }
1571 
1572     // Special case for ALLOCFRAME: even though there is dependency
1573     // between ALLOCFRAME and subsequent store, allow it to be packetized
1574     // in a same packet. This implies that the store is using the caller's
1575     // SP. Hence, offset needs to be updated accordingly.
1576     if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
1577       unsigned Opc = I.getOpcode();
1578       switch (Opc) {
1579         case Hexagon::S2_storerd_io:
1580         case Hexagon::S2_storeri_io:
1581         case Hexagon::S2_storerh_io:
1582         case Hexagon::S2_storerb_io:
1583           if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
1584             // Since this store is to be glued with allocframe in the same
1585             // packet, it will use SP of the previous stack frame, i.e.
1586             // caller's SP. Therefore, we need to recalculate offset
1587             // according to this change.
1588             GlueAllocframeStore = useCallersSP(I);
1589             if (GlueAllocframeStore)
1590               continue;
1591           }
1592           break;
1593         default:
1594           break;
1595       }
1596     }
1597 
1598     // There are certain anti-dependencies that cannot be ignored.
1599     // Specifically:
1600     //   J2_call ... implicit-def %r0   ; SUJ
1601     //   R0 = ...                   ; SUI
1602     // Those cannot be packetized together, since the call will observe
1603     // the effect of the assignment to R0.
1604     if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
1605       // Check if I defines any volatile register. We should also check
1606       // registers that the call may read, but these happen to be a
1607       // subset of the volatile register set.
1608       for (const MachineOperand &Op : I.operands()) {
1609         if (Op.isReg() && Op.isDef()) {
1610           Register R = Op.getReg();
1611           if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
1612             continue;
1613         } else if (!Op.isRegMask()) {
1614           // If I has a regmask assume dependency.
1615           continue;
1616         }
1617         FoundSequentialDependence = true;
1618         break;
1619       }
1620     }
1621 
1622     // Skip over remaining anti-dependences. Two instructions that are
1623     // anti-dependent can share a packet, since in most such cases all
1624     // operands are read before any modifications take place.
1625     // The exceptions are branch and call instructions, since they are
1626     // executed after all other instructions have completed (at least
1627     // conceptually).
1628     if (DepType != SDep::Anti) {
1629       FoundSequentialDependence = true;
1630       break;
1631     }
1632   }
1633 
1634   if (FoundSequentialDependence) {
1635     Dependence = true;
1636     return false;
1637   }
1638 
1639   return true;
1640 }
1641 
1642 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1643   assert(SUI->getInstr() && SUJ->getInstr());
1644   MachineInstr &I = *SUI->getInstr();
1645   MachineInstr &J = *SUJ->getInstr();
1646 
1647   bool Coexist = !cannotCoexist(I, J);
1648 
1649   if (Coexist && !Dependence)
1650     return true;
1651 
1652   // Check if the instruction was promoted to a dot-new. If so, demote it
1653   // back into a dot-old.
1654   if (PromotedToDotNew)
1655     demoteToDotOld(I);
1656 
1657   cleanUpDotCur();
1658   // Check if the instruction (must be a store) was glued with an allocframe
1659   // instruction. If so, restore its offset to its original value, i.e. use
1660   // current SP instead of caller's SP.
1661   if (GlueAllocframeStore) {
1662     useCalleesSP(I);
1663     GlueAllocframeStore = false;
1664   }
1665 
1666   if (ChangedOffset != INT64_MAX)
1667     undoChangedOffset(I);
1668 
1669   if (GlueToNewValueJump) {
1670     // Putting I and J together would prevent the new-value jump from being
1671     // packetized with the producer. In that case I and J must be separated.
1672     GlueToNewValueJump = false;
1673     return false;
1674   }
1675 
1676   if (!Coexist)
1677     return false;
1678 
1679   if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
1680     FoundSequentialDependence = false;
1681     Dependence = false;
1682     return true;
1683   }
1684 
1685   return false;
1686 }
1687 
1688 
1689 bool HexagonPacketizerList::foundLSInPacket() {
1690   bool FoundLoad = false;
1691   bool FoundStore = false;
1692 
1693   for (auto *MJ : CurrentPacketMIs) {
1694     unsigned Opc = MJ->getOpcode();
1695     if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
1696       continue;
1697     if (HII->isMemOp(*MJ))
1698       continue;
1699     if (MJ->mayLoad())
1700       FoundLoad = true;
1701     if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
1702       FoundStore = true;
1703   }
1704   return FoundLoad && FoundStore;
1705 }
1706 
1707 
1708 MachineBasicBlock::iterator
1709 HexagonPacketizerList::addToPacket(MachineInstr &MI) {
1710   MachineBasicBlock::iterator MII = MI.getIterator();
1711   MachineBasicBlock *MBB = MI.getParent();
1712 
1713   if (CurrentPacketMIs.empty()) {
1714     PacketStalls = false;
1715     PacketStallCycles = 0;
1716   }
1717   PacketStalls |= producesStall(MI);
1718   PacketStallCycles = std::max(PacketStallCycles, calcStall(MI));
1719 
1720   if (MI.isImplicitDef()) {
1721     // Add to the packet to allow subsequent instructions to be checked
1722     // properly.
