1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the X86-32 and X86-64
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).", F),
18           A>;
19
20/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
21class CCIfNotSubtarget<string F, CCAction A>
22    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
23                       "(State.getMachineFunction().getSubtarget()).", F),
24           A>;
25
26// Register classes for RegCall
27class RC_X86_RegCall {
28  list<Register> GPR_8 = [];
29  list<Register> GPR_16 = [];
30  list<Register> GPR_32 = [];
31  list<Register> GPR_64 = [];
32  list<Register> FP_CALL = [FP0];
33  list<Register> FP_RET = [FP0, FP1];
34  list<Register> XMM = [];
35  list<Register> YMM = [];
36  list<Register> ZMM = [];
37}
38
39// RegCall register classes for 32 bits
40def RC_X86_32_RegCall : RC_X86_RegCall {
41  let GPR_8 = [AL, CL, DL, DIL, SIL];
42  let GPR_16 = [AX, CX, DX, DI, SI];
43  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
44  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
45                      ///< \todo Fix AssignToReg to enable empty lists
46  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
47  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
48  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
49}
50
51class RC_X86_64_RegCall : RC_X86_RegCall {
52  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
53             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
54  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
55             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
56  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
57             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
58}
59
60def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
61  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
62  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
63  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
64  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
65}
66
67def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
68  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
69  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
70  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
71  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
72}
73
74// X86-64 Intel regcall calling convention.
75multiclass X86_RegCall_base<RC_X86_RegCall RC> {
76def CC_#NAME : CallingConv<[
77  // Handles byval parameters.
78    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
79    CCIfByVal<CCPassByVal<4, 4>>,
80
81    // Promote i1/i8/i16/v1i1 arguments to i32.
82    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
83
84    // Promote v8i1/v16i1/v32i1 arguments to i32.
85    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
86
87    // bool, char, int, enum, long, pointer --> GPR
88    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
89
90    // long long, __int64 --> GPR
91    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
92
93    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
94    CCIfType<[v64i1], CCPromoteToType<i64>>,
95    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
96      CCAssignToReg<RC.GPR_64>>>,
97    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
98      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
99
100    // float, double, float128 --> XMM
101    // In the case of SSE disabled --> save to stack
102    CCIfType<[f32, f64, f128],
103      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
104
105    // long double --> FP
106    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
107
108    // __m128, __m128i, __m128d --> XMM
109    // In the case of SSE disabled --> save to stack
110    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
111      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
112
113    // __m256, __m256i, __m256d --> YMM
114    // In the case of SSE disabled --> save to stack
115    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
116      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
117
118    // __m512, __m512i, __m512d --> ZMM
119    // In the case of SSE disabled --> save to stack
120    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
121      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
122
123    // If no register was found -> assign to stack
124
125    // In 64 bit, assign 64/32 bit values to 8 byte stack
126    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
127      CCAssignToStack<8, 8>>>,
128
129    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
130    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
131    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
132
133    // MMX type gets 8 byte slot in stack , while alignment depends on target
134    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
135    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
136
137    // float 128 get stack slots whose size and alignment depends
138    // on the subtarget.
139    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
140
141    // Vectors get 16-byte stack slots that are 16-byte aligned.
142    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
143      CCAssignToStack<16, 16>>,
144
145    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
146    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
147      CCAssignToStack<32, 32>>,
148
149    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
150    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
151      CCAssignToStack<64, 64>>
152]>;
153
154def RetCC_#NAME : CallingConv<[
155    // Promote i1, v1i1, v8i1 arguments to i8.
156    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
157
158    // Promote v16i1 arguments to i16.
159    CCIfType<[v16i1], CCPromoteToType<i16>>,
160
161    // Promote v32i1 arguments to i32.
162    CCIfType<[v32i1], CCPromoteToType<i32>>,
163
164    // bool, char, int, enum, long, pointer --> GPR
165    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
166    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
167    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
168
169    // long long, __int64 --> GPR
170    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
171
172    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
173    CCIfType<[v64i1], CCPromoteToType<i64>>,
174    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
175      CCAssignToReg<RC.GPR_64>>>,
176    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
177      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
178
179    // long double --> FP
180    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
181
182    // float, double, float128 --> XMM
183    CCIfType<[f32, f64, f128],
184      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
185
186    // __m128, __m128i, __m128d --> XMM
187    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
188      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
189
190    // __m256, __m256i, __m256d --> YMM
191    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
192      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
193
194    // __m512, __m512i, __m512d --> ZMM
195    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
196      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
197]>;
198}
199
200//===----------------------------------------------------------------------===//
201// Return Value Calling Conventions
202//===----------------------------------------------------------------------===//
203
204// Return-value conventions common to all X86 CC's.
