1//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'F',
10// Single-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVFMV_W_X_RV64
19    : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>;
20def SDT_RISCVFMV_X_ANYEXTW_RV64
21    : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>;
22
23def riscv_fmv_w_x_rv64
24    : SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>;
25def riscv_fmv_x_anyextw_rv64
26    : SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>;
27
28//===----------------------------------------------------------------------===//
29// Operand and SDNode transformation definitions.
30//===----------------------------------------------------------------------===//
31
32// Floating-point rounding mode
33
34def FRMArg : AsmOperandClass {
35  let Name = "FRMArg";
36  let RenderMethod = "addFRMArgOperands";
37  let DiagnosticType = "InvalidFRMArg";
38}
39
40def frmarg : Operand<XLenVT> {
41  let ParserMatchClass = FRMArg;
42  let PrintMethod = "printFRMArg";
43  let DecoderMethod = "decodeFRMArg";
44}
45
46//===----------------------------------------------------------------------===//
47// Instruction class templates
48//===----------------------------------------------------------------------===//
49
50let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
51class FPFMAS_rrr_frm<RISCVOpcode opcode, string opcodestr>
52    : RVInstR4<0b00, opcode, (outs FPR32:$rd),
53               (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3),
54                opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
55
56class FPFMASDynFrmAlias<FPFMAS_rrr_frm Inst, string OpcodeStr>
57    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
58                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
59
60let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
61class FPALUS_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
62    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR32:$rd),
63              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">;
64
65let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
66class FPALUS_rr_frm<bits<7> funct7, string opcodestr>
67    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR32:$rd),
68                 (ins FPR32:$rs1, FPR32:$rs2, frmarg:$funct3), opcodestr,
69                  "$rd, $rs1, $rs2, $funct3">;
70
71class FPALUSDynFrmAlias<FPALUS_rr_frm Inst, string OpcodeStr>
72    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
73                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, 0b111)>;
74
75let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
76class FPUnaryOp_r<bits<7> funct7, bits<3> funct3, RegisterClass rdty,
77                RegisterClass rs1ty, string opcodestr>
78    : RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1),
79              opcodestr, "$rd, $rs1">;
80
81let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
82class FPUnaryOp_r_frm<bits<7> funct7, RegisterClass rdty, RegisterClass rs1ty,
83                      string opcodestr>
84    : RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd),
85                 (ins rs1ty:$rs1, frmarg:$funct3), opcodestr,
86                  "$rd, $rs1, $funct3">;
87
88class FPUnaryOpDynFrmAlias<FPUnaryOp_r_frm Inst, string OpcodeStr,
89                           RegisterClass rdty, RegisterClass rs1ty>
90    : InstAlias<OpcodeStr#" $rd, $rs1",
91                (Inst rdty:$rd, rs1ty:$rs1, 0b111)>;
92
93let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
94class FPCmpS_rr<bits<3> funct3, string opcodestr>
95    : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd),
96              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">,
97      Sched<[WriteFCmp32, ReadFCmp32, ReadFCmp32]>;
98
99//===----------------------------------------------------------------------===//
100// Instructions
101//===----------------------------------------------------------------------===//
102
103let Predicates = [HasStdExtF] in {
104let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
105def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd),
106                  (ins GPR:$rs1, simm12:$imm12),
107                   "flw", "$rd, ${imm12}(${rs1})">,
108          Sched<[WriteFLD32, ReadFMemBase]>;
109
110// Operands for stores are in the order srcreg, base, offset rather than
111// reflecting the order these fields are specified in the instruction
112// encoding.
