1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86-specific support for the FastISel class. Much
10 // of the target-specific code is generated by tablegen in the file
11 // X86GenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86CallingConv.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/IntrinsicsX86.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCSymbol.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetOptions.h"
43 using namespace llvm;
44 
45 namespace {
46 
47 class X86FastISel final : public FastISel {
48   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49   /// make the right decision when generating code for different targets.
50   const X86Subtarget *Subtarget;
51 
52 public:
53   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
54                        const TargetLibraryInfo *libInfo)
55       : FastISel(funcInfo, libInfo) {
56     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
57   }
58 
59   bool fastSelectInstruction(const Instruction *I) override;
60 
61   /// The specified machine instr operand is a vreg, and that
62   /// vreg is being provided by the specified load instruction.  If possible,
63   /// try to fold the load as an operand to the instruction, returning true if
64   /// possible.
65   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
66                            const LoadInst *LI) override;
67 
68   bool fastLowerArguments() override;
69   bool fastLowerCall(CallLoweringInfo &CLI) override;
70   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
71 
72 #include "X86GenFastISel.inc"
73 
74 private:
75   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
76                           const DebugLoc &DL);
77 
78   bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
79                        unsigned &ResultReg, unsigned Alignment = 1);
80 
81   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
82                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
83   bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
84                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
85 
86   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
87                          unsigned &ResultReg);
88 
89   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
90   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
91 
92   bool X86SelectLoad(const Instruction *I);
93 
94   bool X86SelectStore(const Instruction *I);
95 
96   bool X86SelectRet(const Instruction *I);
97 
98   bool X86SelectCmp(const Instruction *I);
99 
100   bool X86SelectZExt(const Instruction *I);
101 
102   bool X86SelectSExt(const Instruction *I);
103 
104   bool X86SelectBranch(const Instruction *I);
105 
106   bool X86SelectShift(const Instruction *I);
107 
108   bool X86SelectDivRem(const Instruction *I);
109 
110   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
111 
112   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
113 
114   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
115 
116   bool X86SelectSelect(const Instruction *I);
117 
118   bool X86SelectTrunc(const Instruction *I);
119 
120   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
121                                const TargetRegisterClass *RC);
122 
123   bool X86SelectFPExt(const Instruction *I);
124   bool X86SelectFPTrunc(const Instruction *I);
125   bool X86SelectSIToFP(const Instruction *I);
126   bool X86SelectUIToFP(const Instruction *I);
127   bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
128 
129   const X86InstrInfo *getInstrInfo() const {
130     return Subtarget->getInstrInfo();
131   }
132   const X86TargetMachine *getTargetMachine() const {
133     return static_cast<const X86TargetMachine *>(&TM);
134   }
135 
136   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
137 
138   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
139   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
140   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
141   unsigned fastMaterializeConstant(const Constant *C) override;
142 
143   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
144 
145   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
146 
147   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
148   /// computed in an SSE register, not on the X87 floating point stack.
149   bool isScalarFPTypeInSSEReg(EVT VT) const {
150     return (VT == MVT::f64 && Subtarget->hasSSE2()) ||
151            (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16;
152   }
153 
154   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
155 
156   bool IsMemcpySmall(uint64_t Len);
157 
158   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
159                           X86AddressMode SrcAM, uint64_t Len);
160 
161   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
162                             const Value *Cond);
163 
164   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
165                                             X86AddressMode &AM);
166 
167   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
168                              const TargetRegisterClass *RC, unsigned Op0,
169                              unsigned Op1, unsigned Op2, unsigned Op3);
170 };
171 
172 } // end anonymous namespace.
173 
174 static std::pair<unsigned, bool>
175 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
176   unsigned CC;
177   bool NeedSwap = false;
178 
179   // SSE Condition code mapping:
180   //  0 - EQ
181   //  1 - LT
182   //  2 - LE
183   //  3 - UNORD
184   //  4 - NEQ
185   //  5 - NLT
186   //  6 - NLE
187   //  7 - ORD
188   switch (Predicate) {
189   default: llvm_unreachable("Unexpected predicate");
190   case CmpInst::FCMP_OEQ: CC = 0;          break;
191   case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
192   case CmpInst::FCMP_OLT: CC = 1;          break;
193   case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
194   case CmpInst::FCMP_OLE: CC = 2;          break;
195   case CmpInst::FCMP_UNO: CC = 3;          break;
196   case CmpInst::FCMP_UNE: CC = 4;          break;
197   case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
198   case CmpInst::FCMP_UGE: CC = 5;          break;
199   case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
200   case CmpInst::FCMP_UGT: CC = 6;          break;
201   case CmpInst::FCMP_ORD: CC = 7;          break;
202   case CmpInst::FCMP_UEQ: CC = 8;          break;
203   case CmpInst::FCMP_ONE: CC = 12;         break;
204   }
205 
206   return std::make_pair(CC, NeedSwap);
207 }
208 
209 /// Adds a complex addressing mode to the given machine instr builder.
210 /// Note, this will constrain the index register.  If its not possible to
211 /// constrain the given index register, then a new one will be created.  The
212 /// IndexReg field of the addressing mode will be updated to match in this case.
213 const MachineInstrBuilder &
214 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
215                             X86AddressMode &AM) {
216   // First constrain the index register.  It needs to be a GR64_NOSP.
217   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
218                                          MIB->getNumOperands() +
219                                          X86::AddrIndexReg);
220   return ::addFullAddress(MIB, AM);
221 }
222 
223 /// Check if it is possible to fold the condition from the XALU intrinsic
224 /// into the user. The condition code will only be updated on success.
225 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
226                                        const Value *Cond) {
227   if (!isa<ExtractValueInst>(Cond))
228     return false;
229 
230   const auto *EV = cast<ExtractValueInst>(Cond);
231   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
232     return false;
233 
234   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
235   MVT RetVT;
236   const Function *Callee = II->getCalledFunction();
237   Type *RetTy =
238     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
239   if (!isTypeLegal(RetTy, RetVT))
240     return false;
241 
242   if (RetVT != MVT::i32 && RetVT != MVT::i64)
243     return false;
244 
245   X86::CondCode TmpCC;
246   switch (II->getIntrinsicID()) {
247   default: return false;
248   case Intrinsic::sadd_with_overflow:
249   case Intrinsic::ssub_with_overflow:
250   case Intrinsic::smul_with_overflow:
251   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
252   case Intrinsic::uadd_with_overflow:
253   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
254   }
255 
256   // Check if both instructions are in the same basic block.
257   if (II->getParent() != I->getParent())
258     return false;
259 
260   // Make sure nothing is in the way
261   BasicBlock::const_iterator Start(I);
262   BasicBlock::const_iterator End(II);
263   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
264     // We only expect extractvalue instructions between the intrinsic and the
265     // instruction to be selected.
266     if (!isa<ExtractValueInst>(Itr))
267       return false;
268 
269     // Check that the extractvalue operand comes from the intrinsic.
270     const auto *EVI = cast<ExtractValueInst>(Itr);
271     if (EVI->getAggregateOperand() != II)
272       return false;
273   }
274 
275   // Make sure no potentially eflags clobbering phi moves can be inserted in
276   // between.
277   auto HasPhis = [](const BasicBlock *Succ) {
278     return !llvm::empty(Succ->phis());
279   };
280   if (I->isTerminator() && llvm::any_of(successors(I), HasPhis))
281     return false;
282 
283   // Make sure there are no potentially eflags clobbering constant
284   // materializations in between.
285   if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); }))
286     return false;
287 
288   CC = TmpCC;
289   return true;
290 }
291 
292 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
293   EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
294   if (evt == MVT::Other || !evt.isSimple())
295     // Unhandled type. Halt "fast" selection and bail.
296     return false;
297 
298   VT = evt.getSimpleVT();
299   // For now, require SSE/SSE2 for performing floating-point operations,
300   // since x87 requires additional work.
301   if (VT == MVT::f64 && !Subtarget->hasSSE2())
302     return false;
303   if (VT == MVT::f32 && !Subtarget->hasSSE1())
304     return false;
305   // Similarly, no f80 support yet.
306   if (VT == MVT::f80)
307     return false;
308   // We only handle legal types. For example, on x86-32 the instruction
309   // selector contains all of the 64-bit instructions from x86-64,
310   // under the assumption that i64 won't be used if the target doesn't
311   // support it.
312   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
313 }
314 
315 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
316 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
317 /// Return true and the result register by reference if it is possible.
318 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
319                                   MachineMemOperand *MMO, unsigned &ResultReg,
320                                   unsigned Alignment) {
321   bool HasSSE1 = Subtarget->hasSSE1();
322   bool HasSSE2 = Subtarget->hasSSE2();
323   bool HasSSE41 = Subtarget->hasSSE41();
324   bool HasAVX = Subtarget->hasAVX();
325   bool HasAVX2 = Subtarget->hasAVX2();
326   bool HasAVX512 = Subtarget->hasAVX512();
327   bool HasVLX = Subtarget->hasVLX();
328   bool IsNonTemporal = MMO && MMO->isNonTemporal();
329 
330   // Treat i1 loads the same as i8 loads. Masking will be done when storing.
331   if (VT == MVT::i1)
332     VT = MVT::i8;
333 
334   // Get opcode and regclass of the output for the given load instruction.
335   unsigned Opc = 0;
336   switch (VT.SimpleTy) {
337   default: return false;
338   case MVT::i8:
339     Opc = X86::MOV8rm;
340     break;
341   case MVT::i16:
342     Opc = X86::MOV16rm;
343     break;
344   case MVT::i32:
345     Opc = X86::MOV32rm;
346     break;
347   case MVT::i64:
348     // Must be in x86-64 mode.
349     Opc = X86::MOV64rm;
350     break;
351   case MVT::f32:
352     Opc = HasAVX512 ? X86::VMOVSSZrm_alt
353           : HasAVX  ? X86::VMOVSSrm_alt
354           : HasSSE1 ? X86::MOVSSrm_alt
355                     : X86::LD_Fp32m;
356     break;
357   case MVT::f64:
358     Opc = HasAVX512 ? X86::VMOVSDZrm_alt
359           : HasAVX  ? X86::VMOVSDrm_alt
360           : HasSSE2 ? X86::MOVSDrm_alt
361                     : X86::LD_Fp64m;
362     break;
363   case MVT::f80:
364     // No f80 support yet.
365     return false;
366   case MVT::v4f32:
367     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
368       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
369             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
370     else if (Alignment >= 16)
371       Opc = HasVLX ? X86::VMOVAPSZ128rm :
372             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
373     else
374       Opc = HasVLX ? X86::VMOVUPSZ128rm :
375             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
376     break;
377   case MVT::v2f64:
378     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
379       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
380             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
381     else if (Alignment >= 16)
382       Opc = HasVLX ? X86::VMOVAPDZ128rm :
383             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
384     else
385       Opc = HasVLX ? X86::VMOVUPDZ128rm :
386             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
387     break;
388   case MVT::v4i32:
389   case MVT::v2i64:
390   case MVT::v8i16:
391   case MVT::v16i8:
392     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
393       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
394             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
395     else if (Alignment >= 16)
396       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
397             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
398     else
399       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
400             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
401     break;
402   case MVT::v8f32:
403     assert(HasAVX);
404     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
405       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
406     else if (IsNonTemporal && Alignment >= 16)
407       return false; // Force split for X86::VMOVNTDQArm
408     else if (Alignment >= 32)
409       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
410     else
411       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
412     break;
413   case MVT::v4f64:
414     assert(HasAVX);
415     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
416       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
417     else if (IsNonTemporal && Alignment >= 16)
418       return false; // Force split for X86::VMOVNTDQArm
419     else if (Alignment >= 32)
420       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
421     else
422       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
423     break;
424   case MVT::v8i32:
425   case MVT::v4i64:
426   case MVT::v16i16:
427   case MVT::v32i8:
428     assert(HasAVX);
429     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
430       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
431     else if (IsNonTemporal && Alignment >= 16)
432       return false; // Force split for X86::VMOVNTDQArm
433     else if (Alignment >= 32)
434       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
435     else
436       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
437     break;
438   case MVT::v16f32:
439     assert(HasAVX512);
440     if (IsNonTemporal && Alignment >= 64)
441       Opc = X86::VMOVNTDQAZrm;
442     else
443       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
444     break;
445   case MVT::v8f64:
446     assert(HasAVX512);
447     if (IsNonTemporal && Alignment >= 64)
448       Opc = X86::VMOVNTDQAZrm;
449     else
450       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
451     break;
452   case MVT::v8i64:
453   case MVT::v16i32:
454   case MVT::v32i16:
455   case MVT::v64i8:
456     assert(HasAVX512);
457     // Note: There are a lot more choices based on type with AVX-512, but
458     // there's really no advantage when the load isn't masked.
459     if (IsNonTemporal && Alignment >= 64)
460       Opc = X86::VMOVNTDQAZrm;
461     else
462       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
463     break;
464   }
465 
466   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
467 
468   ResultReg = createResultReg(RC);
469   MachineInstrBuilder MIB =
470     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
471   addFullAddress(MIB, AM);
472   if (MMO)
473     MIB->addMemOperand(*FuncInfo.MF, MMO);
474   return true;
475 }
476 
477 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
478 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
479 /// and a displacement offset, or a GlobalAddress,
480 /// i.e. V. Return true if it is possible.
481 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
482                                    MachineMemOperand *MMO, bool Aligned) {
483   bool HasSSE1 = Subtarget->hasSSE1();
484   bool HasSSE2 = Subtarget->hasSSE2();
485   bool HasSSE4A = Subtarget->hasSSE4A();
486   bool HasAVX = Subtarget->hasAVX();
487   bool HasAVX512 = Subtarget->hasAVX512();
488   bool HasVLX = Subtarget->hasVLX();
489   bool IsNonTemporal = MMO && MMO->isNonTemporal();
490 
491   // Get opcode and regclass of the output for the given store instruction.
492   unsigned Opc = 0;
493   switch (VT.getSimpleVT().SimpleTy) {
494   case MVT::f80: // No f80 support yet.
495   default: return false;
496   case MVT::i1: {
497     // Mask out all but lowest bit.
498     Register AndResult = createResultReg(&X86::GR8RegClass);
499     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
500             TII.get(X86::AND8ri), AndResult)
501       .addReg(ValReg).addImm(1);
502     ValReg = AndResult;
503     LLVM_FALLTHROUGH; // handle i1 as i8.
504   }
505   case MVT::i8:  Opc = X86::MOV8mr;  break;
506   case MVT::i16: Opc = X86::MOV16mr; break;
507   case MVT::i32:
508     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
509     break;
510   case MVT::i64:
511     // Must be in x86-64 mode.
