1//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// Class definitions.
11//===----------------------------------------------------------------------===//
12
13class SystemZReg<string n> : Register<n> {
14  let Namespace = "SystemZ";
15}
16
17class SystemZRegWithSubregs<string n, list<Register> subregs>
18  : RegisterWithSubRegs<n, subregs> {
19  let Namespace = "SystemZ";
20}
21
22let Namespace = "SystemZ" in {
23def subreg_l32   : SubRegIndex<32, 0>;  // Also acts as subreg_ll32.
24def subreg_h32   : SubRegIndex<32, 32>; // Also acts as subreg_lh32.
25def subreg_l64   : SubRegIndex<64, 0>;
26def subreg_h64   : SubRegIndex<64, 64>;
27def subreg_hh32  : ComposedSubRegIndex<subreg_h64, subreg_h32>;
28def subreg_hl32  : ComposedSubRegIndex<subreg_h64, subreg_l32>;
29}
30
31// Define a register class that contains values of types TYPES and an
32// associated operand called NAME.  SIZE is the size and alignment
33// of the registers and REGLIST is the list of individual registers.
34multiclass SystemZRegClass<string name, list<ValueType> types, int size,
35                           dag regList, bit allocatable = 1> {
36  def AsmOperand : AsmOperandClass {
37    let Name = name;
38    let ParserMethod = "parse"##name;
39    let RenderMethod = "addRegOperands";
40  }
41  let isAllocatable = allocatable in
42    def Bit : RegisterClass<"SystemZ", types, size, regList> {
43      let Size = size;
44    }
45  def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
46    let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
47  }
48}
49
50//===----------------------------------------------------------------------===//
51// General-purpose registers
52//===----------------------------------------------------------------------===//
53
54// Lower 32 bits of one of the 16 64-bit general-purpose registers
55class GPR32<bits<16> num, string n> : SystemZReg<n> {
56  let HWEncoding = num;
57}
58
59// One of the 16 64-bit general-purpose registers.
60class GPR64<bits<16> num, string n, GPR32 low, GPR32 high>
61 : SystemZRegWithSubregs<n, [low, high]> {
62  let HWEncoding = num;
63  let SubRegIndices = [subreg_l32, subreg_h32];
64  let CoveredBySubRegs = 1;
65}
66
67// 8 even-odd pairs of GPR64s.
68class GPR128<bits<16> num, string n, GPR64 low, GPR64 high>
69 : SystemZRegWithSubregs<n, [low, high]> {
70  let HWEncoding = num;
71  let SubRegIndices = [subreg_l64, subreg_h64];
72  let CoveredBySubRegs = 1;
73}
74
75// General-purpose registers
76foreach I = 0-15 in {
77  def R#I#L : GPR32<I, "r"#I>;
78  def R#I#H : GPR32<I, "r"#I>;
79  def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>,
80                    DwarfRegNum<[I]>;
81}
82
83foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
84  def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"),
85                     !cast<GPR64>("R"#I#"D")>;
86}
87
88/// Allocate the callee-saved R6-R13 backwards. That way they can be saved
89/// together with R14 and R15 in one prolog instruction.
90defm GR32  : SystemZRegClass<"GR32",  [i32], 32,
91                             (add (sequence "R%uL",  0, 5),
92                                  (sequence "R%uL", 15, 6))>;
93defm GRH32 : SystemZRegClass<"GRH32", [i32], 32,
94                             (add (sequence "R%uH",  0, 5),
95                                  (sequence "R%uH", 15, 6))>;
96defm GR64  : SystemZRegClass<"GR64",  [i64], 64,
97                             (add (sequence "R%uD",  0, 5),
98                                  (sequence "R%uD", 15, 6))>;
99
100// Combine the low and high GR32s into a single class.  This can only be
101// used for virtual registers if the high-word facility is available.
102defm GRX32 : SystemZRegClass<"GRX32", [i32], 32,
103                             (add (sequence "R%uL",  0, 5),
104                                  (sequence "R%uH",  0, 5),
105                                  R15L, R15H, R14L, R14H, R13L, R13H,
106                                  R12L, R12H, R11L, R11H, R10L, R10H,
107                                  R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>;
108
109// The architecture doesn't really have any i128 support, so model the
110// register pairs as untyped instead.
