1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "NVPTXISelLowering.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXSubtarget.h"
18 #include "NVPTXTargetMachine.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXUtilities.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetCallingConv.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CodeGen.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 #include <sstream>
60 #include <string>
61 #include <utility>
62 #include <vector>
63 
64 #define DEBUG_TYPE "nvptx-lower"
65 
66 using namespace llvm;
67 
68 static std::atomic<unsigned> GlobalUniqueCallSite;
69 
70 static cl::opt<bool> sched4reg(
71     "nvptx-sched4reg",
72     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
73 
74 static cl::opt<unsigned>
75 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
76                     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
77                              " 1: do it  2: do it aggressively"),
78                     cl::init(2));
79 
80 static cl::opt<int> UsePrecDivF32(
81     "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
82     cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
83              " IEEE Compliant F32 div.rnd if available."),
84     cl::init(2));
85 
86 static cl::opt<bool> UsePrecSqrtF32(
87     "nvptx-prec-sqrtf32", cl::Hidden,
88     cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
89     cl::init(true));
90 
91 int NVPTXTargetLowering::getDivF32Level() const {
92   if (UsePrecDivF32.getNumOccurrences() > 0) {
93     // If nvptx-prec-div32=N is used on the command-line, always honor it
94     return UsePrecDivF32;
95   } else {
96     // Otherwise, use div.approx if fast math is enabled
97     if (getTargetMachine().Options.UnsafeFPMath)
98       return 0;
99     else
100       return 2;
101   }
102 }
103 
104 bool NVPTXTargetLowering::usePrecSqrtF32() const {
105   if (UsePrecSqrtF32.getNumOccurrences() > 0) {
106     // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
107     return UsePrecSqrtF32;
108   } else {
109     // Otherwise, use sqrt.approx if fast math is enabled
110     return !getTargetMachine().Options.UnsafeFPMath;
111   }
112 }
113 
114 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
115   return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
116          DenormalMode::PreserveSign;
117 }
118 
119 static bool IsPTXVectorType(MVT VT) {
120   switch (VT.SimpleTy) {
121   default:
122     return false;
123   case MVT::v2i1:
124   case MVT::v4i1:
125   case MVT::v2i8:
126   case MVT::v4i8:
127   case MVT::v2i16:
128   case MVT::v4i16:
129   case MVT::v2i32:
130   case MVT::v4i32:
131   case MVT::v2i64:
132   case MVT::v2f16:
133   case MVT::v4f16:
134   case MVT::v8f16: // <4 x f16x2>
135   case MVT::v2f32:
136   case MVT::v4f32:
137   case MVT::v2f64:
138     return true;
139   }
140 }
141 
142 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
143 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
144 /// into their primitive components.
145 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
146 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
147 /// LowerCall, and LowerReturn.
148 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
149                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
150                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
151                                uint64_t StartingOffset = 0) {
152   SmallVector<EVT, 16> TempVTs;
153   SmallVector<uint64_t, 16> TempOffsets;
154 
155   // Special case for i128 - decompose to (i64, i64)
156   if (Ty->isIntegerTy(128)) {
157     ValueVTs.push_back(EVT(MVT::i64));
158     ValueVTs.push_back(EVT(MVT::i64));
159 
160     if (Offsets) {
161       Offsets->push_back(StartingOffset + 0);
162       Offsets->push_back(StartingOffset + 8);
163     }
164 
165     return;
166   }
167 
168   // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
169   if (StructType *STy = dyn_cast<StructType>(Ty)) {
170     auto const *SL = DL.getStructLayout(STy);
171     auto ElementNum = 0;
172     for(auto *EI : STy->elements()) {
173       ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
174                          StartingOffset + SL->getElementOffset(ElementNum));
175       ++ElementNum;
176     }
177     return;
178   }
179 
180   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
181   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
182     EVT VT = TempVTs[i];
183     uint64_t Off = TempOffsets[i];
184     // Split vectors into individual elements, except for v2f16, which
185     // we will pass as a single scalar.
186     if (VT.isVector()) {
187       unsigned NumElts = VT.getVectorNumElements();
188       EVT EltVT = VT.getVectorElementType();
189       // Vectors with an even number of f16 elements will be passed to
190       // us as an array of v2f16 elements. We must match this so we
191       // stay in sync with Ins/Outs.
192       if (EltVT == MVT::f16 && NumElts % 2 == 0) {
193         EltVT = MVT::v2f16;
194         NumElts /= 2;
195       }
196       for (unsigned j = 0; j != NumElts; ++j) {
197         ValueVTs.push_back(EltVT);
198         if (Offsets)
199           Offsets->push_back(Off + j * EltVT.getStoreSize());
200       }
201     } else {
202       ValueVTs.push_back(VT);
203       if (Offsets)
204         Offsets->push_back(Off);
205     }
206   }
207 }
208 
209 // Check whether we can merge loads/stores of some of the pieces of a
210 // flattened function parameter or return value into a single vector
211 // load/store.
212 //
213 // The flattened parameter is represented as a list of EVTs and
214 // offsets, and the whole structure is aligned to ParamAlignment. This
215 // function determines whether we can load/store pieces of the
216 // parameter starting at index Idx using a single vectorized op of
217 // size AccessSize. If so, it returns the number of param pieces
218 // covered by the vector op. Otherwise, it returns 1.
219 static unsigned CanMergeParamLoadStoresStartingAt(
220     unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
221     const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
222 
223   // Can't vectorize if param alignment is not sufficient.
224   if (ParamAlignment < AccessSize)
225     return 1;
226   // Can't vectorize if offset is not aligned.
227   if (Offsets[Idx] & (AccessSize - 1))
228     return 1;
229 
230   EVT EltVT = ValueVTs[Idx];
231   unsigned EltSize = EltVT.getStoreSize();
232 
233   // Element is too large to vectorize.
234   if (EltSize >= AccessSize)
235     return 1;
236 
237   unsigned NumElts = AccessSize / EltSize;
238   // Can't vectorize if AccessBytes if not a multiple of EltSize.
239   if (AccessSize != EltSize * NumElts)
240     return 1;
241 
242   // We don't have enough elements to vectorize.
243   if (Idx + NumElts > ValueVTs.size())
244     return 1;
245 
246   // PTX ISA can only deal with 2- and 4-element vector ops.
247   if (NumElts != 4 && NumElts != 2)
248     return 1;
249 
250   for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
251     // Types do not match.
252     if (ValueVTs[j] != EltVT)
253       return 1;
254 
255     // Elements are not contiguous.
256     if (Offsets[j] - Offsets[j - 1] != EltSize)
257       return 1;
258   }
259   // OK. We can vectorize ValueVTs[i..i+NumElts)
260   return NumElts;
261 }
262 
263 // Flags for tracking per-element vectorization state of loads/stores
264 // of a flattened function parameter or return value.
265 enum ParamVectorizationFlags {
266   PVF_INNER = 0x0, // Middle elements of a vector.
267   PVF_FIRST = 0x1, // First element of the vector.
268   PVF_LAST = 0x2,  // Last element of the vector.
269   // Scalar is effectively a 1-element vector.
270   PVF_SCALAR = PVF_FIRST | PVF_LAST
271 };
272 
273 // Computes whether and how we can vectorize the loads/stores of a
274 // flattened function parameter or return value.
275 //
276 // The flattened parameter is represented as the list of ValueVTs and
277 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
278 // of the same size as ValueVTs indicating how each piece should be
279 // loaded/stored (i.e. as a scalar, or as part of a vector
280 // load/store).
281 static SmallVector<ParamVectorizationFlags, 16>
282 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
283                      const SmallVectorImpl<uint64_t> &Offsets,
284                      Align ParamAlignment) {
285   // Set vector size to match ValueVTs and mark all elements as
286   // scalars by default.
287   SmallVector<ParamVectorizationFlags, 16> VectorInfo;
288   VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
289 
290   // Check what we can vectorize using 128/64/32-bit accesses.
291   for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
292     // Skip elements we've already processed.
293     assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
294     for (unsigned AccessSize : {16, 8, 4, 2}) {
295       unsigned NumElts = CanMergeParamLoadStoresStartingAt(
296           I, AccessSize, ValueVTs, Offsets, ParamAlignment);
297       // Mark vectorized elements.
298       switch (NumElts) {
299       default:
300         llvm_unreachable("Unexpected return value");
301       case 1:
302         // Can't vectorize using this size, try next smaller size.
303         continue;
304       case 2:
305         assert(I + 1 < E && "Not enough elements.");
306         VectorInfo[I] = PVF_FIRST;
307         VectorInfo[I + 1] = PVF_LAST;
308         I += 1;
309         break;
310       case 4:
311         assert(I + 3 < E && "Not enough elements.");
312         VectorInfo[I] = PVF_FIRST;
313         VectorInfo[I + 1] = PVF_INNER;
314         VectorInfo[I + 2] = PVF_INNER;
315         VectorInfo[I + 3] = PVF_LAST;
316         I += 3;
317         break;
318       }
319       // Break out of the inner loop because we've already succeeded
320       // using largest possible AccessSize.
321       break;
322     }
323   }
324   return VectorInfo;
325 }
326 
327 // NVPTXTargetLowering Constructor.
328 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
329                                          const NVPTXSubtarget &STI)
330     : TargetLowering(TM), nvTM(&TM), STI(STI) {
331   // always lower memset, memcpy, and memmove intrinsics to load/store
332   // instructions, rather
333   // then generating calls to memset, mempcy or memmove.
334   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
335   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
336   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
337 
338   setBooleanContents(ZeroOrNegativeOneBooleanContent);
339   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
340 
341   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
342   // condition branches.
343   setJumpIsExpensive(true);
344 
345   // Wide divides are _very_ slow. Try to reduce the width of the divide if
346   // possible.
347   addBypassSlowDiv(64, 32);
348 
349   // By default, use the Source scheduling
350   if (sched4reg)
351     setSchedulingPreference(Sched::RegPressure);
352   else
353     setSchedulingPreference(Sched::Source);
354 
355   auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
356                                     LegalizeAction NoF16Action) {
357     setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
358   };
359 
360   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
361   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
362   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
363   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
364   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
365   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
366   addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
367   addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
368 
369   // Conversion to/from FP16/FP16x2 is always legal.
370   setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
371   setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
372   setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
373   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
374   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
375   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
376 
377   setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
378   setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
379 
380   // Operations not directly supported by NVPTX.
381   for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
382                  MVT::i16, MVT::i32, MVT::i64}) {
383     setOperationAction(ISD::SELECT_CC, VT, Expand);
384     setOperationAction(ISD::BR_CC, VT, Expand);
385   }
386 
387   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
388   // For others we will expand to a SHL/SRA pair.
389   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
390   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
391   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
392   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
393   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
394 
395   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
396   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
397   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
398   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
399   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
400   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
401 
402   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
403   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
404 
405   // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
406   // that don't have h/w rotation we lower them to multi-instruction assembly.
407   // See ROT*_sw in NVPTXIntrInfo.td
408   setOperationAction(ISD::ROTL, MVT::i64, Legal);
409   setOperationAction(ISD::ROTR, MVT::i64, Legal);
410   setOperationAction(ISD::ROTL, MVT::i32, Legal);
411   setOperationAction(ISD::ROTR, MVT::i32, Legal);
412 
413   setOperationAction(ISD::ROTL, MVT::i16, Expand);
414   setOperationAction(ISD::ROTR, MVT::i16, Expand);
415   setOperationAction(ISD::ROTL, MVT::i8, Expand);
416   setOperationAction(ISD::ROTR, MVT::i8, Expand);
417   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
418   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
419   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
420 
421   // Indirect branch is not supported.
422   // This also disables Jump Table creation.
423   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
424   setOperationAction(ISD::BRIND, MVT::Other, Expand);
425 
426   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
427   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
428 
429   // We want to legalize constant related memmove and memcopy
430   // intrinsics.
431   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
432 
433   // Turn FP extload into load/fpextend
434   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
435   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
436   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
437   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
438   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
439   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
440   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
441   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
442   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
443   // Turn FP truncstore into trunc + store.
444   // FIXME: vector types should also be expanded
445   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
446   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
447   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
448 
449   // PTX does not support load / store predicate registers
450   setOperationAction(ISD::LOAD, MVT::i1, Custom);
451   setOperationAction(ISD::STORE, MVT::i1, Custom);
452 
453   for (MVT VT : MVT::integer_valuetypes()) {
454     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
455     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
456     setTruncStoreAction(VT, MVT::i1, Expand);
457   }
458 
459   // This is legal in NVPTX
460   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
461   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
462   setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
463 
464   // TRAP can be lowered to PTX trap
465   setOperationAction(ISD::TRAP, MVT::Other, Legal);
466 
467   // Register custom handling for vector loads/stores
468   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
469     if (IsPTXVectorType(VT)) {
470       setOperationAction(ISD::LOAD, VT, Custom);
471       setOperationAction(ISD::STORE, VT, Custom);
472       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
473     }
474   }
475 
476   // Custom handling for i8 intrinsics
477   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
478 
479   for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
480     setOperationAction(ISD::ABS,  Ty, Legal);
481     setOperationAction(ISD::SMIN, Ty, Legal);
482     setOperationAction(ISD::SMAX, Ty, Legal);
483     setOperationAction(ISD::UMIN, Ty, Legal);
484     setOperationAction(ISD::UMAX, Ty, Legal);
485 
486     setOperationAction(ISD::CTPOP, Ty, Legal);
487     setOperationAction(ISD::CTLZ, Ty, Legal);
488   }
489 
490   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
491   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
492   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
493 
494   // PTX does not directly support SELP of i1, so promote to i32 first
495   setOperationAction(ISD::SELECT, MVT::i1, Custom);
496 
497   // PTX cannot multiply two i64s in a single instruction.
498   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
499   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
500 
501   // We have some custom DAG combine patterns for these nodes
502   setTargetDAGCombine(ISD::ADD);
503   setTargetDAGCombine(ISD::AND);
504   setTargetDAGCombine(ISD::FADD);
505   setTargetDAGCombine(ISD::MUL);
506   setTargetDAGCombine(ISD::SHL);
507   setTargetDAGCombine(ISD::SREM);
508   setTargetDAGCombine(ISD::UREM);
509 
510   // setcc for f16x2 needs special handling to prevent legalizer's
511   // attempt to scalarize it due to v2i1 not being legal.
512   if (STI.allowFP16Math())
513     setTargetDAGCombine(ISD::SETCC);
514 
515   // Promote fp16 arithmetic if fp16 hardware isn't available or the
516   // user passed --nvptx-no-fp16-math. The flag is useful because,
517   // although sm_53+ GPUs have some sort of FP16 support in
518   // hardware, only sm_53 and sm_60 have full implementation. Others
519   // only have token amount of hardware and are likely to run faster
520   // by using fp32 units instead.
521   for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
522     setFP16OperationAction(Op, MVT::f16, Legal, Promote);
523     setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
524   }
525 
526   // There's no neg.f16 instruction. Expand to (0-x).
527   setOperationAction(ISD::FNEG, MVT::f16, Expand);
528   setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
529 
530   // (would be) Library functions.
531 
532   // These map to conversion instructions for scalar FP types.
533   for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
534                          ISD::FTRUNC}) {
535     setOperationAction(Op, MVT::f16, Legal);
536     setOperationAction(Op, MVT::f32, Legal);
537     setOperationAction(Op, MVT::f64, Legal);
538     setOperationAction(Op, MVT::v2f16, Expand);
539   }
540 
541   setOperationAction(ISD::FROUND, MVT::f16, Promote);
542   setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
543   setOperationAction(ISD::FROUND, MVT::f32, Custom);
544   setOperationAction(ISD::FROUND, MVT::f64, Custom);
545 
546 
547   // 'Expand' implements FCOPYSIGN without calling an external library.
548   setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
549   setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
550   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
551   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
552 
553   // These map to corresponding instructions for f32/f64. f16 must be
554   // promoted to f32. v2f16 is expanded to f16, which is then promoted
555   // to f32.
556   for (const auto &Op :
557        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FABS}) {
558     setOperationAction(Op, MVT::f16, Promote);
559     setOperationAction(Op, MVT::f32, Legal);
560     setOperationAction(Op, MVT::f64, Legal);
561     setOperationAction(Op, MVT::v2f16, Expand);
562   }
563   // max.f16, max.f16x2 and max.NaN are supported on sm_80+.
564   auto GetMinMaxAction = [&](LegalizeAction NotSm80Action) {
565     bool IsAtLeastSm80 = STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
566     return IsAtLeastSm80 ? Legal : NotSm80Action;
567   };
568   for (const auto &Op : {ISD::FMINNUM, ISD::FMAXNUM}) {
569     setFP16OperationAction(Op, MVT::f16, GetMinMaxAction(Promote), Promote);
570     setOperationAction(Op, MVT::f32, Legal);
571     setOperationAction(Op, MVT::f64, Legal);
572     setFP16OperationAction(Op, MVT::v2f16, GetMinMaxAction(Expand), Expand);
573   }
574   for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
575     setFP16OperationAction(Op, MVT::f16, GetMinMaxAction(Expand), Expand);
576     setOperationAction(Op, MVT::f32, GetMinMaxAction(Expand));
577     setFP16OperationAction(Op, MVT::v2f16, GetMinMaxAction(Expand), Expand);
578   }
579 
580   // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
581   // No FPOW or FREM in PTX.