205def RetCC_X86Common : CallingConv<[
206  // Scalar values are returned in AX first, then DX.  For i8, the ABI
207  // requires the values to be in AL and AH, however this code uses AL and DL
208  // instead. This is because using AH for the second register conflicts with
209  // the way LLVM does multiple return values -- a return of {i16,i8} would end
210  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
211  // for functions that return two i8 values are currently expected to pack the
212  // values into an i16 (which uses AX, and thus AL:AH).
213  //
214  // For code that doesn't care about the ABI, we allow returning more than two
215  // integer values in registers.
216  CCIfType<[v1i1],  CCPromoteToType<i8>>,
217  CCIfType<[i1],  CCPromoteToType<i8>>,
218  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
219  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
220  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
221  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
222
223  // Boolean vectors of AVX-512 are returned in SIMD registers.
224  // The call from AVX to AVX-512 function should work,
225  // since the boolean types in AVX/AVX2 are promoted by default.
226  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
227  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
228  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
229  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
230  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
231  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
232
233  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
234  // can only be used by ABI non-compliant code. If the target doesn't have XMM
235  // registers, it won't have vector types.
236  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
237            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
238
239  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
240  // can only be used by ABI non-compliant code. This vector type is only
241  // supported while using the AVX target feature.
242  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
243            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
244
245  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
246  // can only be used by ABI non-compliant code. This vector type is only
247  // supported while using the AVX-512 target feature.
248  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
249            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
250
251  // MMX vector types are always returned in MM0. If the target doesn't have
252  // MM0, it doesn't support these vector types.
253  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
254
255  // Long double types are always returned in FP0 (even with SSE),
256  // except on Win64.
257  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
258]>;
259
260// X86-32 C return-value convention.
261def RetCC_X86_32_C : CallingConv<[
262  // The X86-32 calling convention returns FP values in FP0, unless marked
263  // with "inreg" (used here to distinguish one kind of reg from another,
264  // weirdly; this is really the sse-regparm calling convention) in which
265  // case they use XMM0, otherwise it is the same as the common X86 calling
266  // conv.
267  CCIfInReg<CCIfSubtarget<"hasSSE2()",
268    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
269  CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
270  CCDelegateTo<RetCC_X86Common>
271]>;
272
273// X86-32 FastCC return-value convention.
274def RetCC_X86_32_Fast : CallingConv<[
275  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
276  // SSE2.
277  // This can happen when a float, 2 x float, or 3 x float vector is split by
278  // target lowering, and is returned in 1-3 sse regs.
279  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
280  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
281
282  // For integers, ECX can be used as an extra return register
283  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
284  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
285  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
286
287  // Otherwise, it is the same as the common X86 calling convention.
288  CCDelegateTo<RetCC_X86Common>
289]>;
290
291// Intel_OCL_BI return-value convention.
292def RetCC_Intel_OCL_BI : CallingConv<[
293  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
294  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
295            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
296
297  // 256-bit FP vectors
298  // No more than 4 registers
299  CCIfType<[v8f32, v4f64, v8i32, v4i64],
300            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
301
302  // 512-bit FP vectors
303  CCIfType<[v16f32, v8f64, v16i32, v8i64],
304            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
305
306  // i32, i64 in the standard way
307  CCDelegateTo<RetCC_X86Common>
308]>;
309
310// X86-32 HiPE return-value convention.
311def RetCC_X86_32_HiPE : CallingConv<[
312  // Promote all types to i32
313  CCIfType<[i8, i16], CCPromoteToType<i32>>,
314
315  // Return: HP, P, VAL1, VAL2
316  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
317]>;
318
319// X86-32 Vectorcall return-value convention.
320def RetCC_X86_32_VectorCall : CallingConv<[
321  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
322  CCIfType<[f32, f64, f128],
323            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
324
325  // Return integers in the standard way.