111defm GR128 : SystemZRegClass<"GR128", [untyped], 128,
112                             (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>;
113
114// Base and index registers.  Everything except R0, which in an address
115// context evaluates as 0.
116defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>;
117defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>;
118
119// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
120// of a GR128.
121defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>;
122
123// Any type register. Used for .insn directives when we don't know what the
124// register types could be.
125defm AnyReg : SystemZRegClass<"AnyReg",
126                              [i64, f64, v8i8, v4i16, v2i32, v2f32], 64,
127                              (add (sequence "R%uD", 0, 15),
128                                   (sequence "F%uD", 0, 15),
129                                   (sequence "V%u", 0, 15)), 0/*allocatable*/>;
130
131//===----------------------------------------------------------------------===//
132// Floating-point registers
133//===----------------------------------------------------------------------===//
134
135// Maps FPR register numbers to their DWARF encoding.
136class DwarfMapping<int id> { int Id = id; }
137
138def F0Dwarf  : DwarfMapping<16>;
139def F2Dwarf  : DwarfMapping<17>;
140def F4Dwarf  : DwarfMapping<18>;
141def F6Dwarf  : DwarfMapping<19>;
142
143def F1Dwarf  : DwarfMapping<20>;
144def F3Dwarf  : DwarfMapping<21>;
145def F5Dwarf  : DwarfMapping<22>;
146def F7Dwarf  : DwarfMapping<23>;
147
148def F8Dwarf  : DwarfMapping<24>;
149def F10Dwarf : DwarfMapping<25>;
150def F12Dwarf : DwarfMapping<26>;
151def F14Dwarf : DwarfMapping<27>;
152
153def F9Dwarf  : DwarfMapping<28>;
154def F11Dwarf : DwarfMapping<29>;
155def F13Dwarf : DwarfMapping<30>;
156def F15Dwarf : DwarfMapping<31>;
157
158def F16Dwarf : DwarfMapping<68>;
159def F18Dwarf : DwarfMapping<69>;
160def F20Dwarf : DwarfMapping<70>;
161def F22Dwarf : DwarfMapping<71>;
162
163def F17Dwarf : DwarfMapping<72>;
164def F19Dwarf : DwarfMapping<73>;
165def F21Dwarf : DwarfMapping<74>;
166def F23Dwarf : DwarfMapping<75>;
167
168def F24Dwarf : DwarfMapping<76>;
169def F26Dwarf : DwarfMapping<77>;
170def F28Dwarf : DwarfMapping<78>;
171def F30Dwarf : DwarfMapping<79>;
172
173def F25Dwarf : DwarfMapping<80>;
174def F27Dwarf : DwarfMapping<81>;
175def F29Dwarf : DwarfMapping<82>;
176def F31Dwarf : DwarfMapping<83>;
177
178// Upper 32 bits of one of the floating-point registers
179class FPR32<bits<16> num, string n> : SystemZReg<n> {
180  let HWEncoding = num;
181}
182
183// One of the floating-point registers.
184class FPR64<bits<16> num, string n, FPR32 high>
185 : SystemZRegWithSubregs<n, [high]> {
186  let HWEncoding = num;
187  let SubRegIndices = [subreg_h32];
188}
189
190// 8 pairs of FPR64s, with a one-register gap inbetween.
191class FPR128<bits<16> num, string n, FPR64 low, FPR64 high>
192 : SystemZRegWithSubregs<n, [low, high]> {
193  let HWEncoding = num;
194  let SubRegIndices = [subreg_l64, subreg_h64];
195  let CoveredBySubRegs = 1;
196}
197
198// Floating-point registers.  Registers 16-31 require the vector facility.
199foreach I = 0-15 in {
200  def F#I#S : FPR32<I, "f"#I>;
201  def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
202              DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
203}
204foreach I = 16-31 in {
205  def F#I#S : FPR32<I, "v"#I>;
206  def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>,
207              DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
208}
209
210foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
211  def F#I#Q  : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"),
212                     !cast<FPR64>("F"#I#"D")>;
213}
214
215// There's no store-multiple instruction for FPRs, so we're not fussy
216// about the order in which call-saved registers are allocated.
