1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISCV MC ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISCV target
10 // useful for the compiler back-end and the MC libraries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVBaseInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/MC/MCSubtargetInfo.h"
18 #include "llvm/Support/RISCVISAInfo.h"
19 #include "llvm/Support/TargetParser.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 namespace llvm {
23 
24 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
25 
26 namespace RISCVSysReg {
27 #define GET_SysRegsList_IMPL
28 #include "RISCVGenSearchableTables.inc"
29 } // namespace RISCVSysReg
30 
31 namespace RISCVInsnOpcode {
32 #define GET_RISCVOpcodesList_IMPL
33 #include "RISCVGenSearchableTables.inc"
34 } // namespace RISCVInsnOpcode
35 
36 namespace RISCVABI {
37 ABI computeTargetABI(const Triple &TT, FeatureBitset FeatureBits,
38                      StringRef ABIName) {
39   auto TargetABI = getTargetABI(ABIName);
40   bool IsRV64 = TT.isArch64Bit();
41   bool IsRV32E = FeatureBits[RISCV::FeatureRV32E];
42 
43   if (!ABIName.empty() && TargetABI == ABI_Unknown) {
44     errs()
45         << "'" << ABIName
46         << "' is not a recognized ABI for this target (ignoring target-abi)\n";
47   } else if (ABIName.startswith("ilp32") && IsRV64) {
48     errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
49               "target-abi)\n";
50     TargetABI = ABI_Unknown;
51   } else if (ABIName.startswith("lp64") && !IsRV64) {
52     errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
53               "target-abi)\n";
54     TargetABI = ABI_Unknown;
55   } else if (IsRV32E && TargetABI != ABI_ILP32E && TargetABI != ABI_Unknown) {
56     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
57     errs()
58         << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
59     TargetABI = ABI_Unknown;
60   }
61 
62   if (TargetABI != ABI_Unknown)
63     return TargetABI;
64 
65   // If no explicit ABI is given, try to compute the default ABI.
66   auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
67   if (!ISAInfo)
68     report_fatal_error(ISAInfo.takeError());
69   return getTargetABI((*ISAInfo)->computeDefaultABI());
70 }
71 
72 ABI getTargetABI(StringRef ABIName) {
73   auto TargetABI = StringSwitch<ABI>(ABIName)
74                        .Case("ilp32", ABI_ILP32)
75                        .Case("ilp32f", ABI_ILP32F)
76                        .Case("ilp32d", ABI_ILP32D)
77                        .Case("ilp32e", ABI_ILP32E)
78                        .Case("lp64", ABI_LP64)
79                        .Case("lp64f", ABI_LP64F)
80                        .Case("lp64d", ABI_LP64D)
81                        .Default(ABI_Unknown);
82   return TargetABI;
83 }
84 
85 // To avoid the BP value clobbered by a function call, we need to choose a
86 // callee saved register to save the value. RV32E only has X8 and X9 as callee
87 // saved registers and X8 will be used as fp. So we choose X9 as bp.
88 MCRegister getBPReg() { return RISCV::X9; }
89 
90 // Returns the register holding shadow call stack pointer.
91 MCRegister getSCSPReg() { return RISCV::X18; }
92 
93 } // namespace RISCVABI
94 
95 namespace RISCVFeatures {
96 
97 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
98   if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
99     report_fatal_error("RV64 target requires an RV64 CPU");
100   if (!TT.isArch64Bit() && FeatureBits[RISCV::Feature64Bit])
101     report_fatal_error("RV32 target requires an RV32 CPU");
102   if (TT.isArch64Bit() && FeatureBits[RISCV::FeatureRV32E])
103     report_fatal_error("RV32E can't be enabled for an RV64 target");
104 }
105 
106 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
107 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
108   unsigned XLen = IsRV64 ? 64 : 32;
109   std::vector<std::string> FeatureVector;
110   // Convert FeatureBitset to FeatureVector.
111   for (auto Feature : RISCVFeatureKV) {
112     if (FeatureBits[Feature.Value] &&
113         llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
114       FeatureVector.push_back(std::string("+") + Feature.Key);
115   }
116   return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
117 }
118 
119 } // namespace RISCVFeatures
120 
121 // Encode VTYPE into the binary format used by the the VSETVLI instruction which
122 // is used by our MC layer representation.
123 //
124 // Bits | Name       | Description
125 // -----+------------+------------------------------------------------
126 // 7    | vma        | Vector mask agnostic
127 // 6    | vta        | Vector tail agnostic
128 // 5:3  | vsew[2:0]  | Standard element width (SEW) setting
129 // 2:0  | vlmul[2:0] | Vector register group multiplier (LMUL) setting
130 unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
131                                  bool TailAgnostic, bool MaskAgnostic) {
132   assert(isValidSEW(SEW) && "Invalid SEW");
133   unsigned VLMULBits = static_cast<unsigned>(VLMUL);
134   unsigned VSEWBits = encodeSEW(SEW);
135   unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
136   if (TailAgnostic)
137     VTypeI |= 0x40;
138   if (MaskAgnostic)
139     VTypeI |= 0x80;
140 
141   return VTypeI;
142 }
143 
144 std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
145   switch (VLMUL) {
146   default:
147     llvm_unreachable("Unexpected LMUL value!");
148   case RISCVII::VLMUL::LMUL_1:
149   case RISCVII::VLMUL::LMUL_2:
150   case RISCVII::VLMUL::LMUL_4:
151   case RISCVII::VLMUL::LMUL_8:
152     return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
153   case RISCVII::VLMUL::LMUL_F2:
154   case RISCVII::VLMUL::LMUL_F4:
155   case RISCVII::VLMUL::LMUL_F8:
156     return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
157   }
158 }
159 
160 void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
161   unsigned Sew = getSEW(VType);
162   OS << "e" << Sew;
163 
164   unsigned LMul;
165   bool Fractional;
166   std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
167 
168   if (Fractional)
169     OS << ", mf";
170   else
171     OS << ", m";
172   OS << LMul;
173 
174   if (isTailAgnostic(VType))
175     OS << ", ta";
176   else
177     OS << ", tu";
178 
179   if (isMaskAgnostic(VType))
180     OS << ", ma";
181   else
182     OS << ", mu";
183 }
184 
185 } // namespace llvm
186