326  CCDelegateTo<RetCC_X86Common>
327]>;
328
329// X86-64 C return-value convention.
330def RetCC_X86_64_C : CallingConv<[
331  // The X86-64 calling convention always returns FP values in XMM0.
332  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
333  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
334  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
335
336  // MMX vector types are always returned in XMM0.
337  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
338
339  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
340
341  CCDelegateTo<RetCC_X86Common>
342]>;
343
344// X86-Win64 C return-value convention.
345def RetCC_X86_Win64_C : CallingConv<[
346  // The X86-Win64 calling convention always returns __m64 values in RAX.
347  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
348
349  // Otherwise, everything is the same as 'normal' X86-64 C CC.
350  CCDelegateTo<RetCC_X86_64_C>
351]>;
352
353// X86-64 vectorcall return-value convention.
354def RetCC_X86_64_Vectorcall : CallingConv<[
355  // Vectorcall calling convention always returns FP values in XMMs.
356  CCIfType<[f32, f64, f128],
357    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
358
359  // Otherwise, everything is the same as Windows X86-64 C CC.
360  CCDelegateTo<RetCC_X86_Win64_C>
361]>;
362
363// X86-64 HiPE return-value convention.
364def RetCC_X86_64_HiPE : CallingConv<[
365  // Promote all types to i64
366  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
367
368  // Return: HP, P, VAL1, VAL2
369  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
370]>;
371
372// X86-64 WebKit_JS return-value convention.
373def RetCC_X86_64_WebKit_JS : CallingConv<[
374  // Promote all types to i64
375  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
376
377  // Return: RAX
378  CCIfType<[i64], CCAssignToReg<[RAX]>>
379]>;
380
381def RetCC_X86_64_Swift : CallingConv<[
382
383  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
384
385  // For integers, ECX, R8D can be used as extra return registers.
386  CCIfType<[v1i1],  CCPromoteToType<i8>>,
387  CCIfType<[i1],  CCPromoteToType<i8>>,
388  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
389  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
390  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
391  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
392
393  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
394  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
395  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
396  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
397
398  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
399  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
400  CCDelegateTo<RetCC_X86Common>
401]>;
402
403// X86-64 AnyReg return-value convention. No explicit register is specified for
404// the return-value. The register allocator is allowed and expected to choose
405// any free register.
406//
407// This calling convention is currently only supported by the stackmap and
408// patchpoint intrinsics. All other uses will result in an assert on Debug
409// builds. On Release builds we fallback to the X86 C calling convention.
410def RetCC_X86_64_AnyReg : CallingConv<[
411  CCCustom<"CC_X86_AnyReg_Error">
412]>;
413
414// X86-64 HHVM return-value convention.
415def RetCC_X86_64_HHVM: CallingConv<[
416  // Promote all types to i64
417  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
418
419  // Return: could return in any GP register save RSP and R12.
420  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
421                                 RAX, R10, R11, R13, R14, R15]>>
422]>;
423
424
425defm X86_32_RegCall :
426	 X86_RegCall_base<RC_X86_32_RegCall>;
427defm X86_Win64_RegCall :
428     X86_RegCall_base<RC_X86_64_RegCall_Win>;
429defm X86_SysV64_RegCall :
430     X86_RegCall_base<RC_X86_64_RegCall_SysV>;
431
432// This is the root return-value convention for the X86-32 backend.
433def RetCC_X86_32 : CallingConv<[
434  // If FastCC, use RetCC_X86_32_Fast.
435  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
436  // If HiPE, use RetCC_X86_32_HiPE.
437  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
438  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
439  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
440
441  // Otherwise, use RetCC_X86_32_C.
442  CCDelegateTo<RetCC_X86_32_C>
443]>;
444
445// This is the root return-value convention for the X86-64 backend.
446def RetCC_X86_64 : CallingConv<[
447  // HiPE uses RetCC_X86_64_HiPE
448  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
449
450  // Handle JavaScript calls.
451  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
452  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
453
454  // Handle Swift calls.
455  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
456
457  // Handle explicit CC selection
458  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
459  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
460
461  // Handle Vectorcall CC
462  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
463
464  // Handle HHVM calls.