217defm FP32  : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>;
218defm FP64  : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>;
219defm FP128 : SystemZRegClass<"FP128", [f128], 128,
220                             (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>;
221
222//===----------------------------------------------------------------------===//
223// Vector registers
224//===----------------------------------------------------------------------===//
225
226// A full 128-bit vector register, with an FPR64 as its high part.
227class VR128<bits<16> num, string n, FPR64 high>
228  : SystemZRegWithSubregs<n, [high]> {
229  let HWEncoding = num;
230  let SubRegIndices = [subreg_h64];
231}
232
233// Full vector registers.
234foreach I = 0-31 in {
235  def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>,
236            DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
237}
238
239// Class used to store 32-bit values in the first element of a vector
240// register.  f32 scalars are used for the WLEDB and WLDEB instructions.
241defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32,
242                            (add (sequence "F%uS", 0, 7),
243                                 (sequence "F%uS", 16, 31),
244                                 (sequence "F%uS", 8, 15))>;
245
246// Class used to store 64-bit values in the upper half of a vector register.
247// The vector facility also includes scalar f64 instructions that operate
248// on the full vector register set.
249defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64,
250                            (add (sequence "F%uD", 0, 7),
251                                 (sequence "F%uD", 16, 31),
252                                 (sequence "F%uD", 8, 15))>;
253
254// The subset of vector registers that can be used for floating-point
255// operations too.
256defm VF128 : SystemZRegClass<"VF128",
257                             [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
258                             (sequence "V%u", 0, 15)>;
259
260// All vector registers.
261defm VR128 : SystemZRegClass<"VR128",
262                             [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, f128],
263                             128, (add (sequence "V%u", 0, 7),
264                                       (sequence "V%u", 16, 31),
265                                       (sequence "V%u", 8, 15))>;
266
267// Attaches a ValueType to a register operand, to make the instruction
268// definitions easier.
269class TypedReg<ValueType vtin, RegisterOperand opin> {
270  ValueType vt = vtin;
271  RegisterOperand op = opin;
272}
273
274def v32f    : TypedReg<i32,     VR32>;
275def v32sb   : TypedReg<f32,     VR32>;
276def v64g    : TypedReg<i64,     VR64>;
277def v64db   : TypedReg<f64,     VR64>;
278def v128b   : TypedReg<v16i8,   VR128>;
279def v128h   : TypedReg<v8i16,   VR128>;
280def v128f   : TypedReg<v4i32,   VR128>;
281def v128g   : TypedReg<v2i64,   VR128>;
282def v128q   : TypedReg<v16i8,   VR128>;
283def v128sb  : TypedReg<v4f32,   VR128>;
284def v128db  : TypedReg<v2f64,   VR128>;
285def v128xb  : TypedReg<f128,    VR128>;
286def v128any : TypedReg<untyped, VR128>;
287
288//===----------------------------------------------------------------------===//
289// Other registers
290//===----------------------------------------------------------------------===//
291
292// The 2-bit condition code field of the PSW.  Every register named in an
293// inline asm needs a class associated with it.
294def CC : SystemZReg<"cc">;
295let isAllocatable = 0, CopyCost = -1 in
296  def CCR : RegisterClass<"SystemZ", [i32], 32, (add CC)>;
297
298// The floating-point control register.
299// Note: We only model the current rounding modes and the IEEE masks.
300// IEEE flags and DXC are not modeled here.
301def FPC : SystemZReg<"fpc">;
302let isAllocatable = 0 in
303  def FPCRegs : RegisterClass<"SystemZ", [i32], 32, (add FPC)>;
304
305// Access registers.
306class ACR32<bits<16> num, string n> : SystemZReg<n> {
307  let HWEncoding = num;
308}
309foreach I = 0-15 in {
310  def A#I : ACR32<I, "a"#I>, DwarfRegNum<[!add(I, 48)]>;
311}
312defm AR32 : SystemZRegClass<"AR32", [i32], 32,
313                            (add (sequence "A%u", 0, 15)), 0>;
314
315// Control registers.
316class CREG64<bits<16> num, string n> : SystemZReg<n> {
317  let HWEncoding = num;
318}
319foreach I = 0-15 in {
320  def C#I : CREG64<I, "c"#I>, DwarfRegNum<[!add(I, 32)]>;
321}
322defm CR64 : SystemZRegClass<"CR64", [i64], 64,
323                            (add (sequence "C%u", 0, 15)), 0>;
324
325