1//===-- RISCVRegisterInfo.td - RISC-V Register defs --------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10//  Declarations that describe the RISC-V register files
11//===----------------------------------------------------------------------===//
12
13let Namespace = "RISCV" in {
14class RISCVReg<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
15  let HWEncoding{4-0} = Enc;
16  let AltNames = alt;
17}
18
19class RISCVReg16<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
20  let HWEncoding{4-0} = Enc;
21  let AltNames = alt;
22}
23
24def sub_16 : SubRegIndex<16>;
25class RISCVReg32<RISCVReg16 subreg> : Register<""> {
26  let HWEncoding{4-0} = subreg.HWEncoding{4-0};
27  let SubRegs = [subreg];
28  let SubRegIndices = [sub_16];
29  let AsmName = subreg.AsmName;
30  let AltNames = subreg.AltNames;
31}
32
33// Because RISCVReg64 register have AsmName and AltNames that alias with their
34// 16/32-bit sub-register, RISCVAsmParser will need to coerce a register number
35// from a RISCVReg16/RISCVReg32 to the equivalent RISCVReg64 when appropriate.
36def sub_32 : SubRegIndex<32>;
37class RISCVReg64<RISCVReg32 subreg> : Register<""> {
38  let HWEncoding{4-0} = subreg.HWEncoding{4-0};
39  let SubRegs = [subreg];
40  let SubRegIndices = [sub_32];
41  let AsmName = subreg.AsmName;
42  let AltNames = subreg.AltNames;
43}
44
45class RISCVRegWithSubRegs<bits<5> Enc, string n, list<Register> subregs,
46                          list<string> alt = []>
47      : RegisterWithSubRegs<n, subregs> {
48  let HWEncoding{4-0} = Enc;
49  let AltNames = alt;
50}
51
52def ABIRegAltName : RegAltNameIndex;
53
54def sub_vrm4_0 : SubRegIndex<256>;
55def sub_vrm4_1 : SubRegIndex<256, 256>;
56def sub_vrm2_0 : SubRegIndex<128>;
57def sub_vrm2_1 : SubRegIndex<128, 128>;
58def sub_vrm2_2 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_0>;
59def sub_vrm2_3 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_1>;
60def sub_vrm1_0 : SubRegIndex<64>;
61def sub_vrm1_1 : SubRegIndex<64, 64>;
62def sub_vrm1_2 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_0>;
63def sub_vrm1_3 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_1>;
64def sub_vrm1_4 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_0>;
65def sub_vrm1_5 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_1>;
66def sub_vrm1_6 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_0>;
67def sub_vrm1_7 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_1>;
68
69def sub_32_hi  : SubRegIndex<32, 32>;
70} // Namespace = "RISCV"
71
72// Integer registers
73// CostPerUse is set higher for registers that may not be compressible as they
74// are not part of GPRC, the most restrictive register class used by the
75// compressed instruction set. This will influence the greedy register
76// allocator to reduce the use of registers that can't be encoded in 16 bit
77// instructions.