582 
583   // Now deduce the information based on the above mentioned
584   // actions
585   computeRegisterProperties(STI.getRegisterInfo());
586 }
587 
588 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
589   switch ((NVPTXISD::NodeType)Opcode) {
590   case NVPTXISD::FIRST_NUMBER:
591     break;
592   case NVPTXISD::CALL:
593     return "NVPTXISD::CALL";
594   case NVPTXISD::RET_FLAG:
595     return "NVPTXISD::RET_FLAG";
596   case NVPTXISD::LOAD_PARAM:
597     return "NVPTXISD::LOAD_PARAM";
598   case NVPTXISD::Wrapper:
599     return "NVPTXISD::Wrapper";
600   case NVPTXISD::DeclareParam:
601     return "NVPTXISD::DeclareParam";
602   case NVPTXISD::DeclareScalarParam:
603     return "NVPTXISD::DeclareScalarParam";
604   case NVPTXISD::DeclareRet:
605     return "NVPTXISD::DeclareRet";
606   case NVPTXISD::DeclareScalarRet:
607     return "NVPTXISD::DeclareScalarRet";
608   case NVPTXISD::DeclareRetParam:
609     return "NVPTXISD::DeclareRetParam";
610   case NVPTXISD::PrintCall:
611     return "NVPTXISD::PrintCall";
612   case NVPTXISD::PrintConvergentCall:
613     return "NVPTXISD::PrintConvergentCall";
614   case NVPTXISD::PrintCallUni:
615     return "NVPTXISD::PrintCallUni";
616   case NVPTXISD::PrintConvergentCallUni:
617     return "NVPTXISD::PrintConvergentCallUni";
618   case NVPTXISD::LoadParam:
619     return "NVPTXISD::LoadParam";
620   case NVPTXISD::LoadParamV2:
621     return "NVPTXISD::LoadParamV2";
622   case NVPTXISD::LoadParamV4:
623     return "NVPTXISD::LoadParamV4";
624   case NVPTXISD::StoreParam:
625     return "NVPTXISD::StoreParam";
626   case NVPTXISD::StoreParamV2:
627     return "NVPTXISD::StoreParamV2";
628   case NVPTXISD::StoreParamV4:
629     return "NVPTXISD::StoreParamV4";
630   case NVPTXISD::StoreParamS32:
631     return "NVPTXISD::StoreParamS32";
632   case NVPTXISD::StoreParamU32:
633     return "NVPTXISD::StoreParamU32";
634   case NVPTXISD::CallArgBegin:
635     return "NVPTXISD::CallArgBegin";
636   case NVPTXISD::CallArg:
637     return "NVPTXISD::CallArg";
638   case NVPTXISD::LastCallArg:
639     return "NVPTXISD::LastCallArg";
640   case NVPTXISD::CallArgEnd:
641     return "NVPTXISD::CallArgEnd";
642   case NVPTXISD::CallVoid:
643     return "NVPTXISD::CallVoid";
644   case NVPTXISD::CallVal:
645     return "NVPTXISD::CallVal";
646   case NVPTXISD::CallSymbol:
647     return "NVPTXISD::CallSymbol";
648   case NVPTXISD::Prototype:
649     return "NVPTXISD::Prototype";
650   case NVPTXISD::MoveParam:
651     return "NVPTXISD::MoveParam";
652   case NVPTXISD::StoreRetval:
653     return "NVPTXISD::StoreRetval";
654   case NVPTXISD::StoreRetvalV2:
655     return "NVPTXISD::StoreRetvalV2";
656   case NVPTXISD::StoreRetvalV4:
657     return "NVPTXISD::StoreRetvalV4";
658   case NVPTXISD::PseudoUseParam:
659     return "NVPTXISD::PseudoUseParam";
660   case NVPTXISD::RETURN:
661     return "NVPTXISD::RETURN";
662   case NVPTXISD::CallSeqBegin:
663     return "NVPTXISD::CallSeqBegin";
664   case NVPTXISD::CallSeqEnd:
665     return "NVPTXISD::CallSeqEnd";
666   case NVPTXISD::CallPrototype:
667     return "NVPTXISD::CallPrototype";
668   case NVPTXISD::ProxyReg:
669     return "NVPTXISD::ProxyReg";
670   case NVPTXISD::LoadV2:
671     return "NVPTXISD::LoadV2";
672   case NVPTXISD::LoadV4:
673     return "NVPTXISD::LoadV4";
674   case NVPTXISD::LDGV2:
675     return "NVPTXISD::LDGV2";
676   case NVPTXISD::LDGV4:
677     return "NVPTXISD::LDGV4";
678   case NVPTXISD::LDUV2:
679     return "NVPTXISD::LDUV2";
680   case NVPTXISD::LDUV4:
681     return "NVPTXISD::LDUV4";
682   case NVPTXISD::StoreV2:
683     return "NVPTXISD::StoreV2";
684   case NVPTXISD::StoreV4:
685     return "NVPTXISD::StoreV4";
686   case NVPTXISD::FUN_SHFL_CLAMP:
687     return "NVPTXISD::FUN_SHFL_CLAMP";
688   case NVPTXISD::FUN_SHFR_CLAMP:
689     return "NVPTXISD::FUN_SHFR_CLAMP";
690   case NVPTXISD::IMAD:
691     return "NVPTXISD::IMAD";
692   case NVPTXISD::SETP_F16X2:
693     return "NVPTXISD::SETP_F16X2";
694   case NVPTXISD::Dummy:
695     return "NVPTXISD::Dummy";
696   case NVPTXISD::MUL_WIDE_SIGNED:
697     return "NVPTXISD::MUL_WIDE_SIGNED";
698   case NVPTXISD::MUL_WIDE_UNSIGNED:
699     return "NVPTXISD::MUL_WIDE_UNSIGNED";
700   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
701   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
702   case NVPTXISD::Tex1DFloatFloatLevel:
703     return "NVPTXISD::Tex1DFloatFloatLevel";
704   case NVPTXISD::Tex1DFloatFloatGrad:
705     return "NVPTXISD::Tex1DFloatFloatGrad";
706   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
707   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
708   case NVPTXISD::Tex1DS32FloatLevel:
709     return "NVPTXISD::Tex1DS32FloatLevel";
710   case NVPTXISD::Tex1DS32FloatGrad:
711     return "NVPTXISD::Tex1DS32FloatGrad";
712   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
713   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
714   case NVPTXISD::Tex1DU32FloatLevel:
715     return "NVPTXISD::Tex1DU32FloatLevel";
716   case NVPTXISD::Tex1DU32FloatGrad:
717     return "NVPTXISD::Tex1DU32FloatGrad";
718   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
719   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
720   case NVPTXISD::Tex1DArrayFloatFloatLevel:
721     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
722   case NVPTXISD::Tex1DArrayFloatFloatGrad:
723     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
724   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
725   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
726   case NVPTXISD::Tex1DArrayS32FloatLevel:
727     return "NVPTXISD::Tex1DArrayS32FloatLevel";
728   case NVPTXISD::Tex1DArrayS32FloatGrad:
729     return "NVPTXISD::Tex1DArrayS32FloatGrad";
730   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
731   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
732   case NVPTXISD::Tex1DArrayU32FloatLevel:
733     return "NVPTXISD::Tex1DArrayU32FloatLevel";
734   case NVPTXISD::Tex1DArrayU32FloatGrad:
735     return "NVPTXISD::Tex1DArrayU32FloatGrad";
736   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
737   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
738   case NVPTXISD::Tex2DFloatFloatLevel:
739     return "NVPTXISD::Tex2DFloatFloatLevel";
740   case NVPTXISD::Tex2DFloatFloatGrad:
741     return "NVPTXISD::Tex2DFloatFloatGrad";
742   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
743   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
744   case NVPTXISD::Tex2DS32FloatLevel:
745     return "NVPTXISD::Tex2DS32FloatLevel";
746   case NVPTXISD::Tex2DS32FloatGrad:
747     return "NVPTXISD::Tex2DS32FloatGrad";
748   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
749   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
750   case NVPTXISD::Tex2DU32FloatLevel:
751     return "NVPTXISD::Tex2DU32FloatLevel";
752   case NVPTXISD::Tex2DU32FloatGrad:
753     return "NVPTXISD::Tex2DU32FloatGrad";
754   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
755   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
756   case NVPTXISD::Tex2DArrayFloatFloatLevel:
757     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
758   case NVPTXISD::Tex2DArrayFloatFloatGrad:
759     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
760   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
761   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
762   case NVPTXISD::Tex2DArrayS32FloatLevel:
763     return "NVPTXISD::Tex2DArrayS32FloatLevel";
764   case NVPTXISD::Tex2DArrayS32FloatGrad:
765     return "NVPTXISD::Tex2DArrayS32FloatGrad";
766   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
767   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
768   case NVPTXISD::Tex2DArrayU32FloatLevel:
769     return "NVPTXISD::Tex2DArrayU32FloatLevel";
770   case NVPTXISD::Tex2DArrayU32FloatGrad:
771     return "NVPTXISD::Tex2DArrayU32FloatGrad";
772   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
773   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
774   case NVPTXISD::Tex3DFloatFloatLevel:
775     return "NVPTXISD::Tex3DFloatFloatLevel";
776   case NVPTXISD::Tex3DFloatFloatGrad:
777     return "NVPTXISD::Tex3DFloatFloatGrad";
778   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
779   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
780   case NVPTXISD::Tex3DS32FloatLevel:
781     return "NVPTXISD::Tex3DS32FloatLevel";
782   case NVPTXISD::Tex3DS32FloatGrad:
783     return "NVPTXISD::Tex3DS32FloatGrad";
784   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
785   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
786   case NVPTXISD::Tex3DU32FloatLevel:
787     return "NVPTXISD::Tex3DU32FloatLevel";
788   case NVPTXISD::Tex3DU32FloatGrad:
789     return "NVPTXISD::Tex3DU32FloatGrad";
790   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
791   case NVPTXISD::TexCubeFloatFloatLevel:
792     return "NVPTXISD::TexCubeFloatFloatLevel";
793   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
794   case NVPTXISD::TexCubeS32FloatLevel:
795     return "NVPTXISD::TexCubeS32FloatLevel";
796   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
797   case NVPTXISD::TexCubeU32FloatLevel:
798     return "NVPTXISD::TexCubeU32FloatLevel";
799   case NVPTXISD::TexCubeArrayFloatFloat:
800     return "NVPTXISD::TexCubeArrayFloatFloat";
801   case NVPTXISD::TexCubeArrayFloatFloatLevel:
802     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
803   case NVPTXISD::TexCubeArrayS32Float:
804     return "NVPTXISD::TexCubeArrayS32Float";
805   case NVPTXISD::TexCubeArrayS32FloatLevel:
806     return "NVPTXISD::TexCubeArrayS32FloatLevel";
807   case NVPTXISD::TexCubeArrayU32Float:
808     return "NVPTXISD::TexCubeArrayU32Float";
809   case NVPTXISD::TexCubeArrayU32FloatLevel:
810     return "NVPTXISD::TexCubeArrayU32FloatLevel";
811   case NVPTXISD::Tld4R2DFloatFloat:
812     return "NVPTXISD::Tld4R2DFloatFloat";
813   case NVPTXISD::Tld4G2DFloatFloat:
814     return "NVPTXISD::Tld4G2DFloatFloat";
815   case NVPTXISD::Tld4B2DFloatFloat:
816     return "NVPTXISD::Tld4B2DFloatFloat";
817   case NVPTXISD::Tld4A2DFloatFloat:
818     return "NVPTXISD::Tld4A2DFloatFloat";
819   case NVPTXISD::Tld4R2DS64Float:
820     return "NVPTXISD::Tld4R2DS64Float";
821   case NVPTXISD::Tld4G2DS64Float:
822     return "NVPTXISD::Tld4G2DS64Float";
823   case NVPTXISD::Tld4B2DS64Float:
824     return "NVPTXISD::Tld4B2DS64Float";
825   case NVPTXISD::Tld4A2DS64Float:
826     return "NVPTXISD::Tld4A2DS64Float";
827   case NVPTXISD::Tld4R2DU64Float:
828     return "NVPTXISD::Tld4R2DU64Float";
829   case NVPTXISD::Tld4G2DU64Float:
830     return "NVPTXISD::Tld4G2DU64Float";
831   case NVPTXISD::Tld4B2DU64Float:
832     return "NVPTXISD::Tld4B2DU64Float";
833   case NVPTXISD::Tld4A2DU64Float:
834     return "NVPTXISD::Tld4A2DU64Float";
835 
836   case NVPTXISD::TexUnified1DFloatS32:
837     return "NVPTXISD::TexUnified1DFloatS32";
838   case NVPTXISD::TexUnified1DFloatFloat:
839     return "NVPTXISD::TexUnified1DFloatFloat";
840   case NVPTXISD::TexUnified1DFloatFloatLevel:
841     return "NVPTXISD::TexUnified1DFloatFloatLevel";
842   case NVPTXISD::TexUnified1DFloatFloatGrad:
843     return "NVPTXISD::TexUnified1DFloatFloatGrad";
844   case NVPTXISD::TexUnified1DS32S32:
845     return "NVPTXISD::TexUnified1DS32S32";
846   case NVPTXISD::TexUnified1DS32Float:
847     return "NVPTXISD::TexUnified1DS32Float";
848   case NVPTXISD::TexUnified1DS32FloatLevel:
849     return "NVPTXISD::TexUnified1DS32FloatLevel";
850   case NVPTXISD::TexUnified1DS32FloatGrad:
851     return "NVPTXISD::TexUnified1DS32FloatGrad";
852   case NVPTXISD::TexUnified1DU32S32:
853     return "NVPTXISD::TexUnified1DU32S32";
854   case NVPTXISD::TexUnified1DU32Float:
855     return "NVPTXISD::TexUnified1DU32Float";
856   case NVPTXISD::TexUnified1DU32FloatLevel:
857     return "NVPTXISD::TexUnified1DU32FloatLevel";
858   case NVPTXISD::TexUnified1DU32FloatGrad:
859     return "NVPTXISD::TexUnified1DU32FloatGrad";
860   case NVPTXISD::TexUnified1DArrayFloatS32:
861     return "NVPTXISD::TexUnified1DArrayFloatS32";
862   case NVPTXISD::TexUnified1DArrayFloatFloat:
863     return "NVPTXISD::TexUnified1DArrayFloatFloat";
864   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
865     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
866   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
867     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
868   case NVPTXISD::TexUnified1DArrayS32S32:
869     return "NVPTXISD::TexUnified1DArrayS32S32";
870   case NVPTXISD::TexUnified1DArrayS32Float:
871     return "NVPTXISD::TexUnified1DArrayS32Float";
872   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
873     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
874   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
875     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
876   case NVPTXISD::TexUnified1DArrayU32S32:
877     return "NVPTXISD::TexUnified1DArrayU32S32";
878   case NVPTXISD::TexUnified1DArrayU32Float:
879     return "NVPTXISD::TexUnified1DArrayU32Float";
880   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
881     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
882   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
883     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
884   case NVPTXISD::TexUnified2DFloatS32:
885     return "NVPTXISD::TexUnified2DFloatS32";
886   case NVPTXISD::TexUnified2DFloatFloat:
887     return "NVPTXISD::TexUnified2DFloatFloat";
888   case NVPTXISD::TexUnified2DFloatFloatLevel:
889     return "NVPTXISD::TexUnified2DFloatFloatLevel";
890   case NVPTXISD::TexUnified2DFloatFloatGrad:
891     return "NVPTXISD::TexUnified2DFloatFloatGrad";
892   case NVPTXISD::TexUnified2DS32S32:
893     return "NVPTXISD::TexUnified2DS32S32";
894   case NVPTXISD::TexUnified2DS32Float:
895     return "NVPTXISD::TexUnified2DS32Float";
896   case NVPTXISD::TexUnified2DS32FloatLevel:
897     return "NVPTXISD::TexUnified2DS32FloatLevel";
898   case NVPTXISD::TexUnified2DS32FloatGrad:
899     return "NVPTXISD::TexUnified2DS32FloatGrad";
900   case NVPTXISD::TexUnified2DU32S32:
901     return "NVPTXISD::TexUnified2DU32S32";
902   case NVPTXISD::TexUnified2DU32Float:
903     return "NVPTXISD::TexUnified2DU32Float";
904   case NVPTXISD::TexUnified2DU32FloatLevel:
905     return "NVPTXISD::TexUnified2DU32FloatLevel";
906   case NVPTXISD::TexUnified2DU32FloatGrad:
907     return "NVPTXISD::TexUnified2DU32FloatGrad";
908   case NVPTXISD::TexUnified2DArrayFloatS32:
909     return "NVPTXISD::TexUnified2DArrayFloatS32";
910   case NVPTXISD::TexUnified2DArrayFloatFloat:
911     return "NVPTXISD::TexUnified2DArrayFloatFloat";
912   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
913     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
914   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
915     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
916   case NVPTXISD::TexUnified2DArrayS32S32:
917     return "NVPTXISD::TexUnified2DArrayS32S32";
918   case NVPTXISD::TexUnified2DArrayS32Float:
919     return "NVPTXISD::TexUnified2DArrayS32Float";
920   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
921     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
922   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
923     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
924   case NVPTXISD::TexUnified2DArrayU32S32:
925     return "NVPTXISD::TexUnified2DArrayU32S32";
926   case NVPTXISD::TexUnified2DArrayU32Float:
927     return "NVPTXISD::TexUnified2DArrayU32Float";
928   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
929     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
930   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
931     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
932   case NVPTXISD::TexUnified3DFloatS32:
933     return "NVPTXISD::TexUnified3DFloatS32";
934   case NVPTXISD::TexUnified3DFloatFloat:
935     return "NVPTXISD::TexUnified3DFloatFloat";
936   case NVPTXISD::TexUnified3DFloatFloatLevel:
937     return "NVPTXISD::TexUnified3DFloatFloatLevel";
938   case NVPTXISD::TexUnified3DFloatFloatGrad:
939     return "NVPTXISD::TexUnified3DFloatFloatGrad";
940   case NVPTXISD::TexUnified3DS32S32:
941     return "NVPTXISD::TexUnified3DS32S32";
942   case NVPTXISD::TexUnified3DS32Float:
943     return "NVPTXISD::TexUnified3DS32Float";
944   case NVPTXISD::TexUnified3DS32FloatLevel:
945     return "NVPTXISD::TexUnified3DS32FloatLevel";
946   case NVPTXISD::TexUnified3DS32FloatGrad:
947     return "NVPTXISD::TexUnified3DS32FloatGrad";
948   case NVPTXISD::TexUnified3DU32S32:
949     return "NVPTXISD::TexUnified3DU32S32";
950   case NVPTXISD::TexUnified3DU32Float:
951     return "NVPTXISD::TexUnified3DU32Float";
952   case NVPTXISD::TexUnified3DU32FloatLevel:
953     return "NVPTXISD::TexUnified3DU32FloatLevel";
954   case NVPTXISD::TexUnified3DU32FloatGrad:
955     return "NVPTXISD::TexUnified3DU32FloatGrad";
956   case NVPTXISD::TexUnifiedCubeFloatFloat:
957     return "NVPTXISD::TexUnifiedCubeFloatFloat";
958   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
959     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
960   case NVPTXISD::TexUnifiedCubeS32Float:
961     return "NVPTXISD::TexUnifiedCubeS32Float";
962   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
963     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
964   case NVPTXISD::TexUnifiedCubeU32Float:
965     return "NVPTXISD::TexUnifiedCubeU32Float";
966   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
967     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
968   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
969     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
970   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
971     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
972   case NVPTXISD::TexUnifiedCubeArrayS32Float:
973     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
974   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
975     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
976   case NVPTXISD::TexUnifiedCubeArrayU32Float:
977     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
978   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
979     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
980   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
981     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
982   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
983     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
984   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
985     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
986   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
987     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
988   case NVPTXISD::Tld4UnifiedR2DS64Float:
989     return "NVPTXISD::Tld4UnifiedR2DS64Float";
990   case NVPTXISD::Tld4UnifiedG2DS64Float:
991     return "NVPTXISD::Tld4UnifiedG2DS64Float";
992   case NVPTXISD::Tld4UnifiedB2DS64Float:
993     return "NVPTXISD::Tld4UnifiedB2DS64Float";
994   case NVPTXISD::Tld4UnifiedA2DS64Float:
995     return "NVPTXISD::Tld4UnifiedA2DS64Float";
996   case NVPTXISD::Tld4UnifiedR2DU64Float:
997     return "NVPTXISD::Tld4UnifiedR2DU64Float";
998   case NVPTXISD::Tld4UnifiedG2DU64Float:
999     return "NVPTXISD::Tld4UnifiedG2DU64Float";
1000   case NVPTXISD::Tld4UnifiedB2DU64Float:
1001     return "NVPTXISD::Tld4UnifiedB2DU64Float";
1002   case NVPTXISD::Tld4UnifiedA2DU64Float:
1003     return "NVPTXISD::Tld4UnifiedA2DU64Float";
1004 
1005   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
1006   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
1007   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
1008   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
1009   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
1010   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
1011   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
1012   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
1013   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
1014   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
1015   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
1016 
1017   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
1018   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
1019   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
1020   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
1021   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1022   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1023   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1024   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1025   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1026   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1027   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1028 
1029   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
1030   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
1031   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
1032   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
1033   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
1034   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
1035   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
1036   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
1037   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
1038   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
1039   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
1040 
1041   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
1042   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
1043   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
1044   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
1045   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1046   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1047   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1048   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1049   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1050   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1051   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1052 
1053   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
1054   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
1055   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
1056   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
1057   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
1058   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
1059   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
1060   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
1061   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
1062   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
1063   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
1064 
1065   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
1066   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
1067   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
1068   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
1069   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
1070   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
1071   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
1072   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
1073   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
1074   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
1075   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
1076 
1077   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
1078   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
1079   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
1080   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
1081   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
1082   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
1083   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
1084   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
1085   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
1086   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
1087   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
1088 
1089   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
1090   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
1091   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
1092   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
1093   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
1094   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
1095   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
1096   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
1097   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
1098   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
1099   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
1100 
1101   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
1102   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
1103   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
1104   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
1105   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
1106   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
1107   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
1108   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
1109   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
1110   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
1111   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
1112 
1113   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
1114   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
1115   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
1116   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
1117   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
1118   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
1119   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
1120   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
1121   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
1122   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
1123   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
1124 
1125   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
1126   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
1127   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
1128   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
1129   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
1130   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
1131   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
1132   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
1133   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
1134   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
1135   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
1136 
1137   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
1138   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
1139   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
1140   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
1141   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
1142   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
1143   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
1144   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
1145   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
1146   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
1147   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
1148 
1149   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
1150   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
1151   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
1152   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
1153   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
1154   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
1155   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
1156   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
1157   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
1158   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
1159   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
1160 
1161   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
1162   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
1163   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
1164   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
1165   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
1166   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
1167   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
1168   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
1169   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
1170   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
1171   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
1172 
1173   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
1174   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
1175   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
1176   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
1177   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
1178   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
1179   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
1180   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
1181   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
1182   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
1183   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
1184   }
1185   return nullptr;
1186 }
1187 
1188 TargetLoweringBase::LegalizeTypeAction
1189 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1190   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1191       VT.getScalarType() == MVT::i1)
1192     return TypeSplitVector;
1193   if (VT == MVT::v2f16)
1194     return TypeLegal;
1195   return TargetLoweringBase::getPreferredVectorAction(VT);
1196 }
1197 
1198 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1199                                              int Enabled, int &ExtraSteps,
1200                                              bool &UseOneConst,
1201                                              bool Reciprocal) const {
1202   if (!(Enabled == ReciprocalEstimate::Enabled ||
1203         (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1204     return SDValue();
1205 
1206   if (ExtraSteps == ReciprocalEstimate::Unspecified)
1207     ExtraSteps = 0;
1208 
1209   SDLoc DL(Operand);
1210   EVT VT = Operand.getValueType();
1211   bool Ftz = useF32FTZ(DAG.getMachineFunction());
1212 
1213   auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1214     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1215                        DAG.getConstant(IID, DL, MVT::i32), Operand);
1216   };
1217 
1218   // The sqrt and rsqrt refinement processes assume we always start out with an
1219   // approximation of the rsqrt.  Therefore, if we're going to do any refinement
1220   // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
1221   // any refinement, we must return a regular sqrt.
1222   if (Reciprocal || ExtraSteps > 0) {
1223     if (VT == MVT::f32)
1224       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1225                                    : Intrinsic::nvvm_rsqrt_approx_f);
1226     else if (VT == MVT::f64)
1227       return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1228     else
1229       return SDValue();
1230   } else {
1231     if (VT == MVT::f32)
1232       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1233                                    : Intrinsic::nvvm_sqrt_approx_f);
1234     else {
1235       // There's no sqrt.approx.f64 instruction, so we emit
1236       // reciprocal(rsqrt(x)).  This is faster than
1237       // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
1238       // x * rsqrt(x).)
