1 //===-- X86RegisterInfo.cpp - X86 Register Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetRegisterInfo class.
10 // This file is responsible for the frame pointer elimination optimization
11 // on X86.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86RegisterInfo.h"
16 #include "X86FrameLowering.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/CodeGen/LiveRegMatrix.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 
37 using namespace llvm;
38 
39 #define GET_REGINFO_TARGET_DESC
40 #include "X86GenRegisterInfo.inc"
41 
42 static cl::opt<bool>
43 EnableBasePointer("x86-use-base-pointer", cl::Hidden, cl::init(true),
44           cl::desc("Enable use of a base pointer for complex stack frames"));
45 
46 X86RegisterInfo::X86RegisterInfo(const Triple &TT)
47     : X86GenRegisterInfo((TT.isArch64Bit() ? X86::RIP : X86::EIP),
48                          X86_MC::getDwarfRegFlavour(TT, false),
49                          X86_MC::getDwarfRegFlavour(TT, true),
50                          (TT.isArch64Bit() ? X86::RIP : X86::EIP)) {
51   X86_MC::initLLVMToSEHAndCVRegMapping(this);
52 
53   // Cache some information.
54   Is64Bit = TT.isArch64Bit();
55   IsWin64 = Is64Bit && TT.isOSWindows();
56 
57   // Use a callee-saved register as the base pointer.  These registers must
58   // not conflict with any ABI requirements.  For example, in 32-bit mode PIC
59   // requires GOT in the EBX register before function calls via PLT GOT pointer.
60   if (Is64Bit) {
61     SlotSize = 8;
62     // This matches the simplified 32-bit pointer code in the data layout
63     // computation.
64     // FIXME: Should use the data layout?
65     bool Use64BitReg = TT.getEnvironment() != Triple::GNUX32;
66     StackPtr = Use64BitReg ? X86::RSP : X86::ESP;
67     FramePtr = Use64BitReg ? X86::RBP : X86::EBP;
68     BasePtr = Use64BitReg ? X86::RBX : X86::EBX;
69   } else {
70     SlotSize = 4;
71     StackPtr = X86::ESP;
72     FramePtr = X86::EBP;
73     BasePtr = X86::ESI;
74   }
75 }
76 
77 int
78 X86RegisterInfo::getSEHRegNum(unsigned i) const {
79   return getEncodingValue(i);
80 }
81 
82 const TargetRegisterClass *
83 X86RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
84                                        unsigned Idx) const {
85   // The sub_8bit sub-register index is more constrained in 32-bit mode.
86   // It behaves just like the sub_8bit_hi index.
87   if (!Is64Bit && Idx == X86::sub_8bit)
88     Idx = X86::sub_8bit_hi;
89 
90   // Forward to TableGen's default version.
91   return X86GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
92 }
93 
94 const TargetRegisterClass *
95 X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
96                                           const TargetRegisterClass *B,
97                                           unsigned SubIdx) const {
98   // The sub_8bit sub-register index is more constrained in 32-bit mode.
99   if (!Is64Bit && SubIdx == X86::sub_8bit) {
100     A = X86GenRegisterInfo::getSubClassWithSubReg(A, X86::sub_8bit_hi);
101     if (!A)
102       return nullptr;
103   }
104   return X86GenRegisterInfo::getMatchingSuperRegClass(A, B, SubIdx);
105 }
106 
107 const TargetRegisterClass *
108 X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
109                                            const MachineFunction &MF) const {
110   // Don't allow super-classes of GR8_NOREX.  This class is only used after
111   // extracting sub_8bit_hi sub-registers.  The H sub-registers cannot be copied
112   // to the full GR8 register class in 64-bit mode, so we cannot allow the
113   // reigster class inflation.
114   //
115   // The GR8_NOREX class is always used in a way that won't be constrained to a
116   // sub-class, so sub-classes like GR8_ABCD_L are allowed to expand to the
117   // full GR8 class.
118   if (RC == &X86::GR8_NOREXRegClass)
119     return RC;
120 
121   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
122 
123   const TargetRegisterClass *Super = RC;
124   TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
125   do {
126     switch (Super->getID()) {
127     case X86::FR32RegClassID:
128     case X86::FR64RegClassID:
129       // If AVX-512 isn't supported we should only inflate to these classes.
130       if (!Subtarget.hasAVX512() &&
131           getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
132         return Super;
133       break;
134     case X86::VR128RegClassID:
135     case X86::VR256RegClassID:
136       // If VLX isn't supported we should only inflate to these classes.
137       if (!Subtarget.hasVLX() &&
138           getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
139         return Super;
140       break;
141     case X86::VR128XRegClassID:
142     case X86::VR256XRegClassID:
143       // If VLX isn't support we shouldn't inflate to these classes.