465  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
466
467  CCIfCC<"CallingConv::X86_RegCall",
468          CCIfSubtarget<"isTargetWin64()",
469                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
470  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
471
472  // Mingw64 and native Win64 use Win64 CC
473  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
474
475  // Otherwise, drop to normal X86-64 CC
476  CCDelegateTo<RetCC_X86_64_C>
477]>;
478
479// This is the return-value convention used for the entire X86 backend.
480let Entry = 1 in
481def RetCC_X86 : CallingConv<[
482
483  // Check if this is the Intel OpenCL built-ins calling convention
484  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
485
486  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
487  CCDelegateTo<RetCC_X86_32>
488]>;
489
490//===----------------------------------------------------------------------===//
491// X86-64 Argument Calling Conventions
492//===----------------------------------------------------------------------===//
493
494def CC_X86_64_C : CallingConv<[
495  // Handles byval parameters.
496  CCIfByVal<CCPassByVal<8, 8>>,
497
498  // Promote i1/i8/i16/v1i1 arguments to i32.
499  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
500
501  // The 'nest' parameter, if any, is passed in R10.
502  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
503  CCIfNest<CCAssignToReg<[R10]>>,
504
505  // Pass SwiftSelf in a callee saved register.
506  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
507
508  // A SwiftError is passed in R12.
509  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
510
511  // For Swift Calling Convention, pass sret in %rax.
512  CCIfCC<"CallingConv::Swift",
513    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
514
515  // The first 6 integer arguments are passed in integer registers.
516  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
517  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
518
519  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
520  CCIfType<[x86mmx],
521            CCIfSubtarget<"isTargetDarwin()",
522            CCIfSubtarget<"hasSSE2()",
523            CCPromoteToType<v2i64>>>>,
524
525  // Boolean vectors of AVX-512 are passed in SIMD registers.
526  // The call from AVX to AVX-512 function should work,
527  // since the boolean types in AVX/AVX2 are promoted by default.
528  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
529  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
530  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
531  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
532  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
533  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
534
535  // The first 8 FP/Vector arguments are passed in XMM registers.
536  CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
537            CCIfSubtarget<"hasSSE1()",
538            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
539
540  // The first 8 256-bit vector arguments are passed in YMM registers, unless
541  // this is a vararg function.
542  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
543  // fixed arguments to vararg functions are supposed to be passed in
544  // registers.  Actually modeling that would be a lot of work, though.
545  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
546                          CCIfSubtarget<"hasAVX()",
547                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
548                                         YMM4, YMM5, YMM6, YMM7]>>>>,
549
550  // The first 8 512-bit vector arguments are passed in ZMM registers.
551  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
552            CCIfSubtarget<"hasAVX512()",
553            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
554
555  // Integer/FP values get stored in stack slots that are 8 bytes in size and
556  // 8-byte aligned if there are no more registers to hold them.
557  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
558
559  // Long doubles get stack slots whose size and alignment depends on the
560  // subtarget.
561  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
562
563  // Vectors get 16-byte stack slots that are 16-byte aligned.
564  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
565
566  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
567  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
568           CCAssignToStack<32, 32>>,
569
570  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
571  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
572           CCAssignToStack<64, 64>>
573]>;
574
575// Calling convention for X86-64 HHVM.
576def CC_X86_64_HHVM : CallingConv<[
577  // Use all/any GP registers for args, except RSP.
578  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
579                                 RDI, RSI, RDX, RCX, R8, R9,
580                                 RAX, R10, R11, R13, R14]>>
581]>;
582
583// Calling convention for helper functions in HHVM.
584def CC_X86_64_HHVM_C : CallingConv<[
585  // Pass the first argument in RBP.
586  CCIfType<[i64], CCAssignToReg<[RBP]>>,
587
588  // Otherwise it's the same as the regular C calling convention.
589  CCDelegateTo<CC_X86_64_C>
590]>;
591
592// Calling convention used on Win64
593def CC_X86_Win64_C : CallingConv<[
594  // FIXME: Handle varargs.
595
596  // Byval aggregates are passed by pointer
597  CCIfByVal<CCPassIndirect<i64>>,
598
599  // Promote i1/v1i1 arguments to i8.
600  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
601
602  // The 'nest' parameter, if any, is passed in R10.
