1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsTargetLowering specialized for mips32/64.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsSEISelLowering.h"
14 #include "MipsMachineFunction.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsSubtarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/SelectionDAGNodes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/IntrinsicsMips.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <utility>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "mips-isel"
54 
55 static cl::opt<bool>
56 UseMipsTailCalls("mips-tail-calls", cl::Hidden,
57                     cl::desc("MIPS: permit tail calls."), cl::init(false));
58 
59 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
60                                    cl::desc("Expand double precision loads and "
61                                             "stores to their single precision "
62                                             "counterparts"));
63 
64 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
65                                            const MipsSubtarget &STI)
66     : MipsTargetLowering(TM, STI) {
67   // Set up the register classes
68   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
69 
70   if (Subtarget.isGP64bit())
71     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
72 
73   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
74     // Expand all truncating stores and extending loads.
75     for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) {
76       for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) {
77         setTruncStoreAction(VT0, VT1, Expand);
78         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
79         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
80         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
81       }
82     }
83   }
84 
85   if (Subtarget.hasDSP()) {
86     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
87 
88     for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
89       addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
90 
91       // Expand all builtin opcodes.
92       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
93         setOperationAction(Opc, VecTys[i], Expand);
94 
95       setOperationAction(ISD::ADD, VecTys[i], Legal);
96       setOperationAction(ISD::SUB, VecTys[i], Legal);
97       setOperationAction(ISD::LOAD, VecTys[i], Legal);
98       setOperationAction(ISD::STORE, VecTys[i], Legal);
99       setOperationAction(ISD::BITCAST, VecTys[i], Legal);
100     }
101 
102     setTargetDAGCombine(ISD::SHL);
103     setTargetDAGCombine(ISD::SRA);
104     setTargetDAGCombine(ISD::SRL);
105     setTargetDAGCombine(ISD::SETCC);
106     setTargetDAGCombine(ISD::VSELECT);
107 
108     if (Subtarget.hasMips32r2()) {
109       setOperationAction(ISD::ADDC, MVT::i32, Legal);
110       setOperationAction(ISD::ADDE, MVT::i32, Legal);
111     }
112   }
113 
114   if (Subtarget.hasDSPR2())
115     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
116 
117   if (Subtarget.hasMSA()) {
118     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
119     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
120     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
121     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
122     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
123     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
124     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
125 
126     // f16 is a storage-only type, always promote it to f32.
127     addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
128     setOperationAction(ISD::SETCC, MVT::f16, Promote);
129     setOperationAction(ISD::BR_CC, MVT::f16, Promote);
130     setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
131     setOperationAction(ISD::SELECT, MVT::f16, Promote);
132     setOperationAction(ISD::FADD, MVT::f16, Promote);
133     setOperationAction(ISD::FSUB, MVT::f16, Promote);
134     setOperationAction(ISD::FMUL, MVT::f16, Promote);
135     setOperationAction(ISD::FDIV, MVT::f16, Promote);
136     setOperationAction(ISD::FREM, MVT::f16, Promote);
137     setOperationAction(ISD::FMA, MVT::f16, Promote);
138     setOperationAction(ISD::FNEG, MVT::f16, Promote);
139     setOperationAction(ISD::FABS, MVT::f16, Promote);
140     setOperationAction(ISD::FCEIL, MVT::f16, Promote);
141     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
142     setOperationAction(ISD::FCOS, MVT::f16, Promote);
143     setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
144     setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
145     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
146     setOperationAction(ISD::FPOW, MVT::f16, Promote);
147     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
148     setOperationAction(ISD::FRINT, MVT::f16, Promote);
149     setOperationAction(ISD::FSIN, MVT::f16, Promote);
150     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
151     setOperationAction(ISD::FSQRT, MVT::f16, Promote);
152     setOperationAction(ISD::FEXP, MVT::f16, Promote);
153     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
154     setOperationAction(ISD::FLOG, MVT::f16, Promote);
155     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
156     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
157     setOperationAction(ISD::FROUND, MVT::f16, Promote);
158     setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
159     setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
160     setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
161     setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
162     setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
163 
164     setTargetDAGCombine(ISD::AND);
165     setTargetDAGCombine(ISD::OR);
166     setTargetDAGCombine(ISD::SRA);
167     setTargetDAGCombine(ISD::VSELECT);
168     setTargetDAGCombine(ISD::XOR);
169   }
170 
171   if (!Subtarget.useSoftFloat()) {
172     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
173 
174     // When dealing with single precision only, use libcalls
175     if (!Subtarget.isSingleFloat()) {
176       if (Subtarget.isFP64bit())
177         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
178       else
179         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
180     }
181   }
182 
183   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
184   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
185   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
186   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
187 
188   if (Subtarget.hasCnMips())
189     setOperationAction(ISD::MUL,              MVT::i64, Legal);
190   else if (Subtarget.isGP64bit())
191     setOperationAction(ISD::MUL,              MVT::i64, Custom);
192 
193   if (Subtarget.isGP64bit()) {
194     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
195     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
196     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
197     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
198     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
199     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
200   }
201 
202   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
203   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
204 
205   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
206   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
207   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
208   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
209   setOperationAction(ISD::STORE,              MVT::i32, Custom);
210 
211   setTargetDAGCombine(ISD::MUL);
212 
213   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
214   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
215   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
216 
217   if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() &&
218       !Subtarget.hasMips64()) {
219     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
220   }
221 
222   if (NoDPLoadStore) {
223     setOperationAction(ISD::LOAD, MVT::f64, Custom);
224     setOperationAction(ISD::STORE, MVT::f64, Custom);
225   }
226 
227   if (Subtarget.hasMips32r6()) {
228     // MIPS32r6 replaces the accumulator-based multiplies with a three register
229     // instruction
230     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
231     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
232     setOperationAction(ISD::MUL, MVT::i32, Legal);
233     setOperationAction(ISD::MULHS, MVT::i32, Legal);
234     setOperationAction(ISD::MULHU, MVT::i32, Legal);
235 
236     // MIPS32r6 replaces the accumulator-based division/remainder with separate
237     // three register division and remainder instructions.
238     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
239     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
240     setOperationAction(ISD::SDIV, MVT::i32, Legal);
241     setOperationAction(ISD::UDIV, MVT::i32, Legal);
242     setOperationAction(ISD::SREM, MVT::i32, Legal);
243     setOperationAction(ISD::UREM, MVT::i32, Legal);
244 
245     // MIPS32r6 replaces conditional moves with an equivalent that removes the
246     // need for three GPR read ports.
247     setOperationAction(ISD::SETCC, MVT::i32, Legal);
248     setOperationAction(ISD::SELECT, MVT::i32, Legal);
249     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
250 
251     setOperationAction(ISD::SETCC, MVT::f32, Legal);
252     setOperationAction(ISD::SELECT, MVT::f32, Legal);
253     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
254 
255     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
256     setOperationAction(ISD::SETCC, MVT::f64, Legal);
257     setOperationAction(ISD::SELECT, MVT::f64, Custom);
258     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
259 
260     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
261 
262     // Floating point > and >= are supported via < and <=
263     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
264     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
265     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
266     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
267 
268     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
269     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
270     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
271     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
272   }
273 
274   if (Subtarget.hasMips64r6()) {
275     // MIPS64r6 replaces the accumulator-based multiplies with a three register
276     // instruction
277     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
278     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
279     setOperationAction(ISD::MUL, MVT::i64, Legal);
280     setOperationAction(ISD::MULHS, MVT::i64, Legal);
281     setOperationAction(ISD::MULHU, MVT::i64, Legal);
282 
283     // MIPS32r6 replaces the accumulator-based division/remainder with separate
284     // three register division and remainder instructions.
285     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
286     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
287     setOperationAction(ISD::SDIV, MVT::i64, Legal);
288     setOperationAction(ISD::UDIV, MVT::i64, Legal);
289     setOperationAction(ISD::SREM, MVT::i64, Legal);
290     setOperationAction(ISD::UREM, MVT::i64, Legal);
291 
292     // MIPS64r6 replaces conditional moves with an equivalent that removes the
293     // need for three GPR read ports.
294     setOperationAction(ISD::SETCC, MVT::i64, Legal);
295     setOperationAction(ISD::SELECT, MVT::i64, Legal);
296     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
297   }
298 
299   computeRegisterProperties(Subtarget.getRegisterInfo());
300 }
301 
302 const MipsTargetLowering *
303 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
304                                  const MipsSubtarget &STI) {
305   return new MipsSETargetLowering(TM, STI);
306 }
307 
308 const TargetRegisterClass *
309 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
310   if (VT == MVT::Untyped)
311     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
312 
313   return TargetLowering::getRepRegClassFor(VT);
314 }
315 
316 // Enable MSA support for the given integer type and Register class.
317 void MipsSETargetLowering::
318 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
319   addRegisterClass(Ty, RC);
320 
321   // Expand all builtin opcodes.
322   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
323     setOperationAction(Opc, Ty, Expand);
324 
325   setOperationAction(ISD::BITCAST, Ty, Legal);
326   setOperationAction(ISD::LOAD, Ty, Legal);
327   setOperationAction(ISD::STORE, Ty, Legal);
328   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
329   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
330   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
331   setOperationAction(ISD::UNDEF, Ty, Legal);
332 
333   setOperationAction(ISD::ADD, Ty, Legal);
334   setOperationAction(ISD::AND, Ty, Legal);
335   setOperationAction(ISD::CTLZ, Ty, Legal);
336   setOperationAction(ISD::CTPOP, Ty, Legal);
337   setOperationAction(ISD::MUL, Ty, Legal);
338   setOperationAction(ISD::OR, Ty, Legal);
339   setOperationAction(ISD::SDIV, Ty, Legal);
340   setOperationAction(ISD::SREM, Ty, Legal);
341   setOperationAction(ISD::SHL, Ty, Legal);
342   setOperationAction(ISD::SRA, Ty, Legal);
343   setOperationAction(ISD::SRL, Ty, Legal);
344   setOperationAction(ISD::SUB, Ty, Legal);
345   setOperationAction(ISD::SMAX, Ty, Legal);
346   setOperationAction(ISD::SMIN, Ty, Legal);
347   setOperationAction(ISD::UDIV, Ty, Legal);
348   setOperationAction(ISD::UREM, Ty, Legal);
349   setOperationAction(ISD::UMAX, Ty, Legal);
350   setOperationAction(ISD::UMIN, Ty, Legal);
351   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
352   setOperationAction(ISD::VSELECT, Ty, Legal);
353   setOperationAction(ISD::XOR, Ty, Legal);
354 
355   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
356     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
357     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
358     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
359     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
360   }
361 
362   setOperationAction(ISD::SETCC, Ty, Legal);
363   setCondCodeAction(ISD::SETNE, Ty, Expand);
364   setCondCodeAction(ISD::SETGE, Ty, Expand);
365   setCondCodeAction(ISD::SETGT, Ty, Expand);
366   setCondCodeAction(ISD::SETUGE, Ty, Expand);
367   setCondCodeAction(ISD::SETUGT, Ty, Expand);
368 }
369 
370 // Enable MSA support for the given floating-point type and Register class.
371 void MipsSETargetLowering::
372 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
373   addRegisterClass(Ty, RC);
374 
375   // Expand all builtin opcodes.
376   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
377     setOperationAction(Opc, Ty, Expand);
378 
379   setOperationAction(ISD::LOAD, Ty, Legal);
380   setOperationAction(ISD::STORE, Ty, Legal);
381   setOperationAction(ISD::BITCAST, Ty, Legal);
382   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
383   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
384   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
385 
386   if (Ty != MVT::v8f16) {
387     setOperationAction(ISD::FABS,  Ty, Legal);
388     setOperationAction(ISD::FADD,  Ty, Legal);
389     setOperationAction(ISD::FDIV,  Ty, Legal);
390     setOperationAction(ISD::FEXP2, Ty, Legal);
391     setOperationAction(ISD::FLOG2, Ty, Legal);
392     setOperationAction(ISD::FMA,   Ty, Legal);
393     setOperationAction(ISD::FMUL,  Ty, Legal);
394     setOperationAction(ISD::FRINT, Ty, Legal);
395     setOperationAction(ISD::FSQRT, Ty, Legal);
396     setOperationAction(ISD::FSUB,  Ty, Legal);
397     setOperationAction(ISD::VSELECT, Ty, Legal);
398 
399     setOperationAction(ISD::SETCC, Ty, Legal);
400     setCondCodeAction(ISD::SETOGE, Ty, Expand);
401     setCondCodeAction(ISD::SETOGT, Ty, Expand);
402     setCondCodeAction(ISD::SETUGE, Ty, Expand);
403     setCondCodeAction(ISD::SETUGT, Ty, Expand);
404     setCondCodeAction(ISD::SETGE,  Ty, Expand);
405     setCondCodeAction(ISD::SETGT,  Ty, Expand);
406   }
407 }
408 
409 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
410   if(!Subtarget.hasMips32r6())
411     return MipsTargetLowering::LowerOperation(Op, DAG);
412 
413   EVT ResTy = Op->getValueType(0);
414   SDLoc DL(Op);
415 
416   // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
417   // floating point register are undefined. Not really an issue as sel.d, which
418   // is produced from an FSELECT node, only looks at bit 0.
419   SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
420   return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
421                      Op->getOperand(2));
422 }
423 
424 bool MipsSETargetLowering::allowsMisalignedMemoryAccesses(
425     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
426   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
427 
428   if (Subtarget.systemSupportsUnalignedAccess()) {
429     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
430     // implementation defined whether this is handled by hardware, software, or
431     // a hybrid of the two but it's expected that most implementations will
432     // handle the majority of cases in hardware.
433     if (Fast)
434       *Fast = true;
435     return true;
436   }
437 
438   switch (SVT) {
439   case MVT::i64:
440   case MVT::i32:
441     if (Fast)
442       *Fast = true;
443     return true;
444   default:
445     return false;
446   }
447 }
448 
449 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
450                                              SelectionDAG &DAG) const {
451   switch(Op.getOpcode()) {
452   case ISD::LOAD:  return lowerLOAD(Op, DAG);
453   case ISD::STORE: return lowerSTORE(Op, DAG);
454   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
455   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
456   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
457   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
458   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
459   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
460   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
461                                           DAG);
462   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
463   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
464   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
465   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
466   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
467   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
468   case ISD::SELECT:             return lowerSELECT(Op, DAG);
469   case ISD::BITCAST:            return lowerBITCAST(Op, DAG);
470   }
471 
472   return MipsTargetLowering::LowerOperation(Op, DAG);
473 }
474 
475 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
476 //
477 // Performs the following transformations:
478 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
479 //   sign/zero-extension is completely overwritten by the new one performed by
480 //   the ISD::AND.
481 // - Removes redundant zero extensions performed by an ISD::AND.
482 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
483                                  TargetLowering::DAGCombinerInfo &DCI,
484                                  const MipsSubtarget &Subtarget) {
485   if (!Subtarget.hasMSA())
486     return SDValue();
487 
488   SDValue Op0 = N->getOperand(0);
489   SDValue Op1 = N->getOperand(1);
490   unsigned Op0Opcode = Op0->getOpcode();
491 
492   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
493   // where $d + 1 == 2^n and n == 32
494   // or    $d + 1 == 2^n and n <= 32 and ZExt
495   // -> (MipsVExtractZExt $a, $b, $c)
496   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
497       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
498     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
499 
500     if (!Mask)
501       return SDValue();
502 
503     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
504 
505     if (Log2IfPositive <= 0)
506       return SDValue(); // Mask+1 is not a power of 2
507 
508     SDValue Op0Op2 = Op0->getOperand(2);
509     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
510     unsigned ExtendTySize = ExtendTy.getSizeInBits();
511     unsigned Log2 = Log2IfPositive;
512 
513     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
514         Log2 == ExtendTySize) {
515       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
516       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
517                          Op0->getVTList(),
518                          makeArrayRef(Ops, Op0->getNumOperands()));
519     }
520   }
521 
522   return SDValue();
523 }
524 
525 // Determine if the specified node is a constant vector splat.