78
79let RegAltNameIndices = [ABIRegAltName] in {
80  def X0  : RISCVReg<0, "x0", ["zero"]>, DwarfRegNum<[0]>;
81  let CostPerUse = [0, 1] in {
82  def X1  : RISCVReg<1, "x1", ["ra"]>, DwarfRegNum<[1]>;
83  def X2  : RISCVReg<2, "x2", ["sp"]>, DwarfRegNum<[2]>;
84  def X3  : RISCVReg<3, "x3", ["gp"]>, DwarfRegNum<[3]>;
85  def X4  : RISCVReg<4, "x4", ["tp"]>, DwarfRegNum<[4]>;
86  def X5  : RISCVReg<5, "x5", ["t0"]>, DwarfRegNum<[5]>;
87  def X6  : RISCVReg<6, "x6", ["t1"]>, DwarfRegNum<[6]>;
88  def X7  : RISCVReg<7, "x7", ["t2"]>, DwarfRegNum<[7]>;
89  }
90  def X8  : RISCVReg<8, "x8", ["s0", "fp"]>, DwarfRegNum<[8]>;
91  def X9  : RISCVReg<9, "x9", ["s1"]>, DwarfRegNum<[9]>;
92  def X10 : RISCVReg<10,"x10", ["a0"]>, DwarfRegNum<[10]>;
93  def X11 : RISCVReg<11,"x11", ["a1"]>, DwarfRegNum<[11]>;
94  def X12 : RISCVReg<12,"x12", ["a2"]>, DwarfRegNum<[12]>;
95  def X13 : RISCVReg<13,"x13", ["a3"]>, DwarfRegNum<[13]>;
96  def X14 : RISCVReg<14,"x14", ["a4"]>, DwarfRegNum<[14]>;
97  def X15 : RISCVReg<15,"x15", ["a5"]>, DwarfRegNum<[15]>;
98  let CostPerUse = [0, 1] in {
99  def X16 : RISCVReg<16,"x16", ["a6"]>, DwarfRegNum<[16]>;
100  def X17 : RISCVReg<17,"x17", ["a7"]>, DwarfRegNum<[17]>;
101  def X18 : RISCVReg<18,"x18", ["s2"]>, DwarfRegNum<[18]>;
102  def X19 : RISCVReg<19,"x19", ["s3"]>, DwarfRegNum<[19]>;
103  def X20 : RISCVReg<20,"x20", ["s4"]>, DwarfRegNum<[20]>;
104  def X21 : RISCVReg<21,"x21", ["s5"]>, DwarfRegNum<[21]>;
105  def X22 : RISCVReg<22,"x22", ["s6"]>, DwarfRegNum<[22]>;
106  def X23 : RISCVReg<23,"x23", ["s7"]>, DwarfRegNum<[23]>;
107  def X24 : RISCVReg<24,"x24", ["s8"]>, DwarfRegNum<[24]>;
108  def X25 : RISCVReg<25,"x25", ["s9"]>, DwarfRegNum<[25]>;
109  def X26 : RISCVReg<26,"x26", ["s10"]>, DwarfRegNum<[26]>;
110  def X27 : RISCVReg<27,"x27", ["s11"]>, DwarfRegNum<[27]>;
111  def X28 : RISCVReg<28,"x28", ["t3"]>, DwarfRegNum<[28]>;
112  def X29 : RISCVReg<29,"x29", ["t4"]>, DwarfRegNum<[29]>;
113  def X30 : RISCVReg<30,"x30", ["t5"]>, DwarfRegNum<[30]>;
114  def X31 : RISCVReg<31,"x31", ["t6"]>, DwarfRegNum<[31]>;
115  }
116}
117
118def XLenVT : ValueTypeByHwMode<[RV32, RV64],
119                               [i32,  i64]>;
120def XLenRI : RegInfoByHwMode<
121      [RV32,              RV64],
122      [RegInfo<32,32,32>, RegInfo<64,64,64>]>;
123
124// The order of registers represents the preferred allocation sequence.
125// Registers are listed in the order caller-save, callee-save, specials.
126def GPR : RegisterClass<"RISCV", [XLenVT], 32, (add
127    (sequence "X%u", 10, 17),
128    (sequence "X%u", 5, 7),
129    (sequence "X%u", 28, 31),
130    (sequence "X%u", 8, 9),
131    (sequence "X%u", 18, 27),
132    (sequence "X%u", 0, 4)
133  )> {
134  let RegInfos = XLenRI;
135}
136
137def GPRX0 : RegisterClass<"RISCV", [XLenVT], 32, (add X0)> {
138  let RegInfos = XLenRI;
139}
140
141def GPRNoX0 : RegisterClass<"RISCV", [XLenVT], 32, (sub GPR, X0)> {
142  let RegInfos = XLenRI;
143}
144
145def GPRNoX0X2 : RegisterClass<"RISCV", [XLenVT], 32, (sub GPR, X0, X2)> {
146  let RegInfos = XLenRI;
147}
148
149// Don't use X1 or X5 for JALR since that is a hint to pop the return address
150// stack on some microarchitectures. Also remove the reserved registers X0, X2,
151// X3, and X4 as it reduces the number of register classes that get synthesized
152// by tablegen.
