1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
24 ///
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
32 ///
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
48 /// either.
49 ///
50 /// In detail, this pass does following things:
51 ///
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 ///    __THREW__ and __threwValue will be set in invoke wrappers
54 ///    in JS glue code. For what invoke wrappers are, refer to 3). These
55 ///    variables are used for both exceptions and setjmp/longjmps.
56 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 ///    means nothing occurred, 1 means an exception occurred, and other numbers
58 ///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
60 ///
61 /// * Exception handling
62 ///
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64 ///    at link time.
65 ///    The global variables in 1) will exist in wasm address space,
66 ///    but their values should be set in JS code, so these functions
67 ///    as interfaces to JS glue code. These functions are equivalent to the
68 ///    following JS functions, which actually exist in asm.js version of JS
69 ///    library.
70 ///
71 ///    function setThrew(threw, value) {
72 ///      if (__THREW__ == 0) {
73 ///        __THREW__ = threw;
74 ///        __threwValue = value;
75 ///      }
76 ///    }
77 //
78 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79 ///
80 ///    In exception handling, getTempRet0 indicates the type of an exception
81 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
82 ///    function.
83 ///
84 /// 3) Lower
85 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86 ///    into
87 ///      __THREW__ = 0;
88 ///      call @__invoke_SIG(func, arg1, arg2)
89 ///      %__THREW__.val = __THREW__;
90 ///      __THREW__ = 0;
91 ///      if (%__THREW__.val == 1)
92 ///        goto %lpad
93 ///      else
94 ///         goto %invoke.cont
95 ///    SIG is a mangled string generated based on the LLVM IR-level function
96 ///    signature. After LLVM IR types are lowered to the target wasm types,
97 ///    the names for these wrappers will change based on wasm types as well,
98 ///    as in invoke_vi (function takes an int and returns void). The bodies of
99 ///    these wrappers will be generated in JS glue code, and inside those
100 ///    wrappers we use JS try-catch to generate actual exception effects. It
101 ///    also calls the original callee function. An example wrapper in JS code
102 ///    would look like this:
103 ///      function invoke_vi(index,a1) {
104 ///        try {
105 ///          Module["dynCall_vi"](index,a1); // This calls original callee
106 ///        } catch(e) {
107 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 ///          asm["setThrew"](1, 0); // setThrew is called here
109 ///        }
110 ///      }
111 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 ///    so we can jump to the right BB based on this value.
113 ///
114 /// 4) Lower
115 ///      %val = landingpad catch c1 catch c2 catch c3 ...
116 ///      ... use %val ...
117 ///    into
118 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 ///      %val = {%fmc, getTempRet0()}
120 ///      ... use %val ...
121 ///    Here N is a number calculated based on the number of clauses.
122 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
123 ///
124 /// 5) Lower
125 ///      resume {%a, %b}
126 ///    into
127 ///      call @__resumeException(%a)
128 ///    where __resumeException() is a function in JS glue code.
129 ///
130 /// 6) Lower
131 ///      call @llvm.eh.typeid.for(type) (intrinsic)
132 ///    into
133 ///      call @llvm_eh_typeid_for(type)
134 ///    llvm_eh_typeid_for function will be generated in JS glue code.
135 ///
136 /// * Setjmp / Longjmp handling
137 ///
138 /// In case calls to longjmp() exists
139 ///
140 /// 1) Lower
141 ///      longjmp(buf, value)
142 ///    into
143 ///      emscripten_longjmp_jmpbuf(buf, value)
144 ///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
145 ///
146 /// In case calls to setjmp() exists
147 ///
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 ///    sejmpTableSize as follows:
150 ///      setjmpTableSize = 4;
151 ///      setjmpTable = (int *) malloc(40);
152 ///      setjmpTable[0] = 0;
153 ///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154 ///    code.
155 ///
156 /// 3) Lower
157 ///      setjmp(buf)
158 ///    into
159 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 ///      setjmpTableSize = getTempRet0();
161 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 ///    is incrementally assigned from 0) and its label (a unique number that
163 ///    represents each callsite of setjmp). When we need more entries in
164 ///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 ///    return the new table address, and assign the new table size in
166 ///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 ///    buf. A BB with setjmp is split into two after setjmp call in order to
168 ///    make the post-setjmp BB the possible destination of longjmp BB.