526 //
527 // Returns true and sets Imm if:
528 // * N is a ISD::BUILD_VECTOR representing a constant splat
529 //
530 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
531 // differences are that it assumes the MSA has already been checked and the
532 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
533 // must not be in order for binsri.d to be selectable).
534 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
535   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
536 
537   if (!Node)
538     return false;
539 
540   APInt SplatValue, SplatUndef;
541   unsigned SplatBitSize;
542   bool HasAnyUndefs;
543 
544   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
545                              8, !IsLittleEndian))
546     return false;
547 
548   Imm = SplatValue;
549 
550   return true;
551 }
552 
553 // Test whether the given node is an all-ones build_vector.
554 static bool isVectorAllOnes(SDValue N) {
555   // Look through bitcasts. Endianness doesn't matter because we are looking
556   // for an all-ones value.
557   if (N->getOpcode() == ISD::BITCAST)
558     N = N->getOperand(0);
559 
560   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
561 
562   if (!BVN)
563     return false;
564 
565   APInt SplatValue, SplatUndef;
566   unsigned SplatBitSize;
567   bool HasAnyUndefs;
568 
569   // Endianness doesn't matter in this context because we are looking for
570   // an all-ones value.
571   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
572     return SplatValue.isAllOnesValue();
573 
574   return false;
575 }
576 
577 // Test whether N is the bitwise inverse of OfNode.
578 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
579   if (N->getOpcode() != ISD::XOR)
580     return false;
581 
582   if (isVectorAllOnes(N->getOperand(0)))
583     return N->getOperand(1) == OfNode;
584 
585   if (isVectorAllOnes(N->getOperand(1)))
586     return N->getOperand(0) == OfNode;
587 
588   return false;
589 }
590 
591 // Perform combines where ISD::OR is the root node.
592 //
593 // Performs the following transformations:
594 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
595 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
596 //   vector type.
597 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
598                                 TargetLowering::DAGCombinerInfo &DCI,
599                                 const MipsSubtarget &Subtarget) {
600   if (!Subtarget.hasMSA())
601     return SDValue();
602 
603   EVT Ty = N->getValueType(0);
604 
605   if (!Ty.is128BitVector())
606     return SDValue();
607 
608   SDValue Op0 = N->getOperand(0);
609   SDValue Op1 = N->getOperand(1);
610 
611   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
612     SDValue Op0Op0 = Op0->getOperand(0);
613     SDValue Op0Op1 = Op0->getOperand(1);
614     SDValue Op1Op0 = Op1->getOperand(0);
615     SDValue Op1Op1 = Op1->getOperand(1);
616     bool IsLittleEndian = !Subtarget.isLittle();
617 
618     SDValue IfSet, IfClr, Cond;
619     bool IsConstantMask = false;
620     APInt Mask, InvMask;
621 
622     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
623     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
624     // looking.
625     // IfClr will be set if we find a valid match.
626     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
627       Cond = Op0Op0;
628       IfSet = Op0Op1;
629 
630       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
631           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
632         IfClr = Op1Op1;
633       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
634                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
635         IfClr = Op1Op0;
636 
637       IsConstantMask = true;
638     }
639 
640     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
641     // thing again using this mask.
642     // IfClr will be set if we find a valid match.
643     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
644       Cond = Op0Op1;
645       IfSet = Op0Op0;
646 
647       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
648           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
649         IfClr = Op1Op1;
650       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
651                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
652         IfClr = Op1Op0;
653 
654       IsConstantMask = true;
655     }
656 
657     // If IfClr is not yet set, try looking for a non-constant match.
658     // IfClr will be set if we find a valid match amongst the eight
659     // possibilities.
660     if (!IfClr.getNode()) {
661       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
662         Cond = Op1Op0;
663         IfSet = Op1Op1;
664         IfClr = Op0Op1;
665       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
666         Cond = Op1Op0;
667         IfSet = Op1Op1;
668         IfClr = Op0Op0;
669       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
670         Cond = Op1Op1;
671         IfSet = Op1Op0;
672         IfClr = Op0Op1;
673       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
674         Cond = Op1Op1;
675         IfSet = Op1Op0;
676         IfClr = Op0Op0;
677       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
678         Cond = Op0Op0;
679         IfSet = Op0Op1;
680         IfClr = Op1Op1;
681       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
682         Cond = Op0Op0;
683         IfSet = Op0Op1;
684         IfClr = Op1Op0;
685       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
686         Cond = Op0Op1;
687         IfSet = Op0Op0;
688         IfClr = Op1Op1;
689       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
690         Cond = Op0Op1;
691         IfSet = Op0Op0;
692         IfClr = Op1Op0;
693       }
694     }
695 
696     // At this point, IfClr will be set if we have a valid match.
697     if (!IfClr.getNode())
698       return SDValue();
699 
700     assert(Cond.getNode() && IfSet.getNode());
701 
702     // Fold degenerate cases.
703     if (IsConstantMask) {
704       if (Mask.isAllOnesValue())
705         return IfSet;
706       else if (Mask == 0)
707         return IfClr;
708     }
709 
710     // Transform the DAG into an equivalent VSELECT.
711     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
712   }
713 
714   return SDValue();
715 }
716 
717 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
718                                                SelectionDAG &DAG,
719                                                const MipsSubtarget &Subtarget) {
720   // Estimate the number of operations the below transform will turn a
721   // constant multiply into. The number is approximately equal to the minimal
722   // number of powers of two that constant can be broken down to by adding
723   // or subtracting them.
724   //
725   // If we have taken more than 12[1] / 8[2] steps to attempt the
726   // optimization for a native sized value, it is more than likely that this
727   // optimization will make things worse.
728   //
729   // [1] MIPS64 requires 6 instructions at most to materialize any constant,
730   //     multiplication requires at least 4 cycles, but another cycle (or two)
731   //     to retrieve the result from the HI/LO registers.
732   //
733   // [2] For MIPS32, more than 8 steps is expensive as the constant could be
734   //     materialized in 2 instructions, multiplication requires at least 4
735   //     cycles, but another cycle (or two) to retrieve the result from the
736   //     HI/LO registers.
737   //
738   // TODO:
739   // - MaxSteps needs to consider the `VT` of the constant for the current
740   //   target.
741   // - Consider to perform this optimization after type legalization.
742   //   That allows to remove a workaround for types not supported natively.
743   // - Take in account `-Os, -Oz` flags because this optimization
744   //   increases code size.
745   unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12;
746 
747   SmallVector<APInt, 16> WorkStack(1, C);
748   unsigned Steps = 0;
749   unsigned BitWidth = C.getBitWidth();
750 
751   while (!WorkStack.empty()) {
752     APInt Val = WorkStack.pop_back_val();
753 
754     if (Val == 0 || Val == 1)
755       continue;
756 
757     if (Steps >= MaxSteps)
758       return false;
759 
760     if (Val.isPowerOf2()) {
761       ++Steps;
762       continue;
763     }
764 
765     APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
766     APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
767                                   : APInt(BitWidth, 1) << C.ceilLogBase2();
768     if ((Val - Floor).ule(Ceil - Val)) {
769       WorkStack.push_back(Floor);
770       WorkStack.push_back(Val - Floor);
771     } else {
772       WorkStack.push_back(Ceil);
773       WorkStack.push_back(Ceil - Val);
774     }
775 
776     ++Steps;
777   }
778 
779   // If the value being multiplied is not supported natively, we have to pay
780   // an additional legalization cost, conservatively assume an increase in the
781   // cost of 3 instructions per step. This values for this heuristic were
782   // determined experimentally.
783   unsigned RegisterSize = DAG.getTargetLoweringInfo()
784                               .getRegisterType(*DAG.getContext(), VT)
785                               .getSizeInBits();
786   Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
787   if (Steps > 27)
788     return false;
789 
790   return true;
791 }
792 
793 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
794                             EVT ShiftTy, SelectionDAG &DAG) {
795   // Return 0.
796   if (C == 0)
797     return DAG.getConstant(0, DL, VT);
798 
799   // Return x.
800   if (C == 1)
801     return X;
802 
803   // If c is power of 2, return (shl x, log2(c)).
804   if (C.isPowerOf2())
805     return DAG.getNode(ISD::SHL, DL, VT, X,
806                        DAG.getConstant(C.logBase2(), DL, ShiftTy));
807 
808   unsigned BitWidth = C.getBitWidth();
809   APInt Floor = APInt(BitWidth, 1) << C.logBase2();
810   APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
811                                 APInt(BitWidth, 1) << C.ceilLogBase2();
812 
813   // If |c - floor_c| <= |c - ceil_c|,
814   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
815   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
816   if ((C - Floor).ule(Ceil - C)) {
817     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
818     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
819     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
820   }
821 
822   // If |c - floor_c| > |c - ceil_c|,
823   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
824   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
825   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
826   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
827 }
828 
829 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
830                                  const TargetLowering::DAGCombinerInfo &DCI,
831                                  const MipsSETargetLowering *TL,
832                                  const MipsSubtarget &Subtarget) {
833   EVT VT = N->getValueType(0);
834 
835   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
836     if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
837                               C->getAPIntValue(), VT, DAG, Subtarget))
838       return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
839                           TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
840                           DAG);
841 
842   return SDValue(N, 0);
843 }
844 
845 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
846                                       SelectionDAG &DAG,
847                                       const MipsSubtarget &Subtarget) {
848   // See if this is a vector splat immediate node.
849   APInt SplatValue, SplatUndef;
850   unsigned SplatBitSize;
851   bool HasAnyUndefs;
852   unsigned EltSize = Ty.getScalarSizeInBits();
853   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
854 
855   if (!Subtarget.hasDSP())
856     return SDValue();
857 
858   if (!BV ||
859       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
860                            EltSize, !Subtarget.isLittle()) ||
861       (SplatBitSize != EltSize) ||
862       (SplatValue.getZExtValue() >= EltSize))
863     return SDValue();
864 
865   SDLoc DL(N);
866   return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
867                      DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
868 }
869 
870 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
871                                  TargetLowering::DAGCombinerInfo &DCI,
872                                  const MipsSubtarget &Subtarget) {
873   EVT Ty = N->getValueType(0);
874 
875   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
876     return SDValue();
877 
878   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
879 }
880 
881 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
882 // constant splats into MipsISD::SHRA_DSP for DSPr2.
883 //
884 // Performs the following transformations:
885 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
886 //   sign/zero-extension is completely overwritten by the new one performed by
887 //   the ISD::SRA and ISD::SHL nodes.
888 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
889 //   sequence.
890 //
891 // See performDSPShiftCombine for more information about the transformation
892 // used for DSPr2.
893 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
894                                  TargetLowering::DAGCombinerInfo &DCI,
895                                  const MipsSubtarget &Subtarget) {
896   EVT Ty = N->getValueType(0);
897 
898   if (Subtarget.hasMSA()) {
899     SDValue Op0 = N->getOperand(0);
900     SDValue Op1 = N->getOperand(1);
901 
902     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
903     // where $d + sizeof($c) == 32
904     // or    $d + sizeof($c) <= 32 and SExt
905     // -> (MipsVExtractSExt $a, $b, $c)
906     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
907       SDValue Op0Op0 = Op0->getOperand(0);
908       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
909 
910       if (!ShAmount)
911         return SDValue();
912 
913       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
914           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
915         return SDValue();
916 
917       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
918       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
919 
920       if (TotalBits == 32 ||
921           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
922            TotalBits <= 32)) {
923         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
924                           Op0Op0->getOperand(2) };
925         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
926                            Op0Op0->getVTList(),
927                            makeArrayRef(Ops, Op0Op0->getNumOperands()));
928       }
929     }
930   }
931 
932   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
933     return SDValue();
934 
935   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
936 }
937 
938 
939 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
940                                  TargetLowering::DAGCombinerInfo &DCI,
941                                  const MipsSubtarget &Subtarget) {
942   EVT Ty = N->getValueType(0);
943 
944   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
945     return SDValue();
946 
947   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
948 }
949 
950 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
951   bool IsV216 = (Ty == MVT::v2i16);
952 
953   switch (CC) {
954   case ISD::SETEQ:
955   case ISD::SETNE:  return true;
956   case ISD::SETLT:
957   case ISD::SETLE:
958   case ISD::SETGT:
959   case ISD::SETGE:  return IsV216;
960   case ISD::SETULT:
961   case ISD::SETULE:
962   case ISD::SETUGT:
963   case ISD::SETUGE: return !IsV216;
964   default:          return false;
965   }
966 }
967 
968 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
969   EVT Ty = N->getValueType(0);
970 
971   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
972     return SDValue();
973 
974   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
975     return SDValue();
976 
977   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
978                      N->getOperand(1), N->getOperand(2));
979 }
980 
981 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
982   EVT Ty = N->getValueType(0);
983 
984   if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
985     SDValue SetCC = N->getOperand(0);
986 
987     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
988       return SDValue();
989 
990     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
991                        SetCC.getOperand(0), SetCC.getOperand(1),
992                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
993   }
994 
995   return SDValue();
996 }
997 
998 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
999                                  const MipsSubtarget &Subtarget) {
1000   EVT Ty = N->getValueType(0);
1001 
1002   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1003     // Try the following combines:
1004     //   (xor (or $a, $b), (build_vector allones))
1005     //   (xor (or $a, $b), (bitcast (build_vector allones)))
1006     SDValue Op0 = N->getOperand(0);
1007     SDValue Op1 = N->getOperand(1);
1008     SDValue NotOp;
1009 
1010     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1011       NotOp = Op1;
1012     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1013       NotOp = Op0;
1014     else
1015       return SDValue();
1016 
1017     if (NotOp->getOpcode() == ISD::OR)
1018       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1019                          NotOp->getOperand(1));
1020   }
1021 
1022   return SDValue();
1023 }
1024 
1025 SDValue
1026 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1027   SelectionDAG &DAG = DCI.DAG;
1028   SDValue Val;
1029 
1030   switch (N->getOpcode()) {
1031   case ISD::AND:
1032     Val = performANDCombine(N, DAG, DCI, Subtarget);
1033     break;
1034   case ISD::OR:
1035     Val = performORCombine(N, DAG, DCI, Subtarget);
1036     break;
1037   case ISD::MUL:
1038     return performMULCombine(N, DAG, DCI, this, Subtarget);
1039   case ISD::SHL:
1040     Val = performSHLCombine(N, DAG, DCI, Subtarget);
1041     break;
1042   case ISD::SRA:
1043     return performSRACombine(N, DAG, DCI, Subtarget);
1044   case ISD::SRL:
1045     return performSRLCombine(N, DAG, DCI, Subtarget);
1046   case ISD::VSELECT:
1047     return performVSELECTCombine(N, DAG);
1048   case ISD::XOR:
1049     Val = performXORCombine(N, DAG, Subtarget);
1050     break;
1051   case ISD::SETCC:
1052     Val = performSETCCCombine(N, DAG);
1053     break;
1054   }
1055 
1056   if (Val.getNode()) {
1057     LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1058                N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
1059                Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
1060     return Val;
1061   }
1062 
1063   return MipsTargetLowering::PerformDAGCombine(N, DCI);
1064 }
1065 
1066 MachineBasicBlock *
1067 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1068                                                   MachineBasicBlock *BB) const {
1069   switch (MI.getOpcode()) {
1070   default:
1071     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1072   case Mips::BPOSGE32_PSEUDO:
1073     return emitBPOSGE32(MI, BB);
1074   case Mips::SNZ_B_PSEUDO:
1075     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1076   case Mips::SNZ_H_PSEUDO:
1077     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1078   case Mips::SNZ_W_PSEUDO:
1079     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1080   case Mips::SNZ_D_PSEUDO:
1081     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1082   case Mips::SNZ_V_PSEUDO:
1083     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1084   case Mips::SZ_B_PSEUDO:
1085     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1086   case Mips::SZ_H_PSEUDO:
1087     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1088   case Mips::SZ_W_PSEUDO:
1089     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1090   case Mips::SZ_D_PSEUDO:
1091     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1092   case Mips::SZ_V_PSEUDO:
1093     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1094   case Mips::COPY_FW_PSEUDO:
1095     return emitCOPY_FW(MI, BB);
1096   case Mips::COPY_FD_PSEUDO:
1097     return emitCOPY_FD(MI, BB);
1098   case Mips::INSERT_FW_PSEUDO:
1099     return emitINSERT_FW(MI, BB);
1100   case Mips::INSERT_FD_PSEUDO:
1101     return emitINSERT_FD(MI, BB);
1102   case Mips::INSERT_B_VIDX_PSEUDO:
1103   case Mips::INSERT_B_VIDX64_PSEUDO:
1104     return emitINSERT_DF_VIDX(MI, BB, 1, false);
1105   case Mips::INSERT_H_VIDX_PSEUDO:
1106   case Mips::INSERT_H_VIDX64_PSEUDO:
1107     return emitINSERT_DF_VIDX(MI, BB, 2, false);
1108   case Mips::INSERT_W_VIDX_PSEUDO:
1109   case Mips::INSERT_W_VIDX64_PSEUDO:
1110     return emitINSERT_DF_VIDX(MI, BB, 4, false);
1111   case Mips::INSERT_D_VIDX_PSEUDO:
1112   case Mips::INSERT_D_VIDX64_PSEUDO:
1113     return emitINSERT_DF_VIDX(MI, BB, 8, false);
1114   case Mips::INSERT_FW_VIDX_PSEUDO:
1115   case Mips::INSERT_FW_VIDX64_PSEUDO:
1116     return emitINSERT_DF_VIDX(MI, BB, 4, true);
1117   case Mips::INSERT_FD_VIDX_PSEUDO:
1118   case Mips::INSERT_FD_VIDX64_PSEUDO:
1119     return emitINSERT_DF_VIDX(MI, BB, 8, true);
1120   case Mips::FILL_FW_PSEUDO:
1121     return emitFILL_FW(MI, BB);
1122   case Mips::FILL_FD_PSEUDO:
1123     return emitFILL_FD(MI, BB);
1124   case Mips::FEXP2_W_1_PSEUDO:
1125     return emitFEXP2_W_1(MI, BB);
1126   case Mips::FEXP2_D_1_PSEUDO:
1127     return emitFEXP2_D_1(MI, BB);
1128   case Mips::ST_F16:
1129     return emitST_F16_PSEUDO(MI, BB);
1130   case Mips::LD_F16:
1131     return emitLD_F16_PSEUDO(MI, BB);
1132   case Mips::MSA_FP_EXTEND_W_PSEUDO:
1133     return emitFPEXTEND_PSEUDO(MI, BB, false);
1134   case Mips::MSA_FP_ROUND_W_PSEUDO:
1135     return emitFPROUND_PSEUDO(MI, BB, false);
1136   case Mips::MSA_FP_EXTEND_D_PSEUDO:
1137     return emitFPEXTEND_PSEUDO(MI, BB, true);
1138   case Mips::MSA_FP_ROUND_D_PSEUDO:
1139     return emitFPROUND_PSEUDO(MI, BB, true);
1140   }
1141 }
1142 
1143 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1144     const CCState &CCInfo, unsigned NextStackOffset,
1145     const MipsFunctionInfo &FI) const {
1146   if (!UseMipsTailCalls)
1147     return false;
1148 
1149   // Exception has to be cleared with eret.