153def GPRJALR : RegisterClass<"RISCV", [XLenVT], 32, (sub GPR, (sequence "X%u", 0, 5))> {
154  let RegInfos = XLenRI;
155}
156
157def GPRC : RegisterClass<"RISCV", [XLenVT], 32, (add
158    (sequence "X%u", 10, 15),
159    (sequence "X%u", 8, 9)
160  )> {
161  let RegInfos = XLenRI;
162}
163
164// For indirect tail calls, we can't use callee-saved registers, as they are
165// restored to the saved value before the tail call, which would clobber a call
166// address. We shouldn't use x5 since that is a hint for to pop the return
167// address stack on some microarchitectures.
168def GPRTC : RegisterClass<"RISCV", [XLenVT], 32, (add
169    (sequence "X%u", 6, 7),
170    (sequence "X%u", 10, 17),
171    (sequence "X%u", 28, 31)
172  )> {
173  let RegInfos = XLenRI;
174}
175
176def SP : RegisterClass<"RISCV", [XLenVT], 32, (add X2)> {
177  let RegInfos = XLenRI;
178}
179
180// Floating point registers
181let RegAltNameIndices = [ABIRegAltName] in {
182  def F0_H  : RISCVReg16<0, "f0", ["ft0"]>, DwarfRegNum<[32]>;
183  def F1_H  : RISCVReg16<1, "f1", ["ft1"]>, DwarfRegNum<[33]>;
184  def F2_H  : RISCVReg16<2, "f2", ["ft2"]>, DwarfRegNum<[34]>;
185  def F3_H  : RISCVReg16<3, "f3", ["ft3"]>, DwarfRegNum<[35]>;
186  def F4_H  : RISCVReg16<4, "f4", ["ft4"]>, DwarfRegNum<[36]>;
187  def F5_H  : RISCVReg16<5, "f5", ["ft5"]>, DwarfRegNum<[37]>;
188  def F6_H  : RISCVReg16<6, "f6", ["ft6"]>, DwarfRegNum<[38]>;
189  def F7_H  : RISCVReg16<7, "f7", ["ft7"]>, DwarfRegNum<[39]>;
190  def F8_H  : RISCVReg16<8, "f8", ["fs0"]>, DwarfRegNum<[40]>;
191  def F9_H  : RISCVReg16<9, "f9", ["fs1"]>, DwarfRegNum<[41]>;
192  def F10_H : RISCVReg16<10,"f10", ["fa0"]>, DwarfRegNum<[42]>;
193  def F11_H : RISCVReg16<11,"f11", ["fa1"]>, DwarfRegNum<[43]>;
194  def F12_H : RISCVReg16<12,"f12", ["fa2"]>, DwarfRegNum<[44]>;
195  def F13_H : RISCVReg16<13,"f13", ["fa3"]>, DwarfRegNum<[45]>;
196  def F14_H : RISCVReg16<14,"f14", ["fa4"]>, DwarfRegNum<[46]>;
197  def F15_H : RISCVReg16<15,"f15", ["fa5"]>, DwarfRegNum<[47]>;
198  def F16_H : RISCVReg16<16,"f16", ["fa6"]>, DwarfRegNum<[48]>;
199  def F17_H : RISCVReg16<17,"f17", ["fa7"]>, DwarfRegNum<[49]>;
200  def F18_H : RISCVReg16<18,"f18", ["fs2"]>, DwarfRegNum<[50]>;
201  def F19_H : RISCVReg16<19,"f19", ["fs3"]>, DwarfRegNum<[51]>;
202  def F20_H : RISCVReg16<20,"f20", ["fs4"]>, DwarfRegNum<[52]>;
203  def F21_H : RISCVReg16<21,"f21", ["fs5"]>, DwarfRegNum<[53]>;
204  def F22_H : RISCVReg16<22,"f22", ["fs6"]>, DwarfRegNum<[54]>;