144       if (Subtarget.hasVLX() &&
145           getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
146         return Super;
147       break;
148     case X86::FR32XRegClassID:
149     case X86::FR64XRegClassID:
150       // If AVX-512 isn't support we shouldn't inflate to these classes.
151       if (Subtarget.hasAVX512() &&
152           getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
153         return Super;
154       break;
155     case X86::GR8RegClassID:
156     case X86::GR16RegClassID:
157     case X86::GR32RegClassID:
158     case X86::GR64RegClassID:
159     case X86::RFP32RegClassID:
160     case X86::RFP64RegClassID:
161     case X86::RFP80RegClassID:
162     case X86::VR512_0_15RegClassID:
163     case X86::VR512RegClassID:
164       // Don't return a super-class that would shrink the spill size.
165       // That can happen with the vector and float classes.
166       if (getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
167         return Super;
168     }
169     Super = *I++;
170   } while (Super);
171   return RC;
172 }
173 
174 const TargetRegisterClass *
175 X86RegisterInfo::getPointerRegClass(const MachineFunction &MF,
176                                     unsigned Kind) const {
177   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
178   switch (Kind) {
179   default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
180   case 0: // Normal GPRs.
181     if (Subtarget.isTarget64BitLP64())
182       return &X86::GR64RegClass;
183     // If the target is 64bit but we have been told to use 32bit addresses,
184     // we can still use 64-bit register as long as we know the high bits
185     // are zeros.
186     // Reflect that in the returned register class.
187     if (Is64Bit) {
188       // When the target also allows 64-bit frame pointer and we do have a
189       // frame, this is fine to use it for the address accesses as well.
190       const X86FrameLowering *TFI = getFrameLowering(MF);
191       return TFI->hasFP(MF) && TFI->Uses64BitFramePtr
192                  ? &X86::LOW32_ADDR_ACCESS_RBPRegClass
193                  : &X86::LOW32_ADDR_ACCESSRegClass;
194     }
195     return &X86::GR32RegClass;
196   case 1: // Normal GPRs except the stack pointer (for encoding reasons).
197     if (Subtarget.isTarget64BitLP64())
198       return &X86::GR64_NOSPRegClass;
199     // NOSP does not contain RIP, so no special case here.
200     return &X86::GR32_NOSPRegClass;
201   case 2: // NOREX GPRs.
202     if (Subtarget.isTarget64BitLP64())
203       return &X86::GR64_NOREXRegClass;
204     return &X86::GR32_NOREXRegClass;
205   case 3: // NOREX GPRs except the stack pointer (for encoding reasons).
206     if (Subtarget.isTarget64BitLP64())
207       return &X86::GR64_NOREX_NOSPRegClass;
208     // NOSP does not contain RIP, so no special case here.
209     return &X86::GR32_NOREX_NOSPRegClass;
210   case 4: // Available for tailcall (not callee-saved GPRs).
211     return getGPRsForTailCall(MF);
212   }
213 }
214 
215 bool X86RegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
216                                            unsigned DefSubReg,
217                                            const TargetRegisterClass *SrcRC,
218                                            unsigned SrcSubReg) const {
219   // Prevent rewriting a copy where the destination size is larger than the
220   // input size. See PR41619.
221   // FIXME: Should this be factored into the base implementation somehow.
222   if (DefRC->hasSuperClassEq(&X86::GR64RegClass) && DefSubReg == 0 &&
223       SrcRC->hasSuperClassEq(&X86::GR64RegClass) && SrcSubReg == X86::sub_32bit)
224     return false;
225 
226   return TargetRegisterInfo::shouldRewriteCopySrc(DefRC, DefSubReg,
227                                                   SrcRC, SrcSubReg);
228 }
229 
230 const TargetRegisterClass *
231 X86RegisterInfo::getGPRsForTailCall(const MachineFunction &MF) const {
232   const Function &F = MF.getFunction();
233   if (IsWin64 || (F.getCallingConv() == CallingConv::Win64))
234     return &X86::GR64_TCW64RegClass;
235   else if (Is64Bit)
236     return &X86::GR64_TCRegClass;
237 
238   bool hasHipeCC = (F.getCallingConv() == CallingConv::HiPE);
239   if (hasHipeCC)
240     return &X86::GR32RegClass;
241   return &X86::GR32_TCRegClass;
242 }
243 
244 const TargetRegisterClass *
245 X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
246   if (RC == &X86::CCRRegClass) {
247     if (Is64Bit)
248       return &X86::GR64RegClass;
249     else
250       return &X86::GR32RegClass;
251   }
252   return RC;
253 }
254 
255 unsigned
256 X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
257                                      MachineFunction &MF) const {
258   const X86FrameLowering *TFI = getFrameLowering(MF);
259 
260   unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
261   switch (RC->getID()) {
262   default:
263     return 0;
264   case X86::GR32RegClassID:
265     return 4 - FPDiff;
266   case X86::GR64RegClassID:
267     return 12 - FPDiff;
268   case X86::VR128RegClassID:
269     return Is64Bit ? 10 : 4;
270   case X86::VR64RegClassID:
271     return 4;
272   }
273 }
274 
275 const MCPhysReg *
276 X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
277   assert(MF && "MachineFunction required");
278 
279   const X86Subtarget &Subtarget = MF->getSubtarget<X86Subtarget>();
280   const Function &F = MF->getFunction();
281   bool HasSSE = Subtarget.hasSSE1();
282   bool HasAVX = Subtarget.hasAVX();
283   bool HasAVX512 = Subtarget.hasAVX512();
284   bool CallsEHReturn = MF->callsEHReturn();
285 
286   CallingConv::ID CC = F.getCallingConv();
287 
288   // If attribute NoCallerSavedRegisters exists then we set X86_INTR calling
289   // convention because it has the CSR list.