1239       return DAG.getNode(
1240           ISD::INTRINSIC_WO_CHAIN, DL, VT,
1241           DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1242           MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1243     }
1244   }
1245 }
1246 
1247 SDValue
1248 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1249   SDLoc dl(Op);
1250   const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1251   auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1252   Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1253   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1254 }
1255 
1256 std::string NVPTXTargetLowering::getPrototype(
1257     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1258     const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
1259     const CallBase &CB, unsigned UniqueCallSite) const {
1260   auto PtrVT = getPointerTy(DL);
1261 
1262   bool isABI = (STI.getSmVersion() >= 20);
1263   assert(isABI && "Non-ABI compilation is not supported");
1264   if (!isABI)
1265     return "";
1266 
1267   std::stringstream O;
1268   O << "prototype_" << UniqueCallSite << " : .callprototype ";
1269 
1270   if (retTy->getTypeID() == Type::VoidTyID) {
1271     O << "()";
1272   } else {
1273     O << "(";
1274     if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1275       unsigned size = 0;
1276       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1277         size = ITy->getBitWidth();
1278       } else {
1279         assert(retTy->isFloatingPointTy() &&
1280                "Floating point type expected here");
1281         size = retTy->getPrimitiveSizeInBits();
1282       }
1283       // PTX ABI requires all scalar return values to be at least 32
1284       // bits in size.  fp16 normally uses .b16 as its storage type in
1285       // PTX, so its size must be adjusted here, too.
1286       if (size < 32)
1287         size = 32;
1288 
1289       O << ".param .b" << size << " _";
1290     } else if (isa<PointerType>(retTy)) {
1291       O << ".param .b" << PtrVT.getSizeInBits() << " _";
1292     } else if (retTy->isAggregateType() || retTy->isVectorTy() ||
1293                retTy->isIntegerTy(128)) {
1294       O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
1295         << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
1296     } else {
1297       llvm_unreachable("Unknown return type");
1298     }
1299     O << ") ";
1300   }
1301   O << "_ (";
1302 
1303   bool first = true;
1304 
1305   unsigned OIdx = 0;
1306   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1307     Type *Ty = Args[i].Ty;
1308     if (!first) {
1309       O << ", ";
1310     }
1311     first = false;
1312 
1313     if (!Outs[OIdx].Flags.isByVal()) {
1314       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1315         unsigned align = 0;
1316         const CallInst *CallI = cast<CallInst>(&CB);
1317         // +1 because index 0 is reserved for return type alignment
1318         if (!getAlign(*CallI, i + 1, align))
1319           align = DL.getABITypeAlignment(Ty);
1320         unsigned sz = DL.getTypeAllocSize(Ty);
1321         O << ".param .align " << align << " .b8 ";
1322         O << "_";
1323         O << "[" << sz << "]";
1324         // update the index for Outs
1325         SmallVector<EVT, 16> vtparts;
1326         ComputeValueVTs(*this, DL, Ty, vtparts);
1327         if (unsigned len = vtparts.size())
1328           OIdx += len - 1;
1329         continue;
1330       }
1331       // i8 types in IR will be i16 types in SDAG
1332       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1333               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1334              "type mismatch between callee prototype and arguments");
1335       // scalar type
1336       unsigned sz = 0;
1337       if (isa<IntegerType>(Ty)) {
1338         sz = cast<IntegerType>(Ty)->getBitWidth();
1339         if (sz < 32)
1340           sz = 32;
1341       } else if (isa<PointerType>(Ty)) {
1342         sz = PtrVT.getSizeInBits();
1343       } else if (Ty->isHalfTy())
1344         // PTX ABI requires all scalar parameters to be at least 32
1345         // bits in size.  fp16 normally uses .b16 as its storage type
1346         // in PTX, so its size must be adjusted here, too.
1347         sz = 32;
1348       else
1349         sz = Ty->getPrimitiveSizeInBits();
1350       O << ".param .b" << sz << " ";
1351       O << "_";
1352       continue;
1353     }
1354     auto *PTy = dyn_cast<PointerType>(Ty);
1355     assert(PTy && "Param with byval attribute should be a pointer type");
1356     Type *ETy = PTy->getPointerElementType();
1357 
1358     Align align = Outs[OIdx].Flags.getNonZeroByValAlign();
1359     unsigned sz = DL.getTypeAllocSize(ETy);
1360     O << ".param .align " << align.value() << " .b8 ";
1361     O << "_";
1362     O << "[" << sz << "]";
1363   }
1364   O << ");";
1365   return O.str();
1366 }
1367 
1368 Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1369                                                 const CallBase *CB, Type *Ty,
1370                                                 unsigned Idx,
1371                                                 const DataLayout &DL) const {
1372   if (!CB) {
1373     // CallSite is zero, fallback to ABI type alignment
1374     return DL.getABITypeAlign(Ty);
1375   }
1376 
1377   unsigned Alignment = 0;
1378   const Function *DirectCallee = CB->getCalledFunction();
1379 
1380   if (!DirectCallee) {
1381     // We don't have a direct function symbol, but that may be because of
1382     // constant cast instructions in the call.
1383 
1384     // With bitcast'd call targets, the instruction will be the call
1385     if (const auto *CI = dyn_cast<CallInst>(CB)) {
1386       // Check if we have call alignment metadata
1387       if (getAlign(*CI, Idx, Alignment))
1388         return Align(Alignment);
1389 
1390       const Value *CalleeV = CI->getCalledOperand();
1391       // Ignore any bitcast instructions
1392       while (isa<ConstantExpr>(CalleeV)) {
1393         const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1394         if (!CE->isCast())
1395           break;
1396         // Look through the bitcast
1397         CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1398       }
1399 
1400       // We have now looked past all of the bitcasts.  Do we finally have a
1401       // Function?
1402       if (const auto *CalleeF = dyn_cast<Function>(CalleeV))
1403         DirectCallee = CalleeF;
1404     }
1405   }
1406 
1407   // Check for function alignment information if we found that the
1408   // ultimate target is a Function
1409   if (DirectCallee)
1410     if (getAlign(*DirectCallee, Idx, Alignment))
1411       return Align(Alignment);
1412 
1413   // Call is indirect or alignment information is not available, fall back to
1414   // the ABI type alignment
1415   return DL.getABITypeAlign(Ty);
1416 }
1417 
1418 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1419                                        SmallVectorImpl<SDValue> &InVals) const {
1420   SelectionDAG &DAG = CLI.DAG;
1421   SDLoc dl = CLI.DL;
1422   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1423   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1424   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1425   SDValue Chain = CLI.Chain;
1426   SDValue Callee = CLI.Callee;
1427   bool &isTailCall = CLI.IsTailCall;
1428   ArgListTy &Args = CLI.getArgs();
1429   Type *RetTy = CLI.RetTy;
1430   const CallBase *CB = CLI.CB;
1431   const DataLayout &DL = DAG.getDataLayout();
1432 
1433   bool isABI = (STI.getSmVersion() >= 20);
1434   assert(isABI && "Non-ABI compilation is not supported");
1435   if (!isABI)
1436     return Chain;
1437 
1438   unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1);
1439   SDValue tempChain = Chain;
1440   Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl);
1441   SDValue InFlag = Chain.getValue(1);
1442 
1443   unsigned paramCount = 0;
1444   // Args.size() and Outs.size() need not match.
1445   // Outs.size() will be larger
1446   //   * if there is an aggregate argument with multiple fields (each field
1447   //     showing up separately in Outs)
1448   //   * if there is a vector argument with more than typical vector-length
1449   //     elements (generally if more than 4) where each vector element is
1450   //     individually present in Outs.
1451   // So a different index should be used for indexing into Outs/OutVals.
1452   // See similar issue in LowerFormalArguments.
1453   unsigned OIdx = 0;
1454   // Declare the .params or .reg need to pass values
1455   // to the function
1456   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1457     EVT VT = Outs[OIdx].VT;
1458     Type *Ty = Args[i].Ty;
1459 
1460     if (!Outs[OIdx].Flags.isByVal()) {
1461       SmallVector<EVT, 16> VTs;
1462       SmallVector<uint64_t, 16> Offsets;
1463       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
1464       Align ArgAlign = getArgumentAlignment(Callee, CB, Ty, paramCount + 1, DL);
1465       unsigned AllocSize = DL.getTypeAllocSize(Ty);
1466       SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1467       bool NeedAlign; // Does argument declaration specify alignment?
1468       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1469         // declare .param .align <align> .b8 .param<n>[<size>];
1470         SDValue DeclareParamOps[] = {
1471             Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1472             DAG.getConstant(paramCount, dl, MVT::i32),
1473             DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
1474         Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1475                             DeclareParamOps);
1476         NeedAlign = true;
1477       } else {
1478         // declare .param .b<size> .param<n>;
1479         if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
1480           // PTX ABI requires integral types to be at least 32 bits in
1481           // size. FP16 is loaded/stored using i16, so it's handled
1482           // here as well.
1483           AllocSize = 4;
1484         }
1485         SDValue DeclareScalarParamOps[] = {
1486             Chain, DAG.getConstant(paramCount, dl, MVT::i32),
1487             DAG.getConstant(AllocSize * 8, dl, MVT::i32),
1488             DAG.getConstant(0, dl, MVT::i32), InFlag};
1489         Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1490                             DeclareScalarParamOps);
1491         NeedAlign = false;
1492       }
1493       InFlag = Chain.getValue(1);
1494 
1495       // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1496       // than 32-bits are sign extended or zero extended, depending on
1497       // whether they are signed or unsigned types. This case applies
1498       // only to scalar parameters and not to aggregate values.
1499       bool ExtendIntegerParam =
1500           Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1501 
1502       auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
1503       SmallVector<SDValue, 6> StoreOperands;
1504       for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1505         // New store.
1506         if (VectorInfo[j] & PVF_FIRST) {
1507           assert(StoreOperands.empty() && "Unfinished preceding store.");
1508           StoreOperands.push_back(Chain);
1509           StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1510           StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
1511         }
1512 
1513         EVT EltVT = VTs[j];
1514         SDValue StVal = OutVals[OIdx];
1515         if (ExtendIntegerParam) {
1516           assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1517           // zext/sext to i32
1518           StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1519                                                         : ISD::ZERO_EXTEND,
1520                               dl, MVT::i32, StVal);
1521         } else if (EltVT.getSizeInBits() < 16) {
1522           // Use 16-bit registers for small stores as it's the
1523           // smallest general purpose register size supported by NVPTX.
1524           StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1525         }
1526 
1527         // Record the value to store.
1528         StoreOperands.push_back(StVal);
1529 
1530         if (VectorInfo[j] & PVF_LAST) {
1531           unsigned NumElts = StoreOperands.size() - 3;
1532           NVPTXISD::NodeType Op;
1533           switch (NumElts) {
1534           case 1:
1535             Op = NVPTXISD::StoreParam;
1536             break;
1537           case 2:
1538             Op = NVPTXISD::StoreParamV2;
1539             break;
1540           case 4:
1541             Op = NVPTXISD::StoreParamV4;
1542             break;
1543           default:
1544             llvm_unreachable("Invalid vector info.");
1545           }
1546 
1547           StoreOperands.push_back(InFlag);
1548 
1549           // Adjust type of the store op if we've extended the scalar
1550           // return value.
1551           EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
1552           MaybeAlign EltAlign;
1553           if (NeedAlign)
1554             EltAlign = commonAlignment(ArgAlign, Offsets[j]);
1555 
1556           Chain = DAG.getMemIntrinsicNode(
1557               Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1558               TheStoreType, MachinePointerInfo(), EltAlign,
1559               MachineMemOperand::MOStore);
1560           InFlag = Chain.getValue(1);
1561 
1562           // Cleanup.
1563           StoreOperands.clear();
1564         }
1565         ++OIdx;
1566       }
1567       assert(StoreOperands.empty() && "Unfinished parameter store.");
1568       if (VTs.size() > 0)
1569         --OIdx;
1570       ++paramCount;
1571       continue;
1572     }
1573 
1574     // ByVal arguments
1575     SmallVector<EVT, 16> VTs;
1576     SmallVector<uint64_t, 16> Offsets;
1577     auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1578     assert(PTy && "Type of a byval parameter should be pointer");
1579     ComputePTXValueVTs(*this, DL, PTy->getPointerElementType(), VTs, &Offsets,
1580                        0);
1581 
1582     // declare .param .align <align> .b8 .param<n>[<size>];
1583     unsigned sz = Outs[OIdx].Flags.getByValSize();
1584     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1585     Align ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1586     // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1587     // so we don't need to worry about natural alignment or not.
1588     // See TargetLowering::LowerCallTo().
1589 
1590     // Enforce minumum alignment of 4 to work around ptxas miscompile
1591     // for sm_50+. See corresponding alignment adjustment in
1592     // emitFunctionParamList() for details.
1593     if (ArgAlign < Align(4))
1594       ArgAlign = Align(4);
1595     SDValue DeclareParamOps[] = {
1596         Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1597         DAG.getConstant(paramCount, dl, MVT::i32),
1598         DAG.getConstant(sz, dl, MVT::i32), InFlag};
1599     Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1600                         DeclareParamOps);
1601     InFlag = Chain.getValue(1);
1602     for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1603       EVT elemtype = VTs[j];
1604       int curOffset = Offsets[j];
1605       unsigned PartAlign = GreatestCommonDivisor64(ArgAlign.value(), curOffset);
1606       auto PtrVT = getPointerTy(DL);
1607       SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1608                                     DAG.getConstant(curOffset, dl, PtrVT));
1609       SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1610                                    MachinePointerInfo(), PartAlign);
1611       if (elemtype.getSizeInBits() < 16) {
1612         theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1613       }
1614       SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1615       SDValue CopyParamOps[] = { Chain,
1616                                  DAG.getConstant(paramCount, dl, MVT::i32),
1617                                  DAG.getConstant(curOffset, dl, MVT::i32),
1618                                  theVal, InFlag };
1619       Chain = DAG.getMemIntrinsicNode(
1620           NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, elemtype,
1621           MachinePointerInfo(), /* Align */ None, MachineMemOperand::MOStore);
1622 
1623       InFlag = Chain.getValue(1);
1624     }
1625     ++paramCount;
1626   }
1627 
1628   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1629   MaybeAlign retAlignment = None;
1630 
1631   // Handle Result
1632   if (Ins.size() > 0) {
1633     SmallVector<EVT, 16> resvtparts;
1634     ComputeValueVTs(*this, DL, RetTy, resvtparts);
1635 
1636     // Declare
1637     //  .param .align 16 .b8 retval0[<size-in-bytes>], or
1638     //  .param .b<size-in-bits> retval0
1639     unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1640     // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1641     // these three types to match the logic in
1642     // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1643     // Plus, this behavior is consistent with nvcc's.
1644     if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1645         (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1646       // Scalar needs to be at least 32bit wide
1647       if (resultsz < 32)
1648         resultsz = 32;
1649       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1650       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1651                                   DAG.getConstant(resultsz, dl, MVT::i32),
1652                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1653       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1654                           DeclareRetOps);
1655       InFlag = Chain.getValue(1);
1656     } else {
1657       retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1658       assert(retAlignment && "retAlignment is guaranteed to be set");
1659       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1660       SDValue DeclareRetOps[] = {
1661           Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
1662           DAG.getConstant(resultsz / 8, dl, MVT::i32),
1663           DAG.getConstant(0, dl, MVT::i32), InFlag};
1664       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1665                           DeclareRetOps);
1666       InFlag = Chain.getValue(1);
1667     }
1668   }
1669 
1670   // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1671   // between them we must rely on the call site value which is valid for
1672   // indirect calls but is always null for libcalls.
1673   bool isIndirectCall = !Func && CB;
1674 
1675   if (isa<ExternalSymbolSDNode>(Callee)) {
1676     Function* CalleeFunc = nullptr;
1677 
1678     // Try to find the callee in the current module.
1679     Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1680     assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1681 
1682     // Set the "libcall callee" attribute to indicate that the function
1683     // must always have a declaration.
1684     CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1685   }
1686 
1687   if (isIndirectCall) {
1688     // This is indirect function call case : PTX requires a prototype of the
1689     // form
1690     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1691     // to be emitted, and the label has to used as the last arg of call
1692     // instruction.
1693     // The prototype is embedded in a string and put as the operand for a
1694     // CallPrototype SDNode which will print out to the value of the string.
1695     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1696     std::string Proto =
1697         getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB, UniqueCallSite);
1698     const char *ProtoStr =
1699       nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1700     SDValue ProtoOps[] = {
1701       Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1702     };
1703     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1704     InFlag = Chain.getValue(1);
1705   }
1706   // Op to just print "call"
1707   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1708   SDValue PrintCallOps[] = {
1709     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1710   };
1711   // We model convergent calls as separate opcodes.
1712   unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1713   if (CLI.IsConvergent)
1714     Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1715                                               : NVPTXISD::PrintConvergentCall;
1716   Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1717   InFlag = Chain.getValue(1);
1718 
1719   // Ops to print out the function name
1720   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1721   SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1722   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1723   InFlag = Chain.getValue(1);
1724 
1725   // Ops to print out the param list
1726   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1727   SDValue CallArgBeginOps[] = { Chain, InFlag };
1728   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1729                       CallArgBeginOps);
1730   InFlag = Chain.getValue(1);
1731 
1732   for (unsigned i = 0, e = paramCount; i != e; ++i) {
1733     unsigned opcode;
1734     if (i == (e - 1))
1735       opcode = NVPTXISD::LastCallArg;
1736     else
1737       opcode = NVPTXISD::CallArg;
1738     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1739     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1740                              DAG.getConstant(i, dl, MVT::i32), InFlag };
1741     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1742     InFlag = Chain.getValue(1);
1743   }
1744   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1745   SDValue CallArgEndOps[] = { Chain,
1746                               DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1747                               InFlag };
1748   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1749   InFlag = Chain.getValue(1);
1750 
1751   if (isIndirectCall) {
1752     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1753     SDValue PrototypeOps[] = {
1754         Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InFlag};
1755     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1756     InFlag = Chain.getValue(1);
1757   }
1758 
1759   SmallVector<SDValue, 16> ProxyRegOps;
1760   SmallVector<Optional<MVT>, 16> ProxyRegTruncates;
1761 
1762   // Generate loads from param memory/moves from registers for result
1763   if (Ins.size() > 0) {
1764     SmallVector<EVT, 16> VTs;
1765     SmallVector<uint64_t, 16> Offsets;
1766     ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1767     assert(VTs.size() == Ins.size() && "Bad value decomposition");
1768 
1769     Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1770     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1771 
1772     SmallVector<EVT, 6> LoadVTs;
1773     int VecIdx = -1; // Index of the first element of the vector.
1774 
1775     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1776     // 32-bits are sign extended or zero extended, depending on whether
1777     // they are signed or unsigned types.
1778     bool ExtendIntegerRetVal =
1779         RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1780 
1781     for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1782       bool needTruncate = false;
1783       EVT TheLoadType = VTs[i];
1784       EVT EltType = Ins[i].VT;
1785       Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
1786       if (ExtendIntegerRetVal) {
1787         TheLoadType = MVT::i32;
1788         EltType = MVT::i32;
1789         needTruncate = true;
1790       } else if (TheLoadType.getSizeInBits() < 16) {
1791         if (VTs[i].isInteger())
1792           needTruncate = true;
1793         EltType = MVT::i16;
1794       }
1795 
1796       // Record index of the very first element of the vector.
1797       if (VectorInfo[i] & PVF_FIRST) {
1798         assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1799         VecIdx = i;
1800       }
1801 
1802       LoadVTs.push_back(EltType);
1803 
1804       if (VectorInfo[i] & PVF_LAST) {
1805         unsigned NumElts = LoadVTs.size();
1806         LoadVTs.push_back(MVT::Other);
1807         LoadVTs.push_back(MVT::Glue);
1808         NVPTXISD::NodeType Op;
1809         switch (NumElts) {
1810         case 1:
1811           Op = NVPTXISD::LoadParam;
1812           break;
1813         case 2:
1814           Op = NVPTXISD::LoadParamV2;
1815           break;
1816         case 4:
1817           Op = NVPTXISD::LoadParamV4;
1818           break;
1819         default:
1820           llvm_unreachable("Invalid vector info.");
1821         }
1822 
1823         SDValue LoadOperands[] = {
1824             Chain, DAG.getConstant(1, dl, MVT::i32),
1825             DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1826         SDValue RetVal = DAG.getMemIntrinsicNode(
1827             Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1828             MachinePointerInfo(), EltAlign,
1829             MachineMemOperand::MOLoad);
1830 
1831         for (unsigned j = 0; j < NumElts; ++j) {
1832           ProxyRegOps.push_back(RetVal.getValue(j));
1833 
1834           if (needTruncate)
1835             ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT));
1836           else
1837             ProxyRegTruncates.push_back(Optional<MVT>());
1838         }
1839 
1840         Chain = RetVal.getValue(NumElts);
1841         InFlag = RetVal.getValue(NumElts + 1);
1842 
1843         // Cleanup
1844         VecIdx = -1;
1845         LoadVTs.clear();
1846       }
1847     }
1848   }
1849 
1850   Chain = DAG.getCALLSEQ_END(
1851       Chain, DAG.getIntPtrConstant(UniqueCallSite, dl, true),
1852       DAG.getIntPtrConstant(UniqueCallSite + 1, dl, true), InFlag, dl);
1853   InFlag = Chain.getValue(1);
1854 
1855   // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1856   // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1857   // dangling.