1150   if (FI.isISR())
1151     return false;
1152 
1153   // Return false if either the callee or caller has a byval argument.
1154   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1155     return false;
1156 
1157   // Return true if the callee's argument area is no larger than the
1158   // caller's.
1159   return NextStackOffset <= FI.getIncomingArgSize();
1160 }
1161 
1162 void MipsSETargetLowering::
1163 getOpndList(SmallVectorImpl<SDValue> &Ops,
1164             std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
1165             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1166             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1167             SDValue Chain) const {
1168   Ops.push_back(Callee);
1169   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1170                                   InternalLinkage, IsCallReloc, CLI, Callee,
1171                                   Chain);
1172 }
1173 
1174 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1175   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1176 
1177   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1178     return MipsTargetLowering::lowerLOAD(Op, DAG);
1179 
1180   // Replace a double precision load with two i32 loads and a buildpair64.
1181   SDLoc DL(Op);
1182   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1183   EVT PtrVT = Ptr.getValueType();
1184 
1185   // i32 load from lower address.
1186   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
1187                            Nd.getAlignment(), Nd.getMemOperand()->getFlags());
1188 
1189   // i32 load from higher address.
1190   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1191   SDValue Hi = DAG.getLoad(
1192       MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
1193       std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags());
1194 
1195   if (!Subtarget.isLittle())
1196     std::swap(Lo, Hi);
1197 
1198   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1199   SDValue Ops[2] = {BP, Hi.getValue(1)};
1200   return DAG.getMergeValues(Ops, DL);
1201 }
1202 
1203 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1204   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1205 
1206   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1207     return MipsTargetLowering::lowerSTORE(Op, DAG);
1208 
1209   // Replace a double precision store with two extractelement64s and i32 stores.
1210   SDLoc DL(Op);
1211   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1212   EVT PtrVT = Ptr.getValueType();
1213   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1214                            Val, DAG.getConstant(0, DL, MVT::i32));
1215   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1216                            Val, DAG.getConstant(1, DL, MVT::i32));
1217 
1218   if (!Subtarget.isLittle())
1219     std::swap(Lo, Hi);
1220 
1221   // i32 store to lower address.
1222   Chain =
1223       DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlignment(),
1224                    Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1225 
1226   // i32 store to higher address.
1227   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1228   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1229                       std::min(Nd.getAlignment(), 4U),
1230                       Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1231 }
1232 
1233 SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op,
1234                                            SelectionDAG &DAG) const {
1235   SDLoc DL(Op);
1236   MVT Src = Op.getOperand(0).getValueType().getSimpleVT();
1237   MVT Dest = Op.getValueType().getSimpleVT();
1238 
1239   // Bitcast i64 to double.
1240   if (Src == MVT::i64 && Dest == MVT::f64) {
1241     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
1242                              Op.getOperand(0), DAG.getIntPtrConstant(0, DL));
1243     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
1244                              Op.getOperand(0), DAG.getIntPtrConstant(1, DL));
1245     return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1246   }
1247 
1248   // Bitcast double to i64.
1249   if (Src == MVT::f64 && Dest == MVT::i64) {
1250     SDValue Lo =
1251         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1252                     DAG.getConstant(0, DL, MVT::i32));
1253     SDValue Hi =
1254         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1255                     DAG.getConstant(1, DL, MVT::i32));
1256     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1257   }
1258 
1259   // Skip other cases of bitcast and use default lowering.
1260   return SDValue();
1261 }
1262 
1263 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1264                                           bool HasLo, bool HasHi,
1265                                           SelectionDAG &DAG) const {
1266   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1267   assert(!Subtarget.hasMips32r6());
1268 
1269   EVT Ty = Op.getOperand(0).getValueType();
1270   SDLoc DL(Op);
1271   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1272                              Op.getOperand(0), Op.getOperand(1));
1273   SDValue Lo, Hi;
1274 
1275   if (HasLo)
1276     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1277   if (HasHi)
1278     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1279 
1280   if (!HasLo || !HasHi)
1281     return HasLo ? Lo : Hi;
1282 
1283   SDValue Vals[] = { Lo, Hi };
1284   return DAG.getMergeValues(Vals, DL);
1285 }
1286 
1287 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1288   SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1289                              DAG.getConstant(0, DL, MVT::i32));
1290   SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1291                              DAG.getConstant(1, DL, MVT::i32));
1292   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1293 }
1294 
1295 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1296   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1297   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1298   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1299 }
1300 
1301 // This function expands mips intrinsic nodes which have 64-bit input operands
1302 // or output values.
1303 //
1304 // out64 = intrinsic-node in64
1305 // =>
1306 // lo = copy (extract-element (in64, 0))
1307 // hi = copy (extract-element (in64, 1))
1308 // mips-specific-node
1309 // v0 = copy lo
1310 // v1 = copy hi
1311 // out64 = merge-values (v0, v1)
1312 //
1313 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1314   SDLoc DL(Op);
1315   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1316   SmallVector<SDValue, 3> Ops;
1317   unsigned OpNo = 0;
1318 
1319   // See if Op has a chain input.
1320   if (HasChainIn)
1321     Ops.push_back(Op->getOperand(OpNo++));
1322 
1323   // The next operand is the intrinsic opcode.
1324   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1325 
1326   // See if the next operand has type i64.
1327   SDValue Opnd = Op->getOperand(++OpNo), In64;
1328 
1329   if (Opnd.getValueType() == MVT::i64)
1330     In64 = initAccumulator(Opnd, DL, DAG);
1331   else
1332     Ops.push_back(Opnd);
1333 
1334   // Push the remaining operands.
1335   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1336     Ops.push_back(Op->getOperand(OpNo));
1337 
1338   // Add In64 to the end of the list.
1339   if (In64.getNode())
1340     Ops.push_back(In64);
1341 
1342   // Scan output.
1343   SmallVector<EVT, 2> ResTys;
1344 
1345   for (EVT Ty : Op->values())
1346     ResTys.push_back((Ty == MVT::i64) ? MVT::Untyped : Ty);
1347 
1348   // Create node.
1349   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1350   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1351 
1352   if (!HasChainIn)
1353     return Out;
1354 
1355   assert(Val->getValueType(1) == MVT::Other);
1356   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1357   return DAG.getMergeValues(Vals, DL);
1358 }
1359 
1360 // Lower an MSA copy intrinsic into the specified SelectionDAG node
1361 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1362   SDLoc DL(Op);
1363   SDValue Vec = Op->getOperand(1);
1364   SDValue Idx = Op->getOperand(2);
1365   EVT ResTy = Op->getValueType(0);
1366   EVT EltTy = Vec->getValueType(0).getVectorElementType();
1367 
1368   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1369                                DAG.getValueType(EltTy));
1370 
1371   return Result;
1372 }
1373 
1374 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1375   EVT ResVecTy = Op->getValueType(0);
1376   EVT ViaVecTy = ResVecTy;
1377   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1378   SDLoc DL(Op);
1379 
1380   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1381   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1382   // lanes.
1383   SDValue LaneA = Op->getOperand(OpNr);
1384   SDValue LaneB;
1385 
1386   if (ResVecTy == MVT::v2i64) {
1387     // In case of the index being passed as an immediate value, set the upper
1388     // lane to 0 so that the splati.d instruction can be matched.
1389     if (isa<ConstantSDNode>(LaneA))
1390       LaneB = DAG.getConstant(0, DL, MVT::i32);
1391     // Having the index passed in a register, set the upper lane to the same
1392     // value as the lower - this results in the BUILD_VECTOR node not being
1393     // expanded through stack. This way we are able to pattern match the set of
1394     // nodes created here to splat.d.
1395     else
1396       LaneB = LaneA;
1397     ViaVecTy = MVT::v4i32;
1398     if(BigEndian)
1399       std::swap(LaneA, LaneB);
1400   } else
1401     LaneB = LaneA;
1402 
1403   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1404                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1405 
1406   SDValue Result = DAG.getBuildVector(
1407       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1408 
1409   if (ViaVecTy != ResVecTy) {
1410     SDValue One = DAG.getConstant(1, DL, ViaVecTy);
1411     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
1412                          DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
1413   }
1414 
1415   return Result;
1416 }
1417 
1418 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
1419                                 bool IsSigned = false) {
1420   auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp));
1421   return DAG.getConstant(
1422       APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
1423             IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
1424       SDLoc(Op), Op->getValueType(0));
1425 }
1426 
1427 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1428                                    bool BigEndian, SelectionDAG &DAG) {
1429   EVT ViaVecTy = VecTy;
1430   SDValue SplatValueA = SplatValue;
1431   SDValue SplatValueB = SplatValue;
1432   SDLoc DL(SplatValue);
1433 
1434   if (VecTy == MVT::v2i64) {
1435     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1436     ViaVecTy = MVT::v4i32;
1437 
1438     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1439     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1440                               DAG.getConstant(32, DL, MVT::i32));
1441     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1442   }
1443 
1444   // We currently hold the parts in little endian order. Swap them if
1445   // necessary.
1446   if (BigEndian)
1447     std::swap(SplatValueA, SplatValueB);
1448 
1449   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1450                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1451                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1452                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1453 
1454   SDValue Result = DAG.getBuildVector(
1455       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1456 
1457   if (VecTy != ViaVecTy)
1458     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1459 
1460   return Result;
1461 }
1462 
1463 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1464                                         unsigned Opc, SDValue Imm,
1465                                         bool BigEndian) {
1466   EVT VecTy = Op->getValueType(0);
1467   SDValue Exp2Imm;
1468   SDLoc DL(Op);
1469 
1470   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1471   // here for now.
1472   if (VecTy == MVT::v2i64) {
1473     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1474       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1475 
1476       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1477                                            MVT::i32);
1478       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1479 
1480       if (BigEndian)
1481         std::swap(BitImmLoOp, BitImmHiOp);
1482 
1483       Exp2Imm = DAG.getNode(
1484           ISD::BITCAST, DL, MVT::v2i64,
1485           DAG.getBuildVector(MVT::v4i32, DL,
1486                              {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1487     }
1488   }
1489 
1490   if (!Exp2Imm.getNode()) {
1491     // We couldnt constant fold, do a vector shift instead
1492 
1493     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1494     // only values 0-63 are valid.