512     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
513     break;
514   case MVT::f32:
515     if (HasSSE1) {
516       if (IsNonTemporal && HasSSE4A)
517         Opc = X86::MOVNTSS;
518       else
519         Opc = HasAVX512 ? X86::VMOVSSZmr :
520               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
521     } else
522       Opc = X86::ST_Fp32m;
523     break;
524   case MVT::f64:
525     if (HasSSE2) {
526       if (IsNonTemporal && HasSSE4A)
527         Opc = X86::MOVNTSD;
528       else
529         Opc = HasAVX512 ? X86::VMOVSDZmr :
530               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
531     } else
532       Opc = X86::ST_Fp64m;
533     break;
534   case MVT::x86mmx:
535     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
536     break;
537   case MVT::v4f32:
538     if (Aligned) {
539       if (IsNonTemporal)
540         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
541               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
542       else
543         Opc = HasVLX ? X86::VMOVAPSZ128mr :
544               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
545     } else
546       Opc = HasVLX ? X86::VMOVUPSZ128mr :
547             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
548     break;
549   case MVT::v2f64:
550     if (Aligned) {
551       if (IsNonTemporal)
552         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
553               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
554       else
555         Opc = HasVLX ? X86::VMOVAPDZ128mr :
556               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
557     } else
558       Opc = HasVLX ? X86::VMOVUPDZ128mr :
559             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
560     break;
561   case MVT::v4i32:
562   case MVT::v2i64:
563   case MVT::v8i16:
564   case MVT::v16i8:
565     if (Aligned) {
566       if (IsNonTemporal)
567         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
568               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
569       else
570         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
571               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
572     } else
573       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
574             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
575     break;
576   case MVT::v8f32:
577     assert(HasAVX);
578     if (Aligned) {
579       if (IsNonTemporal)
580         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
581       else
582         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
583     } else
584       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
585     break;
586   case MVT::v4f64:
587     assert(HasAVX);
588     if (Aligned) {
589       if (IsNonTemporal)
590         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
591       else
592         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
593     } else
594       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
595     break;
596   case MVT::v8i32:
597   case MVT::v4i64:
598   case MVT::v16i16:
599   case MVT::v32i8:
600     assert(HasAVX);
601     if (Aligned) {
602       if (IsNonTemporal)
603         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
604       else
605         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
606     } else
607       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
608     break;
609   case MVT::v16f32:
610     assert(HasAVX512);
611     if (Aligned)
612       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
613     else
614       Opc = X86::VMOVUPSZmr;
615     break;
616   case MVT::v8f64:
617     assert(HasAVX512);
618     if (Aligned) {
619       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
620     } else
621       Opc = X86::VMOVUPDZmr;
622     break;
623   case MVT::v8i64:
624   case MVT::v16i32:
625   case MVT::v32i16:
626   case MVT::v64i8:
627     assert(HasAVX512);
628     // Note: There are a lot more choices based on type with AVX-512, but
629     // there's really no advantage when the store isn't masked.
630     if (Aligned)
631       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
632     else
633       Opc = X86::VMOVDQU64Zmr;
634     break;
635   }
636 
637   const MCInstrDesc &Desc = TII.get(Opc);
638   // Some of the instructions in the previous switch use FR128 instead
639   // of FR32 for ValReg. Make sure the register we feed the instruction
640   // matches its register class constraints.
641   // Note: This is fine to do a copy from FR32 to FR128, this is the
642   // same registers behind the scene and actually why it did not trigger
643   // any bugs before.
644   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
645   MachineInstrBuilder MIB =
646       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
647   addFullAddress(MIB, AM).addReg(ValReg);
648   if (MMO)
649     MIB->addMemOperand(*FuncInfo.MF, MMO);
650 
651   return true;
652 }
653 
654 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
655                                    X86AddressMode &AM,
656                                    MachineMemOperand *MMO, bool Aligned) {
657   // Handle 'null' like i32/i64 0.
658   if (isa<ConstantPointerNull>(Val))
659     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
660 
661   // If this is a store of a simple constant, fold the constant into the store.
662   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
663     unsigned Opc = 0;
664     bool Signed = true;
665     switch (VT.getSimpleVT().SimpleTy) {
666     default: break;
667     case MVT::i1:
668       Signed = false;
669       LLVM_FALLTHROUGH; // Handle as i8.
670     case MVT::i8:  Opc = X86::MOV8mi;  break;
671     case MVT::i16: Opc = X86::MOV16mi; break;
672     case MVT::i32: Opc = X86::MOV32mi; break;
673     case MVT::i64:
674       // Must be a 32-bit sign extended value.
675       if (isInt<32>(CI->getSExtValue()))
676         Opc = X86::MOV64mi32;
677       break;
678     }
679 
680     if (Opc) {
681       MachineInstrBuilder MIB =
682         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
683       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
684                                             : CI->getZExtValue());
685       if (MMO)
686         MIB->addMemOperand(*FuncInfo.MF, MMO);
687       return true;
688     }
689   }
690 
691   Register ValReg = getRegForValue(Val);
692   if (ValReg == 0)
693     return false;
694 
695   return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned);
696 }
697 
698 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
699 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
700 /// ISD::SIGN_EXTEND).
701 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
702                                     unsigned Src, EVT SrcVT,
703                                     unsigned &ResultReg) {
704   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
705   if (RR == 0)
706     return false;
707 
708   ResultReg = RR;
709   return true;
710 }
711 
712 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
713   // Handle constant address.
714   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
715     // Can't handle alternate code models yet.
716     if (TM.getCodeModel() != CodeModel::Small)
717       return false;
718 
719     // Can't handle TLS yet.
720     if (GV->isThreadLocal())
721       return false;
722 
723     // Can't handle !absolute_symbol references yet.
724     if (GV->isAbsoluteSymbolRef())
725       return false;
726 
727     // RIP-relative addresses can't have additional register operands, so if
728     // we've already folded stuff into the addressing mode, just force the
729     // global value into its own register, which we can use as the basereg.
730     if (!Subtarget->isPICStyleRIPRel() ||
731         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
732       // Okay, we've committed to selecting this global. Set up the address.
733       AM.GV = GV;
734 
735       // Allow the subtarget to classify the global.
736       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
737 
738       // If this reference is relative to the pic base, set it now.
739       if (isGlobalRelativeToPICBase(GVFlags)) {
740         // FIXME: How do we know Base.Reg is free??
741         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
742       }
743 
744       // Unless the ABI requires an extra load, return a direct reference to
745       // the global.
746       if (!isGlobalStubReference(GVFlags)) {
747         if (Subtarget->isPICStyleRIPRel()) {
748           // Use rip-relative addressing if we can.  Above we verified that the
749           // base and index registers are unused.
750           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
751           AM.Base.Reg = X86::RIP;
752         }
753         AM.GVOpFlags = GVFlags;
754         return true;
755       }
756 
757       // Ok, we need to do a load from a stub.  If we've already loaded from
758       // this stub, reuse the loaded pointer, otherwise emit the load now.
759       DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
760       Register LoadReg;
761       if (I != LocalValueMap.end() && I->second) {
762         LoadReg = I->second;
763       } else {
764         // Issue load from stub.
765         unsigned Opc = 0;
766         const TargetRegisterClass *RC = nullptr;
767         X86AddressMode StubAM;
768         StubAM.Base.Reg = AM.Base.Reg;
769         StubAM.GV = GV;
770         StubAM.GVOpFlags = GVFlags;
771 
772         // Prepare for inserting code in the local-value area.
773         SavePoint SaveInsertPt = enterLocalValueArea();
774 
775         if (TLI.getPointerTy(DL) == MVT::i64) {
776           Opc = X86::MOV64rm;
777           RC  = &X86::GR64RegClass;
778         } else {
779           Opc = X86::MOV32rm;
780           RC  = &X86::GR32RegClass;
781         }
782 
783         if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL ||
784             GVFlags == X86II::MO_GOTPCREL_NORELAX)
785           StubAM.Base.Reg = X86::RIP;
786 
787         LoadReg = createResultReg(RC);
788         MachineInstrBuilder LoadMI =
789           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
790         addFullAddress(LoadMI, StubAM);
791 
792         // Ok, back to normal mode.
793         leaveLocalValueArea(SaveInsertPt);
794 
795         // Prevent loading GV stub multiple times in same MBB.
796         LocalValueMap[V] = LoadReg;
797       }
798 
799       // Now construct the final address. Note that the Disp, Scale,
800       // and Index values may already be set here.
801       AM.Base.Reg = LoadReg;
802       AM.GV = nullptr;
803       return true;
804     }
805   }
806 
807   // If all else fails, try to materialize the value in a register.
808   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
809     if (AM.Base.Reg == 0) {
810       AM.Base.Reg = getRegForValue(V);
811       return AM.Base.Reg != 0;
812     }
813     if (AM.IndexReg == 0) {
814       assert(AM.Scale == 1 && "Scale with no index!");
815       AM.IndexReg = getRegForValue(V);
816       return AM.IndexReg != 0;
817     }
818   }
819 
820   return false;
821 }
822 
823 /// X86SelectAddress - Attempt to fill in an address from the given value.
824 ///
825 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
826   SmallVector<const Value *, 32> GEPs;
827 redo_gep:
828   const User *U = nullptr;
829   unsigned Opcode = Instruction::UserOp1;
830   if (const Instruction *I = dyn_cast<Instruction>(V)) {
831     // Don't walk into other basic blocks; it's possible we haven't
832     // visited them yet, so the instructions may not yet be assigned
833     // virtual registers.
834     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
835         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
836       Opcode = I->getOpcode();
837       U = I;
838     }
839   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
840     Opcode = C->getOpcode();
841     U = C;
842   }
843 
844   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
845     if (Ty->getAddressSpace() > 255)
846       // Fast instruction selection doesn't support the special
847       // address spaces.
848       return false;
849 
850   switch (Opcode) {
851   default: break;
852   case Instruction::BitCast:
853     // Look past bitcasts.
854     return X86SelectAddress(U->getOperand(0), AM);
855 
856   case Instruction::IntToPtr:
857     // Look past no-op inttoptrs.
858     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
859         TLI.getPointerTy(DL))
860       return X86SelectAddress(U->getOperand(0), AM);
861     break;
862 
863   case Instruction::PtrToInt:
864     // Look past no-op ptrtoints.
865     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
866       return X86SelectAddress(U->getOperand(0), AM);
867     break;
868 
869   case Instruction::Alloca: {
870     // Do static allocas.
871     const AllocaInst *A = cast<AllocaInst>(V);
872     DenseMap<const AllocaInst *, int>::iterator SI =
873       FuncInfo.StaticAllocaMap.find(A);
874     if (SI != FuncInfo.StaticAllocaMap.end()) {
875       AM.BaseType = X86AddressMode::FrameIndexBase;
876       AM.Base.FrameIndex = SI->second;
877       return true;
878     }
879     break;
880   }
881 
882   case Instruction::Add: {
883     // Adds of constants are common and easy enough.
884     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
885       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
886       // They have to fit in the 32-bit signed displacement field though.
887       if (isInt<32>(Disp)) {
888         AM.Disp = (uint32_t)Disp;
889         return X86SelectAddress(U->getOperand(0), AM);
890       }
891     }
892     break;
893   }
894 
895   case Instruction::GetElementPtr: {
896     X86AddressMode SavedAM = AM;
897 
898     // Pattern-match simple GEPs.
899     uint64_t Disp = (int32_t)AM.Disp;
900     unsigned IndexReg = AM.IndexReg;
901     unsigned Scale = AM.Scale;
902     gep_type_iterator GTI = gep_type_begin(U);
903     // Iterate through the indices, folding what we can. Constants can be
904     // folded, and one dynamic index can be handled, if the scale is supported.
905     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
906          i != e; ++i, ++GTI) {
907       const Value *Op = *i;
908       if (StructType *STy = GTI.getStructTypeOrNull()) {
909         const StructLayout *SL = DL.getStructLayout(STy);
910         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
911         continue;
912       }
913 
914       // A array/variable index is always of the form i*S where S is the
915       // constant scale size.  See if we can push the scale into immediates.
916       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
917       for (;;) {
918         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
919           // Constant-offset addressing.
920           Disp += CI->getSExtValue() * S;
921           break;
922         }
923         if (canFoldAddIntoGEP(U, Op)) {
924           // A compatible add with a constant operand. Fold the constant.
925           ConstantInt *CI =
926             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
927           Disp += CI->getSExtValue() * S;
928           // Iterate on the other operand.
929           Op = cast<AddOperator>(Op)->getOperand(0);
930           continue;
931         }
932         if (IndexReg == 0 &&
933             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
934             (S == 1 || S == 2 || S == 4 || S == 8)) {
935           // Scaled-index addressing.
936           Scale = S;
937           IndexReg = getRegForGEPIndex(Op);
938           if (IndexReg == 0)
939             return false;
940           break;
941         }
942         // Unsupported.
943         goto unsupported_gep;
944       }
945     }
946 
947     // Check for displacement overflow.
948     if (!isInt<32>(Disp))
949       break;
950 
951     AM.IndexReg = IndexReg;
952     AM.Scale = Scale;
953     AM.Disp = (uint32_t)Disp;
954     GEPs.push_back(V);
955 
956     if (const GetElementPtrInst *GEP =
957           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
958       // Ok, the GEP indices were covered by constant-offset and scaled-index
959       // addressing. Update the address state and move on to examining the base.
960       V = GEP;
961       goto redo_gep;
962     } else if (X86SelectAddress(U->getOperand(0), AM)) {
963       return true;
964     }
965 
966     // If we couldn't merge the gep value into this addr mode, revert back to
967     // our address and just match the value instead of completely failing.
968     AM = SavedAM;
969 
970     for (const Value *I : reverse(GEPs))
971       if (handleConstantAddresses(I, AM))
972         return true;
973 
974     return false;
975   unsupported_gep:
976     // Ok, the GEP indices weren't all covered.
977     break;
978   }
979   }
980 
981   return handleConstantAddresses(V, AM);
982 }
983 
984 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
985 ///
986 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
987   const User *U = nullptr;
988   unsigned Opcode = Instruction::UserOp1;
989   const Instruction *I = dyn_cast<Instruction>(V);
990   // Record if the value is defined in the same basic block.
991   //
992   // This information is crucial to know whether or not folding an
993   // operand is valid.
994   // Indeed, FastISel generates or reuses a virtual register for all
995   // operands of all instructions it selects. Obviously, the definition and
996   // its uses must use the same virtual register otherwise the produced
997   // code is incorrect.
998   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
999   // registers for values that are alive across basic blocks. This ensures
1000   // that the values are consistently set between across basic block, even
1001   // if different instruction selection mechanisms are used (e.g., a mix of
1002   // SDISel and FastISel).
1003   // For values local to a basic block, the instruction selection process
1004   // generates these virtual registers with whatever method is appropriate
1005   // for its needs. In particular, FastISel and SDISel do not share the way
1006   // local virtual registers are set.
1007   // Therefore, this is impossible (or at least unsafe) to share values
1008   // between basic blocks unless they use the same instruction selection
1009   // method, which is not guarantee for X86.
1010   // Moreover, things like hasOneUse could not be used accurately, if we
1011   // allow to reference values across basic blocks whereas they are not
1012   // alive across basic blocks initially.
1013   bool InMBB = true;
1014   if (I) {
1015     Opcode = I->getOpcode();
1016     U = I;
1017     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1018   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1019     Opcode = C->getOpcode();
1020     U = C;
1021   }
1022 
1023   switch (Opcode) {
1024   default: break;
1025   case Instruction::BitCast:
1026     // Look past bitcasts if its operand is in the same BB.
1027     if (InMBB)
1028       return X86SelectCallAddress(U->getOperand(0), AM);
1029     break;
1030 
1031   case Instruction::IntToPtr:
1032     // Look past no-op inttoptrs if its operand is in the same BB.
1033     if (InMBB &&
1034         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1035             TLI.getPointerTy(DL))
1036       return X86SelectCallAddress(U->getOperand(0), AM);
1037     break;
1038 
1039   case Instruction::PtrToInt:
1040     // Look past no-op ptrtoints if its operand is in the same BB.
1041     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1042       return X86SelectCallAddress(U->getOperand(0), AM);
1043     break;
1044   }
1045 
1046   // Handle constant address.
1047   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1048     // Can't handle alternate code models yet.