1858   for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
1859     SDValue Ret = DAG.getNode(
1860       NVPTXISD::ProxyReg, dl,
1861       DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1862       { Chain, ProxyRegOps[i], InFlag }
1863     );
1864 
1865     Chain = Ret.getValue(1);
1866     InFlag = Ret.getValue(2);
1867 
1868     if (ProxyRegTruncates[i].hasValue()) {
1869       Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret);
1870     }
1871 
1872     InVals.push_back(Ret);
1873   }
1874 
1875   // set isTailCall to false for now, until we figure out how to express
1876   // tail call optimization in PTX
1877   isTailCall = false;
1878   return Chain;
1879 }
1880 
1881 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1882 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1883 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1884 SDValue
1885 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1886   SDNode *Node = Op.getNode();
1887   SDLoc dl(Node);
1888   SmallVector<SDValue, 8> Ops;
1889   unsigned NumOperands = Node->getNumOperands();
1890   for (unsigned i = 0; i < NumOperands; ++i) {
1891     SDValue SubOp = Node->getOperand(i);
1892     EVT VVT = SubOp.getNode()->getValueType(0);
1893     EVT EltVT = VVT.getVectorElementType();
1894     unsigned NumSubElem = VVT.getVectorNumElements();
1895     for (unsigned j = 0; j < NumSubElem; ++j) {
1896       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1897                                 DAG.getIntPtrConstant(j, dl)));
1898     }
1899   }
1900   return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1901 }
1902 
1903 // We can init constant f16x2 with a single .b32 move.  Normally it
1904 // would get lowered as two constant loads and vector-packing move.
1905 //        mov.b16         %h1, 0x4000;
1906 //        mov.b16         %h2, 0x3C00;
1907 //        mov.b32         %hh2, {%h2, %h1};
1908 // Instead we want just a constant move:
1909 //        mov.b32         %hh2, 0x40003C00
1910 //
1911 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
1912 // generates good SASS in both cases.
1913 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1914                                                SelectionDAG &DAG) const {
1915   //return Op;
1916   if (!(Op->getValueType(0) == MVT::v2f16 &&
1917         isa<ConstantFPSDNode>(Op->getOperand(0)) &&
1918         isa<ConstantFPSDNode>(Op->getOperand(1))))
1919     return Op;
1920 
1921   APInt E0 =
1922       cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
1923   APInt E1 =
1924       cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
1925   SDValue Const =
1926       DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
1927   return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
1928 }
1929 
1930 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
1931                                                      SelectionDAG &DAG) const {
1932   SDValue Index = Op->getOperand(1);
1933   // Constant index will be matched by tablegen.
1934   if (isa<ConstantSDNode>(Index.getNode()))
1935     return Op;
1936 
1937   // Extract individual elements and select one of them.
1938   SDValue Vector = Op->getOperand(0);
1939   EVT VectorVT = Vector.getValueType();
1940   assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
1941   EVT EltVT = VectorVT.getVectorElementType();
1942 
1943   SDLoc dl(Op.getNode());
1944   SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1945                            DAG.getIntPtrConstant(0, dl));
1946   SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1947                            DAG.getIntPtrConstant(1, dl));
1948   return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
1949                          ISD::CondCode::SETEQ);
1950 }
1951 
1952 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1953 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1954 ///    amount, or
1955 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1956 ///    amount.
1957 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1958                                                   SelectionDAG &DAG) const {
1959   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1960   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1961 
1962   EVT VT = Op.getValueType();
1963   unsigned VTBits = VT.getSizeInBits();
1964   SDLoc dl(Op);
1965   SDValue ShOpLo = Op.getOperand(0);
1966   SDValue ShOpHi = Op.getOperand(1);
1967   SDValue ShAmt  = Op.getOperand(2);
1968   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1969 
1970   if (VTBits == 32 && STI.getSmVersion() >= 35) {
1971     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1972     // {dHi, dLo} = {aHi, aLo} >> Amt
1973     //   dHi = aHi >> Amt
1974     //   dLo = shf.r.clamp aLo, aHi, Amt
1975 
1976     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1977     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1978                              ShAmt);
1979 
1980     SDValue Ops[2] = { Lo, Hi };
1981     return DAG.getMergeValues(Ops, dl);
1982   }
1983   else {
1984     // {dHi, dLo} = {aHi, aLo} >> Amt
1985     // - if (Amt>=size) then
1986     //      dLo = aHi >> (Amt-size)
1987     //      dHi = aHi >> Amt (this is either all 0 or all 1)
1988     //   else
1989     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1990     //      dHi = aHi >> Amt
1991 
1992     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1993                                    DAG.getConstant(VTBits, dl, MVT::i32),
1994                                    ShAmt);
1995     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
1996     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1997                                      DAG.getConstant(VTBits, dl, MVT::i32));
1998     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
1999     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2000     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2001 
2002     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2003                                DAG.getConstant(VTBits, dl, MVT::i32),
2004                                ISD::SETGE);
2005     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2006     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2007 
2008     SDValue Ops[2] = { Lo, Hi };
2009     return DAG.getMergeValues(Ops, dl);
2010   }
2011 }
2012 
2013 /// LowerShiftLeftParts - Lower SHL_PARTS, which
2014 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2015 ///    amount, or
2016 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2017 ///    amount.
2018 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2019                                                  SelectionDAG &DAG) const {
2020   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2021   assert(Op.getOpcode() == ISD::SHL_PARTS);
2022 
2023   EVT VT = Op.getValueType();
2024   unsigned VTBits = VT.getSizeInBits();
2025   SDLoc dl(Op);
2026   SDValue ShOpLo = Op.getOperand(0);
2027   SDValue ShOpHi = Op.getOperand(1);
2028   SDValue ShAmt  = Op.getOperand(2);
2029 
2030   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2031     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2032     // {dHi, dLo} = {aHi, aLo} << Amt
2033     //   dHi = shf.l.clamp aLo, aHi, Amt
2034     //   dLo = aLo << Amt
2035 
2036     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2037                              ShAmt);
2038     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2039 
2040     SDValue Ops[2] = { Lo, Hi };
2041     return DAG.getMergeValues(Ops, dl);
2042   }
2043   else {
2044     // {dHi, dLo} = {aHi, aLo} << Amt
2045     // - if (Amt>=size) then
2046     //      dLo = aLo << Amt (all 0)
2047     //      dLo = aLo << (Amt-size)
2048     //   else
2049     //      dLo = aLo << Amt
2050     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
2051 
2052     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2053                                    DAG.getConstant(VTBits, dl, MVT::i32),
2054                                    ShAmt);
2055     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2056     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2057                                      DAG.getConstant(VTBits, dl, MVT::i32));
2058     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2059     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2060     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2061 
2062     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2063                                DAG.getConstant(VTBits, dl, MVT::i32),
2064                                ISD::SETGE);
2065     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2066     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2067 
2068     SDValue Ops[2] = { Lo, Hi };
2069     return DAG.getMergeValues(Ops, dl);
2070   }
2071 }
2072 
2073 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2074   EVT VT = Op.getValueType();
2075 
2076   if (VT == MVT::f32)
2077     return LowerFROUND32(Op, DAG);
2078 
2079   if (VT == MVT::f64)
2080     return LowerFROUND64(Op, DAG);
2081 
2082   llvm_unreachable("unhandled type");
2083 }
2084 
2085 // This is the the rounding method used in CUDA libdevice in C like code:
2086 // float roundf(float A)
2087 // {
2088 //   float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2089 //   RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2090 //   return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2091 // }
2092 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2093                                            SelectionDAG &DAG) const {
2094   SDLoc SL(Op);
2095   SDValue A = Op.getOperand(0);
2096   EVT VT = Op.getValueType();
2097 
2098   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2099 
2100   // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2101   SDValue Bitcast  = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2102   const int SignBitMask = 0x80000000;
2103   SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2104                              DAG.getConstant(SignBitMask, SL, MVT::i32));
2105   const int PointFiveInBits = 0x3F000000;
2106   SDValue PointFiveWithSignRaw =
2107       DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2108                   DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2109   SDValue PointFiveWithSign =
2110       DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2111   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2112   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2113 
2114   // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2115   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2116   SDValue IsLarge =
2117       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2118                    ISD::SETOGT);
2119   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2120 
2121   // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2122   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2123                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2124   SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2125   return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2126 }
2127 
2128 // The implementation of round(double) is similar to that of round(float) in
2129 // that they both separate the value range into three regions and use a method
2130 // specific to the region to round the values. However, round(double) first
2131 // calculates the round of the absolute value and then adds the sign back while
2132 // round(float) directly rounds the value with sign.
2133 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2134                                            SelectionDAG &DAG) const {
2135   SDLoc SL(Op);
2136   SDValue A = Op.getOperand(0);
2137   EVT VT = Op.getValueType();
2138 
2139   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2140 
2141   // double RoundedA = (double) (int) (abs(A) + 0.5f);
2142   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2143                                   DAG.getConstantFP(0.5, SL, VT));
2144   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2145 
2146   // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2147   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2148   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2149                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2150   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2151                          DAG.getConstantFP(0, SL, VT),
2152                          RoundedA);
2153 
2154   // Add sign to rounded_A
2155   RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2156   DAG.getNode(ISD::FTRUNC, SL, VT, A);
2157 
2158   // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2159   SDValue IsLarge =
2160       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2161                    ISD::SETOGT);
2162   return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2163 }
2164 
2165 
2166 
2167 SDValue
2168 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2169   switch (Op.getOpcode()) {
2170   case ISD::RETURNADDR:
2171     return SDValue();
2172   case ISD::FRAMEADDR:
2173     return SDValue();
2174   case ISD::GlobalAddress:
2175     return LowerGlobalAddress(Op, DAG);
2176   case ISD::INTRINSIC_W_CHAIN:
2177     return Op;
2178   case ISD::BUILD_VECTOR:
2179     return LowerBUILD_VECTOR(Op, DAG);
2180   case ISD::EXTRACT_SUBVECTOR:
2181     return Op;
2182   case ISD::EXTRACT_VECTOR_ELT:
2183     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2184   case ISD::CONCAT_VECTORS:
2185     return LowerCONCAT_VECTORS(Op, DAG);
2186   case ISD::STORE:
2187     return LowerSTORE(Op, DAG);
2188   case ISD::LOAD:
2189     return LowerLOAD(Op, DAG);
2190   case ISD::SHL_PARTS:
2191     return LowerShiftLeftParts(Op, DAG);
2192   case ISD::SRA_PARTS:
2193   case ISD::SRL_PARTS:
2194     return LowerShiftRightParts(Op, DAG);
2195   case ISD::SELECT:
2196     return LowerSelect(Op, DAG);
2197   case ISD::FROUND:
2198     return LowerFROUND(Op, DAG);
2199   default:
2200     llvm_unreachable("Custom lowering not defined for operation");
2201   }
2202 }
2203 
2204 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2205   SDValue Op0 = Op->getOperand(0);
2206   SDValue Op1 = Op->getOperand(1);
2207   SDValue Op2 = Op->getOperand(2);
2208   SDLoc DL(Op.getNode());
2209 
2210   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2211 
2212   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2213   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2214   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2215   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2216 
2217   return Trunc;
2218 }
2219 
2220 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2221   if (Op.getValueType() == MVT::i1)
2222     return LowerLOADi1(Op, DAG);
2223 
2224   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2225   // loads and have to handle it here.
2226   if (Op.getValueType() == MVT::v2f16) {
2227     LoadSDNode *Load = cast<LoadSDNode>(Op);
2228     EVT MemVT = Load->getMemoryVT();
2229     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2230                                         MemVT, *Load->getMemOperand())) {
2231       SDValue Ops[2];
2232       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2233       return DAG.getMergeValues(Ops, SDLoc(Op));
2234     }
2235   }
2236 
2237   return SDValue();
2238 }
2239 
2240 // v = ld i1* addr
2241 //   =>
2242 // v1 = ld i8* addr (-> i16)
2243 // v = trunc i16 to i1
2244 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2245   SDNode *Node = Op.getNode();
2246   LoadSDNode *LD = cast<LoadSDNode>(Node);
2247   SDLoc dl(Node);
2248   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2249   assert(Node->getValueType(0) == MVT::i1 &&
2250          "Custom lowering for i1 load only");
2251   SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2252                               LD->getPointerInfo(), LD->getAlignment(),
2253                               LD->getMemOperand()->getFlags());
2254   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2255   // The legalizer (the caller) is expecting two values from the legalized
2256   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2257   // in LegalizeDAG.cpp which also uses MergeValues.
2258   SDValue Ops[] = { result, LD->getChain() };
2259   return DAG.getMergeValues(Ops, dl);
2260 }
2261 
2262 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2263   StoreSDNode *Store = cast<StoreSDNode>(Op);
2264   EVT VT = Store->getMemoryVT();
2265 
2266   if (VT == MVT::i1)
2267     return LowerSTOREi1(Op, DAG);
2268 
2269   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2270   // stores and have to handle it here.
2271   if (VT == MVT::v2f16 &&
2272       !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2273                                       VT, *Store->getMemOperand()))
2274     return expandUnalignedStore(Store, DAG);
2275 
2276   if (VT.isVector())
2277     return LowerSTOREVector(Op, DAG);
2278 
2279   return SDValue();
2280 }
2281 
2282 SDValue
2283 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2284   SDNode *N = Op.getNode();
2285   SDValue Val = N->getOperand(1);
2286   SDLoc DL(N);
2287   EVT ValVT = Val.getValueType();
2288 
2289   if (ValVT.isVector()) {
2290     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2291     // legal.  We can (and should) split that into 2 stores of <2 x double> here
2292     // but I'm leaving that as a TODO for now.
2293     if (!ValVT.isSimple())
2294       return SDValue();
2295     switch (ValVT.getSimpleVT().SimpleTy) {
2296     default:
2297       return SDValue();
2298     case MVT::v2i8:
2299     case MVT::v2i16:
2300     case MVT::v2i32:
2301     case MVT::v2i64:
2302     case MVT::v2f16:
2303     case MVT::v2f32:
2304     case MVT::v2f64:
2305     case MVT::v4i8:
2306     case MVT::v4i16:
2307     case MVT::v4i32:
2308     case MVT::v4f16:
2309     case MVT::v4f32:
2310     case MVT::v8f16: // <4 x f16x2>
2311       // This is a "native" vector type
2312       break;
2313     }
2314 
2315     MemSDNode *MemSD = cast<MemSDNode>(N);
2316     const DataLayout &TD = DAG.getDataLayout();
2317 
2318     Align Alignment = MemSD->getAlign();
2319     Align PrefAlign =
2320         TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
2321     if (Alignment < PrefAlign) {
2322       // This store is not sufficiently aligned, so bail out and let this vector
2323       // store be scalarized.  Note that we may still be able to emit smaller
2324       // vector stores.  For example, if we are storing a <4 x float> with an
2325       // alignment of 8, this check will fail but the legalizer will try again
2326       // with 2 x <2 x float>, which will succeed with an alignment of 8.
2327       return SDValue();
2328     }
2329 
2330     unsigned Opcode = 0;
2331     EVT EltVT = ValVT.getVectorElementType();
2332     unsigned NumElts = ValVT.getVectorNumElements();
2333 
2334     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2335     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
2336     // stored type to i16 and propagate the "real" type as the memory type.
2337     bool NeedExt = false;
2338     if (EltVT.getSizeInBits() < 16)
2339       NeedExt = true;
2340 
2341     bool StoreF16x2 = false;
2342     switch (NumElts) {
2343     default:
2344       return SDValue();
2345     case 2:
2346       Opcode = NVPTXISD::StoreV2;
2347       break;
2348     case 4:
2349       Opcode = NVPTXISD::StoreV4;
2350       break;
2351     case 8:
2352       // v8f16 is a special case. PTX doesn't have st.v8.f16
2353       // instruction. Instead, we split the vector into v2f16 chunks and
2354       // store them with st.v4.b32.
2355       assert(EltVT == MVT::f16 && "Wrong type for the vector.");
2356       Opcode = NVPTXISD::StoreV4;
2357       StoreF16x2 = true;
2358       break;
2359     }
2360 
2361     SmallVector<SDValue, 8> Ops;
2362 
2363     // First is the chain
2364     Ops.push_back(N->getOperand(0));
2365 
2366     if (StoreF16x2) {
2367       // Combine f16,f16 -> v2f16
2368       NumElts /= 2;
2369       for (unsigned i = 0; i < NumElts; ++i) {
2370         SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2371                                  DAG.getIntPtrConstant(i * 2, DL));
2372         SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2373                                  DAG.getIntPtrConstant(i * 2 + 1, DL));
2374         SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2375         Ops.push_back(V2);
2376       }
2377     } else {
2378       // Then the split values
2379       for (unsigned i = 0; i < NumElts; ++i) {
2380         SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2381                                      DAG.getIntPtrConstant(i, DL));
2382         if (NeedExt)
2383           ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2384         Ops.push_back(ExtVal);
2385       }
2386     }
2387 
2388     // Then any remaining arguments
2389     Ops.append(N->op_begin() + 2, N->op_end());
2390 
2391     SDValue NewSt =
2392         DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2393                                 MemSD->getMemoryVT(), MemSD->getMemOperand());
2394 
2395     // return DCI.CombineTo(N, NewSt, true);
2396     return NewSt;
2397   }
2398 
2399   return SDValue();
2400 }
2401 
2402 // st i1 v, addr
2403 //    =>
2404 // v1 = zxt v to i16
2405 // st.u8 i16, addr
2406 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2407   SDNode *Node = Op.getNode();
2408   SDLoc dl(Node);
2409   StoreSDNode *ST = cast<StoreSDNode>(Node);
2410   SDValue Tmp1 = ST->getChain();
2411   SDValue Tmp2 = ST->getBasePtr();
2412   SDValue Tmp3 = ST->getValue();
2413   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2414   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2415   SDValue Result =
2416       DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2417                         ST->getAlignment(), ST->getMemOperand()->getFlags());
2418   return Result;
2419 }
2420 
2421 SDValue
2422 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2423   std::string ParamSym;
2424   raw_string_ostream ParamStr(ParamSym);
2425 
2426   ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2427   ParamStr.flush();
2428 
2429   std::string *SavedStr =
2430     nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2431   return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2432 }
2433 
2434 // Check to see if the kernel argument is image*_t or sampler_t
2435 
2436 static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
2437   static const char *const specialTypes[] = { "struct._image2d_t",
2438                                               "struct._image3d_t",
2439                                               "struct._sampler_t" };
2440 
2441   Type *Ty = arg->getType();
2442   auto *PTy = dyn_cast<PointerType>(Ty);
2443 
2444   if (!PTy)
2445     return false;
2446 
2447   if (!context)
2448     return false;
2449 
2450   auto *STy = dyn_cast<StructType>(PTy->getPointerElementType());
2451   if (!STy || STy->isLiteral())
2452     return false;
2453 
2454   return llvm::is_contained(specialTypes, STy->getName());
2455 }
2456 
2457 SDValue NVPTXTargetLowering::LowerFormalArguments(
2458     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2459     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2460     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2461   MachineFunction &MF = DAG.getMachineFunction();
2462   const DataLayout &DL = DAG.getDataLayout();
2463   auto PtrVT = getPointerTy(DAG.getDataLayout());
2464 
2465   const Function *F = &MF.getFunction();
2466   const AttributeList &PAL = F->getAttributes();
2467   const TargetLowering *TLI = STI.getTargetLowering();
2468 
2469   SDValue Root = DAG.getRoot();
2470   std::vector<SDValue> OutChains;
2471 
2472   bool isABI = (STI.getSmVersion() >= 20);
2473   assert(isABI && "Non-ABI compilation is not supported");
2474   if (!isABI)
2475     return Chain;
2476 
2477   std::vector<Type *> argTypes;
2478   std::vector<const Argument *> theArgs;
2479   for (const Argument &I : F->args()) {
2480     theArgs.push_back(&I);
2481     argTypes.push_back(I.getType());
2482   }
2483   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2484   // Ins.size() will be larger
2485   //   * if there is an aggregate argument with multiple fields (each field
2486   //     showing up separately in Ins)
2487   //   * if there is a vector argument with more than typical vector-length
2488   //     elements (generally if more than 4) where each vector element is
2489   //     individually present in Ins.
2490   // So a different index should be used for indexing into Ins.
2491   // See similar issue in LowerCall.
2492   unsigned InsIdx = 0;
2493 
2494   int idx = 0;
2495   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2496     Type *Ty = argTypes[i];
2497 
2498     // If the kernel argument is image*_t or sampler_t, convert it to
2499     // a i32 constant holding the parameter position. This can later
2500     // matched in the AsmPrinter to output the correct mangled name.
2501     if (isImageOrSamplerVal(
2502             theArgs[i],
2503             (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2504                                      : nullptr))) {
2505       assert(isKernelFunction(*F) &&
2506              "Only kernels can have image/sampler params");
2507       InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2508       continue;
2509     }
2510 
2511     if (theArgs[i]->use_empty()) {
2512       // argument is dead
2513       if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2514         SmallVector<EVT, 16> vtparts;
2515 
2516         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2517         assert(vtparts.size() > 0 && "empty aggregate type not expected");
2518         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2519              ++parti) {
2520           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2521           ++InsIdx;
2522         }
2523         if (vtparts.size() > 0)
2524           --InsIdx;
2525         continue;
2526       }
2527       if (Ty->isVectorTy()) {
2528         EVT ObjectVT = getValueType(DL, Ty);
2529         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2530         for (unsigned parti = 0; parti < NumRegs; ++parti) {
2531           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2532           ++InsIdx;
2533         }
2534         if (NumRegs > 0)
2535           --InsIdx;
2536         continue;
2537       }
2538       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2539       continue;
2540     }
2541 
2542     // In the following cases, assign a node order of "idx+1"
2543     // to newly created nodes. The SDNodes for params have to
2544     // appear in the same order as their order of appearance
2545     // in the original function. "idx+1" holds that order.