290   if (MF->getFunction().hasFnAttribute("no_caller_saved_registers"))
291     CC = CallingConv::X86_INTR;
292 
293   switch (CC) {
294   case CallingConv::GHC:
295   case CallingConv::HiPE:
296     return CSR_NoRegs_SaveList;
297   case CallingConv::AnyReg:
298     if (HasAVX)
299       return CSR_64_AllRegs_AVX_SaveList;
300     return CSR_64_AllRegs_SaveList;
301   case CallingConv::PreserveMost:
302     return CSR_64_RT_MostRegs_SaveList;
303   case CallingConv::PreserveAll:
304     if (HasAVX)
305       return CSR_64_RT_AllRegs_AVX_SaveList;
306     return CSR_64_RT_AllRegs_SaveList;
307   case CallingConv::CXX_FAST_TLS:
308     if (Is64Bit)
309       return MF->getInfo<X86MachineFunctionInfo>()->isSplitCSR() ?
310              CSR_64_CXX_TLS_Darwin_PE_SaveList : CSR_64_TLS_Darwin_SaveList;
311     break;
312   case CallingConv::Intel_OCL_BI: {
313     if (HasAVX512 && IsWin64)
314       return CSR_Win64_Intel_OCL_BI_AVX512_SaveList;
315     if (HasAVX512 && Is64Bit)
316       return CSR_64_Intel_OCL_BI_AVX512_SaveList;
317     if (HasAVX && IsWin64)
318       return CSR_Win64_Intel_OCL_BI_AVX_SaveList;
319     if (HasAVX && Is64Bit)
320       return CSR_64_Intel_OCL_BI_AVX_SaveList;
321     if (!HasAVX && !IsWin64 && Is64Bit)
322       return CSR_64_Intel_OCL_BI_SaveList;
323     break;
324   }
325   case CallingConv::HHVM:
326     return CSR_64_HHVM_SaveList;
327   case CallingConv::X86_RegCall:
328     if (Is64Bit) {
329       if (IsWin64) {
330         return (HasSSE ? CSR_Win64_RegCall_SaveList :
331                          CSR_Win64_RegCall_NoSSE_SaveList);
332       } else {
333         return (HasSSE ? CSR_SysV64_RegCall_SaveList :
334                          CSR_SysV64_RegCall_NoSSE_SaveList);
335       }
336     } else {
337       return (HasSSE ? CSR_32_RegCall_SaveList :
338                        CSR_32_RegCall_NoSSE_SaveList);
339     }
340   case CallingConv::CFGuard_Check:
341     assert(!Is64Bit && "CFGuard check mechanism only used on 32-bit X86");
342     return (HasSSE ? CSR_Win32_CFGuard_Check_SaveList
343                    : CSR_Win32_CFGuard_Check_NoSSE_SaveList);
344   case CallingConv::Cold:
345     if (Is64Bit)
346       return CSR_64_MostRegs_SaveList;
347     break;
348   case CallingConv::Win64:
349     if (!HasSSE)
350       return CSR_Win64_NoSSE_SaveList;
351     return CSR_Win64_SaveList;
352   case CallingConv::X86_64_SysV:
353     if (CallsEHReturn)
354       return CSR_64EHRet_SaveList;
355     return CSR_64_SaveList;
356   case CallingConv::X86_INTR:
357     if (Is64Bit) {
358       if (HasAVX512)
359         return CSR_64_AllRegs_AVX512_SaveList;
360       if (HasAVX)
361         return CSR_64_AllRegs_AVX_SaveList;
362       if (HasSSE)
363         return CSR_64_AllRegs_SaveList;
364       return CSR_64_AllRegs_NoSSE_SaveList;
365     } else {
366       if (HasAVX512)
367         return CSR_32_AllRegs_AVX512_SaveList;
368       if (HasAVX)
369         return CSR_32_AllRegs_AVX_SaveList;
370       if (HasSSE)
371         return CSR_32_AllRegs_SSE_SaveList;
372       return CSR_32_AllRegs_SaveList;
373     }
374   default:
375     break;
376   }
377 
378   if (Is64Bit) {
379     bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
380                      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
381     if (IsSwiftCC)
382       return IsWin64 ? CSR_Win64_SwiftError_SaveList
383                      : CSR_64_SwiftError_SaveList;
384 
385     if (IsWin64)
386       return HasSSE ? CSR_Win64_SaveList : CSR_Win64_NoSSE_SaveList;
387     if (CallsEHReturn)
388       return CSR_64EHRet_SaveList;
389     return CSR_64_SaveList;
390   }
391 