169 ///
170 ///
171 /// 4) Lower every call that might longjmp into
172 ///      __THREW__ = 0;
173 ///      call @__invoke_SIG(func, arg1, arg2)
174 ///      %__THREW__.val = __THREW__;
175 ///      __THREW__ = 0;
176 ///      if (%__THREW__.val != 0 & __threwValue != 0) {
177 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 ///                            setjmpTableSize);
179 ///        if (%label == 0)
180 ///          emscripten_longjmp(%__THREW__.val, __threwValue);
181 ///        setTempRet0(__threwValue);
182 ///      } else {
183 ///        %label = -1;
184 ///      }
185 ///      longjmp_result = getTempRet0();
186 ///      switch label {
187 ///        label 1: goto post-setjmp BB 1
188 ///        label 2: goto post-setjmp BB 2
189 ///        ...
190 ///        default: goto splitted next BB
191 ///      }
192 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
193 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 ///    will be the address of matching jmp_buf buffer and __threwValue be the
195 ///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
198 ///    correspond to one of the setjmp callsites in this function, so in this
199 ///    case we just chain the longjmp to the caller. (Here we call
200 ///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 ///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 ///    emscripten_longjmp takes an int. Both of them will eventually be lowered
203 ///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 ///    can't translate an int value to a jmp_buf.)
205 ///    Label -1 means no longjmp occurred. Otherwise we jump to the right
206 ///    post-setjmp BB based on the label.
207 ///
208 ///===----------------------------------------------------------------------===//
209 
210 #include "WebAssembly.h"
211 #include "llvm/IR/CallSite.h"
212 #include "llvm/IR/Dominators.h"
213 #include "llvm/IR/IRBuilder.h"
214 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
215 #include "llvm/Transforms/Utils/SSAUpdater.h"
216 
217 using namespace llvm;
218 
219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
220 
221 static cl::list<std::string>
222     EHWhitelist("emscripten-cxx-exceptions-whitelist",
223                 cl::desc("The list of function names in which Emscripten-style "
224                          "exception handling is enabled (see emscripten "
225                          "EMSCRIPTEN_CATCHING_WHITELIST options)"),
226                 cl::CommaSeparated);
227 
228 namespace {
229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
230   static const char *ResumeFName;
231   static const char *EHTypeIDFName;
232   static const char *EmLongjmpFName;
233   static const char *EmLongjmpJmpbufFName;
234   static const char *SaveSetjmpFName;
235   static const char *TestSetjmpFName;
236   static const char *FindMatchingCatchPrefix;
237   static const char *InvokePrefix;
238 
239   bool EnableEH;   // Enable exception handling
240   bool EnableSjLj; // Enable setjmp/longjmp handling
241 
242   GlobalVariable *ThrewGV = nullptr;
243   GlobalVariable *ThrewValueGV = nullptr;
244   Function *GetTempRet0Func = nullptr;
245   Function *SetTempRet0Func = nullptr;
246   Function *ResumeF = nullptr;
247   Function *EHTypeIDF = nullptr;
248   Function *EmLongjmpF = nullptr;
249   Function *EmLongjmpJmpbufF = nullptr;
250   Function *SaveSetjmpF = nullptr;
251   Function *TestSetjmpF = nullptr;
252 
253   // __cxa_find_matching_catch_N functions.
254   // Indexed by the number of clauses in an original landingpad instruction.
255   DenseMap<int, Function *> FindMatchingCatches;
256   // Map of <function signature string, invoke_ wrappers>
257   StringMap<Function *> InvokeWrappers;
258   // Set of whitelisted function names for exception handling
259   std::set<std::string> EHWhitelistSet;
260 
261   StringRef getPassName() const override {
262     return "WebAssembly Lower Emscripten Exceptions";
263   }
264 
265   bool runEHOnFunction(Function &F);
266   bool runSjLjOnFunction(Function &F);
267   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
268 
269   template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
270   void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
271                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
272                       Value *&LongjmpResult, BasicBlock *&EndBB);
273   template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
274 
275   bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
276   bool canLongjmp(Module &M, const Value *Callee) const;
277 
278   void rebuildSSA(Function &F);
279 
280 public:
281   static char ID;
282 
283   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
284       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
285     EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
286   }
287   bool runOnModule(Module &M) override;
288 
289   void getAnalysisUsage(AnalysisUsage &AU) const override {
290     AU.addRequired<DominatorTreeWrapperPass>();
291   }
292 };
293 } // End anonymous namespace
294 
295 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
296 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
297     "llvm_eh_typeid_for";
298 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
299     "emscripten_longjmp";
300 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
301     "emscripten_longjmp_jmpbuf";
302 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
303 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
304 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
305     "__cxa_find_matching_catch_";
306 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
307 
308 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
309 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
310                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
311                 false, false)
312 
313 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
314                                                          bool EnableSjLj) {
315   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
316 }
317 
318 static bool canThrow(const Value *V) {
319   if (const auto *F = dyn_cast<const Function>(V)) {
320     // Intrinsics cannot throw
321     if (F->isIntrinsic())
322       return false;
323     StringRef Name = F->getName();
324     // leave setjmp and longjmp (mostly) alone, we process them properly later
325     if (Name == "setjmp" || Name == "longjmp")
326       return false;
327     return !F->doesNotThrow();
328   }
329   // not a function, so an indirect call - can throw, we can't tell
330   return true;
331 }
332 
333 // Get a global variable with the given name.  If it doesn't exist declare it,
334 // which will generate an import and asssumes that it will exist at link time.