205  def F23_H : RISCVReg16<23,"f23", ["fs7"]>, DwarfRegNum<[55]>;
206  def F24_H : RISCVReg16<24,"f24", ["fs8"]>, DwarfRegNum<[56]>;
207  def F25_H : RISCVReg16<25,"f25", ["fs9"]>, DwarfRegNum<[57]>;
208  def F26_H : RISCVReg16<26,"f26", ["fs10"]>, DwarfRegNum<[58]>;
209  def F27_H : RISCVReg16<27,"f27", ["fs11"]>, DwarfRegNum<[59]>;
210  def F28_H : RISCVReg16<28,"f28", ["ft8"]>, DwarfRegNum<[60]>;
211  def F29_H : RISCVReg16<29,"f29", ["ft9"]>, DwarfRegNum<[61]>;
212  def F30_H : RISCVReg16<30,"f30", ["ft10"]>, DwarfRegNum<[62]>;
213  def F31_H : RISCVReg16<31,"f31", ["ft11"]>, DwarfRegNum<[63]>;
214
215  foreach Index = 0-31 in {
216    def F#Index#_F : RISCVReg32<!cast<RISCVReg16>("F"#Index#"_H")>,
217      DwarfRegNum<[!add(Index, 32)]>;
218  }
219
220  foreach Index = 0-31 in {
221    def F#Index#_D : RISCVReg64<!cast<RISCVReg32>("F"#Index#"_F")>,
222      DwarfRegNum<[!add(Index, 32)]>;
223  }
224}
225
226// The order of registers represents the preferred allocation sequence,
227// meaning caller-save regs are listed before callee-save.
228def FPR16 : RegisterClass<"RISCV", [f16], 16, (add
229    (sequence "F%u_H", 0, 7),
230    (sequence "F%u_H", 10, 17),
231    (sequence "F%u_H", 28, 31),
232    (sequence "F%u_H", 8, 9),
233    (sequence "F%u_H", 18, 27)
234)>;
235
236def FPR32 : RegisterClass<"RISCV", [f32], 32, (add
237    (sequence "F%u_F", 0, 7),
238    (sequence "F%u_F", 10, 17),
239    (sequence "F%u_F", 28, 31),
240    (sequence "F%u_F", 8, 9),
241    (sequence "F%u_F", 18, 27)
242)>;
243
244def FPR32C : RegisterClass<"RISCV", [f32], 32, (add
245  (sequence "F%u_F", 10, 15),
246  (sequence "F%u_F", 8, 9)
247)>;
248
249// The order of registers represents the preferred allocation sequence,
250// meaning caller-save regs are listed before callee-save.
251def FPR64 : RegisterClass<"RISCV", [f64], 64, (add
252    (sequence "F%u_D", 0, 7),
253    (sequence "F%u_D", 10, 17),
254    (sequence "F%u_D", 28, 31),
255    (sequence "F%u_D", 8, 9),
256    (sequence "F%u_D", 18, 27)
257)>;
258
259def FPR64C : RegisterClass<"RISCV", [f64], 64, (add
260  (sequence "F%u_D", 10, 15),
261  (sequence "F%u_D", 8, 9)
262)>;
263
264// Vector type mapping to LLVM types.
265//
266// The V vector extension requires that VLEN >= 128 and <= 65536.
267// Additionally, the only supported ELEN values are 32 and 64,
268// thus `vscale` can be defined as VLEN/64,
269// allowing the same types with either ELEN value.