1049     if (TM.getCodeModel() != CodeModel::Small)
1050       return false;
1051 
1052     // RIP-relative addresses can't have additional register operands.
1053     if (Subtarget->isPICStyleRIPRel() &&
1054         (AM.Base.Reg != 0 || AM.IndexReg != 0))
1055       return false;
1056 
1057     // Can't handle TLS.
1058     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1059       if (GVar->isThreadLocal())
1060         return false;
1061 
1062     // Okay, we've committed to selecting this global. Set up the basic address.
1063     AM.GV = GV;
1064 
1065     // Return a direct reference to the global. Fastisel can handle calls to
1066     // functions that require loads, such as dllimport and nonlazybind
1067     // functions.
1068     if (Subtarget->isPICStyleRIPRel()) {
1069       // Use rip-relative addressing if we can.  Above we verified that the
1070       // base and index registers are unused.
1071       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1072       AM.Base.Reg = X86::RIP;
1073     } else {
1074       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1075     }
1076 
1077     return true;
1078   }
1079 
1080   // If all else fails, try to materialize the value in a register.
1081   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1082     auto GetCallRegForValue = [this](const Value *V) {
1083       Register Reg = getRegForValue(V);
1084 
1085       // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
1086       if (Reg && Subtarget->isTarget64BitILP32()) {
1087         Register CopyReg = createResultReg(&X86::GR32RegClass);
1088         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32rr),
1089                 CopyReg)
1090             .addReg(Reg);
1091 
1092         Register ExtReg = createResultReg(&X86::GR64RegClass);
1093         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1094                 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
1095             .addImm(0)
1096             .addReg(CopyReg)
1097             .addImm(X86::sub_32bit);
1098         Reg = ExtReg;
1099       }
1100 
1101       return Reg;
1102     };
1103 
1104     if (AM.Base.Reg == 0) {
1105       AM.Base.Reg = GetCallRegForValue(V);
1106       return AM.Base.Reg != 0;
1107     }
1108     if (AM.IndexReg == 0) {
1109       assert(AM.Scale == 1 && "Scale with no index!");
1110       AM.IndexReg = GetCallRegForValue(V);
1111       return AM.IndexReg != 0;
1112     }
1113   }
1114 
1115   return false;
1116 }
1117 
1118 
1119 /// X86SelectStore - Select and emit code to implement store instructions.
1120 bool X86FastISel::X86SelectStore(const Instruction *I) {
1121   // Atomic stores need special handling.
1122   const StoreInst *S = cast<StoreInst>(I);
1123 
1124   if (S->isAtomic())
1125     return false;
1126 
1127   const Value *PtrV = I->getOperand(1);
1128   if (TLI.supportSwiftError()) {
1129     // Swifterror values can come from either a function parameter with
1130     // swifterror attribute or an alloca with swifterror attribute.
1131     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1132       if (Arg->hasSwiftErrorAttr())
1133         return false;
1134     }
1135 
1136     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1137       if (Alloca->isSwiftError())
1138         return false;
1139     }
1140   }
1141 
1142   const Value *Val = S->getValueOperand();
1143   const Value *Ptr = S->getPointerOperand();
1144 
1145   MVT VT;
1146   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1147     return false;
1148 
1149   Align Alignment = S->getAlign();
1150   Align ABIAlignment = DL.getABITypeAlign(Val->getType());
1151   bool Aligned = Alignment >= ABIAlignment;
1152 
1153   X86AddressMode AM;
1154   if (!X86SelectAddress(Ptr, AM))
1155     return false;
1156 
1157   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1158 }
1159 
1160 /// X86SelectRet - Select and emit code to implement ret instructions.
1161 bool X86FastISel::X86SelectRet(const Instruction *I) {
1162   const ReturnInst *Ret = cast<ReturnInst>(I);
1163   const Function &F = *I->getParent()->getParent();
1164   const X86MachineFunctionInfo *X86MFInfo =
1165       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1166 
1167   if (!FuncInfo.CanLowerReturn)
1168     return false;
1169 
1170   if (TLI.supportSwiftError() &&
1171       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1172     return false;
1173 
1174   if (TLI.supportSplitCSR(FuncInfo.MF))
1175     return false;
1176 
1177   CallingConv::ID CC = F.getCallingConv();
1178   if (CC != CallingConv::C &&
1179       CC != CallingConv::Fast &&
1180       CC != CallingConv::Tail &&
1181       CC != CallingConv::SwiftTail &&
1182       CC != CallingConv::X86_FastCall &&
1183       CC != CallingConv::X86_StdCall &&
1184       CC != CallingConv::X86_ThisCall &&
1185       CC != CallingConv::X86_64_SysV &&
1186       CC != CallingConv::Win64)
1187     return false;
1188 
1189   // Don't handle popping bytes if they don't fit the ret's immediate.
1190   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1191     return false;
1192 
1193   // fastcc with -tailcallopt is intended to provide a guaranteed
1194   // tail call optimization. Fastisel doesn't know how to do that.
1195   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1196       CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
1197     return false;
1198 
1199   // Let SDISel handle vararg functions.
1200   if (F.isVarArg())
1201     return false;
1202 
1203   // Build a list of return value registers.
1204   SmallVector<unsigned, 4> RetRegs;
1205 
1206   if (Ret->getNumOperands() > 0) {
1207     SmallVector<ISD::OutputArg, 4> Outs;
1208     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1209 
1210     // Analyze operands of the call, assigning locations to each operand.
1211     SmallVector<CCValAssign, 16> ValLocs;
1212     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1213     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1214 
1215     const Value *RV = Ret->getOperand(0);
1216     Register Reg = getRegForValue(RV);
1217     if (Reg == 0)
1218       return false;
1219 
1220     // Only handle a single return value for now.
1221     if (ValLocs.size() != 1)
1222       return false;
1223 
1224     CCValAssign &VA = ValLocs[0];
1225 
1226     // Don't bother handling odd stuff for now.
1227     if (VA.getLocInfo() != CCValAssign::Full)
1228       return false;
1229     // Only handle register returns for now.
1230     if (!VA.isRegLoc())
1231       return false;
1232 
1233     // The calling-convention tables for x87 returns don't tell
1234     // the whole story.
1235     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1236       return false;
1237 
1238     unsigned SrcReg = Reg + VA.getValNo();
1239     EVT SrcVT = TLI.getValueType(DL, RV->getType());
1240     EVT DstVT = VA.getValVT();
1241     // Special handling for extended integers.
1242     if (SrcVT != DstVT) {
1243       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1244         return false;
1245 
1246       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1247         return false;
1248 
1249       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1250 
1251       if (SrcVT == MVT::i1) {
1252         if (Outs[0].Flags.isSExt())
1253           return false;
1254         // TODO
1255         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg);
1256         SrcVT = MVT::i8;
1257       }
1258       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1259                                              ISD::SIGN_EXTEND;
1260       // TODO
1261       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg);
1262     }
1263 
1264     // Make the copy.
1265     Register DstReg = VA.getLocReg();
1266     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1267     // Avoid a cross-class copy. This is very unlikely.
1268     if (!SrcRC->contains(DstReg))
1269       return false;
1270     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1271             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1272 
1273     // Add register to return instruction.
1274     RetRegs.push_back(VA.getLocReg());
1275   }
1276 
1277   // Swift calling convention does not require we copy the sret argument
1278   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1279 
1280   // All x86 ABIs require that for returning structs by value we copy
1281   // the sret argument into %rax/%eax (depending on ABI) for the return.
1282   // We saved the argument into a virtual register in the entry block,
1283   // so now we copy the value out and into %rax/%eax.
1284   if (F.hasStructRetAttr() && CC != CallingConv::Swift &&
1285       CC != CallingConv::SwiftTail) {
1286     Register Reg = X86MFInfo->getSRetReturnReg();
1287     assert(Reg &&
1288            "SRetReturnReg should have been set in LowerFormalArguments()!");
1289     unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1290     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1291             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1292     RetRegs.push_back(RetReg);
1293   }
1294 
1295   // Now emit the RET.
1296   MachineInstrBuilder MIB;
1297   if (X86MFInfo->getBytesToPopOnReturn()) {
1298     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1299                   TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32))
1300               .addImm(X86MFInfo->getBytesToPopOnReturn());
1301   } else {
1302     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1303                   TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32));
1304   }
1305   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1306     MIB.addReg(RetRegs[i], RegState::Implicit);
1307   return true;
1308 }
1309 
1310 /// X86SelectLoad - Select and emit code to implement load instructions.
1311 ///
1312 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1313   const LoadInst *LI = cast<LoadInst>(I);
1314 
1315   // Atomic loads need special handling.
1316   if (LI->isAtomic())
1317     return false;
1318 
1319   const Value *SV = I->getOperand(0);
1320   if (TLI.supportSwiftError()) {
1321     // Swifterror values can come from either a function parameter with
1322     // swifterror attribute or an alloca with swifterror attribute.
1323     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1324       if (Arg->hasSwiftErrorAttr())
1325         return false;
1326     }
1327 
1328     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1329       if (Alloca->isSwiftError())
1330         return false;
1331     }
1332   }
1333 
1334   MVT VT;
1335   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1336     return false;
1337 
1338   const Value *Ptr = LI->getPointerOperand();
1339 
1340   X86AddressMode AM;
1341   if (!X86SelectAddress(Ptr, AM))
1342     return false;
1343 
1344   unsigned ResultReg = 0;
1345   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1346                        LI->getAlign().value()))
1347     return false;
1348 
1349   updateValueMap(I, ResultReg);
1350   return true;
1351 }
1352 
1353 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1354   bool HasAVX512 = Subtarget->hasAVX512();
1355   bool HasAVX = Subtarget->hasAVX();
1356   bool HasSSE1 = Subtarget->hasSSE1();
1357   bool HasSSE2 = Subtarget->hasSSE2();
1358 
1359   switch (VT.getSimpleVT().SimpleTy) {
1360   default:       return 0;
1361   case MVT::i8:  return X86::CMP8rr;
1362   case MVT::i16: return X86::CMP16rr;
1363   case MVT::i32: return X86::CMP32rr;
1364   case MVT::i64: return X86::CMP64rr;
1365   case MVT::f32:
1366     return HasAVX512 ? X86::VUCOMISSZrr
1367            : HasAVX  ? X86::VUCOMISSrr
1368            : HasSSE1 ? X86::UCOMISSrr
1369                      : 0;
1370   case MVT::f64:
1371     return HasAVX512 ? X86::VUCOMISDZrr
1372            : HasAVX  ? X86::VUCOMISDrr
1373            : HasSSE2 ? X86::UCOMISDrr
1374                      : 0;
1375   }
1376 }
1377 
1378 /// If we have a comparison with RHS as the RHS  of the comparison, return an
1379 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1380 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1381   int64_t Val = RHSC->getSExtValue();
1382   switch (VT.getSimpleVT().SimpleTy) {
1383   // Otherwise, we can't fold the immediate into this comparison.
1384   default:
1385     return 0;
1386   case MVT::i8:
1387     return X86::CMP8ri;
1388   case MVT::i16:
1389     if (isInt<8>(Val))
1390       return X86::CMP16ri8;
1391     return X86::CMP16ri;
1392   case MVT::i32:
1393     if (isInt<8>(Val))
1394       return X86::CMP32ri8;
1395     return X86::CMP32ri;
1396   case MVT::i64:
1397     if (isInt<8>(Val))
1398       return X86::CMP64ri8;
1399     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1400     // field.
1401     if (isInt<32>(Val))
1402       return X86::CMP64ri32;
1403     return 0;
1404   }
1405 }
1406 
1407 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1408                                      const DebugLoc &CurDbgLoc) {
1409   Register Op0Reg = getRegForValue(Op0);
1410   if (Op0Reg == 0) return false;
1411 
1412   // Handle 'null' like i32/i64 0.
1413   if (isa<ConstantPointerNull>(Op1))
1414     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1415 
1416   // We have two options: compare with register or immediate.  If the RHS of
1417   // the compare is an immediate that we can fold into this compare, use
1418   // CMPri, otherwise use CMPrr.
1419   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1420     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1421       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1422         .addReg(Op0Reg)
1423         .addImm(Op1C->getSExtValue());
1424       return true;
1425     }
1426   }
1427 
1428   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1429   if (CompareOpc == 0) return false;
1430 
1431   Register Op1Reg = getRegForValue(Op1);
1432   if (Op1Reg == 0) return false;
1433   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1434     .addReg(Op0Reg)
1435     .addReg(Op1Reg);
1436 
1437   return true;
1438 }
1439 
1440 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1441   const CmpInst *CI = cast<CmpInst>(I);
1442 
1443   MVT VT;
1444   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1445     return false;
1446 
1447   // Below code only works for scalars.
1448   if (VT.isVector())
1449     return false;
1450 
1451   // Try to optimize or fold the cmp.
1452   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1453   unsigned ResultReg = 0;
1454   switch (Predicate) {
1455   default: break;
1456   case CmpInst::FCMP_FALSE: {
1457     ResultReg = createResultReg(&X86::GR32RegClass);
1458     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1459             ResultReg);
1460     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit);
1461     if (!ResultReg)
1462       return false;
1463     break;
1464   }
1465   case CmpInst::FCMP_TRUE: {
1466     ResultReg = createResultReg(&X86::GR8RegClass);
1467     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1468             ResultReg).addImm(1);
1469     break;
1470   }
1471   }
1472 
1473   if (ResultReg) {
1474     updateValueMap(I, ResultReg);
1475     return true;
1476   }
1477 
1478   const Value *LHS = CI->getOperand(0);
1479   const Value *RHS = CI->getOperand(1);
1480 
1481   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1482   // We don't have to materialize a zero constant for this case and can just use
1483   // %x again on the RHS.
1484   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1485     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1486     if (RHSC && RHSC->isNullValue())
1487       RHS = LHS;
1488   }
1489 
1490   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1491   static const uint16_t SETFOpcTable[2][3] = {
1492     { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1493     { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1494   };
1495   const uint16_t *SETFOpc = nullptr;
1496   switch (Predicate) {
1497   default: break;
1498   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1499   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1500   }
1501 
1502   ResultReg = createResultReg(&X86::GR8RegClass);
1503   if (SETFOpc) {
1504     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1505       return false;
1506 
1507     Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1508     Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1509     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1510             FlagReg1).addImm(SETFOpc[0]);
1511     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1512             FlagReg2).addImm(SETFOpc[1]);
1513     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1514             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1515     updateValueMap(I, ResultReg);
1516     return true;
1517   }
1518 
1519   X86::CondCode CC;
1520   bool SwapArgs;
1521   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1522   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1523 
1524   if (SwapArgs)
1525     std::swap(LHS, RHS);
1526 
1527   // Emit a compare of LHS/RHS.
1528   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1529     return false;
1530 
1531   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1532           ResultReg).addImm(CC);
1533   updateValueMap(I, ResultReg);
1534   return true;
1535 }
1536 
1537 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1538   EVT DstVT = TLI.getValueType(DL, I->getType());
1539   if (!TLI.isTypeLegal(DstVT))
1540     return false;
1541 
1542   Register ResultReg = getRegForValue(I->getOperand(0));
1543   if (ResultReg == 0)
1544     return false;
1545 
1546   // Handle zero-extension from i1 to i8, which is common.
1547   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1548   if (SrcVT == MVT::i1) {
1549     // Set the high bits to zero.
1550     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1551     SrcVT = MVT::i8;
1552 
1553     if (ResultReg == 0)
1554       return false;
1555   }
1556 
1557   if (DstVT == MVT::i64) {
1558     // Handle extension to 64-bits via sub-register shenanigans.
