1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20 
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachinePostDominators.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/Debug.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "ppc-mi-peepholes"
42 
43 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
44 STATISTIC(MultiTOCSaves,
45           "Number of functions with multiple TOC saves that must be kept");
46 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
47 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
48 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
49 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
50 STATISTIC(NumConvertedToImmediateForm,
51           "Number of instructions converted to their immediate form");
52 STATISTIC(NumFunctionsEnteredInMIPeephole,
53           "Number of functions entered in PPC MI Peepholes");
54 STATISTIC(NumFixedPointIterations,
55           "Number of fixed-point iterations converting reg-reg instructions "
56           "to reg-imm ones");
57 STATISTIC(NumRotatesCollapsed,
58           "Number of pairs of rotate left, clear left/right collapsed");
59 STATISTIC(NumEXTSWAndSLDICombined,
60           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
61 STATISTIC(NumLoadImmZeroFoldedAndRemoved,
62           "Number of LI(8) reg, 0 that are folded to r0 and removed");
63 
64 static cl::opt<bool>
65 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
66                    cl::desc("Iterate to a fixed point when attempting to "
67                             "convert reg-reg instructions to reg-imm"));
68 
69 static cl::opt<bool>
70 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
71               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
72 
73 static cl::opt<bool>
74     EnableSExtElimination("ppc-eliminate-signext",
75                           cl::desc("enable elimination of sign-extensions"),
76                           cl::init(false), cl::Hidden);
77 
78 static cl::opt<bool>
79     EnableZExtElimination("ppc-eliminate-zeroext",
80                           cl::desc("enable elimination of zero-extensions"),
81                           cl::init(false), cl::Hidden);
82 
83 static cl::opt<bool>
84     EnableTrapOptimization("ppc-opt-conditional-trap",
85                            cl::desc("enable optimization of conditional traps"),
86                            cl::init(false), cl::Hidden);
87 
88 namespace {
89 
90 struct PPCMIPeephole : public MachineFunctionPass {
91 
92   static char ID;
93   const PPCInstrInfo *TII;
94   MachineFunction *MF;
95   MachineRegisterInfo *MRI;
96 
97   PPCMIPeephole() : MachineFunctionPass(ID) {
98     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
99   }
100 
101 private:
102   MachineDominatorTree *MDT;
103   MachinePostDominatorTree *MPDT;
104   MachineBlockFrequencyInfo *MBFI;
105   uint64_t EntryFreq;
106 
107   // Initialize class variables.
108   void initialize(MachineFunction &MFParm);
109 
110   // Perform peepholes.
111   bool simplifyCode();
112 
113   // Perform peepholes.
114   bool eliminateRedundantCompare();
115   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
116   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
117   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
118   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
119                       MachineInstr *MI);
120 
121 public:
122 
123   void getAnalysisUsage(AnalysisUsage &AU) const override {
124     AU.addRequired<MachineDominatorTree>();
125     AU.addRequired<MachinePostDominatorTree>();
126     AU.addRequired<MachineBlockFrequencyInfo>();
127     AU.addPreserved<MachineDominatorTree>();
128     AU.addPreserved<MachinePostDominatorTree>();
129     AU.addPreserved<MachineBlockFrequencyInfo>();
130     MachineFunctionPass::getAnalysisUsage(AU);
131   }
132 
133   // Main entry point for this pass.
134   bool runOnMachineFunction(MachineFunction &MF) override {
135     initialize(MF);
136     // At this point, TOC pointer should not be used in a function that uses
137     // PC-Relative addressing.
138     assert((MF.getRegInfo().use_empty(PPC::X2) ||
139             !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
140            "TOC pointer used in a function using PC-Relative addressing!");
141     if (skipFunction(MF.getFunction()))
142       return false;
143     return simplifyCode();
144   }
145 };
146 
147 // Initialize class variables.
148 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
149   MF = &MFParm;
150   MRI = &MF->getRegInfo();
151   MDT = &getAnalysis<MachineDominatorTree>();
152   MPDT = &getAnalysis<MachinePostDominatorTree>();
153   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
154   EntryFreq = MBFI->getEntryFreq();
155   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
156   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
157   LLVM_DEBUG(MF->dump());
158 }
159 
160 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
161                                       MachineRegisterInfo *MRI) {
162   assert(Op && "Invalid Operand!");
163   if (!Op->isReg())
164     return nullptr;
165 
166   Register Reg = Op->getReg();
167   if (!Register::isVirtualRegister(Reg))
168     return nullptr;
169 
170   return MRI->getVRegDef(Reg);
171 }
172 
173 // This function returns number of known zero bits in output of MI
174 // starting from the most significant bit.
175 static unsigned
176 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
177   unsigned Opcode = MI->getOpcode();
178   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
179       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
180     return MI->getOperand(3).getImm();
181 
182   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
183       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
184     return MI->getOperand(3).getImm();
185 
186   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
187        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
188        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
189       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
190     return 32 + MI->getOperand(3).getImm();
191 
192   if (Opcode == PPC::ANDI_rec) {
193     uint16_t Imm = MI->getOperand(2).getImm();
194     return 48 + countLeadingZeros(Imm);
195   }
196 
197   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
198       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
199       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
200     // The result ranges from 0 to 32.
201     return 58;
202 
203   if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
204       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
205     // The result ranges from 0 to 64.
206     return 57;
207 
208   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
209       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
210       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
211       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
212     return 48;
213 
214   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
215       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
216       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
217       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
218     return 56;
219 
220   if (TII->isZeroExtended(*MI))
221     return 32;
222 
223   return 0;
224 }
225 
226 // This function maintains a map for the pairs <TOC Save Instr, Keep>
227 // Each time a new TOC save is encountered, it checks if any of the existing
228 // ones are dominated by the new one. If so, it marks the existing one as
229 // redundant by setting it's entry in the map as false. It then adds the new
230 // instruction to the map with either true or false depending on if any
231 // existing instructions dominated the new one.
232 void PPCMIPeephole::UpdateTOCSaves(
233   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
234   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
235   // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
236   // here only support it under ELFv2.
237   if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
238     PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
239 
240     MachineBasicBlock *Entry = &MF->front();
241     uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
242 
243     // If the block in which the TOC save resides is in a block that
244     // post-dominates Entry, or a block that is hotter than entry (keep in mind
245     // that early MachineLICM has already run so the TOC save won't be hoisted)
246     // we can just do the save in the prologue.
247     if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
248       FI->setMustSaveTOC(true);
249 
250     // If we are saving the TOC in the prologue, all the TOC saves can be
251     // removed from the code.
252     if (FI->mustSaveTOC()) {
253       for (auto &TOCSave : TOCSaves)
254         TOCSave.second = false;
255       // Add new instruction to map.
256       TOCSaves[MI] = false;
257       return;
258     }
259   }
260 
261   bool Keep = true;
262   for (auto &I : TOCSaves) {
263     MachineInstr *CurrInst = I.first;
264     // If new instruction dominates an existing one, mark existing one as
265     // redundant.