270//
271//         MF8    MF4     MF2     M1      M2      M4       M8
272// i64*    N/A    N/A     N/A     nxv1i64 nxv2i64 nxv4i64  nxv8i64
273// i32     N/A    N/A     nxv1i32 nxv2i32 nxv4i32 nxv8i32  nxv16i32
274// i16     N/A    nxv1i16 nxv2i16 nxv4i16 nxv8i16 nxv16i16 nxv32i16
275// i8      nxv1i8 nxv2i8  nxv4i8  nxv8i8  nxv16i8 nxv32i8  nxv64i8
276// double* N/A    N/A     N/A     nxv1f64 nxv2f64 nxv4f64  nxv8f64
277// float   N/A    N/A     nxv1f32 nxv2f32 nxv4f32 nxv8f32  nxv16f32
278// half    N/A    nxv1f16 nxv2f16 nxv4f16 nxv8f16 nxv16f16 nxv32f16
279// * ELEN=64
280
281defvar vint8mf8_t = nxv1i8;
282defvar vint8mf4_t = nxv2i8;
283defvar vint8mf2_t = nxv4i8;
284defvar vint8m1_t = nxv8i8;
285defvar vint8m2_t = nxv16i8;
286defvar vint8m4_t = nxv32i8;
287defvar vint8m8_t = nxv64i8;
288
289defvar vint16mf4_t = nxv1i16;
290defvar vint16mf2_t = nxv2i16;
291defvar vint16m1_t  = nxv4i16;
292defvar vint16m2_t  = nxv8i16;
293defvar vint16m4_t  = nxv16i16;
294defvar vint16m8_t  = nxv32i16;
295
296defvar vint32mf2_t = nxv1i32;
297defvar vint32m1_t  = nxv2i32;
298defvar vint32m2_t  = nxv4i32;
299defvar vint32m4_t  = nxv8i32;
300defvar vint32m8_t  = nxv16i32;
301
302defvar vint64m1_t = nxv1i64;
303defvar vint64m2_t = nxv2i64;
304defvar vint64m4_t = nxv4i64;
305defvar vint64m8_t = nxv8i64;
306
307defvar vfloat16mf4_t = nxv1f16;
308defvar vfloat16mf2_t = nxv2f16;
309defvar vfloat16m1_t  = nxv4f16;
310defvar vfloat16m2_t  = nxv8f16;
311defvar vfloat16m4_t  = nxv16f16;
312defvar vfloat16m8_t  = nxv32f16;
313
314defvar vfloat32mf2_t = nxv1f32;
315defvar vfloat32m1_t  = nxv2f32;
316defvar vfloat32m2_t  = nxv4f32;
317defvar vfloat32m4_t  = nxv8f32;
318defvar vfloat32m8_t  = nxv16f32;
319
320defvar vfloat64m1_t = nxv1f64;
321defvar vfloat64m2_t = nxv2f64;
322defvar vfloat64m4_t = nxv4f64;
323defvar vfloat64m8_t = nxv8f64;
324
325defvar vbool1_t  = nxv64i1;
326defvar vbool2_t  = nxv32i1;
327defvar vbool4_t  = nxv16i1;
328defvar vbool8_t  = nxv8i1;
329defvar vbool16_t = nxv4i1;
330defvar vbool32_t = nxv2i1;
331defvar vbool64_t = nxv1i1;
332
333// There is no need to define register classes for fractional LMUL.
334def LMULList {
335  list<int> m = [1, 2, 4, 8];
336}
337
338//===----------------------------------------------------------------------===//
339// Utility classes for segment load/store.
340//===----------------------------------------------------------------------===//
341// The set of legal NF for LMUL = lmul.
342// LMUL == 1, NF = 2, 3, 4, 5, 6, 7, 8
343// LMUL == 2, NF = 2, 3, 4
344// LMUL == 4, NF = 2
345class NFList<int lmul> {
346  list<int> L = !cond(!eq(lmul, 1): [2, 3, 4, 5, 6, 7, 8],
347                      !eq(lmul, 2): [2, 3, 4],
348                      !eq(lmul, 4): [2],
349                      !eq(lmul, 8): []);
350}
351
352// Generate [start, end) SubRegIndex list.
353class SubRegSet<int nf, int lmul> {
354  list<SubRegIndex> L = !foldl([]<SubRegIndex>,
355                               [0, 1, 2, 3, 4, 5, 6, 7],
356                               AccList, i,
357                               !listconcat(AccList,
358                                 !if(!lt(i, nf),
359                                   [!cast<SubRegIndex>("sub_vrm" # lmul # "_" # i)],
360                                   [])));
361}
362
363// Collect the valid indexes into 'R' under NF and LMUL values from TUPLE_INDEX.
364// When NF = 2, the valid TUPLE_INDEX is 0 and 1.
