1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/DebugInfo/CodeView/CodeView.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/MachineLocation.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/Host.h"
32 
33 using namespace llvm;
34 
35 #define GET_REGINFO_MC_DESC
36 #include "X86GenRegisterInfo.inc"
37 
38 #define GET_INSTRINFO_MC_DESC
39 #define GET_INSTRINFO_MC_HELPERS
40 #include "X86GenInstrInfo.inc"
41 
42 #define GET_SUBTARGETINFO_MC_DESC
43 #include "X86GenSubtargetInfo.inc"
44 
45 std::string X86_MC::ParseX86Triple(const Triple &TT) {
46   std::string FS;
47   // SSE2 should default to enabled in 64-bit mode, but can be turned off
48   // explicitly.
49   if (TT.isArch64Bit())
50     FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
51   else if (TT.getEnvironment() != Triple::CODE16)
52     FS = "-64bit-mode,+32bit-mode,-16bit-mode";
53   else
54     FS = "-64bit-mode,-32bit-mode,+16bit-mode";
55 
56   return FS;
57 }
58 
59 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
60   if (TT.getArch() == Triple::x86_64)
61     return DWARFFlavour::X86_64;
62 
63   if (TT.isOSDarwin())
64     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
65   if (TT.isOSCygMing())
66     // Unsupported by now, just quick fallback
67     return DWARFFlavour::X86_32_Generic;
68   return DWARFFlavour::X86_32_Generic;
69 }
70 
71 bool X86_MC::hasLockPrefix(const MCInst &MI) {
72   return MI.getFlags() & X86::IP_HAS_LOCK;
73 }
74 
75 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
76   // FIXME: TableGen these.
77   for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
78     unsigned SEH = MRI->getEncodingValue(Reg);
79     MRI->mapLLVMRegToSEHReg(Reg, SEH);
80   }
81 
82   // Mapping from CodeView to MC register id.
83   static const struct {
84     codeview::RegisterId CVReg;
85     MCPhysReg Reg;
86   } RegMap[] = {
87       {codeview::RegisterId::AL, X86::AL},
88       {codeview::RegisterId::CL, X86::CL},
89       {codeview::RegisterId::DL, X86::DL},
90       {codeview::RegisterId::BL, X86::BL},
91       {codeview::RegisterId::AH, X86::AH},
92       {codeview::RegisterId::CH, X86::CH},
93       {codeview::RegisterId::DH, X86::DH},
94       {codeview::RegisterId::BH, X86::BH},
95       {codeview::RegisterId::AX, X86::AX},
96       {codeview::RegisterId::CX, X86::CX},
97       {codeview::RegisterId::DX, X86::DX},
98       {codeview::RegisterId::BX, X86::BX},
99       {codeview::RegisterId::SP, X86::SP},
100       {codeview::RegisterId::BP, X86::BP},
101       {codeview::RegisterId::SI, X86::SI},
102       {codeview::RegisterId::DI, X86::DI},
103       {codeview::RegisterId::EAX, X86::EAX},
104       {codeview::RegisterId::ECX, X86::ECX},
105       {codeview::RegisterId::EDX, X86::EDX},
106       {codeview::RegisterId::EBX, X86::EBX},
107       {codeview::RegisterId::ESP, X86::ESP},
108       {codeview::RegisterId::EBP, X86::EBP},
109       {codeview::RegisterId::ESI, X86::ESI},
110       {codeview::RegisterId::EDI, X86::EDI},
111 
112       {codeview::RegisterId::EFLAGS, X86::EFLAGS},
113 
114       {codeview::RegisterId::ST0, X86::ST0},
115       {codeview::RegisterId::ST1, X86::ST1},
116       {codeview::RegisterId::ST2, X86::ST2},
117       {codeview::RegisterId::ST3, X86::ST3},
118       {codeview::RegisterId::ST4, X86::ST4},
119       {codeview::RegisterId::ST5, X86::ST5},
120       {codeview::RegisterId::ST6, X86::ST6},
121       {codeview::RegisterId::ST7, X86::ST7},
122 
123       {codeview::RegisterId::ST0, X86::FP0},
124       {codeview::RegisterId::ST1, X86::FP1},
125       {codeview::RegisterId::ST2, X86::FP2},
126       {codeview::RegisterId::ST3, X86::FP3},
127       {codeview::RegisterId::ST4, X86::FP4},
128       {codeview::RegisterId::ST5, X86::FP5},
129       {codeview::RegisterId::ST6, X86::FP6},
130       {codeview::RegisterId::ST7, X86::FP7},
131 
132       {codeview::RegisterId::MM0, X86::MM0},
133       {codeview::RegisterId::MM1, X86::MM1},
134       {codeview::RegisterId::MM2, X86::MM2},
135       {codeview::RegisterId::MM3, X86::MM3},
136       {codeview::RegisterId::MM4, X86::MM4},
137       {codeview::RegisterId::MM5, X86::MM5},
138       {codeview::RegisterId::MM6, X86::MM6},
139       {codeview::RegisterId::MM7, X86::MM7},
140 
141       {codeview::RegisterId::XMM0, X86::XMM0},
142       {codeview::RegisterId::XMM1, X86::XMM1},
143       {codeview::RegisterId::XMM2, X86::XMM2},
144       {codeview::RegisterId::XMM3, X86::XMM3},
145       {codeview::RegisterId::XMM4, X86::XMM4},
146       {codeview::RegisterId::XMM5, X86::XMM5},
147       {codeview::RegisterId::XMM6, X86::XMM6},
148       {codeview::RegisterId::XMM7, X86::XMM7},
149 
150       {codeview::RegisterId::XMM8, X86::XMM8},
151       {codeview::RegisterId::XMM9, X86::XMM9},
152       {codeview::RegisterId::XMM10, X86::XMM10},
153       {codeview::RegisterId::XMM11, X86::XMM11},
154       {codeview::RegisterId::XMM12, X86::XMM12},
155       {codeview::RegisterId::XMM13, X86::XMM13},
156       {codeview::RegisterId::XMM14, X86::XMM14},
157       {codeview::RegisterId::XMM15, X86::XMM15},
158 