1723     CurrentPacketMIs.push_back(&MI);
1724     return MII;
1725   }
1726   assert(ResourceTracker->canReserveResources(MI));
1727 
1728   bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
1729   bool Good = true;
1730 
1731   if (GlueToNewValueJump) {
1732     MachineInstr &NvjMI = *++MII;
1733     // We need to put both instructions in the same packet: MI and NvjMI.
1734     // Either of them can require a constant extender. Try to add both to
1735     // the current packet, and if that fails, end the packet and start a
1736     // new one.
1737     ResourceTracker->reserveResources(MI);
1738     if (ExtMI)
1739       Good = tryAllocateResourcesForConstExt(true);
1740 
1741     bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
1742     if (Good) {
1743       if (ResourceTracker->canReserveResources(NvjMI))
1744         ResourceTracker->reserveResources(NvjMI);
1745       else
1746         Good = false;
1747     }
1748     if (Good && ExtNvjMI)
1749       Good = tryAllocateResourcesForConstExt(true);
1750 
1751     if (!Good) {
1752       endPacket(MBB, MI);
1753       assert(ResourceTracker->canReserveResources(MI));
1754       ResourceTracker->reserveResources(MI);
1755       if (ExtMI) {
1756         assert(canReserveResourcesForConstExt());
1757         tryAllocateResourcesForConstExt(true);
1758       }
1759       assert(ResourceTracker->canReserveResources(NvjMI));
1760       ResourceTracker->reserveResources(NvjMI);
1761       if (ExtNvjMI) {
1762         assert(canReserveResourcesForConstExt());
1763         reserveResourcesForConstExt();
1764       }
1765     }
1766     CurrentPacketMIs.push_back(&MI);
1767     CurrentPacketMIs.push_back(&NvjMI);
1768     return MII;
1769   }
1770 
1771   ResourceTracker->reserveResources(MI);
1772   if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
1773     endPacket(MBB, MI);
1774     if (PromotedToDotNew)
1775       demoteToDotOld(MI);
1776     if (GlueAllocframeStore) {
1777       useCalleesSP(MI);
1778       GlueAllocframeStore = false;
1779     }
1780     ResourceTracker->reserveResources(MI);
1781     reserveResourcesForConstExt();
1782   }
1783 
1784   CurrentPacketMIs.push_back(&MI);
1785   return MII;
1786 }
1787 
1788 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
1789                                       MachineBasicBlock::iterator EndMI) {
1790   // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
1791   LLVM_DEBUG({
1792     if (!CurrentPacketMIs.empty()) {
1793       dbgs() << "Finalizing packet:\n";
1794       unsigned Idx = 0;
1795       for (MachineInstr *MI : CurrentPacketMIs) {
1796         unsigned R = ResourceTracker->getUsedResources(Idx++);
1797         dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
1798       }
1799     }
1800   });
1801 
1802   bool memShufDisabled = getmemShufDisabled();
1803   if (memShufDisabled && !foundLSInPacket()) {
1804     setmemShufDisabled(false);
1805     LLVM_DEBUG(dbgs() << "  Not added to NoShufPacket\n");
1806   }
1807   memShufDisabled = getmemShufDisabled();
1808 
1809   OldPacketMIs.clear();
1810   for (MachineInstr *MI : CurrentPacketMIs) {
1811     MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
1812     for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
1813       OldPacketMIs.push_back(&I);
1814   }
1815   CurrentPacketMIs.clear();
1816 
1817   if (OldPacketMIs.size() > 1) {
1818     MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
1819     MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
1820     finalizeBundle(*MBB, FirstMI, LastMI);
1821     auto BundleMII = std::prev(FirstMI);
1822     if (memShufDisabled)
1823       HII->setBundleNoShuf(BundleMII);
1824 
1825     setmemShufDisabled(false);
1826   }
1827 
1828   PacketHasDuplex = false;
1829   PacketHasSLOT0OnlyInsn = false;
1830   ResourceTracker->clearResources();
1831   LLVM_DEBUG(dbgs() << "End packet\n");
1832 }
1833 
1834 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
1835   if (Minimal)
1836     return false;
1837 
1838   if (producesStall(MI))
1839     return false;
1840 
1841   // If TinyCore with Duplexes is enabled, check if this MI can form a Duplex
1842   // with any other instruction in the existing packet.