335 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
336                                             const char *Name) {
337 
338   auto* GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
339   if (!GV)
340     report_fatal_error(Twine("unable to create global: ") + Name);
341 
342   return GV;
343 }
344 
345 // Simple function name mangler.
346 // This function simply takes LLVM's string representation of parameter types
347 // and concatenate them with '_'. There are non-alphanumeric characters but llc
348 // is ok with it, and we need to postprocess these names after the lowering
349 // phase anyway.
350 static std::string getSignature(FunctionType *FTy) {
351   std::string Sig;
352   raw_string_ostream OS(Sig);
353   OS << *FTy->getReturnType();
354   for (Type *ParamTy : FTy->params())
355     OS << "_" << *ParamTy;
356   if (FTy->isVarArg())
357     OS << "_...";
358   Sig = OS.str();
359   Sig.erase(remove_if(Sig, isspace), Sig.end());
360   // When s2wasm parses .s file, a comma means the end of an argument. So a
361   // mangled function name can contain any character but a comma.
362   std::replace(Sig.begin(), Sig.end(), ',', '.');
363   return Sig;
364 }
365 
366 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
367 // This is because a landingpad instruction contains two more arguments, a
368 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
369 // functions are named after the number of arguments in the original landingpad
370 // instruction.
371 Function *
372 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
373                                                        unsigned NumClauses) {
374   if (FindMatchingCatches.count(NumClauses))
375     return FindMatchingCatches[NumClauses];
376   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
377   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
378   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
379   Function *F =
380       Function::Create(FTy, GlobalValue::ExternalLinkage,
381                        FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
382   FindMatchingCatches[NumClauses] = F;
383   return F;
384 }
385 
386 // Generate invoke wrapper seqence with preamble and postamble
387 // Preamble:
388 // __THREW__ = 0;
389 // Postamble:
390 // %__THREW__.val = __THREW__; __THREW__ = 0;
391 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
392 // whether longjmp occurred), for future use.
393 template <typename CallOrInvoke>
394 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
395   LLVMContext &C = CI->getModule()->getContext();
396 
397   // If we are calling a function that is noreturn, we must remove that
398   // attribute. The code we insert here does expect it to return, after we
399   // catch the exception.
400   if (CI->doesNotReturn()) {
401     if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
402       F->removeFnAttr(Attribute::NoReturn);
403     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
404   }
405 
406   IRBuilder<> IRB(C);
407   IRB.SetInsertPoint(CI);
408 
409   // Pre-invoke
410   // __THREW__ = 0;
411   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
412 
413   // Invoke function wrapper in JavaScript
414   SmallVector<Value *, 16> Args;
415   // Put the pointer to the callee as first argument, so it can be called
416   // within the invoke wrapper later
417   Args.push_back(CI->getCalledValue());
418   Args.append(CI->arg_begin(), CI->arg_end());
419   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
420   NewCall->takeName(CI);
421   NewCall->setCallingConv(CI->getCallingConv());
422   NewCall->setDebugLoc(CI->getDebugLoc());
423 
424   // Because we added the pointer to the callee as first argument, all
425   // argument attribute indices have to be incremented by one.
426   SmallVector<AttributeSet, 8> ArgAttributes;
427   const AttributeList &InvokeAL = CI->getAttributes();
428 
429   // No attributes for the callee pointer.
430   ArgAttributes.push_back(AttributeSet());
431   // Copy the argument attributes from the original
432   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
433     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
434 
435   // Reconstruct the AttributesList based on the vector we constructed.