1495     if (VecTy == MVT::v2i64)
1496       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1497 
1498     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1499 
1500     Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1501                           Exp2Imm);
1502   }
1503 
1504   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1505 }
1506 
1507 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
1508   SDLoc DL(Op);
1509   EVT ResTy = Op->getValueType(0);
1510   SDValue Vec = Op->getOperand(2);
1511   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1512   MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
1513   SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
1514                                        DL, ResEltTy);
1515   SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
1516 
1517   return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
1518 }
1519 
1520 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1521   EVT ResTy = Op->getValueType(0);
1522   SDLoc DL(Op);
1523   SDValue One = DAG.getConstant(1, DL, ResTy);
1524   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
1525 
1526   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1527                      DAG.getNOT(DL, Bit, ResTy));
1528 }
1529 
1530 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1531   SDLoc DL(Op);
1532   EVT ResTy = Op->getValueType(0);
1533   APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
1534                  << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1535   SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1536 
1537   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1538 }
1539 
1540 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1541                                                       SelectionDAG &DAG) const {
1542   SDLoc DL(Op);
1543   unsigned Intrinsic = cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue();
1544   switch (Intrinsic) {
1545   default:
1546     return SDValue();
1547   case Intrinsic::mips_shilo:
1548     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1549   case Intrinsic::mips_dpau_h_qbl:
1550     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1551   case Intrinsic::mips_dpau_h_qbr:
1552     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1553   case Intrinsic::mips_dpsu_h_qbl:
1554     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1555   case Intrinsic::mips_dpsu_h_qbr:
1556     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1557   case Intrinsic::mips_dpa_w_ph:
1558     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1559   case Intrinsic::mips_dps_w_ph:
1560     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1561   case Intrinsic::mips_dpax_w_ph:
1562     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1563   case Intrinsic::mips_dpsx_w_ph:
1564     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1565   case Intrinsic::mips_mulsa_w_ph:
1566     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1567   case Intrinsic::mips_mult:
1568     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1569   case Intrinsic::mips_multu:
1570     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1571   case Intrinsic::mips_madd:
1572     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1573   case Intrinsic::mips_maddu:
1574     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1575   case Intrinsic::mips_msub:
1576     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1577   case Intrinsic::mips_msubu:
1578     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1579   case Intrinsic::mips_addv_b:
1580   case Intrinsic::mips_addv_h:
1581   case Intrinsic::mips_addv_w:
1582   case Intrinsic::mips_addv_d:
1583     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1584                        Op->getOperand(2));
1585   case Intrinsic::mips_addvi_b:
1586   case Intrinsic::mips_addvi_h:
1587   case Intrinsic::mips_addvi_w:
1588   case Intrinsic::mips_addvi_d:
1589     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1590                        lowerMSASplatImm(Op, 2, DAG));
1591   case Intrinsic::mips_and_v:
1592     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1593                        Op->getOperand(2));
1594   case Intrinsic::mips_andi_b:
1595     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1596                        lowerMSASplatImm(Op, 2, DAG));
1597   case Intrinsic::mips_bclr_b:
1598   case Intrinsic::mips_bclr_h:
1599   case Intrinsic::mips_bclr_w:
1600   case Intrinsic::mips_bclr_d:
1601     return lowerMSABitClear(Op, DAG);
1602   case Intrinsic::mips_bclri_b:
1603   case Intrinsic::mips_bclri_h:
1604   case Intrinsic::mips_bclri_w:
1605   case Intrinsic::mips_bclri_d:
1606     return lowerMSABitClearImm(Op, DAG);
1607   case Intrinsic::mips_binsli_b:
1608   case Intrinsic::mips_binsli_h:
1609   case Intrinsic::mips_binsli_w:
1610   case Intrinsic::mips_binsli_d: {
1611     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1612     EVT VecTy = Op->getValueType(0);
1613     EVT EltTy = VecTy.getVectorElementType();
1614     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1615       report_fatal_error("Immediate out of range");
1616     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1617                                        Op->getConstantOperandVal(3) + 1);
1618     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1619                        DAG.getConstant(Mask, DL, VecTy, true),
1620                        Op->getOperand(2), Op->getOperand(1));
1621   }
1622   case Intrinsic::mips_binsri_b:
1623   case Intrinsic::mips_binsri_h:
1624   case Intrinsic::mips_binsri_w:
1625   case Intrinsic::mips_binsri_d: {
1626     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1627     EVT VecTy = Op->getValueType(0);
1628     EVT EltTy = VecTy.getVectorElementType();
1629     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1630       report_fatal_error("Immediate out of range");
1631     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1632                                       Op->getConstantOperandVal(3) + 1);
1633     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1634                        DAG.getConstant(Mask, DL, VecTy, true),
1635                        Op->getOperand(2), Op->getOperand(1));
1636   }
1637   case Intrinsic::mips_bmnz_v:
1638     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1639                        Op->getOperand(2), Op->getOperand(1));
1640   case Intrinsic::mips_bmnzi_b:
1641     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1642                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1643                        Op->getOperand(1));
1644   case Intrinsic::mips_bmz_v:
1645     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1646                        Op->getOperand(1), Op->getOperand(2));
1647   case Intrinsic::mips_bmzi_b:
1648     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1649                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1650                        Op->getOperand(2));
1651   case Intrinsic::mips_bneg_b:
1652   case Intrinsic::mips_bneg_h:
1653   case Intrinsic::mips_bneg_w:
1654   case Intrinsic::mips_bneg_d: {
1655     EVT VecTy = Op->getValueType(0);
1656     SDValue One = DAG.getConstant(1, DL, VecTy);
1657 
1658     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1659                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1660                                    truncateVecElts(Op, DAG)));
1661   }
1662   case Intrinsic::mips_bnegi_b:
1663   case Intrinsic::mips_bnegi_h:
1664   case Intrinsic::mips_bnegi_w:
1665   case Intrinsic::mips_bnegi_d:
1666     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1667                                     !Subtarget.isLittle());
1668   case Intrinsic::mips_bnz_b:
1669   case Intrinsic::mips_bnz_h:
1670   case Intrinsic::mips_bnz_w:
1671   case Intrinsic::mips_bnz_d:
1672     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1673                        Op->getOperand(1));
1674   case Intrinsic::mips_bnz_v:
1675     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1676                        Op->getOperand(1));
1677   case Intrinsic::mips_bsel_v:
1678     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1679     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1680                        Op->getOperand(1), Op->getOperand(3),
1681                        Op->getOperand(2));
1682   case Intrinsic::mips_bseli_b:
1683     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1684     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1685                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1686                        Op->getOperand(2));
1687   case Intrinsic::mips_bset_b:
1688   case Intrinsic::mips_bset_h:
1689   case Intrinsic::mips_bset_w:
1690   case Intrinsic::mips_bset_d: {
1691     EVT VecTy = Op->getValueType(0);
1692     SDValue One = DAG.getConstant(1, DL, VecTy);
1693 
1694     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1695                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1696                                    truncateVecElts(Op, DAG)));
1697   }
1698   case Intrinsic::mips_bseti_b:
1699   case Intrinsic::mips_bseti_h:
1700   case Intrinsic::mips_bseti_w:
1701   case Intrinsic::mips_bseti_d:
1702     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1703                                     !Subtarget.isLittle());
1704   case Intrinsic::mips_bz_b:
1705   case Intrinsic::mips_bz_h:
1706   case Intrinsic::mips_bz_w:
1707   case Intrinsic::mips_bz_d:
1708     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1709                        Op->getOperand(1));
1710   case Intrinsic::mips_bz_v:
1711     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1712                        Op->getOperand(1));
1713   case Intrinsic::mips_ceq_b:
1714   case Intrinsic::mips_ceq_h:
1715   case Intrinsic::mips_ceq_w:
1716   case Intrinsic::mips_ceq_d:
1717     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1718                         Op->getOperand(2), ISD::SETEQ);
1719   case Intrinsic::mips_ceqi_b:
1720   case Intrinsic::mips_ceqi_h:
1721   case Intrinsic::mips_ceqi_w:
1722   case Intrinsic::mips_ceqi_d:
1723     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1724                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
1725   case Intrinsic::mips_cle_s_b:
1726   case Intrinsic::mips_cle_s_h:
1727   case Intrinsic::mips_cle_s_w:
1728   case Intrinsic::mips_cle_s_d:
1729     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1730                         Op->getOperand(2), ISD::SETLE);
1731   case Intrinsic::mips_clei_s_b:
1732   case Intrinsic::mips_clei_s_h:
1733   case Intrinsic::mips_clei_s_w:
1734   case Intrinsic::mips_clei_s_d:
1735     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1736                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
1737   case Intrinsic::mips_cle_u_b:
1738   case Intrinsic::mips_cle_u_h:
1739   case Intrinsic::mips_cle_u_w:
1740   case Intrinsic::mips_cle_u_d:
1741     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1742                         Op->getOperand(2), ISD::SETULE);
1743   case Intrinsic::mips_clei_u_b:
1744   case Intrinsic::mips_clei_u_h:
1745   case Intrinsic::mips_clei_u_w:
1746   case Intrinsic::mips_clei_u_d:
1747     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1748                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1749   case Intrinsic::mips_clt_s_b:
1750   case Intrinsic::mips_clt_s_h:
1751   case Intrinsic::mips_clt_s_w:
1752   case Intrinsic::mips_clt_s_d:
1753     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1754                         Op->getOperand(2), ISD::SETLT);
1755   case Intrinsic::mips_clti_s_b:
1756   case Intrinsic::mips_clti_s_h:
1757   case Intrinsic::mips_clti_s_w:
1758   case Intrinsic::mips_clti_s_d:
1759     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1760                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
1761   case Intrinsic::mips_clt_u_b:
1762   case Intrinsic::mips_clt_u_h:
1763   case Intrinsic::mips_clt_u_w:
1764   case Intrinsic::mips_clt_u_d:
1765     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1766                         Op->getOperand(2), ISD::SETULT);
1767   case Intrinsic::mips_clti_u_b:
1768   case Intrinsic::mips_clti_u_h:
1769   case Intrinsic::mips_clti_u_w:
1770   case Intrinsic::mips_clti_u_d:
1771     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1772                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1773   case Intrinsic::mips_copy_s_b:
1774   case Intrinsic::mips_copy_s_h:
1775   case Intrinsic::mips_copy_s_w:
1776     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1777   case Intrinsic::mips_copy_s_d:
1778     if (Subtarget.hasMips64())
1779       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1780       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1781     else {
1782       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1783       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1784       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1785                          Op->getValueType(0), Op->getOperand(1),
1786                          Op->getOperand(2));
1787     }
1788   case Intrinsic::mips_copy_u_b:
1789   case Intrinsic::mips_copy_u_h:
1790   case Intrinsic::mips_copy_u_w:
1791     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1792   case Intrinsic::mips_copy_u_d:
1793     if (Subtarget.hasMips64())
1794       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1795       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1796     else {
1797       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1798       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1799       // Note: When i64 is illegal, this results in copy_s.w instructions
1800       // instead of copy_u.w instructions. This makes no difference to the
1801       // behaviour since i64 is only illegal when the register file is 32-bit.
1802       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1803                          Op->getValueType(0), Op->getOperand(1),
1804                          Op->getOperand(2));
1805     }
1806   case Intrinsic::mips_div_s_b:
1807   case Intrinsic::mips_div_s_h:
1808   case Intrinsic::mips_div_s_w:
1809   case Intrinsic::mips_div_s_d:
1810     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1811                        Op->getOperand(2));
1812   case Intrinsic::mips_div_u_b:
1813   case Intrinsic::mips_div_u_h:
1814   case Intrinsic::mips_div_u_w:
1815   case Intrinsic::mips_div_u_d:
1816     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1817                        Op->getOperand(2));
1818   case Intrinsic::mips_fadd_w:
1819   case Intrinsic::mips_fadd_d:
1820     // TODO: If intrinsics have fast-math-flags, propagate them.
1821     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1822                        Op->getOperand(2));
1823   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1824   case Intrinsic::mips_fceq_w:
1825   case Intrinsic::mips_fceq_d:
1826     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1827                         Op->getOperand(2), ISD::SETOEQ);
1828   case Intrinsic::mips_fcle_w:
1829   case Intrinsic::mips_fcle_d:
1830     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1831                         Op->getOperand(2), ISD::SETOLE);
1832   case Intrinsic::mips_fclt_w:
1833   case Intrinsic::mips_fclt_d:
1834     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1835                         Op->getOperand(2), ISD::SETOLT);
1836   case Intrinsic::mips_fcne_w:
1837   case Intrinsic::mips_fcne_d:
1838     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1839                         Op->getOperand(2), ISD::SETONE);
1840   case Intrinsic::mips_fcor_w:
1841   case Intrinsic::mips_fcor_d:
1842     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1843                         Op->getOperand(2), ISD::SETO);
1844   case Intrinsic::mips_fcueq_w:
1845   case Intrinsic::mips_fcueq_d:
1846     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1847                         Op->getOperand(2), ISD::SETUEQ);
1848   case Intrinsic::mips_fcule_w:
1849   case Intrinsic::mips_fcule_d:
1850     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1851                         Op->getOperand(2), ISD::SETULE);
1852   case Intrinsic::mips_fcult_w:
1853   case Intrinsic::mips_fcult_d:
1854     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1855                         Op->getOperand(2), ISD::SETULT);
1856   case Intrinsic::mips_fcun_w:
1857   case Intrinsic::mips_fcun_d:
1858     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1859                         Op->getOperand(2), ISD::SETUO);
1860   case Intrinsic::mips_fcune_w:
1861   case Intrinsic::mips_fcune_d:
1862     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1863                         Op->getOperand(2), ISD::SETUNE);
1864   case Intrinsic::mips_fdiv_w:
1865   case Intrinsic::mips_fdiv_d:
1866     // TODO: If intrinsics have fast-math-flags, propagate them.
1867     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1868                        Op->getOperand(2));
1869   case Intrinsic::mips_ffint_u_w:
1870   case Intrinsic::mips_ffint_u_d:
1871     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1872                        Op->getOperand(1));
1873   case Intrinsic::mips_ffint_s_w:
1874   case Intrinsic::mips_ffint_s_d:
1875     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1876                        Op->getOperand(1));
1877   case Intrinsic::mips_fill_b:
1878   case Intrinsic::mips_fill_h:
1879   case Intrinsic::mips_fill_w:
1880   case Intrinsic::mips_fill_d: {
1881     EVT ResTy = Op->getValueType(0);
1882     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1883                                  Op->getOperand(1));
1884 
1885     // If ResTy is v2i64 then the type legalizer will break this node down into
1886     // an equivalent v4i32.
1887     return DAG.getBuildVector(ResTy, DL, Ops);
1888   }
1889   case Intrinsic::mips_fexp2_w:
1890   case Intrinsic::mips_fexp2_d: {
1891     // TODO: If intrinsics have fast-math-flags, propagate them.
1892     EVT ResTy = Op->getValueType(0);
1893     return DAG.getNode(
1894         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1895         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1896   }
1897   case Intrinsic::mips_flog2_w:
1898   case Intrinsic::mips_flog2_d:
1899     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1900   case Intrinsic::mips_fmadd_w:
1901   case Intrinsic::mips_fmadd_d:
1902     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1903                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1904   case Intrinsic::mips_fmul_w:
1905   case Intrinsic::mips_fmul_d:
1906     // TODO: If intrinsics have fast-math-flags, propagate them.
1907     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1908                        Op->getOperand(2));
1909   case Intrinsic::mips_fmsub_w:
1910   case Intrinsic::mips_fmsub_d: {
1911     // TODO: If intrinsics have fast-math-flags, propagate them.
1912     return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
1913                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1914   }
1915   case Intrinsic::mips_frint_w:
1916   case Intrinsic::mips_frint_d:
1917     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1918   case Intrinsic::mips_fsqrt_w:
1919   case Intrinsic::mips_fsqrt_d:
1920     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1921   case Intrinsic::mips_fsub_w:
1922   case Intrinsic::mips_fsub_d:
1923     // TODO: If intrinsics have fast-math-flags, propagate them.
1924     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1925                        Op->getOperand(2));
1926   case Intrinsic::mips_ftrunc_u_w:
1927   case Intrinsic::mips_ftrunc_u_d:
1928     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1929                        Op->getOperand(1));
1930   case Intrinsic::mips_ftrunc_s_w:
1931   case Intrinsic::mips_ftrunc_s_d:
1932     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1933                        Op->getOperand(1));
1934   case Intrinsic::mips_ilvev_b:
1935   case Intrinsic::mips_ilvev_h:
1936   case Intrinsic::mips_ilvev_w:
1937   case Intrinsic::mips_ilvev_d:
1938     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1939                        Op->getOperand(1), Op->getOperand(2));
1940   case Intrinsic::mips_ilvl_b:
1941   case Intrinsic::mips_ilvl_h:
1942   case Intrinsic::mips_ilvl_w:
1943   case Intrinsic::mips_ilvl_d:
1944     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1945                        Op->getOperand(1), Op->getOperand(2));
1946   case Intrinsic::mips_ilvod_b:
1947   case Intrinsic::mips_ilvod_h:
1948   case Intrinsic::mips_ilvod_w:
1949   case Intrinsic::mips_ilvod_d:
1950     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1951                        Op->getOperand(1), Op->getOperand(2));
1952   case Intrinsic::mips_ilvr_b:
1953   case Intrinsic::mips_ilvr_h:
1954   case Intrinsic::mips_ilvr_w:
1955   case Intrinsic::mips_ilvr_d:
1956     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1957                        Op->getOperand(1), Op->getOperand(2));
1958   case Intrinsic::mips_insert_b:
1959   case Intrinsic::mips_insert_h:
1960   case Intrinsic::mips_insert_w:
1961   case Intrinsic::mips_insert_d:
1962     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1963                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1964   case Intrinsic::mips_insve_b:
1965   case Intrinsic::mips_insve_h:
1966   case Intrinsic::mips_insve_w:
1967   case Intrinsic::mips_insve_d: {
1968     // Report an error for out of range values.