113let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
114def FSW : RVInstS<0b010, OPC_STORE_FP, (outs),
115                  (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12),
116                   "fsw", "$rs2, ${imm12}(${rs1})">,
117          Sched<[WriteFST32, ReadStoreData, ReadFMemBase]>;
118
119def FMADD_S  : FPFMAS_rrr_frm<OPC_MADD, "fmadd.s">,
120               Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>;
121def          : FPFMASDynFrmAlias<FMADD_S, "fmadd.s">;
122def FMSUB_S  : FPFMAS_rrr_frm<OPC_MSUB, "fmsub.s">,
123               Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>;
124def          : FPFMASDynFrmAlias<FMSUB_S, "fmsub.s">;
125def FNMSUB_S : FPFMAS_rrr_frm<OPC_NMSUB, "fnmsub.s">,
126               Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>;
127def          : FPFMASDynFrmAlias<FNMSUB_S, "fnmsub.s">;
128def FNMADD_S : FPFMAS_rrr_frm<OPC_NMADD, "fnmadd.s">,
129               Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>;
130def          : FPFMASDynFrmAlias<FNMADD_S, "fnmadd.s">;
131
132def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">,
133             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
134def        : FPALUSDynFrmAlias<FADD_S, "fadd.s">;
135def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">,
136             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
137def        : FPALUSDynFrmAlias<FSUB_S, "fsub.s">;
138def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">,
139             Sched<[WriteFMul32, ReadFMul32, ReadFMul32]>;
140def        : FPALUSDynFrmAlias<FMUL_S, "fmul.s">;
141def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">,
142             Sched<[WriteFDiv32, ReadFDiv32, ReadFDiv32]>;
143def        : FPALUSDynFrmAlias<FDIV_S, "fdiv.s">;
144
145def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s">,
146              Sched<[WriteFSqrt32, ReadFSqrt32]> {
147  let rs2 = 0b00000;
148}
149def         : FPUnaryOpDynFrmAlias<FSQRT_S, "fsqrt.s", FPR32, FPR32>;
150
151def FSGNJ_S  : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">,
152               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
153def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">,
154               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
155def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">,
156               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
157def FMIN_S   : FPALUS_rr<0b0010100, 0b000, "fmin.s">,
158               Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;
159def FMAX_S   : FPALUS_rr<0b0010100, 0b001, "fmax.s">,
160               Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;
161
162def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s">,
163               Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
164  let rs2 = 0b00000;
165}
166def          : FPUnaryOpDynFrmAlias<FCVT_W_S, "fcvt.w.s", GPR, FPR32>;
167
168def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s">,
169                Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
170  let rs2 = 0b00001;
171}
172def           : FPUnaryOpDynFrmAlias<FCVT_WU_S, "fcvt.wu.s", GPR, FPR32>;
173
174def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w">,
175              Sched<[WriteFMovF32ToI32, ReadFMovF32ToI32]> {
176  let rs2 = 0b00000;
177}
178
179def FEQ_S : FPCmpS_rr<0b010, "feq.s">;
180def FLT_S : FPCmpS_rr<0b001, "flt.s">;
181def FLE_S : FPCmpS_rr<0b000, "fle.s">;
182
183def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s">,
184               Sched<[WriteFClass32, ReadFClass32]> {
185  let rs2 = 0b00000;
186}
187
188def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w">,
189               Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
190  let rs2 = 0b00000;
191}
192def          : FPUnaryOpDynFrmAlias<FCVT_S_W, "fcvt.s.w", FPR32, GPR>;
193
194def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu">,
195                Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
196  let rs2 = 0b00001;
197}
198def           : FPUnaryOpDynFrmAlias<FCVT_S_WU, "fcvt.s.wu", FPR32, GPR>;
199
200def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x">,
201              Sched<[WriteFMovI32ToF32, ReadFMovI32ToF32]> {
202  let rs2 = 0b00000;
203}
204} // Predicates = [HasStdExtF]
205
206let Predicates = [HasStdExtF, IsRV64] in {
207def FCVT_L_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s">,
208                Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
209  let rs2 = 0b00010;
210}
211def           : FPUnaryOpDynFrmAlias<FCVT_L_S, "fcvt.l.s", GPR, FPR32>;
212
213def FCVT_LU_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s">,
214                 Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
215  let rs2 = 0b00011;
216}
217def            : FPUnaryOpDynFrmAlias<FCVT_LU_S, "fcvt.lu.s", GPR, FPR32>;
218
219def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l">,
220               Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
221  let rs2 = 0b00010;
222}
223def          : FPUnaryOpDynFrmAlias<FCVT_S_L, "fcvt.s.l", FPR32, GPR>;
224
225def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu">,
226                Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
227  let rs2 = 0b00011;
228}
229def           : FPUnaryOpDynFrmAlias<FCVT_S_LU, "fcvt.s.lu", FPR32, GPR>;
230} // Predicates = [HasStdExtF, IsRV64]
231
232//===----------------------------------------------------------------------===//
233// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
234//===----------------------------------------------------------------------===//
235
236let Predicates = [HasStdExtF] in {
237def : InstAlias<"flw $rd, (${rs1})",  (FLW FPR32:$rd,  GPR:$rs1, 0), 0>;
238def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>;
239
240def : InstAlias<"fmv.s $rd, $rs",  (FSGNJ_S  FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
241def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
242def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
243
244// fgt.s/fge.s are recognised by the GNU assembler but the canonical
245// flt.s/fle.s forms will always be printed. Therefore, set a zero weight.