436   AttributeList NewCallAL =
437       AttributeList::get(C, InvokeAL.getFnAttributes(),
438                          InvokeAL.getRetAttributes(), ArgAttributes);
439   NewCall->setAttributes(NewCallAL);
440 
441   CI->replaceAllUsesWith(NewCall);
442 
443   // Post-invoke
444   // %__THREW__.val = __THREW__; __THREW__ = 0;
445   Value *Threw =
446       IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
447   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
448   return Threw;
449 }
450 
451 // Get matching invoke wrapper based on callee signature
452 template <typename CallOrInvoke>
453 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
454   Module *M = CI->getModule();
455   SmallVector<Type *, 16> ArgTys;
456   Value *Callee = CI->getCalledValue();
457   FunctionType *CalleeFTy;
458   if (auto *F = dyn_cast<Function>(Callee))
459     CalleeFTy = F->getFunctionType();
460   else {
461     auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
462     CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
463   }
464 
465   std::string Sig = getSignature(CalleeFTy);
466   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
467     return InvokeWrappers[Sig];
468 
469   // Put the pointer to the callee as first argument
470   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
471   // Add argument types
472   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
473 
474   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
475                                         CalleeFTy->isVarArg());
476   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
477                                  InvokePrefix + Sig, M);
478   InvokeWrappers[Sig] = F;
479   return F;
480 }
481 
482 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
483                                                   const Value *Callee) const {
484   if (auto *CalleeF = dyn_cast<Function>(Callee))
485     if (CalleeF->isIntrinsic())
486       return false;
487 
488   // Attempting to transform inline assembly will result in something like:
489   //     call void @__invoke_void(void ()* asm ...)
490   // which is invalid because inline assembly blocks do not have addresses
491   // and can't be passed by pointer. The result is a crash with illegal IR.
492   if (isa<InlineAsm>(Callee))
493     return false;
494 
495   // The reason we include malloc/free here is to exclude the malloc/free
496   // calls generated in setjmp prep / cleanup routines.
497   Function *SetjmpF = M.getFunction("setjmp");
498   Function *MallocF = M.getFunction("malloc");
499   Function *FreeF = M.getFunction("free");
500   if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
501     return false;
502 
503   // There are functions in JS glue code
504   if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
505       Callee == TestSetjmpF)
506     return false;
507 
508   // __cxa_find_matching_catch_N functions cannot longjmp
509   if (Callee->getName().startswith(FindMatchingCatchPrefix))
510     return false;
511 
512   // Exception-catching related functions
513   Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
514   Function *EndCatchF = M.getFunction("__cxa_end_catch");
515   Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
516   Function *ThrowF = M.getFunction("__cxa_throw");
517   Function *TerminateF = M.getFunction("__clang_call_terminate");
518   if (Callee == BeginCatchF || Callee == EndCatchF ||
519       Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF ||
520       Callee == GetTempRet0Func || Callee == SetTempRet0Func)
521     return false;
522 
523   // Otherwise we don't know
524   return true;
525 }
526 
527 // Generate testSetjmp function call seqence with preamble and postamble.
528 // The code this generates is equivalent to the following JavaScript code:
529 // if (%__THREW__.val != 0 & threwValue != 0) {
530 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
531 //   if (%label == 0)
532 //     emscripten_longjmp(%__THREW__.val, threwValue);
533 //   setTempRet0(threwValue);
534 // } else {
535 //   %label = -1;
536 // }
537 // %longjmp_result = getTempRet0();
538 //
539 // As output parameters. returns %label, %longjmp_result, and the BB the last
540 // instruction (%longjmp_result = ...) is in.