1559     unsigned MovInst;
1560 
1561     switch (SrcVT.SimpleTy) {
1562     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1563     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1564     case MVT::i32: MovInst = X86::MOV32rr;     break;
1565     default: llvm_unreachable("Unexpected zext to i64 source type");
1566     }
1567 
1568     Register Result32 = createResultReg(&X86::GR32RegClass);
1569     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1570       .addReg(ResultReg);
1571 
1572     ResultReg = createResultReg(&X86::GR64RegClass);
1573     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1574             ResultReg)
1575       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1576   } else if (DstVT == MVT::i16) {
1577     // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1578     // extend to 32-bits and then extract down to 16-bits.
1579     Register Result32 = createResultReg(&X86::GR32RegClass);
1580     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1581             Result32).addReg(ResultReg);
1582 
1583     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1584   } else if (DstVT != MVT::i8) {
1585     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1586                            ResultReg);
1587     if (ResultReg == 0)
1588       return false;
1589   }
1590 
1591   updateValueMap(I, ResultReg);
1592   return true;
1593 }
1594 
1595 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1596   EVT DstVT = TLI.getValueType(DL, I->getType());
1597   if (!TLI.isTypeLegal(DstVT))
1598     return false;
1599 
1600   Register ResultReg = getRegForValue(I->getOperand(0));
1601   if (ResultReg == 0)
1602     return false;
1603 
1604   // Handle sign-extension from i1 to i8.
1605   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1606   if (SrcVT == MVT::i1) {
1607     // Set the high bits to zero.
1608     Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1609     if (ZExtReg == 0)
1610       return false;
1611 
1612     // Negate the result to make an 8-bit sign extended value.
1613     ResultReg = createResultReg(&X86::GR8RegClass);
1614     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1615             ResultReg).addReg(ZExtReg);
1616 
1617     SrcVT = MVT::i8;
1618   }
1619 
1620   if (DstVT == MVT::i16) {
1621     // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1622     // extend to 32-bits and then extract down to 16-bits.
1623     Register Result32 = createResultReg(&X86::GR32RegClass);
1624     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1625             Result32).addReg(ResultReg);
1626 
1627     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1628   } else if (DstVT != MVT::i8) {
1629     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1630                            ResultReg);
1631     if (ResultReg == 0)
1632       return false;
1633   }
1634 
1635   updateValueMap(I, ResultReg);
1636   return true;
1637 }
1638 
1639 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1640   // Unconditional branches are selected by tablegen-generated code.
1641   // Handle a conditional branch.
1642   const BranchInst *BI = cast<BranchInst>(I);
1643   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1644   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1645 
1646   // Fold the common case of a conditional branch with a comparison
1647   // in the same block (values defined on other blocks may not have
1648   // initialized registers).
1649   X86::CondCode CC;
1650   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1651     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1652       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1653 
1654       // Try to optimize or fold the cmp.
1655       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1656       switch (Predicate) {
1657       default: break;
1658       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1659       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
1660       }
1661 
1662       const Value *CmpLHS = CI->getOperand(0);
1663       const Value *CmpRHS = CI->getOperand(1);
1664 
1665       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1666       // 0.0.
1667       // We don't have to materialize a zero constant for this case and can just
1668       // use %x again on the RHS.
1669       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1670         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1671         if (CmpRHSC && CmpRHSC->isNullValue())
1672           CmpRHS = CmpLHS;
1673       }
1674 
1675       // Try to take advantage of fallthrough opportunities.
1676       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1677         std::swap(TrueMBB, FalseMBB);
1678         Predicate = CmpInst::getInversePredicate(Predicate);
1679       }
1680 
1681       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1682       // code check. Instead two branch instructions are required to check all
1683       // the flags. First we change the predicate to a supported condition code,
1684       // which will be the first branch. Later one we will emit the second
1685       // branch.
1686       bool NeedExtraBranch = false;
1687       switch (Predicate) {
1688       default: break;
1689       case CmpInst::FCMP_OEQ:
1690         std::swap(TrueMBB, FalseMBB);
1691         LLVM_FALLTHROUGH;
1692       case CmpInst::FCMP_UNE:
1693         NeedExtraBranch = true;
1694         Predicate = CmpInst::FCMP_ONE;
1695         break;
1696       }
1697 
1698       bool SwapArgs;
1699       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1700       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1701 
1702       if (SwapArgs)
1703         std::swap(CmpLHS, CmpRHS);
1704 
1705       // Emit a compare of the LHS and RHS, setting the flags.
1706       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1707         return false;
1708 
1709       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1710         .addMBB(TrueMBB).addImm(CC);
1711 
1712       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1713       // to UNE above).
1714       if (NeedExtraBranch) {
1715         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1716           .addMBB(TrueMBB).addImm(X86::COND_P);
1717       }
1718 
1719       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1720       return true;
1721     }
1722   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1723     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1724     // typically happen for _Bool and C++ bools.
1725     MVT SourceVT;
1726     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1727         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1728       unsigned TestOpc = 0;
1729       switch (SourceVT.SimpleTy) {
1730       default: break;
1731       case MVT::i8:  TestOpc = X86::TEST8ri; break;
1732       case MVT::i16: TestOpc = X86::TEST16ri; break;
1733       case MVT::i32: TestOpc = X86::TEST32ri; break;
1734       case MVT::i64: TestOpc = X86::TEST64ri32; break;
1735       }
1736       if (TestOpc) {
1737         Register OpReg = getRegForValue(TI->getOperand(0));
1738         if (OpReg == 0) return false;
1739 
1740         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1741           .addReg(OpReg).addImm(1);
1742 
1743         unsigned JmpCond = X86::COND_NE;
1744         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1745           std::swap(TrueMBB, FalseMBB);
1746           JmpCond = X86::COND_E;
1747         }
1748 
1749         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1750           .addMBB(TrueMBB).addImm(JmpCond);
1751 
1752         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1753         return true;
1754       }
1755     }
1756   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1757     // Fake request the condition, otherwise the intrinsic might be completely
1758     // optimized away.
1759     Register TmpReg = getRegForValue(BI->getCondition());
1760     if (TmpReg == 0)
1761       return false;
1762 
1763     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1764       .addMBB(TrueMBB).addImm(CC);
1765     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1766     return true;
1767   }
1768 
1769   // Otherwise do a clumsy setcc and re-test it.
1770   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1771   // in an explicit cast, so make sure to handle that correctly.
1772   Register OpReg = getRegForValue(BI->getCondition());
1773   if (OpReg == 0) return false;
1774 
1775   // In case OpReg is a K register, COPY to a GPR
1776   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1777     unsigned KOpReg = OpReg;
1778     OpReg = createResultReg(&X86::GR32RegClass);
1779     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1780             TII.get(TargetOpcode::COPY), OpReg)
1781         .addReg(KOpReg);
1782     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit);
1783   }
1784   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1785       .addReg(OpReg)
1786       .addImm(1);
1787   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1788     .addMBB(TrueMBB).addImm(X86::COND_NE);
1789   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1790   return true;
1791 }
1792 
1793 bool X86FastISel::X86SelectShift(const Instruction *I) {
1794   unsigned CReg = 0, OpReg = 0;
1795   const TargetRegisterClass *RC = nullptr;
1796   if (I->getType()->isIntegerTy(8)) {
1797     CReg = X86::CL;
1798     RC = &X86::GR8RegClass;
1799     switch (I->getOpcode()) {
1800     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1801     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1802     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1803     default: return false;
1804     }
1805   } else if (I->getType()->isIntegerTy(16)) {
1806     CReg = X86::CX;
1807     RC = &X86::GR16RegClass;
1808     switch (I->getOpcode()) {
1809     default: llvm_unreachable("Unexpected shift opcode");
1810     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1811     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1812     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1813     }
1814   } else if (I->getType()->isIntegerTy(32)) {
1815     CReg = X86::ECX;
1816     RC = &X86::GR32RegClass;
1817     switch (I->getOpcode()) {
1818     default: llvm_unreachable("Unexpected shift opcode");
1819     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1820     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1821     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1822     }
1823   } else if (I->getType()->isIntegerTy(64)) {
1824     CReg = X86::RCX;
1825     RC = &X86::GR64RegClass;
1826     switch (I->getOpcode()) {
1827     default: llvm_unreachable("Unexpected shift opcode");
1828     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1829     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1830     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1831     }
1832   } else {
1833     return false;
1834   }
1835 
1836   MVT VT;
1837   if (!isTypeLegal(I->getType(), VT))
1838     return false;
1839 
1840   Register Op0Reg = getRegForValue(I->getOperand(0));
1841   if (Op0Reg == 0) return false;
1842 
1843   Register Op1Reg = getRegForValue(I->getOperand(1));
1844   if (Op1Reg == 0) return false;
1845   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1846           CReg).addReg(Op1Reg);
1847 
1848   // The shift instruction uses X86::CL. If we defined a super-register
1849   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1850   if (CReg != X86::CL)
1851     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1852             TII.get(TargetOpcode::KILL), X86::CL)
1853       .addReg(CReg, RegState::Kill);
1854 
1855   Register ResultReg = createResultReg(RC);
1856   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1857     .addReg(Op0Reg);
1858   updateValueMap(I, ResultReg);
1859   return true;
1860 }
1861 
1862 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1863   const static unsigned NumTypes = 4; // i8, i16, i32, i64
1864   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1865   const static bool S = true;  // IsSigned
1866   const static bool U = false; // !IsSigned
1867   const static unsigned Copy = TargetOpcode::COPY;
1868   // For the X86 DIV/IDIV instruction, in most cases the dividend
1869   // (numerator) must be in a specific register pair highreg:lowreg,
1870   // producing the quotient in lowreg and the remainder in highreg.
1871   // For most data types, to set up the instruction, the dividend is
1872   // copied into lowreg, and lowreg is sign-extended or zero-extended
1873   // into highreg.  The exception is i8, where the dividend is defined
1874   // as a single register rather than a register pair, and we
1875   // therefore directly sign-extend or zero-extend the dividend into
1876   // lowreg, instead of copying, and ignore the highreg.
1877   const static struct DivRemEntry {
1878     // The following portion depends only on the data type.
1879     const TargetRegisterClass *RC;
1880     unsigned LowInReg;  // low part of the register pair
1881     unsigned HighInReg; // high part of the register pair
1882     // The following portion depends on both the data type and the operation.
1883     struct DivRemResult {
1884     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1885     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1886                               // highreg, or copying a zero into highreg.
1887     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1888                               // zero/sign-extending into lowreg for i8.
1889     unsigned DivRemResultReg; // Register containing the desired result.
1890     bool IsOpSigned;          // Whether to use signed or unsigned form.
1891     } ResultTable[NumOps];
1892   } OpTable[NumTypes] = {
1893     { &X86::GR8RegClass,  X86::AX,  0, {
1894         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1895         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1896         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1897         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1898       }
1899     }, // i8
1900     { &X86::GR16RegClass, X86::AX,  X86::DX, {
1901         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1902         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1903         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1904         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1905       }
1906     }, // i16
1907     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1908         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1909         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1910         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1911         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1912       }
1913     }, // i32
1914     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1915         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1916         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1917         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1918         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1919       }
1920     }, // i64
1921   };
1922 
1923   MVT VT;
1924   if (!isTypeLegal(I->getType(), VT))
1925     return false;
1926 
1927   unsigned TypeIndex, OpIndex;
1928   switch (VT.SimpleTy) {
1929   default: return false;
1930   case MVT::i8:  TypeIndex = 0; break;
1931   case MVT::i16: TypeIndex = 1; break;
1932   case MVT::i32: TypeIndex = 2; break;
1933   case MVT::i64: TypeIndex = 3;
1934     if (!Subtarget->is64Bit())
1935       return false;
1936     break;
1937   }
1938 
1939   switch (I->getOpcode()) {
1940   default: llvm_unreachable("Unexpected div/rem opcode");
1941   case Instruction::SDiv: OpIndex = 0; break;
1942   case Instruction::SRem: OpIndex = 1; break;
1943   case Instruction::UDiv: OpIndex = 2; break;
1944   case Instruction::URem: OpIndex = 3; break;
1945   }
1946 
1947   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1948   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1949   Register Op0Reg = getRegForValue(I->getOperand(0));
1950   if (Op0Reg == 0)
1951     return false;
1952   Register Op1Reg = getRegForValue(I->getOperand(1));
1953   if (Op1Reg == 0)
1954     return false;
1955 
1956   // Move op0 into low-order input register.
1957   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1958           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1959   // Zero-extend or sign-extend into high-order input register.
1960   if (OpEntry.OpSignExtend) {
1961     if (OpEntry.IsOpSigned)
1962       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1963               TII.get(OpEntry.OpSignExtend));
1964     else {
1965       Register Zero32 = createResultReg(&X86::GR32RegClass);
1966       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1967               TII.get(X86::MOV32r0), Zero32);
1968 
1969       // Copy the zero into the appropriate sub/super/identical physical
1970       // register. Unfortunately the operations needed are not uniform enough
1971       // to fit neatly into the table above.
1972       if (VT == MVT::i16) {
1973         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1974                 TII.get(Copy), TypeEntry.HighInReg)
1975           .addReg(Zero32, 0, X86::sub_16bit);
1976       } else if (VT == MVT::i32) {
1977         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1978                 TII.get(Copy), TypeEntry.HighInReg)
1979             .addReg(Zero32);
1980       } else if (VT == MVT::i64) {
1981         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1982                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1983             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1984       }
1985     }
1986   }
1987   // Generate the DIV/IDIV instruction.
1988   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1989           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1990   // For i8 remainder, we can't reference ah directly, as we'll end
1991   // up with bogus copies like %r9b = COPY %ah. Reference ax
1992   // instead to prevent ah references in a rex instruction.
1993   //
1994   // The current assumption of the fast register allocator is that isel
1995   // won't generate explicit references to the GR8_NOREX registers. If
1996   // the allocator and/or the backend get enhanced to be more robust in
1997   // that regard, this can be, and should be, removed.
1998   unsigned ResultReg = 0;
1999   if ((I->getOpcode() == Instruction::SRem ||
2000        I->getOpcode() == Instruction::URem) &&
2001       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
2002     Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
2003     Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
2004     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2005             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2006 
2007     // Shift AX right by 8 bits instead of using AH.
2008     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
2009             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2010 
2011     // Now reference the 8-bit subreg of the result.
2012     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2013                                            X86::sub_8bit);
2014   }
2015   // Copy the result out of the physreg if we haven't already.
2016   if (!ResultReg) {
2017     ResultReg = createResultReg(TypeEntry.RC);
2018     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2019         .addReg(OpEntry.DivRemResultReg);
2020   }
2021   updateValueMap(I, ResultReg);
2022 
2023   return true;
2024 }
2025 
2026 /// Emit a conditional move instruction (if the are supported) to lower
2027 /// the select.
2028 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2029   // Check if the subtarget supports these instructions.
2030   if (!Subtarget->canUseCMOV())
2031     return false;
2032 
2033   // FIXME: Add support for i8.
2034   if (RetVT < MVT::i16 || RetVT > MVT::i64)
2035     return false;
2036 
2037   const Value *Cond = I->getOperand(0);
2038   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2039   bool NeedTest = true;
2040   X86::CondCode CC = X86::COND_NE;
2041 
2042   // Optimize conditions coming from a compare if both instructions are in the
2043   // same basic block (values defined in other basic blocks may not have
2044   // initialized registers).