266     if (I.second && MDT->dominates(MI, CurrInst))
267       I.second = false;
268     // Check if the new instruction is redundant.
269     if (MDT->dominates(CurrInst, MI)) {
270       Keep = false;
271       break;
272     }
273   }
274   // Add new instruction to map.
275   TOCSaves[MI] = Keep;
276 }
277 
278 // This function returns a list of all PHI nodes in the tree starting from
279 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
280 // The list initially only contains the root PHI. When we visit a PHI node, we
281 // add it to the list. We continue to look for other PHI node operands while
282 // there are nodes to visit in the list. The function returns false if the
283 // optimization cannot be applied on this tree.
284 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
285                                    MachineInstr *RootPHI,
286                                    SmallVectorImpl<MachineInstr *> &PHIs) {
287   PHIs.push_back(RootPHI);
288   unsigned VisitedIndex = 0;
289   while (VisitedIndex < PHIs.size()) {
290     MachineInstr *VisitedPHI = PHIs[VisitedIndex];
291     for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
292          PHIOp != NumOps; PHIOp += 2) {
293       Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
294       if (!Register::isVirtualRegister(RegOp))
295         return false;
296       MachineInstr *Instr = MRI->getVRegDef(RegOp);
297       // While collecting the PHI nodes, we check if they can be converted (i.e.
298       // all the operands are either copies, implicit defs or PHI nodes).
299       unsigned Opcode = Instr->getOpcode();
300       if (Opcode == PPC::COPY) {
301         Register Reg = Instr->getOperand(1).getReg();
302         if (!Register::isVirtualRegister(Reg) ||
303             MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
304           return false;
305       } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
306         return false;
307       // If we detect a cycle in the PHI nodes, we exit. It would be
308       // possible to change cycles as well, but that would add a lot
309       // of complexity for a case that is unlikely to occur with MMA
310       // code.
311       if (Opcode != PPC::PHI)
312         continue;
313       if (llvm::is_contained(PHIs, Instr))
314         return false;
315       PHIs.push_back(Instr);
316     }
317     VisitedIndex++;
318   }
319   return true;
320 }
321 
322 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
323 // primed accumulator PHI nodes. The list is traversed in reverse order to
324 // change all the PHI operands of a PHI node before changing the node itself.
325 // We keep a map to associate each changed PHI node to its non-changed form.
326 static void convertUnprimedAccPHIs(const PPCInstrInfo *TII,
327                                    MachineRegisterInfo *MRI,
328                                    SmallVectorImpl<MachineInstr *> &PHIs,
329                                    Register Dst) {
330   DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
331   for (MachineInstr *PHI : llvm::reverse(PHIs)) {
332     SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
333     // We check if the current PHI node can be changed by looking at its
334     // operands. If all the operands are either copies from primed
335     // accumulators, implicit definitions or other unprimed accumulator
336     // PHI nodes, we change it.
337     for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
338          PHIOp += 2) {
339       Register RegOp = PHI->getOperand(PHIOp).getReg();
340       MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
341       unsigned Opcode = PHIInput->getOpcode();
342       assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
343               Opcode == PPC::PHI) &&
344              "Unexpected instruction");
345       if (Opcode == PPC::COPY) {
346         assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
347                    &PPC::ACCRCRegClass &&
348                "Unexpected register class");
349         PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
350       } else if (Opcode == PPC::IMPLICIT_DEF) {
351         Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
352         BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
353                 TII->get(PPC::IMPLICIT_DEF), AccReg);
354         PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
355                           PHI->getOperand(PHIOp + 1)});
356       } else if (Opcode == PPC::PHI) {
357         // We found a PHI operand. At this point we know this operand
358         // has already been changed so we get its associated changed form
359         // from the map.
360         assert(ChangedPHIMap.count(PHIInput) == 1 &&
361                "This PHI node should have already been changed.");
362         MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
363         PHIOps.push_back({MachineOperand::CreateReg(
364                               PrimedAccPHI->getOperand(0).getReg(), false),
365                           PHI->getOperand(PHIOp + 1)});
366       }
367     }
368     Register AccReg = Dst;
369     // If the PHI node we are changing is the root node, the register it defines
370     // will be the destination register of the original copy (of the PHI def).
371     // For all other PHI's in the list, we need to create another primed
372     // accumulator virtual register as the PHI will no longer define the
373     // unprimed accumulator.
374     if (PHI != PHIs[0])
375       AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
376     MachineInstrBuilder NewPHI = BuildMI(
377         *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
378     for (auto RegMBB : PHIOps)
379       NewPHI.add(RegMBB.first).add(RegMBB.second);
380     ChangedPHIMap[PHI] = NewPHI.getInstr();
381   }
382 }
383 
384 // Perform peephole optimizations.
385 bool PPCMIPeephole::simplifyCode() {
386   bool Simplified = false;
387   bool TrapOpt = false;
388   MachineInstr* ToErase = nullptr;
389   std::map<MachineInstr *, bool> TOCSaves;
390   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
391   NumFunctionsEnteredInMIPeephole++;
392   if (ConvertRegReg) {
393     // Fixed-point conversion of reg/reg instructions fed by load-immediate
394     // into reg/imm instructions. FIXME: This is expensive, control it with
395     // an option.
396     bool SomethingChanged = false;
397     do {
398       NumFixedPointIterations++;
399       SomethingChanged = false;
400       for (MachineBasicBlock &MBB : *MF) {
401         for (MachineInstr &MI : MBB) {
402           if (MI.isDebugInstr())
403             continue;
404 
405           if (TII->convertToImmediateForm(MI)) {
406             // We don't erase anything in case the def has other uses. Let DCE
407             // remove it if it can be removed.
408             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
409             LLVM_DEBUG(MI.dump());
410             NumConvertedToImmediateForm++;
411             SomethingChanged = true;
412             Simplified = true;
413             continue;
414           }
415         }
416       }
417     } while (SomethingChanged && FixedPointRegToImm);
418   }
419 
420   for (MachineBasicBlock &MBB : *MF) {
421     for (MachineInstr &MI : MBB) {
422 
423       // If the previous instruction was marked for elimination,
424       // remove it now.
425       if (ToErase) {
426         ToErase->eraseFromParent();
427         ToErase = nullptr;
428       }
429       // If a conditional trap instruction got optimized to an
430       // unconditional trap, eliminate all the instructions after
431       // the trap.
432       if (EnableTrapOptimization && TrapOpt) {
433         ToErase = &MI;
434         continue;
435       }
436 
437       // Ignore debug instructions.
438       if (MI.isDebugInstr())
439         continue;
440 
441       // Per-opcode peepholes.
442       switch (MI.getOpcode()) {
443 
444       default:
445         break;
446       case PPC::COPY: {
447         Register Src = MI.getOperand(1).getReg();
448         Register Dst = MI.getOperand(0).getReg();
449         if (!Register::isVirtualRegister(Src) ||
450             !Register::isVirtualRegister(Dst))
451           break;
452         if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
453             MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
454           break;
455 
456         // We are copying an unprimed accumulator to a primed accumulator.