541 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
542     BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
543     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
544     BasicBlock *&EndBB) {
545   Function *F = BB->getParent();
546   LLVMContext &C = BB->getModule()->getContext();
547   IRBuilder<> IRB(C);
548   IRB.SetInsertPoint(InsertPt);
549 
550   // if (%__THREW__.val != 0 & threwValue != 0)
551   IRB.SetInsertPoint(BB);
552   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
553   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
554   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
555   Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
556   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
557                                      ThrewValueGV->getName() + ".val");
558   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
559   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
560   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
561 
562   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
563   // if (%label == 0)
564   IRB.SetInsertPoint(ThenBB1);
565   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
566   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
567   Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
568                                        Threw->getName() + ".i32p");
569   Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
570                                       ThrewInt->getName() + ".loaded");
571   Value *ThenLabel = IRB.CreateCall(
572       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
573   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
574   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
575 
576   // emscripten_longjmp(%__THREW__.val, threwValue);
577   IRB.SetInsertPoint(ThenBB2);
578   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
579   IRB.CreateUnreachable();
580 
581   // setTempRet0(threwValue);
582   IRB.SetInsertPoint(EndBB2);
583   IRB.CreateCall(SetTempRet0Func, ThrewValue);
584   IRB.CreateBr(EndBB1);
585 
586   IRB.SetInsertPoint(ElseBB1);
587   IRB.CreateBr(EndBB1);
588 
589   // longjmp_result = getTempRet0();
590   IRB.SetInsertPoint(EndBB1);
591   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
592   LabelPHI->addIncoming(ThenLabel, EndBB2);
593 
594   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
595 
596   // Output parameter assignment
597   Label = LabelPHI;
598   EndBB = EndBB1;
599   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
600 }
601 
602 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
603   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
604   DT.recalculate(F); // CFG has been changed
605   SSAUpdater SSA;
606   for (BasicBlock &BB : F) {
607     for (Instruction &I : BB) {
608       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
609         Use &U = *UI;
610         ++UI;
611         SSA.Initialize(I.getType(), I.getName());
612         SSA.AddAvailableValue(&BB, &I);
613         auto *User = cast<Instruction>(U.getUser());
614         if (User->getParent() == &BB)
615           continue;
616 
617         if (auto *UserPN = dyn_cast<PHINode>(User))
618           if (UserPN->getIncomingBlock(U) == &BB)
619             continue;
620 
621         if (DT.dominates(&I, User))
622           continue;
623         SSA.RewriteUseAfterInsertions(U);
624       }
625     }
626   }
627 }
628 
629 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
630   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
631 
632   LLVMContext &C = M.getContext();
633   IRBuilder<> IRB(C);
634 
635   Function *SetjmpF = M.getFunction("setjmp");
636   Function *LongjmpF = M.getFunction("longjmp");
637   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
638   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
639   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
640 
641   // Declare (or get) global variables __THREW__, __threwValue, and
642   // getTempRet0/setTempRet0 function which are used in common for both
643   // exception handling and setjmp/longjmp handling
644   ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
645   ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
646   GetTempRet0Func =
647       Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
648                        GlobalValue::ExternalLinkage, "getTempRet0", &M);
649   SetTempRet0Func = Function::Create(
650       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
651       GlobalValue::ExternalLinkage, "setTempRet0", &M);
652   GetTempRet0Func->setDoesNotThrow();
653   SetTempRet0Func->setDoesNotThrow();
654 
655   bool Changed = false;
656 
657   // Exception handling
658   if (EnableEH) {
659     // Register __resumeException function
660     FunctionType *ResumeFTy =
661         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
662     ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
663                                ResumeFName, &M);
664 
665     // Register llvm_eh_typeid_for function
666     FunctionType *EHTypeIDTy =
667         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
668     EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
669                                  EHTypeIDFName, &M);
670 
671     for (Function &F : M) {
672       if (F.isDeclaration())
673         continue;
674       Changed |= runEHOnFunction(F);
675     }
676   }
677 
678   // Setjmp/longjmp handling
679   if (DoSjLj) {
680     Changed = true; // We have setjmp or longjmp somewhere
681 
682     if (LongjmpF) {
683       // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
684       // defined in JS code
685       EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
686                                           GlobalValue::ExternalLinkage,
687                                           EmLongjmpJmpbufFName, &M);
688 
689       LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
690     }
691 