603  CCIfNest<CCAssignToReg<[R10]>>,
604
605  // A SwiftError is passed in R12.
606  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
607
608  // 128 bit vectors are passed by pointer
609  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
610
611
612  // 256 bit vectors are passed by pointer
613  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
614
615  // 512 bit vectors are passed by pointer
616  CCIfType<[v64i8, v32i16, v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
617
618  // Long doubles are passed by pointer
619  CCIfType<[f80], CCPassIndirect<i64>>,
620
621  // The first 4 MMX vector arguments are passed in GPRs.
622  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
623
624  // The first 4 integer arguments are passed in integer registers.
625  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
626                                          [XMM0, XMM1, XMM2, XMM3]>>,
627  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
628                                          [XMM0, XMM1, XMM2, XMM3]>>,
629  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
630                                          [XMM0, XMM1, XMM2, XMM3]>>,
631
632  // Do not pass the sret argument in RCX, the Win64 thiscall calling
633  // convention requires "this" to be passed in RCX.
634  CCIfCC<"CallingConv::X86_ThisCall",
635    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
636                                                     [XMM1, XMM2, XMM3]>>>>,
637
638  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
639                                          [XMM0, XMM1, XMM2, XMM3]>>,
640
641  // The first 4 FP/Vector arguments are passed in XMM registers.
642  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
643           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
644                                   [RCX , RDX , R8  , R9  ]>>,
645
646  // Integer/FP values get stored in stack slots that are 8 bytes in size and
647  // 8-byte aligned if there are no more registers to hold them.
648  CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>>
649]>;
650
651def CC_X86_Win64_VectorCall : CallingConv<[
652  CCCustom<"CC_X86_64_VectorCall">,
653
654  // Delegate to fastcall to handle integer types.
655  CCDelegateTo<CC_X86_Win64_C>
656]>;
657
658
659def CC_X86_64_GHC : CallingConv<[
660  // Promote i8/i16/i32 arguments to i64.
661  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
662
663  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
664  CCIfType<[i64],
665            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
666
667  // Pass in STG registers: F1, F2, F3, F4, D1, D2
668  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
669            CCIfSubtarget<"hasSSE1()",
670            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
671  // AVX
672  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
673            CCIfSubtarget<"hasAVX()",
674            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
675  // AVX-512
676  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
677            CCIfSubtarget<"hasAVX512()",
678            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
679]>;
680
681def CC_X86_64_HiPE : CallingConv<[
682  // Promote i8/i16/i32 arguments to i64.
683  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
684
685  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
686  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
687
688  // Integer/FP values get stored in stack slots that are 8 bytes in size and
689  // 8-byte aligned if there are no more registers to hold them.
690  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
691]>;
692
693def CC_X86_64_WebKit_JS : CallingConv<[
694  // Promote i8/i16 arguments to i32.
695  CCIfType<[i8, i16], CCPromoteToType<i32>>,
696
697  // Only the first integer argument is passed in register.
698  CCIfType<[i32], CCAssignToReg<[EAX]>>,
699  CCIfType<[i64], CCAssignToReg<[RAX]>>,
700
701  // The remaining integer arguments are passed on the stack. 32bit integer and
702  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
703  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
704  // in 8 byte stack slots.
705  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
706  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
707]>;
708
709// No explicit register is specified for the AnyReg calling convention. The
710// register allocator may assign the arguments to any free register.
711//
712// This calling convention is currently only supported by the stackmap and
713// patchpoint intrinsics. All other uses will result in an assert on Debug
714// builds. On Release builds we fallback to the X86 C calling convention.
715def CC_X86_64_AnyReg : CallingConv<[
716  CCCustom<"CC_X86_AnyReg_Error">
717]>;
718
719//===----------------------------------------------------------------------===//
720// X86 C Calling Convention
721//===----------------------------------------------------------------------===//
722
723/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
724/// values are spilled on the stack.
725def CC_X86_32_Vector_Common : CallingConv<[
726  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
727  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
728
729  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
730  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
731           CCAssignToStack<32, 32>>,
732
733  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
734  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
735           CCAssignToStack<64, 64>>
736]>;
737
738// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
739// vector registers
740def CC_X86_32_Vector_Standard : CallingConv<[
741  // SSE vector arguments are passed in XMM registers.
