1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 //  * Truncate instruction
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm-c/Initialization.h"
18 #include "llvm-c/Transforms/AggressiveInstCombine.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "aggressive-instcombine"
34 
35 namespace {
36 /// Contains expression pattern combiner logic.
37 /// This class provides both the logic to combine expression patterns and
38 /// combine them. It differs from InstCombiner class in that each pattern
39 /// combiner runs only once as opposed to InstCombine's multi-iteration,
40 /// which allows pattern combiner to have higher complexity than the O(1)
41 /// required by the instruction combiner.
42 class AggressiveInstCombinerLegacyPass : public FunctionPass {
43 public:
44   static char ID; // Pass identification, replacement for typeid
45 
46   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
47     initializeAggressiveInstCombinerLegacyPassPass(
48         *PassRegistry::getPassRegistry());
49   }
50 
51   void getAnalysisUsage(AnalysisUsage &AU) const override;
52 
53   /// Run all expression pattern optimizations on the given /p F function.
54   ///
55   /// \param F function to optimize.
56   /// \returns true if the IR is changed.
57   bool runOnFunction(Function &F) override;
58 };
59 } // namespace
60 
61 /// Match a pattern for a bitwise rotate operation that partially guards
62 /// against undefined behavior by branching around the rotation when the shift
63 /// amount is 0.
64 static bool foldGuardedRotateToFunnelShift(Instruction &I) {
65   if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
66     return false;
67 
68   // As with the one-use checks below, this is not strictly necessary, but we
69   // are being cautious to avoid potential perf regressions on targets that
70   // do not actually have a rotate instruction (where the funnel shift would be
71   // expanded back into math/shift/logic ops).
72   if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
73     return false;
74 
75   // Match V to funnel shift left/right and capture the source operand and
76   // shift amount in X and Y.
77   auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
78     Value *L0, *L1, *R0, *R1;
79     unsigned Width = V->getType()->getScalarSizeInBits();
80     auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));
81 
82     // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
83     auto RotL = m_OneUse(
84         m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
85     if (RotL.match(V) && L0 == R0 && L1 == R1) {
86       X = L0;
87       Y = L1;
88       return Intrinsic::fshl;
89     }
90 
91     // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
92     auto RotR = m_OneUse(
93         m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
94     if (RotR.match(V) && L0 == R0 && L1 == R1) {
95       X = L0;
96       Y = L1;
97       return Intrinsic::fshr;
98     }
99 
100     return Intrinsic::not_intrinsic;
101   };
102 
103   // One phi operand must be a rotate operation, and the other phi operand must
104   // be the source value of that rotate operation:
105   // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
106   PHINode &Phi = cast<PHINode>(I);
107   Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
108   Value *RotSrc, *RotAmt;
109   Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
110   if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
111     IID = matchRotate(P1, RotSrc, RotAmt);
112     if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
113       return false;
114     assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
115            "Pattern must match funnel shift left or right");
116   }
117 
118   // The incoming block with our source operand must be the "guard" block.
119   // That must contain a cmp+branch to avoid the rotate when the shift amount
120   // is equal to 0. The other incoming block is the block with the rotate.
121   BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
122   BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
123   Instruction *TermI = GuardBB->getTerminator();
124   BasicBlock *TrueBB, *FalseBB;
125   ICmpInst::Predicate Pred;
126   if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()), TrueBB,
127                          FalseBB)))
128     return false;
129 
130   BasicBlock *PhiBB = Phi.getParent();
131   if (Pred != CmpInst::ICMP_EQ || TrueBB != PhiBB || FalseBB != RotBB)
132     return false;
133 
134   // We matched a variation of this IR pattern:
135   // GuardBB:
136   //   %cmp = icmp eq i32 %RotAmt, 0
137   //   br i1 %cmp, label %PhiBB, label %RotBB
138   // RotBB:
139   //   %sub = sub i32 32, %RotAmt
140   //   %shr = lshr i32 %X, %sub
141   //   %shl = shl i32 %X, %RotAmt
142   //   %rot = or i32 %shr, %shl
143   //   br label %PhiBB
144   // PhiBB:
145   //   %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
146   // -->
147   // llvm.fshl.i32(i32 %X, i32 %RotAmt)
148   IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
149   Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
150   Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
151   return true;
152 }
153 
154 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
155 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
156 /// of 'and' ops, then we also need to capture the fact that we saw an
157 /// "and X, 1", so that's an extra return value for that case.
158 struct MaskOps {
159   Value *Root;
160   APInt Mask;
161   bool MatchAndChain;
162   bool FoundAnd1;
163 
164   MaskOps(unsigned BitWidth, bool MatchAnds)
165       : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
166         MatchAndChain(MatchAnds), FoundAnd1(false) {}
167 };
168 
169 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
170 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
171 /// value. Examples:
172 ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
173 /// returns { X, 0x129 }
174 ///   and (and (X >> 1), 1), (X >> 4)
175 /// returns { X, 0x12 }
176 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
177   Value *Op0, *Op1;
178   if (MOps.MatchAndChain) {
179     // Recurse through a chain of 'and' operands. This requires an extra check
180     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
181     // in the chain to know that all of the high bits are cleared.