692     if (SetjmpF) {
693       // Register saveSetjmp function
694       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
695       SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
696                                        IRB.getInt32Ty(), Type::getInt32PtrTy(C),
697                                        IRB.getInt32Ty()};
698       FunctionType *FTy =
699           FunctionType::get(Type::getInt32PtrTy(C), Params, false);
700       SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
701                                      SaveSetjmpFName, &M);
702 
703       // Register testSetjmp function
704       Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
705       FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
706       TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
707                                      TestSetjmpFName, &M);
708 
709       FTy = FunctionType::get(IRB.getVoidTy(),
710                               {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
711       EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
712                                     EmLongjmpFName, &M);
713 
714       // Only traverse functions that uses setjmp in order not to insert
715       // unnecessary prep / cleanup code in every function
716       SmallPtrSet<Function *, 8> SetjmpUsers;
717       for (User *U : SetjmpF->users()) {
718         auto *UI = cast<Instruction>(U);
719         SetjmpUsers.insert(UI->getFunction());
720       }
721       for (Function *F : SetjmpUsers)
722         runSjLjOnFunction(*F);
723     }
724   }
725 
726   if (!Changed) {
727     // Delete unused global variables and functions
728     if (ResumeF)
729       ResumeF->eraseFromParent();
730     if (EHTypeIDF)
731       EHTypeIDF->eraseFromParent();
732     if (EmLongjmpF)
733       EmLongjmpF->eraseFromParent();
734     if (SaveSetjmpF)
735       SaveSetjmpF->eraseFromParent();
736     if (TestSetjmpF)
737       TestSetjmpF->eraseFromParent();
738     return false;
739   }
740 
741   return true;
742 }
743 
744 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
745   Module &M = *F.getParent();
746   LLVMContext &C = F.getContext();
747   IRBuilder<> IRB(C);
748   bool Changed = false;
749   SmallVector<Instruction *, 64> ToErase;
750   SmallPtrSet<LandingPadInst *, 32> LandingPads;
751   bool AllowExceptions =
752       areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
753 
754   for (BasicBlock &BB : F) {
755     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
756     if (!II)
757       continue;
758     Changed = true;
759     LandingPads.insert(II->getLandingPadInst());
760     IRB.SetInsertPoint(II);
761 
762     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
763     if (NeedInvoke) {
764       // Wrap invoke with invoke wrapper and generate preamble/postamble
765       Value *Threw = wrapInvoke(II);
766       ToErase.push_back(II);
767 
768       // Insert a branch based on __THREW__ variable
769       Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
770       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
771 
772     } else {
773       // This can't throw, and we don't need this invoke, just replace it with a
774       // call+branch
775       SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
776       CallInst *NewCall =
777           IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
778       NewCall->takeName(II);
779       NewCall->setCallingConv(II->getCallingConv());
780       NewCall->setDebugLoc(II->getDebugLoc());
781       NewCall->setAttributes(II->getAttributes());
782       II->replaceAllUsesWith(NewCall);
783       ToErase.push_back(II);
784 
785       IRB.CreateBr(II->getNormalDest());
786 
787       // Remove any PHI node entries from the exception destination
788       II->getUnwindDest()->removePredecessor(&BB);
789     }
790   }
791 
792   // Process resume instructions
793   for (BasicBlock &BB : F) {
794     // Scan the body of the basic block for resumes
795     for (Instruction &I : BB) {
796       auto *RI = dyn_cast<ResumeInst>(&I);
797       if (!RI)
798         continue;
799 
800       // Split the input into legal values
801       Value *Input = RI->getValue();
802       IRB.SetInsertPoint(RI);
803       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
804       // Create a call to __resumeException function
805       IRB.CreateCall(ResumeF, {Low});
806       // Add a terminator to the block
807       IRB.CreateUnreachable();
808       ToErase.push_back(RI);
809     }
810   }
811 
812   // Process llvm.eh.typeid.for intrinsics
813   for (BasicBlock &BB : F) {
814     for (Instruction &I : BB) {
815       auto *CI = dyn_cast<CallInst>(&I);
816       if (!CI)
817         continue;
818       const Function *Callee = CI->getCalledFunction();
819       if (!Callee)
820         continue;
821       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
822         continue;
823 
824       IRB.SetInsertPoint(CI);
825       CallInst *NewCI =
826           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
827       CI->replaceAllUsesWith(NewCI);
828       ToErase.push_back(CI);
829     }
830   }
831 
832   // Look for orphan landingpads, can occur in blocks with no predecessors
833   for (BasicBlock &BB : F) {
834     Instruction *I = BB.getFirstNonPHI();
835     if (auto *LPI = dyn_cast<LandingPadInst>(I))
836       LandingPads.insert(LPI);
837   }
838 
839   // Handle all the landingpad for this function together, as multiple invokes
840   // may share a single lp
841   for (LandingPadInst *LPI : LandingPads) {
842     IRB.SetInsertPoint(LPI);
843     SmallVector<Value *, 16> FMCArgs;
844     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
845       Constant *Clause = LPI->getClause(I);
846       // As a temporary workaround for the lack of aggregate varargs support
847       // in the interface between JS and wasm, break out filter operands into
848       // their component elements.