365// For example, when LMUL = 4, the potential valid indexes is
366// [8, 12, 16, 20, 24, 28, 4]. However, not all these indexes are valid under
367// NF = 2. For example, 28 is not valid under LMUL = 4, NF = 2 and TUPLE_INDEX = 0.
368// The filter is
369//   (tuple_index + i) x lmul <= (tuple_index x lmul) + 32 - (nf x lmul)
370//
371// Use START = 0, LMUL = 4 and NF = 2 as the example,
372//   i x 4 <= 24
373// The class will return [8, 12, 16, 20, 24, 4].
374// Use START = 1, LMUL = 4 and NF = 2 as the example,
375//   (1 + i) x 4 <= 28
376// The class will return [12, 16, 20, 24, 28, 8].
377//
378class IndexSet<int tuple_index, int nf, int lmul, bit isV0 = false> {
379  list<int> R =
380    !foldl([]<int>,
381              !if(isV0, [0],
382                !cond(
383                  !eq(lmul, 1):
384                  [8, 9, 10, 11, 12, 13, 14, 15,
385                   16, 17, 18, 19, 20, 21, 22, 23,
386                   24, 25, 26, 27, 28, 29, 30, 31,
387                   1, 2, 3, 4, 5, 6, 7],
388                  !eq(lmul, 2):
389                  [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3],
390                  !eq(lmul, 4):
391                  [2, 3, 4, 5, 6, 7, 1])),
392              L, i,
393              !listconcat(L,
394                          !if(!le(!mul(!add(i, tuple_index), lmul),
395                                  !sub(!add(32, !mul(tuple_index, lmul)), !mul(nf, lmul))),
396                              [!mul(!add(i, tuple_index), lmul)], [])));
397}
398
399// This class returns a list of vector register collections.
400// For example, for NF = 2 and LMUL = 4,
401// it will return
402//   ([ V8M4, V12M4, V16M4, V20M4, V24M4, V4M4],
403//    [V12M4, V16M4, V20M4, V24M4, V28M4, V8M4])
404//
405class VRegList<list<dag> LIn, int start, int nf, int lmul, bit isV0> {
406  list<dag> L =
407    !if(!ge(start, nf),
408        LIn,
409        !listconcat(
410          [!dag(add,
411                !foreach(i, IndexSet<start, nf, lmul, isV0>.R,
412                  !cast<Register>("V" # i # !cond(!eq(lmul, 2): "M2",
413                                                  !eq(lmul, 4): "M4",
414                                                  true: ""))),
415                !listsplat("",
416                  !size(IndexSet<start, nf, lmul, isV0>.R)))],
417          VRegList<LIn, !add(start, 1), nf, lmul, isV0>.L));
418}
419
420// Vector registers
421let RegAltNameIndices = [ABIRegAltName] in {
422  foreach Index = 0-31 in {
423    def V#Index : RISCVReg<Index, "v"#Index, ["v"#Index]>, DwarfRegNum<[!add(Index, 96)]>;
424  }
425
426  foreach Index = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
427                   24, 26, 28, 30] in {
428    def V#Index#M2 : RISCVRegWithSubRegs<Index, "v"#Index,
429                       [!cast<Register>("V"#Index),
430                        !cast<Register>("V"#!add(Index, 1))],
431                       ["v"#Index]>,
432                     DwarfRegAlias<!cast<Register>("V"#Index)> {
433      let SubRegIndices = [sub_vrm1_0, sub_vrm1_1];
434    }
435  }
436
437  foreach Index = [0, 4, 8, 12, 16, 20, 24, 28] in {
438    def V#Index#M4 : RISCVRegWithSubRegs<Index, "v"#Index,
439                       [!cast<Register>("V"#Index#"M2"),
440                        !cast<Register>("V"#!add(Index, 2)#"M2")],
441                       ["v"#Index]>,
442                     DwarfRegAlias<!cast<Register>("V"#Index)> {