2045   const auto *CI = dyn_cast<CmpInst>(Cond);
2046   if (CI && (CI->getParent() == I->getParent())) {
2047     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2048 
2049     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2050     static const uint16_t SETFOpcTable[2][3] = {
2051       { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2052       { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2053     };
2054     const uint16_t *SETFOpc = nullptr;
2055     switch (Predicate) {
2056     default: break;
2057     case CmpInst::FCMP_OEQ:
2058       SETFOpc = &SETFOpcTable[0][0];
2059       Predicate = CmpInst::ICMP_NE;
2060       break;
2061     case CmpInst::FCMP_UNE:
2062       SETFOpc = &SETFOpcTable[1][0];
2063       Predicate = CmpInst::ICMP_NE;
2064       break;
2065     }
2066 
2067     bool NeedSwap;
2068     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2069     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2070 
2071     const Value *CmpLHS = CI->getOperand(0);
2072     const Value *CmpRHS = CI->getOperand(1);
2073     if (NeedSwap)
2074       std::swap(CmpLHS, CmpRHS);
2075 
2076     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2077     // Emit a compare of the LHS and RHS, setting the flags.
2078     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2079       return false;
2080 
2081     if (SETFOpc) {
2082       Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2083       Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2084       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2085               FlagReg1).addImm(SETFOpc[0]);
2086       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2087               FlagReg2).addImm(SETFOpc[1]);
2088       auto const &II = TII.get(SETFOpc[2]);
2089       if (II.getNumDefs()) {
2090         Register TmpReg = createResultReg(&X86::GR8RegClass);
2091         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2092           .addReg(FlagReg2).addReg(FlagReg1);
2093       } else {
2094         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2095           .addReg(FlagReg2).addReg(FlagReg1);
2096       }
2097     }
2098     NeedTest = false;
2099   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2100     // Fake request the condition, otherwise the intrinsic might be completely
2101     // optimized away.
2102     Register TmpReg = getRegForValue(Cond);
2103     if (TmpReg == 0)
2104       return false;
2105 
2106     NeedTest = false;
2107   }
2108 
2109   if (NeedTest) {
2110     // Selects operate on i1, however, CondReg is 8 bits width and may contain
2111     // garbage. Indeed, only the less significant bit is supposed to be
2112     // accurate. If we read more than the lsb, we may see non-zero values
2113     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2114     // the select. This is achieved by performing TEST against 1.
2115     Register CondReg = getRegForValue(Cond);
2116     if (CondReg == 0)
2117       return false;
2118 
2119     // In case OpReg is a K register, COPY to a GPR
2120     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2121       unsigned KCondReg = CondReg;
2122       CondReg = createResultReg(&X86::GR32RegClass);
2123       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2124               TII.get(TargetOpcode::COPY), CondReg)
2125           .addReg(KCondReg);
2126       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2127     }
2128     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2129         .addReg(CondReg)
2130         .addImm(1);
2131   }
2132 
2133   const Value *LHS = I->getOperand(1);
2134   const Value *RHS = I->getOperand(2);
2135 
2136   Register RHSReg = getRegForValue(RHS);
2137   Register LHSReg = getRegForValue(LHS);
2138   if (!LHSReg || !RHSReg)
2139     return false;
2140 
2141   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2142   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2143   Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2144   updateValueMap(I, ResultReg);
2145   return true;
2146 }
2147 
2148 /// Emit SSE or AVX instructions to lower the select.
2149 ///
2150 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2151 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2152 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2153 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2154   // Optimize conditions coming from a compare if both instructions are in the
2155   // same basic block (values defined in other basic blocks may not have
2156   // initialized registers).
2157   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2158   if (!CI || (CI->getParent() != I->getParent()))
2159     return false;
2160 
2161   if (I->getType() != CI->getOperand(0)->getType() ||
2162       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2163         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2164     return false;
2165 
2166   const Value *CmpLHS = CI->getOperand(0);
2167   const Value *CmpRHS = CI->getOperand(1);
2168   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2169 
2170   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2171   // We don't have to materialize a zero constant for this case and can just use
2172   // %x again on the RHS.
2173   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2174     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2175     if (CmpRHSC && CmpRHSC->isNullValue())
2176       CmpRHS = CmpLHS;
2177   }
2178 
2179   unsigned CC;
2180   bool NeedSwap;
2181   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2182   if (CC > 7 && !Subtarget->hasAVX())
2183     return false;
2184 
2185   if (NeedSwap)
2186     std::swap(CmpLHS, CmpRHS);
2187 
2188   const Value *LHS = I->getOperand(1);
2189   const Value *RHS = I->getOperand(2);
2190 
2191   Register LHSReg = getRegForValue(LHS);
2192   Register RHSReg = getRegForValue(RHS);
2193   Register CmpLHSReg = getRegForValue(CmpLHS);
2194   Register CmpRHSReg = getRegForValue(CmpRHS);
2195   if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
2196     return false;
2197 
2198   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2199   unsigned ResultReg;
2200 
2201   if (Subtarget->hasAVX512()) {
2202     // If we have AVX512 we can use a mask compare and masked movss/sd.
2203     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2204     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2205 
2206     unsigned CmpOpcode =
2207       (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2208     Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg,
2209                                        CC);
2210 
2211     // Need an IMPLICIT_DEF for the input that is used to generate the upper
2212     // bits of the result register since its not based on any of the inputs.
2213     Register ImplicitDefReg = createResultReg(VR128X);
2214     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2215             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2216 
2217     // Place RHSReg is the passthru of the masked movss/sd operation and put
2218     // LHS in the input. The mask input comes from the compare.
2219     unsigned MovOpcode =
2220       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2221     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg,
2222                                         ImplicitDefReg, LHSReg);
2223 
2224     ResultReg = createResultReg(RC);
2225     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2226             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2227 
2228   } else if (Subtarget->hasAVX()) {
2229     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2230 
2231     // If we have AVX, create 1 blendv instead of 3 logic instructions.
2232     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2233     // uses XMM0 as the selection register. That may need just as many
2234     // instructions as the AND/ANDN/OR sequence due to register moves, so
2235     // don't bother.
2236     unsigned CmpOpcode =
2237       (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2238     unsigned BlendOpcode =
2239       (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2240 
2241     Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg,
2242                                        CC);
2243     Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg,
2244                                           CmpReg);
2245     ResultReg = createResultReg(RC);
2246     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2247             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2248   } else {
2249     // Choose the SSE instruction sequence based on data type (float or double).
2250     static const uint16_t OpcTable[2][4] = {
2251       { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2252       { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2253     };
2254 
2255     const uint16_t *Opc = nullptr;
2256     switch (RetVT.SimpleTy) {
2257     default: return false;
2258     case MVT::f32: Opc = &OpcTable[0][0]; break;
2259     case MVT::f64: Opc = &OpcTable[1][0]; break;
2260     }
2261 
2262     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2263     Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC);
2264     Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg);
2265     Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg);
2266     Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg);
2267     ResultReg = createResultReg(RC);
2268     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2269             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2270   }
2271   updateValueMap(I, ResultReg);
2272   return true;
2273 }
2274 
2275 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2276   // These are pseudo CMOV instructions and will be later expanded into control-
2277   // flow.
2278   unsigned Opc;
2279   switch (RetVT.SimpleTy) {
2280   default: return false;
2281   case MVT::i8:  Opc = X86::CMOV_GR8;   break;
2282   case MVT::i16: Opc = X86::CMOV_GR16;  break;
2283   case MVT::i32: Opc = X86::CMOV_GR32;  break;
2284   case MVT::f16:
2285     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break;
2286   case MVT::f32:
2287     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break;
2288   case MVT::f64:
2289     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break;
2290   }
2291 
2292   const Value *Cond = I->getOperand(0);
2293   X86::CondCode CC = X86::COND_NE;
2294 
2295   // Optimize conditions coming from a compare if both instructions are in the
2296   // same basic block (values defined in other basic blocks may not have
2297   // initialized registers).
2298   const auto *CI = dyn_cast<CmpInst>(Cond);
2299   if (CI && (CI->getParent() == I->getParent())) {
2300     bool NeedSwap;
2301     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2302     if (CC > X86::LAST_VALID_COND)
2303       return false;
2304 
2305     const Value *CmpLHS = CI->getOperand(0);
2306     const Value *CmpRHS = CI->getOperand(1);
2307 
2308     if (NeedSwap)
2309       std::swap(CmpLHS, CmpRHS);
2310 
2311     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2312     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2313       return false;
2314   } else {
2315     Register CondReg = getRegForValue(Cond);
2316     if (CondReg == 0)
2317       return false;
2318 
2319     // In case OpReg is a K register, COPY to a GPR
2320     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2321       unsigned KCondReg = CondReg;
2322       CondReg = createResultReg(&X86::GR32RegClass);
2323       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2324               TII.get(TargetOpcode::COPY), CondReg)
2325           .addReg(KCondReg);
2326       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2327     }
2328     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2329         .addReg(CondReg)
2330         .addImm(1);
2331   }
2332 
2333   const Value *LHS = I->getOperand(1);
2334   const Value *RHS = I->getOperand(2);
2335 
2336   Register LHSReg = getRegForValue(LHS);
2337   Register RHSReg = getRegForValue(RHS);
2338   if (!LHSReg || !RHSReg)
2339     return false;
2340 
2341   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2342 
2343   Register ResultReg =
2344     fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2345   updateValueMap(I, ResultReg);
2346   return true;
2347 }
2348 
2349 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2350   MVT RetVT;
2351   if (!isTypeLegal(I->getType(), RetVT))
2352     return false;
2353 
2354   // Check if we can fold the select.
2355   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2356     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2357     const Value *Opnd = nullptr;
2358     switch (Predicate) {
2359     default:                              break;
2360     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2361     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2362     }
2363     // No need for a select anymore - this is an unconditional move.
2364     if (Opnd) {
2365       Register OpReg = getRegForValue(Opnd);
2366       if (OpReg == 0)
2367         return false;
2368       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2369       Register ResultReg = createResultReg(RC);
2370       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2371               TII.get(TargetOpcode::COPY), ResultReg)
2372         .addReg(OpReg);
2373       updateValueMap(I, ResultReg);
2374       return true;
2375     }
2376   }
2377 
2378   // First try to use real conditional move instructions.
2379   if (X86FastEmitCMoveSelect(RetVT, I))
2380     return true;
2381 
2382   // Try to use a sequence of SSE instructions to simulate a conditional move.
2383   if (X86FastEmitSSESelect(RetVT, I))
2384     return true;
2385 
2386   // Fall-back to pseudo conditional move instructions, which will be later
2387   // converted to control-flow.
2388   if (X86FastEmitPseudoSelect(RetVT, I))
2389     return true;
2390 
2391   return false;
2392 }
2393 
2394 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2395 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2396   // The target-independent selection algorithm in FastISel already knows how
2397   // to select a SINT_TO_FP if the target is SSE but not AVX.
2398   // Early exit if the subtarget doesn't have AVX.
2399   // Unsigned conversion requires avx512.
2400   bool HasAVX512 = Subtarget->hasAVX512();
2401   if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2402     return false;
2403 
2404   // TODO: We could sign extend narrower types.
2405   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2406   if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2407     return false;
2408 
2409   // Select integer to float/double conversion.
2410   Register OpReg = getRegForValue(I->getOperand(0));
2411   if (OpReg == 0)
2412     return false;
2413 
2414   unsigned Opcode;
2415 
2416   static const uint16_t SCvtOpc[2][2][2] = {
2417     { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2418       { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2419     { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2420       { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2421   };
2422   static const uint16_t UCvtOpc[2][2] = {
2423     { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2424     { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2425   };
2426   bool Is64Bit = SrcVT == MVT::i64;
2427 
2428   if (I->getType()->isDoubleTy()) {
2429     // s/uitofp int -> double
2430     Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2431   } else if (I->getType()->isFloatTy()) {
2432     // s/uitofp int -> float
2433     Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2434   } else
2435     return false;
2436 
2437   MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2438   const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2439   Register ImplicitDefReg = createResultReg(RC);
2440   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2441           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2442   Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg);
2443   updateValueMap(I, ResultReg);
2444   return true;
2445 }
2446 
2447 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2448   return X86SelectIntToFP(I, /*IsSigned*/true);
2449 }
2450 
2451 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2452   return X86SelectIntToFP(I, /*IsSigned*/false);
2453 }
2454 
2455 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2456 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2457                                           unsigned TargetOpc,
2458                                           const TargetRegisterClass *RC) {
2459   assert((I->getOpcode() == Instruction::FPExt ||
2460           I->getOpcode() == Instruction::FPTrunc) &&
2461          "Instruction must be an FPExt or FPTrunc!");
2462   bool HasAVX = Subtarget->hasAVX();
2463 
2464   Register OpReg = getRegForValue(I->getOperand(0));
2465   if (OpReg == 0)
2466     return false;
2467 
2468   unsigned ImplicitDefReg;
2469   if (HasAVX) {
2470     ImplicitDefReg = createResultReg(RC);
2471     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2472             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2473 
2474   }
2475 
2476   Register ResultReg = createResultReg(RC);
2477   MachineInstrBuilder MIB;
2478   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2479                 ResultReg);
2480 
2481   if (HasAVX)
2482     MIB.addReg(ImplicitDefReg);
2483 
2484   MIB.addReg(OpReg);
2485   updateValueMap(I, ResultReg);
2486   return true;
2487 }
2488 
2489 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2490   if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() &&
2491       I->getOperand(0)->getType()->isFloatTy()) {
2492     bool HasAVX512 = Subtarget->hasAVX512();
2493     // fpext from float to double.
2494     unsigned Opc =
2495         HasAVX512 ? X86::VCVTSS2SDZrr
2496                   : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2497     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2498   }
2499 
2500   return false;
2501 }
2502 
2503 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2504   if (Subtarget->hasSSE2() && I->getType()->isFloatTy() &&
2505       I->getOperand(0)->getType()->isDoubleTy()) {
2506     bool HasAVX512 = Subtarget->hasAVX512();
2507     // fptrunc from double to float.
2508     unsigned Opc =
2509         HasAVX512 ? X86::VCVTSD2SSZrr
2510                   : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2511     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2512   }
2513 
2514   return false;
2515 }
2516 
2517 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2518   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2519   EVT DstVT = TLI.getValueType(DL, I->getType());
2520 
2521   // This code only handles truncation to byte.
2522   if (DstVT != MVT::i8 && DstVT != MVT::i1)
2523     return false;
2524   if (!TLI.isTypeLegal(SrcVT))
2525     return false;
2526 
2527   Register InputReg = getRegForValue(I->getOperand(0));
2528   if (!InputReg)
2529     // Unhandled operand.  Halt "fast" selection and bail.
2530     return false;
2531 
2532   if (SrcVT == MVT::i8) {
2533     // Truncate from i8 to i1; no code needed.
2534     updateValueMap(I, InputReg);
2535     return true;
2536   }
2537 
2538   // Issue an extract_subreg.
2539   Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg,
2540                                                   X86::sub_8bit);
2541   if (!ResultReg)
2542     return false;
2543 
2544   updateValueMap(I, ResultReg);
2545   return true;
2546 }
2547 
2548 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2549   return Len <= (Subtarget->is64Bit() ? 32 : 16);
2550 }
2551 
2552 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2553                                      X86AddressMode SrcAM, uint64_t Len) {
2554 
2555   // Make sure we don't bloat code by inlining very large memcpy's.
2556   if (!IsMemcpySmall(Len))
2557     return false;
2558 
2559   bool i64Legal = Subtarget->is64Bit();
2560 
2561   // We don't care about alignment here since we just emit integer accesses.