2546     if (!PAL.hasParamAttr(i, Attribute::ByVal)) {
2547       bool aggregateIsPacked = false;
2548       if (StructType *STy = dyn_cast<StructType>(Ty))
2549         aggregateIsPacked = STy->isPacked();
2550 
2551       SmallVector<EVT, 16> VTs;
2552       SmallVector<uint64_t, 16> Offsets;
2553       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2554       assert(VTs.size() > 0 && "Unexpected empty type.");
2555       auto VectorInfo =
2556           VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty));
2557 
2558       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2559       int VecIdx = -1; // Index of the first element of the current vector.
2560       for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2561         if (VectorInfo[parti] & PVF_FIRST) {
2562           assert(VecIdx == -1 && "Orphaned vector.");
2563           VecIdx = parti;
2564         }
2565 
2566         // That's the last element of this store op.
2567         if (VectorInfo[parti] & PVF_LAST) {
2568           unsigned NumElts = parti - VecIdx + 1;
2569           EVT EltVT = VTs[parti];
2570           // i1 is loaded/stored as i8.
2571           EVT LoadVT = EltVT;
2572           if (EltVT == MVT::i1)
2573             LoadVT = MVT::i8;
2574           else if (EltVT == MVT::v2f16)
2575             // getLoad needs a vector type, but it can't handle
2576             // vectors which contain v2f16 elements. So we must load
2577             // using i32 here and then bitcast back.
2578             LoadVT = MVT::i32;
2579 
2580           EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2581           SDValue VecAddr =
2582               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2583                           DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2584           Value *srcValue = Constant::getNullValue(PointerType::get(
2585               EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2586           SDValue P =
2587               DAG.getLoad(VecVT, dl, Root, VecAddr,
2588                           MachinePointerInfo(srcValue), aggregateIsPacked,
2589                           MachineMemOperand::MODereferenceable |
2590                               MachineMemOperand::MOInvariant);
2591           if (P.getNode())
2592             P.getNode()->setIROrder(idx + 1);
2593           for (unsigned j = 0; j < NumElts; ++j) {
2594             SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2595                                       DAG.getIntPtrConstant(j, dl));
2596             // We've loaded i1 as an i8 and now must truncate it back to i1
2597             if (EltVT == MVT::i1)
2598               Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2599             // v2f16 was loaded as an i32. Now we must bitcast it back.
2600             else if (EltVT == MVT::v2f16)
2601               Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2602             // Extend the element if necessary (e.g. an i8 is loaded
2603             // into an i16 register)
2604             if (Ins[InsIdx].VT.isInteger() &&
2605                 Ins[InsIdx].VT.getFixedSizeInBits() >
2606                     LoadVT.getFixedSizeInBits()) {
2607               unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2608                                                            : ISD::ZERO_EXTEND;
2609               Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2610             }
2611             InVals.push_back(Elt);
2612           }
2613 
2614           // Reset vector tracking state.
2615           VecIdx = -1;
2616         }
2617         ++InsIdx;
2618       }
2619       if (VTs.size() > 0)
2620         --InsIdx;
2621       continue;
2622     }
2623 
2624     // Param has ByVal attribute
2625     // Return MoveParam(param symbol).
2626     // Ideally, the param symbol can be returned directly,
2627     // but when SDNode builder decides to use it in a CopyToReg(),
2628     // machine instruction fails because TargetExternalSymbol
2629     // (not lowered) is target dependent, and CopyToReg assumes
2630     // the source is lowered.
2631     EVT ObjectVT = getValueType(DL, Ty);
2632     assert(ObjectVT == Ins[InsIdx].VT &&
2633            "Ins type did not match function type");
2634     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2635     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2636     if (p.getNode())
2637       p.getNode()->setIROrder(idx + 1);
2638     InVals.push_back(p);
2639   }
2640 
2641   // Clang will check explicit VarArg and issue error if any. However, Clang
2642   // will let code with
2643   // implicit var arg like f() pass. See bug 617733.
2644   // We treat this case as if the arg list is empty.
2645   // if (F.isVarArg()) {
2646   // assert(0 && "VarArg not supported yet!");
2647   //}
2648 
2649   if (!OutChains.empty())
2650     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2651 
2652   return Chain;
2653 }
2654 
2655 SDValue
2656 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2657                                  bool isVarArg,
2658                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2659                                  const SmallVectorImpl<SDValue> &OutVals,
2660                                  const SDLoc &dl, SelectionDAG &DAG) const {
2661   MachineFunction &MF = DAG.getMachineFunction();
2662   Type *RetTy = MF.getFunction().getReturnType();
2663 
2664   bool isABI = (STI.getSmVersion() >= 20);
2665   assert(isABI && "Non-ABI compilation is not supported");
2666   if (!isABI)
2667     return Chain;
2668 
2669   const DataLayout &DL = DAG.getDataLayout();
2670   SmallVector<EVT, 16> VTs;
2671   SmallVector<uint64_t, 16> Offsets;
2672   ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2673   assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2674 
2675   auto VectorInfo = VectorizePTXValueVTs(
2676       VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlign(RetTy) : Align(1));
2677 
2678   // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2679   // 32-bits are sign extended or zero extended, depending on whether
2680   // they are signed or unsigned types.
2681   bool ExtendIntegerRetVal =
2682       RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2683 
2684   SmallVector<SDValue, 6> StoreOperands;
2685   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2686     // New load/store. Record chain and offset operands.
2687     if (VectorInfo[i] & PVF_FIRST) {
2688       assert(StoreOperands.empty() && "Orphaned operand list.");
2689       StoreOperands.push_back(Chain);
2690       StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2691     }
2692 
2693     SDValue RetVal = OutVals[i];
2694     if (ExtendIntegerRetVal) {
2695       RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2696                                                   : ISD::ZERO_EXTEND,
2697                            dl, MVT::i32, RetVal);
2698     } else if (RetVal.getValueSizeInBits() < 16) {
2699       // Use 16-bit registers for small load-stores as it's the
2700       // smallest general purpose register size supported by NVPTX.
2701       RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2702     }
2703 
2704     // Record the value to return.
2705     StoreOperands.push_back(RetVal);
2706 
2707     // That's the last element of this store op.
2708     if (VectorInfo[i] & PVF_LAST) {
2709       NVPTXISD::NodeType Op;
2710       unsigned NumElts = StoreOperands.size() - 2;
2711       switch (NumElts) {
2712       case 1:
2713         Op = NVPTXISD::StoreRetval;
2714         break;
2715       case 2:
2716         Op = NVPTXISD::StoreRetvalV2;
2717         break;
2718       case 4:
2719         Op = NVPTXISD::StoreRetvalV4;
2720         break;
2721       default:
2722         llvm_unreachable("Invalid vector info.");
2723       }
2724 
2725       // Adjust type of load/store op if we've extended the scalar
2726       // return value.
2727       EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2728       Chain = DAG.getMemIntrinsicNode(
2729           Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
2730           MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
2731       // Cleanup vector state.
2732       StoreOperands.clear();
2733     }
2734   }
2735 
2736   return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2737 }
2738 
2739 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2740     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2741     SelectionDAG &DAG) const {
2742   if (Constraint.length() > 1)
2743     return;
2744   else
2745     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2746 }
2747 
2748 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2749   switch (Intrinsic) {
2750   default:
2751     return 0;
2752 
2753   case Intrinsic::nvvm_tex_1d_v4f32_s32:
2754     return NVPTXISD::Tex1DFloatS32;
2755   case Intrinsic::nvvm_tex_1d_v4f32_f32:
2756     return NVPTXISD::Tex1DFloatFloat;
2757   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2758     return NVPTXISD::Tex1DFloatFloatLevel;
2759   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2760     return NVPTXISD::Tex1DFloatFloatGrad;
2761   case Intrinsic::nvvm_tex_1d_v4s32_s32:
2762     return NVPTXISD::Tex1DS32S32;
2763   case Intrinsic::nvvm_tex_1d_v4s32_f32:
2764     return NVPTXISD::Tex1DS32Float;
2765   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2766     return NVPTXISD::Tex1DS32FloatLevel;
2767   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2768     return NVPTXISD::Tex1DS32FloatGrad;
2769   case Intrinsic::nvvm_tex_1d_v4u32_s32:
2770     return NVPTXISD::Tex1DU32S32;
2771   case Intrinsic::nvvm_tex_1d_v4u32_f32:
2772     return NVPTXISD::Tex1DU32Float;
2773   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2774     return NVPTXISD::Tex1DU32FloatLevel;
2775   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2776     return NVPTXISD::Tex1DU32FloatGrad;
2777 
2778   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2779     return NVPTXISD::Tex1DArrayFloatS32;
2780   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2781     return NVPTXISD::Tex1DArrayFloatFloat;
2782   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2783     return NVPTXISD::Tex1DArrayFloatFloatLevel;
2784   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2785     return NVPTXISD::Tex1DArrayFloatFloatGrad;
2786   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2787     return NVPTXISD::Tex1DArrayS32S32;
2788   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2789     return NVPTXISD::Tex1DArrayS32Float;
2790   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2791     return NVPTXISD::Tex1DArrayS32FloatLevel;
2792   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2793     return NVPTXISD::Tex1DArrayS32FloatGrad;
2794   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2795     return NVPTXISD::Tex1DArrayU32S32;
2796   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2797     return NVPTXISD::Tex1DArrayU32Float;
2798   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2799     return NVPTXISD::Tex1DArrayU32FloatLevel;
2800   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2801     return NVPTXISD::Tex1DArrayU32FloatGrad;
2802 
2803   case Intrinsic::nvvm_tex_2d_v4f32_s32:
2804     return NVPTXISD::Tex2DFloatS32;
2805   case Intrinsic::nvvm_tex_2d_v4f32_f32:
2806     return NVPTXISD::Tex2DFloatFloat;
2807   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2808     return NVPTXISD::Tex2DFloatFloatLevel;
2809   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2810     return NVPTXISD::Tex2DFloatFloatGrad;
2811   case Intrinsic::nvvm_tex_2d_v4s32_s32:
2812     return NVPTXISD::Tex2DS32S32;
2813   case Intrinsic::nvvm_tex_2d_v4s32_f32:
2814     return NVPTXISD::Tex2DS32Float;
2815   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2816     return NVPTXISD::Tex2DS32FloatLevel;
2817   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2818     return NVPTXISD::Tex2DS32FloatGrad;
2819   case Intrinsic::nvvm_tex_2d_v4u32_s32:
2820     return NVPTXISD::Tex2DU32S32;
2821   case Intrinsic::nvvm_tex_2d_v4u32_f32:
2822     return NVPTXISD::Tex2DU32Float;
2823   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2824     return NVPTXISD::Tex2DU32FloatLevel;
2825   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2826     return NVPTXISD::Tex2DU32FloatGrad;
2827 
2828   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2829     return NVPTXISD::Tex2DArrayFloatS32;
2830   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2831     return NVPTXISD::Tex2DArrayFloatFloat;
2832   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2833     return NVPTXISD::Tex2DArrayFloatFloatLevel;
2834   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2835     return NVPTXISD::Tex2DArrayFloatFloatGrad;
2836   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2837     return NVPTXISD::Tex2DArrayS32S32;
2838   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2839     return NVPTXISD::Tex2DArrayS32Float;
2840   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2841     return NVPTXISD::Tex2DArrayS32FloatLevel;
2842   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2843     return NVPTXISD::Tex2DArrayS32FloatGrad;
2844   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2845     return NVPTXISD::Tex2DArrayU32S32;
2846   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2847     return NVPTXISD::Tex2DArrayU32Float;
2848   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2849     return NVPTXISD::Tex2DArrayU32FloatLevel;
2850   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2851     return NVPTXISD::Tex2DArrayU32FloatGrad;
2852 
2853   case Intrinsic::nvvm_tex_3d_v4f32_s32:
2854     return NVPTXISD::Tex3DFloatS32;
2855   case Intrinsic::nvvm_tex_3d_v4f32_f32:
2856     return NVPTXISD::Tex3DFloatFloat;
2857   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2858     return NVPTXISD::Tex3DFloatFloatLevel;
2859   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2860     return NVPTXISD::Tex3DFloatFloatGrad;
2861   case Intrinsic::nvvm_tex_3d_v4s32_s32:
2862     return NVPTXISD::Tex3DS32S32;
2863   case Intrinsic::nvvm_tex_3d_v4s32_f32:
2864     return NVPTXISD::Tex3DS32Float;
2865   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2866     return NVPTXISD::Tex3DS32FloatLevel;
2867   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2868     return NVPTXISD::Tex3DS32FloatGrad;
2869   case Intrinsic::nvvm_tex_3d_v4u32_s32:
2870     return NVPTXISD::Tex3DU32S32;
2871   case Intrinsic::nvvm_tex_3d_v4u32_f32:
2872     return NVPTXISD::Tex3DU32Float;
2873   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2874     return NVPTXISD::Tex3DU32FloatLevel;
2875   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2876     return NVPTXISD::Tex3DU32FloatGrad;
2877 
2878   case Intrinsic::nvvm_tex_cube_v4f32_f32:
2879     return NVPTXISD::TexCubeFloatFloat;
2880   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2881     return NVPTXISD::TexCubeFloatFloatLevel;
2882   case Intrinsic::nvvm_tex_cube_v4s32_f32:
2883     return NVPTXISD::TexCubeS32Float;
2884   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2885     return NVPTXISD::TexCubeS32FloatLevel;
2886   case Intrinsic::nvvm_tex_cube_v4u32_f32:
2887     return NVPTXISD::TexCubeU32Float;
2888   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2889     return NVPTXISD::TexCubeU32FloatLevel;
2890 
2891   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2892     return NVPTXISD::TexCubeArrayFloatFloat;
2893   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2894     return NVPTXISD::TexCubeArrayFloatFloatLevel;
2895   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2896     return NVPTXISD::TexCubeArrayS32Float;
2897   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2898     return NVPTXISD::TexCubeArrayS32FloatLevel;
2899   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2900     return NVPTXISD::TexCubeArrayU32Float;
2901   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2902     return NVPTXISD::TexCubeArrayU32FloatLevel;
2903 
2904   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2905     return NVPTXISD::Tld4R2DFloatFloat;
2906   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2907     return NVPTXISD::Tld4G2DFloatFloat;
2908   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2909     return NVPTXISD::Tld4B2DFloatFloat;
2910   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2911     return NVPTXISD::Tld4A2DFloatFloat;
2912   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2913     return NVPTXISD::Tld4R2DS64Float;
2914   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2915     return NVPTXISD::Tld4G2DS64Float;
2916   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2917     return NVPTXISD::Tld4B2DS64Float;
2918   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2919     return NVPTXISD::Tld4A2DS64Float;
2920   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2921     return NVPTXISD::Tld4R2DU64Float;
2922   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2923     return NVPTXISD::Tld4G2DU64Float;
2924   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2925     return NVPTXISD::Tld4B2DU64Float;
2926   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2927     return NVPTXISD::Tld4A2DU64Float;
2928 
2929   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2930     return NVPTXISD::TexUnified1DFloatS32;
2931   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2932     return NVPTXISD::TexUnified1DFloatFloat;
2933   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2934     return NVPTXISD::TexUnified1DFloatFloatLevel;
2935   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2936     return NVPTXISD::TexUnified1DFloatFloatGrad;
2937   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2938     return NVPTXISD::TexUnified1DS32S32;
2939   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2940     return NVPTXISD::TexUnified1DS32Float;
2941   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2942     return NVPTXISD::TexUnified1DS32FloatLevel;
2943   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2944     return NVPTXISD::TexUnified1DS32FloatGrad;
2945   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2946     return NVPTXISD::TexUnified1DU32S32;
2947   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2948     return NVPTXISD::TexUnified1DU32Float;
2949   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2950     return NVPTXISD::TexUnified1DU32FloatLevel;
2951   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2952     return NVPTXISD::TexUnified1DU32FloatGrad;
2953 
2954   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2955     return NVPTXISD::TexUnified1DArrayFloatS32;
2956   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2957     return NVPTXISD::TexUnified1DArrayFloatFloat;
2958   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2959     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2960   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2961     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2962   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2963     return NVPTXISD::TexUnified1DArrayS32S32;
2964   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2965     return NVPTXISD::TexUnified1DArrayS32Float;
2966   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2967     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2968   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2969     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2970   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2971     return NVPTXISD::TexUnified1DArrayU32S32;
2972   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2973     return NVPTXISD::TexUnified1DArrayU32Float;
2974   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2975     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2976   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2977     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2978 
2979   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2980     return NVPTXISD::TexUnified2DFloatS32;
2981   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2982     return NVPTXISD::TexUnified2DFloatFloat;
2983   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2984     return NVPTXISD::TexUnified2DFloatFloatLevel;
2985   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2986     return NVPTXISD::TexUnified2DFloatFloatGrad;
2987   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2988     return NVPTXISD::TexUnified2DS32S32;
2989   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2990     return NVPTXISD::TexUnified2DS32Float;
2991   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2992     return NVPTXISD::TexUnified2DS32FloatLevel;
2993   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
2994     return NVPTXISD::TexUnified2DS32FloatGrad;
2995   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
2996     return NVPTXISD::TexUnified2DU32S32;
2997   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
2998     return NVPTXISD::TexUnified2DU32Float;
2999   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3000     return NVPTXISD::TexUnified2DU32FloatLevel;
3001   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3002     return NVPTXISD::TexUnified2DU32FloatGrad;
3003 
3004   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3005     return NVPTXISD::TexUnified2DArrayFloatS32;
3006   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3007     return NVPTXISD::TexUnified2DArrayFloatFloat;
3008   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3009     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
3010   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3011     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
3012   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3013     return NVPTXISD::TexUnified2DArrayS32S32;
3014   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3015     return NVPTXISD::TexUnified2DArrayS32Float;
3016   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3017     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3018   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3019     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3020   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3021     return NVPTXISD::TexUnified2DArrayU32S32;
3022   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3023     return NVPTXISD::TexUnified2DArrayU32Float;
3024   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3025     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3026   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3027     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3028 
3029   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3030     return NVPTXISD::TexUnified3DFloatS32;
3031   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3032     return NVPTXISD::TexUnified3DFloatFloat;
3033   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3034     return NVPTXISD::TexUnified3DFloatFloatLevel;
3035   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3036     return NVPTXISD::TexUnified3DFloatFloatGrad;
3037   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3038     return NVPTXISD::TexUnified3DS32S32;
3039   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3040     return NVPTXISD::TexUnified3DS32Float;
3041   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3042     return NVPTXISD::TexUnified3DS32FloatLevel;
3043   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3044     return NVPTXISD::TexUnified3DS32FloatGrad;
3045   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3046     return NVPTXISD::TexUnified3DU32S32;
3047   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3048     return NVPTXISD::TexUnified3DU32Float;
3049   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3050     return NVPTXISD::TexUnified3DU32FloatLevel;
3051   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3052     return NVPTXISD::TexUnified3DU32FloatGrad;
3053 
3054   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3055     return NVPTXISD::TexUnifiedCubeFloatFloat;
3056   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3057     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3058   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3059     return NVPTXISD::TexUnifiedCubeS32Float;
3060   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3061     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3062   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3063     return NVPTXISD::TexUnifiedCubeU32Float;
3064   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3065     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3066 
3067   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3068     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3069   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3070     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3071   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3072     return NVPTXISD::TexUnifiedCubeArrayS32Float;
3073   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3074     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3075   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3076     return NVPTXISD::TexUnifiedCubeArrayU32Float;
3077   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3078     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3079 
3080   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3081     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3082   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3083     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3084   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3085     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3086   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3087     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3088   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3089     return NVPTXISD::Tld4UnifiedR2DS64Float;
3090   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3091     return NVPTXISD::Tld4UnifiedG2DS64Float;
3092   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3093     return NVPTXISD::Tld4UnifiedB2DS64Float;
3094   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3095     return NVPTXISD::Tld4UnifiedA2DS64Float;
3096   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3097     return NVPTXISD::Tld4UnifiedR2DU64Float;
3098   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3099     return NVPTXISD::Tld4UnifiedG2DU64Float;
3100   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3101     return NVPTXISD::Tld4UnifiedB2DU64Float;
3102   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3103     return NVPTXISD::Tld4UnifiedA2DU64Float;
3104   }
3105 }
3106 
3107 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3108   switch (Intrinsic) {
3109   default:
3110     return 0;
3111   case Intrinsic::nvvm_suld_1d_i8_clamp:
3112     return NVPTXISD::Suld1DI8Clamp;
3113   case Intrinsic::nvvm_suld_1d_i16_clamp:
3114     return NVPTXISD::Suld1DI16Clamp;
3115   case Intrinsic::nvvm_suld_1d_i32_clamp:
3116     return NVPTXISD::Suld1DI32Clamp;
3117   case Intrinsic::nvvm_suld_1d_i64_clamp:
3118     return NVPTXISD::Suld1DI64Clamp;
3119   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3120     return NVPTXISD::Suld1DV2I8Clamp;
3121   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3122     return NVPTXISD::Suld1DV2I16Clamp;
3123   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3124     return NVPTXISD::Suld1DV2I32Clamp;
3125   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3126     return NVPTXISD::Suld1DV2I64Clamp;
3127   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3128     return NVPTXISD::Suld1DV4I8Clamp;
3129   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3130     return NVPTXISD::Suld1DV4I16Clamp;
3131   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3132     return NVPTXISD::Suld1DV4I32Clamp;
3133   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3134     return NVPTXISD::Suld1DArrayI8Clamp;
3135   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3136     return NVPTXISD::Suld1DArrayI16Clamp;
3137   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3138     return NVPTXISD::Suld1DArrayI32Clamp;
3139   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3140     return NVPTXISD::Suld1DArrayI64Clamp;
3141   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3142     return NVPTXISD::Suld1DArrayV2I8Clamp;
3143   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3144     return NVPTXISD::Suld1DArrayV2I16Clamp;
3145   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3146     return NVPTXISD::Suld1DArrayV2I32Clamp;
3147   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3148     return NVPTXISD::Suld1DArrayV2I64Clamp;
3149   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3150     return NVPTXISD::Suld1DArrayV4I8Clamp;
3151   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3152     return NVPTXISD::Suld1DArrayV4I16Clamp;
3153   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3154     return NVPTXISD::Suld1DArrayV4I32Clamp;
3155   case Intrinsic::nvvm_suld_2d_i8_clamp:
3156     return NVPTXISD::Suld2DI8Clamp;
3157   case Intrinsic::nvvm_suld_2d_i16_clamp:
3158     return NVPTXISD::Suld2DI16Clamp;
3159   case Intrinsic::nvvm_suld_2d_i32_clamp:
3160     return NVPTXISD::Suld2DI32Clamp;
3161   case Intrinsic::nvvm_suld_2d_i64_clamp:
3162     return NVPTXISD::Suld2DI64Clamp;
3163   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3164     return NVPTXISD::Suld2DV2I8Clamp;
3165   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3166     return NVPTXISD::Suld2DV2I16Clamp;
3167   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3168     return NVPTXISD::Suld2DV2I32Clamp;
3169   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3170     return NVPTXISD::Suld2DV2I64Clamp;
3171   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3172     return NVPTXISD::Suld2DV4I8Clamp;
3173   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3174     return NVPTXISD::Suld2DV4I16Clamp;
3175   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3176     return NVPTXISD::Suld2DV4I32Clamp;
3177   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3178     return NVPTXISD::Suld2DArrayI8Clamp;
3179   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3180     return NVPTXISD::Suld2DArrayI16Clamp;
3181   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3182     return NVPTXISD::Suld2DArrayI32Clamp;
3183   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3184     return NVPTXISD::Suld2DArrayI64Clamp;