392   return CallsEHReturn ? CSR_32EHRet_SaveList : CSR_32_SaveList;
393 }
394 
395 const MCPhysReg *X86RegisterInfo::getCalleeSavedRegsViaCopy(
396     const MachineFunction *MF) const {
397   assert(MF && "Invalid MachineFunction pointer.");
398   if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
399       MF->getInfo<X86MachineFunctionInfo>()->isSplitCSR())
400     return CSR_64_CXX_TLS_Darwin_ViaCopy_SaveList;
401   return nullptr;
402 }
403 
404 const uint32_t *
405 X86RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
406                                       CallingConv::ID CC) const {
407   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
408   bool HasSSE = Subtarget.hasSSE1();
409   bool HasAVX = Subtarget.hasAVX();
410   bool HasAVX512 = Subtarget.hasAVX512();
411 
412   switch (CC) {
413   case CallingConv::GHC:
414   case CallingConv::HiPE:
415     return CSR_NoRegs_RegMask;
416   case CallingConv::AnyReg:
417     if (HasAVX)
418       return CSR_64_AllRegs_AVX_RegMask;
419     return CSR_64_AllRegs_RegMask;
420   case CallingConv::PreserveMost:
421     return CSR_64_RT_MostRegs_RegMask;
422   case CallingConv::PreserveAll:
423     if (HasAVX)
424       return CSR_64_RT_AllRegs_AVX_RegMask;
425     return CSR_64_RT_AllRegs_RegMask;
426   case CallingConv::CXX_FAST_TLS:
427     if (Is64Bit)
428       return CSR_64_TLS_Darwin_RegMask;
429     break;
430   case CallingConv::Intel_OCL_BI: {
431     if (HasAVX512 && IsWin64)
432       return CSR_Win64_Intel_OCL_BI_AVX512_RegMask;
433     if (HasAVX512 && Is64Bit)
434       return CSR_64_Intel_OCL_BI_AVX512_RegMask;
435     if (HasAVX && IsWin64)
436       return CSR_Win64_Intel_OCL_BI_AVX_RegMask;
437     if (HasAVX && Is64Bit)
438       return CSR_64_Intel_OCL_BI_AVX_RegMask;
439     if (!HasAVX && !IsWin64 && Is64Bit)
440       return CSR_64_Intel_OCL_BI_RegMask;
441     break;
442   }
443   case CallingConv::HHVM:
444     return CSR_64_HHVM_RegMask;
445   case CallingConv::X86_RegCall:
446     if (Is64Bit) {
447       if (IsWin64) {
448         return (HasSSE ? CSR_Win64_RegCall_RegMask :
449                          CSR_Win64_RegCall_NoSSE_RegMask);
450       } else {
451         return (HasSSE ? CSR_SysV64_RegCall_RegMask :
452                          CSR_SysV64_RegCall_NoSSE_RegMask);
453       }
454     } else {
455       return (HasSSE ? CSR_32_RegCall_RegMask :
456                        CSR_32_RegCall_NoSSE_RegMask);
457     }
458   case CallingConv::CFGuard_Check:
459     assert(!Is64Bit && "CFGuard check mechanism only used on 32-bit X86");
460     return (HasSSE ? CSR_Win32_CFGuard_Check_RegMask
461                    : CSR_Win32_CFGuard_Check_NoSSE_RegMask);
462   case CallingConv::Cold:
463     if (Is64Bit)
464       return CSR_64_MostRegs_RegMask;
465     break;
466   case CallingConv::Win64:
467     return CSR_Win64_RegMask;
468   case CallingConv::X86_64_SysV:
469     return CSR_64_RegMask;
470   case CallingConv::X86_INTR:
471     if (Is64Bit) {
472       if (HasAVX512)
473         return CSR_64_AllRegs_AVX512_RegMask;
474       if (HasAVX)
475         return CSR_64_AllRegs_AVX_RegMask;
476       if (HasSSE)
477         return CSR_64_AllRegs_RegMask;
478       return CSR_64_AllRegs_NoSSE_RegMask;
479     } else {
480       if (HasAVX512)
481         return CSR_32_AllRegs_AVX512_RegMask;
482       if (HasAVX)
483         return CSR_32_AllRegs_AVX_RegMask;
484       if (HasSSE)
485         return CSR_32_AllRegs_SSE_RegMask;
486       return CSR_32_AllRegs_RegMask;
487     }
488   default:
489     break;
490   }
491 
492   // Unlike getCalleeSavedRegs(), we don't have MMI so we can't check
493   // callsEHReturn().