742  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
743                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
744
745  // AVX 256-bit vector arguments are passed in YMM registers.
746  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
747                CCIfSubtarget<"hasAVX()",
748                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
749
750  // AVX 512-bit vector arguments are passed in ZMM registers.
751  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
752                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
753
754  CCDelegateTo<CC_X86_32_Vector_Common>
755]>;
756
757// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
758// vector registers.
759def CC_X86_32_Vector_Darwin : CallingConv<[
760  // SSE vector arguments are passed in XMM registers.
761  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
762                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
763
764  // AVX 256-bit vector arguments are passed in YMM registers.
765  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
766                CCIfSubtarget<"hasAVX()",
767                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
768
769  // AVX 512-bit vector arguments are passed in ZMM registers.
770  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
771                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
772
773  CCDelegateTo<CC_X86_32_Vector_Common>
774]>;
775
776/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
777/// values are spilled on the stack.
778def CC_X86_32_Common : CallingConv<[
779  // Handles byval parameters.
780  CCIfByVal<CCPassByVal<4, 4>>,
781
782  // The first 3 float or double arguments, if marked 'inreg' and if the call
783  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
784  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
785                CCIfSubtarget<"hasSSE2()",
786                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
787
788  // The first 3 __m64 vector arguments are passed in mmx registers if the
789  // call is not a vararg call.
790  CCIfNotVarArg<CCIfType<[x86mmx],
791                CCAssignToReg<[MM0, MM1, MM2]>>>,
792
793  // Integer/Float values get stored in stack slots that are 4 bytes in
794  // size and 4-byte aligned.
795  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
796
797  // Doubles get 8-byte slots that are 4-byte aligned.
798  CCIfType<[f64], CCAssignToStack<8, 4>>,
799
800  // Long doubles get slots whose size depends on the subtarget.
801  CCIfType<[f80], CCAssignToStack<0, 4>>,
802
803  // Boolean vectors of AVX-512 are passed in SIMD registers.
804  // The call from AVX to AVX-512 function should work,
805  // since the boolean types in AVX/AVX2 are promoted by default.
806  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
807  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
808  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
809  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
810  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
811  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
812
813  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
814  // passed in the parameter area.
815  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
816
817  // Darwin passes vectors in a form that differs from the i386 psABI
818  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
819
820  // Otherwise, drop to 'normal' X86-32 CC
821  CCDelegateTo<CC_X86_32_Vector_Standard>
822]>;
823
824def CC_X86_32_C : CallingConv<[
825  // Promote i1/i8/i16/v1i1 arguments to i32.
826  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
827
828  // The 'nest' parameter, if any, is passed in ECX.
829  CCIfNest<CCAssignToReg<[ECX]>>,
830
831  // The first 3 integer arguments, if marked 'inreg' and if the call is not
832  // a vararg call, are passed in integer registers.
833  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
834
835  // Otherwise, same as everything else.
836  CCDelegateTo<CC_X86_32_Common>
837]>;
838
839def CC_X86_32_MCU : CallingConv<[
840  // Handles byval parameters.  Note that, like FastCC, we can't rely on
841  // the delegation to CC_X86_32_Common because that happens after code that
842  // puts arguments in registers.
843  CCIfByVal<CCPassByVal<4, 4>>,
844
845  // Promote i1/i8/i16/v1i1 arguments to i32.
846  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
847
848  // If the call is not a vararg call, some arguments may be passed
849  // in integer registers.
850  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
851
852  // Otherwise, same as everything else.
853  CCDelegateTo<CC_X86_32_Common>
854]>;
855
856def CC_X86_32_FastCall : CallingConv<[
857  // Promote i1 to i8.
858  CCIfType<[i1], CCPromoteToType<i8>>,
859
860  // The 'nest' parameter, if any, is passed in EAX.
861  CCIfNest<CCAssignToReg<[EAX]>>,
862
863  // The first 2 integer arguments are passed in ECX/EDX
864  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
865  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
866  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
867
868  // Otherwise, same as everything else.
869  CCDelegateTo<CC_X86_32_Common>
870]>;
871
872def CC_X86_Win32_VectorCall : CallingConv<[
873  // Pass floating point in XMMs
874  CCCustom<"CC_X86_32_VectorCall">,
875
876  // Delegate to fastcall to handle integer types.
