1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineScheduler.h"
13 #include "SystemZTargetTransformInfo.h"
14 #include "TargetInfo/SystemZTargetInfo.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Support/TargetRegistry.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include <string>
29 
30 using namespace llvm;
31 
32 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
33   // Register the target.
34   RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
35 }
36 
37 // Determine whether we use the vector ABI.
38 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
39   // We use the vector ABI whenever the vector facility is avaiable.
40   // This is the case by default if CPU is z13 or later, and can be
41   // overridden via "[+-]vector" feature string elements.
42   bool VectorABI = true;
43   bool SoftFloat = false;
44   if (CPU.empty() || CPU == "generic" ||
45       CPU == "z10" || CPU == "z196" || CPU == "zEC12" ||
46       CPU == "arch8" || CPU == "arch9" || CPU == "arch10")
47     VectorABI = false;
48 
49   SmallVector<StringRef, 3> Features;
50   FS.split(Features, ',', -1, false /* KeepEmpty */);
51   for (auto &Feature : Features) {
52     if (Feature == "vector" || Feature == "+vector")
53       VectorABI = true;
54     if (Feature == "-vector")
55       VectorABI = false;
56     if (Feature == "soft-float" || Feature == "+soft-float")
57       SoftFloat = true;
58     if (Feature == "-soft-float")
59       SoftFloat = false;
60   }
61 
62   return VectorABI && !SoftFloat;
63 }
64 
65 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
66                                      StringRef FS) {
67   bool VectorABI = UsesVectorABI(CPU, FS);
68   std::string Ret;
69 
70   // Big endian.
71   Ret += "E";
72 
73   // Data mangling.
74   Ret += DataLayout::getManglingComponent(TT);
75 
76   // Make sure that global data has at least 16 bits of alignment by
77   // default, so that we can refer to it using LARL.  We don't have any
78   // special requirements for stack variables though.
79   Ret += "-i1:8:16-i8:8:16";
80 
81   // 64-bit integers are naturally aligned.
82   Ret += "-i64:64";
83 
84   // 128-bit floats are aligned only to 64 bits.
85   Ret += "-f128:64";
86 
87   // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
88   if (VectorABI)
89     Ret += "-v128:64";
90 
91   // We prefer 16 bits of aligned for all globals; see above.
92   Ret += "-a:8:16";
93 
94   // Integer registers are 32 or 64 bits.
95   Ret += "-n32:64";
96 
97   return Ret;
98 }
99 
100 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
101   // Static code is suitable for use in a dynamic executable; there is no
102   // separate DynamicNoPIC model.
103   if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
104     return Reloc::Static;
105   return *RM;
106 }
107 
108 // For SystemZ we define the models as follows:
109 //
110 // Small:  BRASL can call any function and will use a stub if necessary.
111 //         Locally-binding symbols will always be in range of LARL.
112 //
113 // Medium: BRASL can call any function and will use a stub if necessary.
114 //         GOT slots and locally-defined text will always be in range
115 //         of LARL, but other symbols might not be.
116 //
117 // Large:  Equivalent to Medium for now.
118 //
119 // Kernel: Equivalent to Medium for now.
120 //
121 // This means that any PIC module smaller than 4GB meets the
122 // requirements of Small, so Small seems like the best default there.
123 //
124 // All symbols bind locally in a non-PIC module, so the choice is less
125 // obvious.  There are two cases:
126 //
127 // - When creating an executable, PLTs and copy relocations allow
128 //   us to treat external symbols as part of the executable.
129 //   Any executable smaller than 4GB meets the requirements of Small,
130 //   so that seems like the best default.
131 //
132 // - When creating JIT code, stubs will be in range of BRASL if the
133 //   image is less than 4GB in size.  GOT entries will likewise be
134 //   in range of LARL.  However, the JIT environment has no equivalent
135 //   of copy relocs, so locally-binding data symbols might not be in
136 //   the range of LARL.  We need the Medium model in that case.
137 static CodeModel::Model
138 getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
139                              bool JIT) {
140   if (CM) {
141     if (*CM == CodeModel::Tiny)
142       report_fatal_error("Target does not support the tiny CodeModel", false);
143     if (*CM == CodeModel::Kernel)
144       report_fatal_error("Target does not support the kernel CodeModel", false);
145     return *CM;
146   }
147   if (JIT)
148     return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
149   return CodeModel::Small;
150 }
151 
152 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
153                                            StringRef CPU, StringRef FS,
154                                            const TargetOptions &Options,
155                                            Optional<Reloc::Model> RM,
156                                            Optional<CodeModel::Model> CM,
157                                            CodeGenOpt::Level OL, bool JIT)
158     : LLVMTargetMachine(
159           T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
160           getEffectiveRelocModel(RM),
161           getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
162           OL),
163       TLOF(std::make_unique<TargetLoweringObjectFileELF>()) {
164   initAsmInfo();
165 }
166 
167 SystemZTargetMachine::~SystemZTargetMachine() = default;
168 
169 const SystemZSubtarget *
170 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
171   Attribute CPUAttr = F.getFnAttribute("target-cpu");
172   Attribute FSAttr = F.getFnAttribute("target-features");
173 
174   std::string CPU =
175       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
176   std::string FS =
177       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
178 
179   // FIXME: This is related to the code below to reset the target options,
180   // we need to know whether or not the soft float flag is set on the
181   // function, so we can enable it as a subtarget feature.