2562   while (Len) {
2563     MVT VT;
2564     if (Len >= 8 && i64Legal)
2565       VT = MVT::i64;
2566     else if (Len >= 4)
2567       VT = MVT::i32;
2568     else if (Len >= 2)
2569       VT = MVT::i16;
2570     else
2571       VT = MVT::i8;
2572 
2573     unsigned Reg;
2574     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2575     RV &= X86FastEmitStore(VT, Reg, DestAM);
2576     assert(RV && "Failed to emit load or store??");
2577     (void)RV;
2578 
2579     unsigned Size = VT.getSizeInBits()/8;
2580     Len -= Size;
2581     DestAM.Disp += Size;
2582     SrcAM.Disp += Size;
2583   }
2584 
2585   return true;
2586 }
2587 
2588 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2589   // FIXME: Handle more intrinsics.
2590   switch (II->getIntrinsicID()) {
2591   default: return false;
2592   case Intrinsic::convert_from_fp16:
2593   case Intrinsic::convert_to_fp16: {
2594     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2595       return false;
2596 
2597     const Value *Op = II->getArgOperand(0);
2598     Register InputReg = getRegForValue(Op);
2599     if (InputReg == 0)
2600       return false;
2601 
2602     // F16C only allows converting from float to half and from half to float.
2603     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2604     if (IsFloatToHalf) {
2605       if (!Op->getType()->isFloatTy())
2606         return false;
2607     } else {
2608       if (!II->getType()->isFloatTy())
2609         return false;
2610     }
2611 
2612     unsigned ResultReg = 0;
2613     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2614     if (IsFloatToHalf) {
2615       // 'InputReg' is implicitly promoted from register class FR32 to
2616       // register class VR128 by method 'constrainOperandRegClass' which is
2617       // directly called by 'fastEmitInst_ri'.
2618       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2619       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2620       // It's consistent with the other FP instructions, which are usually
2621       // controlled by MXCSR.
2622       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2623                                          : X86::VCVTPS2PHrr;
2624       InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4);
2625 
2626       // Move the lower 32-bits of ResultReg to another register of class GR32.
2627       Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2628                                    : X86::VMOVPDI2DIrr;
2629       ResultReg = createResultReg(&X86::GR32RegClass);
2630       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2631           .addReg(InputReg, RegState::Kill);
2632 
2633       // The result value is in the lower 16-bits of ResultReg.
2634       unsigned RegIdx = X86::sub_16bit;
2635       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx);
2636     } else {
2637       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2638       // Explicitly zero-extend the input to 32-bit.
2639       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg);
2640 
2641       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2642       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2643                             InputReg);
2644 
2645       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2646                                          : X86::VCVTPH2PSrr;
2647       InputReg = fastEmitInst_r(Opc, RC, InputReg);
2648 
2649       // The result value is in the lower 32-bits of ResultReg.
2650       // Emit an explicit copy from register class VR128 to register class FR32.
2651       ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2652       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2653               TII.get(TargetOpcode::COPY), ResultReg)
2654           .addReg(InputReg, RegState::Kill);
2655     }
2656 
2657     updateValueMap(II, ResultReg);
2658     return true;
2659   }
2660   case Intrinsic::frameaddress: {
2661     MachineFunction *MF = FuncInfo.MF;
2662     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2663       return false;
2664 
2665     Type *RetTy = II->getCalledFunction()->getReturnType();
2666 
2667     MVT VT;
2668     if (!isTypeLegal(RetTy, VT))
2669       return false;
2670 
2671     unsigned Opc;
2672     const TargetRegisterClass *RC = nullptr;
2673 
2674     switch (VT.SimpleTy) {
2675     default: llvm_unreachable("Invalid result type for frameaddress.");
2676     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2677     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2678     }
2679 
2680     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2681     // we get the wrong frame register.
2682     MachineFrameInfo &MFI = MF->getFrameInfo();
2683     MFI.setFrameAddressIsTaken(true);
2684 
2685     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2686     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2687     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2688             (FrameReg == X86::EBP && VT == MVT::i32)) &&
2689            "Invalid Frame Register!");
2690 
2691     // Always make a copy of the frame register to a vreg first, so that we
2692     // never directly reference the frame register (the TwoAddressInstruction-
2693     // Pass doesn't like that).
2694     Register SrcReg = createResultReg(RC);
2695     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2696             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2697 
2698     // Now recursively load from the frame address.
2699     // movq (%rbp), %rax
2700     // movq (%rax), %rax
2701     // movq (%rax), %rax
2702     // ...
2703     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2704     while (Depth--) {
2705       Register DestReg = createResultReg(RC);
2706       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2707                            TII.get(Opc), DestReg), SrcReg);
2708       SrcReg = DestReg;
2709     }
2710 
2711     updateValueMap(II, SrcReg);
2712     return true;
2713   }
2714   case Intrinsic::memcpy: {
2715     const MemCpyInst *MCI = cast<MemCpyInst>(II);
2716     // Don't handle volatile or variable length memcpys.
2717     if (MCI->isVolatile())
2718       return false;
2719 
2720     if (isa<ConstantInt>(MCI->getLength())) {
2721       // Small memcpy's are common enough that we want to do them
2722       // without a call if possible.
2723       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2724       if (IsMemcpySmall(Len)) {
2725         X86AddressMode DestAM, SrcAM;
2726         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2727             !X86SelectAddress(MCI->getRawSource(), SrcAM))
2728           return false;
2729         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2730         return true;
2731       }
2732     }
2733 
2734     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2735     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2736       return false;
2737 
2738     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2739       return false;
2740 
2741     return lowerCallTo(II, "memcpy", II->arg_size() - 1);
2742   }
2743   case Intrinsic::memset: {
2744     const MemSetInst *MSI = cast<MemSetInst>(II);
2745 
2746     if (MSI->isVolatile())
2747       return false;
2748 
2749     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2750     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2751       return false;
2752 
2753     if (MSI->getDestAddressSpace() > 255)
2754       return false;
2755 
2756     return lowerCallTo(II, "memset", II->arg_size() - 1);
2757   }
2758   case Intrinsic::stackprotector: {
2759     // Emit code to store the stack guard onto the stack.
2760     EVT PtrTy = TLI.getPointerTy(DL);
2761 
2762     const Value *Op1 = II->getArgOperand(0); // The guard's value.
2763     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2764 
2765     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2766 
2767     // Grab the frame index.
2768     X86AddressMode AM;
2769     if (!X86SelectAddress(Slot, AM)) return false;
2770     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2771     return true;
2772   }
2773   case Intrinsic::dbg_declare: {
2774     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2775     X86AddressMode AM;
2776     assert(DI->getAddress() && "Null address should be checked earlier!");
2777     if (!X86SelectAddress(DI->getAddress(), AM))
2778       return false;
2779     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2780     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2781            "Expected inlined-at fields to agree");
2782     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2783         .addImm(0)
2784         .addMetadata(DI->getVariable())
2785         .addMetadata(DI->getExpression());
2786     return true;
2787   }
2788   case Intrinsic::trap: {
2789     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2790     return true;
2791   }
2792   case Intrinsic::sqrt: {
2793     if (!Subtarget->hasSSE1())
2794       return false;
2795 
2796     Type *RetTy = II->getCalledFunction()->getReturnType();
2797 
2798     MVT VT;
2799     if (!isTypeLegal(RetTy, VT))
2800       return false;
2801 
2802     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2803     // is not generated by FastISel yet.
2804     // FIXME: Update this code once tablegen can handle it.
2805     static const uint16_t SqrtOpc[3][2] = {
2806       { X86::SQRTSSr,   X86::SQRTSDr },
2807       { X86::VSQRTSSr,  X86::VSQRTSDr },
2808       { X86::VSQRTSSZr, X86::VSQRTSDZr },
2809     };
2810     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2811                         Subtarget->hasAVX()    ? 1 :
2812                                                  0;
2813     unsigned Opc;
2814     switch (VT.SimpleTy) {
2815     default: return false;
2816     case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2817     case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2818     }
2819 
2820     const Value *SrcVal = II->getArgOperand(0);
2821     Register SrcReg = getRegForValue(SrcVal);
2822 
2823     if (SrcReg == 0)
2824       return false;
2825 
2826     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2827     unsigned ImplicitDefReg = 0;
2828     if (AVXLevel > 0) {
2829       ImplicitDefReg = createResultReg(RC);
2830       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2831               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2832     }
2833 
2834     Register ResultReg = createResultReg(RC);
2835     MachineInstrBuilder MIB;
2836     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2837                   ResultReg);
2838 
2839     if (ImplicitDefReg)
2840       MIB.addReg(ImplicitDefReg);
2841 
2842     MIB.addReg(SrcReg);
2843 
2844     updateValueMap(II, ResultReg);
2845     return true;
2846   }
2847   case Intrinsic::sadd_with_overflow:
2848   case Intrinsic::uadd_with_overflow:
2849   case Intrinsic::ssub_with_overflow:
2850   case Intrinsic::usub_with_overflow:
2851   case Intrinsic::smul_with_overflow:
2852   case Intrinsic::umul_with_overflow: {
2853     // This implements the basic lowering of the xalu with overflow intrinsics
2854     // into add/sub/mul followed by either seto or setb.
2855     const Function *Callee = II->getCalledFunction();
2856     auto *Ty = cast<StructType>(Callee->getReturnType());
2857     Type *RetTy = Ty->getTypeAtIndex(0U);
2858     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2859            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2860            "Overflow value expected to be an i1");
2861 
2862     MVT VT;
2863     if (!isTypeLegal(RetTy, VT))
2864       return false;
2865 
2866     if (VT < MVT::i8 || VT > MVT::i64)
2867       return false;
2868 
2869     const Value *LHS = II->getArgOperand(0);
2870     const Value *RHS = II->getArgOperand(1);
2871 
2872     // Canonicalize immediate to the RHS.
2873     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
2874       std::swap(LHS, RHS);
2875 
2876     unsigned BaseOpc, CondCode;
2877     switch (II->getIntrinsicID()) {
2878     default: llvm_unreachable("Unexpected intrinsic!");
2879     case Intrinsic::sadd_with_overflow:
2880       BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2881     case Intrinsic::uadd_with_overflow:
2882       BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2883     case Intrinsic::ssub_with_overflow:
2884       BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2885     case Intrinsic::usub_with_overflow:
2886       BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2887     case Intrinsic::smul_with_overflow:
2888       BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2889     case Intrinsic::umul_with_overflow:
2890       BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2891     }
2892 
2893     Register LHSReg = getRegForValue(LHS);
2894     if (LHSReg == 0)
2895       return false;
2896 
2897     unsigned ResultReg = 0;
2898     // Check if we have an immediate version.
2899     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2900       static const uint16_t Opc[2][4] = {
2901         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2902         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2903       };
2904 
2905       if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2906           CondCode == X86::COND_O) {
2907         // We can use INC/DEC.
2908         ResultReg = createResultReg(TLI.getRegClassFor(VT));
2909         bool IsDec = BaseOpc == ISD::SUB;
2910         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2911                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2912           .addReg(LHSReg);
2913       } else
2914         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue());
2915     }
2916 
2917     unsigned RHSReg;
2918     if (!ResultReg) {
2919       RHSReg = getRegForValue(RHS);
2920       if (RHSReg == 0)
2921         return false;
2922       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg);
2923     }
2924 
2925     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2926     // it manually.
2927     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2928       static const uint16_t MULOpc[] =
2929         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2930       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2931       // First copy the first operand into RAX, which is an implicit input to
2932       // the X86::MUL*r instruction.
2933       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2934               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2935         .addReg(LHSReg);
2936       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2937                                  TLI.getRegClassFor(VT), RHSReg);
2938     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2939       static const uint16_t MULOpc[] =
2940         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2941       if (VT == MVT::i8) {
2942         // Copy the first operand into AL, which is an implicit input to the
2943         // X86::IMUL8r instruction.
2944         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2945                TII.get(TargetOpcode::COPY), X86::AL)
2946           .addReg(LHSReg);
2947         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg);
2948       } else
2949         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2950                                     TLI.getRegClassFor(VT), LHSReg, RHSReg);
2951     }
2952 
2953     if (!ResultReg)
2954       return false;
2955 
2956     // Assign to a GPR since the overflow return value is lowered to a SETcc.
2957     Register ResultReg2 = createResultReg(&X86::GR8RegClass);
2958     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2959     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2960             ResultReg2).addImm(CondCode);
2961 
2962     updateValueMap(II, ResultReg, 2);
2963     return true;
2964   }
2965   case Intrinsic::x86_sse_cvttss2si:
2966   case Intrinsic::x86_sse_cvttss2si64:
2967   case Intrinsic::x86_sse2_cvttsd2si:
2968   case Intrinsic::x86_sse2_cvttsd2si64: {
2969     bool IsInputDouble;
2970     switch (II->getIntrinsicID()) {
2971     default: llvm_unreachable("Unexpected intrinsic.");
2972     case Intrinsic::x86_sse_cvttss2si:
2973     case Intrinsic::x86_sse_cvttss2si64:
2974       if (!Subtarget->hasSSE1())
2975         return false;
2976       IsInputDouble = false;
2977       break;
2978     case Intrinsic::x86_sse2_cvttsd2si:
2979     case Intrinsic::x86_sse2_cvttsd2si64:
2980       if (!Subtarget->hasSSE2())
2981         return false;
2982       IsInputDouble = true;
2983       break;
2984     }
2985 
2986     Type *RetTy = II->getCalledFunction()->getReturnType();
2987     MVT VT;
2988     if (!isTypeLegal(RetTy, VT))
2989       return false;
2990 
2991     static const uint16_t CvtOpc[3][2][2] = {
2992       { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
2993         { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
2994       { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
2995         { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
2996       { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
2997         { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
2998     };
2999     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3000                         Subtarget->hasAVX()    ? 1 :
3001                                                  0;
3002     unsigned Opc;
3003     switch (VT.SimpleTy) {
3004     default: llvm_unreachable("Unexpected result type.");
3005     case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3006     case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3007     }
3008 
3009     // Check if we can fold insertelement instructions into the convert.