457         // If the input to the copy is a PHI that is fed only by (i) copies in
458         // the other direction (ii) implicitly defined unprimed accumulators or
459         // (iii) other PHI nodes satisfying (i) and (ii), we can change
460         // the PHI to a PHI on primed accumulators (as long as we also change
461         // its operands). To detect and change such copies, we first get a list
462         // of all the PHI nodes starting from the root PHI node in BFS order.
463         // We then visit all these PHI nodes to check if they can be changed to
464         // primed accumulator PHI nodes and if so, we change them.
465         MachineInstr *RootPHI = MRI->getVRegDef(Src);
466         if (RootPHI->getOpcode() != PPC::PHI)
467           break;
468 
469         SmallVector<MachineInstr *, 4> PHIs;
470         if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
471           break;
472 
473         convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
474 
475         ToErase = &MI;
476         break;
477       }
478       case PPC::LI:
479       case PPC::LI8: {
480         // If we are materializing a zero, look for any use operands for which
481         // zero means immediate zero. All such operands can be replaced with
482         // PPC::ZERO.
483         if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
484           break;
485         Register MIDestReg = MI.getOperand(0).getReg();
486         for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
487           Simplified |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
488         if (MRI->use_nodbg_empty(MIDestReg)) {
489           ++NumLoadImmZeroFoldedAndRemoved;
490           ToErase = &MI;
491         }
492         break;
493       }
494       case PPC::STW:
495       case PPC::STD: {
496         MachineFrameInfo &MFI = MF->getFrameInfo();
497         if (MFI.hasVarSizedObjects() ||
498             (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
499              !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
500           break;
501         // When encountering a TOC save instruction, call UpdateTOCSaves
502         // to add it to the TOCSaves map and mark any existing TOC saves
503         // it dominates as redundant.
504         if (TII->isTOCSaveMI(MI))
505           UpdateTOCSaves(TOCSaves, &MI);
506         break;
507       }
508       case PPC::XXPERMDI: {
509         // Perform simplifications of 2x64 vector swaps and splats.
510         // A swap is identified by an immediate value of 2, and a splat
511         // is identified by an immediate value of 0 or 3.
512         int Immed = MI.getOperand(3).getImm();
513 
514         if (Immed == 1)
515           break;
516 
517         // For each of these simplifications, we need the two source
518         // regs to match.  Unfortunately, MachineCSE ignores COPY and
519         // SUBREG_TO_REG, so for example we can see
520         //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
521         // We have to look through chains of COPY and SUBREG_TO_REG
522         // to find the real source values for comparison.
523         Register TrueReg1 =
524           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
525         Register TrueReg2 =
526           TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
527 
528         if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
529           break;
530 
531         MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
532 
533         if (!DefMI)
534           break;
535 
536         unsigned DefOpc = DefMI->getOpcode();
537 
538         // If this is a splat fed by a splatting load, the splat is
539         // redundant. Replace with a copy. This doesn't happen directly due
540         // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
541         // a load of a double to a vector of 64-bit integers.
542         auto isConversionOfLoadAndSplat = [=]() -> bool {
543           if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
544             return false;
545           Register FeedReg1 =
546             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
547           if (Register::isVirtualRegister(FeedReg1)) {
548             MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
549             if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
550               return true;
551           }
552           return false;
553         };
554         if ((Immed == 0 || Immed == 3) &&
555             (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
556           LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
557                                "to load-and-splat/copy: ");
558           LLVM_DEBUG(MI.dump());
559           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
560                   MI.getOperand(0).getReg())
561               .add(MI.getOperand(1));
562           ToErase = &MI;
563           Simplified = true;
564         }
565 
566         // If this is a splat or a swap fed by another splat, we
567         // can replace it with a copy.
568         if (DefOpc == PPC::XXPERMDI) {
569           Register DefReg1 = DefMI->getOperand(1).getReg();
570           Register DefReg2 = DefMI->getOperand(2).getReg();
571           unsigned DefImmed = DefMI->getOperand(3).getImm();
572 
573           // If the two inputs are not the same register, check to see if
574           // they originate from the same virtual register after only
575           // copy-like instructions.
576           if (DefReg1 != DefReg2) {
577             Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
578             Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
579 
580             if (!(FeedReg1 == FeedReg2 &&
581                   Register::isVirtualRegister(FeedReg1)))
582               break;
583           }
584 
585           if (DefImmed == 0 || DefImmed == 3) {
586             LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
587                                  "to splat/copy: ");
588             LLVM_DEBUG(MI.dump());
589             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
590                     MI.getOperand(0).getReg())
591                 .add(MI.getOperand(1));
592             ToErase = &MI;
593             Simplified = true;
594           }
595 
596           // If this is a splat fed by a swap, we can simplify modify
597           // the splat to splat the other value from the swap's input
598           // parameter.
599           else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
600             LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
601             LLVM_DEBUG(MI.dump());
602             MI.getOperand(1).setReg(DefReg1);
603             MI.getOperand(2).setReg(DefReg2);
604             MI.getOperand(3).setImm(3 - Immed);
605             Simplified = true;
606           }
607 
608           // If this is a swap fed by a swap, we can replace it
609           // with a copy from the first swap's input.
610           else if (Immed == 2 && DefImmed == 2) {
611             LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
612             LLVM_DEBUG(MI.dump());
613             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
614                     MI.getOperand(0).getReg())
615                 .add(DefMI->getOperand(1));
616             ToErase = &MI;
617             Simplified = true;
618           }
619         } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
620                    DefOpc == PPC::XXPERMDIs &&
621                    (DefMI->getOperand(2).getImm() == 0 ||
622                     DefMI->getOperand(2).getImm() == 3)) {
623           ToErase = &MI;
624           Simplified = true;
625           // Swap of a splat, convert to copy.
626           if (Immed == 2) {
627             LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): ");
628             LLVM_DEBUG(MI.dump());
629             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
630                     MI.getOperand(0).getReg())
631                 .add(MI.getOperand(1));
632             break;
633           }
634           // Splat fed by another splat - switch the output of the first
635           // and remove the second.
636           DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
637           LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
638           LLVM_DEBUG(MI.dump());
639         }
640         break;
641       }
642       case PPC::VSPLTB:
643       case PPC::VSPLTH:
644       case PPC::XXSPLTW: {
645         unsigned MyOpcode = MI.getOpcode();
646         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
647         Register TrueReg =
648           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
649         if (!Register::isVirtualRegister(TrueReg))
650           break;
651         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
652         if (!DefMI)
653           break;
654         unsigned DefOpcode = DefMI->getOpcode();
655         auto isConvertOfSplat = [=]() -> bool {
656           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
657             return false;
658           Register ConvReg = DefMI->getOperand(1).getReg();
659           if (!Register::isVirtualRegister(ConvReg))
660             return false;
661           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
662           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
663             Splt->getOpcode() == PPC::XXSPLTW);
664         };
665         bool AlreadySplat = (MyOpcode == DefOpcode) ||
666           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
667           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
668           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
669           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
670           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
671           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
672         // If the instruction[s] that feed this splat have already splat
673         // the value, this splat is redundant.