3185   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3186     return NVPTXISD::Suld2DArrayV2I8Clamp;
3187   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3188     return NVPTXISD::Suld2DArrayV2I16Clamp;
3189   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3190     return NVPTXISD::Suld2DArrayV2I32Clamp;
3191   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3192     return NVPTXISD::Suld2DArrayV2I64Clamp;
3193   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3194     return NVPTXISD::Suld2DArrayV4I8Clamp;
3195   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3196     return NVPTXISD::Suld2DArrayV4I16Clamp;
3197   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3198     return NVPTXISD::Suld2DArrayV4I32Clamp;
3199   case Intrinsic::nvvm_suld_3d_i8_clamp:
3200     return NVPTXISD::Suld3DI8Clamp;
3201   case Intrinsic::nvvm_suld_3d_i16_clamp:
3202     return NVPTXISD::Suld3DI16Clamp;
3203   case Intrinsic::nvvm_suld_3d_i32_clamp:
3204     return NVPTXISD::Suld3DI32Clamp;
3205   case Intrinsic::nvvm_suld_3d_i64_clamp:
3206     return NVPTXISD::Suld3DI64Clamp;
3207   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3208     return NVPTXISD::Suld3DV2I8Clamp;
3209   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3210     return NVPTXISD::Suld3DV2I16Clamp;
3211   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3212     return NVPTXISD::Suld3DV2I32Clamp;
3213   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3214     return NVPTXISD::Suld3DV2I64Clamp;
3215   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3216     return NVPTXISD::Suld3DV4I8Clamp;
3217   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3218     return NVPTXISD::Suld3DV4I16Clamp;
3219   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3220     return NVPTXISD::Suld3DV4I32Clamp;
3221   case Intrinsic::nvvm_suld_1d_i8_trap:
3222     return NVPTXISD::Suld1DI8Trap;
3223   case Intrinsic::nvvm_suld_1d_i16_trap:
3224     return NVPTXISD::Suld1DI16Trap;
3225   case Intrinsic::nvvm_suld_1d_i32_trap:
3226     return NVPTXISD::Suld1DI32Trap;
3227   case Intrinsic::nvvm_suld_1d_i64_trap:
3228     return NVPTXISD::Suld1DI64Trap;
3229   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3230     return NVPTXISD::Suld1DV2I8Trap;
3231   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3232     return NVPTXISD::Suld1DV2I16Trap;
3233   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3234     return NVPTXISD::Suld1DV2I32Trap;
3235   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3236     return NVPTXISD::Suld1DV2I64Trap;
3237   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3238     return NVPTXISD::Suld1DV4I8Trap;
3239   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3240     return NVPTXISD::Suld1DV4I16Trap;
3241   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3242     return NVPTXISD::Suld1DV4I32Trap;
3243   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3244     return NVPTXISD::Suld1DArrayI8Trap;
3245   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3246     return NVPTXISD::Suld1DArrayI16Trap;
3247   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3248     return NVPTXISD::Suld1DArrayI32Trap;
3249   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3250     return NVPTXISD::Suld1DArrayI64Trap;
3251   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3252     return NVPTXISD::Suld1DArrayV2I8Trap;
3253   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3254     return NVPTXISD::Suld1DArrayV2I16Trap;
3255   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3256     return NVPTXISD::Suld1DArrayV2I32Trap;
3257   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3258     return NVPTXISD::Suld1DArrayV2I64Trap;
3259   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3260     return NVPTXISD::Suld1DArrayV4I8Trap;
3261   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3262     return NVPTXISD::Suld1DArrayV4I16Trap;
3263   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3264     return NVPTXISD::Suld1DArrayV4I32Trap;
3265   case Intrinsic::nvvm_suld_2d_i8_trap:
3266     return NVPTXISD::Suld2DI8Trap;
3267   case Intrinsic::nvvm_suld_2d_i16_trap:
3268     return NVPTXISD::Suld2DI16Trap;
3269   case Intrinsic::nvvm_suld_2d_i32_trap:
3270     return NVPTXISD::Suld2DI32Trap;
3271   case Intrinsic::nvvm_suld_2d_i64_trap:
3272     return NVPTXISD::Suld2DI64Trap;
3273   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3274     return NVPTXISD::Suld2DV2I8Trap;
3275   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3276     return NVPTXISD::Suld2DV2I16Trap;
3277   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3278     return NVPTXISD::Suld2DV2I32Trap;
3279   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3280     return NVPTXISD::Suld2DV2I64Trap;
3281   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3282     return NVPTXISD::Suld2DV4I8Trap;
3283   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3284     return NVPTXISD::Suld2DV4I16Trap;
3285   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3286     return NVPTXISD::Suld2DV4I32Trap;
3287   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3288     return NVPTXISD::Suld2DArrayI8Trap;
3289   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3290     return NVPTXISD::Suld2DArrayI16Trap;
3291   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3292     return NVPTXISD::Suld2DArrayI32Trap;
3293   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3294     return NVPTXISD::Suld2DArrayI64Trap;
3295   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3296     return NVPTXISD::Suld2DArrayV2I8Trap;
3297   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3298     return NVPTXISD::Suld2DArrayV2I16Trap;
3299   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3300     return NVPTXISD::Suld2DArrayV2I32Trap;
3301   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3302     return NVPTXISD::Suld2DArrayV2I64Trap;
3303   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3304     return NVPTXISD::Suld2DArrayV4I8Trap;
3305   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3306     return NVPTXISD::Suld2DArrayV4I16Trap;
3307   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3308     return NVPTXISD::Suld2DArrayV4I32Trap;
3309   case Intrinsic::nvvm_suld_3d_i8_trap:
3310     return NVPTXISD::Suld3DI8Trap;
3311   case Intrinsic::nvvm_suld_3d_i16_trap:
3312     return NVPTXISD::Suld3DI16Trap;
3313   case Intrinsic::nvvm_suld_3d_i32_trap:
3314     return NVPTXISD::Suld3DI32Trap;
3315   case Intrinsic::nvvm_suld_3d_i64_trap:
3316     return NVPTXISD::Suld3DI64Trap;
3317   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3318     return NVPTXISD::Suld3DV2I8Trap;
3319   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3320     return NVPTXISD::Suld3DV2I16Trap;
3321   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3322     return NVPTXISD::Suld3DV2I32Trap;
3323   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3324     return NVPTXISD::Suld3DV2I64Trap;
3325   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3326     return NVPTXISD::Suld3DV4I8Trap;
3327   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3328     return NVPTXISD::Suld3DV4I16Trap;
3329   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3330     return NVPTXISD::Suld3DV4I32Trap;
3331   case Intrinsic::nvvm_suld_1d_i8_zero:
3332     return NVPTXISD::Suld1DI8Zero;
3333   case Intrinsic::nvvm_suld_1d_i16_zero:
3334     return NVPTXISD::Suld1DI16Zero;
3335   case Intrinsic::nvvm_suld_1d_i32_zero:
3336     return NVPTXISD::Suld1DI32Zero;
3337   case Intrinsic::nvvm_suld_1d_i64_zero:
3338     return NVPTXISD::Suld1DI64Zero;
3339   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3340     return NVPTXISD::Suld1DV2I8Zero;
3341   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3342     return NVPTXISD::Suld1DV2I16Zero;
3343   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3344     return NVPTXISD::Suld1DV2I32Zero;
3345   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3346     return NVPTXISD::Suld1DV2I64Zero;
3347   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3348     return NVPTXISD::Suld1DV4I8Zero;
3349   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3350     return NVPTXISD::Suld1DV4I16Zero;
3351   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3352     return NVPTXISD::Suld1DV4I32Zero;
3353   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3354     return NVPTXISD::Suld1DArrayI8Zero;
3355   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3356     return NVPTXISD::Suld1DArrayI16Zero;
3357   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3358     return NVPTXISD::Suld1DArrayI32Zero;
3359   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3360     return NVPTXISD::Suld1DArrayI64Zero;
3361   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3362     return NVPTXISD::Suld1DArrayV2I8Zero;
3363   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3364     return NVPTXISD::Suld1DArrayV2I16Zero;
3365   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3366     return NVPTXISD::Suld1DArrayV2I32Zero;
3367   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3368     return NVPTXISD::Suld1DArrayV2I64Zero;
3369   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3370     return NVPTXISD::Suld1DArrayV4I8Zero;
3371   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3372     return NVPTXISD::Suld1DArrayV4I16Zero;
3373   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3374     return NVPTXISD::Suld1DArrayV4I32Zero;
3375   case Intrinsic::nvvm_suld_2d_i8_zero:
3376     return NVPTXISD::Suld2DI8Zero;
3377   case Intrinsic::nvvm_suld_2d_i16_zero:
3378     return NVPTXISD::Suld2DI16Zero;
3379   case Intrinsic::nvvm_suld_2d_i32_zero:
3380     return NVPTXISD::Suld2DI32Zero;
3381   case Intrinsic::nvvm_suld_2d_i64_zero:
3382     return NVPTXISD::Suld2DI64Zero;
3383   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3384     return NVPTXISD::Suld2DV2I8Zero;
3385   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3386     return NVPTXISD::Suld2DV2I16Zero;
3387   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3388     return NVPTXISD::Suld2DV2I32Zero;
3389   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3390     return NVPTXISD::Suld2DV2I64Zero;
3391   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3392     return NVPTXISD::Suld2DV4I8Zero;
3393   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3394     return NVPTXISD::Suld2DV4I16Zero;
3395   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3396     return NVPTXISD::Suld2DV4I32Zero;
3397   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3398     return NVPTXISD::Suld2DArrayI8Zero;
3399   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3400     return NVPTXISD::Suld2DArrayI16Zero;
3401   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3402     return NVPTXISD::Suld2DArrayI32Zero;
3403   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3404     return NVPTXISD::Suld2DArrayI64Zero;
3405   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3406     return NVPTXISD::Suld2DArrayV2I8Zero;
3407   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3408     return NVPTXISD::Suld2DArrayV2I16Zero;
3409   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3410     return NVPTXISD::Suld2DArrayV2I32Zero;
3411   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3412     return NVPTXISD::Suld2DArrayV2I64Zero;
3413   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3414     return NVPTXISD::Suld2DArrayV4I8Zero;
3415   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3416     return NVPTXISD::Suld2DArrayV4I16Zero;
3417   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3418     return NVPTXISD::Suld2DArrayV4I32Zero;
3419   case Intrinsic::nvvm_suld_3d_i8_zero:
3420     return NVPTXISD::Suld3DI8Zero;
3421   case Intrinsic::nvvm_suld_3d_i16_zero:
3422     return NVPTXISD::Suld3DI16Zero;
3423   case Intrinsic::nvvm_suld_3d_i32_zero:
3424     return NVPTXISD::Suld3DI32Zero;
3425   case Intrinsic::nvvm_suld_3d_i64_zero:
3426     return NVPTXISD::Suld3DI64Zero;
3427   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3428     return NVPTXISD::Suld3DV2I8Zero;
3429   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3430     return NVPTXISD::Suld3DV2I16Zero;
3431   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3432     return NVPTXISD::Suld3DV2I32Zero;
3433   case Intrinsic::nvvm_suld_3d_v2i64_zero:
3434     return NVPTXISD::Suld3DV2I64Zero;
3435   case Intrinsic::nvvm_suld_3d_v4i8_zero:
3436     return NVPTXISD::Suld3DV4I8Zero;
3437   case Intrinsic::nvvm_suld_3d_v4i16_zero:
3438     return NVPTXISD::Suld3DV4I16Zero;
3439   case Intrinsic::nvvm_suld_3d_v4i32_zero:
3440     return NVPTXISD::Suld3DV4I32Zero;
3441   }
3442 }
3443 
3444 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3445 // TgtMemIntrinsic
3446 // because we need the information that is only available in the "Value" type
3447 // of destination
3448 // pointer. In particular, the address space information.
3449 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3450     IntrinsicInfo &Info, const CallInst &I,
3451     MachineFunction &MF, unsigned Intrinsic) const {
3452   switch (Intrinsic) {
3453   default:
3454     return false;
3455   case Intrinsic::nvvm_match_all_sync_i32p:
3456   case Intrinsic::nvvm_match_all_sync_i64p:
3457     Info.opc = ISD::INTRINSIC_W_CHAIN;
3458     // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3459     // in order to model data exchange with other threads, but perform no real
3460     // memory accesses.
3461     Info.memVT = MVT::i1;
3462 
3463     // Our result depends on both our and other thread's arguments.
3464     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3465     return true;
3466   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3467   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3468   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3469   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3470   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3471   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3472   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3473   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3474   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3475   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3476   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3477   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3478   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3479   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3480   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3481   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3482   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3483   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3484   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3485   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3486   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3487   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3488   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3489   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3490     Info.opc = ISD::INTRINSIC_W_CHAIN;
3491     Info.memVT = MVT::v8f16;
3492     Info.ptrVal = I.getArgOperand(0);
3493     Info.offset = 0;
3494     Info.flags = MachineMemOperand::MOLoad;
3495     Info.align = Align(16);
3496     return true;
3497   }
3498   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3499   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3500   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3501   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3502   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3503   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3504   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3505   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3506   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
3507   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
3508   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
3509   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
3510   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3511   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3512   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3513   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3514   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3515   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3516   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3517   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
3518   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
3519   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
3520   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
3521   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
3522     Info.opc = ISD::INTRINSIC_W_CHAIN;
3523     Info.memVT = MVT::v2i32;
3524     Info.ptrVal = I.getArgOperand(0);
3525     Info.offset = 0;
3526     Info.flags = MachineMemOperand::MOLoad;
3527     Info.align = Align(8);
3528     return true;
3529   }
3530 
3531   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3532   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3533   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3534   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3535   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3536   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3537   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3538   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3539   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
3540   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
3541   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
3542   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
3543   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
3544   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
3545   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
3546   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
3547 
3548   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3549   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3550   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3551   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3552   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3553   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3554   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3555   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
3556   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
3557   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
3558   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
3559   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
3560   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
3561   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
3562   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
3563   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
3564   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
3565   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: {
3566     Info.opc = ISD::INTRINSIC_W_CHAIN;
3567     Info.memVT = MVT::v4i32;
3568     Info.ptrVal = I.getArgOperand(0);
3569     Info.offset = 0;
3570     Info.flags = MachineMemOperand::MOLoad;
3571     Info.align = Align(16);
3572     return true;
3573   }
3574 
3575   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3576   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3577   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3578   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3579   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3580   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3581   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3582   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3583 
3584   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3585   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3586   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3587   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3588   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3589   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3590   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3591   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3592   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3593   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3594   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3595   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3596   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3597   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3598   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3599   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3600   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3601   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3602   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3603   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
3604   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
3605   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: {
3606     Info.opc = ISD::INTRINSIC_W_CHAIN;
3607     Info.memVT = MVT::i32;
3608     Info.ptrVal = I.getArgOperand(0);
3609     Info.offset = 0;
3610     Info.flags = MachineMemOperand::MOLoad;
3611     Info.align = Align(4);
3612     return true;
3613   }
3614 
3615   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3616   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3617   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3618   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3619   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3620   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3621   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3622   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3623   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3624   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3625   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3626   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3627     Info.opc = ISD::INTRINSIC_W_CHAIN;
3628     Info.memVT = MVT::v4f16;
3629     Info.ptrVal = I.getArgOperand(0);
3630     Info.offset = 0;
3631     Info.flags = MachineMemOperand::MOLoad;
3632     Info.align = Align(16);
3633     return true;
3634   }
3635 
3636   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3637   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3638   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3639   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3640   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3641   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3642   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3643   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3644   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3645   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3646   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3647   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
3648   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
3649   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
3650   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
3651   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
3652     Info.opc = ISD::INTRINSIC_W_CHAIN;
3653     Info.memVT = MVT::v8f32;
3654     Info.ptrVal = I.getArgOperand(0);
3655     Info.offset = 0;
3656     Info.flags = MachineMemOperand::MOLoad;
3657     Info.align = Align(16);
3658     return true;
3659   }
3660 
3661   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
3662   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
3663   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
3664   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
3665 
3666   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
3667   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
3668   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
3669   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
3670 
3671   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3672   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3673   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3674   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3675   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3676   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3677   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3678   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3679   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3680   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3681   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3682   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3683     Info.opc = ISD::INTRINSIC_W_CHAIN;
3684     Info.memVT = MVT::v8i32;
3685     Info.ptrVal = I.getArgOperand(0);
3686     Info.offset = 0;
3687     Info.flags = MachineMemOperand::MOLoad;
3688     Info.align = Align(16);
3689     return true;
3690   }
3691 
3692   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3693   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3694   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3695   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3696   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3697   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3698   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3699   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
3700   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
3701   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: {
3702     Info.opc = ISD::INTRINSIC_W_CHAIN;
3703     Info.memVT = MVT::v2i32;
3704     Info.ptrVal = I.getArgOperand(0);
3705     Info.offset = 0;
3706     Info.flags = MachineMemOperand::MOLoad;
3707     Info.align = Align(8);
3708     return true;
3709   }
3710 
3711   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
3712   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
3713   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
3714   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
3715 
3716   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
3717   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
3718   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
3719   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
3720     Info.opc = ISD::INTRINSIC_W_CHAIN;
3721     Info.memVT = MVT::f64;
3722     Info.ptrVal = I.getArgOperand(0);
3723     Info.offset = 0;
3724     Info.flags = MachineMemOperand::MOLoad;
3725     Info.align = Align(8);
3726     return true;
3727   }
3728 
3729   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
3730   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
3731   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
3732   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
3733     Info.opc = ISD::INTRINSIC_W_CHAIN;
3734     Info.memVT = MVT::v2f64;
3735     Info.ptrVal = I.getArgOperand(0);
3736     Info.offset = 0;
3737     Info.flags = MachineMemOperand::MOLoad;
3738     Info.align = Align(16);
3739     return true;
3740   }
3741 
3742   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3743   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3744   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3745   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3746   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3747   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3748   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3749   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3750   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3751   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3752   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3753   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3754     Info.opc = ISD::INTRINSIC_VOID;
3755     Info.memVT = MVT::v4f16;
3756     Info.ptrVal = I.getArgOperand(0);
3757     Info.offset = 0;
3758     Info.flags = MachineMemOperand::MOStore;
3759     Info.align = Align(16);
3760     return true;
3761   }
3762 
3763   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3764   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3765   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3766   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3767   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3768   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3769   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3770   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3771   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3772   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3773   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3774   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
3775   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
3776   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
3777   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
3778   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
3779     Info.opc = ISD::INTRINSIC_VOID;
3780     Info.memVT = MVT::v8f32;
3781     Info.ptrVal = I.getArgOperand(0);
3782     Info.offset = 0;
3783     Info.flags = MachineMemOperand::MOStore;
3784     Info.align = Align(16);
3785     return true;
3786   }
3787 
3788   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3789   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3790   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3791   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3792   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3793   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3794   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3795   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3796   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3797   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3798   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3799   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3800     Info.opc = ISD::INTRINSIC_VOID;
3801     Info.memVT = MVT::v8i32;
3802     Info.ptrVal = I.getArgOperand(0);
3803     Info.offset = 0;
3804     Info.flags = MachineMemOperand::MOStore;
3805     Info.align = Align(16);
3806     return true;
3807   }
3808 