159       {codeview::RegisterId::SIL, X86::SIL},
160       {codeview::RegisterId::DIL, X86::DIL},
161       {codeview::RegisterId::BPL, X86::BPL},
162       {codeview::RegisterId::SPL, X86::SPL},
163       {codeview::RegisterId::RAX, X86::RAX},
164       {codeview::RegisterId::RBX, X86::RBX},
165       {codeview::RegisterId::RCX, X86::RCX},
166       {codeview::RegisterId::RDX, X86::RDX},
167       {codeview::RegisterId::RSI, X86::RSI},
168       {codeview::RegisterId::RDI, X86::RDI},
169       {codeview::RegisterId::RBP, X86::RBP},
170       {codeview::RegisterId::RSP, X86::RSP},
171       {codeview::RegisterId::R8, X86::R8},
172       {codeview::RegisterId::R9, X86::R9},
173       {codeview::RegisterId::R10, X86::R10},
174       {codeview::RegisterId::R11, X86::R11},
175       {codeview::RegisterId::R12, X86::R12},
176       {codeview::RegisterId::R13, X86::R13},
177       {codeview::RegisterId::R14, X86::R14},
178       {codeview::RegisterId::R15, X86::R15},
179       {codeview::RegisterId::R8B, X86::R8B},
180       {codeview::RegisterId::R9B, X86::R9B},
181       {codeview::RegisterId::R10B, X86::R10B},
182       {codeview::RegisterId::R11B, X86::R11B},
183       {codeview::RegisterId::R12B, X86::R12B},
184       {codeview::RegisterId::R13B, X86::R13B},
185       {codeview::RegisterId::R14B, X86::R14B},
186       {codeview::RegisterId::R15B, X86::R15B},
187       {codeview::RegisterId::R8W, X86::R8W},
188       {codeview::RegisterId::R9W, X86::R9W},
189       {codeview::RegisterId::R10W, X86::R10W},
190       {codeview::RegisterId::R11W, X86::R11W},
191       {codeview::RegisterId::R12W, X86::R12W},
192       {codeview::RegisterId::R13W, X86::R13W},
193       {codeview::RegisterId::R14W, X86::R14W},
194       {codeview::RegisterId::R15W, X86::R15W},
195       {codeview::RegisterId::R8D, X86::R8D},
196       {codeview::RegisterId::R9D, X86::R9D},
197       {codeview::RegisterId::R10D, X86::R10D},
198       {codeview::RegisterId::R11D, X86::R11D},
199       {codeview::RegisterId::R12D, X86::R12D},
200       {codeview::RegisterId::R13D, X86::R13D},
201       {codeview::RegisterId::R14D, X86::R14D},
202       {codeview::RegisterId::R15D, X86::R15D},
203       {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
204       {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
205       {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
206       {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
207       {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
208       {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
209       {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
210       {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
211       {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
212       {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
213       {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
214       {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
215       {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
216       {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
217       {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
218       {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
219       {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
220       {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
221       {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
222       {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
223       {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
224       {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
225       {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
226       {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
227       {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
228       {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
229       {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
230       {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
231       {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
232       {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
233       {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
234       {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
235       {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
236       {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
237       {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
238       {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
239       {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
240       {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
241       {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
242       {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
243       {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
244       {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
245       {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
246       {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
247       {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