674         if (AlreadySplat) {
675           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
676           LLVM_DEBUG(MI.dump());
677           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
678                   MI.getOperand(0).getReg())
679               .add(MI.getOperand(OpNo));
680           ToErase = &MI;
681           Simplified = true;
682         }
683         // Splat fed by a shift. Usually when we align value to splat into
684         // vector element zero.
685         if (DefOpcode == PPC::XXSLDWI) {
686           Register ShiftRes = DefMI->getOperand(0).getReg();
687           Register ShiftOp1 = DefMI->getOperand(1).getReg();
688           Register ShiftOp2 = DefMI->getOperand(2).getReg();
689           unsigned ShiftImm = DefMI->getOperand(3).getImm();
690           unsigned SplatImm =
691               MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
692           if (ShiftOp1 == ShiftOp2) {
693             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
694             if (MRI->hasOneNonDBGUse(ShiftRes)) {
695               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
696               LLVM_DEBUG(DefMI->dump());
697               ToErase = DefMI;
698             }
699             Simplified = true;
700             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
701                               << " to " << NewElem << " in instruction: ");
702             LLVM_DEBUG(MI.dump());
703             MI.getOperand(1).setReg(ShiftOp1);
704             MI.getOperand(2).setImm(NewElem);
705           }
706         }
707         break;
708       }
709       case PPC::XVCVDPSP: {
710         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
711         Register TrueReg =
712           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
713         if (!Register::isVirtualRegister(TrueReg))
714           break;
715         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
716 
717         // This can occur when building a vector of single precision or integer
718         // values.
719         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
720           Register DefsReg1 =
721             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
722           Register DefsReg2 =
723             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
724           if (!Register::isVirtualRegister(DefsReg1) ||
725               !Register::isVirtualRegister(DefsReg2))
726             break;
727           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
728           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
729 
730           if (!P1 || !P2)
731             break;
732 
733           // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
734           // and set any uses of that FRSP/XSRSP (in this MI) to the source of
735           // the FRSP/XSRSP.
736           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
737             unsigned Opc = RoundInstr->getOpcode();
738             if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
739                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
740               Simplified = true;
741               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
742               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
743               MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
744               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
745                 if (Use.getOperand(i).isReg() &&
746                     Use.getOperand(i).getReg() == FRSPDefines)
747                   Use.getOperand(i).setReg(ConvReg1);
748               LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
749               LLVM_DEBUG(RoundInstr->dump());
750               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
751               LLVM_DEBUG(MI.dump());
752               LLVM_DEBUG(dbgs() << "Through instruction:\n");
753               LLVM_DEBUG(DefMI->dump());
754               RoundInstr->eraseFromParent();
755             }
756           };
757 
758           // If the input to XVCVDPSP is a vector that was built (even
759           // partially) out of FRSP's, the FRSP(s) can safely be removed
760           // since this instruction performs the same operation.
761           if (P1 != P2) {
762             removeFRSPIfPossible(P1);
763             removeFRSPIfPossible(P2);
764             break;
765           }
766           removeFRSPIfPossible(P1);
767         }
768         break;
769       }
770       case PPC::EXTSH:
771       case PPC::EXTSH8:
772       case PPC::EXTSH8_32_64: {
773         if (!EnableSExtElimination) break;
774         Register NarrowReg = MI.getOperand(1).getReg();
775         if (!Register::isVirtualRegister(NarrowReg))
776           break;
777 
778         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
779         // If we've used a zero-extending load that we will sign-extend,
780         // just do a sign-extending load.
781         if (SrcMI->getOpcode() == PPC::LHZ ||
782             SrcMI->getOpcode() == PPC::LHZX) {
783           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
784             break;
785           auto is64Bit = [] (unsigned Opcode) {
786             return Opcode == PPC::EXTSH8;
787           };
788           auto isXForm = [] (unsigned Opcode) {
789             return Opcode == PPC::LHZX;
790           };
791           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
792             if (is64Bit)
793               if (isXForm) return PPC::LHAX8;
794               else         return PPC::LHA8;
795             else
796               if (isXForm) return PPC::LHAX;
797               else         return PPC::LHA;
798           };
799           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
800                                        isXForm(SrcMI->getOpcode()));
801           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
802           LLVM_DEBUG(SrcMI->dump());
803           LLVM_DEBUG(dbgs() << "and sign-extension\n");
804           LLVM_DEBUG(MI.dump());
805           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
806           SrcMI->setDesc(TII->get(Opc));
807           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
808           ToErase = &MI;
809           Simplified = true;
810           NumEliminatedSExt++;
811         }
812         break;
813       }
814       case PPC::EXTSW:
815       case PPC::EXTSW_32:
816       case PPC::EXTSW_32_64: {
817         if (!EnableSExtElimination) break;
818         Register NarrowReg = MI.getOperand(1).getReg();
819         if (!Register::isVirtualRegister(NarrowReg))
820           break;
821 
822         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
823         // If we've used a zero-extending load that we will sign-extend,
824         // just do a sign-extending load.
825         if (SrcMI->getOpcode() == PPC::LWZ ||
826             SrcMI->getOpcode() == PPC::LWZX) {
827           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
828             break;
829           auto is64Bit = [] (unsigned Opcode) {
830             return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
831           };
832           auto isXForm = [] (unsigned Opcode) {
833             return Opcode == PPC::LWZX;
834           };
835           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
836             if (is64Bit)
837               if (isXForm) return PPC::LWAX;
838               else         return PPC::LWA;
839             else
840               if (isXForm) return PPC::LWAX_32;
841               else         return PPC::LWA_32;
842           };
843           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
844                                        isXForm(SrcMI->getOpcode()));
845           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
846           LLVM_DEBUG(SrcMI->dump());
847           LLVM_DEBUG(dbgs() << "and sign-extension\n");
848           LLVM_DEBUG(MI.dump());
849           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
850           SrcMI->setDesc(TII->get(Opc));
851           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
852           ToErase = &MI;
853           Simplified = true;
854           NumEliminatedSExt++;
855         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
856                    TII->isSignExtended(*SrcMI)) {
857           // We can eliminate EXTSW if the input is known to be already
858           // sign-extended.
859           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
860           Register TmpReg =
861               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
862           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
863                   TmpReg);
864           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
865                   MI.getOperand(0).getReg())
866               .addReg(TmpReg)
867               .addReg(NarrowReg)
868               .addImm(PPC::sub_32);
869           ToErase = &MI;
870           Simplified = true;
871           NumEliminatedSExt++;
872         }
873         break;
874       }
875       case PPC::RLDICL: {
876         // We can eliminate RLDICL (e.g. for zero-extension)
877         // if all bits to clear are already zero in the input.