3010     const Value *Op = II->getArgOperand(0);
3011     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3012       const Value *Index = IE->getOperand(2);
3013       if (!isa<ConstantInt>(Index))
3014         break;
3015       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3016 
3017       if (Idx == 0) {
3018         Op = IE->getOperand(1);
3019         break;
3020       }
3021       Op = IE->getOperand(0);
3022     }
3023 
3024     Register Reg = getRegForValue(Op);
3025     if (Reg == 0)
3026       return false;
3027 
3028     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3029     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3030       .addReg(Reg);
3031 
3032     updateValueMap(II, ResultReg);
3033     return true;
3034   }
3035   }
3036 }
3037 
3038 bool X86FastISel::fastLowerArguments() {
3039   if (!FuncInfo.CanLowerReturn)
3040     return false;
3041 
3042   const Function *F = FuncInfo.Fn;
3043   if (F->isVarArg())
3044     return false;
3045 
3046   CallingConv::ID CC = F->getCallingConv();
3047   if (CC != CallingConv::C)
3048     return false;
3049 
3050   if (Subtarget->isCallingConvWin64(CC))
3051     return false;
3052 
3053   if (!Subtarget->is64Bit())
3054     return false;
3055 
3056   if (Subtarget->useSoftFloat())
3057     return false;
3058 
3059   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3060   unsigned GPRCnt = 0;
3061   unsigned FPRCnt = 0;
3062   for (auto const &Arg : F->args()) {
3063     if (Arg.hasAttribute(Attribute::ByVal) ||
3064         Arg.hasAttribute(Attribute::InReg) ||
3065         Arg.hasAttribute(Attribute::StructRet) ||
3066         Arg.hasAttribute(Attribute::SwiftSelf) ||
3067         Arg.hasAttribute(Attribute::SwiftAsync) ||
3068         Arg.hasAttribute(Attribute::SwiftError) ||
3069         Arg.hasAttribute(Attribute::Nest))
3070       return false;
3071 
3072     Type *ArgTy = Arg.getType();
3073     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3074       return false;
3075 
3076     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3077     if (!ArgVT.isSimple()) return false;
3078     switch (ArgVT.getSimpleVT().SimpleTy) {
3079     default: return false;
3080     case MVT::i32:
3081     case MVT::i64:
3082       ++GPRCnt;
3083       break;
3084     case MVT::f32:
3085     case MVT::f64:
3086       if (!Subtarget->hasSSE1())
3087         return false;
3088       ++FPRCnt;
3089       break;
3090     }
3091 
3092     if (GPRCnt > 6)
3093       return false;
3094 
3095     if (FPRCnt > 8)
3096       return false;
3097   }
3098 
3099   static const MCPhysReg GPR32ArgRegs[] = {
3100     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3101   };
3102   static const MCPhysReg GPR64ArgRegs[] = {
3103     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3104   };
3105   static const MCPhysReg XMMArgRegs[] = {
3106     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3107     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3108   };
3109 
3110   unsigned GPRIdx = 0;
3111   unsigned FPRIdx = 0;
3112   for (auto const &Arg : F->args()) {
3113     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3114     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3115     unsigned SrcReg;
3116     switch (VT.SimpleTy) {
3117     default: llvm_unreachable("Unexpected value type.");
3118     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3119     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3120     case MVT::f32: LLVM_FALLTHROUGH;
3121     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3122     }
3123     Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3124     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3125     // Without this, EmitLiveInCopies may eliminate the livein if its only
3126     // use is a bitcast (which isn't turned into an instruction).
3127     Register ResultReg = createResultReg(RC);
3128     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3129             TII.get(TargetOpcode::COPY), ResultReg)
3130       .addReg(DstReg, getKillRegState(true));
3131     updateValueMap(&Arg, ResultReg);
3132   }
3133   return true;
3134 }
3135 
3136 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3137                                                   CallingConv::ID CC,
3138                                                   const CallBase *CB) {
3139   if (Subtarget->is64Bit())
3140     return 0;
3141   if (Subtarget->getTargetTriple().isOSMSVCRT())
3142     return 0;
3143   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3144       CC == CallingConv::HiPE || CC == CallingConv::Tail ||
3145       CC == CallingConv::SwiftTail)
3146     return 0;
3147 
3148   if (CB)
3149     if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3150         CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3151       return 0;
3152 
3153   return 4;
3154 }
3155 
3156 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3157   auto &OutVals       = CLI.OutVals;
3158   auto &OutFlags      = CLI.OutFlags;
3159   auto &OutRegs       = CLI.OutRegs;
3160   auto &Ins           = CLI.Ins;
3161   auto &InRegs        = CLI.InRegs;
3162   CallingConv::ID CC  = CLI.CallConv;
3163   bool &IsTailCall    = CLI.IsTailCall;
3164   bool IsVarArg       = CLI.IsVarArg;
3165   const Value *Callee = CLI.Callee;
3166   MCSymbol *Symbol    = CLI.Symbol;
3167   const auto *CB      = CLI.CB;
3168 
3169   bool Is64Bit        = Subtarget->is64Bit();
3170   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3171 
3172   // Call / invoke instructions with NoCfCheck attribute require special
3173   // handling.
3174   if (CB && CB->doesNoCfCheck())
3175     return false;
3176 
3177   // Functions with no_caller_saved_registers that need special handling.
3178   if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers")))
3179     return false;
3180 
3181   // Functions with no_callee_saved_registers that need special handling.
3182   if ((CB && CB->hasFnAttr("no_callee_saved_registers")))
3183     return false;
3184 
3185   // Functions using thunks for indirect calls need to use SDISel.
3186   if (Subtarget->useIndirectThunkCalls())
3187     return false;
3188 
3189   // Handle only C, fastcc, and webkit_js calling conventions for now.
3190   switch (CC) {
3191   default: return false;
3192   case CallingConv::C:
3193   case CallingConv::Fast:
3194   case CallingConv::Tail:
3195   case CallingConv::WebKit_JS:
3196   case CallingConv::Swift:
3197   case CallingConv::SwiftTail:
3198   case CallingConv::X86_FastCall:
3199   case CallingConv::X86_StdCall:
3200   case CallingConv::X86_ThisCall:
3201   case CallingConv::Win64:
3202   case CallingConv::X86_64_SysV:
3203   case CallingConv::CFGuard_Check:
3204     break;
3205   }
3206 
3207   // Allow SelectionDAG isel to handle tail calls.
3208   if (IsTailCall)
3209     return false;
3210 
3211   // fastcc with -tailcallopt is intended to provide a guaranteed
3212   // tail call optimization. Fastisel doesn't know how to do that.
3213   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3214       CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
3215     return false;
3216 
3217   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3218   // x86-32. Special handling for x86-64 is implemented.
3219   if (IsVarArg && IsWin64)
3220     return false;
3221 
3222   // Don't know about inalloca yet.
3223   if (CLI.CB && CLI.CB->hasInAllocaArgument())
3224     return false;
3225 
3226   for (auto Flag : CLI.OutFlags)
3227     if (Flag.isSwiftError() || Flag.isPreallocated())
3228       return false;
3229 
3230   SmallVector<MVT, 16> OutVTs;
3231   SmallVector<unsigned, 16> ArgRegs;
3232 
3233   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3234   // instruction. This is safe because it is common to all FastISel supported
3235   // calling conventions on x86.
3236   for (int i = 0, e = OutVals.size(); i != e; ++i) {
3237     Value *&Val = OutVals[i];
3238     ISD::ArgFlagsTy Flags = OutFlags[i];
3239     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3240       if (CI->getBitWidth() < 32) {
3241         if (Flags.isSExt())
3242           Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3243         else
3244           Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3245       }
3246     }
3247 
3248     // Passing bools around ends up doing a trunc to i1 and passing it.
3249     // Codegen this as an argument + "and 1".
3250     MVT VT;
3251     auto *TI = dyn_cast<TruncInst>(Val);
3252     unsigned ResultReg;
3253     if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3254         (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
3255       Value *PrevVal = TI->getOperand(0);
3256       ResultReg = getRegForValue(PrevVal);
3257 
3258       if (!ResultReg)
3259         return false;
3260 
3261       if (!isTypeLegal(PrevVal->getType(), VT))
3262         return false;
3263 
3264       ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1);
3265     } else {
3266       if (!isTypeLegal(Val->getType(), VT) ||
3267           (VT.isVector() && VT.getVectorElementType() == MVT::i1))
3268         return false;
3269       ResultReg = getRegForValue(Val);
3270     }
3271 
3272     if (!ResultReg)
3273       return false;
3274 
3275     ArgRegs.push_back(ResultReg);
3276     OutVTs.push_back(VT);
3277   }
3278 
3279   // Analyze operands of the call, assigning locations to each operand.
3280   SmallVector<CCValAssign, 16> ArgLocs;
3281   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3282 
3283   // Allocate shadow area for Win64
3284   if (IsWin64)
3285     CCInfo.AllocateStack(32, Align(8));
3286 
3287   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3288 
3289   // Get a count of how many bytes are to be pushed on the stack.
3290   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3291 
3292   // Issue CALLSEQ_START
3293   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3294   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3295     .addImm(NumBytes).addImm(0).addImm(0);
3296 
3297   // Walk the register/memloc assignments, inserting copies/loads.
3298   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3299   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3300     CCValAssign const &VA = ArgLocs[i];
3301     const Value *ArgVal = OutVals[VA.getValNo()];
3302     MVT ArgVT = OutVTs[VA.getValNo()];
3303 
3304     if (ArgVT == MVT::x86mmx)
3305       return false;
3306 
3307     unsigned ArgReg = ArgRegs[VA.getValNo()];
3308 
3309     // Promote the value if needed.
3310     switch (VA.getLocInfo()) {
3311     case CCValAssign::Full: break;
3312     case CCValAssign::SExt: {
3313       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3314              "Unexpected extend");
3315 
3316       if (ArgVT == MVT::i1)
3317         return false;
3318 
3319       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3320                                        ArgVT, ArgReg);
3321       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3322       ArgVT = VA.getLocVT();
3323       break;
3324     }
3325     case CCValAssign::ZExt: {
3326       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3327              "Unexpected extend");
3328 
3329       // Handle zero-extension from i1 to i8, which is common.
3330       if (ArgVT == MVT::i1) {
3331         // Set the high bits to zero.
3332         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg);
3333         ArgVT = MVT::i8;
3334 
3335         if (ArgReg == 0)
3336           return false;
3337       }
3338 
3339       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3340                                        ArgVT, ArgReg);
3341       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3342       ArgVT = VA.getLocVT();
3343       break;
3344     }
3345     case CCValAssign::AExt: {
3346       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3347              "Unexpected extend");
3348       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3349                                        ArgVT, ArgReg);
3350       if (!Emitted)
3351         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3352                                     ArgVT, ArgReg);
3353       if (!Emitted)
3354         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3355                                     ArgVT, ArgReg);
3356 
3357       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3358       ArgVT = VA.getLocVT();
3359       break;
3360     }
3361     case CCValAssign::BCvt: {
3362       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg);
3363       assert(ArgReg && "Failed to emit a bitcast!");
3364       ArgVT = VA.getLocVT();
3365       break;
3366     }
3367     case CCValAssign::VExt:
3368       // VExt has not been implemented, so this should be impossible to reach
3369       // for now.  However, fallback to Selection DAG isel once implemented.
3370       return false;
3371     case CCValAssign::AExtUpper:
3372     case CCValAssign::SExtUpper:
3373     case CCValAssign::ZExtUpper:
3374     case CCValAssign::FPExt:
3375     case CCValAssign::Trunc:
3376       llvm_unreachable("Unexpected loc info!");
3377     case CCValAssign::Indirect:
3378       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3379       // support this.
3380       return false;
3381     }
3382 
3383     if (VA.isRegLoc()) {
3384       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3385               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3386       OutRegs.push_back(VA.getLocReg());
3387     } else {
3388       assert(VA.isMemLoc() && "Unknown value location!");
3389 
3390       // Don't emit stores for undef values.
3391       if (isa<UndefValue>(ArgVal))
3392         continue;
3393 
3394       unsigned LocMemOffset = VA.getLocMemOffset();
3395       X86AddressMode AM;
3396       AM.Base.Reg = RegInfo->getStackRegister();
3397       AM.Disp = LocMemOffset;
3398       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3399       Align Alignment = DL.getABITypeAlign(ArgVal->getType());
3400       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3401           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3402           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3403       if (Flags.isByVal()) {
3404         X86AddressMode SrcAM;
3405         SrcAM.Base.Reg = ArgReg;
3406         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3407           return false;
3408       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3409         // If this is a really simple value, emit this with the Value* version
3410         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3411         // as it can cause us to reevaluate the argument.
3412         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3413           return false;
3414       } else {
3415         if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO))
3416           return false;
3417       }
3418     }
3419   }
3420 
3421   // ELF / PIC requires GOT in the EBX register before function calls via PLT
3422   // GOT pointer.
3423   if (Subtarget->isPICStyleGOT()) {
3424     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3425     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3426             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3427   }
3428 
3429   if (Is64Bit && IsVarArg && !IsWin64) {
3430     // From AMD64 ABI document:
3431     // For calls that may call functions that use varargs or stdargs
3432     // (prototype-less calls or calls to functions containing ellipsis (...) in
3433     // the declaration) %al is used as hidden argument to specify the number
3434     // of SSE registers used. The contents of %al do not need to match exactly
3435     // the number of registers, but must be an ubound on the number of SSE
3436     // registers used and is in the range 0 - 8 inclusive.
3437 
3438     // Count the number of XMM registers allocated.
3439     static const MCPhysReg XMMArgRegs[] = {
3440       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3441       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3442     };
3443     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3444     assert((Subtarget->hasSSE1() || !NumXMMRegs)
3445            && "SSE registers cannot be used when SSE is disabled");
3446     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3447             X86::AL).addImm(NumXMMRegs);
3448   }
3449 
3450   // Materialize callee address in a register. FIXME: GV address can be
3451   // handled with a CALLpcrel32 instead.
3452   X86AddressMode CalleeAM;
3453   if (!X86SelectCallAddress(Callee, CalleeAM))
3454     return false;
3455 
3456   unsigned CalleeOp = 0;
3457   const GlobalValue *GV = nullptr;
3458   if (CalleeAM.GV != nullptr) {
3459     GV = CalleeAM.GV;
3460   } else if (CalleeAM.Base.Reg != 0) {
3461     CalleeOp = CalleeAM.Base.Reg;
3462   } else
3463     return false;
3464 
3465   // Issue the call.
3466   MachineInstrBuilder MIB;
3467   if (CalleeOp) {
3468     // Register-indirect call.
3469     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3470     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3471       .addReg(CalleeOp);
3472   } else {
3473     // Direct call.
3474     assert(GV && "Not a direct call");
3475     // See if we need any target-specific flags on the GV operand.
3476     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3477 
3478     // This will be a direct call, or an indirect call through memory for
3479     // NonLazyBind calls or dllimport calls.
3480     bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3481                     OpFlags == X86II::MO_GOTPCREL ||
3482                     OpFlags == X86II::MO_GOTPCREL_NORELAX ||
3483                     OpFlags == X86II::MO_COFFSTUB;
3484     unsigned CallOpc = NeedLoad
3485                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3486                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3487 
3488     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3489     if (NeedLoad)
3490       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3491     if (Symbol)
3492       MIB.addSym(Symbol, OpFlags);
3493     else
3494       MIB.addGlobalAddress(GV, 0, OpFlags);
3495     if (NeedLoad)
3496       MIB.addReg(0);
3497   }
3498 
3499   // Add a register mask operand representing the call-preserved registers.
3500   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3501   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3502 
3503   // Add an implicit use GOT pointer in EBX.
3504   if (Subtarget->isPICStyleGOT())
3505     MIB.addReg(X86::EBX, RegState::Implicit);
3506 
3507   if (Is64Bit && IsVarArg && !IsWin64)
3508     MIB.addReg(X86::AL, RegState::Implicit);
3509 
3510   // Add implicit physical register uses to the call.
3511   for (auto Reg : OutRegs)
3512     MIB.addReg(Reg, RegState::Implicit);
3513 
3514   // Issue CALLSEQ_END
3515   unsigned NumBytesForCalleeToPop =
3516       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3517                        TM.Options.GuaranteedTailCallOpt)
3518           ? NumBytes // Callee pops everything.
3519           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
3520   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3521   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3522     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3523 
3524   // Now handle call return values.
3525   SmallVector<CCValAssign, 16> RVLocs;
3526   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3527                     CLI.RetTy->getContext());
3528   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3529 
3530   // Copy all of the result registers out of their specified physreg.
3531   Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3532   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3533     CCValAssign &VA = RVLocs[i];
3534     EVT CopyVT = VA.getValVT();
3535     unsigned CopyReg = ResultReg + i;
3536     Register SrcReg = VA.getLocReg();
3537 
3538     // If this is x86-64, and we disabled SSE, we can't return FP values
3539     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3540         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3541       report_fatal_error("SSE register return with SSE disabled");
3542     }
3543 
3544     // If we prefer to use the value in xmm registers, copy it out as f80 and
3545     // use a truncate to move it from fp stack reg to xmm reg.