3809   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3810   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3811   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3812   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3813   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3814   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3815   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3816   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3817     Info.opc = ISD::INTRINSIC_VOID;
3818     Info.memVT = MVT::v2i32;
3819     Info.ptrVal = I.getArgOperand(0);
3820     Info.offset = 0;
3821     Info.flags = MachineMemOperand::MOStore;
3822     Info.align = Align(8);
3823     return true;
3824   }
3825 
3826   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
3827   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
3828   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
3829   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
3830     Info.opc = ISD::INTRINSIC_VOID;
3831     Info.memVT = MVT::v2f64;
3832     Info.ptrVal = I.getArgOperand(0);
3833     Info.offset = 0;
3834     Info.flags = MachineMemOperand::MOStore;
3835     Info.align = Align(16);
3836     return true;
3837   }
3838 
3839   case Intrinsic::nvvm_atomic_load_inc_32:
3840   case Intrinsic::nvvm_atomic_load_dec_32:
3841 
3842   case Intrinsic::nvvm_atomic_add_gen_f_cta:
3843   case Intrinsic::nvvm_atomic_add_gen_f_sys:
3844   case Intrinsic::nvvm_atomic_add_gen_i_cta:
3845   case Intrinsic::nvvm_atomic_add_gen_i_sys:
3846   case Intrinsic::nvvm_atomic_and_gen_i_cta:
3847   case Intrinsic::nvvm_atomic_and_gen_i_sys:
3848   case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3849   case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3850   case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3851   case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3852   case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3853   case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3854   case Intrinsic::nvvm_atomic_max_gen_i_cta:
3855   case Intrinsic::nvvm_atomic_max_gen_i_sys:
3856   case Intrinsic::nvvm_atomic_min_gen_i_cta:
3857   case Intrinsic::nvvm_atomic_min_gen_i_sys:
3858   case Intrinsic::nvvm_atomic_or_gen_i_cta:
3859   case Intrinsic::nvvm_atomic_or_gen_i_sys:
3860   case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3861   case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3862   case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3863   case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3864     auto &DL = I.getModule()->getDataLayout();
3865     Info.opc = ISD::INTRINSIC_W_CHAIN;
3866     Info.memVT = getValueType(DL, I.getType());
3867     Info.ptrVal = I.getArgOperand(0);
3868     Info.offset = 0;
3869     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3870     Info.align.reset();
3871     return true;
3872   }
3873 
3874   case Intrinsic::nvvm_ldu_global_i:
3875   case Intrinsic::nvvm_ldu_global_f:
3876   case Intrinsic::nvvm_ldu_global_p: {
3877     auto &DL = I.getModule()->getDataLayout();
3878     Info.opc = ISD::INTRINSIC_W_CHAIN;
3879     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3880       Info.memVT = getValueType(DL, I.getType());
3881     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3882       Info.memVT = getPointerTy(DL);
3883     else
3884       Info.memVT = getValueType(DL, I.getType());
3885     Info.ptrVal = I.getArgOperand(0);
3886     Info.offset = 0;
3887     Info.flags = MachineMemOperand::MOLoad;
3888     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3889 
3890     return true;
3891   }
3892   case Intrinsic::nvvm_ldg_global_i:
3893   case Intrinsic::nvvm_ldg_global_f:
3894   case Intrinsic::nvvm_ldg_global_p: {
3895     auto &DL = I.getModule()->getDataLayout();
3896 
3897     Info.opc = ISD::INTRINSIC_W_CHAIN;
3898     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3899       Info.memVT = getValueType(DL, I.getType());
3900     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3901       Info.memVT = getPointerTy(DL);
3902     else
3903       Info.memVT = getValueType(DL, I.getType());
3904     Info.ptrVal = I.getArgOperand(0);
3905     Info.offset = 0;
3906     Info.flags = MachineMemOperand::MOLoad;
3907     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3908 
3909     return true;
3910   }
3911 
3912   case Intrinsic::nvvm_tex_1d_v4f32_s32:
3913   case Intrinsic::nvvm_tex_1d_v4f32_f32:
3914   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3915   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3916   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3917   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3918   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3919   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3920   case Intrinsic::nvvm_tex_2d_v4f32_s32:
3921   case Intrinsic::nvvm_tex_2d_v4f32_f32:
3922   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3923   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3924   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3925   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3926   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3927   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3928   case Intrinsic::nvvm_tex_3d_v4f32_s32:
3929   case Intrinsic::nvvm_tex_3d_v4f32_f32:
3930   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3931   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3932   case Intrinsic::nvvm_tex_cube_v4f32_f32:
3933   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3934   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3935   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3936   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3937   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3938   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3939   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3940   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3941   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3942   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3943   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3944   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3945   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3946   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3947   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3948   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3949   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3950   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3951   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3952   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3953   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3954   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3955   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3956   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3957   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3958   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3959   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3960   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3961   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3962   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3963   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3964   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3965   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3966   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3967   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3968     Info.opc = getOpcForTextureInstr(Intrinsic);
3969     Info.memVT = MVT::v4f32;
3970     Info.ptrVal = nullptr;
3971     Info.offset = 0;
3972     Info.flags = MachineMemOperand::MOLoad;
3973     Info.align = Align(16);
3974     return true;
3975 
3976   case Intrinsic::nvvm_tex_1d_v4s32_s32:
3977   case Intrinsic::nvvm_tex_1d_v4s32_f32:
3978   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3979   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3980   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3981   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3982   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3983   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3984   case Intrinsic::nvvm_tex_2d_v4s32_s32:
3985   case Intrinsic::nvvm_tex_2d_v4s32_f32:
3986   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3987   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3988   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3989   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3990   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3991   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3992   case Intrinsic::nvvm_tex_3d_v4s32_s32:
3993   case Intrinsic::nvvm_tex_3d_v4s32_f32:
3994   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3995   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3996   case Intrinsic::nvvm_tex_cube_v4s32_f32:
3997   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3998   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3999   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
4000   case Intrinsic::nvvm_tex_cube_v4u32_f32:
4001   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
4002   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
4003   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
4004   case Intrinsic::nvvm_tex_1d_v4u32_s32:
4005   case Intrinsic::nvvm_tex_1d_v4u32_f32:
4006   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
4007   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
4008   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
4009   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
4010   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
4011   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
4012   case Intrinsic::nvvm_tex_2d_v4u32_s32:
4013   case Intrinsic::nvvm_tex_2d_v4u32_f32:
4014   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
4015   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
4016   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
4017   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
4018   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
4019   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
4020   case Intrinsic::nvvm_tex_3d_v4u32_s32:
4021   case Intrinsic::nvvm_tex_3d_v4u32_f32:
4022   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
4023   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
4024   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
4025   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
4026   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
4027   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
4028   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
4029   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
4030   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
4031   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
4032   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
4033   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
4034   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
4035   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
4036   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
4037   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
4038   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
4039   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
4040   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
4041   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
4042   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
4043   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
4044   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
4045   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
4046   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
4047   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
4048   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
4049   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
4050   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
4051   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
4052   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
4053   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
4054   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
4055   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
4056   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
4057   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
4058   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
4059   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
4060   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
4061   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
4062   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
4063   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
4064   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
4065   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4066   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4067   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4068   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4069   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4070   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4071   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4072   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4073   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4074   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4075   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4076   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4077   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4078   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4079   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4080   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4081   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4082   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4083   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4084   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4085   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4086   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4087   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4088     Info.opc = getOpcForTextureInstr(Intrinsic);
4089     Info.memVT = MVT::v4i32;
4090     Info.ptrVal = nullptr;
4091     Info.offset = 0;
4092     Info.flags = MachineMemOperand::MOLoad;
4093     Info.align = Align(16);
4094     return true;
4095 
4096   case Intrinsic::nvvm_suld_1d_i8_clamp:
4097   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4098   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4099   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4100   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4101   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4102   case Intrinsic::nvvm_suld_2d_i8_clamp:
4103   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4104   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4105   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4106   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4107   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4108   case Intrinsic::nvvm_suld_3d_i8_clamp:
4109   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4110   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4111   case Intrinsic::nvvm_suld_1d_i8_trap:
4112   case Intrinsic::nvvm_suld_1d_v2i8_trap:
4113   case Intrinsic::nvvm_suld_1d_v4i8_trap:
4114   case Intrinsic::nvvm_suld_1d_array_i8_trap:
4115   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4116   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4117   case Intrinsic::nvvm_suld_2d_i8_trap:
4118   case Intrinsic::nvvm_suld_2d_v2i8_trap:
4119   case Intrinsic::nvvm_suld_2d_v4i8_trap:
4120   case Intrinsic::nvvm_suld_2d_array_i8_trap:
4121   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4122   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4123   case Intrinsic::nvvm_suld_3d_i8_trap:
4124   case Intrinsic::nvvm_suld_3d_v2i8_trap:
4125   case Intrinsic::nvvm_suld_3d_v4i8_trap:
4126   case Intrinsic::nvvm_suld_1d_i8_zero:
4127   case Intrinsic::nvvm_suld_1d_v2i8_zero:
4128   case Intrinsic::nvvm_suld_1d_v4i8_zero:
4129   case Intrinsic::nvvm_suld_1d_array_i8_zero:
4130   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4131   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4132   case Intrinsic::nvvm_suld_2d_i8_zero:
4133   case Intrinsic::nvvm_suld_2d_v2i8_zero:
4134   case Intrinsic::nvvm_suld_2d_v4i8_zero:
4135   case Intrinsic::nvvm_suld_2d_array_i8_zero:
4136   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4137   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4138   case Intrinsic::nvvm_suld_3d_i8_zero:
4139   case Intrinsic::nvvm_suld_3d_v2i8_zero:
4140   case Intrinsic::nvvm_suld_3d_v4i8_zero:
4141     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4142     Info.memVT = MVT::i8;
4143     Info.ptrVal = nullptr;
4144     Info.offset = 0;
4145     Info.flags = MachineMemOperand::MOLoad;
4146     Info.align = Align(16);
4147     return true;
4148 
4149   case Intrinsic::nvvm_suld_1d_i16_clamp:
4150   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4151   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4152   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4153   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4154   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4155   case Intrinsic::nvvm_suld_2d_i16_clamp:
4156   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4157   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4158   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4159   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4160   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4161   case Intrinsic::nvvm_suld_3d_i16_clamp:
4162   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4163   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4164   case Intrinsic::nvvm_suld_1d_i16_trap:
4165   case Intrinsic::nvvm_suld_1d_v2i16_trap:
4166   case Intrinsic::nvvm_suld_1d_v4i16_trap:
4167   case Intrinsic::nvvm_suld_1d_array_i16_trap:
4168   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4169   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4170   case Intrinsic::nvvm_suld_2d_i16_trap:
4171   case Intrinsic::nvvm_suld_2d_v2i16_trap:
4172   case Intrinsic::nvvm_suld_2d_v4i16_trap:
4173   case Intrinsic::nvvm_suld_2d_array_i16_trap:
4174   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4175   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4176   case Intrinsic::nvvm_suld_3d_i16_trap:
4177   case Intrinsic::nvvm_suld_3d_v2i16_trap:
4178   case Intrinsic::nvvm_suld_3d_v4i16_trap:
4179   case Intrinsic::nvvm_suld_1d_i16_zero:
4180   case Intrinsic::nvvm_suld_1d_v2i16_zero:
4181   case Intrinsic::nvvm_suld_1d_v4i16_zero:
4182   case Intrinsic::nvvm_suld_1d_array_i16_zero:
4183   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4184   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4185   case Intrinsic::nvvm_suld_2d_i16_zero:
4186   case Intrinsic::nvvm_suld_2d_v2i16_zero:
4187   case Intrinsic::nvvm_suld_2d_v4i16_zero:
4188   case Intrinsic::nvvm_suld_2d_array_i16_zero:
4189   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4190   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4191   case Intrinsic::nvvm_suld_3d_i16_zero:
4192   case Intrinsic::nvvm_suld_3d_v2i16_zero:
4193   case Intrinsic::nvvm_suld_3d_v4i16_zero:
4194     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4195     Info.memVT = MVT::i16;
4196     Info.ptrVal = nullptr;
4197     Info.offset = 0;
4198     Info.flags = MachineMemOperand::MOLoad;
4199     Info.align = Align(16);
4200     return true;
4201 
4202   case Intrinsic::nvvm_suld_1d_i32_clamp:
4203   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4204   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4205   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4206   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4207   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4208   case Intrinsic::nvvm_suld_2d_i32_clamp:
4209   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4210   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4211   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4212   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4213   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4214   case Intrinsic::nvvm_suld_3d_i32_clamp:
4215   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4216   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4217   case Intrinsic::nvvm_suld_1d_i32_trap:
4218   case Intrinsic::nvvm_suld_1d_v2i32_trap:
4219   case Intrinsic::nvvm_suld_1d_v4i32_trap:
4220   case Intrinsic::nvvm_suld_1d_array_i32_trap:
4221   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4222   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4223   case Intrinsic::nvvm_suld_2d_i32_trap:
4224   case Intrinsic::nvvm_suld_2d_v2i32_trap:
4225   case Intrinsic::nvvm_suld_2d_v4i32_trap:
4226   case Intrinsic::nvvm_suld_2d_array_i32_trap:
4227   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4228   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4229   case Intrinsic::nvvm_suld_3d_i32_trap:
4230   case Intrinsic::nvvm_suld_3d_v2i32_trap:
4231   case Intrinsic::nvvm_suld_3d_v4i32_trap:
4232   case Intrinsic::nvvm_suld_1d_i32_zero:
4233   case Intrinsic::nvvm_suld_1d_v2i32_zero:
4234   case Intrinsic::nvvm_suld_1d_v4i32_zero:
4235   case Intrinsic::nvvm_suld_1d_array_i32_zero:
4236   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4237   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4238   case Intrinsic::nvvm_suld_2d_i32_zero:
4239   case Intrinsic::nvvm_suld_2d_v2i32_zero:
4240   case Intrinsic::nvvm_suld_2d_v4i32_zero:
4241   case Intrinsic::nvvm_suld_2d_array_i32_zero:
4242   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4243   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4244   case Intrinsic::nvvm_suld_3d_i32_zero:
4245   case Intrinsic::nvvm_suld_3d_v2i32_zero:
4246   case Intrinsic::nvvm_suld_3d_v4i32_zero:
4247     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4248     Info.memVT = MVT::i32;
4249     Info.ptrVal = nullptr;
4250     Info.offset = 0;
4251     Info.flags = MachineMemOperand::MOLoad;
4252     Info.align = Align(16);
4253     return true;
4254 
4255   case Intrinsic::nvvm_suld_1d_i64_clamp:
4256   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4257   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4258   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4259   case Intrinsic::nvvm_suld_2d_i64_clamp:
4260   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4261   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4262   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4263   case Intrinsic::nvvm_suld_3d_i64_clamp:
4264   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4265   case Intrinsic::nvvm_suld_1d_i64_trap:
4266   case Intrinsic::nvvm_suld_1d_v2i64_trap:
4267   case Intrinsic::nvvm_suld_1d_array_i64_trap:
4268   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4269   case Intrinsic::nvvm_suld_2d_i64_trap:
4270   case Intrinsic::nvvm_suld_2d_v2i64_trap:
4271   case Intrinsic::nvvm_suld_2d_array_i64_trap:
4272   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4273   case Intrinsic::nvvm_suld_3d_i64_trap:
4274   case Intrinsic::nvvm_suld_3d_v2i64_trap:
4275   case Intrinsic::nvvm_suld_1d_i64_zero:
4276   case Intrinsic::nvvm_suld_1d_v2i64_zero:
4277   case Intrinsic::nvvm_suld_1d_array_i64_zero:
4278   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4279   case Intrinsic::nvvm_suld_2d_i64_zero:
4280   case Intrinsic::nvvm_suld_2d_v2i64_zero:
4281   case Intrinsic::nvvm_suld_2d_array_i64_zero:
4282   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4283   case Intrinsic::nvvm_suld_3d_i64_zero:
4284   case Intrinsic::nvvm_suld_3d_v2i64_zero:
4285     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4286     Info.memVT = MVT::i64;
4287     Info.ptrVal = nullptr;
4288     Info.offset = 0;
4289     Info.flags = MachineMemOperand::MOLoad;
4290     Info.align = Align(16);
4291     return true;
4292   }
4293   return false;
4294 }
4295 
4296 /// isLegalAddressingMode - Return true if the addressing mode represented
4297 /// by AM is legal for this target, for a load/store of the specified type.
4298 /// Used to guide target specific optimizations, like loop strength reduction
4299 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
4300 /// (CodeGenPrepare.cpp)
4301 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4302                                                 const AddrMode &AM, Type *Ty,
4303                                                 unsigned AS, Instruction *I) const {
4304   // AddrMode - This represents an addressing mode of:
4305   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
4306   //
4307   // The legal address modes are
4308   // - [avar]
4309   // - [areg]
4310   // - [areg+immoff]
4311   // - [immAddr]
4312 
4313   if (AM.BaseGV) {
4314     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
4315   }
4316 
4317   switch (AM.Scale) {
4318   case 0: // "r", "r+i" or "i" is allowed
4319     break;
4320   case 1:
4321     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
4322       return false;
4323     // Otherwise we have r+i.
4324     break;
4325   default:
4326     // No scale > 1 is allowed
4327     return false;
4328   }
4329   return true;
4330 }
4331 
4332 //===----------------------------------------------------------------------===//
4333 //                         NVPTX Inline Assembly Support
4334 //===----------------------------------------------------------------------===//
4335 
4336 /// getConstraintType - Given a constraint letter, return the type of
4337 /// constraint it is for this target.
4338 NVPTXTargetLowering::ConstraintType
4339 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
4340   if (Constraint.size() == 1) {
4341     switch (Constraint[0]) {
4342     default:
4343       break;
4344     case 'b':
4345     case 'r':
4346     case 'h':
4347     case 'c':
4348     case 'l':
4349     case 'f':
4350     case 'd':
4351     case '0':
4352     case 'N':
4353       return C_RegisterClass;
4354     }
4355   }
4356   return TargetLowering::getConstraintType(Constraint);
4357 }
4358 
4359 std::pair<unsigned, const TargetRegisterClass *>
4360 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4361                                                   StringRef Constraint,
4362                                                   MVT VT) const {
4363   if (Constraint.size() == 1) {
4364     switch (Constraint[0]) {
4365     case 'b':
4366       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4367     case 'c':
4368       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4369     case 'h':
4370       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4371     case 'r':
4372       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4373     case 'l':
4374     case 'N':
4375       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4376     case 'f':
4377       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4378     case 'd':
4379       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4380     }
4381   }
4382   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4383 }
4384 
4385 //===----------------------------------------------------------------------===//
4386 //                         NVPTX DAG Combining
4387 //===----------------------------------------------------------------------===//
4388 
4389 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4390                                    CodeGenOpt::Level OptLevel) const {
4391   // Always honor command-line argument
4392   if (FMAContractLevelOpt.getNumOccurrences() > 0)
4393     return FMAContractLevelOpt > 0;
4394 
4395   // Do not contract if we're not optimizing the code.
4396   if (OptLevel == 0)
4397     return false;
4398 
4399   // Honor TargetOptions flags that explicitly say fusion is okay.
4400   if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4401     return true;
4402 
4403   return allowUnsafeFPMath(MF);
4404 }
4405 
4406 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4407   // Honor TargetOptions flags that explicitly say unsafe math is okay.
4408   if (MF.getTarget().Options.UnsafeFPMath)
4409     return true;
4410 
4411   // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4412   const Function &F = MF.getFunction();
4413   return F.getFnAttribute("unsafe-fp-math").getValueAsBool();
4414 }
4415 
4416 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4417 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
4418 /// called with the default operands, and if that fails, with commuted
4419 /// operands.
4420 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4421                                            TargetLowering::DAGCombinerInfo &DCI,
4422                                              const NVPTXSubtarget &Subtarget,
4423                                              CodeGenOpt::Level OptLevel) {
4424   SelectionDAG  &DAG = DCI.DAG;
4425   // Skip non-integer, non-scalar case
4426   EVT VT=N0.getValueType();
4427   if (VT.isVector())
4428     return SDValue();
4429 
4430   // fold (add (mul a, b), c) -> (mad a, b, c)
4431   //
4432   if (N0.getOpcode() == ISD::MUL) {
4433     assert (VT.isInteger());
4434     // For integer:
4435     // Since integer multiply-add costs the same as integer multiply
4436     // but is more costly than integer add, do the fusion only when
4437     // the mul is only used in the add.
4438     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4439         !N0.getNode()->hasOneUse())
4440       return SDValue();
4441 
4442     // Do the folding
4443     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4444                        N0.getOperand(0), N0.getOperand(1), N1);
4445   }
4446   else if (N0.getOpcode() == ISD::FMUL) {
4447     if (VT == MVT::f32 || VT == MVT::f64) {
4448       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4449           &DAG.getTargetLoweringInfo());
4450       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4451         return SDValue();
4452 
4453       // For floating point:
4454       // Do the fusion only when the mul has less than 5 uses and all
4455       // are add.
4456       // The heuristic is that if a use is not an add, then that use
4457       // cannot be fused into fma, therefore mul is still needed anyway.
4458       // If there are more than 4 uses, even if they are all add, fusing
4459       // them will increase register pressue.