878         // This code assume following code sequence for zero-extension.
879         //   %6 = COPY %5:sub_32; (optional)
880         //   %8 = IMPLICIT_DEF;
881         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
882         if (!EnableZExtElimination) break;
883 
884         if (MI.getOperand(2).getImm() != 0)
885           break;
886 
887         Register SrcReg = MI.getOperand(1).getReg();
888         if (!Register::isVirtualRegister(SrcReg))
889           break;
890 
891         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
892         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
893               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
894           break;
895 
896         MachineInstr *ImpDefMI, *SubRegMI;
897         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
898         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
899         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
900 
901         SrcMI = SubRegMI;
902         if (SubRegMI->getOpcode() == PPC::COPY) {
903           Register CopyReg = SubRegMI->getOperand(1).getReg();
904           if (Register::isVirtualRegister(CopyReg))
905             SrcMI = MRI->getVRegDef(CopyReg);
906         }
907 
908         unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
909         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
910           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
911           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
912                   MI.getOperand(0).getReg())
913               .addReg(SrcReg);
914           ToErase = &MI;
915           Simplified = true;
916           NumEliminatedZExt++;
917         }
918         break;
919       }
920 
921       // TODO: Any instruction that has an immediate form fed only by a PHI
922       // whose operands are all load immediate can be folded away. We currently
923       // do this for ADD instructions, but should expand it to arithmetic and
924       // binary instructions with immediate forms in the future.
925       case PPC::ADD4:
926       case PPC::ADD8: {
927         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
928           assert(PhiOp && "Invalid Operand!");
929           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
930 
931           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
932                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
933         };
934 
935         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
936                                             MachineOperand *PhiOp) {
937           assert(PhiOp && "Invalid Operand!");
938           assert(DominatorOp && "Invalid Operand!");
939           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
940           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
941 
942           // Note: the vregs only show up at odd indices position of PHI Node,
943           // the even indices position save the BB info.
944           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
945             MachineInstr *LiMI =
946                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
947             if (!LiMI ||
948                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
949                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
950                 !MDT->dominates(DefDomMI, LiMI))
951               return false;
952           }
953 
954           return true;
955         };
956 
957         MachineOperand Op1 = MI.getOperand(1);
958         MachineOperand Op2 = MI.getOperand(2);
959         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
960           std::swap(Op1, Op2);
961         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
962           break; // We don't have an ADD fed by LI's that can be transformed
963 
964         // Now we know that Op1 is the PHI node and Op2 is the dominator
965         Register DominatorReg = Op2.getReg();
966 
967         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
968                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
969                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
970         MRI->setRegClass(DominatorReg, TRC);
971 
972         // replace LIs with ADDIs
973         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
974         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
975           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
976           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
977           LLVM_DEBUG(LiMI->dump());
978 
979           // There could be repeated registers in the PHI, e.g: %1 =
980           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
981           // already replaced the def instruction, skip.
982           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
983             continue;
984 
985           assert((LiMI->getOpcode() == PPC::LI ||
986                   LiMI->getOpcode() == PPC::LI8) &&
987                  "Invalid Opcode!");
988           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
989           LiMI->removeOperand(1);                    // remove the imm of LI
990           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
991                                                               : PPC::ADDI8));
992           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
993               .addReg(DominatorReg)
994               .addImm(LiImm); // restore the imm of LI
995           LLVM_DEBUG(LiMI->dump());
996         }
997 
998         // Replace ADD with COPY
999         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
1000         LLVM_DEBUG(MI.dump());
1001         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1002                 MI.getOperand(0).getReg())
1003             .add(Op1);
1004         ToErase = &MI;
1005         Simplified = true;
1006         NumOptADDLIs++;
1007         break;
1008       }
1009       case PPC::RLDICR: {
1010         Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
1011                       combineSEXTAndSHL(MI, ToErase);
1012         break;
1013       }
1014       case PPC::RLWINM:
1015       case PPC::RLWINM_rec:
1016       case PPC::RLWINM8:
1017       case PPC::RLWINM8_rec: {
1018         Simplified = TII->combineRLWINM(MI, &ToErase);
1019         if (Simplified)
1020           ++NumRotatesCollapsed;
1021         break;
1022       }
1023       // We will replace TD/TW/TDI/TWI with an unconditional trap if it will
1024       // always trap, we will delete the node if it will never trap.
1025       case PPC::TDI:
1026       case PPC::TWI:
1027       case PPC::TD:
1028       case PPC::TW: {
1029         if (!EnableTrapOptimization) break;
1030         MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI);
1031         MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI);
1032         bool IsOperand2Immediate = MI.getOperand(2).isImm();
1033         // We can only do the optimization if we can get immediates
1034         // from both operands
1035         if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI ||
1036                         LiMI1->getOpcode() == PPC::LI8)))
1037           break;
1038         if (!IsOperand2Immediate &&
1039             !(LiMI2 && (LiMI2->getOpcode() == PPC::LI ||
1040                         LiMI2->getOpcode() == PPC::LI8)))
1041           break;
1042 
1043         auto ImmOperand0 = MI.getOperand(0).getImm();
1044         auto ImmOperand1 = LiMI1->getOperand(1).getImm();
1045         auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm()
1046                                                : LiMI2->getOperand(1).getImm();
1047 
1048         // We will replace the MI with an unconditional trap if it will always
1049         // trap.
1050         if ((ImmOperand0 == 31) ||
1051             ((ImmOperand0 & 0x10) &&
1052              ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) ||
1053             ((ImmOperand0 & 0x8) &&
1054              ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) ||
1055             ((ImmOperand0 & 0x2) &&
1056              ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) ||
1057             ((ImmOperand0 & 0x1) &&
1058              ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) ||
1059             ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) {
1060           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP));
1061           TrapOpt = true;
1062         }
1063         // We will delete the MI if it will never trap.
1064         ToErase = &MI;
1065         Simplified = true;
1066         break;
1067       }
1068       }
1069     }
1070 
1071     // If the last instruction was marked for elimination,
1072     // remove it now.
1073     if (ToErase) {
1074       ToErase->eraseFromParent();
1075       ToErase = nullptr;
1076     }
1077     // Reset TrapOpt to false at the end of the basic block.
1078     if (EnableTrapOptimization)
1079       TrapOpt = false;
1080   }
1081 
1082   // Eliminate all the TOC save instructions which are redundant.
1083   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1084   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1085   if (FI->mustSaveTOC())
1086     NumTOCSavesInPrologue++;
1087 
1088   // We try to eliminate redundant compare instruction.