443      let SubRegIndices = [sub_vrm2_0, sub_vrm2_1];
444    }
445  }
446
447  foreach Index = [0, 8, 16, 24] in {
448    def V#Index#M8 : RISCVRegWithSubRegs<Index, "v"#Index,
449                       [!cast<Register>("V"#Index#"M4"),
450                        !cast<Register>("V"#!add(Index, 4)#"M4")],
451                       ["v"#Index]>,
452                     DwarfRegAlias<!cast<Register>("V"#Index)> {
453      let SubRegIndices = [sub_vrm4_0, sub_vrm4_1];
454    }
455  }
456
457  def VTYPE  : RISCVReg<0, "vtype", ["vtype"]>;
458  def VL     : RISCVReg<0, "vl", ["vl"]>;
459  def VXSAT  : RISCVReg<0, "vxsat", ["vxsat"]>;
460  def VXRM   : RISCVReg<0, "vxrm", ["vxrm"]>;
461  def VLENB  : RISCVReg<0, "vlenb", ["vlenb"]>,
462               DwarfRegNum<[!add(4096, SysRegVLENB.Encoding)]>;
463}
464
465def VCSR : RegisterClass<"RISCV", [XLenVT], 32,
466                          (add VTYPE, VL, VLENB)> {
467  let RegInfos = XLenRI;
468}
469
470
471foreach m = [1, 2, 4] in {
472  foreach n = NFList<m>.L in {
473    def "VN" # n # "M" # m # "NoV0": RegisterTuples<
474                                       SubRegSet<n, m>.L,
475                                       VRegList<[], 0, n, m, false>.L>;
476    def "VN" # n # "M" # m # "V0" : RegisterTuples<
477                                       SubRegSet<n, m>.L,
478                                       VRegList<[], 0, n, m, true>.L>;
479  }
480}
481
482class VReg<list<ValueType> regTypes, dag regList, int Vlmul>
483  : RegisterClass<"RISCV",
484                  regTypes,
485                  64, // The maximum supported ELEN is 64.
486                  regList> {
487  int VLMul = Vlmul;
488  int Size = !mul(Vlmul, 64);
489}
490
491def VR : VReg<[vint8m1_t, vint16m1_t, vint32m1_t, vint64m1_t,
492               vfloat16m1_t, vfloat32m1_t, vfloat64m1_t,
493               vint8mf2_t, vint8mf4_t, vint8mf8_t,
494               vint16mf2_t, vint16mf4_t, vint32mf2_t,
495               vfloat16mf4_t, vfloat16mf2_t, vfloat32mf2_t,
496               vbool64_t, vbool32_t, vbool16_t, vbool8_t, vbool4_t,
497               vbool2_t, vbool1_t],
498           (add (sequence "V%u", 8, 31),
499                (sequence "V%u", 0, 7)), 1>;
500
501def VRNoV0 : VReg<[vint8m1_t, vint16m1_t, vint32m1_t, vint64m1_t,
502                   vfloat16m1_t, vfloat32m1_t, vfloat64m1_t,
503                   vint8mf2_t, vint8mf4_t, vint8mf8_t,
504                   vint16mf2_t, vint16mf4_t, vint32mf2_t,
505                   vfloat16mf4_t, vfloat16mf2_t, vfloat32mf2_t,
506                   vbool64_t, vbool32_t, vbool16_t, vbool8_t, vbool4_t,
507                   vbool2_t, vbool1_t],
508               (add (sequence "V%u", 8, 31),
509                    (sequence "V%u", 1, 7)), 1>;
510
511def VRM2 : VReg<[vint8m2_t, vint16m2_t, vint32m2_t, vint64m2_t,
512                 vfloat16m2_t, vfloat32m2_t, vfloat64m2_t],
513             (add (sequence "V%uM2", 8, 31, 2),
514                  (sequence "V%uM2", 0, 7, 2)), 2>;
515
516def VRM2NoV0 : VReg<[vint8m2_t, vint16m2_t, vint32m2_t, vint64m2_t,
517                     vfloat16m2_t, vfloat32m2_t, vfloat64m2_t],
518             (add (sequence "V%uM2", 8, 31, 2),
519                  (sequence "V%uM2", 2, 7, 2)), 2>;
520
521def VRM4 : VReg<[vint8m4_t, vint16m4_t, vint32m4_t, vint64m4_t,
522                 vfloat16m4_t, vfloat32m4_t, vfloat64m4_t],