877  CCDelegateTo<CC_X86_32_FastCall>
878]>;
879
880def CC_X86_32_ThisCall_Common : CallingConv<[
881  // The first integer argument is passed in ECX
882  CCIfType<[i32], CCAssignToReg<[ECX]>>,
883
884  // Otherwise, same as everything else.
885  CCDelegateTo<CC_X86_32_Common>
886]>;
887
888def CC_X86_32_ThisCall_Mingw : CallingConv<[
889  // Promote i1/i8/i16/v1i1 arguments to i32.
890  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
891
892  CCDelegateTo<CC_X86_32_ThisCall_Common>
893]>;
894
895def CC_X86_32_ThisCall_Win : CallingConv<[
896  // Promote i1/i8/i16/v1i1 arguments to i32.
897  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
898
899  // Pass sret arguments indirectly through stack.
900  CCIfSRet<CCAssignToStack<4, 4>>,
901
902  CCDelegateTo<CC_X86_32_ThisCall_Common>
903]>;
904
905def CC_X86_32_ThisCall : CallingConv<[
906  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
907  CCDelegateTo<CC_X86_32_ThisCall_Win>
908]>;
909
910def CC_X86_32_FastCC : CallingConv<[
911  // Handles byval parameters.  Note that we can't rely on the delegation
912  // to CC_X86_32_Common for this because that happens after code that
913  // puts arguments in registers.
914  CCIfByVal<CCPassByVal<4, 4>>,
915
916  // Promote i1/i8/i16/v1i1 arguments to i32.
917  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
918
919  // The 'nest' parameter, if any, is passed in EAX.
920  CCIfNest<CCAssignToReg<[EAX]>>,
921
922  // The first 2 integer arguments are passed in ECX/EDX
923  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
924
925  // The first 3 float or double arguments, if the call is not a vararg
926  // call and if SSE2 is available, are passed in SSE registers.
927  CCIfNotVarArg<CCIfType<[f32,f64],
928                CCIfSubtarget<"hasSSE2()",
929                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
930
931  // Doubles get 8-byte slots that are 8-byte aligned.
932  CCIfType<[f64], CCAssignToStack<8, 8>>,
933
934  // Otherwise, same as everything else.
935  CCDelegateTo<CC_X86_32_Common>
936]>;
937
938def CC_X86_32_GHC : CallingConv<[
939  // Promote i8/i16 arguments to i32.
940  CCIfType<[i8, i16], CCPromoteToType<i32>>,
941
942  // Pass in STG registers: Base, Sp, Hp, R1
943  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
944]>;
945
946def CC_X86_32_HiPE : CallingConv<[
947  // Promote i8/i16 arguments to i32.
948  CCIfType<[i8, i16], CCPromoteToType<i32>>,
949
950  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
951  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
952
953  // Integer/Float values get stored in stack slots that are 4 bytes in
954  // size and 4-byte aligned.
955  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
956]>;
957
958// X86-64 Intel OpenCL built-ins calling convention.
959def CC_Intel_OCL_BI : CallingConv<[
960
961  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
962  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
963
964  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
965  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
966
967  CCIfType<[i32], CCAssignToStack<4, 4>>,
968
969  // The SSE vector arguments are passed in XMM registers.
970  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
971           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
972
973  // The 256-bit vector arguments are passed in YMM registers.
974  CCIfType<[v8f32, v4f64, v8i32, v4i64],
975           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
976
977  // The 512-bit vector arguments are passed in ZMM registers.
978  CCIfType<[v16f32, v8f64, v16i32, v8i64],
979           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
980
981  // Pass masks in mask registers
982  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
983
984  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
985  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
986  CCDelegateTo<CC_X86_32_C>
987]>;
988
989//===----------------------------------------------------------------------===//
990// X86 Root Argument Calling Conventions
991//===----------------------------------------------------------------------===//
992
993// This is the root argument convention for the X86-32 backend.
994def CC_X86_32 : CallingConv<[
995  // X86_INTR calling convention is valid in MCU target and should override the
996  // MCU calling convention. Thus, this should be checked before isTargetMCU().