849       if (LPI->isFilter(I)) {
850         auto *ATy = cast<ArrayType>(Clause->getType());
851         for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
852           Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
853           FMCArgs.push_back(EV);
854         }
855       } else
856         FMCArgs.push_back(Clause);
857     }
858 
859     // Create a call to __cxa_find_matching_catch_N function
860     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
861     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
862     Value *Undef = UndefValue::get(LPI->getType());
863     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
864     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
865     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
866 
867     LPI->replaceAllUsesWith(Pair1);
868     ToErase.push_back(LPI);
869   }
870 
871   // Erase everything we no longer need in this function
872   for (Instruction *I : ToErase)
873     I->eraseFromParent();
874 
875   return Changed;
876 }
877 
878 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
879   Module &M = *F.getParent();
880   LLVMContext &C = F.getContext();
881   IRBuilder<> IRB(C);
882   SmallVector<Instruction *, 64> ToErase;
883   // Vector of %setjmpTable values
884   std::vector<Instruction *> SetjmpTableInsts;
885   // Vector of %setjmpTableSize values
886   std::vector<Instruction *> SetjmpTableSizeInsts;
887 
888   // Setjmp preparation
889 
890   // This instruction effectively means %setjmpTableSize = 4.
891   // We create this as an instruction intentionally, and we don't want to fold
892   // this instruction to a constant 4, because this value will be used in
893   // SSAUpdater.AddAvailableValue(...) later.
894   BasicBlock &EntryBB = F.getEntryBlock();
895   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
896       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
897       &*EntryBB.getFirstInsertionPt());
898   // setjmpTable = (int *) malloc(40);
899   Instruction *SetjmpTable = CallInst::CreateMalloc(
900       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
901       nullptr, nullptr, "setjmpTable");
902   // setjmpTable[0] = 0;
903   IRB.SetInsertPoint(SetjmpTableSize);
904   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
905   SetjmpTableInsts.push_back(SetjmpTable);
906   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
907 
908   // Setjmp transformation
909   std::vector<PHINode *> SetjmpRetPHIs;
910   Function *SetjmpF = M.getFunction("setjmp");
911   for (User *U : SetjmpF->users()) {
912     auto *CI = dyn_cast<CallInst>(U);
913     if (!CI)
914       report_fatal_error("Does not support indirect calls to setjmp");
915 
916     BasicBlock *BB = CI->getParent();
917     if (BB->getParent() != &F) // in other function
918       continue;
919 
920     // The tail is everything right after the call, and will be reached once
921     // when setjmp is called, and later when longjmp returns to the setjmp
922     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
923     // Add a phi to the tail, which will be the output of setjmp, which
924     // indicates if this is the first call or a longjmp back. The phi directly
925     // uses the right value based on where we arrive from
926     IRB.SetInsertPoint(Tail->getFirstNonPHI());
927     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
928 
929     // setjmp initial call returns 0
930     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
931     // The proper output is now this, not the setjmp call itself
932     CI->replaceAllUsesWith(SetjmpRet);
933     // longjmp returns to the setjmp will add themselves to this phi
934     SetjmpRetPHIs.push_back(SetjmpRet);
935 
936     // Fix call target
937     // Our index in the function is our place in the array + 1 to avoid index
938     // 0, because index 0 means the longjmp is not ours to handle.
939     IRB.SetInsertPoint(CI);
940     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
941                      SetjmpTable, SetjmpTableSize};
942     Instruction *NewSetjmpTable =
943         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
944     Instruction *NewSetjmpTableSize =
945         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
946     SetjmpTableInsts.push_back(NewSetjmpTable);
947     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
948     ToErase.push_back(CI);
949   }
950 
951   // Update each call that can longjmp so it can return to a setjmp where
952   // relevant.
953 
954   // Because we are creating new BBs while processing and don't want to make
955   // all these newly created BBs candidates again for longjmp processing, we
956   // first make the vector of candidate BBs.