182   bool softFloat =
183     F.hasFnAttribute("use-soft-float") &&
184     F.getFnAttribute("use-soft-float").getValueAsString() == "true";
185 
186   if (softFloat)
187     FS += FS.empty() ? "+soft-float" : ",+soft-float";
188 
189   auto &I = SubtargetMap[CPU + FS];
190   if (!I) {
191     // This needs to be done before we create a new subtarget since any
192     // creation will depend on the TM and the code generation flags on the
193     // function that reside in TargetOptions.
194     resetTargetOptions(F);
195     I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, FS, *this);
196   }
197 
198   return I.get();
199 }
200 
201 namespace {
202 
203 /// SystemZ Code Generator Pass Configuration Options.
204 class SystemZPassConfig : public TargetPassConfig {
205 public:
206   SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
207     : TargetPassConfig(TM, PM) {}
208 
209   SystemZTargetMachine &getSystemZTargetMachine() const {
210     return getTM<SystemZTargetMachine>();
211   }
212 
213   ScheduleDAGInstrs *
214   createPostMachineScheduler(MachineSchedContext *C) const override {
215     return new ScheduleDAGMI(C,
216                              std::make_unique<SystemZPostRASchedStrategy>(C),
217                              /*RemoveKillFlags=*/true);
218   }
219 
220   void addIRPasses() override;
221   bool addInstSelector() override;
222   bool addILPOpts() override;
223   void addPreRegAlloc() override;
224   void addPostRewrite() override;
225   void addPostRegAlloc() override;
226   void addPreSched2() override;
227   void addPreEmitPass() override;
228 };
229 
230 } // end anonymous namespace
231 
232 void SystemZPassConfig::addIRPasses() {
233   if (getOptLevel() != CodeGenOpt::None) {
234     addPass(createSystemZTDCPass());
235     addPass(createLoopDataPrefetchPass());
236   }
237 
238   TargetPassConfig::addIRPasses();
239 }
240 
241 bool SystemZPassConfig::addInstSelector() {
242   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
243 
244  if (getOptLevel() != CodeGenOpt::None)
245     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
246 
247   return false;
248 }
249 
250 bool SystemZPassConfig::addILPOpts() {
251   addPass(&EarlyIfConverterID);
252   return true;
253 }
254 
255 void SystemZPassConfig::addPreRegAlloc() {
256   addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
257 }
258 
259 void SystemZPassConfig::addPostRewrite() {
260   addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
261 }
262 
263 void SystemZPassConfig::addPostRegAlloc() {
264   // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
265   // is not called).
266   if (getOptLevel() == CodeGenOpt::None)
267     addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
268 }
269 
270 void SystemZPassConfig::addPreSched2() {
271   if (getOptLevel() != CodeGenOpt::None)
272     addPass(&IfConverterID);
273 }
274 
275 void SystemZPassConfig::addPreEmitPass() {
276   // Do instruction shortening before compare elimination because some
277   // vector instructions will be shortened into opcodes that compare
278   // elimination recognizes.
279   if (getOptLevel() != CodeGenOpt::None)
280     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
281 
282   // We eliminate comparisons here rather than earlier because some
283   // transformations can change the set of available CC values and we
284   // generally want those transformations to have priority.  This is
285   // especially true in the commonest case where the result of the comparison
286   // is used by a single in-range branch instruction, since we will then
287   // be able to fuse the compare and the branch instead.
288   //
289   // For example, two-address NILF can sometimes be converted into
290   // three-address RISBLG.  NILF produces a CC value that indicates whether
291   // the low word is zero, but RISBLG does not modify CC at all.  On the
292   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
293   // The CC value produced by NILL isn't useful for our purposes, but the
294   // value produced by RISBG can be used for any comparison with zero
295   // (not just equality).  So there are some transformations that lose
296   // CC values (while still being worthwhile) and others that happen to make
297   // the CC result more useful than it was originally.
298   //
299   // Another reason is that we only want to use BRANCH ON COUNT in cases
300   // where we know that the count register is not going to be spilled.
301   //
302   // Doing it so late makes it more likely that a register will be reused
303   // between the comparison and the branch, but it isn't clear whether
304   // preventing that would be a win or not.
305   if (getOptLevel() != CodeGenOpt::None)
306     addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
307   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
308 
309   // Do final scheduling after all other optimizations, to get an
310   // optimal input for the decoder (branch relaxation must happen
311   // after block placement).
312   if (getOptLevel() != CodeGenOpt::None)
313     addPass(&PostMachineSchedulerID);
314 }
315 
316 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
317   return new SystemZPassConfig(*this, PM);
318 }
319 
320 TargetTransformInfo
321 SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
322   return TargetTransformInfo(SystemZTTIImpl(this, F));
323 }
324