1843   auto &HST = MI.getParent()->getParent()->getSubtarget<HexagonSubtarget>();
1844   // Constraint 1: Only one duplex allowed per packet.
1845   // Constraint 2: Consider duplex checks only if there is atleast one
1846   // instruction in a packet.
1847   // Constraint 3: If one of the existing instructions in the packet has a
1848   // SLOT0 only instruction that can not be duplexed, do not attempt to form
1849   // duplexes. (TODO: This will invalidate the L4_return* instructions to form a
1850   // duplex)
1851   if (HST.isTinyCoreWithDuplex() && CurrentPacketMIs.size() > 0 &&
1852       !PacketHasDuplex) {
1853     // Check for SLOT0 only non-duplexable instruction in packet.
1854     for (auto &MJ : CurrentPacketMIs)
1855       PacketHasSLOT0OnlyInsn |= HII->isPureSlot0(*MJ);
1856     // Get the Big Core Opcode (dup_*).
1857     int Opcode = HII->getDuplexOpcode(MI, false);
1858     if (Opcode >= 0) {
1859       // We now have an instruction that can be duplexed.
1860       for (auto &MJ : CurrentPacketMIs) {
1861         if (HII->isDuplexPair(MI, *MJ) && !PacketHasSLOT0OnlyInsn) {
1862           PacketHasDuplex = true;
1863           return true;
1864         }
1865       }
1866       // If it can not be duplexed, check if there is a valid transition in DFA
1867       // with the original opcode.
1868       MachineInstr &MIRef = const_cast<MachineInstr &>(MI);
1869       MIRef.setDesc(HII->get(Opcode));
1870       return ResourceTracker->canReserveResources(MIRef);
1871     }
1872   }
1873 
1874   return true;
1875 }
1876 
1877 // V60 forward scheduling.
1878 unsigned int HexagonPacketizerList::calcStall(const MachineInstr &I) {
1879   // Check whether the previous packet is in a different loop. If this is the
1880   // case, there is little point in trying to avoid a stall because that would
1881   // favor the rare case (loop entry) over the common case (loop iteration).
1882   //
1883   // TODO: We should really be able to check all the incoming edges if this is
1884   // the first packet in a basic block, so we can avoid stalls from the loop
1885   // backedge.
1886   if (!OldPacketMIs.empty()) {
1887     auto *OldBB = OldPacketMIs.front()->getParent();
1888     auto *ThisBB = I.getParent();
1889     if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
1890       return 0;
1891   }
1892 
1893   SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
1894   if (!SUI)
1895     return 0;
1896 
1897   // If the latency is 0 and there is a data dependence between this
1898   // instruction and any instruction in the current packet, we disregard any
1899   // potential stalls due to the instructions in the previous packet. Most of
1900   // the instruction pairs that can go together in the same packet have 0
1901   // latency between them. The exceptions are
1902   // 1. NewValueJumps as they're generated much later and the latencies can't
1903   // be changed at that point.
1904   // 2. .cur instructions, if its consumer has a 0 latency successor (such as
1905   // .new). In this case, the latency between .cur and the consumer stays
1906   // non-zero even though we can have  both .cur and .new in the same packet.
1907   // Changing the latency to 0 is not an option as it causes software pipeliner
1908   // to not pipeline in some cases.
1909 
1910   // For Example:
1911   // {
1912   //   I1:  v6.cur = vmem(r0++#1)
1913   //   I2:  v7 = valign(v6,v4,r2)
1914   //   I3:  vmem(r5++#1) = v7.new
1915   // }
1916   // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
1917 
1918   for (auto *J : CurrentPacketMIs) {
1919     SUnit *SUJ = MIToSUnit[J];
1920     for (auto &Pred : SUI->Preds)
1921       if (Pred.getSUnit() == SUJ)
1922         if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
1923             HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
1924           return 0;
1925   }
1926 
1927   // Check if the latency is greater than one between this instruction and any
1928   // instruction in the previous packet.
1929   for (auto *J : OldPacketMIs) {
1930     SUnit *SUJ = MIToSUnit[J];
1931     for (auto &Pred : SUI->Preds)
1932       if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
1933         return Pred.getLatency();
1934   }
1935 
1936   return 0;
1937 }
1938 
1939 bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
1940   unsigned int Latency = calcStall(I);
1941   if (Latency == 0)
1942     return false;
1943   // Ignore stall unless it stalls more than previous instruction in packet
1944   if (PacketStalls)
1945     return Latency > PacketStallCycles;
1946   return true;
1947 }
1948 
1949 //===----------------------------------------------------------------------===//
1950 //                         Public Constructor Functions
1951 //===----------------------------------------------------------------------===//
1952 
1953 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
1954   return new HexagonPacketizer(Minimal);
1955 }
1956