4460       //
4461       int numUses = 0;
4462       int nonAddCount = 0;
4463       for (const SDNode *User : N0.getNode()->uses()) {
4464         numUses++;
4465         if (User->getOpcode() != ISD::FADD)
4466           ++nonAddCount;
4467       }
4468       if (numUses >= 5)
4469         return SDValue();
4470       if (nonAddCount) {
4471         int orderNo = N->getIROrder();
4472         int orderNo2 = N0.getNode()->getIROrder();
4473         // simple heuristics here for considering potential register
4474         // pressure, the logics here is that the differnce are used
4475         // to measure the distance between def and use, the longer distance
4476         // more likely cause register pressure.
4477         if (orderNo - orderNo2 < 500)
4478           return SDValue();
4479 
4480         // Now, check if at least one of the FMUL's operands is live beyond the node N,
4481         // which guarantees that the FMA will not increase register pressure at node N.
4482         bool opIsLive = false;
4483         const SDNode *left = N0.getOperand(0).getNode();
4484         const SDNode *right = N0.getOperand(1).getNode();
4485 
4486         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4487           opIsLive = true;
4488 
4489         if (!opIsLive)
4490           for (const SDNode *User : left->uses()) {
4491             int orderNo3 = User->getIROrder();
4492             if (orderNo3 > orderNo) {
4493               opIsLive = true;
4494               break;
4495             }
4496           }
4497 
4498         if (!opIsLive)
4499           for (const SDNode *User : right->uses()) {
4500             int orderNo3 = User->getIROrder();
4501             if (orderNo3 > orderNo) {
4502               opIsLive = true;
4503               break;
4504             }
4505           }
4506 
4507         if (!opIsLive)
4508           return SDValue();
4509       }
4510 
4511       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4512                          N0.getOperand(0), N0.getOperand(1), N1);
4513     }
4514   }
4515 
4516   return SDValue();
4517 }
4518 
4519 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4520 ///
4521 static SDValue PerformADDCombine(SDNode *N,
4522                                  TargetLowering::DAGCombinerInfo &DCI,
4523                                  const NVPTXSubtarget &Subtarget,
4524                                  CodeGenOpt::Level OptLevel) {
4525   SDValue N0 = N->getOperand(0);
4526   SDValue N1 = N->getOperand(1);
4527 
4528   // First try with the default operand order.
4529   if (SDValue Result =
4530           PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4531     return Result;
4532 
4533   // If that didn't work, try again with the operands commuted.
4534   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4535 }
4536 
4537 static SDValue PerformANDCombine(SDNode *N,
4538                                  TargetLowering::DAGCombinerInfo &DCI) {
4539   // The type legalizer turns a vector load of i8 values into a zextload to i16
4540   // registers, optionally ANY_EXTENDs it (if target type is integer),
4541   // and ANDs off the high 8 bits. Since we turn this load into a
4542   // target-specific DAG node, the DAG combiner fails to eliminate these AND
4543   // nodes. Do that here.
4544   SDValue Val = N->getOperand(0);
4545   SDValue Mask = N->getOperand(1);
4546 
4547   if (isa<ConstantSDNode>(Val)) {
4548     std::swap(Val, Mask);
4549   }
4550 
4551   SDValue AExt;
4552   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4553   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4554     AExt = Val;
4555     Val = Val->getOperand(0);
4556   }
4557 
4558   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4559     Val = Val->getOperand(0);
4560   }
4561 
4562   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4563       Val->getOpcode() == NVPTXISD::LoadV4) {
4564     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4565     if (!MaskCnst) {
4566       // Not an AND with a constant
4567       return SDValue();
4568     }
4569 
4570     uint64_t MaskVal = MaskCnst->getZExtValue();
4571     if (MaskVal != 0xff) {
4572       // Not an AND that chops off top 8 bits
4573       return SDValue();
4574     }
4575 
4576     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4577     if (!Mem) {
4578       // Not a MemSDNode?!?
4579       return SDValue();
4580     }
4581 
4582     EVT MemVT = Mem->getMemoryVT();
4583     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4584       // We only handle the i8 case
4585       return SDValue();
4586     }
4587 
4588     unsigned ExtType =
4589       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4590         getZExtValue();
4591     if (ExtType == ISD::SEXTLOAD) {
4592       // If for some reason the load is a sextload, the and is needed to zero
4593       // out the high 8 bits
4594       return SDValue();
4595     }
4596 
4597     bool AddTo = false;
4598     if (AExt.getNode() != nullptr) {
4599       // Re-insert the ext as a zext.
4600       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4601                             AExt.getValueType(), Val);
4602       AddTo = true;
4603     }
4604 
4605     // If we get here, the AND is unnecessary.  Just replace it with the load
4606     DCI.CombineTo(N, Val, AddTo);
4607   }
4608 
4609   return SDValue();
4610 }
4611 
4612 static SDValue PerformREMCombine(SDNode *N,
4613                                  TargetLowering::DAGCombinerInfo &DCI,
4614                                  CodeGenOpt::Level OptLevel) {
4615   assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4616 
4617   // Don't do anything at less than -O2.
4618   if (OptLevel < CodeGenOpt::Default)
4619     return SDValue();
4620 
4621   SelectionDAG &DAG = DCI.DAG;
4622   SDLoc DL(N);
4623   EVT VT = N->getValueType(0);
4624   bool IsSigned = N->getOpcode() == ISD::SREM;
4625   unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4626 
4627   const SDValue &Num = N->getOperand(0);
4628   const SDValue &Den = N->getOperand(1);
4629 
4630   for (const SDNode *U : Num->uses()) {
4631     if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4632         U->getOperand(1) == Den) {
4633       // Num % Den -> Num - (Num / Den) * Den
4634       return DAG.getNode(ISD::SUB, DL, VT, Num,
4635                          DAG.getNode(ISD::MUL, DL, VT,
4636                                      DAG.getNode(DivOpc, DL, VT, Num, Den),
4637                                      Den));
4638     }
4639   }
4640   return SDValue();
4641 }
4642 
4643 enum OperandSignedness {
4644   Signed = 0,
4645   Unsigned,
4646   Unknown
4647 };
4648 
4649 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4650 /// that can be demoted to \p OptSize bits without loss of information. The
4651 /// signedness of the operand, if determinable, is placed in \p S.
4652 static bool IsMulWideOperandDemotable(SDValue Op,
4653                                       unsigned OptSize,
4654                                       OperandSignedness &S) {
4655   S = Unknown;
4656 
4657   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4658       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4659     EVT OrigVT = Op.getOperand(0).getValueType();
4660     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4661       S = Signed;
4662       return true;
4663     }
4664   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4665     EVT OrigVT = Op.getOperand(0).getValueType();
4666     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4667       S = Unsigned;
4668       return true;
4669     }
4670   }
4671 
4672   return false;
4673 }
4674 
4675 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4676 /// be demoted to \p OptSize bits without loss of information. If the operands
4677 /// contain a constant, it should appear as the RHS operand. The signedness of
4678 /// the operands is placed in \p IsSigned.
4679 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4680                                         unsigned OptSize,
4681                                         bool &IsSigned) {
4682   OperandSignedness LHSSign;
4683 
4684   // The LHS operand must be a demotable op
4685   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4686     return false;
4687 
4688   // We should have been able to determine the signedness from the LHS
4689   if (LHSSign == Unknown)
4690     return false;
4691 
4692   IsSigned = (LHSSign == Signed);
4693 
4694   // The RHS can be a demotable op or a constant
4695   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4696     const APInt &Val = CI->getAPIntValue();
4697     if (LHSSign == Unsigned) {
4698       return Val.isIntN(OptSize);
4699     } else {
4700       return Val.isSignedIntN(OptSize);
4701     }
4702   } else {
4703     OperandSignedness RHSSign;
4704     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4705       return false;
4706 
4707     return LHSSign == RHSSign;
4708   }
4709 }
4710 
4711 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4712 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4713 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4714 /// amount.
4715 static SDValue TryMULWIDECombine(SDNode *N,
4716                                  TargetLowering::DAGCombinerInfo &DCI) {
4717   EVT MulType = N->getValueType(0);
4718   if (MulType != MVT::i32 && MulType != MVT::i64) {
4719     return SDValue();
4720   }
4721 
4722   SDLoc DL(N);
4723   unsigned OptSize = MulType.getSizeInBits() >> 1;
4724   SDValue LHS = N->getOperand(0);
4725   SDValue RHS = N->getOperand(1);
4726 
4727   // Canonicalize the multiply so the constant (if any) is on the right
4728   if (N->getOpcode() == ISD::MUL) {
4729     if (isa<ConstantSDNode>(LHS)) {
4730       std::swap(LHS, RHS);
4731     }
4732   }
4733 
4734   // If we have a SHL, determine the actual multiply amount
4735   if (N->getOpcode() == ISD::SHL) {
4736     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4737     if (!ShlRHS) {
4738       return SDValue();
4739     }
4740 
4741     APInt ShiftAmt = ShlRHS->getAPIntValue();
4742     unsigned BitWidth = MulType.getSizeInBits();
4743     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4744       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4745       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4746     } else {
4747       return SDValue();
4748     }
4749   }
4750 
4751   bool Signed;
4752   // Verify that our operands are demotable
4753   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4754     return SDValue();
4755   }
4756 
4757   EVT DemotedVT;
4758   if (MulType == MVT::i32) {
4759     DemotedVT = MVT::i16;
4760   } else {
4761     DemotedVT = MVT::i32;
4762   }
4763 
4764   // Truncate the operands to the correct size. Note that these are just for
4765   // type consistency and will (likely) be eliminated in later phases.
4766   SDValue TruncLHS =
4767     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4768   SDValue TruncRHS =
4769     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4770 
4771   unsigned Opc;
4772   if (Signed) {
4773     Opc = NVPTXISD::MUL_WIDE_SIGNED;
4774   } else {
4775     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4776   }
4777 
4778   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4779 }
4780 
4781 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
4782 static SDValue PerformMULCombine(SDNode *N,
4783                                  TargetLowering::DAGCombinerInfo &DCI,
4784                                  CodeGenOpt::Level OptLevel) {
4785   if (OptLevel > 0) {
4786     // Try mul.wide combining at OptLevel > 0
4787     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4788       return Ret;
4789   }
4790 
4791   return SDValue();
4792 }
4793 
4794 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
4795 static SDValue PerformSHLCombine(SDNode *N,
4796                                  TargetLowering::DAGCombinerInfo &DCI,
4797                                  CodeGenOpt::Level OptLevel) {
4798   if (OptLevel > 0) {
4799     // Try mul.wide combining at OptLevel > 0
4800     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4801       return Ret;
4802   }
4803 
4804   return SDValue();
4805 }
4806 
4807 static SDValue PerformSETCCCombine(SDNode *N,
4808                                    TargetLowering::DAGCombinerInfo &DCI) {
4809   EVT CCType = N->getValueType(0);
4810   SDValue A = N->getOperand(0);
4811   SDValue B = N->getOperand(1);
4812 
4813   if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
4814     return SDValue();
4815 
4816   SDLoc DL(N);
4817   // setp.f16x2 returns two scalar predicates, which we need to
4818   // convert back to v2i1. The returned result will be scalarized by
4819   // the legalizer, but the comparison will remain a single vector
4820   // instruction.
4821   SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
4822                                    DCI.DAG.getVTList(MVT::i1, MVT::i1),
4823                                    {A, B, N->getOperand(2)});
4824   return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
4825                          CCNode.getValue(1));
4826 }
4827 
4828 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4829                                                DAGCombinerInfo &DCI) const {
4830   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4831   switch (N->getOpcode()) {
4832     default: break;
4833     case ISD::ADD:
4834     case ISD::FADD:
4835       return PerformADDCombine(N, DCI, STI, OptLevel);
4836     case ISD::MUL:
4837       return PerformMULCombine(N, DCI, OptLevel);
4838     case ISD::SHL:
4839       return PerformSHLCombine(N, DCI, OptLevel);
4840     case ISD::AND:
4841       return PerformANDCombine(N, DCI);
4842     case ISD::UREM:
4843     case ISD::SREM:
4844       return PerformREMCombine(N, DCI, OptLevel);
4845     case ISD::SETCC:
4846       return PerformSETCCCombine(N, DCI);
4847   }
4848   return SDValue();
4849 }
4850 
4851 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
4852 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4853                               SmallVectorImpl<SDValue> &Results) {
4854   EVT ResVT = N->getValueType(0);
4855   SDLoc DL(N);
4856 
4857   assert(ResVT.isVector() && "Vector load must have vector type");
4858 
4859   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4860   // legal.  We can (and should) split that into 2 loads of <2 x double> here
4861   // but I'm leaving that as a TODO for now.
4862   assert(ResVT.isSimple() && "Can only handle simple types");
4863   switch (ResVT.getSimpleVT().SimpleTy) {
4864   default:
4865     return;
4866   case MVT::v2i8:
4867   case MVT::v2i16:
4868   case MVT::v2i32:
4869   case MVT::v2i64:
4870   case MVT::v2f16:
4871   case MVT::v2f32:
4872   case MVT::v2f64:
4873   case MVT::v4i8:
4874   case MVT::v4i16:
4875   case MVT::v4i32:
4876   case MVT::v4f16:
4877   case MVT::v4f32:
4878   case MVT::v8f16: // <4 x f16x2>
4879     // This is a "native" vector type
4880     break;
4881   }
4882 
4883   LoadSDNode *LD = cast<LoadSDNode>(N);
4884 
4885   Align Alignment = LD->getAlign();
4886   auto &TD = DAG.getDataLayout();
4887   Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext()));
4888   if (Alignment < PrefAlign) {
4889     // This load is not sufficiently aligned, so bail out and let this vector
4890     // load be scalarized.  Note that we may still be able to emit smaller
4891     // vector loads.  For example, if we are loading a <4 x float> with an
4892     // alignment of 8, this check will fail but the legalizer will try again
4893     // with 2 x <2 x float>, which will succeed with an alignment of 8.
4894     return;
4895   }
4896 
4897   EVT EltVT = ResVT.getVectorElementType();
4898   unsigned NumElts = ResVT.getVectorNumElements();
4899 
4900   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4901   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4902   // loaded type to i16 and propagate the "real" type as the memory type.
4903   bool NeedTrunc = false;
4904   if (EltVT.getSizeInBits() < 16) {
4905     EltVT = MVT::i16;
4906     NeedTrunc = true;
4907   }
4908 
4909   unsigned Opcode = 0;
4910   SDVTList LdResVTs;
4911   bool LoadF16x2 = false;
4912 
4913   switch (NumElts) {
4914   default:
4915     return;
4916   case 2:
4917     Opcode = NVPTXISD::LoadV2;
4918     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4919     break;
4920   case 4: {
4921     Opcode = NVPTXISD::LoadV4;
4922     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4923     LdResVTs = DAG.getVTList(ListVTs);
4924     break;
4925   }
4926   case 8: {
4927     // v8f16 is a special case. PTX doesn't have ld.v8.f16
4928     // instruction. Instead, we split the vector into v2f16 chunks and
4929     // load them with ld.v4.b32.
4930     assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
4931     LoadF16x2 = true;
4932     Opcode = NVPTXISD::LoadV4;
4933     EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
4934                      MVT::Other};
4935     LdResVTs = DAG.getVTList(ListVTs);
4936     break;
4937   }
4938   }
4939 
4940   // Copy regular operands
4941   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4942 
4943   // The select routine does not have access to the LoadSDNode instance, so
4944   // pass along the extension information
4945   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4946 
4947   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4948                                           LD->getMemoryVT(),
4949                                           LD->getMemOperand());
4950 
4951   SmallVector<SDValue, 8> ScalarRes;
4952   if (LoadF16x2) {
4953     // Split v2f16 subvectors back into individual elements.
4954     NumElts /= 2;
4955     for (unsigned i = 0; i < NumElts; ++i) {
4956       SDValue SubVector = NewLD.getValue(i);
4957       SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4958                                DAG.getIntPtrConstant(0, DL));
4959       SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4960                                DAG.getIntPtrConstant(1, DL));
4961       ScalarRes.push_back(E0);
4962       ScalarRes.push_back(E1);
4963     }
4964   } else {
4965     for (unsigned i = 0; i < NumElts; ++i) {
4966       SDValue Res = NewLD.getValue(i);
4967       if (NeedTrunc)
4968         Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4969       ScalarRes.push_back(Res);
4970     }
4971   }
4972 
4973   SDValue LoadChain = NewLD.getValue(NumElts);
4974 
4975   SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
4976 
4977   Results.push_back(BuildVec);
4978   Results.push_back(LoadChain);
4979 }
4980 
4981 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4982                                      SmallVectorImpl<SDValue> &Results) {
4983   SDValue Chain = N->getOperand(0);
4984   SDValue Intrin = N->getOperand(1);
4985   SDLoc DL(N);
4986 
4987   // Get the intrinsic ID
4988   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4989   switch (IntrinNo) {
4990   default:
4991     return;
4992   case Intrinsic::nvvm_ldg_global_i:
4993   case Intrinsic::nvvm_ldg_global_f:
4994   case Intrinsic::nvvm_ldg_global_p:
4995   case Intrinsic::nvvm_ldu_global_i:
4996   case Intrinsic::nvvm_ldu_global_f:
4997   case Intrinsic::nvvm_ldu_global_p: {
4998     EVT ResVT = N->getValueType(0);
4999 
5000     if (ResVT.isVector()) {
5001       // Vector LDG/LDU
5002 
5003       unsigned NumElts = ResVT.getVectorNumElements();
5004       EVT EltVT = ResVT.getVectorElementType();
5005 
5006       // Since LDU/LDG are target nodes, we cannot rely on DAG type
5007       // legalization.
5008       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
5009       // loaded type to i16 and propagate the "real" type as the memory type.
5010       bool NeedTrunc = false;
5011       if (EltVT.getSizeInBits() < 16) {
5012         EltVT = MVT::i16;
5013         NeedTrunc = true;
5014       }
5015 
5016       unsigned Opcode = 0;
5017       SDVTList LdResVTs;
5018 
5019       switch (NumElts) {
5020       default:
5021         return;
5022       case 2:
5023         switch (IntrinNo) {
5024         default:
5025           return;
5026         case Intrinsic::nvvm_ldg_global_i:
5027         case Intrinsic::nvvm_ldg_global_f:
5028         case Intrinsic::nvvm_ldg_global_p:
5029           Opcode = NVPTXISD::LDGV2;
5030           break;
5031         case Intrinsic::nvvm_ldu_global_i:
5032         case Intrinsic::nvvm_ldu_global_f:
5033         case Intrinsic::nvvm_ldu_global_p:
5034           Opcode = NVPTXISD::LDUV2;
5035           break;
5036         }
5037         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
5038         break;
5039       case 4: {
5040         switch (IntrinNo) {
5041         default:
5042           return;
5043         case Intrinsic::nvvm_ldg_global_i:
5044         case Intrinsic::nvvm_ldg_global_f:
5045         case Intrinsic::nvvm_ldg_global_p:
5046           Opcode = NVPTXISD::LDGV4;
5047           break;
5048         case Intrinsic::nvvm_ldu_global_i:
5049         case Intrinsic::nvvm_ldu_global_f:
5050         case Intrinsic::nvvm_ldu_global_p:
5051           Opcode = NVPTXISD::LDUV4;
5052           break;
5053         }
5054         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5055         LdResVTs = DAG.getVTList(ListVTs);
5056         break;
5057       }
5058       }
5059 
5060       SmallVector<SDValue, 8> OtherOps;
5061 
5062       // Copy regular operands
5063 
5064       OtherOps.push_back(Chain); // Chain
5065                                  // Skip operand 1 (intrinsic ID)
5066       // Others
5067       OtherOps.append(N->op_begin() + 2, N->op_end());
5068 
5069       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5070 
5071       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5072                                               MemSD->getMemoryVT(),
5073                                               MemSD->getMemOperand());
5074 
5075       SmallVector<SDValue, 4> ScalarRes;
5076 
5077       for (unsigned i = 0; i < NumElts; ++i) {
5078         SDValue Res = NewLD.getValue(i);
5079         if (NeedTrunc)
5080           Res =
5081               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5082         ScalarRes.push_back(Res);
5083       }
5084 
5085       SDValue LoadChain = NewLD.getValue(NumElts);
5086 
5087       SDValue BuildVec =
5088           DAG.getBuildVector(ResVT, DL, ScalarRes);
5089 
5090       Results.push_back(BuildVec);
5091       Results.push_back(LoadChain);
5092     } else {
5093       // i8 LDG/LDU
5094       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
5095              "Custom handling of non-i8 ldu/ldg?");
5096 
5097       // Just copy all operands as-is
5098       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
5099 
5100       // Force output to i16
5101       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
5102 
5103       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5104 
5105       // We make sure the memory type is i8, which will be used during isel
5106       // to select the proper instruction.
5107       SDValue NewLD =
5108           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
5109                                   MVT::i8, MemSD->getMemOperand());
5110 
5111       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
5112                                     NewLD.getValue(0)));
5113       Results.push_back(NewLD.getValue(1));
5114     }
5115   }
5116   }
5117 }
5118 
5119 void NVPTXTargetLowering::ReplaceNodeResults(
5120     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
5121   switch (N->getOpcode()) {
5122   default:
5123     report_fatal_error("Unhandled custom legalization");
5124   case ISD::LOAD:
5125     ReplaceLoadVector(N, DAG, Results);
5126     return;
5127   case ISD::INTRINSIC_W_CHAIN:
5128     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
5129     return;
5130   }
5131 }
5132 
5133 // Pin NVPTXTargetObjectFile's vtables to this file.
5134 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
5135 
5136 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
5137     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
5138   return getDataSection();
5139 }
5140