248       {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
249       {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
250       {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
251       {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
252       {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
253       {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
254       {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
255       {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
256       {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
257       {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
258       {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
259       {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
260       {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
261       {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
262       {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
263       {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
264       {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
265       {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
266       {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
267       {codeview::RegisterId::AMD64_K0, X86::K0},
268       {codeview::RegisterId::AMD64_K1, X86::K1},
269       {codeview::RegisterId::AMD64_K2, X86::K2},
270       {codeview::RegisterId::AMD64_K3, X86::K3},
271       {codeview::RegisterId::AMD64_K4, X86::K4},
272       {codeview::RegisterId::AMD64_K5, X86::K5},
273       {codeview::RegisterId::AMD64_K6, X86::K6},
274       {codeview::RegisterId::AMD64_K7, X86::K7},
275       {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
276       {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
277       {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
278       {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
279       {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
280       {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
281       {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
282       {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
283       {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
284       {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
285       {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
286       {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
287       {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
288       {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
289       {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
290       {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
291 
292   };
293   for (const auto &I : RegMap)
294     MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
295 }
296 
297 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
298                                                   StringRef CPU, StringRef FS) {
299   std::string ArchFS = X86_MC::ParseX86Triple(TT);
300   assert(!ArchFS.empty() && "Failed to parse X86 triple");
301   if (!FS.empty())
302     ArchFS = (Twine(ArchFS) + "," + FS).str();
303 
304   if (CPU.empty())
305     CPU = "generic";
306 
307   return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
308 }
309 
310 static MCInstrInfo *createX86MCInstrInfo() {
311   MCInstrInfo *X = new MCInstrInfo();
312   InitX86MCInstrInfo(X);
313   return X;
314 }
315 
316 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
317   unsigned RA = (TT.getArch() == Triple::x86_64)
318                     ? X86::RIP  // Should have dwarf #16.
319                     : X86::EIP; // Should have dwarf #8.
320 
321   MCRegisterInfo *X = new MCRegisterInfo();
322   InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
323                         X86_MC::getDwarfRegFlavour(TT, true), RA);
324   X86_MC::initLLVMToSEHAndCVRegMapping(X);
325   return X;
326 }
327 
328 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
329                                      const Triple &TheTriple,
330                                      const MCTargetOptions &Options) {
331   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
332 
333   MCAsmInfo *MAI;
334   if (TheTriple.isOSBinFormatMachO()) {
335     if (is64Bit)
336       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
337     else
338       MAI = new X86MCAsmInfoDarwin(TheTriple);
339   } else if (TheTriple.isOSBinFormatELF()) {
340     // Force the use of an ELF container.
341     MAI = new X86ELFMCAsmInfo(TheTriple);
342   } else if (TheTriple.isWindowsMSVCEnvironment() ||
343              TheTriple.isWindowsCoreCLREnvironment()) {
344     if (Options.getAssemblyLanguage().equals_insensitive("masm"))
345       MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
346     else
347       MAI = new X86MCAsmInfoMicrosoft(TheTriple);
348   } else if (TheTriple.isOSCygMing() ||
349              TheTriple.isWindowsItaniumEnvironment()) {
350     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
351   } else {
352     // The default is ELF.