1089   Simplified |= eliminateRedundantCompare();
1090 
1091   return Simplified;
1092 }
1093 
1094 // helper functions for eliminateRedundantCompare
1095 static bool isEqOrNe(MachineInstr *BI) {
1096   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1097   unsigned PredCond = PPC::getPredicateCondition(Pred);
1098   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1099 }
1100 
1101 static bool isSupportedCmpOp(unsigned opCode) {
1102   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1103           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1104           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1105           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1106 }
1107 
1108 static bool is64bitCmpOp(unsigned opCode) {
1109   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1110           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1111 }
1112 
1113 static bool isSignedCmpOp(unsigned opCode) {
1114   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1115           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1116 }
1117 
1118 static unsigned getSignedCmpOpCode(unsigned opCode) {
1119   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1120   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1121   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1122   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1123   return opCode;
1124 }
1125 
1126 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1127 // (LT x) to (LE x-1)
1128 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1129   uint64_t Imm = CMPI->getOperand(2).getImm();
1130   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1131   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1132     return 0;
1133 
1134   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1135   unsigned PredCond = PPC::getPredicateCondition(Pred);
1136   unsigned PredHint = PPC::getPredicateHint(Pred);
1137   if (PredCond == PPC::PRED_GE)
1138     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1139   if (PredCond == PPC::PRED_LT)
1140     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1141 
1142   return 0;
1143 }
1144 
1145 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1146 // (LE x) to (LT x+1)
1147 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1148   uint64_t Imm = CMPI->getOperand(2).getImm();
1149   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1150   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1151     return 0;
1152 
1153   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1154   unsigned PredCond = PPC::getPredicateCondition(Pred);
1155   unsigned PredHint = PPC::getPredicateHint(Pred);
1156   if (PredCond == PPC::PRED_GT)
1157     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1158   if (PredCond == PPC::PRED_LE)
1159     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1160 
1161   return 0;
1162 }
1163 
1164 // This takes a Phi node and returns a register value for the specified BB.
1165 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1166                                        MachineBasicBlock *MBB) {
1167   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1168     MachineOperand &MO = Phi->getOperand(I);
1169     if (MO.getMBB() == MBB)
1170       return Phi->getOperand(I-1).getReg();
1171   }
1172   llvm_unreachable("invalid src basic block for this Phi node\n");
1173   return 0;
1174 }
1175 
1176 // This function tracks the source of the register through register copy.
1177 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1178 // assuming that the control comes from BB1 into BB2.
1179 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1180                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1181   unsigned SrcReg = Reg;
1182   while (true) {
1183     unsigned NextReg = SrcReg;
1184     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1185     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1186       NextReg = getIncomingRegForBlock(Inst, BB1);
1187       // We track through PHI only once to avoid infinite loop.
1188       BB1 = nullptr;
1189     }
1190     else if (Inst->isFullCopy())
1191       NextReg = Inst->getOperand(1).getReg();
1192     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1193       break;
1194     SrcReg = NextReg;
1195   }
1196   return SrcReg;
1197 }
1198 
1199 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1200                                           MachineBasicBlock *&PredMBB,
1201                                           MachineBasicBlock *&MBBtoMoveCmp,
1202                                           MachineRegisterInfo *MRI) {
1203 
1204   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1205     auto BII = BB.getFirstInstrTerminator();
1206     // We optimize BBs ending with a conditional branch.
1207     // We check only for BCC here, not BCCLR, because BCCLR
1208     // will be formed only later in the pipeline.
1209     if (BB.succ_size() == 2 &&
1210         BII != BB.instr_end() &&
1211         (*BII).getOpcode() == PPC::BCC &&
1212         (*BII).getOperand(1).isReg()) {
1213       // We optimize only if the condition code is used only by one BCC.
1214       Register CndReg = (*BII).getOperand(1).getReg();
1215       if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1216         return false;
1217 
1218       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1219       // We assume compare and branch are in the same BB for ease of analysis.
1220       if (CMPI->getParent() != &BB)
1221         return false;
1222 
1223       // We skip this BB if a physical register is used in comparison.
1224       for (MachineOperand &MO : CMPI->operands())
1225         if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1226           return false;
1227 
1228       return true;
1229     }
1230     return false;
1231   };
1232 
1233   // If this BB has more than one successor, we can create a new BB and
1234   // move the compare instruction in the new BB.
1235   // So far, we do not move compare instruction to a BB having multiple
1236   // successors to avoid potentially increasing code size.
1237   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1238     return BB.succ_size() == 1;
1239   };
1240 
1241   if (!isEligibleBB(MBB))
1242     return false;
1243 
1244   unsigned NumPredBBs = MBB.pred_size();
1245   if (NumPredBBs == 1) {
1246     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1247     if (isEligibleBB(*TmpMBB)) {
1248       PredMBB = TmpMBB;
1249       MBBtoMoveCmp = nullptr;
1250       return true;
1251     }
1252   }
1253   else if (NumPredBBs == 2) {
1254     // We check for partially redundant case.
1255     // So far, we support cases with only two predecessors
1256     // to avoid increasing the number of instructions.
1257     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1258     MachineBasicBlock *Pred1MBB = *PI;
1259     MachineBasicBlock *Pred2MBB = *(PI+1);
1260 
1261     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1262       // We assume Pred1MBB is the BB containing the compare to be merged and
1263       // Pred2MBB is the BB to which we will append a compare instruction.
1264       // Hence we can proceed as is.
1265     }
1266     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1267       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1268       std::swap(Pred1MBB, Pred2MBB);
1269     }
1270     else return false;
1271 
1272     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1273     // We cannot move the compare instruction if operands are not available
1274     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1275     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1276     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1277     for (int I = 1; I <= 2; I++)
1278       if (CMPI->getOperand(I).isReg()) {
1279         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1280         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1281           return false;
1282       }
1283 
1284     PredMBB = Pred1MBB;
1285     MBBtoMoveCmp = Pred2MBB;
1286     return true;
1287   }
1288 
1289   return false;
1290 }
1291 
1292 // This function will iterate over the input map containing a pair of TOC save
1293 // instruction and a flag. The flag will be set to false if the TOC save is
1294 // proven redundant. This function will erase from the basic block all the TOC
1295 // saves marked as redundant.
1296 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1297     std::map<MachineInstr *, bool> &TOCSaves) {
1298   bool Simplified = false;
1299   int NumKept = 0;
1300   for (auto TOCSave : TOCSaves) {
1301     if (!TOCSave.second) {
1302       TOCSave.first->eraseFromParent();
1303       RemoveTOCSave++;
1304       Simplified = true;
1305     } else {
1306       NumKept++;
1307     }
1308   }
1309 
1310   if (NumKept > 1)
1311     MultiTOCSaves++;
1312 
1313   return Simplified;
1314 }
1315 
1316 // If multiple conditional branches are executed based on the (essentially)
1317 // same comparison, we merge compare instructions into one and make multiple
1318 // conditional branches on this comparison.
1319 // For example,
1320 //   if (a == 0) { ... }
1321 //   else if (a < 0) { ... }
1322 // can be executed by one compare and two conditional branches instead of
1323 // two pairs of a compare and a conditional branch.