1969     int64_t Max;
1970     switch (Intrinsic) {
1971     case Intrinsic::mips_insve_b: Max = 15; break;
1972     case Intrinsic::mips_insve_h: Max = 7; break;
1973     case Intrinsic::mips_insve_w: Max = 3; break;
1974     case Intrinsic::mips_insve_d: Max = 1; break;
1975     default: llvm_unreachable("Unmatched intrinsic");
1976     }
1977     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
1978     if (Value < 0 || Value > Max)
1979       report_fatal_error("Immediate out of range");
1980     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1981                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1982                        DAG.getConstant(0, DL, MVT::i32));
1983     }
1984   case Intrinsic::mips_ldi_b:
1985   case Intrinsic::mips_ldi_h:
1986   case Intrinsic::mips_ldi_w:
1987   case Intrinsic::mips_ldi_d:
1988     return lowerMSASplatImm(Op, 1, DAG, true);
1989   case Intrinsic::mips_lsa:
1990   case Intrinsic::mips_dlsa: {
1991     EVT ResTy = Op->getValueType(0);
1992     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1993                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1994                                    Op->getOperand(2), Op->getOperand(3)));
1995   }
1996   case Intrinsic::mips_maddv_b:
1997   case Intrinsic::mips_maddv_h:
1998   case Intrinsic::mips_maddv_w:
1999   case Intrinsic::mips_maddv_d: {
2000     EVT ResTy = Op->getValueType(0);
2001     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
2002                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2003                                    Op->getOperand(2), Op->getOperand(3)));
2004   }
2005   case Intrinsic::mips_max_s_b:
2006   case Intrinsic::mips_max_s_h:
2007   case Intrinsic::mips_max_s_w:
2008   case Intrinsic::mips_max_s_d:
2009     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2010                        Op->getOperand(1), Op->getOperand(2));
2011   case Intrinsic::mips_max_u_b:
2012   case Intrinsic::mips_max_u_h:
2013   case Intrinsic::mips_max_u_w:
2014   case Intrinsic::mips_max_u_d:
2015     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2016                        Op->getOperand(1), Op->getOperand(2));
2017   case Intrinsic::mips_maxi_s_b:
2018   case Intrinsic::mips_maxi_s_h:
2019   case Intrinsic::mips_maxi_s_w:
2020   case Intrinsic::mips_maxi_s_d:
2021     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2022                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2023   case Intrinsic::mips_maxi_u_b:
2024   case Intrinsic::mips_maxi_u_h:
2025   case Intrinsic::mips_maxi_u_w:
2026   case Intrinsic::mips_maxi_u_d:
2027     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2028                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2029   case Intrinsic::mips_min_s_b:
2030   case Intrinsic::mips_min_s_h:
2031   case Intrinsic::mips_min_s_w:
2032   case Intrinsic::mips_min_s_d:
2033     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2034                        Op->getOperand(1), Op->getOperand(2));
2035   case Intrinsic::mips_min_u_b:
2036   case Intrinsic::mips_min_u_h:
2037   case Intrinsic::mips_min_u_w:
2038   case Intrinsic::mips_min_u_d:
2039     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2040                        Op->getOperand(1), Op->getOperand(2));
2041   case Intrinsic::mips_mini_s_b:
2042   case Intrinsic::mips_mini_s_h:
2043   case Intrinsic::mips_mini_s_w:
2044   case Intrinsic::mips_mini_s_d:
2045     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2046                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2047   case Intrinsic::mips_mini_u_b:
2048   case Intrinsic::mips_mini_u_h:
2049   case Intrinsic::mips_mini_u_w:
2050   case Intrinsic::mips_mini_u_d:
2051     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2052                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2053   case Intrinsic::mips_mod_s_b:
2054   case Intrinsic::mips_mod_s_h:
2055   case Intrinsic::mips_mod_s_w:
2056   case Intrinsic::mips_mod_s_d:
2057     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2058                        Op->getOperand(2));
2059   case Intrinsic::mips_mod_u_b:
2060   case Intrinsic::mips_mod_u_h:
2061   case Intrinsic::mips_mod_u_w:
2062   case Intrinsic::mips_mod_u_d:
2063     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2064                        Op->getOperand(2));
2065   case Intrinsic::mips_mulv_b:
2066   case Intrinsic::mips_mulv_h:
2067   case Intrinsic::mips_mulv_w:
2068   case Intrinsic::mips_mulv_d:
2069     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2070                        Op->getOperand(2));
2071   case Intrinsic::mips_msubv_b:
2072   case Intrinsic::mips_msubv_h:
2073   case Intrinsic::mips_msubv_w:
2074   case Intrinsic::mips_msubv_d: {
2075     EVT ResTy = Op->getValueType(0);
2076     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2077                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2078                                    Op->getOperand(2), Op->getOperand(3)));
2079   }
2080   case Intrinsic::mips_nlzc_b:
2081   case Intrinsic::mips_nlzc_h:
2082   case Intrinsic::mips_nlzc_w:
2083   case Intrinsic::mips_nlzc_d:
2084     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2085   case Intrinsic::mips_nor_v: {
2086     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2087                               Op->getOperand(1), Op->getOperand(2));
2088     return DAG.getNOT(DL, Res, Res->getValueType(0));
2089   }
2090   case Intrinsic::mips_nori_b: {
2091     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2092                                Op->getOperand(1),
2093                                lowerMSASplatImm(Op, 2, DAG));
2094     return DAG.getNOT(DL, Res, Res->getValueType(0));
2095   }
2096   case Intrinsic::mips_or_v:
2097     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2098                        Op->getOperand(2));
2099   case Intrinsic::mips_ori_b:
2100     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2101                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2102   case Intrinsic::mips_pckev_b:
2103   case Intrinsic::mips_pckev_h:
2104   case Intrinsic::mips_pckev_w:
2105   case Intrinsic::mips_pckev_d:
2106     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2107                        Op->getOperand(1), Op->getOperand(2));
2108   case Intrinsic::mips_pckod_b:
2109   case Intrinsic::mips_pckod_h:
2110   case Intrinsic::mips_pckod_w:
2111   case Intrinsic::mips_pckod_d:
2112     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2113                        Op->getOperand(1), Op->getOperand(2));
2114   case Intrinsic::mips_pcnt_b:
2115   case Intrinsic::mips_pcnt_h:
2116   case Intrinsic::mips_pcnt_w:
2117   case Intrinsic::mips_pcnt_d:
2118     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2119   case Intrinsic::mips_sat_s_b:
2120   case Intrinsic::mips_sat_s_h:
2121   case Intrinsic::mips_sat_s_w:
2122   case Intrinsic::mips_sat_s_d:
2123   case Intrinsic::mips_sat_u_b:
2124   case Intrinsic::mips_sat_u_h:
2125   case Intrinsic::mips_sat_u_w:
2126   case Intrinsic::mips_sat_u_d: {
2127     // Report an error for out of range values.
2128     int64_t Max;
2129     switch (Intrinsic) {
2130     case Intrinsic::mips_sat_s_b:
2131     case Intrinsic::mips_sat_u_b: Max = 7;  break;
2132     case Intrinsic::mips_sat_s_h:
2133     case Intrinsic::mips_sat_u_h: Max = 15; break;
2134     case Intrinsic::mips_sat_s_w:
2135     case Intrinsic::mips_sat_u_w: Max = 31; break;
2136     case Intrinsic::mips_sat_s_d:
2137     case Intrinsic::mips_sat_u_d: Max = 63; break;
2138     default: llvm_unreachable("Unmatched intrinsic");
2139     }
2140     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2141     if (Value < 0 || Value > Max)
2142       report_fatal_error("Immediate out of range");
2143     return SDValue();
2144   }
2145   case Intrinsic::mips_shf_b:
2146   case Intrinsic::mips_shf_h:
2147   case Intrinsic::mips_shf_w: {
2148     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2149     if (Value < 0 || Value > 255)
2150       report_fatal_error("Immediate out of range");
2151     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2152                        Op->getOperand(2), Op->getOperand(1));
2153   }
2154   case Intrinsic::mips_sldi_b:
2155   case Intrinsic::mips_sldi_h:
2156   case Intrinsic::mips_sldi_w:
2157   case Intrinsic::mips_sldi_d: {
2158     // Report an error for out of range values.
2159     int64_t Max;
2160     switch (Intrinsic) {
2161     case Intrinsic::mips_sldi_b: Max = 15; break;
2162     case Intrinsic::mips_sldi_h: Max = 7; break;
2163     case Intrinsic::mips_sldi_w: Max = 3; break;
2164     case Intrinsic::mips_sldi_d: Max = 1; break;
2165     default: llvm_unreachable("Unmatched intrinsic");
2166     }
2167     int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
2168     if (Value < 0 || Value > Max)
2169       report_fatal_error("Immediate out of range");
2170     return SDValue();
2171   }
2172   case Intrinsic::mips_sll_b:
2173   case Intrinsic::mips_sll_h:
2174   case Intrinsic::mips_sll_w:
2175   case Intrinsic::mips_sll_d:
2176     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2177                        truncateVecElts(Op, DAG));
2178   case Intrinsic::mips_slli_b:
2179   case Intrinsic::mips_slli_h:
2180   case Intrinsic::mips_slli_w:
2181   case Intrinsic::mips_slli_d:
2182     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2183                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2184   case Intrinsic::mips_splat_b:
2185   case Intrinsic::mips_splat_h:
2186   case Intrinsic::mips_splat_w:
2187   case Intrinsic::mips_splat_d:
2188     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2189     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2190     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2191     // Instead we lower to MipsISD::VSHF and match from there.
2192     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2193                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2194                        Op->getOperand(1));
2195   case Intrinsic::mips_splati_b:
2196   case Intrinsic::mips_splati_h:
2197   case Intrinsic::mips_splati_w:
2198   case Intrinsic::mips_splati_d:
2199     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2200                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2201                        Op->getOperand(1));
2202   case Intrinsic::mips_sra_b:
2203   case Intrinsic::mips_sra_h:
2204   case Intrinsic::mips_sra_w:
2205   case Intrinsic::mips_sra_d:
2206     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2207                        truncateVecElts(Op, DAG));
2208   case Intrinsic::mips_srai_b:
2209   case Intrinsic::mips_srai_h:
2210   case Intrinsic::mips_srai_w:
2211   case Intrinsic::mips_srai_d:
2212     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2213                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2214   case Intrinsic::mips_srari_b:
2215   case Intrinsic::mips_srari_h:
2216   case Intrinsic::mips_srari_w:
2217   case Intrinsic::mips_srari_d: {
2218     // Report an error for out of range values.
2219     int64_t Max;
2220     switch (Intrinsic) {
2221     case Intrinsic::mips_srari_b: Max = 7; break;
2222     case Intrinsic::mips_srari_h: Max = 15; break;
2223     case Intrinsic::mips_srari_w: Max = 31; break;
2224     case Intrinsic::mips_srari_d: Max = 63; break;
2225     default: llvm_unreachable("Unmatched intrinsic");
2226     }
2227     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2228     if (Value < 0 || Value > Max)
2229       report_fatal_error("Immediate out of range");
2230     return SDValue();
2231   }
2232   case Intrinsic::mips_srl_b:
2233   case Intrinsic::mips_srl_h:
2234   case Intrinsic::mips_srl_w:
2235   case Intrinsic::mips_srl_d:
2236     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2237                        truncateVecElts(Op, DAG));
2238   case Intrinsic::mips_srli_b:
2239   case Intrinsic::mips_srli_h:
2240   case Intrinsic::mips_srli_w:
2241   case Intrinsic::mips_srli_d:
2242     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2243                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2244   case Intrinsic::mips_srlri_b:
2245   case Intrinsic::mips_srlri_h:
2246   case Intrinsic::mips_srlri_w:
2247   case Intrinsic::mips_srlri_d: {
2248     // Report an error for out of range values.
2249     int64_t Max;
2250     switch (Intrinsic) {
2251     case Intrinsic::mips_srlri_b: Max = 7; break;
2252     case Intrinsic::mips_srlri_h: Max = 15; break;
2253     case Intrinsic::mips_srlri_w: Max = 31; break;
2254     case Intrinsic::mips_srlri_d: Max = 63; break;
2255     default: llvm_unreachable("Unmatched intrinsic");
2256     }
2257     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2258     if (Value < 0 || Value > Max)
2259       report_fatal_error("Immediate out of range");
2260     return SDValue();
2261   }
2262   case Intrinsic::mips_subv_b:
2263   case Intrinsic::mips_subv_h:
2264   case Intrinsic::mips_subv_w:
2265   case Intrinsic::mips_subv_d:
2266     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2267                        Op->getOperand(2));
2268   case Intrinsic::mips_subvi_b:
2269   case Intrinsic::mips_subvi_h:
2270   case Intrinsic::mips_subvi_w:
2271   case Intrinsic::mips_subvi_d:
2272     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2273                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2274   case Intrinsic::mips_vshf_b:
2275   case Intrinsic::mips_vshf_h:
2276   case Intrinsic::mips_vshf_w:
2277   case Intrinsic::mips_vshf_d:
2278     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2279                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2280   case Intrinsic::mips_xor_v:
2281     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2282                        Op->getOperand(2));
2283   case Intrinsic::mips_xori_b:
2284     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2285                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2286   case Intrinsic::thread_pointer: {
2287     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2288     return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2289   }
2290   }
2291 }
2292 
2293 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2294                                 const MipsSubtarget &Subtarget) {
2295   SDLoc DL(Op);
2296   SDValue ChainIn = Op->getOperand(0);
2297   SDValue Address = Op->getOperand(2);
2298   SDValue Offset  = Op->getOperand(3);
2299   EVT ResTy = Op->getValueType(0);
2300   EVT PtrTy = Address->getValueType(0);
2301 
2302   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2303   // however takes an i32 signed constant offset. The actual type of the
2304   // intrinsic is a scaled signed i10.
2305   if (Subtarget.isABI_N64())
2306     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2307 
2308   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2309   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
2310                      Align(16));
2311 }
2312 
2313 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2314                                                      SelectionDAG &DAG) const {
2315   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2316   switch (Intr) {
2317   default:
2318     return SDValue();
2319   case Intrinsic::mips_extp:
2320     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2321   case Intrinsic::mips_extpdp:
2322     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2323   case Intrinsic::mips_extr_w:
2324     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2325   case Intrinsic::mips_extr_r_w:
2326     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2327   case Intrinsic::mips_extr_rs_w:
2328     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2329   case Intrinsic::mips_extr_s_h:
2330     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2331   case Intrinsic::mips_mthlip:
2332     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2333   case Intrinsic::mips_mulsaq_s_w_ph:
2334     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2335   case Intrinsic::mips_maq_s_w_phl:
2336     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2337   case Intrinsic::mips_maq_s_w_phr:
2338     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2339   case Intrinsic::mips_maq_sa_w_phl:
2340     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2341   case Intrinsic::mips_maq_sa_w_phr:
2342     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2343   case Intrinsic::mips_dpaq_s_w_ph:
2344     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2345   case Intrinsic::mips_dpsq_s_w_ph:
2346     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2347   case Intrinsic::mips_dpaq_sa_l_w:
2348     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2349   case Intrinsic::mips_dpsq_sa_l_w:
2350     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2351   case Intrinsic::mips_dpaqx_s_w_ph:
2352     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2353   case Intrinsic::mips_dpaqx_sa_w_ph:
2354     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2355   case Intrinsic::mips_dpsqx_s_w_ph:
2356     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2357   case Intrinsic::mips_dpsqx_sa_w_ph:
2358     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2359   case Intrinsic::mips_ld_b:
2360   case Intrinsic::mips_ld_h:
2361   case Intrinsic::mips_ld_w:
2362   case Intrinsic::mips_ld_d:
2363    return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
2364   }
2365 }
2366 
2367 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2368                                  const MipsSubtarget &Subtarget) {
2369   SDLoc DL(Op);
2370   SDValue ChainIn = Op->getOperand(0);
2371   SDValue Value   = Op->getOperand(2);
2372   SDValue Address = Op->getOperand(3);
2373   SDValue Offset  = Op->getOperand(4);
2374   EVT PtrTy = Address->getValueType(0);
2375 
2376   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2377   // however takes an i32 signed constant offset. The actual type of the
2378   // intrinsic is a scaled signed i10.