353     MAI = new X86ELFMCAsmInfo(TheTriple);
354   }
355 
356   // Initialize initial frame state.
357   // Calculate amount of bytes used for return address storing
358   int stackGrowth = is64Bit ? -8 : -4;
359 
360   // Initial state of the frame pointer is esp+stackGrowth.
361   unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
362   MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
363       nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
364   MAI->addInitialFrameState(Inst);
365 
366   // Add return address to move list
367   unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
368   MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
369       nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
370   MAI->addInitialFrameState(Inst2);
371 
372   return MAI;
373 }
374 
375 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
376                                              unsigned SyntaxVariant,
377                                              const MCAsmInfo &MAI,
378                                              const MCInstrInfo &MII,
379                                              const MCRegisterInfo &MRI) {
380   if (SyntaxVariant == 0)
381     return new X86ATTInstPrinter(MAI, MII, MRI);
382   if (SyntaxVariant == 1)
383     return new X86IntelInstPrinter(MAI, MII, MRI);
384   return nullptr;
385 }
386 
387 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
388                                                    MCContext &Ctx) {
389   // Default to the stock relocation info.
390   return llvm::createMCRelocationInfo(TheTriple, Ctx);
391 }
392 
393 namespace llvm {
394 namespace X86_MC {
395 
396 class X86MCInstrAnalysis : public MCInstrAnalysis {
397   X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
398   X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
399   virtual ~X86MCInstrAnalysis() = default;
400 
401 public:
402   X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
403 
404 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
405 #include "X86GenSubtargetInfo.inc"
406 
407   bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
408                             APInt &Mask) const override;
409   std::vector<std::pair<uint64_t, uint64_t>>
410   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
411                  uint64_t GotSectionVA,
412                  const Triple &TargetTriple) const override;
413 
414   bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
415                       uint64_t &Target) const override;
416   Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst,
417                                                   const MCSubtargetInfo *STI,
418                                                   uint64_t Addr,
419                                                   uint64_t Size) const override;
420   Optional<uint64_t>
421   getMemoryOperandRelocationOffset(const MCInst &Inst,
422                                    uint64_t Size) const override;
423 };
424 
425 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
426 #include "X86GenSubtargetInfo.inc"
427 
428 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
429                                               const MCInst &Inst,
430                                               APInt &Mask) const {
431   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
432   unsigned NumDefs = Desc.getNumDefs();
433   unsigned NumImplicitDefs = Desc.getNumImplicitDefs();
434   assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
435          "Unexpected number of bits in the mask!");
436 
437   bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
438   bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
439   bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
440 
441   const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
442   const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
443   const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
444 
445   auto ClearsSuperReg = [=](unsigned RegID) {
446     // On X86-64, a general purpose integer register is viewed as a 64-bit
447     // register internal to the processor.
448     // An update to the lower 32 bits of a 64 bit integer register is
449     // architecturally defined to zero extend the upper 32 bits.
450     if (GR32RC.contains(RegID))
451       return true;
452 
453     // Early exit if this instruction has no vex/evex/xop prefix.
454     if (!HasEVEX && !HasVEX && !HasXOP)
455       return false;
456 
457     // All VEX and EVEX encoded instructions are defined to zero the high bits
458     // of the destination register up to VLMAX (i.e. the maximum vector register
459     // width pertaining to the instruction).
460     // We assume the same behavior for XOP instructions too.
461     return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
462   };
463 
464   Mask.clearAllBits();
465   for (unsigned I = 0, E = NumDefs; I < E; ++I) {
466     const MCOperand &Op = Inst.getOperand(I);
467     if (ClearsSuperReg(Op.getReg()))
468       Mask.setBit(I);
469   }
470 
471   for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
472     const MCPhysReg Reg = Desc.getImplicitDefs()[I];
473     if (ClearsSuperReg(Reg))
474       Mask.setBit(NumDefs + I);
475   }
476 
477   return Mask.getBoolValue();
478 }
479 
480 static std::vector<std::pair<uint64_t, uint64_t>>
481 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
482                   uint64_t GotPltSectionVA) {
483   // Do a lightweight parsing of PLT entries.