957   std::vector<BasicBlock *> BBs;
958   for (BasicBlock &BB : F)
959     BBs.push_back(&BB);
960 
961   // BBs.size() will change within the loop, so we query it every time
962   for (unsigned I = 0; I < BBs.size(); I++) {
963     BasicBlock *BB = BBs[I];
964     for (Instruction &I : *BB) {
965       assert(!isa<InvokeInst>(&I));
966       auto *CI = dyn_cast<CallInst>(&I);
967       if (!CI)
968         continue;
969 
970       const Value *Callee = CI->getCalledValue();
971       if (!canLongjmp(M, Callee))
972         continue;
973 
974       Value *Threw = nullptr;
975       BasicBlock *Tail;
976       if (Callee->getName().startswith(InvokePrefix)) {
977         // If invoke wrapper has already been generated for this call in
978         // previous EH phase, search for the load instruction
979         // %__THREW__.val = __THREW__;
980         // in postamble after the invoke wrapper call
981         LoadInst *ThrewLI = nullptr;
982         StoreInst *ThrewResetSI = nullptr;
983         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
984              I != IE; ++I) {
985           if (auto *LI = dyn_cast<LoadInst>(I))
986             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
987               if (GV == ThrewGV) {
988                 Threw = ThrewLI = LI;
989                 break;
990               }
991         }
992         // Search for the store instruction after the load above
993         // __THREW__ = 0;
994         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
995              I != IE; ++I) {
996           if (auto *SI = dyn_cast<StoreInst>(I))
997             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
998               if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
999                 ThrewResetSI = SI;
1000                 break;
1001               }
1002         }
1003         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1004         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1005         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1006 
1007       } else {
1008         // Wrap call with invoke wrapper and generate preamble/postamble
1009         Threw = wrapInvoke(CI);
1010         ToErase.push_back(CI);
1011         Tail = SplitBlock(BB, CI->getNextNode());
1012       }
1013 
1014       // We need to replace the terminator in Tail - SplitBlock makes BB go
1015       // straight to Tail, we need to check if a longjmp occurred, and go to the
1016       // right setjmp-tail if so
1017       ToErase.push_back(BB->getTerminator());
1018 
1019       // Generate a function call to testSetjmp function and preamble/postamble
1020       // code to figure out (1) whether longjmp occurred (2) if longjmp
1021       // occurred, which setjmp it corresponds to
1022       Value *Label = nullptr;
1023       Value *LongjmpResult = nullptr;
1024       BasicBlock *EndBB = nullptr;
1025       wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1026                      LongjmpResult, EndBB);
1027       assert(Label && LongjmpResult && EndBB);
1028 
1029       // Create switch instruction
1030       IRB.SetInsertPoint(EndBB);
1031       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1032       // -1 means no longjmp happened, continue normally (will hit the default
1033       // switch case). 0 means a longjmp that is not ours to handle, needs a
1034       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1035       // 0).
1036       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1037         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1038         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1039       }
1040 
1041       // We are splitting the block here, and must continue to find other calls
1042       // in the block - which is now split. so continue to traverse in the Tail
1043       BBs.push_back(Tail);
1044     }
1045   }
1046 
1047   // Erase everything we no longer need in this function
1048   for (Instruction *I : ToErase)
1049     I->eraseFromParent();
1050 
1051   // Free setjmpTable buffer before each return instruction
1052   for (BasicBlock &BB : F) {
1053     Instruction *TI = BB.getTerminator();
1054     if (isa<ReturnInst>(TI))
1055       CallInst::CreateFree(SetjmpTable, TI);
1056   }
1057 
1058   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1059   // (when buffer reallocation occurs)
1060   // entry:
1061   //   setjmpTableSize = 4;
1062   //   setjmpTable = (int *) malloc(40);
1063   //   setjmpTable[0] = 0;
1064   // ...
1065   // somebb:
1066   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1067   //   setjmpTableSize = getTempRet0();
1068   // So we need to make sure the SSA for these variables is valid so that every
1069   // saveSetjmp and testSetjmp calls have the correct arguments.
1070   SSAUpdater SetjmpTableSSA;
1071   SSAUpdater SetjmpTableSizeSSA;
1072   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1073   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1074   for (Instruction *I : SetjmpTableInsts)
1075     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1076   for (Instruction *I : SetjmpTableSizeInsts)
1077     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1078 
1079   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1080        UI != UE;) {
1081     // Grab the use before incrementing the iterator.
1082     Use &U = *UI;
1083     // Increment the iterator before removing the use from the list.
1084     ++UI;
1085     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1086       if (I->getParent() != &EntryBB)
1087         SetjmpTableSSA.RewriteUse(U);
1088   }
1089   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1090        UI != UE;) {
1091     Use &U = *UI;
1092     ++UI;
1093     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1094       if (I->getParent() != &EntryBB)
1095         SetjmpTableSizeSSA.RewriteUse(U);
1096   }
1097 
1098   // Finally, our modifications to the cfg can break dominance of SSA variables.
1099   // For example, in this code,
1100   // if (x()) { .. setjmp() .. }
1101   // if (y()) { .. longjmp() .. }
1102   // We must split the longjmp block, and it can jump into the block splitted
1103   // from setjmp one. But that means that when we split the setjmp block, it's
1104   // first part no longer dominates its second part - there is a theoretically
1105   // possible control flow path where x() is false, then y() is true and we
1106   // reach the second part of the setjmp block, without ever reaching the first
1107   // part. So, we rebuild SSA form here.
1108   rebuildSSA(F);
1109   return true;
1110 }
1111