2379   if (Subtarget.isABI_N64())
2380     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2381 
2382   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2383 
2384   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
2385                       Align(16));
2386 }
2387 
2388 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2389                                                   SelectionDAG &DAG) const {
2390   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2391   switch (Intr) {
2392   default:
2393     return SDValue();
2394   case Intrinsic::mips_st_b:
2395   case Intrinsic::mips_st_h:
2396   case Intrinsic::mips_st_w:
2397   case Intrinsic::mips_st_d:
2398     return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
2399   }
2400 }
2401 
2402 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2403 //
2404 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2405 // choose to sign-extend but we could have equally chosen zero-extend. The
2406 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2407 // result into this node later (possibly changing it to a zero-extend in the
2408 // process).
2409 SDValue MipsSETargetLowering::
2410 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2411   SDLoc DL(Op);
2412   EVT ResTy = Op->getValueType(0);
2413   SDValue Op0 = Op->getOperand(0);
2414   EVT VecTy = Op0->getValueType(0);
2415 
2416   if (!VecTy.is128BitVector())
2417     return SDValue();
2418 
2419   if (ResTy.isInteger()) {
2420     SDValue Op1 = Op->getOperand(1);
2421     EVT EltTy = VecTy.getVectorElementType();
2422     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2423                        DAG.getValueType(EltTy));
2424   }
2425 
2426   return Op;
2427 }
2428 
2429 static bool isConstantOrUndef(const SDValue Op) {
2430   if (Op->isUndef())
2431     return true;
2432   if (isa<ConstantSDNode>(Op))
2433     return true;
2434   if (isa<ConstantFPSDNode>(Op))
2435     return true;
2436   return false;
2437 }
2438 
2439 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2440   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2441     if (isConstantOrUndef(Op->getOperand(i)))
2442       return true;
2443   return false;
2444 }
2445 
2446 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2447 // backend.
2448 //
2449 // Lowers according to the following rules:
2450 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2451 //   2 less than or equal to 64 and the value fits into a signed 10-bit
2452 //   immediate
2453 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2454 //   is a power of 2 less than or equal to 64 and the value does not fit into a
2455 //   signed 10-bit immediate
2456 // - Non-constant splats are legal as-is.
2457 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2458 // - All others are illegal and must be expanded.
2459 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2460                                                 SelectionDAG &DAG) const {
2461   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2462   EVT ResTy = Op->getValueType(0);
2463   SDLoc DL(Op);
2464   APInt SplatValue, SplatUndef;
2465   unsigned SplatBitSize;
2466   bool HasAnyUndefs;
2467 
2468   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2469     return SDValue();
2470 
2471   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2472                             HasAnyUndefs, 8,
2473                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
2474     // We can only cope with 8, 16, 32, or 64-bit elements
2475     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2476         SplatBitSize != 64)
2477       return SDValue();
2478 
2479     // If the value isn't an integer type we will have to bitcast
2480     // from an integer type first. Also, if there are any undefs, we must
2481     // lower them to defined values first.
2482     if (ResTy.isInteger() && !HasAnyUndefs)
2483       return Op;
2484 
2485     EVT ViaVecTy;
2486 
2487     switch (SplatBitSize) {
2488     default:
2489       return SDValue();
2490     case 8:
2491       ViaVecTy = MVT::v16i8;
2492       break;
2493     case 16:
2494       ViaVecTy = MVT::v8i16;
2495       break;
2496     case 32:
2497       ViaVecTy = MVT::v4i32;
2498       break;
2499     case 64:
2500       // There's no fill.d to fall back on for 64-bit values
2501       return SDValue();
2502     }
2503 
2504     // SelectionDAG::getConstant will promote SplatValue appropriately.
2505     SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2506 
2507     // Bitcast to the type we originally wanted
2508     if (ViaVecTy != ResTy)
2509       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2510 
2511     return Result;
2512   } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false))
2513     return Op;
2514   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2515     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2516     // The resulting code is the same length as the expansion, but it doesn't
2517     // use memory operations
2518     EVT ResTy = Node->getValueType(0);
2519 
2520     assert(ResTy.isVector());
2521 
2522     unsigned NumElts = ResTy.getVectorNumElements();
2523     SDValue Vector = DAG.getUNDEF(ResTy);
2524     for (unsigned i = 0; i < NumElts; ++i) {
2525       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2526                            Node->getOperand(i),
2527                            DAG.getConstant(i, DL, MVT::i32));
2528     }
2529     return Vector;
2530   }
2531 
2532   return SDValue();
2533 }
2534 
2535 // Lower VECTOR_SHUFFLE into SHF (if possible).
2536 //
2537 // SHF splits the vector into blocks of four elements, then shuffles these
2538 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2539 //
2540 // It is therefore possible to lower into SHF when the mask takes the form:
2541 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2542 // When undef's appear they are treated as if they were whatever value is
2543 // necessary in order to fit the above forms.
2544 //
2545 // For example:
2546 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2547 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2548 //                                 i32 7, i32 6, i32 5, i32 4>
2549 // is lowered to:
2550 //   (SHF_H $w0, $w1, 27)
2551 // where the 27 comes from:
2552 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
2553 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2554                                        SmallVector<int, 16> Indices,
2555                                        SelectionDAG &DAG) {
2556   int SHFIndices[4] = { -1, -1, -1, -1 };
2557 
2558   if (Indices.size() < 4)
2559     return SDValue();
2560 
2561   for (unsigned i = 0; i < 4; ++i) {
2562     for (unsigned j = i; j < Indices.size(); j += 4) {
2563       int Idx = Indices[j];
2564 
2565       // Convert from vector index to 4-element subvector index
2566       // If an index refers to an element outside of the subvector then give up
2567       if (Idx != -1) {
2568         Idx -= 4 * (j / 4);
2569         if (Idx < 0 || Idx >= 4)
2570           return SDValue();
2571       }
2572 
2573       // If the mask has an undef, replace it with the current index.
2574       // Note that it might still be undef if the current index is also undef
2575       if (SHFIndices[i] == -1)
2576         SHFIndices[i] = Idx;
2577 
2578       // Check that non-undef values are the same as in the mask. If they
2579       // aren't then give up
2580       if (!(Idx == -1 || Idx == SHFIndices[i]))
2581         return SDValue();
2582     }
2583   }
2584 
2585   // Calculate the immediate. Replace any remaining undefs with zero
2586   APInt Imm(32, 0);
2587   for (int i = 3; i >= 0; --i) {
2588     int Idx = SHFIndices[i];
2589 
2590     if (Idx == -1)
2591       Idx = 0;
2592 
2593     Imm <<= 2;
2594     Imm |= Idx & 0x3;
2595   }
2596 
2597   SDLoc DL(Op);
2598   return DAG.getNode(MipsISD::SHF, DL, ResTy,
2599                      DAG.getTargetConstant(Imm, DL, MVT::i32),
2600                      Op->getOperand(0));
2601 }
2602 
2603 /// Determine whether a range fits a regular pattern of values.
2604 /// This function accounts for the possibility of jumping over the End iterator.
2605 template <typename ValType>
2606 static bool
2607 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2608                    unsigned CheckStride,
2609                    typename SmallVectorImpl<ValType>::const_iterator End,
2610                    ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2611   auto &I = Begin;
2612 
2613   while (I != End) {
2614     if (*I != -1 && *I != ExpectedIndex)
2615       return false;
2616     ExpectedIndex += ExpectedIndexStride;
2617 
2618     // Incrementing past End is undefined behaviour so we must increment one
2619     // step at a time and check for End at each step.
2620     for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2621       ; // Empty loop body.
2622   }
2623   return true;
2624 }
2625 
2626 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2627 //
2628 // It is a SPLATI when the mask is:
2629 //   <x, x, x, ...>
2630 // where x is any valid index.
2631 //
2632 // When undef's appear in the mask they are treated as if they were whatever
2633 // value is necessary in order to fit the above form.
2634 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2635                                     SmallVector<int, 16> Indices,
2636                                     SelectionDAG &DAG) {
2637   assert((Indices.size() % 2) == 0);
2638 
2639   int SplatIndex = -1;
2640   for (const auto &V : Indices) {
2641     if (V != -1) {
2642       SplatIndex = V;
2643       break;
2644     }
2645   }
2646 
2647   return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2648                                  0);
2649 }
2650 
2651 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2652 //
2653 // ILVEV interleaves the even elements from each vector.
2654 //
2655 // It is possible to lower into ILVEV when the mask consists of two of the
2656 // following forms interleaved:
2657 //   <0, 2, 4, ...>
2658 //   <n, n+2, n+4, ...>
2659 // where n is the number of elements in the vector.
2660 // For example:
2661 //   <0, 0, 2, 2, 4, 4, ...>
2662 //   <0, n, 2, n+2, 4, n+4, ...>
2663 //
2664 // When undef's appear in the mask they are treated as if they were whatever
2665 // value is necessary in order to fit the above forms.
2666 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2667                                          SmallVector<int, 16> Indices,
2668                                          SelectionDAG &DAG) {
2669   assert((Indices.size() % 2) == 0);
2670 
2671   SDValue Wt;
2672   SDValue Ws;
2673   const auto &Begin = Indices.begin();
2674   const auto &End = Indices.end();
2675 
2676   // Check even elements are taken from the even elements of one half or the
2677   // other and pick an operand accordingly.
2678   if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2679     Wt = Op->getOperand(0);
2680   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2681     Wt = Op->getOperand(1);
2682   else
2683     return SDValue();
2684 
2685   // Check odd elements are taken from the even elements of one half or the
2686   // other and pick an operand accordingly.
2687   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2688     Ws = Op->getOperand(0);
2689   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2690     Ws = Op->getOperand(1);
2691   else
2692     return SDValue();
2693 
2694   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2695 }
2696 
2697 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2698 //
2699 // ILVOD interleaves the odd elements from each vector.
2700 //
2701 // It is possible to lower into ILVOD when the mask consists of two of the
2702 // following forms interleaved:
2703 //   <1, 3, 5, ...>
2704 //   <n+1, n+3, n+5, ...>
2705 // where n is the number of elements in the vector.
2706 // For example:
2707 //   <1, 1, 3, 3, 5, 5, ...>
2708 //   <1, n+1, 3, n+3, 5, n+5, ...>
2709 //
2710 // When undef's appear in the mask they are treated as if they were whatever
2711 // value is necessary in order to fit the above forms.
2712 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2713                                          SmallVector<int, 16> Indices,
2714                                          SelectionDAG &DAG) {
2715   assert((Indices.size() % 2) == 0);
2716 
2717   SDValue Wt;
2718   SDValue Ws;
2719   const auto &Begin = Indices.begin();
2720   const auto &End = Indices.end();
2721 
2722   // Check even elements are taken from the odd elements of one half or the
2723   // other and pick an operand accordingly.
2724   if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2725     Wt = Op->getOperand(0);
2726   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2727     Wt = Op->getOperand(1);
2728   else
2729     return SDValue();
2730 
2731   // Check odd elements are taken from the odd elements of one half or the
2732   // other and pick an operand accordingly.
2733   if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2734     Ws = Op->getOperand(0);
2735   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2736     Ws = Op->getOperand(1);
2737   else
2738     return SDValue();
2739 
2740   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2741 }
2742 
2743 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2744 //
2745 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2746 // each vector.
2747 //
2748 // It is possible to lower into ILVR when the mask consists of two of the
2749 // following forms interleaved:
2750 //   <0, 1, 2, ...>
2751 //   <n, n+1, n+2, ...>
2752 // where n is the number of elements in the vector.
2753 // For example:
2754 //   <0, 0, 1, 1, 2, 2, ...>
2755 //   <0, n, 1, n+1, 2, n+2, ...>
2756 //
2757 // When undef's appear in the mask they are treated as if they were whatever
2758 // value is necessary in order to fit the above forms.
2759 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2760                                         SmallVector<int, 16> Indices,
2761                                         SelectionDAG &DAG) {
2762   assert((Indices.size() % 2) == 0);
2763 
2764   SDValue Wt;
2765   SDValue Ws;
2766   const auto &Begin = Indices.begin();
2767   const auto &End = Indices.end();
2768 
2769   // Check even elements are taken from the right (lowest-indexed) elements of
2770   // one half or the other and pick an operand accordingly.
2771   if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2772     Wt = Op->getOperand(0);
2773   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2774     Wt = Op->getOperand(1);
2775   else
2776     return SDValue();
2777 
2778   // Check odd elements are taken from the right (lowest-indexed) elements of
2779   // one half or the other and pick an operand accordingly.
2780   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2781     Ws = Op->getOperand(0);
2782   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2783     Ws = Op->getOperand(1);
2784   else
2785     return SDValue();
2786 
2787   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2788 }
2789 
2790 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2791 //
2792 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2793 // of each vector.
2794 //
2795 // It is possible to lower into ILVL when the mask consists of two of the
2796 // following forms interleaved:
2797 //   <x, x+1, x+2, ...>
2798 //   <n+x, n+x+1, n+x+2, ...>
2799 // where n is the number of elements in the vector and x is half n.
2800 // For example:
2801 //   <x, x, x+1, x+1, x+2, x+2, ...>
2802 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2803 //
2804 // When undef's appear in the mask they are treated as if they were whatever
2805 // value is necessary in order to fit the above forms.
2806 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2807                                         SmallVector<int, 16> Indices,
2808                                         SelectionDAG &DAG) {
2809   assert((Indices.size() % 2) == 0);
2810 
2811   unsigned HalfSize = Indices.size() / 2;
2812   SDValue Wt;
2813   SDValue Ws;
2814   const auto &Begin = Indices.begin();
2815   const auto &End = Indices.end();
2816 
2817   // Check even elements are taken from the left (highest-indexed) elements of
2818   // one half or the other and pick an operand accordingly.
2819   if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2820     Wt = Op->getOperand(0);
2821   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2822     Wt = Op->getOperand(1);
2823   else
2824     return SDValue();
2825 
2826   // Check odd elements are taken from the left (highest-indexed) elements of
2827   // one half or the other and pick an operand accordingly.
2828   if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2829     Ws = Op->getOperand(0);
2830   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2831                                    1))
2832     Ws = Op->getOperand(1);
2833   else
2834     return SDValue();
2835 
2836   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2837 }
2838 
2839 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2840 //
2841 // PCKEV copies the even elements of each vector into the result vector.
2842 //
2843 // It is possible to lower into PCKEV when the mask consists of two of the
2844 // following forms concatenated:
2845 //   <0, 2, 4, ...>
2846 //   <n, n+2, n+4, ...>
2847 // where n is the number of elements in the vector.