3546     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3547         isScalarFPTypeInSSEReg(VA.getValVT())) {
3548       CopyVT = MVT::f80;
3549       CopyReg = createResultReg(&X86::RFP80RegClass);
3550     }
3551 
3552     // Copy out the result.
3553     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3554             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3555     InRegs.push_back(VA.getLocReg());
3556 
3557     // Round the f80 to the right size, which also moves it to the appropriate
3558     // xmm register. This is accomplished by storing the f80 value in memory
3559     // and then loading it back.
3560     if (CopyVT != VA.getValVT()) {
3561       EVT ResVT = VA.getValVT();
3562       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3563       unsigned MemSize = ResVT.getSizeInBits()/8;
3564       int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3565       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3566                                 TII.get(Opc)), FI)
3567         .addReg(CopyReg);
3568       Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3569       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3570                                 TII.get(Opc), ResultReg + i), FI);
3571     }
3572   }
3573 
3574   CLI.ResultReg = ResultReg;
3575   CLI.NumResultRegs = RVLocs.size();
3576   CLI.Call = MIB;
3577 
3578   return true;
3579 }
3580 
3581 bool
3582 X86FastISel::fastSelectInstruction(const Instruction *I)  {
3583   switch (I->getOpcode()) {
3584   default: break;
3585   case Instruction::Load:
3586     return X86SelectLoad(I);
3587   case Instruction::Store:
3588     return X86SelectStore(I);
3589   case Instruction::Ret:
3590     return X86SelectRet(I);
3591   case Instruction::ICmp:
3592   case Instruction::FCmp:
3593     return X86SelectCmp(I);
3594   case Instruction::ZExt:
3595     return X86SelectZExt(I);
3596   case Instruction::SExt:
3597     return X86SelectSExt(I);
3598   case Instruction::Br:
3599     return X86SelectBranch(I);
3600   case Instruction::LShr:
3601   case Instruction::AShr:
3602   case Instruction::Shl:
3603     return X86SelectShift(I);
3604   case Instruction::SDiv:
3605   case Instruction::UDiv:
3606   case Instruction::SRem:
3607   case Instruction::URem:
3608     return X86SelectDivRem(I);
3609   case Instruction::Select:
3610     return X86SelectSelect(I);
3611   case Instruction::Trunc:
3612     return X86SelectTrunc(I);
3613   case Instruction::FPExt:
3614     return X86SelectFPExt(I);
3615   case Instruction::FPTrunc:
3616     return X86SelectFPTrunc(I);
3617   case Instruction::SIToFP:
3618     return X86SelectSIToFP(I);
3619   case Instruction::UIToFP:
3620     return X86SelectUIToFP(I);
3621   case Instruction::IntToPtr: // Deliberate fall-through.
3622   case Instruction::PtrToInt: {
3623     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3624     EVT DstVT = TLI.getValueType(DL, I->getType());
3625     if (DstVT.bitsGT(SrcVT))
3626       return X86SelectZExt(I);
3627     if (DstVT.bitsLT(SrcVT))
3628       return X86SelectTrunc(I);
3629     Register Reg = getRegForValue(I->getOperand(0));
3630     if (Reg == 0) return false;
3631     updateValueMap(I, Reg);
3632     return true;
3633   }
3634   case Instruction::BitCast: {
3635     // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3636     if (!Subtarget->hasSSE2())
3637       return false;
3638 
3639     MVT SrcVT, DstVT;
3640     if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3641         !isTypeLegal(I->getType(), DstVT))
3642       return false;
3643 
3644     // Only allow vectors that use xmm/ymm/zmm.
3645     if (!SrcVT.isVector() || !DstVT.isVector() ||
3646         SrcVT.getVectorElementType() == MVT::i1 ||
3647         DstVT.getVectorElementType() == MVT::i1)
3648       return false;
3649 
3650     Register Reg = getRegForValue(I->getOperand(0));
3651     if (!Reg)
3652       return false;
3653 
3654     // Emit a reg-reg copy so we don't propagate cached known bits information
3655     // with the wrong VT if we fall out of fast isel after selecting this.
3656     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3657     Register ResultReg = createResultReg(DstClass);
3658     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3659               TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3660 
3661     updateValueMap(I, ResultReg);
3662     return true;
3663   }
3664   }
3665 
3666   return false;
3667 }
3668 
3669 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3670   if (VT > MVT::i64)
3671     return 0;
3672 
3673   uint64_t Imm = CI->getZExtValue();
3674   if (Imm == 0) {
3675     Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3676     switch (VT.SimpleTy) {
3677     default: llvm_unreachable("Unexpected value type");
3678     case MVT::i1:
3679     case MVT::i8:
3680       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit);
3681     case MVT::i16:
3682       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit);
3683     case MVT::i32:
3684       return SrcReg;
3685     case MVT::i64: {
3686       Register ResultReg = createResultReg(&X86::GR64RegClass);
3687       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3688               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3689         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3690       return ResultReg;
3691     }
3692     }
3693   }
3694 
3695   unsigned Opc = 0;
3696   switch (VT.SimpleTy) {
3697   default: llvm_unreachable("Unexpected value type");
3698   case MVT::i1:
3699     VT = MVT::i8;
3700     LLVM_FALLTHROUGH;
3701   case MVT::i8:  Opc = X86::MOV8ri;  break;
3702   case MVT::i16: Opc = X86::MOV16ri; break;
3703   case MVT::i32: Opc = X86::MOV32ri; break;
3704   case MVT::i64: {
3705     if (isUInt<32>(Imm))
3706       Opc = X86::MOV32ri64;
3707     else if (isInt<32>(Imm))
3708       Opc = X86::MOV64ri32;
3709     else
3710       Opc = X86::MOV64ri;
3711     break;
3712   }
3713   }
3714   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3715 }
3716 
3717 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3718   if (CFP->isNullValue())
3719     return fastMaterializeFloatZero(CFP);
3720 
3721   // Can't handle alternate code models yet.
3722   CodeModel::Model CM = TM.getCodeModel();
3723   if (CM != CodeModel::Small && CM != CodeModel::Large)
3724     return 0;
3725 
3726   // Get opcode and regclass of the output for the given load instruction.
3727   unsigned Opc = 0;
3728   bool HasSSE1 = Subtarget->hasSSE1();
3729   bool HasSSE2 = Subtarget->hasSSE2();
3730   bool HasAVX = Subtarget->hasAVX();
3731   bool HasAVX512 = Subtarget->hasAVX512();
3732   switch (VT.SimpleTy) {
3733   default: return 0;
3734   case MVT::f32:
3735     Opc = HasAVX512 ? X86::VMOVSSZrm_alt
3736           : HasAVX  ? X86::VMOVSSrm_alt
3737           : HasSSE1 ? X86::MOVSSrm_alt
3738                     : X86::LD_Fp32m;
3739     break;
3740   case MVT::f64:
3741     Opc = HasAVX512 ? X86::VMOVSDZrm_alt
3742           : HasAVX  ? X86::VMOVSDrm_alt
3743           : HasSSE2 ? X86::MOVSDrm_alt
3744                     : X86::LD_Fp64m;
3745     break;
3746   case MVT::f80:
3747     // No f80 support yet.
3748     return 0;
3749   }
3750 
3751   // MachineConstantPool wants an explicit alignment.
3752   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
3753 
3754   // x86-32 PIC requires a PIC base register for constant pools.
3755   unsigned PICBase = 0;
3756   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3757   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3758     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3759   else if (OpFlag == X86II::MO_GOTOFF)
3760     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3761   else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3762     PICBase = X86::RIP;
3763 
3764   // Create the load from the constant pool.
3765   unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3766   Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3767 
3768   // Large code model only applies to 64-bit mode.
3769   if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3770     Register AddrReg = createResultReg(&X86::GR64RegClass);
3771     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3772             AddrReg)
3773       .addConstantPoolIndex(CPI, 0, OpFlag);
3774     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3775                                       TII.get(Opc), ResultReg);
3776     addRegReg(MIB, AddrReg, false, PICBase, false);
3777     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3778         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3779         MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
3780     MIB->addMemOperand(*FuncInfo.MF, MMO);
3781     return ResultReg;
3782   }
3783 
3784   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3785                                    TII.get(Opc), ResultReg),
3786                            CPI, PICBase, OpFlag);
3787   return ResultReg;
3788 }
3789 
3790 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3791   // Can't handle alternate code models yet.
3792   if (TM.getCodeModel() != CodeModel::Small)
3793     return 0;
3794 
3795   // Materialize addresses with LEA/MOV instructions.
3796   X86AddressMode AM;
3797   if (X86SelectAddress(GV, AM)) {
3798     // If the expression is just a basereg, then we're done, otherwise we need
3799     // to emit an LEA.
3800     if (AM.BaseType == X86AddressMode::RegBase &&
3801         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3802       return AM.Base.Reg;
3803 
3804     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3805     if (TM.getRelocationModel() == Reloc::Static &&
3806         TLI.getPointerTy(DL) == MVT::i64) {
3807       // The displacement code could be more than 32 bits away so we need to use
3808       // an instruction with a 64 bit immediate
3809       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3810               ResultReg)
3811         .addGlobalAddress(GV);
3812     } else {
3813       unsigned Opc =
3814           TLI.getPointerTy(DL) == MVT::i32
3815               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3816               : X86::LEA64r;
3817       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3818                              TII.get(Opc), ResultReg), AM);
3819     }
3820     return ResultReg;
3821   }
3822   return 0;
3823 }
3824 
3825 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3826   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3827 
3828   // Only handle simple types.
3829   if (!CEVT.isSimple())
3830     return 0;
3831   MVT VT = CEVT.getSimpleVT();
3832 
3833   if (const auto *CI = dyn_cast<ConstantInt>(C))
3834     return X86MaterializeInt(CI, VT);
3835   if (const auto *CFP = dyn_cast<ConstantFP>(C))
3836     return X86MaterializeFP(CFP, VT);
3837   if (const auto *GV = dyn_cast<GlobalValue>(C))
3838     return X86MaterializeGV(GV, VT);
3839   if (isa<UndefValue>(C)) {
3840     unsigned Opc = 0;
3841     switch (VT.SimpleTy) {
3842     default:
3843       break;
3844     case MVT::f32:
3845       if (!Subtarget->hasSSE1())
3846         Opc = X86::LD_Fp032;
3847       break;
3848     case MVT::f64:
3849       if (!Subtarget->hasSSE2())
3850         Opc = X86::LD_Fp064;
3851       break;
3852     case MVT::f80:
3853       Opc = X86::LD_Fp080;
3854       break;
3855     }
3856 
3857     if (Opc) {
3858       Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3859       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
3860               ResultReg);
3861       return ResultReg;
3862     }
3863   }
3864 
3865   return 0;
3866 }
3867 
3868 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3869   // Fail on dynamic allocas. At this point, getRegForValue has already
3870   // checked its CSE maps, so if we're here trying to handle a dynamic
3871   // alloca, we're not going to succeed. X86SelectAddress has a
3872   // check for dynamic allocas, because it's called directly from
3873   // various places, but targetMaterializeAlloca also needs a check
3874   // in order to avoid recursion between getRegForValue,
3875   // X86SelectAddrss, and targetMaterializeAlloca.
3876   if (!FuncInfo.StaticAllocaMap.count(C))
3877     return 0;
3878   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3879 
3880   X86AddressMode AM;
3881   if (!X86SelectAddress(C, AM))
3882     return 0;
3883   unsigned Opc =
3884       TLI.getPointerTy(DL) == MVT::i32
3885           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3886           : X86::LEA64r;
3887   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3888   Register ResultReg = createResultReg(RC);
3889   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3890                          TII.get(Opc), ResultReg), AM);
3891   return ResultReg;
3892 }
3893 
3894 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3895   MVT VT;
3896   if (!isTypeLegal(CF->getType(), VT))
3897     return 0;
3898 
3899   // Get opcode and regclass for the given zero.
3900   bool HasSSE1 = Subtarget->hasSSE1();
3901   bool HasSSE2 = Subtarget->hasSSE2();
3902   bool HasAVX512 = Subtarget->hasAVX512();
3903   unsigned Opc = 0;
3904   switch (VT.SimpleTy) {
3905   default: return 0;
3906   case MVT::f16:
3907     Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH;
3908     break;
3909   case MVT::f32:
3910     Opc = HasAVX512 ? X86::AVX512_FsFLD0SS
3911           : HasSSE1 ? X86::FsFLD0SS
3912                     : X86::LD_Fp032;
3913     break;
3914   case MVT::f64:
3915     Opc = HasAVX512 ? X86::AVX512_FsFLD0SD
3916           : HasSSE2 ? X86::FsFLD0SD
3917                     : X86::LD_Fp064;
3918     break;
3919   case MVT::f80:
3920     // No f80 support yet.
3921     return 0;
3922   }
3923 
3924   Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3925   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3926   return ResultReg;
3927 }
3928 
3929 
3930 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3931                                       const LoadInst *LI) {
3932   const Value *Ptr = LI->getPointerOperand();
3933   X86AddressMode AM;
3934   if (!X86SelectAddress(Ptr, AM))
3935     return false;
3936 
3937   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3938 
3939   unsigned Size = DL.getTypeAllocSize(LI->getType());
3940 
3941   SmallVector<MachineOperand, 8> AddrOps;
3942   AM.getFullAddress(AddrOps);
3943 
3944   MachineInstr *Result = XII.foldMemoryOperandImpl(
3945       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
3946       /*AllowCommute=*/true);
3947   if (!Result)
3948     return false;
3949 
3950   // The index register could be in the wrong register class.  Unfortunately,
3951   // foldMemoryOperandImpl could have commuted the instruction so its not enough
3952   // to just look at OpNo + the offset to the index reg.  We actually need to
3953   // scan the instruction to find the index reg and see if its the correct reg
3954   // class.
3955   unsigned OperandNo = 0;
3956   for (MachineInstr::mop_iterator I = Result->operands_begin(),
3957        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3958     MachineOperand &MO = *I;
3959     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3960       continue;
3961     // Found the index reg, now try to rewrite it.
3962     Register IndexReg = constrainOperandRegClass(Result->getDesc(),
3963                                                  MO.getReg(), OperandNo);
3964     if (IndexReg == MO.getReg())
3965       continue;
3966     MO.setReg(IndexReg);
3967   }
3968 
3969   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3970   Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
3971   MachineBasicBlock::iterator I(MI);
3972   removeDeadCode(I, std::next(I));
3973   return true;
3974 }
3975 
3976 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3977                                         const TargetRegisterClass *RC,
3978                                         unsigned Op0, unsigned Op1,
3979                                         unsigned Op2, unsigned Op3) {
3980   const MCInstrDesc &II = TII.get(MachineInstOpcode);
3981 
3982   Register ResultReg = createResultReg(RC);
3983   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
3984   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
3985   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
3986   Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
3987 
3988   if (II.getNumDefs() >= 1)
3989     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
3990         .addReg(Op0)
3991         .addReg(Op1)
3992         .addReg(Op2)
3993         .addReg(Op3);
3994   else {
3995     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
3996         .addReg(Op0)
3997         .addReg(Op1)
3998         .addReg(Op2)
3999         .addReg(Op3);
4000     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4001             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
4002   }
4003   return ResultReg;
4004 }
4005 
4006 
4007 namespace llvm {
4008   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4009                                 const TargetLibraryInfo *libInfo) {
4010     return new X86FastISel(funcInfo, libInfo);
4011   }
4012 }
4013