484   std::vector<std::pair<uint64_t, uint64_t>> Result;
485   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
486     // Recognize a jmp.
487     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
488       // The jmp instruction at the beginning of each PLT entry jumps to the
489       // address of the base of the .got.plt section plus the immediate.
490       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
491       Result.push_back(
492           std::make_pair(PltSectionVA + Byte, GotPltSectionVA + Imm));
493       Byte += 6;
494     } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
495       // The jmp instruction at the beginning of each PLT entry jumps to the
496       // immediate.
497       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
498       Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
499       Byte += 6;
500     } else
501       Byte++;
502   }
503   return Result;
504 }
505 
506 static std::vector<std::pair<uint64_t, uint64_t>>
507 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
508   // Do a lightweight parsing of PLT entries.
509   std::vector<std::pair<uint64_t, uint64_t>> Result;
510   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
511     // Recognize a jmp.
512     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
513       // The jmp instruction at the beginning of each PLT entry jumps to the
514       // address of the next instruction plus the immediate.
515       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
516       Result.push_back(
517           std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
518       Byte += 6;
519     } else
520       Byte++;
521   }
522   return Result;
523 }
524 
525 std::vector<std::pair<uint64_t, uint64_t>> X86MCInstrAnalysis::findPltEntries(
526     uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
527     uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
528   switch (TargetTriple.getArch()) {
529     case Triple::x86:
530       return findX86PltEntries(PltSectionVA, PltContents, GotPltSectionVA);
531     case Triple::x86_64:
532       return findX86_64PltEntries(PltSectionVA, PltContents);
533     default:
534       return {};
535     }
536 }
537 
538 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
539                                         uint64_t Size, uint64_t &Target) const {
540   if (Inst.getNumOperands() == 0 ||
541       Info->get(Inst.getOpcode()).OpInfo[0].OperandType != MCOI::OPERAND_PCREL)
542     return false;
543   Target = Addr + Size + Inst.getOperand(0).getImm();
544   return true;
545 }
546 
547 Optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
548     const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
549     uint64_t Size) const {
550   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
551   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
552   if (MemOpStart == -1)
553     return None;
554   MemOpStart += X86II::getOperandBias(MCID);
555 
556   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
557   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
558   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
559   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
560   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
561   if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
562       !Disp.isImm())
563     return None;
564 
565   // RIP-relative addressing.
566   if (BaseReg.getReg() == X86::RIP)
567     return Addr + Size + Disp.getImm();
568 
569   return None;
570 }
571 
572 Optional<uint64_t>
573 X86MCInstrAnalysis::getMemoryOperandRelocationOffset(const MCInst &Inst,
574                                                      uint64_t Size) const {
575   if (Inst.getOpcode() != X86::LEA64r)
576     return None;
577   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
578   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
579   if (MemOpStart == -1)
580     return None;
581   MemOpStart += X86II::getOperandBias(MCID);
582   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
583   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
584   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
585   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
586   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
587   // Must be a simple rip-relative address.
588   if (BaseReg.getReg() != X86::RIP || SegReg.getReg() != 0 ||
589       IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 || !Disp.isImm())
590     return None;
591   // rip-relative ModR/M immediate is 32 bits.
592   assert(Size > 4 && "invalid instruction size for rip-relative lea");
593   return Size - 4;
594 }
595 
596 } // end of namespace X86_MC
597 
598 } // end of namespace llvm
599 
600 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
601   return new X86_MC::X86MCInstrAnalysis(Info);
602 }
603 
604 // Force static initialization.
605 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
606   for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
607     // Register the MC asm info.
608     RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
609 
610     // Register the MC instruction info.
611     TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
612 
613     // Register the MC register info.
614     TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
615 
616     // Register the MC subtarget info.
617     TargetRegistry::RegisterMCSubtargetInfo(*T,
618                                             X86_MC::createX86MCSubtargetInfo);
619 
620     // Register the MC instruction analyzer.
621     TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
622 
623     // Register the code emitter.
624     TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
625 
626     // Register the obj target streamer.