2848 // For example:
2849 //   <0, 2, 4, ..., 0, 2, 4, ...>
2850 //   <0, 2, 4, ..., n, n+2, n+4, ...>
2851 //
2852 // When undef's appear in the mask they are treated as if they were whatever
2853 // value is necessary in order to fit the above forms.
2854 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2855                                          SmallVector<int, 16> Indices,
2856                                          SelectionDAG &DAG) {
2857   assert((Indices.size() % 2) == 0);
2858 
2859   SDValue Wt;
2860   SDValue Ws;
2861   const auto &Begin = Indices.begin();
2862   const auto &Mid = Indices.begin() + Indices.size() / 2;
2863   const auto &End = Indices.end();
2864 
2865   if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2866     Wt = Op->getOperand(0);
2867   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2868     Wt = Op->getOperand(1);
2869   else
2870     return SDValue();
2871 
2872   if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2873     Ws = Op->getOperand(0);
2874   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2875     Ws = Op->getOperand(1);
2876   else
2877     return SDValue();
2878 
2879   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2880 }
2881 
2882 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2883 //
2884 // PCKOD copies the odd elements of each vector into the result vector.
2885 //
2886 // It is possible to lower into PCKOD when the mask consists of two of the
2887 // following forms concatenated:
2888 //   <1, 3, 5, ...>
2889 //   <n+1, n+3, n+5, ...>
2890 // where n is the number of elements in the vector.
2891 // For example:
2892 //   <1, 3, 5, ..., 1, 3, 5, ...>
2893 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2894 //
2895 // When undef's appear in the mask they are treated as if they were whatever
2896 // value is necessary in order to fit the above forms.
2897 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2898                                          SmallVector<int, 16> Indices,
2899                                          SelectionDAG &DAG) {
2900   assert((Indices.size() % 2) == 0);
2901 
2902   SDValue Wt;
2903   SDValue Ws;
2904   const auto &Begin = Indices.begin();
2905   const auto &Mid = Indices.begin() + Indices.size() / 2;
2906   const auto &End = Indices.end();
2907 
2908   if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2909     Wt = Op->getOperand(0);
2910   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2911     Wt = Op->getOperand(1);
2912   else
2913     return SDValue();
2914 
2915   if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2916     Ws = Op->getOperand(0);
2917   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2918     Ws = Op->getOperand(1);
2919   else
2920     return SDValue();
2921 
2922   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2923 }
2924 
2925 // Lower VECTOR_SHUFFLE into VSHF.
2926 //
2927 // This mostly consists of converting the shuffle indices in Indices into a
2928 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2929 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2930 // if the type is v8i16 and all the indices are less than 8 then the second
2931 // operand is unused and can be replaced with anything. We choose to replace it
2932 // with the used operand since this reduces the number of instructions overall.
2933 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2934                                         SmallVector<int, 16> Indices,
2935                                         SelectionDAG &DAG) {
2936   SmallVector<SDValue, 16> Ops;
2937   SDValue Op0;
2938   SDValue Op1;
2939   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2940   EVT MaskEltTy = MaskVecTy.getVectorElementType();
2941   bool Using1stVec = false;
2942   bool Using2ndVec = false;
2943   SDLoc DL(Op);
2944   int ResTyNumElts = ResTy.getVectorNumElements();
2945 
2946   for (int i = 0; i < ResTyNumElts; ++i) {
2947     // Idx == -1 means UNDEF
2948     int Idx = Indices[i];
2949 
2950     if (0 <= Idx && Idx < ResTyNumElts)
2951       Using1stVec = true;
2952     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2953       Using2ndVec = true;
2954   }
2955 
2956   for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2957        ++I)
2958     Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
2959 
2960   SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2961 
2962   if (Using1stVec && Using2ndVec) {
2963     Op0 = Op->getOperand(0);
2964     Op1 = Op->getOperand(1);
2965   } else if (Using1stVec)
2966     Op0 = Op1 = Op->getOperand(0);
2967   else if (Using2ndVec)
2968     Op0 = Op1 = Op->getOperand(1);
2969   else
2970     llvm_unreachable("shuffle vector mask references neither vector operand?");
2971 
2972   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2973   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2974   // VSHF concatenates the vectors in a bitwise fashion:
2975   // <0b00, 0b01> + <0b10, 0b11> ->
2976   // 0b0100       + 0b1110       -> 0b01001110
2977   //                                <0b10, 0b11, 0b00, 0b01>
2978   // We must therefore swap the operands to get the correct result.
2979   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2980 }
2981 
2982 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2983 // indices in the shuffle.
2984 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2985                                                   SelectionDAG &DAG) const {
2986   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2987   EVT ResTy = Op->getValueType(0);
2988 
2989   if (!ResTy.is128BitVector())
2990     return SDValue();
2991 
2992   int ResTyNumElts = ResTy.getVectorNumElements();
2993   SmallVector<int, 16> Indices;
2994 
2995   for (int i = 0; i < ResTyNumElts; ++i)
2996     Indices.push_back(Node->getMaskElt(i));
2997 
2998   // splati.[bhwd] is preferable to the others but is matched from
2999   // MipsISD::VSHF.
3000   if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
3001     return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3002   SDValue Result;
3003   if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
3004     return Result;
3005   if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
3006     return Result;
3007   if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
3008     return Result;
3009   if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
3010     return Result;
3011   if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
3012     return Result;
3013   if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
3014     return Result;
3015   if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
3016     return Result;
3017   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3018 }
3019 
3020 MachineBasicBlock *
3021 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
3022                                    MachineBasicBlock *BB) const {
3023   // $bb:
3024   //  bposge32_pseudo $vr0
3025   //  =>
3026   // $bb:
3027   //  bposge32 $tbb
3028   // $fbb:
3029   //  li $vr2, 0
3030   //  b $sink
3031   // $tbb:
3032   //  li $vr1, 1
3033   // $sink:
3034   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
3035 
3036   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3037   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3038   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3039   DebugLoc DL = MI.getDebugLoc();
3040   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3041   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3042   MachineFunction *F = BB->getParent();
3043   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3044   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3045   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3046   F->insert(It, FBB);
3047   F->insert(It, TBB);
3048   F->insert(It, Sink);
3049 
3050   // Transfer the remainder of BB and its successor edges to Sink.
3051   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3052                BB->end());
3053   Sink->transferSuccessorsAndUpdatePHIs(BB);
3054 
3055   // Add successors.
3056   BB->addSuccessor(FBB);
3057   BB->addSuccessor(TBB);
3058   FBB->addSuccessor(Sink);
3059   TBB->addSuccessor(Sink);
3060 
3061   // Insert the real bposge32 instruction to $BB.
3062   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
3063   // Insert the real bposge32c instruction to $BB.
3064   BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
3065 
3066   // Fill $FBB.
3067   Register VR2 = RegInfo.createVirtualRegister(RC);
3068   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
3069     .addReg(Mips::ZERO).addImm(0);
3070   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3071 
3072   // Fill $TBB.
3073   Register VR1 = RegInfo.createVirtualRegister(RC);
3074   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
3075     .addReg(Mips::ZERO).addImm(1);
3076 
3077   // Insert phi function to $Sink.
3078   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3079           MI.getOperand(0).getReg())
3080       .addReg(VR2)
3081       .addMBB(FBB)
3082       .addReg(VR1)
3083       .addMBB(TBB);
3084 
3085   MI.eraseFromParent(); // The pseudo instruction is gone now.
3086   return Sink;
3087 }
3088 
3089 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
3090     MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
3091   // $bb:
3092   //  vany_nonzero $rd, $ws
3093   //  =>
3094   // $bb:
3095   //  bnz.b $ws, $tbb
3096   //  b $fbb
3097   // $fbb:
3098   //  li $rd1, 0
3099   //  b $sink
3100   // $tbb:
3101   //  li $rd2, 1
3102   // $sink:
3103   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
3104 
3105   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3106   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3107   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3108   DebugLoc DL = MI.getDebugLoc();
3109   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3110   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3111   MachineFunction *F = BB->getParent();
3112   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3113   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3114   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3115   F->insert(It, FBB);
3116   F->insert(It, TBB);
3117   F->insert(It, Sink);
3118 
3119   // Transfer the remainder of BB and its successor edges to Sink.
3120   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3121                BB->end());
3122   Sink->transferSuccessorsAndUpdatePHIs(BB);
3123 
3124   // Add successors.
3125   BB->addSuccessor(FBB);
3126   BB->addSuccessor(TBB);
3127   FBB->addSuccessor(Sink);
3128   TBB->addSuccessor(Sink);
3129 
3130   // Insert the real bnz.b instruction to $BB.
3131   BuildMI(BB, DL, TII->get(BranchOp))
3132       .addReg(MI.getOperand(1).getReg())
3133       .addMBB(TBB);
3134 
3135   // Fill $FBB.
3136   Register RD1 = RegInfo.createVirtualRegister(RC);
3137   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3138     .addReg(Mips::ZERO).addImm(0);
3139   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3140 
3141   // Fill $TBB.
3142   Register RD2 = RegInfo.createVirtualRegister(RC);
3143   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3144     .addReg(Mips::ZERO).addImm(1);
3145 
3146   // Insert phi function to $Sink.
3147   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3148           MI.getOperand(0).getReg())
3149       .addReg(RD1)
3150       .addMBB(FBB)
3151       .addReg(RD2)
3152       .addMBB(TBB);
3153 
3154   MI.eraseFromParent(); // The pseudo instruction is gone now.
3155   return Sink;
3156 }
3157 
3158 // Emit the COPY_FW pseudo instruction.
3159 //
3160 // copy_fw_pseudo $fd, $ws, n
3161 // =>
3162 // copy_u_w $rt, $ws, $n
3163 // mtc1     $rt, $fd
3164 //
3165 // When n is zero, the equivalent operation can be performed with (potentially)
3166 // zero instructions due to register overlaps. This optimization is never valid
3167 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3168 MachineBasicBlock *
3169 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3170                                   MachineBasicBlock *BB) const {
3171   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3172   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3173   DebugLoc DL = MI.getDebugLoc();
3174   Register Fd = MI.getOperand(0).getReg();
3175   Register Ws = MI.getOperand(1).getReg();
3176   unsigned Lane = MI.getOperand(2).getImm();
3177 
3178   if (Lane == 0) {
3179     unsigned Wt = Ws;
3180     if (!Subtarget.useOddSPReg()) {
3181       // We must copy to an even-numbered MSA register so that the
3182       // single-precision sub-register is also guaranteed to be even-numbered.
3183       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3184 
3185       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3186     }
3187 
3188     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3189   } else {
3190     Register Wt = RegInfo.createVirtualRegister(
3191         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3192                                 : &Mips::MSA128WEvensRegClass);
3193 
3194     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3195     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3196   }
3197 
3198   MI.eraseFromParent(); // The pseudo instruction is gone now.
3199   return BB;
3200 }
3201 
3202 // Emit the COPY_FD pseudo instruction.
3203 //
3204 // copy_fd_pseudo $fd, $ws, n
3205 // =>
3206 // splati.d $wt, $ws, $n
3207 // copy $fd, $wt:sub_64
3208 //
3209 // When n is zero, the equivalent operation can be performed with (potentially)
3210 // zero instructions due to register overlaps. This optimization is always
3211 // valid because FR=1 mode which is the only supported mode in MSA.
3212 MachineBasicBlock *
3213 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3214                                   MachineBasicBlock *BB) const {
3215   assert(Subtarget.isFP64bit());
3216 
3217   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3218   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3219   Register Fd = MI.getOperand(0).getReg();
3220   Register Ws = MI.getOperand(1).getReg();
3221   unsigned Lane = MI.getOperand(2).getImm() * 2;
3222   DebugLoc DL = MI.getDebugLoc();
3223 
3224   if (Lane == 0)
3225     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3226   else {
3227     Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3228 
3229     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3230     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3231   }
3232 
3233   MI.eraseFromParent(); // The pseudo instruction is gone now.
3234   return BB;
3235 }
3236 
3237 // Emit the INSERT_FW pseudo instruction.
3238 //
3239 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3240 // =>
3241 // subreg_to_reg $wt:sub_lo, $fs
3242 // insve_w $wd[$n], $wd_in, $wt[0]
3243 MachineBasicBlock *
3244 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3245                                     MachineBasicBlock *BB) const {
3246   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3247   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3248   DebugLoc DL = MI.getDebugLoc();
3249   Register Wd = MI.getOperand(0).getReg();
3250   Register Wd_in = MI.getOperand(1).getReg();
3251   unsigned Lane = MI.getOperand(2).getImm();
3252   Register Fs = MI.getOperand(3).getReg();
3253   Register Wt = RegInfo.createVirtualRegister(
3254       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3255                               : &Mips::MSA128WEvensRegClass);
3256 
3257   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3258       .addImm(0)
3259       .addReg(Fs)
3260       .addImm(Mips::sub_lo);
3261   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3262       .addReg(Wd_in)
3263       .addImm(Lane)
3264       .addReg(Wt)
3265       .addImm(0);
3266 
3267   MI.eraseFromParent(); // The pseudo instruction is gone now.
3268   return BB;
3269 }
3270 
3271 // Emit the INSERT_FD pseudo instruction.
3272 //
3273 // insert_fd_pseudo $wd, $fs, n
3274 // =>
3275 // subreg_to_reg $wt:sub_64, $fs
3276 // insve_d $wd[$n], $wd_in, $wt[0]
3277 MachineBasicBlock *
3278 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3279                                     MachineBasicBlock *BB) const {
3280   assert(Subtarget.isFP64bit());
3281 
3282   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3283   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3284   DebugLoc DL = MI.getDebugLoc();
3285   Register Wd = MI.getOperand(0).getReg();
3286   Register Wd_in = MI.getOperand(1).getReg();
3287   unsigned Lane = MI.getOperand(2).getImm();
3288   Register Fs = MI.getOperand(3).getReg();
3289   Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3290 
3291   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3292       .addImm(0)
3293       .addReg(Fs)
3294       .addImm(Mips::sub_64);
3295   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3296       .addReg(Wd_in)
3297       .addImm(Lane)
3298       .addReg(Wt)
3299       .addImm(0);
3300 
3301   MI.eraseFromParent(); // The pseudo instruction is gone now.
3302   return BB;
3303 }
3304 
3305 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3306 //
3307 // For integer:
3308 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3309 // =>
3310 // (SLL $lanetmp1, $lane, <log2size)
3311 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3312 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3313 // (NEG $lanetmp2, $lanetmp1)
3314 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3315 //
3316 // For floating point:
3317 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3318 // =>
3319 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3320 // (SLL $lanetmp1, $lane, <log2size)
3321 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3322 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3323 // (NEG $lanetmp2, $lanetmp1)
3324 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3325 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3326     MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3327     bool IsFP) const {
3328   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3329   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3330   DebugLoc DL = MI.getDebugLoc();
3331   Register Wd = MI.getOperand(0).getReg();
3332   Register SrcVecReg = MI.getOperand(1).getReg();
3333   Register LaneReg = MI.getOperand(2).getReg();
3334   Register SrcValReg = MI.getOperand(3).getReg();
3335 
3336   const TargetRegisterClass *VecRC = nullptr;
3337   // FIXME: This should be true for N32 too.