1324 //
1325 // This method merges two compare instructions in two MBBs and modifies the
1326 // compare and conditional branch instructions if needed.
1327 // For the above example, the input for this pass looks like:
1328 //   cmplwi r3, 0
1329 //   beq    0, .LBB0_3
1330 //   cmpwi  r3, -1
1331 //   bgt    0, .LBB0_4
1332 // So, before merging two compares, we need to modify these instructions as
1333 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1334 //   beq    0, .LBB0_3
1335 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1336 //   bge    0, .LBB0_4
1337 
1338 bool PPCMIPeephole::eliminateRedundantCompare() {
1339   bool Simplified = false;
1340 
1341   for (MachineBasicBlock &MBB2 : *MF) {
1342     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1343 
1344     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1345     // as an optimization target if
1346     // - both MBBs end with a conditional branch,
1347     // - MBB1 is the only predecessor of MBB2, and
1348     // - compare does not take a physical register as a operand in both MBBs.
1349     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1350     //
1351     // As partially redundant case, we additionally handle if MBB2 has one
1352     // additional predecessor, which has only one successor (MBB2).
1353     // In this case, we move the compare instruction originally in MBB2 into
1354     // MBBtoMoveCmp. This partially redundant case is typically appear by
1355     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1356     //
1357     // Overview of CFG of related basic blocks
1358     // Fully redundant case        Partially redundant case
1359     //   --------                   ----------------  --------
1360     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1361     //   --------                   ----------------  --------
1362     //      |    \                     (w/ 1 succ) \     |    \
1363     //      |     \                                 \    |     \
1364     //      |                                        \   |
1365     //   --------                                     --------
1366     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1367     //   -------- and 2 succ)                         -------- and 2 succ)
1368     //      |    \                                       |    \
1369     //      |     \                                      |     \
1370     //
1371     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1372       continue;
1373 
1374     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1375     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1376 
1377     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1378     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1379     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1380 
1381     // We cannot optimize an unsupported compare opcode or
1382     // a mix of 32-bit and 64-bit comaprisons
1383     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1384         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1385         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1386       continue;
1387 
1388     unsigned NewOpCode = 0;
1389     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1390     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1391     bool SwapOperands = false;
1392 
1393     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1394       // Typically, unsigned comparison is used for equality check, but
1395       // we replace it with a signed comparison if the comparison
1396       // to be merged is a signed comparison.
1397       // In other cases of opcode mismatch, we cannot optimize this.
1398 
1399       // We cannot change opcode when comparing against an immediate
1400       // if the most significant bit of the immediate is one
1401       // due to the difference in sign extension.
1402       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1403         if (!I->getOperand(2).isImm())
1404           return false;
1405         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1406         return Imm < 0;
1407       };
1408 
1409       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1410           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1411         NewOpCode = CMPI1->getOpcode();
1412       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1413                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1414         NewOpCode = CMPI2->getOpcode();
1415       else continue;
1416     }
1417 
1418     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1419       // In case of comparisons between two registers, these two registers
1420       // must be same to merge two comparisons.
1421       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1422                                          nullptr, nullptr, MRI);
1423       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1424                                          nullptr, nullptr, MRI);
1425       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1426                                          MBB1, &MBB2, MRI);
1427       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1428                                          MBB1, &MBB2, MRI);
1429 
1430       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1431         // Same pair of registers in the same order; ready to merge as is.
1432       }
1433       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1434         // Same pair of registers in different order.
1435         // We reverse the predicate to merge compare instructions.
1436         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1437         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1438         // In case of partial redundancy, we need to swap operands
1439         // in another compare instruction.
1440         SwapOperands = true;
1441       }
1442       else continue;
1443     }
1444     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1445       // In case of comparisons between a register and an immediate,
1446       // the operand register must be same for two compare instructions.
1447       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1448                                          nullptr, nullptr, MRI);
1449       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1450                                          MBB1, &MBB2, MRI);
1451       if (Cmp1Operand1 != Cmp2Operand1)
1452         continue;
1453 
1454       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1455       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1456 
1457       // If immediate are not same, we try to adjust by changing predicate;
1458       // e.g. GT imm means GE (imm+1).
1459       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1460         int Diff = Imm1 - Imm2;
1461         if (Diff < -2 || Diff > 2)
1462           continue;
1463 
1464         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1465         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1466         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1467         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1468         if (Diff == 2) {
1469           if (PredToInc2 && PredToDec1) {
1470             NewPredicate2 = PredToInc2;
1471             NewPredicate1 = PredToDec1;
1472             NewImm2++;
1473             NewImm1--;
1474           }
1475         }
1476         else if (Diff == 1) {
1477           if (PredToInc2) {
1478             NewImm2++;
1479             NewPredicate2 = PredToInc2;
1480           }
1481           else if (PredToDec1) {
1482             NewImm1--;
1483             NewPredicate1 = PredToDec1;
1484           }
1485         }
1486         else if (Diff == -1) {
1487           if (PredToDec2) {
1488             NewImm2--;
1489             NewPredicate2 = PredToDec2;
1490           }
1491           else if (PredToInc1) {
1492             NewImm1++;
1493             NewPredicate1 = PredToInc1;
1494           }
1495         }
1496         else if (Diff == -2) {
1497           if (PredToDec2 && PredToInc1) {
1498             NewPredicate2 = PredToDec2;
1499             NewPredicate1 = PredToInc1;
1500             NewImm2--;
1501             NewImm1++;
1502           }
1503         }
1504       }
1505 
1506       // We cannot merge two compares if the immediates are not same.
1507       if (NewImm2 != NewImm1)
1508         continue;
1509     }
1510 
1511     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1512     LLVM_DEBUG(CMPI1->dump());
1513     LLVM_DEBUG(BI1->dump());
1514     LLVM_DEBUG(CMPI2->dump());
1515     LLVM_DEBUG(BI2->dump());
1516 
1517     // We adjust opcode, predicates and immediate as we determined above.
1518     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1519       CMPI1->setDesc(TII->get(NewOpCode));
1520     }
1521     if (NewPredicate1) {
1522       BI1->getOperand(0).setImm(NewPredicate1);
1523     }
1524     if (NewPredicate2) {
1525       BI2->getOperand(0).setImm(NewPredicate2);
1526     }
1527     if (NewImm1 != Imm1) {
1528       CMPI1->getOperand(2).setImm(NewImm1);
1529     }
1530 
1531     if (IsPartiallyRedundant) {
1532       // We touch up the compare instruction in MBB2 and move it to
1533       // a previous BB to handle partially redundant case.