523             (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V0M4, V4M4), 4>;
524
525def VRM4NoV0 : VReg<[vint8m4_t, vint16m4_t, vint32m4_t, vint64m4_t,
526                     vfloat16m4_t, vfloat32m4_t, vfloat64m4_t],
527             (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V4M4), 4>;
528
529def VRM8 : VReg<[vint8m8_t, vint16m8_t, vint32m8_t, vint64m8_t,
530                 vfloat16m8_t, vfloat32m8_t, vfloat64m8_t],
531             (add V8M8, V16M8, V24M8, V0M8), 8>;
532
533def VRM8NoV0 : VReg<[vint8m8_t, vint16m8_t, vint32m8_t, vint64m8_t,
534                     vfloat16m8_t, vfloat32m8_t, vfloat64m8_t],
535             (add V8M8, V16M8, V24M8), 8>;
536
537defvar VMaskVTs = [vbool1_t, vbool2_t, vbool4_t, vbool8_t, vbool16_t,
538                   vbool32_t, vbool64_t];
539
540def VMV0 : RegisterClass<"RISCV", VMaskVTs, 64, (add V0)> {
541  let Size = 64;
542}
543
544let RegInfos = XLenRI in {
545def GPRF16  : RegisterClass<"RISCV", [f16], 16, (add GPR)>;
546def GPRF32  : RegisterClass<"RISCV", [f32], 32, (add GPR)>;
547def GPRF64  : RegisterClass<"RISCV", [f64], 64, (add GPR)>;
548} // RegInfos = XLenRI
549
550let RegAltNameIndices = [ABIRegAltName] in {
551  foreach Index = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
552                   24, 26, 28, 30] in {
553    defvar Reg = !cast<Register>("X"#Index);
554    def X#Index#_PD : RISCVRegWithSubRegs<Index, Reg.AsmName,
555                                          [!cast<Register>("X"#Index),
556                                           !cast<Register>("X"#!add(Index, 1))],
557                                           Reg.AltNames> {
558      let SubRegIndices = [sub_32, sub_32_hi];
559    }
560  }
561}
562
563let RegInfos = RegInfoByHwMode<[RV64], [RegInfo<64, 64, 64>]> in
564def GPRPF64 : RegisterClass<"RISCV", [f64], 64, (add
565    X10_PD, X12_PD, X14_PD, X16_PD,
566    X6_PD,
567    X28_PD, X30_PD,
568    X8_PD,
569    X18_PD, X20_PD, X22_PD, X24_PD, X26_PD,
570    X0_PD, X2_PD, X4_PD
571)>;
572
573// The register class is added for inline assembly for vector mask types.
574def VM : VReg<VMaskVTs,
575           (add (sequence "V%u", 8, 31),
576                (sequence "V%u", 0, 7)), 1>;
577
578foreach m = LMULList.m in {
579  foreach nf = NFList<m>.L in {
580    def "VRN" # nf # "M" # m # "NoV0": VReg<[untyped],
581                               (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0")),
582                                    !mul(nf, m)>;
583    def "VRN" # nf # "M" # m: VReg<[untyped],
584                               (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0"),
585                                    !cast<RegisterTuples>("VN" # nf # "M" # m # "V0")),
586                                    !mul(nf, m)>;
587  }
588}
589
590// Special registers
591def FFLAGS : RISCVReg<0, "fflags">;
592def FRM    : RISCVReg<0, "frm">;
593
594// Any type register. Used for .insn directives when we don't know what the
595// register types could be.
596// NOTE: The alignment and size are bogus values. The Size needs to be non-zero
597// or tablegen will use "untyped" to determine the size which will assert.
598let isAllocatable = 0 in
599def AnyReg : RegisterClass<"RISCV", [untyped], 32,
600                           (add (sequence "X%u", 0, 31),
601                                (sequence "F%u_D", 0, 31),
602                                (sequence "V%u", 0, 31))> {
603  let Size = 32;
604}
605