627     TargetRegistry::RegisterObjectTargetStreamer(*T,
628                                                  createX86ObjectTargetStreamer);
629 
630     // Register the asm target streamer.
631     TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
632 
633     TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
634 
635     // Register the MCInstPrinter.
636     TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
637 
638     // Register the MC relocation info.
639     TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
640   }
641 
642   // Register the asm backend.
643   TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
644                                        createX86_32AsmBackend);
645   TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
646                                        createX86_64AsmBackend);
647 }
648 
649 MCRegister llvm::getX86SubSuperRegisterOrZero(MCRegister Reg, unsigned Size,
650                                               bool High) {
651   switch (Size) {
652   default: return X86::NoRegister;
653   case 8:
654     if (High) {
655       switch (Reg.id()) {
656       default: return getX86SubSuperRegisterOrZero(Reg, 64);
657       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
658         return X86::SI;
659       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
660         return X86::DI;
661       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
662         return X86::BP;
663       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
664         return X86::SP;
665       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
666         return X86::AH;
667       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
668         return X86::DH;
669       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
670         return X86::CH;
671       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
672         return X86::BH;
673       }
674     } else {
675       switch (Reg.id()) {
676       default: return X86::NoRegister;
677       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
678         return X86::AL;
679       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
680         return X86::DL;
681       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
682         return X86::CL;
683       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
684         return X86::BL;
685       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
686         return X86::SIL;
687       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
688         return X86::DIL;
689       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
690         return X86::BPL;
691       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
692         return X86::SPL;
693       case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
694         return X86::R8B;
695       case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
696         return X86::R9B;
697       case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
698         return X86::R10B;
699       case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
700         return X86::R11B;
701       case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
702         return X86::R12B;
703       case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
704         return X86::R13B;
705       case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
706         return X86::R14B;
707       case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
708         return X86::R15B;
709       }
710     }
711   case 16:
712     switch (Reg.id()) {
713     default: return X86::NoRegister;
714     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
715       return X86::AX;
716     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
717       return X86::DX;
718     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
719       return X86::CX;
720     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
721       return X86::BX;
722     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
723       return X86::SI;
724     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
725       return X86::DI;
726     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
727       return X86::BP;
728     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
729       return X86::SP;
730     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
731       return X86::R8W;
732     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
733       return X86::R9W;
734     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
735       return X86::R10W;
736     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
737       return X86::R11W;
738     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
739       return X86::R12W;
740     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
741       return X86::R13W;
742     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
743       return X86::R14W;
744     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
745       return X86::R15W;
746     }
747   case 32:
748     switch (Reg.id()) {
749     default: return X86::NoRegister;
750     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
751       return X86::EAX;
752     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
753       return X86::EDX;
754     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
755       return X86::ECX;
756     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
757       return X86::EBX;
758     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
759       return X86::ESI;
760     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
761       return X86::EDI;
762     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
763       return X86::EBP;
764     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
765       return X86::ESP;
766     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
767       return X86::R8D;
768     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
769       return X86::R9D;
770     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
771       return X86::R10D;
772     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
773       return X86::R11D;
774     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
775       return X86::R12D;
776     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
777       return X86::R13D;
778     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
779       return X86::R14D;
780     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
781       return X86::R15D;
782     }
783   case 64:
784     switch (Reg.id()) {
785     default: return 0;
786     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
787       return X86::RAX;
788     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
789       return X86::RDX;
790     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
791       return X86::RCX;
792     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
793       return X86::RBX;
794     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
795       return X86::RSI;
796     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
797       return X86::RDI;
798     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
799       return X86::RBP;
800     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
801       return X86::RSP;
802     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
803       return X86::R8;
804     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
805       return X86::R9;
806     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
807       return X86::R10;
808     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
809       return X86::R11;
810     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
811       return X86::R12;
812     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
813       return X86::R13;
814     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
815       return X86::R14;
816     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
817       return X86::R15;
818     }
819   }
820 }
821 
822 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High) {
823   MCRegister Res = getX86SubSuperRegisterOrZero(Reg, Size, High);
824   assert(Res != X86::NoRegister && "Unexpected register or VT");
825   return Res;
826 }
827 
828 
829