1534       if (SwapOperands) {
1535         Register Op1 = CMPI2->getOperand(1).getReg();
1536         Register Op2 = CMPI2->getOperand(2).getReg();
1537         CMPI2->getOperand(1).setReg(Op2);
1538         CMPI2->getOperand(2).setReg(Op1);
1539       }
1540       if (NewImm2 != Imm2)
1541         CMPI2->getOperand(2).setImm(NewImm2);
1542 
1543       for (int I = 1; I <= 2; I++) {
1544         if (CMPI2->getOperand(I).isReg()) {
1545           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1546           if (Inst->getParent() != &MBB2)
1547             continue;
1548 
1549           assert(Inst->getOpcode() == PPC::PHI &&
1550                  "We cannot support if an operand comes from this BB.");
1551           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1552           CMPI2->getOperand(I).setReg(SrcReg);
1553         }
1554       }
1555       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1556       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1557 
1558       DebugLoc DL = CMPI2->getDebugLoc();
1559       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1560       BuildMI(MBB2, MBB2.begin(), DL,
1561               TII->get(PPC::PHI), NewVReg)
1562         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1563         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1564       BI2->getOperand(1).setReg(NewVReg);
1565     }
1566     else {
1567       // We finally eliminate compare instruction in MBB2.
1568       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1569       CMPI2->eraseFromParent();
1570     }
1571     BI2->getOperand(1).setIsKill(true);
1572     BI1->getOperand(1).setIsKill(false);
1573 
1574     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1575     LLVM_DEBUG(CMPI1->dump());
1576     LLVM_DEBUG(BI1->dump());
1577     LLVM_DEBUG(BI2->dump());
1578     if (IsPartiallyRedundant) {
1579       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1580                         << printMBBReference(*MBBtoMoveCmp)
1581                         << " to handle partial redundancy.\n");
1582       LLVM_DEBUG(CMPI2->dump());
1583     }
1584 
1585     Simplified = true;
1586   }
1587 
1588   return Simplified;
1589 }
1590 
1591 // We miss the opportunity to emit an RLDIC when lowering jump tables
1592 // since ISEL sees only a single basic block. When selecting, the clear
1593 // and shift left will be in different blocks.
1594 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1595   if (MI.getOpcode() != PPC::RLDICR)
1596     return false;
1597 
1598   Register SrcReg = MI.getOperand(1).getReg();
1599   if (!Register::isVirtualRegister(SrcReg))
1600     return false;
1601 
1602   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1603   if (SrcMI->getOpcode() != PPC::RLDICL)
1604     return false;
1605 
1606   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1607   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1608   MachineOperand MOpSHMI = MI.getOperand(2);
1609   MachineOperand MOpMEMI = MI.getOperand(3);
1610   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1611         MOpMEMI.isImm()))
1612     return false;
1613 
1614   uint64_t SHSrc = MOpSHSrc.getImm();
1615   uint64_t MBSrc = MOpMBSrc.getImm();
1616   uint64_t SHMI = MOpSHMI.getImm();
1617   uint64_t MEMI = MOpMEMI.getImm();
1618   uint64_t NewSH = SHSrc + SHMI;
1619   uint64_t NewMB = MBSrc - SHMI;
1620   if (NewMB > 63 || NewSH > 63)
1621     return false;
1622 
1623   // The bits cleared with RLDICL are [0, MBSrc).
1624   // The bits cleared with RLDICR are (MEMI, 63].
1625   // After the sequence, the bits cleared are:
1626   // [0, MBSrc-SHMI) and (MEMI, 63).
1627   //
1628   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1629   if ((63 - NewSH) != MEMI)
1630     return false;
1631 
1632   LLVM_DEBUG(dbgs() << "Converting pair: ");
1633   LLVM_DEBUG(SrcMI->dump());
1634   LLVM_DEBUG(MI.dump());
1635 
1636   MI.setDesc(TII->get(PPC::RLDIC));
1637   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1638   MI.getOperand(2).setImm(NewSH);
1639   MI.getOperand(3).setImm(NewMB);
1640   MI.getOperand(1).setIsKill(SrcMI->getOperand(1).isKill());
1641   SrcMI->getOperand(1).setIsKill(false);
1642 
1643   LLVM_DEBUG(dbgs() << "To: ");
1644   LLVM_DEBUG(MI.dump());
1645   NumRotatesCollapsed++;
1646   // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1647   if (MRI->use_nodbg_empty(SrcReg)) {
1648     assert(!SrcMI->hasImplicitDef() &&
1649            "Not expecting an implicit def with this instr.");
1650     SrcMI->eraseFromParent();
1651   }
1652   return true;
1653 }
1654 
1655 // For case in LLVM IR
1656 // entry:
1657 //   %iconv = sext i32 %index to i64
1658 //   br i1 undef label %true, label %false
1659 // true:
1660 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1661 // ...
1662 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1663 // different BBs when conducting instruction selection. We can do a peephole
1664 // optimization to combine these two instructions into extswsli after
1665 // instruction selection.
1666 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1667                                       MachineInstr *&ToErase) {
1668   if (MI.getOpcode() != PPC::RLDICR)
1669     return false;
1670 
1671   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1672     return false;
1673 
1674   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1675 
1676   MachineOperand MOpSHMI = MI.getOperand(2);
1677   MachineOperand MOpMEMI = MI.getOperand(3);
1678   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1679     return false;
1680 
1681   uint64_t SHMI = MOpSHMI.getImm();
1682   uint64_t MEMI = MOpMEMI.getImm();
1683   if (SHMI + MEMI != 63)
1684     return false;
1685 
1686   Register SrcReg = MI.getOperand(1).getReg();
1687   if (!Register::isVirtualRegister(SrcReg))
1688     return false;
1689 
1690   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1691   if (SrcMI->getOpcode() != PPC::EXTSW &&
1692       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1693     return false;
1694 
1695   // If the register defined by extsw has more than one use, combination is not
1696   // needed.
1697   if (!MRI->hasOneNonDBGUse(SrcReg))
1698     return false;
1699 
1700   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1701   assert(SrcMI->getOperand(1).isReg() &&
1702          "EXTSW's second operand should be a register");
1703   if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1704     return false;
1705 
1706   LLVM_DEBUG(dbgs() << "Combining pair: ");
1707   LLVM_DEBUG(SrcMI->dump());
1708   LLVM_DEBUG(MI.dump());
1709 
1710   MachineInstr *NewInstr =
1711       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1712               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1713                                                : TII->get(PPC::EXTSWSLI_32_64),
1714               MI.getOperand(0).getReg())
1715           .add(SrcMI->getOperand(1))
1716           .add(MOpSHMI);
1717   (void)NewInstr;
1718 
1719   LLVM_DEBUG(dbgs() << "TO: ");
1720   LLVM_DEBUG(NewInstr->dump());
1721   ++NumEXTSWAndSLDICombined;
1722   ToErase = &MI;
1723   // SrcMI, which is extsw, is of no use now, erase it.
1724   SrcMI->eraseFromParent();
1725   return true;
1726 }
1727 
1728 } // end default namespace
1729 
1730 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1731                       "PowerPC MI Peephole Optimization", false, false)
1732 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1733 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1734 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1735 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1736                     "PowerPC MI Peephole Optimization", false, false)
1737 
1738 char PPCMIPeephole::ID = 0;
1739 FunctionPass*
1740 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1741