997  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
998  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
999  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
1000  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
1001  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
1002  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
1003  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
1004  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
1005  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
1006
1007  // Otherwise, drop to normal X86-32 CC
1008  CCDelegateTo<CC_X86_32_C>
1009]>;
1010
1011// This is the root argument convention for the X86-64 backend.
1012def CC_X86_64 : CallingConv<[
1013  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
1014  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
1015  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
1016  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
1017  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
1018  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
1019  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
1020  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
1021  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
1022  CCIfCC<"CallingConv::X86_RegCall",
1023    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
1024  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
1025  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1026
1027  // Mingw64 and native Win64 use Win64 CC
1028  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1029
1030  // Otherwise, drop to normal X86-64 CC
1031  CCDelegateTo<CC_X86_64_C>
1032]>;
1033
1034// This is the argument convention used for the entire X86 backend.
1035let Entry = 1 in
1036def CC_X86 : CallingConv<[
1037  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
1038  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
1039  CCDelegateTo<CC_X86_32>
1040]>;
1041
1042//===----------------------------------------------------------------------===//
1043// Callee-saved Registers.
1044//===----------------------------------------------------------------------===//
1045
1046def CSR_NoRegs : CalleeSavedRegs<(add)>;
1047
1048def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1049def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
1050
1051def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
1052
1053def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
1054def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
1055
1056def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
1057
1058def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
1059                                     (sequence "XMM%u", 6, 15))>;
1060
1061def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
1062
1063// The function used by Darwin to obtain the address of a thread-local variable
1064// uses rdi to pass a single parameter and rax for the return value. All other
1065// GPRs are preserved.
1066def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
1067                                             R8, R9, R10, R11)>;
1068
1069// CSRs that are handled by prologue, epilogue.
1070def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
1071
1072// CSRs that are handled explicitly via copies.
1073def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
1074
1075// All GPRs - except r11
1076def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
1077                                              R8, R9, R10, RSP)>;
1078
1079// All registers - except r11
1080def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1081                                                 (sequence "XMM%u", 0, 15))>;
1082def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1083                                                 (sequence "YMM%u", 0, 15))>;
1084
1085def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
1086                                           R11, R12, R13, R14, R15, RBP,
1087                                           (sequence "XMM%u", 0, 15))>;
1088
1089def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
1090                                              EDI)>;
1091def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
1092                                              (sequence "XMM%u", 0, 7))>;
1093def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
1094                                              (sequence "YMM%u", 0, 7))>;
1095def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
1096                                                 (sequence "ZMM%u", 0, 7),
1097                                                 (sequence "K%u", 0, 7))>;
1098
1099def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
1100def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
1101                                                R10, R11, R12, R13, R14, R15, RBP)>;
1102def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1103                                                   (sequence "YMM%u", 0, 15)),
1104                                              (sequence "XMM%u", 0, 15))>;
1105def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1106                                                      (sequence "ZMM%u", 0, 31),
1107                                                      (sequence "K%u", 0, 7)),
1108                                                 (sequence "XMM%u", 0, 15))>;
1109
1110// Standard C + YMM6-15
1111def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
1112                                                  R13, R14, R15,
1113                                                  (sequence "YMM%u", 6, 15))>;
1114
1115def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
1116                                                     R12, R13, R14, R15,
1117                                                     (sequence "ZMM%u", 6, 21),
1118                                                     K4, K5, K6, K7)>;
1119//Standard C + XMM 8-15
1120def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
1121                                                 (sequence "XMM%u", 8, 15))>;
1122
1123//Standard C + YMM 8-15
1124def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
1125                                                  (sequence "YMM%u", 8, 15))>;
1126
1127def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
1128                                                  (sequence "ZMM%u", 16, 31),
1129                                                  K4, K5, K6, K7)>;
1130
1131// Only R12 is preserved for PHP calls in HHVM.
1132def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
1133
1134// Register calling convention preserves few GPR and XMM8-15
1135def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
1136def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
1137                                           (sequence "XMM%u", 4, 7))>;
1138def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
1139                                              (sequence "R%u", 10, 15))>;
1140def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
1141                                              (sequence "XMM%u", 8, 15))>;
1142def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
1143                                               (sequence "R%u", 12, 15))>;
1144def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
1145                                               (sequence "XMM%u", 8, 15))>;
1146
1147