3338   const TargetRegisterClass *GPRRC =
3339       Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3340   unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3341   unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3342   unsigned EltLog2Size;
3343   unsigned InsertOp = 0;
3344   unsigned InsveOp = 0;
3345   switch (EltSizeInBytes) {
3346   default:
3347     llvm_unreachable("Unexpected size");
3348   case 1:
3349     EltLog2Size = 0;
3350     InsertOp = Mips::INSERT_B;
3351     InsveOp = Mips::INSVE_B;
3352     VecRC = &Mips::MSA128BRegClass;
3353     break;
3354   case 2:
3355     EltLog2Size = 1;
3356     InsertOp = Mips::INSERT_H;
3357     InsveOp = Mips::INSVE_H;
3358     VecRC = &Mips::MSA128HRegClass;
3359     break;
3360   case 4:
3361     EltLog2Size = 2;
3362     InsertOp = Mips::INSERT_W;
3363     InsveOp = Mips::INSVE_W;
3364     VecRC = &Mips::MSA128WRegClass;
3365     break;
3366   case 8:
3367     EltLog2Size = 3;
3368     InsertOp = Mips::INSERT_D;
3369     InsveOp = Mips::INSVE_D;
3370     VecRC = &Mips::MSA128DRegClass;
3371     break;
3372   }
3373 
3374   if (IsFP) {
3375     Register Wt = RegInfo.createVirtualRegister(VecRC);
3376     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3377         .addImm(0)
3378         .addReg(SrcValReg)
3379         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3380     SrcValReg = Wt;
3381   }
3382 
3383   // Convert the lane index into a byte index
3384   if (EltSizeInBytes != 1) {
3385     Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3386     BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3387         .addReg(LaneReg)
3388         .addImm(EltLog2Size);
3389     LaneReg = LaneTmp1;
3390   }
3391 
3392   // Rotate bytes around so that the desired lane is element zero
3393   Register WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3394   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3395       .addReg(SrcVecReg)
3396       .addReg(SrcVecReg)
3397       .addReg(LaneReg, 0, SubRegIdx);
3398 
3399   Register WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3400   if (IsFP) {
3401     // Use insve.df to insert to element zero
3402     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3403         .addReg(WdTmp1)
3404         .addImm(0)
3405         .addReg(SrcValReg)
3406         .addImm(0);
3407   } else {
3408     // Use insert.df to insert to element zero
3409     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3410         .addReg(WdTmp1)
3411         .addReg(SrcValReg)
3412         .addImm(0);
3413   }
3414 
3415   // Rotate elements the rest of the way for a full rotation.
3416   // sld.df inteprets $rt modulo the number of columns so we only need to negate
3417   // the lane index to do this.
3418   Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3419   BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3420           LaneTmp2)
3421       .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3422       .addReg(LaneReg);
3423   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3424       .addReg(WdTmp2)
3425       .addReg(WdTmp2)
3426       .addReg(LaneTmp2, 0, SubRegIdx);
3427 
3428   MI.eraseFromParent(); // The pseudo instruction is gone now.
3429   return BB;
3430 }
3431 
3432 // Emit the FILL_FW pseudo instruction.
3433 //
3434 // fill_fw_pseudo $wd, $fs
3435 // =>
3436 // implicit_def $wt1
3437 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3438 // splati.w $wd, $wt2[0]
3439 MachineBasicBlock *
3440 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3441                                   MachineBasicBlock *BB) const {
3442   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3443   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3444   DebugLoc DL = MI.getDebugLoc();
3445   Register Wd = MI.getOperand(0).getReg();
3446   Register Fs = MI.getOperand(1).getReg();
3447   Register Wt1 = RegInfo.createVirtualRegister(
3448       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3449                               : &Mips::MSA128WEvensRegClass);
3450   Register Wt2 = RegInfo.createVirtualRegister(
3451       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3452                               : &Mips::MSA128WEvensRegClass);
3453 
3454   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3455   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3456       .addReg(Wt1)
3457       .addReg(Fs)
3458       .addImm(Mips::sub_lo);
3459   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3460 
3461   MI.eraseFromParent(); // The pseudo instruction is gone now.
3462   return BB;
3463 }
3464 
3465 // Emit the FILL_FD pseudo instruction.
3466 //
3467 // fill_fd_pseudo $wd, $fs
3468 // =>
3469 // implicit_def $wt1
3470 // insert_subreg $wt2:subreg_64, $wt1, $fs
3471 // splati.d $wd, $wt2[0]
3472 MachineBasicBlock *
3473 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3474                                   MachineBasicBlock *BB) const {
3475   assert(Subtarget.isFP64bit());
3476 
3477   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3478   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3479   DebugLoc DL = MI.getDebugLoc();
3480   Register Wd = MI.getOperand(0).getReg();
3481   Register Fs = MI.getOperand(1).getReg();
3482   Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3483   Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3484 
3485   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3486   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3487       .addReg(Wt1)
3488       .addReg(Fs)
3489       .addImm(Mips::sub_64);
3490   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3491 
3492   MI.eraseFromParent(); // The pseudo instruction is gone now.
3493   return BB;
3494 }
3495 
3496 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
3497 // register.
3498 //
3499 // STF16 MSA128F16:$wd, mem_simm10:$addr
3500 // =>
3501 //  copy_u.h $rtemp,$wd[0]
3502 //  sh $rtemp, $addr
3503 //
3504 // Safety: We can't use st.h & co as they would over write the memory after
3505 // the destination. It would require half floats be allocated 16 bytes(!) of
3506 // space.
3507 MachineBasicBlock *
3508 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
3509                                        MachineBasicBlock *BB) const {
3510 
3511   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3512   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3513   DebugLoc DL = MI.getDebugLoc();
3514   Register Ws = MI.getOperand(0).getReg();
3515   Register Rt = MI.getOperand(1).getReg();
3516   const MachineMemOperand &MMO = **MI.memoperands_begin();
3517   unsigned Imm = MMO.getOffset();
3518 
3519   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3520   //          spill and reload can expand as a GPR64 operand. Examine the
3521   //          operand in detail and default to ABI.
3522   const TargetRegisterClass *RC =
3523       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3524                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3525                                                         : &Mips::GPR64RegClass);
3526   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3527   Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3528 
3529   BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
3530   if(!UsingMips32) {
3531     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
3532     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
3533         .addImm(0)
3534         .addReg(Rs)
3535         .addImm(Mips::sub_32);
3536     Rs = Tmp;
3537   }
3538   BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
3539       .addReg(Rs)
3540       .addReg(Rt)
3541       .addImm(Imm)
3542       .addMemOperand(BB->getParent()->getMachineMemOperand(
3543           &MMO, MMO.getOffset(), MMO.getSize()));
3544 
3545   MI.eraseFromParent();
3546   return BB;
3547 }
3548 
3549 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
3550 //
3551 // LD_F16 MSA128F16:$wd, mem_simm10:$addr
3552 // =>
3553 //  lh $rtemp, $addr
3554 //  fill.h $wd, $rtemp
3555 //
3556 // Safety: We can't use ld.h & co as they over-read from the source.
3557 // Additionally, if the address is not modulo 16, 2 cases can occur:
3558 //  a) Segmentation fault as the load instruction reads from a memory page
3559 //     memory it's not supposed to.
3560 //  b) The load crosses an implementation specific boundary, requiring OS
3561 //     intervention.
3562 MachineBasicBlock *
3563 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
3564                                        MachineBasicBlock *BB) const {
3565 
3566   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3567   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3568   DebugLoc DL = MI.getDebugLoc();
3569   Register Wd = MI.getOperand(0).getReg();
3570 
3571   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3572   //          spill and reload can expand as a GPR64 operand. Examine the
3573   //          operand in detail and default to ABI.
3574   const TargetRegisterClass *RC =
3575       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3576                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3577                                                         : &Mips::GPR64RegClass);
3578 
3579   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3580   Register Rt = RegInfo.createVirtualRegister(RC);
3581 
3582   MachineInstrBuilder MIB =
3583       BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
3584   for (unsigned i = 1; i < MI.getNumOperands(); i++)
3585     MIB.add(MI.getOperand(i));
3586 
3587   if(!UsingMips32) {
3588     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3589     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
3590     Rt = Tmp;
3591   }
3592 
3593   BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
3594 
3595   MI.eraseFromParent();
3596   return BB;
3597 }
3598 
3599 // Emit the FPROUND_PSEUDO instruction.
3600 //
3601 // Round an FGR64Opnd, FGR32Opnd to an f16.
3602 //
3603 // Safety: Cycle the operand through the GPRs so the result always ends up
3604 //         the correct MSA register.
3605 //
3606 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
3607 //        / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
3608 //        (which they can be, as the MSA registers are defined to alias the
3609 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3610 //        the correct register class. That requires operands be tie-able across
3611 //        register classes which have a sub/super register class relationship.
3612 //
3613 // For FPG32Opnd:
3614 //
3615 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
3616 // =>
3617 //  mfc1 $rtemp, $fs
3618 //  fill.w $rtemp, $wtemp
3619 //  fexdo.w $wd, $wtemp, $wtemp
3620 //
3621 // For FPG64Opnd on mips32r2+:
3622 //
3623 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3624 // =>
3625 //  mfc1 $rtemp, $fs
3626 //  fill.w $rtemp, $wtemp
3627 //  mfhc1 $rtemp2, $fs
3628 //  insert.w $wtemp[1], $rtemp2
3629 //  insert.w $wtemp[3], $rtemp2
3630 //  fexdo.w $wtemp2, $wtemp, $wtemp
3631 //  fexdo.h $wd, $temp2, $temp2
3632 //
3633 // For FGR64Opnd on mips64r2+:
3634 //
3635 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3636 // =>
3637 //  dmfc1 $rtemp, $fs
3638 //  fill.d $rtemp, $wtemp
3639 //  fexdo.w $wtemp2, $wtemp, $wtemp
3640 //  fexdo.h $wd, $wtemp2, $wtemp2
3641 //
3642 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
3643 //              undef bits are "just right" and the exception enable bits are
3644 //              set. By using fill.w to replicate $fs into all elements over
3645 //              insert.w for one element, we avoid that potiential case. If
3646 //              fexdo.[hw] causes an exception in, the exception is valid and it
3647 //              occurs for all elements.
3648 MachineBasicBlock *
3649 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
3650                                          MachineBasicBlock *BB,
3651                                          bool IsFGR64) const {
3652 
3653   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3654   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3655   // it.
3656   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3657 
3658   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3659   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3660 
3661   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3662   DebugLoc DL = MI.getDebugLoc();
3663   Register Wd = MI.getOperand(0).getReg();
3664   Register Fs = MI.getOperand(1).getReg();
3665 
3666   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3667   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3668   const TargetRegisterClass *GPRRC =
3669       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3670   unsigned MFC1Opc = IsFGR64onMips64
3671                          ? Mips::DMFC1
3672                          : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
3673   unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
3674 
3675   // Perform the register class copy as mentioned above.
3676   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3677   BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
3678   BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
3679   unsigned WPHI = Wtemp;
3680 
3681   if (IsFGR64onMips32) {
3682     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3683     BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
3684     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3685     Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3686     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
3687         .addReg(Wtemp)
3688         .addReg(Rtemp2)
3689         .addImm(1);
3690     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
3691         .addReg(Wtemp2)
3692         .addReg(Rtemp2)
3693         .addImm(3);
3694     WPHI = Wtemp3;
3695   }
3696 
3697   if (IsFGR64) {
3698     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3699     BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
3700         .addReg(WPHI)
3701         .addReg(WPHI);
3702     WPHI = Wtemp2;
3703   }
3704 
3705   BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
3706 
3707   MI.eraseFromParent();
3708   return BB;
3709 }
3710 
3711 // Emit the FPEXTEND_PSEUDO instruction.
3712 //
3713 // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
3714 //
3715 // Safety: Cycle the result through the GPRs so the result always ends up
3716 //         the correct floating point register.
3717 //
3718 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
3719 //        / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
3720 //        (which they can be, as the MSA registers are defined to alias the
3721 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3722 //        the correct register class. That requires operands be tie-able across
3723 //        register classes which have a sub/super register class relationship. I
3724 //        haven't checked.
3725 //
3726 // For FGR32Opnd:
3727 //
3728 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
3729 // =>
3730 //  fexupr.w $wtemp, $ws
3731 //  copy_s.w $rtemp, $ws[0]
3732 //  mtc1 $rtemp, $fd
3733 //
3734 // For FGR64Opnd on Mips64:
3735 //
3736 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3737 // =>
3738 //  fexupr.w $wtemp, $ws
3739 //  fexupr.d $wtemp2, $wtemp
3740 //  copy_s.d $rtemp, $wtemp2s[0]
3741 //  dmtc1 $rtemp, $fd
3742 //
3743 // For FGR64Opnd on Mips32:
3744 //
3745 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3746 // =>
3747 //  fexupr.w $wtemp, $ws
3748 //  fexupr.d $wtemp2, $wtemp
3749 //  copy_s.w $rtemp, $wtemp2[0]
3750 //  mtc1 $rtemp, $ftemp
3751 //  copy_s.w $rtemp2, $wtemp2[1]
3752 //  $fd = mthc1 $rtemp2, $ftemp
3753 MachineBasicBlock *
3754 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
3755                                           MachineBasicBlock *BB,
3756                                           bool IsFGR64) const {
3757 
3758   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3759   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3760   // it.
3761   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3762 
3763   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3764   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3765 
3766   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3767   DebugLoc DL = MI.getDebugLoc();
3768   Register Fd = MI.getOperand(0).getReg();
3769   Register Ws = MI.getOperand(1).getReg();
3770 
3771   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3772   const TargetRegisterClass *GPRRC =
3773       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3774   unsigned MTC1Opc = IsFGR64onMips64
3775                          ? Mips::DMTC1
3776                          : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
3777   Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
3778 
3779   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3780   Register WPHI = Wtemp;
3781 
3782   BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
3783   if (IsFGR64) {
3784     WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3785     BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
3786   }
3787 
3788   // Perform the safety regclass copy mentioned above.
3789   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3790   Register FPRPHI = IsFGR64onMips32
3791                         ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
3792                         : Fd;
3793   BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
3794   BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
3795 
3796   if (IsFGR64onMips32) {
3797     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3798     BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
3799         .addReg(WPHI)
3800         .addImm(1);
3801     BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
3802         .addReg(FPRPHI)
3803         .addReg(Rtemp2);
3804   }
3805 
3806   MI.eraseFromParent();
3807   return BB;
3808 }
3809 
3810 // Emit the FEXP2_W_1 pseudo instructions.
3811 //
3812 // fexp2_w_1_pseudo $wd, $wt
3813 // =>
3814 // ldi.w $ws, 1
3815 // fexp2.w $wd, $ws, $wt
3816 MachineBasicBlock *
3817 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3818                                     MachineBasicBlock *BB) const {
3819   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3820   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3821   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3822   Register Ws1 = RegInfo.createVirtualRegister(RC);
3823   Register Ws2 = RegInfo.createVirtualRegister(RC);
3824   DebugLoc DL = MI.getDebugLoc();
3825 
3826   // Splat 1.0 into a vector
3827   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3828   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3829 
3830   // Emit 1.0 * fexp2(Wt)
3831   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3832       .addReg(Ws2)
3833       .addReg(MI.getOperand(1).getReg());
3834 
3835   MI.eraseFromParent(); // The pseudo instruction is gone now.
3836   return BB;
3837 }
3838 
3839 // Emit the FEXP2_D_1 pseudo instructions.
3840 //
3841 // fexp2_d_1_pseudo $wd, $wt
3842 // =>
3843 // ldi.d $ws, 1
3844 // fexp2.d $wd, $ws, $wt
3845 MachineBasicBlock *
3846 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3847                                     MachineBasicBlock *BB) const {
3848   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3849   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3850   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3851   Register Ws1 = RegInfo.createVirtualRegister(RC);
3852   Register Ws2 = RegInfo.createVirtualRegister(RC);
3853   DebugLoc DL = MI.getDebugLoc();
3854 
3855   // Splat 1.0 into a vector
3856   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3857   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3858 
3859   // Emit 1.0 * fexp2(Wt)
3860   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3861       .addReg(Ws2)
3862       .addReg(MI.getOperand(1).getReg());
3863 
3864   MI.eraseFromParent(); // The pseudo instruction is gone now.
3865   return BB;
3866 }
3867