494   if (Is64Bit) {
495     const Function &F = MF.getFunction();
496     bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
497                      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
498     if (IsSwiftCC)
499       return IsWin64 ? CSR_Win64_SwiftError_RegMask : CSR_64_SwiftError_RegMask;
500     return IsWin64 ? CSR_Win64_RegMask : CSR_64_RegMask;
501   }
502 
503   return CSR_32_RegMask;
504 }
505 
506 const uint32_t*
507 X86RegisterInfo::getNoPreservedMask() const {
508   return CSR_NoRegs_RegMask;
509 }
510 
511 const uint32_t *X86RegisterInfo::getDarwinTLSCallPreservedMask() const {
512   return CSR_64_TLS_Darwin_RegMask;
513 }
514 
515 BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
516   BitVector Reserved(getNumRegs());
517   const X86FrameLowering *TFI = getFrameLowering(MF);
518 
519   // Set the floating point control register as reserved.
520   Reserved.set(X86::FPCW);
521 
522   // Set the floating point status register as reserved.
523   Reserved.set(X86::FPSW);
524 
525   // Set the SIMD floating point control register as reserved.
526   Reserved.set(X86::MXCSR);
527 
528   // Set the stack-pointer register and its aliases as reserved.
529   for (const MCPhysReg &SubReg : subregs_inclusive(X86::RSP))
530     Reserved.set(SubReg);
531 
532   // Set the Shadow Stack Pointer as reserved.
533   Reserved.set(X86::SSP);
534 
535   // Set the instruction pointer register and its aliases as reserved.
536   for (const MCPhysReg &SubReg : subregs_inclusive(X86::RIP))
537     Reserved.set(SubReg);
538 
539   // Set the frame-pointer register and its aliases as reserved if needed.
540   if (TFI->hasFP(MF)) {
541     for (const MCPhysReg &SubReg : subregs_inclusive(X86::RBP))
542       Reserved.set(SubReg);
543   }
544 
545   // Set the base-pointer register and its aliases as reserved if needed.
546   if (hasBasePointer(MF)) {
547     CallingConv::ID CC = MF.getFunction().getCallingConv();
548     const uint32_t *RegMask = getCallPreservedMask(MF, CC);
549     if (MachineOperand::clobbersPhysReg(RegMask, getBaseRegister()))
550       report_fatal_error(
551         "Stack realignment in presence of dynamic allocas is not supported with"
552         "this calling convention.");
553 
554     Register BasePtr = getX86SubSuperRegister(getBaseRegister(), 64);
555     for (const MCPhysReg &SubReg : subregs_inclusive(BasePtr))
556       Reserved.set(SubReg);
557   }
558 
559   // Mark the segment registers as reserved.
560   Reserved.set(X86::CS);
561   Reserved.set(X86::SS);
562   Reserved.set(X86::DS);
563   Reserved.set(X86::ES);
564   Reserved.set(X86::FS);
565   Reserved.set(X86::GS);
566 
567   // Mark the floating point stack registers as reserved.
568   for (unsigned n = 0; n != 8; ++n)
569     Reserved.set(X86::ST0 + n);
570 
571   // Reserve the registers that only exist in 64-bit mode.
572   if (!Is64Bit) {
573     // These 8-bit registers are part of the x86-64 extension even though their
574     // super-registers are old 32-bits.
575     Reserved.set(X86::SIL);
576     Reserved.set(X86::DIL);
577     Reserved.set(X86::BPL);
578     Reserved.set(X86::SPL);
579     Reserved.set(X86::SIH);
580     Reserved.set(X86::DIH);
581     Reserved.set(X86::BPH);
582     Reserved.set(X86::SPH);
583 
584     for (unsigned n = 0; n != 8; ++n) {
585       // R8, R9, ...
586       for (MCRegAliasIterator AI(X86::R8 + n, this, true); AI.isValid(); ++AI)
587         Reserved.set(*AI);
588 
589       // XMM8, XMM9, ...
590       for (MCRegAliasIterator AI(X86::XMM8 + n, this, true); AI.isValid(); ++AI)
591         Reserved.set(*AI);
592     }
593   }
594   if (!Is64Bit || !MF.getSubtarget<X86Subtarget>().hasAVX512()) {
595     for (unsigned n = 16; n != 32; ++n) {
596       for (MCRegAliasIterator AI(X86::XMM0 + n, this, true); AI.isValid(); ++AI)
597         Reserved.set(*AI);
598     }
599   }
600 
601   assert(checkAllSuperRegsMarked(Reserved,
602                                  {X86::SIL, X86::DIL, X86::BPL, X86::SPL,
603                                   X86::SIH, X86::DIH, X86::BPH, X86::SPH}));
604   return Reserved;
605 }
606 
607 void X86RegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
608   // Check if the EFLAGS register is marked as live-out. This shouldn't happen,
609   // because the calling convention defines the EFLAGS register as NOT
610   // preserved.