182     if (match(V, m_And(m_Value(Op0), m_One()))) {
183       MOps.FoundAnd1 = true;
184       return matchAndOrChain(Op0, MOps);
185     }
186     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
187       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
188   } else {
189     // Recurse through a chain of 'or' operands.
190     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
191       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
192   }
193 
194   // We need a shift-right or a bare value representing a compare of bit 0 of
195   // the original source operand.
196   Value *Candidate;
197   uint64_t BitIndex = 0;
198   if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
199     Candidate = V;
200 
201   // Initialize result source operand.
202   if (!MOps.Root)
203     MOps.Root = Candidate;
204 
205   // The shift constant is out-of-range? This code hasn't been simplified.
206   if (BitIndex >= MOps.Mask.getBitWidth())
207     return false;
208 
209   // Fill in the mask bit derived from the shift constant.
210   MOps.Mask.setBit(BitIndex);
211   return MOps.Root == Candidate;
212 }
213 
214 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
215 /// These will include a chain of 'or' or 'and'-shifted bits from a
216 /// common source value:
217 /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
218 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
219 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
220 /// that differ only with a final 'not' of the result. We expect that final
221 /// 'not' to be folded with the compare that we create here (invert predicate).
222 static bool foldAnyOrAllBitsSet(Instruction &I) {
223   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
224   // final "and X, 1" instruction must be the final op in the sequence.
225   bool MatchAllBitsSet;
226   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
227     MatchAllBitsSet = true;
228   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
229     MatchAllBitsSet = false;
230   else
231     return false;
232 
233   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
234   if (MatchAllBitsSet) {
235     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
236       return false;
237   } else {
238     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
239       return false;
240   }
241 
242   // The pattern was found. Create a masked compare that replaces all of the
243   // shift and logic ops.
244   IRBuilder<> Builder(&I);
245   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
246   Value *And = Builder.CreateAnd(MOps.Root, Mask);
247   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
248                                : Builder.CreateIsNotNull(And);
249   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
250   I.replaceAllUsesWith(Zext);
251   return true;
252 }
253 
254 /// This is the entry point for folds that could be implemented in regular
255 /// InstCombine, but they are separated because they are not expected to
256 /// occur frequently and/or have more than a constant-length pattern match.
257 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
258   bool MadeChange = false;
259   for (BasicBlock &BB : F) {
260     // Ignore unreachable basic blocks.
261     if (!DT.isReachableFromEntry(&BB))
262       continue;
263     // Do not delete instructions under here and invalidate the iterator.
264     // Walk the block backwards for efficiency. We're matching a chain of
265     // use->defs, so we're more likely to succeed by starting from the bottom.
266     // Also, we want to avoid matching partial patterns.
267     // TODO: It would be more efficient if we removed dead instructions
268     // iteratively in this loop rather than waiting until the end.
269     for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
270       MadeChange |= foldAnyOrAllBitsSet(I);
271       MadeChange |= foldGuardedRotateToFunnelShift(I);
272     }
273   }
274 
275   // We're done with transforms, so remove dead instructions.
276   if (MadeChange)
277     for (BasicBlock &BB : F)
278       SimplifyInstructionsInBlock(&BB);
279 
280   return MadeChange;
281 }
282 
283 /// This is the entry point for all transforms. Pass manager differences are
284 /// handled in the callers of this function.
285 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
286   bool MadeChange = false;
287   const DataLayout &DL = F.getParent()->getDataLayout();
288   TruncInstCombine TIC(TLI, DL, DT);
289   MadeChange |= TIC.run(F);
290   MadeChange |= foldUnusualPatterns(F, DT);
291   return MadeChange;
292 }
293 
294 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
295     AnalysisUsage &AU) const {
296   AU.setPreservesCFG();
297   AU.addRequired<DominatorTreeWrapperPass>();
298   AU.addRequired<TargetLibraryInfoWrapperPass>();
299   AU.addPreserved<AAResultsWrapperPass>();
300   AU.addPreserved<BasicAAWrapperPass>();
301   AU.addPreserved<DominatorTreeWrapperPass>();
302   AU.addPreserved<GlobalsAAWrapperPass>();
303 }
304 
305 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
306   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
307   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
308   return runImpl(F, TLI, DT);
309 }
310 
311 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
312                                                  FunctionAnalysisManager &AM) {
313   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
314   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
315   if (!runImpl(F, TLI, DT)) {
316     // No changes, all analyses are preserved.
317     return PreservedAnalyses::all();
318   }
319   // Mark all the analyses that instcombine updates as preserved.
320   PreservedAnalyses PA;
321   PA.preserveSet<CFGAnalyses>();
322   PA.preserve<AAManager>();
323   PA.preserve<GlobalsAA>();
324   return PA;
325 }
326 
327 char AggressiveInstCombinerLegacyPass::ID = 0;
328 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
329                       "aggressive-instcombine",
330                       "Combine pattern based expressions", false, false)
331 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
332 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
333 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
334                     "Combine pattern based expressions", false, false)
335 
336 // Initialization Routines
337 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
338   initializeAggressiveInstCombinerLegacyPassPass(Registry);
339 }
340 
341 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
342   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
343 }
344 
345 FunctionPass *llvm::createAggressiveInstCombinerPass() {
346   return new AggressiveInstCombinerLegacyPass();
347 }
348 
349 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
350   unwrap(PM)->add(createAggressiveInstCombinerPass());
351 }
352