246def : InstAlias<"fgt.s $rd, $rs, $rt",
247                (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
248def : InstAlias<"fge.s $rd, $rs, $rt",
249                (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
250
251// The following csr instructions actually alias instructions from the base ISA.
252// However, it only makes sense to support them when the F extension is enabled.
253// NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr".
254def : InstAlias<"frcsr $rd",      (CSRRS GPR:$rd, FCSR.Encoding, X0), 2>;
255def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs)>;
256def : InstAlias<"fscsr $rs",      (CSRRW      X0, FCSR.Encoding, GPR:$rs), 2>;
257
258// frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them
259// zero weight.
260def : InstAlias<"frsr $rd",       (CSRRS GPR:$rd, FCSR.Encoding, X0), 0>;
261def : InstAlias<"fssr $rd, $rs",  (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs), 0>;
262def : InstAlias<"fssr $rs",       (CSRRW      X0, FCSR.Encoding, GPR:$rs), 0>;
263
264def : InstAlias<"frrm $rd",        (CSRRS  GPR:$rd, FRM.Encoding, X0), 2>;
265def : InstAlias<"fsrm $rd, $rs",   (CSRRW  GPR:$rd, FRM.Encoding, GPR:$rs)>;
266def : InstAlias<"fsrm $rs",        (CSRRW       X0, FRM.Encoding, GPR:$rs), 2>;
267def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, FRM.Encoding, uimm5:$imm)>;
268def : InstAlias<"fsrmi $imm",      (CSRRWI      X0, FRM.Encoding, uimm5:$imm), 2>;
269
270def : InstAlias<"frflags $rd",        (CSRRS  GPR:$rd, FFLAGS.Encoding, X0), 2>;
271def : InstAlias<"fsflags $rd, $rs",   (CSRRW  GPR:$rd, FFLAGS.Encoding, GPR:$rs)>;
272def : InstAlias<"fsflags $rs",        (CSRRW       X0, FFLAGS.Encoding, GPR:$rs), 2>;
273def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, FFLAGS.Encoding, uimm5:$imm)>;
274def : InstAlias<"fsflagsi $imm",      (CSRRWI      X0, FFLAGS.Encoding, uimm5:$imm), 2>;
275
276// fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both
277// spellings should be supported by standard tools.
278def : MnemonicAlias<"fmv.s.x", "fmv.w.x">;
279def : MnemonicAlias<"fmv.x.s", "fmv.x.w">;
280
281def PseudoFLW  : PseudoFloatLoad<"flw", FPR32>;
282def PseudoFSW  : PseudoStore<"fsw", FPR32>;
283} // Predicates = [HasStdExtF]
284
285//===----------------------------------------------------------------------===//
286// Pseudo-instructions and codegen patterns
287//===----------------------------------------------------------------------===//
288
289/// Floating point constants
290def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
291
292/// Generic pattern classes
293class PatFpr32Fpr32<SDPatternOperator OpNode, RVInstR Inst>
294    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>;
295
296class PatFpr32Fpr32DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
297    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>;
298
299let Predicates = [HasStdExtF] in {
300
301/// Float constants
302def : Pat<(f32 (fpimm0)), (FMV_W_X X0)>;
303
304/// Float conversion operations
305
306// Moves (no conversion)
307def : Pat<(bitconvert GPR:$rs1), (FMV_W_X GPR:$rs1)>;
308def : Pat<(bitconvert FPR32:$rs1), (FMV_X_W FPR32:$rs1)>;
309
310// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
311// are defined later.