611   //
612   // Unfortunatelly the EFLAGS show up as live-out after branch folding. Adding
613   // an assert to track this and clear the register afterwards to avoid
614   // unnecessary crashes during release builds.
615   assert(!(Mask[X86::EFLAGS / 32] & (1U << (X86::EFLAGS % 32))) &&
616          "EFLAGS are not live-out from a patchpoint.");
617 
618   // Also clean other registers that don't need preserving (IP).
619   for (auto Reg : {X86::EFLAGS, X86::RIP, X86::EIP, X86::IP})
620     Mask[Reg / 32] &= ~(1U << (Reg % 32));
621 }
622 
623 //===----------------------------------------------------------------------===//
624 // Stack Frame Processing methods
625 //===----------------------------------------------------------------------===//
626 
627 static bool CantUseSP(const MachineFrameInfo &MFI) {
628   return MFI.hasVarSizedObjects() || MFI.hasOpaqueSPAdjustment();
629 }
630 
631 bool X86RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
632   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
633   if (X86FI->hasPreallocatedCall())
634     return true;
635 
636   const MachineFrameInfo &MFI = MF.getFrameInfo();
637 
638   if (!EnableBasePointer)
639     return false;
640 
641   // When we need stack realignment, we can't address the stack from the frame
642   // pointer.  When we have dynamic allocas or stack-adjusting inline asm, we
643   // can't address variables from the stack pointer.  MS inline asm can
644   // reference locals while also adjusting the stack pointer.  When we can't
645   // use both the SP and the FP, we need a separate base pointer register.
646   bool CantUseFP = needsStackRealignment(MF);
647   return CantUseFP && CantUseSP(MFI);
648 }
649 
650 bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
651   if (!TargetRegisterInfo::canRealignStack(MF))
652     return false;
653 
654   const MachineFrameInfo &MFI = MF.getFrameInfo();
655   const MachineRegisterInfo *MRI = &MF.getRegInfo();
656 
657   // Stack realignment requires a frame pointer.  If we already started
658   // register allocation with frame pointer elimination, it is too late now.
659   if (!MRI->canReserveReg(FramePtr))
660     return false;
661 
662   // If a base pointer is necessary.  Check that it isn't too late to reserve
663   // it.
664   if (CantUseSP(MFI))
665     return MRI->canReserveReg(BasePtr);
666   return true;
667 }
668 
669 // tryOptimizeLEAtoMOV - helper function that tries to replace a LEA instruction
670 // of the form 'lea (%esp), %ebx' --> 'mov %esp, %ebx'.
671 // TODO: In this case we should be really trying first to entirely eliminate
672 // this instruction which is a plain copy.
673 static bool tryOptimizeLEAtoMOV(MachineBasicBlock::iterator II) {
674   MachineInstr &MI = *II;
675   unsigned Opc = II->getOpcode();
676   // Check if this is a LEA of the form 'lea (%esp), %ebx'
677   if ((Opc != X86::LEA32r && Opc != X86::LEA64r && Opc != X86::LEA64_32r) ||
678       MI.getOperand(2).getImm() != 1 ||
679       MI.getOperand(3).getReg() != X86::NoRegister ||
680       MI.getOperand(4).getImm() != 0 ||
681       MI.getOperand(5).getReg() != X86::NoRegister)
682     return false;
683   Register BasePtr = MI.getOperand(1).getReg();
684   // In X32 mode, ensure the base-pointer is a 32-bit operand, so the LEA will
685   // be replaced with a 32-bit operand MOV which will zero extend the upper
686   // 32-bits of the super register.
687   if (Opc == X86::LEA64_32r)
688     BasePtr = getX86SubSuperRegister(BasePtr, 32);
689   Register NewDestReg = MI.getOperand(0).getReg();
690   const X86InstrInfo *TII =
691       MI.getParent()->getParent()->getSubtarget<X86Subtarget>().getInstrInfo();
692   TII->copyPhysReg(*MI.getParent(), II, MI.getDebugLoc(), NewDestReg, BasePtr,
693                    MI.getOperand(1).isKill());
694   MI.eraseFromParent();
695   return true;
696 }
697 
698 static bool isFuncletReturnInstr(MachineInstr &MI) {
699   switch (MI.getOpcode()) {
700   case X86::CATCHRET:
701   case X86::CLEANUPRET:
702     return true;
703   default:
704     return false;
705   }
706   llvm_unreachable("impossible");
707 }
708 
709 void
710 X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
711                                      int SPAdj, unsigned FIOperandNum,
712                                      RegScavenger *RS) const {
713   MachineInstr &MI = *II;
714   MachineBasicBlock &MBB = *MI.getParent();
715   MachineFunction &MF = *MBB.getParent();
716   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
717   bool IsEHFuncletEpilogue = MBBI == MBB.end() ? false
718                                                : isFuncletReturnInstr(*MBBI);
719   const X86FrameLowering *TFI = getFrameLowering(MF);
720   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
721 
722   // Determine base register and offset.
723   int FIOffset;
724   Register BasePtr;
725   if (MI.isReturn()) {
726     assert((!needsStackRealignment(MF) ||
727            MF.getFrameInfo().isFixedObjectIndex(FrameIndex)) &&
728            "Return instruction can only reference SP relative frame objects");
729     FIOffset =
730         TFI->getFrameIndexReferenceSP(MF, FrameIndex, BasePtr, 0).getFixed();
731   } else if (TFI->Is64Bit && (MBB.isEHFuncletEntry() || IsEHFuncletEpilogue)) {
732     FIOffset = TFI->getWin64EHFrameIndexRef(MF, FrameIndex, BasePtr);
733   } else {
734     FIOffset = TFI->getFrameIndexReference(MF, FrameIndex, BasePtr).getFixed();
735   }
736 
737   // LOCAL_ESCAPE uses a single offset, with no register. It only works in the
738   // simple FP case, and doesn't work with stack realignment. On 32-bit, the
739   // offset is from the traditional base pointer location.  On 64-bit, the
740   // offset is from the SP at the end of the prologue, not the FP location. This
741   // matches the behavior of llvm.frameaddress.
742   unsigned Opc = MI.getOpcode();
743   if (Opc == TargetOpcode::LOCAL_ESCAPE) {
744     MachineOperand &FI = MI.getOperand(FIOperandNum);
745     FI.ChangeToImmediate(FIOffset);
746     return;
747   }
748 
749   // For LEA64_32r when BasePtr is 32-bits (X32) we can use full-size 64-bit
750   // register as source operand, semantic is the same and destination is
751   // 32-bits. It saves one byte per lea in code since 0x67 prefix is avoided.
752   // Don't change BasePtr since it is used later for stack adjustment.
753   Register MachineBasePtr = BasePtr;
754   if (Opc == X86::LEA64_32r && X86::GR32RegClass.contains(BasePtr))
755     MachineBasePtr = getX86SubSuperRegister(BasePtr, 64);
756 
757   // This must be part of a four operand memory reference.  Replace the
758   // FrameIndex with base register.  Add an offset to the offset.
759   MI.getOperand(FIOperandNum).ChangeToRegister(MachineBasePtr, false);
760 
761   if (BasePtr == StackPtr)
762     FIOffset += SPAdj;
763 
764   // The frame index format for stackmaps and patchpoints is different from the
765   // X86 format. It only has a FI and an offset.
766   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
767     assert(BasePtr == FramePtr && "Expected the FP as base register");
768     int64_t Offset = MI.getOperand(FIOperandNum + 1).getImm() + FIOffset;
769     MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
770     return;
771   }
772 
773   if (MI.getOperand(FIOperandNum+3).isImm()) {
774     // Offset is a 32-bit integer.
775     int Imm = (int)(MI.getOperand(FIOperandNum + 3).getImm());
776     int Offset = FIOffset + Imm;
777     assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) &&
778            "Requesting 64-bit offset in 32-bit immediate!");
779     if (Offset != 0 || !tryOptimizeLEAtoMOV(II))
780       MI.getOperand(FIOperandNum + 3).ChangeToImmediate(Offset);
781   } else {
782     // Offset is symbolic. This is extremely rare.