312
313/// Float arithmetic operations
314
315def : PatFpr32Fpr32DynFrm<fadd, FADD_S>;
316def : PatFpr32Fpr32DynFrm<fsub, FSUB_S>;
317def : PatFpr32Fpr32DynFrm<fmul, FMUL_S>;
318def : PatFpr32Fpr32DynFrm<fdiv, FDIV_S>;
319
320def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>;
321
322def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>;
323def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>;
324
325def : PatFpr32Fpr32<fcopysign, FSGNJ_S>;
326def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>;
327
328// fmadd: rs1 * rs2 + rs3
329def : Pat<(fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3),
330          (FMADD_S $rs1, $rs2, $rs3, 0b111)>;
331
332// fmsub: rs1 * rs2 - rs3
333def : Pat<(fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)),
334          (FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
335
336// fnmsub: -rs1 * rs2 + rs3
337def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3),
338          (FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
339
340// fnmadd: -rs1 * rs2 - rs3
341def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)),
342          (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
343
344// The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
345// canonical NaN when given a signaling NaN. This doesn't match the LLVM
346// behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
347// draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
348// matches LLVM's fminnum and fmaxnum
349// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
350def : PatFpr32Fpr32<fminnum, FMIN_S>;
351def : PatFpr32Fpr32<fmaxnum, FMAX_S>;
352
353/// Setcc
354
355def : PatFpr32Fpr32<seteq, FEQ_S>;
356def : PatFpr32Fpr32<setoeq, FEQ_S>;
357def : PatFpr32Fpr32<setlt, FLT_S>;
358def : PatFpr32Fpr32<setolt, FLT_S>;
359def : PatFpr32Fpr32<setle, FLE_S>;
360def : PatFpr32Fpr32<setole, FLE_S>;
361
362// Define pattern expansions for setcc operations which aren't directly
363// handled by a RISC-V instruction and aren't expanded in the SelectionDAG
364// Legalizer.
365
366def : Pat<(seto FPR32:$rs1, FPR32:$rs2),
367          (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
368               (FEQ_S FPR32:$rs2, FPR32:$rs2))>;
369def : Pat<(seto FPR32:$rs1, FPR32:$rs1),
370          (FEQ_S $rs1, $rs1)>;
371
372def : Pat<(setuo FPR32:$rs1, FPR32:$rs2),
373          (SLTIU (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
374                      (FEQ_S FPR32:$rs2, FPR32:$rs2)),
375                 1)>;
376def : Pat<(setuo FPR32:$rs1, FPR32:$rs1),
377          (SLTIU (FEQ_S $rs1, $rs1), 1)>;
378
379def Select_FPR32_Using_CC_GPR : SelectCC_rrirr<FPR32, GPR>;
380
381/// Loads
382
383defm : LdPat<load, FLW>;
384
385/// Stores
386
387defm : StPat<store, FSW, FPR32>;
388
389} // Predicates = [HasStdExtF]
390
391let Predicates = [HasStdExtF, IsRV32] in {
392// float->[u]int. Round-to-zero must be used.
393def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>;
394def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>;
395
396// [u]int->float. Match GCC and default to using dynamic rounding mode.
397def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>;
398def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>;
399} // Predicates = [HasStdExtF, IsRV32]
400
401let Predicates = [HasStdExtF, IsRV64] in {
402def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>;
403def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>;
404def : Pat<(sexti32 (riscv_fmv_x_anyextw_rv64 FPR32:$src)),
405          (FMV_X_W FPR32:$src)>;
406
407// FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
408// because fpto[u|s]i produces poison if the value can't fit into the target.
409// We match the single case below because fcvt.wu.s sign-extends its result so
410// is cheaper than fcvt.lu.s+sext.w.
411def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR32:$rs1)), i32),
412          (FCVT_WU_S $rs1, 0b001)>;
413
414// FP->[u]int64
415def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_L_S $rs1, 0b001)>;
416def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_LU_S $rs1, 0b001)>;
417
418// [u]int->fp. Match GCC and default to using dynamic rounding mode.
419def : Pat<(sint_to_fp (sext_inreg GPR:$rs1, i32)), (FCVT_S_W $rs1, 0b111)>;
420def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_S_WU $rs1, 0b111)>;
421def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_L $rs1, 0b111)>;
422def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_LU $rs1, 0b111)>;
423} // Predicates = [HasStdExtF, IsRV64]
424