783     uint64_t Offset = FIOffset +
784       (uint64_t)MI.getOperand(FIOperandNum+3).getOffset();
785     MI.getOperand(FIOperandNum + 3).setOffset(Offset);
786   }
787 }
788 
789 unsigned X86RegisterInfo::findDeadCallerSavedReg(
790     MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI) const {
791   const MachineFunction *MF = MBB.getParent();
792   if (MF->callsEHReturn())
793     return 0;
794 
795   const TargetRegisterClass &AvailableRegs = *getGPRsForTailCall(*MF);
796 
797   if (MBBI == MBB.end())
798     return 0;
799 
800   switch (MBBI->getOpcode()) {
801   default:
802     return 0;
803   case TargetOpcode::PATCHABLE_RET:
804   case X86::RET:
805   case X86::RETL:
806   case X86::RETQ:
807   case X86::RETIL:
808   case X86::RETIQ:
809   case X86::TCRETURNdi:
810   case X86::TCRETURNri:
811   case X86::TCRETURNmi:
812   case X86::TCRETURNdi64:
813   case X86::TCRETURNri64:
814   case X86::TCRETURNmi64:
815   case X86::EH_RETURN:
816   case X86::EH_RETURN64: {
817     SmallSet<uint16_t, 8> Uses;
818     for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
819       MachineOperand &MO = MBBI->getOperand(I);
820       if (!MO.isReg() || MO.isDef())
821         continue;
822       Register Reg = MO.getReg();
823       if (!Reg)
824         continue;
825       for (MCRegAliasIterator AI(Reg, this, true); AI.isValid(); ++AI)
826         Uses.insert(*AI);
827     }
828 
829     for (auto CS : AvailableRegs)
830       if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && CS != X86::ESP)
831         return CS;
832   }
833   }
834 
835   return 0;
836 }
837 
838 Register X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
839   const X86FrameLowering *TFI = getFrameLowering(MF);
840   return TFI->hasFP(MF) ? FramePtr : StackPtr;
841 }
842 
843 unsigned
844 X86RegisterInfo::getPtrSizedFrameRegister(const MachineFunction &MF) const {
845   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
846   Register FrameReg = getFrameRegister(MF);
847   if (Subtarget.isTarget64BitILP32())
848     FrameReg = getX86SubSuperRegister(FrameReg, 32);
849   return FrameReg;
850 }
851 
852 unsigned
853 X86RegisterInfo::getPtrSizedStackRegister(const MachineFunction &MF) const {
854   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
855   Register StackReg = getStackRegister();
856   if (Subtarget.isTarget64BitILP32())
857     StackReg = getX86SubSuperRegister(StackReg, 32);
858   return StackReg;
859 }
860 
861 static ShapeT getTileShape(Register VirtReg, VirtRegMap *VRM,
862                            const MachineRegisterInfo *MRI) {
863   if (VRM->hasShape(VirtReg))
864     return VRM->getShape(VirtReg);
865 
866   const MachineOperand &Def = *MRI->def_begin(VirtReg);
867   MachineInstr *MI = const_cast<MachineInstr *>(Def.getParent());
868   unsigned OpCode = MI->getOpcode();
869   switch (OpCode) {
870   default:
871     llvm_unreachable("Unexpected machine instruction on tile register!");
872     break;
873   // We only collect the tile shape that is defined.
874   case X86::PTILELOADDV:
875   case X86::PTDPBSSDV:
876   case X86::PTILEZEROV:
877     MachineOperand &MO1 = MI->getOperand(1);
878     MachineOperand &MO2 = MI->getOperand(2);
879     ShapeT Shape(&MO1, &MO2, MRI);
880     VRM->assignVirt2Shape(VirtReg, Shape);
881     return Shape;
882   }
883 }
884 
885 bool X86RegisterInfo::getRegAllocationHints(Register VirtReg,
886                                             ArrayRef<MCPhysReg> Order,
887                                             SmallVectorImpl<MCPhysReg> &Hints,
888                                             const MachineFunction &MF,
889                                             const VirtRegMap *VRM,
890                                             const LiveRegMatrix *Matrix) const {
891   const MachineRegisterInfo *MRI = &MF.getRegInfo();
892   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
893   bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
894       VirtReg, Order, Hints, MF, VRM, Matrix);
895 
896   if (RC.getID() != X86::TILERegClassID)
897     return BaseImplRetVal;
898 
899   ShapeT VirtShape = getTileShape(VirtReg, const_cast<VirtRegMap *>(VRM), MRI);
900   auto AddHint = [&](MCPhysReg PhysReg) {
901     Register VReg = Matrix->getOneVReg(PhysReg);
902     if (VReg == MCRegister::NoRegister) { // Not allocated yet
903       Hints.push_back(PhysReg);
904       return;
905     }
906     ShapeT PhysShape = getTileShape(VReg, const_cast<VirtRegMap *>(VRM), MRI);
907     if (PhysShape == VirtShape)
908       Hints.push_back(PhysReg);
909   };
910 
911   SmallSet<MCPhysReg, 4> CopyHints;
912   CopyHints.insert(Hints.begin(), Hints.end());
913   Hints.clear();
914   for (auto Hint : CopyHints) {
915     if (RC.contains(Hint) && !MRI->isReserved(Hint))
916       AddHint(Hint);
917   }
918   for (MCPhysReg PhysReg : Order) {
919     if (!CopyHints.count(PhysReg) && RC.contains(PhysReg) &&
920         !MRI->isReserved(PhysReg))
921       AddHint(PhysReg);
922   }
923 
924 #define DEBUG_TYPE "tile-hint"
925   LLVM_DEBUG({
926     dbgs() << "Hints for virtual register " << format_hex(VirtReg, 8) << "\n";
927     for (auto Hint : Hints) {
928       dbgs() << "tmm" << Hint << ",";
929     }
930     dbgs() << "\n";
931   });
932 #undef DEBUG_TYPE
933 
934   return true;
935 }
936